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Introduction by the Organizers

The mini-workshop Computational Optimization on Manifolds was organized by
Pierre-Antoine Absil (Louvain-la-Neuve), Roland Herzog (Chemnitz) and Gabriele
Steidl (Berlin). Due do the ongoing pandemic, it was held as an online event with
a reduced program. Nonetheless, the mini-workshop was well attended by a total
of 17 participants from Europe, Asia and North America.

The topics of the event revolved around practical aspects for optimization prob-
lems on manifolds, where the nonlinear Riemannian geometry often presents dif-
ficulties not present in an Euclidean setting. A challenging example of such a
problem, the bivariate fitting of manifold-valued data by minimizing a linear com-
bination of a thin plate spline energy and a data fidelity term, was presented and
analyzed in the talk by Benedikt Wirth. A second example, discussing solutions of
the parabolic heat equation in the space of tensor product functions of low rank,
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was presented by André Uschmajew. Here the solution of each time step was posed
as an optimization problem.
Two further talks elaborated on the geometry of two particular spaces appearing
frequently in applications. The presentation by Nicolas Boumal focused on the
algebraic variety of bounded rank matrices, whose failure to be a smooth manifold
presents further challenges to theory and algorithms. One way to overcome these
challenges is by lifting the problem onto a manifold. A second presentation given
by Estelle Massart considered the manifold of fixed-rank positive semidefinite ma-
trices. A quotient geometry was proposed, which allows for an efficient evaluation
of the exponential and logarithmic maps.

The remaining talks focused on particular algorithms and their realization in
software. Hiroyuki Sato reviewed nonlinear conjugate gradient methods on Rie-
mannian manifolds. Ronny Bergmann spoke about a Riemannian version of the
primal-dual hybrid gradient (Chambolle–Pock) algorithm, which relies on a recent
proposal of the Fenchel conjugate on manifolds. He also discussed implementation
in a new toolbox for optimization on manifolds written in Julia. The presenta-
tion by Jan Lellmann introduced a semismooth Newton method for the same class
of problems, whose implementation was also achieved in the Julia toolbox. In
her talk, Nina Miolane introduced a Python package for computations, statistics
and the solution of machine learning tasks on nonlinear manifolds. She also pre-
sented applications across various disciplines. Finally, Anton Schiela addressed a
sequential quadratic programming method for equality constrained optimization
problems on Riemannian manifolds with applications in optimal control.

Overall, the mini-workshop demonstrated that computational optimization on
Riemannian manifolds is a very active research area with numerous applications
and challenges not present in Euclidean spaces.

Acknowledgement: The organizers would like to thank MFO staff for providing the
technical infrastructure to conduct this mini-workshop as an online event. They
would also like to thank Estefańıa Loayza-Romero for her help with the online
sessions and the preparation of this report.
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Abstracts

Optimization of Smooth Functions on Nonsmooth Sets

Nicolas Boumal

(joint work with Eitan Levin, Joe Kileel)

We consider the problem of minimizing a smooth function f restricted to a possibly
nonsmooth set X ⊆ E , where E is a Euclidean space:

min
x∈X

f(x).

As an example of interest, we may consider X being the real algebraic variety
consisting in all matrices of a given size and bounded rank:

X = {X ∈ R
m×n : rank(X) ≤ r}.

If X were an embedded submanifold of E , we could describe it locally using its
tangent spaces. In the general case, we can describe X locally using its tangent
cones:

TxX =
{

v ∈ E : there exist sequences (xn) ⊂ X and (τn) ⊂ R+

satisfying xn → x, τn → 0 and v = lim
n→∞

xn − x
τn

}

.

Using the gradient ∇f of f , a reasonable measure of stationarity for a point x ∈ X
is

∥

∥ProjTxX (−∇f(x))
∥

∥ ,

where ‖ · ‖ denotes the norm on E and ProjTxX denotes metric projection (in that
same norm) to the tangent cone at x. When this quantity is zero, we say x is
stationary.

Since local (and global) minimizers of f are stationary, it is of interest to de-
termine whether optimization algorithms admit only stationary points as limit
points. Unfortunately, the nonsmoothness of X can make this quite challenging.
In particular, we exhibit a function f on the rank variety and an initialization
X0 for which a reasonable algorithm studied by Schneider and Uschmajew (2015)
produces a sequence (Xn) which has the following properties:

(1) All matrices in the sequence have rank r,
(2) the sequence converges to a matrix X of rank less than r,
(3) the stationarity measure converges to zero along the sequence,
(4) yet X is not stationary.

We call such events apocalypses : they are clear liabilities for optimization purposes.
A standard workaround for optimization (and other endeavors) on sets with less

than desirable properties is to resort to a lift. Specifically, assume we have at our
disposal a smooth manifoldM together with a smooth map ϕ :M→ E such that
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ϕ(M) = X . Then, with g = f ◦ ϕ the problem above can be stated equivalently
as:

min
y∈M

g(y).

Conveniently, both M (by assumption) and g (by composition) are smooth. For
the bounded-rank variety, we may consider M = Rm×r × Rn×r and ϕ(L,R) =
LR⊤, or M = {(X,K) ∈ Rm×n × Gr(n, n − r) : K ⊆ kerX} and ϕ(X,K) = X
with Gr denoting Grassmannians; the former is standard, the latter is called the
desingularization lift Khrulkov and Oseledets (2018).

A number of natural questions ensue: how do {global optima, local optima,
stationary points, approximate stationary points} of the two problems compare?
And if f has certain desirable properties for the purpose of optimization, can we
expect g to retain some of these properties? If not, can we compensate for those
losses?

In the talk, we go over those questions one by one, methodically establishing
full characterizations where we could do so, and highlighting further questions that
arose along the way. This is ongoing work.

References

V. Khrulkov and I. Oseledets. Desingularization of bounded-rank matrix sets. SIAM Journal on
Matrix Analysis and Applications, 39(1):451–471, 2018. DOI:10.1137/16M1108194.

R. Schneider and A. Uschmajew. Convergence results for projected line-search methods on
varieties of low-rank matrices via  Lojasiewicz inequality. SIAM Journal on Optimization,
25(1):622–646, 2015. DOI: 10.1137/140957822.

Thin Plate Spline Type Fitting to Riemannian Data

Benedikt Wirth

(joint work with Pierre-Antoine Absil, Pierre-Yves Gousenbourger)

Given coordinate-data pairs (ti, di) ∈ [0, 1]× R, i = 1, . . . ,K, it is a classical and
straightforward task to find a curve S : [0, 1] → R that interpolates the data or
approximates it, for instance in a least squares sense. A prototypical and wide-
spread method is approximation with a cubic spline, which is smooth, has a simple
infinite-dimensional variational interpretation of minimizing accumulated squared
acceleration, yet can be parameterized by a finite number of parameters (and thus
is straightforward to compute), even if the coordinates ti are nonequispaced. These
properties persist in an approximate sense if the data points di lie in a Riemannian
manifoldM with metric g and an approximating curve S : [0, 1]→M is sought.

Dealing with multivariate approximation of manifold-valued data is more diffi-
cult, already in the bivariate case which we consider throughout. Letting Ω ⊂ R2

be open and connected with smooth boundary, consider first Euclidean data
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(ti, di) ∈ Ω × R, i = 1, . . . ,K. The bivariate generalization of cubic spline fit-
ting would be to find S : Ω→ R by solving

min

{

E[S] + λ

K
∑

i=1

|S(ti)− di|2
∣

∣

∣

∣

∣

S : Ω→ R

}

with E[S] =

∫

Ω

|D2S(t)|2 dt = |S|2H2

for some fixed weight λ > 0 (the limit λ → ∞ leads to an interpolation problem,
λ→ 0 leads to linear regression). The function S is known as a thin plate spline,
and the corresponding linear Euler–Lagrange equation

∆2S = λ

K
∑

i=1

(di−S(ti))δti in Ω, n·D2Sn = 0, ∂n∆S+∂n⊥(n⊥ ·D2Sn) = 0 on ∂Ω

(with δt the Dirac distribution in t ⊂ Ω and n the unit outward normal to ∂Ω)
has a unique solution that can readily be solved for numerically. The situation is
further simplified if Ω = R2, in which case the minimizer turns out to be of the
form

S(t) =
∑K

i=1 αiφ(|t− ti|) + β ·
(

t
1

)

with φ(r) = r2 log r being the radially symmetric fundamental solution to ∆2φ =
8πδ0. In this case the minimization problem reduces to solving a linear system for
the coefficients αi ∈ R and β ∈ R3.

Now consider instead a manifold-valued bivariate fitting function S : Ω →M.
We define the thin plate spline energy of S as

E[S] =

∫

Ω

tr([D2S(t)]∗D2S(t)) dt,

where the second derivative of S at t ∈ R2 is the bounded bilinear form

D2S(t) : R2 ⊗ R
2 → TS(t)M, (v, w) 7→ ∇S

w(∂vS)(t).

The term∇S
wσ essentially equals∇DSw(σ◦S−1)◦S with ∇ the classical Levi-Civita

covariant derivative, however, this formula is only valid if S is locally invertible.

Definition 1. Amanifold thin plate spline approximating data (t1, d1), ..., (tK , dK)
∈ Ω×M with fitting weight λ is a solution of the minimization problem

(1) min
{

E[S] + λ
∑K

i=1 dist(S(ti), di)
2
∣

∣

∣S : Ω→M
}

.

The following statements illustrate different problems with this generalization:
the Euler–Lagrange equation for (1) is highly nonlinear and thus difficult to solve,
there may not even exist a global solution to (1), and solutions to (1) are prone
to degenerating to curves.

Theorem 2. A solution to (1), smooth away from t1, . . . , tK , satisfies

0 = λ
∑K

i=1δti logS(ti) di −
∑

i,j=1,2

(

∇S

∂i
∇S

∂j
∇S

∂j
∂iS+R(∇S

∂i
∂jS, ∂iS)∂jS

)

in Ω,

0 = ∇S

n∂nS = ∇S

n⊥(∇S

n⊥∂nS) +∇S

n

(

∇S

∂1
∂1S(s, t) +∇S

∂2
∂2S(s, t)

)

+R(∂1S, ∂nS)∂1S+R(∂2S, ∂nS)∂2S on ∂Ω,
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where R is the Riemann curvature tensor and δt̄ is defined by
∫

Ω gS(t)(δt̄φ(t),
ψ(t)) dt = gS(t̄)(φ(t̄), ψ(t̄)) for any continuous liftings φ, ψ : Ω→ TM of S.

Theorem 3. The manifoldM and data d1, . . . , dK ∈M can be chosen such that
(1) has no global solution.

Theorem 4. One has E[S] = 0 if and only if one of the following holds.

(1) S(t) = y ∈M is constant, or
(2) S(t) = γ(t · v) for a constant speed geodesic γ : R→M and a v ∈ R2, or
(3) S(t) = i(At) for a symmetric positive definite A ∈ R2×2 and a local isom-

etry i : A(Ω)→M such that s 7→ i(as+ b) is a constant speed geodesic in
M for any a, b ∈ R2, thus i(Ω) is a flat geodesic submanifold.

Corollary 5. Let Sλ denote a global minimizer of (1) under an additional bound
on the W 1,4-norm of S (one can show that such an Sλ exists for any finite bound),
and let λk ց 0. If M does not contain a flat geodesic submanifold, then any se-
quence Sλk contains a subsequence that converges uniformly to a degenerate surface
as in cases (1)-(2) of the previous theorem.

Unless M is a product manifold R × N , M does usually not contain a flat
geodesic submanifold. Thus, as one chooses λ small to achieve a bivariate ap-
proximation that behaves like linear regression in the Euclidean case or so-called
geodesic regression in the manifold-valued univariate case, then instead one will
typically obtain an almost degenerate fitting function S.

Since the concept of manifold thin plate splines entails so many problems, a
natural remedy is to simply linearize the manifold and work in tangent space.

Definition 6. Let p ∈ M and di ∈ TpM with expp di = di for i = 1, . . . ,K.

The tangent space thin plate spline S : Ω→ TpM for data (t1, d1), . . . , (tK , dK) ∈
Ω×M and fitting parameter λ > 0 is the unique solution of

min

{

∫

Ω

|D2S|2 dt+ λ
K
∑

i=1

|di − S(ti)|2
∣

∣

∣

∣

∣

S : Ω→ TpM
}

.

The associated retracted thin plate spline is the map S = expp ◦S.
Of course, the retracted thin plate spline will not have equally good smoothness

properties as a manifold thin plate spline, so a natural question is how much it
actually differs from the (more intrinsic and thus more natural concept of the)
manifold thin plate spline. We will quantify this difference for the case of interpo-
lation, λ = ∞, since for λ < ∞ we have seen that there is a strong bias towards
degenerate fitting functions. The difference will depend on how close M is to
Euclidean space in the following sense.

Definition 7. A Riemannian manifold M shall be called ǫ-flat in Ck on Br(p)
(with Br(p) ⊂M the closed geodesic ball around p ∈M of radius r) if in normal
coordinates at p we have ‖g − I‖Ck(Br(0)) < ǫ for the metric g : Br(0)→ R

n×n.

A more geometric view on ǫ-flatness is provided by the following statement.
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Theorem 8. There exists C > 0 (depending on the dimension of M) such that

(1) if the sectional curvatures of M are bounded in absolute value by ǫ and
r < π

2
√
ǫ
, thenM is Crǫ-flat on Br(p) in C

0,

(2) if in addition ∇uR(u, v)v−∇vR(v, u)u ≤ ǫ|u|2|v|2 for the curvature tensor
R and all tangent vectors v, u, then M is Crǫ-flat on Br(p) in C

1.

Now one can estimate the difference between retracted and manifold thin plate
splines. This estimate will be independent of the manifold injectivity radius, whose
finiteness usually causes the nonexistence of global minimizers to (1).

Theorem 9. Let λ = ∞ and m ∈ {0, 1, 2}, q ∈ [2,∞] such that H2(Ω) ⊂
Wm,q(Ω), and define the grid width h = supt∈Ω infi |t − ti|. Let S be the tan-
gent space thin plate spline at p ∈ M for the given data. There exist C, h0 > 0
depending on Ω,m, q and δ, r > 0 depending on Ω and S such that (1) has a local
minmizer of the form S = expp ◦S and

‖Dm(S− S)‖Lq(Ω) ≤ Ch1+
2
q
−m√ǫ(‖S‖H2 + ‖S‖2H2)

whenever h < h0, ǫ < δ, andM is ǫ-flat in C1 on Br(p).

Of course, in applications M will not be ǫ-flat on large enough balls, so to
maintain closeness to intrinsically defined manifold thin plate splines one needs
to localize. We suggest localization by blending multiple (local) retracted thin
plate splines at different base points p ∈ M into one global fitting function as
defined below. One can show that for appropriate base points and blending weights
one achieves globally C1 functions whose evaluation at a point only requires few
Riemannian exponentials and logarithms, and one can devise appropriate weights,
adaptive refinement schemes, and schemes to transfer the data d1, . . . , dK to the
different tangent spaces.

Definition 10. Partition Ω into rectangles Ωij = [xi, xi+1]× [yj , yj+1] and asso-
ciate each (xk, yl) with a base point pkl ∈M. Given retracted thin plate splines Skl

at pkl, the blended surface S : Ω→M is defined on each Ωij by the (well-known)
Riemannian weighted averaging

S(x, y) = av
(

Sij(x, y),Si+1,j(x, y),Si,j+1(x, y),Si+1,j+1(x, y) ;

wij(x, y), wi+1,j(x, y), wi,j+1(x, y), wi+1,j+1(x, y)
)

,

with smooth weights wkl : Ω→ [0, 1] of support in [xk−1, xk+1]× [yl−1, yl+1].
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Dynamical Low-Rank Approximation for Parabolic Problems

André Uschmajew

(joint work with Markus Bachmayr, Henrik Eisenmann, Emil Kieri)

We show existence and uniqueness of dynamical low-rank approximations for par-
abolic problems in Hilbert spaces (Bachmayr et al., 2020). As a model problem
for a more general setup, consider a two-dimensional parabolic partial differential
equation

(1) ut(x, t)−∇ · α(t)∇u(x, t) = f(x, t)

on a product domain x ∈ Ω = (0, 1)2, with zero Dirichlet boundary conditions
u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ), and an initial value u(x, 0) = u0(x) a.e.
in Ω. For this particular problem, the dynamical low-rank approximation (DLRA)
approach would ask for an approximate solution curve on a set

Mr = {u ∈ L2(Ω): rank(u) = r}
of ‘rank-r’ functions, that is, functions that have a decomposition

u =
r

∑

k=1

u1k ⊗ u2k

into a fixed number r (and not less) tensor product functions (u1 ⊗ u2)(x1, x2) =
u1(x1)u

2(x2) a.e. It can be shown that Mr is a locally embedded submanifold
in L2(Ω). The functions inMr are analogous to infinite rank-r matrices. DLRA
hence provides a separation of variables and allows for a low-parametric repre-
sentation of the solution. It is particularly well studied for finite matrices, and
has been used for different classes of evolution problems in scientific comput-
ing; see, e.g., Koch and Lubich (2007); Sapsis and Lermusiaux (2009); Lubich
and Oseledets (2014); Musharbash et al. (2015); Einkemmer and Lubich (2018);
Mena et al. (2018); Ostermann et al. (2019). Here we consider parabolic problems.

To obtain a well posed problem in the parabolic case with mild regularity as-
sumptions one has to work with a weak formulation. Using the Hilbert spaces

H = L2(Ω) = L2(0, 1)⊗ L2(0, 1), V = H1
0 (Ω),

let a : V ×V × [0, T ]→ R denote the induced bilinear form of the differential oper-
ator in (1), which we assume to be uniformly symmetric, bounded and coercive. A
suitable weak formulation of DLRA is based on a time-dependent variational prin-
ciple, also called Dirac-Frenkel principle: Given f ∈ L2(0, T ;V

∗) and u0 ∈ Mr,
find

u ∈W 1
2 (0, T ;V,H) = {u ∈ L2(0, T ;V ) : u′ ∈ L2(0, T ;H)}

such that u(t) ∈ Mr for all t ∈ [0, T ], and such that for almost all t ∈ (0, T ),

(2)
〈u′(t), v〉 + a(u(t), v; t) = 〈f(t), v〉 for all v ∈ Tu(t)Mr ∩ V ,

u(0) = u0.
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Here

TuMr =

{

v =

r
∑

k=1

v1k ⊗ u2k + u1k ⊗ v2k : v1k, v
2
k ∈ L2(0, 1)

}

is the tangent space of TuMr ofMr at u. This space is closed in L2(Ω). Thus, in
contrast to a standard weak formulation of (1) we seek a curve t 7→ u(t) on Mr

which for almost every t ∈ (0, T ) satisfies the weak parabolic formulation (2) on
the tangent space only.

In the following we writeM instead ofMr. To prove existence and uniqueness
of solutions to (2) we use a Rothe-type temporal discretization in Hilbert space.
As a generalization of the implict Euler method, which is a classical approach for
parabolic PDEs, we consider a time stepping scheme via optimization problems at
time steps ti = ih, h = T/N , as follows:

ui+1 = argmin
u∈Mw∩V

F (u) =
1

2(ti+1 − ti)
‖u− ui‖2H +

1

2
a(u, u; ti+1)− 〈fi+1, u〉.

Here Mw
denotes the weak closure of M in H and fi+1 is the average of f in

the interval [ti, ti+1], assuming f(t) ∈ H . By standard results, this optimization
problem admits at least one solution, essentially since the cost function is con-
vex, continuous and coercive on V . Moreover, the necessary optimality condition
formally matches the weak formulation (2) at the time point ti+1. In this way,

one obtains approximate solutions u1, . . . , uN ∈ M
w ∩ V . Let ûh(t) and v̂h(t)

be the piecewise linear and piecewise constant interpolants on the interval [0, T ],
respectively. Our main result is that these interpolants converge for h → 0 in a
suitable sense to solutions of the weak DLRA formulation (2). First this is shown
for a small time interval.

Theorem 1. Assume f ∈ L2(0, T ;H) and u0 ∈M∩V . Let σr > 0 be the smallest
positive singular value of u0 (the H-distance toMr−1). Then the following hold.

(a) The functions ûh and v̂h converge, up to subsequences, weakly in L2(0, T ;
V ) and strongly in L2(0, T ;H), to the same function û ∈ L∞(0, T ;V )
with û(0) = u0, while the weak derivatives û′h converge weakly to û′ in

L2(0, T ;H), again up to subsequences. It holds û(t) ∈Mw ∩ V for almost
all t ∈ [0, T ].

(b) There exists a constant c > 0 independent of σr such that û solves (2) for
almost all t < (σr/c)

2, and û(t) ∈ M for all t < (σr/c)
2.

Note that the assumptions u0 ∈ V and f ∈ L2(0, T ;H) are stronger than usual
for existence of weak solutions to parabolic PDEs, but still weaker than needed
for strong solutions. We then proceed by showing existence of a solution to (2) on
a maximal time interval. It can also be shown to be the unique solution.

Theorem 2. Let the assumptions in Theorem 1 hold. There exist T ∗ ∈ (0, T ]
and u ∈ W 1

2 (0, T
∗;V,H) ∩ L∞(0, T ∗;V ) such that u solves problem (2) on the

time interval [0, T ∗], and its continuous representative u ∈ C(0, T ∗;H) satisfies
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u(t) ∈ M for all t ∈ [0, T ∗). Here T ∗ is maximal for the evolution on M in the
sense that if T ∗ < T , then

lim inf
t→T∗

σr(u(t)) = 0,

where σr(u(t)) is the smallest positive singular value of u(t). In either case, u is
the unique solution of (2) in W 1

2 (0, T
∗;V,H).

The results can be stated and proved in a more general framework of parabolic
evolution equations on conic ‘manifolds’M⊂ H where V ⊆ H ⊆ V ∗ is a Gelfand
triplet, and under assumptions that reflect the related properties of the model
problem (1). A crucial property is that the associated operator A(t) in (1) can
be split into a diagonal part that maps any u ∈ Mr ∩ V to the tangent space
TuMr ∩ V (in a suitable sense), and an off-diagonal part (corresponding to mixed
derivatives) which can be shown to be locally bounded fromM∩ V to H . This
is based on the mixed regularity of functions in Mr ∩ V . Another important
tool in the proof are curvature bounds in the form of Lipschitz constants for the
H-orthogonal tangent space projectors at different points inM, as they are well
known for the rank-r manifold Mr. We expect that the framework developed
in Bachmayr et al. (2020) for proving existence and uniqueness of solutions is
also applicable to certain types of dynamical low-rank tensor approximation for
higher-dimensional parabolic problems.
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Conjugate Gradient Methods on Riemannian Manifolds

Hiroyuki Sato

Let M be a manifold and f : M → R be a function defined on M . We consider
the following unconstrained optimization problem on manifold M :

min
x∈M

f(x).

In this abstract, we review Euclidean and Riemannian conjugate gradient (CG)
methods, introduce several studies on Riemannian CG (R-CG) methods, and pro-
pose a general framework for R-CG methods.

The first CG method is the linear CG method (Hestenes and Stiefel, 1952),
which was originally proposed for minimizing f(x) = 1

2x
TAx − bTx on M = Rn

with a symmetric positive definite matrix A ∈ Rn×n and b ∈ Rn. The minimization
of f(x) is equivalent to solving∇f(x) = Ax−b = 0, i.e., the linear equation Ax = b
for x. For a given initial point x0 ∈ Rn and search direction η0 := −∇f(x0), the
linear CG method iterates xk+1 := xk+ tkηk and ηk+1 := −∇f(xk+1)+βk+1ηk for

k ≥ 0, where tk := argmint≥0 f(xk + tdk) = −∇f(xk)
T ηk

ηT
k
Aηk

(exact line search) and

βk :=
‖∇f(xk)‖2

2

‖∇f(xk−1)‖2
2
, which ensures ηTk Aηl = δkl, i.e., η0, η1, . . . , ηn−1 are mutually

A-conjugate. We define gk := ∇f(xk) and yk := gk − gk−1, and βk can be written
in several mathematically equivalent forms:

βk =
gTk gk

gTk−1gk−1
=

gTk gk
ηTk−1yk

=
gTk gk

−gTk−1ηk−1
=

gTk yk
gTk−1gk−1

=
gTk yk
ηTk−1yk

=
gTk yk

−gTk−1ηk−1
.

The concept of iterating xk+1 := xk + tkηk with ηk := −gk + βkηk−1 can
be used even when a more general smooth objective function f on M = Rn is
considered, which leads to the Euclidean nonlinear CG methods. Step length tk
can be approximately computed such that it satisfies some conditions such as the
Armijo or Wolfe conditions. As for βk in the Euclidean nonlinear CG methods,
the above six types of formulas have been individually studied. For instance,

βFR
k =

gTk gk
gTk−1gk−1

, βDY
k =

gTk gk
dTk−1yk

, βPRP
k =

gTk yk
gTk−1gk−1

,

βHS
k =

gTk yk
dTk−1yk

, βLS
k =

gTk yk
−gTk−1dk−1

were proposed by Fletcher and Reeves; Dai and Yuan; Polak, Ribière, and Polyak;
Hestenes and Stiefel; and Liu and Storey, respectively. The review in Hager and
Zhang (2006) may be referred to for details.

Next, we proceed to the manifold case. In what follows, we assume that M is
a Riemannian manifold with Riemannian metric 〈·, ·〉 and that f is smooth and
bounded below. In particular, for a given retraction R on M , we assume that
there exists a constant L > 0 such that |D(f ◦ Rx)(tη)[η] −D(f ◦ Rx)(0)[η]| ≤ Lt
for any t ≥ 0, η ∈ TxM with ‖η‖x = 1, and x ∈ M . We denote the Riemannian
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gradient of f on M by grad f(x) and again use the notation gk := gradf(xk) in
R-CG methods.

In line-search-basedmethods used in optimization problems on manifolds, search
direction ηk is chosen as a tangent vector toM at xk, and the update formula in Rn,
i.e., xk+1 := xk + tkηk, is generalized to xk+1 := Rxk

(tkηk), where R : TM → M
is a retraction on M (Absil et al., 2008). When computing search direction
ηk+1 ∈ Txk+1

M in R-CG methods, −gk+1 ∈ Txk+1
M and βk+1ηk ∈ Txk

M be-
long to distinct tangent spaces and, thus, cannot be added. Therefore, careful
consideration is required for computing ηk+1.

Smith (1994) discussed R-CG methods in which search direction ηk is computed
as ηk+1 := −gk+1 + βk+1P (ηk), where P is the parallel translation with respect

to the geodesic from xk to xk+1. He proposed βk+1 :=
〈gk+1−P (gk), gk+1〉xk+1

−〈gk,ηk〉xk

,

which is a generalization of the Euclidean version of βLS
k+1. Moreover, Edelman

et al. (1998) discussed the same framework for computing ηk+1 with several βk+1

including βk+1 :=
〈gk+1−P (gk), gk+1〉xk+1

〈gk,gk〉xk

, which is a generalization of the Euclidean

βPRP
k+1 .
However, in some cases, the parallel translation is numerically impractical. To

resolve this issue, Absil et al. (2008) proposed the notion of vector transport
T : TM ⊕ TM → TM on M , which is a generalization of the parallel transla-
tion. Using T , they proposed a framework for R-CG methods, wherein ηk+1 is
computed as ηk+1 := − gradf(xk+1) + βk+1Ttkηk

(ηk). In this framework, Ring

and Wirth Ring and Wirth (2012) discussed βR-FR
k+1 :=

‖ grad f(xk+1)‖2
xk+1

‖ grad f(xk)‖2
xk

, which is

a generalization of the Euclidean βFR
k+1, and provided a global convergence analysis

for the R-CG method with βR-FR
k+1 under the condition

(1) ‖Ttkηk
(ηk)‖xk+1

≤ ‖ηk‖xk
.

Unfortunately, this condition is sometimes violated (see Sato and Iwai (2015) for
some examples). To avoid assuming (1), Sato and Iwai (2015) defined the scaled
vector transport T 0 associated with the differentiated retraction T R as T 0

η (ξ) :=
‖ξ‖x

‖T R
η (ξ)‖Rx(η)

T R
η (ξ) for ξ, η ∈ TxM , where T R

η (ξ) := DRx(η)[ξ]. They proposed

the formula ηk+1 := − gradf(xk+1) + βk+1T (k)
tkηk

(ηk), where T (k) is identical to

T R when (1) is satisfied and is otherwise identical to T 0. They proved that the
modified Fletcher–Reeves-type R-CG method has a global convergence property
without the assumption (1). Using this scaling technique, Sato (2016) also gen-

eralized the Euclidean version of βDY
k+1 as βR-DY

k+1 :=
‖gk+1‖2

xk+1

〈gk+1, T (k)
tkηk

(ηk)〉xk+1
−〈gk, ηk〉xk

and analyzed the R-CG method with βR-DY
k+1 . By generalizing the work of Dai

and Yuan (2001), Sakai and Iiduka (2020) proposed the use of βk that satis-
fies −σ ≤ rk ≤ 1, and presented a global convergence analysis, where rk :=
βk/β

R-DY
k . Here, σ := (1 − c2)/(1 + c2) with c2 in the strong Wolfe condition

|φ′k(tk)| ≤ c2|φ′k(0)| for φk(t) := f(Rxk
(tηk)). This method comprises βk :=
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max{0,min{βR-DY
k , βR-HS

k }} and βk := max{−σβR-DY
k ,min{βR-DY

k , βR-HS
k }} as ex-

amples, where βR-HS
k :=

〈gk, gk−T (k−1)
tk−1ηk−1

(gk−1)〉

〈gk, T (k−1)
tk−1ηk−1

(ηk−1)〉xk
−〈gk−1, ηk−1〉xk−1

is a generalization

of βHS
k .
Recently, Zhu and Sato (2020) proposed R-CG methods with an inverse retrac-

tion. It is assumed that two retractions Rfw and Rbw on M are given. Herein,
Rfw plays the same role as R in the above discussion, and we allow the case
Rfw = Rbw. We compute xk+1 := Rfw

xk
(tkηk) and ηk+1 := − gradf(xk+1) −

βk+1skt
−1
k (Rbw

xk+1
)−1(xk), where sk := min

{

1, ‖ηk‖xk

/

‖t−1
k

(

Rbw
xk+1

)−1
(xk)‖xk+1

}

>
0 ensures global convergence by scaling the norm of the obtained tangent vector,
which is obtained by applying the same idea as that used for the scaled vector
transport in Sato and Iwai (2015). An important feature of this framework for
R-CG methods is that there is no requirement for a vector transport.

We can summarize the above discussion as follows. A natural method of moving
ηk ∈ Txk

M to Txk+1
M is the use of the parallel translation. A more general ap-

proach is the use of a vector transport instead. A scaled vector transport may also
be considered as such a method and makes the assumption (1) unnecessary. How-
ever, it does not have linearity and is thus not a vector transport. Furthermore,
an inverse retraction can be exploited instead of a vector transport to compute
the search directions in R-CG methods. Hence, we can say that a more general
mapping than a vector transport can be used in R-CG methods and propose a
new framework with a formula for computing ηk+1 as

ηk+1 := − gradf(xk+1) + βk+1T (k) (ηk) ,

where T (k) is a map (not necessarily a vector transport) from Txk
M to Txk+1

M

that satisfies ‖T (k)(ηk)‖xk+1
≤ ‖ηk‖xk

. Further details will be addressed in future
research.
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Geomstats: A Python Package for Riemannian Geometry in
Machine Learning

Nina Miolane

(joint work with Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou,
Yann Thanwerdas, Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti,
Hatem Hajri, Yann Cabanes, Thomas Gerald, Paul Chauchat, Christian

Shewmake, Daniel Brooks, Bernhard Kainz, Claire Donnat, Susan Holmes,
Xavier Pennec)

Introduction. We introduce Geomstats, an open-source Python package for

computations and statistics on nonlinear manifolds (Miolane et al., 2020a,b). Data
on manifolds naturally arise in different fields (see Figure 1). Geomstats provides
computational methods that take into account the geometry of the data space. The
source code is freely available under the MIT license at geomstats.ai or on GitHub
at github.com/geomstats/geomstats.

Datasets. Figure 1 shows data on manifolds available in Geomstats and visu-
alized with the module visualization. Cities on the Earth are points on the
sphere; social networks can be represented as elements of the hyperbolic space;
brain connectomes are traditionally modelled as elements of the manifold of sym-
metric positive definite matrices; poses of 3D objects are elements of the Lie groups
of rotations SO(3) or of rigid transformations SE(3); shapes belong to the shape
space; probability distributions are elements of Riemannian manifolds in informa-
tion geometry; etc.

Objectives. The objectives of the package Geomstats are three-fold:

• Teach “hands-on” Geometric Statistics — by providing coding exercises
and visualizations for courses on differential geometry and statistics on
manifolds (see notebooks repository),
• Democratize the use of Geometric Statistics — by providing an API similar
to scikit-learn’s to increase the use of geometric methods by machine
learners,
• Support research in Geometric Statistics — by providing a platform where
researchers share code associated to published works following common
standards, to improve reproducibility and re-usability of results.

Overview. The package Geomstats offers object-oriented and extensively unit-
tested implementations. Manifolds come equipped with families of Riemannian
metrics with associated exponential and logarithmic maps, geodesics, and parallel

http://geomstats.ai
https://github.com/geomstats/geomstats
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Figure 1. Visualizations of datasets of manifolds using Geomstats.

transport. Statistics and learning algorithms provide methods for estimation, clus-
tering, and dimension reduction on manifolds. All associated operations are vec-
torized for batch computation and support different execution backends—namely
NumPy, PyTorch, and TensorFlow.

Usage. Three steps are needed to run learning algorithms on manifolds with
Geomstats: (i) instantiate the manifold of interest, (ii) instantiate the learning
algorithm of interest, and (iii) run the algorithm. The following code snippet
illustrates the use of online K-means on the hypersphere.

sphere = Hypersphere (dim=5)

data = sphere . random uniform ( n samples=10)

c l u s t e r i n g = OnlineKMeans( metr i c=sphere . metr ic ,

n c l u s t e r s=4)

c l u s t e r i n g = c l u s t e r i n g . f i t ( data )
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All geometric computations are performed behind the scenes. The user only needs
a high-level understanding of Riemannian geometry. Each algorithm can be used
with any of the manifolds and metrics implemented in the package. The folders
examples and notebooks provide more code snippets that help users get started
with Geomstats.

Comparison with related Python packages. Tables 1-2 summarize the com-
parison between existing Python packages related to data on manifolds. The
package TheanoGeometry (Kühnel and Sommer, 2017) is the most closely related
to Geomstats and provides nonlinear statistics and stochastic equations on Rie-
mannian manifolds. The differential geometric tensors are computed with auto-
matic differentiation, which inspired several submodules available in Geomstats.
However, this library does not provide statistical learning algorithms and lacks
engineering maintenance.

Several other packages focus on optimization on Riemannian manifolds. Py-

manopt (Townsend et al., 2016) computes gradients and Hessian-vector products
on Riemannian manifolds with automatic differentiation and provides the following
solvers: steepest descent, conjugate gradient, the Nelder-Mead algorithm, parti-
cle swarm optimization, and the Riemannian trust regions. Geoopt (Kochurov et
al., 2019) focuses on stochastic adaptive optimization on Riemannian manifolds,
for machine learning problems. The library provides stochastic solvers, stochastic
gradient descent and Adam, as well as the following samplers: Stochastic Gradient
Langevin Dynamics, Hamiltonian Monte-Carlo, Stochastic Gradient Hamiltonian
Monte-Carlo. Lastly, McTorch (Meghwanshi et al., 2018) provides optimization on
Riemannian manifold for deep learning by adding a “Manifold” parameter to Py-
Torch’s network layers and optimizers. The library provides the following solvers:
stochastic gradient descent, AdaGrad and conjugate gradients.

As these libraries focus on optimization, they substitute potentially compu-
tationally expensive operations by practical proxies, for example, by replacing
exponential maps by so-called retractions. However, they are less modular than
Geomstats in terms of the Riemannian geometry and do not provide statistical
learning algorithms. The optimization libraries are complementary to Geomstats

and interact easily with it: an example integrating Pymanopt and Geomstats can
be found in Geomstats’ examples folder.

Conclusion. We presented the Python package Geomstats that provides the
wider machine learning community with off-the-shelf geometric learning algo-
rithms. The package offers a wide variety of manifolds, together with a flexibility
in the choice of metrics, while being faithful to the mathematician’s formulation
of Riemannian geometry. This sometimes comes at cost of efficiency, and future
contributions will be devoted to addressing this caveat.
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Manifolds Geometry

Pymanopt Euclidean manifold, symmetric
matrices, sphere, complex circle,
SO(n), Stiefel, Grassmannian,
oblique manifold, SPD(n), ellip-
tope, fixed-rank positive semidef-
inite matrices

Exponential and logarithmic
maps, retraction, vector trans-
port, egrad2rgrad, ehess2rhess,
inner product, distance, norm

Geoopt Euclidean manifold, sphere,
Stiefel, Poincaré ball

Same as Pymanopt

McTorch Stiefel, SPD(n) Same as Pymanopt

TheanoGeometry Sphere, ellipsoid, SPD(n), Land-
marks, GL(n), SO(n), SE(n)

Inner product, exponential and
logarithmic maps, parallel trans-

port, Christoffel symbols, Rie-
mann, Ricci and scalar curvature,
geodesics, Fréchet mean

Geomstats Euclidean, Minkowski, hyper-
bolic space, Poincaré polydisk,
hypersphere, SO(n), SE(n),
GL(n), Stiefel, Grassmannian,
SPD(n), symmetric matrices,
skew-symmetric matrices, dis-
cretized curves on manifolds,
landmarks on manifolds

Levi-Civita connection, Christof-
fel symbols, parallel transport, ex-
ponential and logarithmic maps,
inner product, distance, norm,
geodesics, group invariant met-
rics, Fréchet means and learning
algorithms on manifolds

Table 1. Comparison of libraries in terms of geometric opera-
tions (as of 2020)

Backends Continuous integra-

tion and coverage

Pymanopt Autograd, PyTorch, TensorFlow, Theano CI, coverage 85%

Geoopt PyTorch 75%

McTorch PyTorch CI, coverage 84%

TheanoGeometry Theano No CI, no unit tests

Geomstats NumPy, PyTorch, TensorFlow CI, coverage 92%
(NumPy), 76% (Ten-

sorFlow), 79% (PyTorch)

Table 2. Comparison of code infrastructure (as of 2020)
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The Riemannian Chambolle–Pock Algorithm and Optimization on
Manifolds in Julia

Ronny Bergmann

(joint work with Seth Axen, Mateusz Baran, Roland Herzog, Mauŕıcio Silva
Louzeiro, Daniel Tenbrinck, José Vidal-Núñez)

In the recent years many algorithms for (Euclidean) nonsmooth optimization have
been generalized to Riemannian manifolds. Among these are the cyclic proximal
point algorithm (CPPA) by Bačák (2014) and the (parallel) Douglas-Rachford
algorithm (PDRA) in Bergmann et al. (2016). The latter is known to be equivalent
on Euclidean space to the Chambolle-Pock algorithm (CPA) that was introduced
by Chambolle and Pock (2011).

In order to introduce a Riemannian Chambolle-Pock algorithm, this talk is first
concerned with defining a suitable generalization of the Fenchel dual, see Bergmann
et al. (2020). The main ingredient is a base point m ∈ M to introduce the m-
Fenchel dual F ∗

m. Most properties of the Fenchel conjugate can be generalized,
especially the Fenchel-Young inequality as well as the Fenchel-Moreau identity.

These are then used to derive the Riemannian Chambolle-Pock algorithm in an
exact and a linearized variant, and a convergence proof finishes the first part of
the talk.
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The second part of the talk is about the implementation of the RCPA in Manopt.jl
(Bergmann, 2020), a Julia package for optimization on manifolds. It uses the
ManifoldsBase.jl1 interface, such that all algorithms implemented in this package
can be used in combination with Manifolds. jl (Axen et al., 2020).

A manifold within the interface is a type inheriting from Manifold{F}, where
F ∈ {R,C,H} denotes the field the manifold is build upon. Then one implements
for example exp(M,p,X) and log(M,p,q), while for the geodesic a default function
is then automatically available. Furthermore, a sophisticated decorator pattern is
available, to add additionally properties to a manifold, like a Lie structure or dis-
tinguish different metrics using Julia’s dispatch mechanism. Functions unrelated
to the Riemannian metric are transparently passed to the original manifold, such
that common properties have to only be implemented once.

the solver framework from Manopt.jl is based on describing a Problem to solve
and Options to describe and setup the solver. Then, several function, gradients,
proximal maps are available as well as debug and recording features for arbitrary
fields of aforementioned types. Within Manopt.jl both variants of RCPA are avail-
able.

Numerical experiments illustrate that the newly introduced RCPA performs as
well as the PDRA in number of iterations but outperforms the latter in runtime.
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An SQP Method for Equality Constrained Optimization on
Hilbert Manifolds

Anton Schiela

(joint work with Julián Ortiz-Lopez)

1. Constrained Optimization Problems and their Pullbacks

In the following, we will consider optimization problems of the form:

min
x∈X

f(x) s.t. c(x) = y∗, c : X → Y, y∗ ∈ Y(1)

on Hilbert manifolds X and Y of class C2, modelled over Hilbert spaces, as defined
e.g. in Lang (2001). Let X be equipped with a Riemannian metric 〈·, ·〉x. Let f :
X → R be a C2-functional and c : X → Y be a C2 mapping. While unconstrained
optimization on manifolds is a well established field, only few works are available on
constrained optimization algorithms Liu and Boumal (2019); Obara et al. (2020);
Schiela and Ortiz (2020) up to now.

Following the approach in Absil et al. (2008) we will use retractions Rx : TxX →
X , which are widely used in optimization on manifolds. For the codomain Y of
c we also need mappings Sy : Y → TyY in the other direction, which we call
linearizing maps, sometimes also called generalized logarithms (Boumal, 2010). On
Riemannian manifolds, the exponential map expx : TxX → X and the logarithmic
map logy : Y → TyY are canonical examples, however, as discussed in Absil et al.
(2008), more efficient retractions and linearizing maps can often be used.

Definition 1.1. A C2-mapping R : TX → X , where Rx : TxX → X , is called a
retraction, if Rx(0x) = x and T0xRx = idTxX . A C2-mapping S : Y × Y → TY ,
where Sy : Y → TyY , is called a linearizing map, if Sy(y) = 0y and TySy = idTyY .

We define pullbacks f : TxX → R of f and c : TxX → Tc(x)Y of c(x) = y∗ via

f(δx) := (f ◦Rx)(δx)

c(δx) := Sc(x) ◦ c ◦Rx(δx) − Sc(x)(y∗).

In this way, we can now define the pullback of (1) to tangent spaces:

min
δx∈TxX

f(δx) s.t. c(δx) = 0c(x), c : TxX → Tc(x)Y.(2)

Since c(x∗) = y∗ is equivalent to Sc(x∗)(y∗) = 0c(x∗) an element x∗ ∈ X is a local
minimizer of (1) if and only if 0x∗

is a local minimizer of its pullback at x∗.
Thus, we have reduced (1) locally to a nonlinear optimization problem on

Hilbert spaces, to which techniques of constrained optimization on linear spaces
can be applied.
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2. A Local SQP-Method

We will pursue the idea of SQP methods and derive a linearly constrained quadratic
model of (2), which is of the following form:

min
δx∈TxX

q(δx) s.t. c′(0x)δx+ c(0x) = 0y, c : TxX → TyY.(3)

Here q : TxX → R is a quadratic model for f , which also will use second order
information of the problem. For that we will need the local Lagrangian function:

L : TxX × Tc(x)Y ∗ → R

(δx, p) 7→ L(δx, p) := f(δx) + p ◦ c(δx).(4)

We will carry over the ideas of Absil et al. (2008) from unconstrained optimiza-
tion on Riemannian manifolds to equality constrained optimization on Hilbert
manifolds. In Absil et al. (2008) quadratic models of the objective f are com-
puted independently of the retractions used by the optimization algorithm. First
order models use f ′(x), which is invariant of retractions. Second order models are
computed by the Riemannian hessian of f , i.e f ′′

◦
(0x) := (f ◦ expx)′′(0x). This

yields a second order quadratic model q◦ for f◦. If an algorithm is implemented
via a retraction Rx 6= expx creating a pullback f 6= f◦, we see that f

′′(0x) 6= f ′′
◦
(0x)

in general and thus, q◦ is not a second order model for f .
From that perspective, steps are computed with the help of two potentially

different retractions : a natural one R◦

x
= expx, to define a quadratic model q◦ and

an implemented one Rx to compute an update Rx(δx).
In equality constrained optimization second order quadratic models employ,

besides f ′, the second derivative of the Lagrangian function, which is L′′
◦
(0x, px),

computed via R◦

x
, S◦

c(x)
. Thus, for some given Lagrange multiplier px ∈ Tc(x)Y ∗

our quadratic model reads:

q◦(δx) := f(x) + f ′(x)δx +
1

2
L′′

◦
(0x, px)(δx, δx).(5)

This leads to the following linearly constrained quadratic problem:

min
δx∈TxX

q◦(δx) s.t. c′(x)δx + c(0x) = 0.(6)

If c′(x) is surjective and q◦ is elliptic on ker c′(x), a minimizer ∆x of (6) exists,
and we call it a full SQP-step. An SQP method creates a sequence of iterates
by solving these quadratic problems. Observe that the computation of ∆x is
completely independent of the particular retraction Rx. Thus, ∆x may enter into
the construction of Rx.

3. Local Convergence Analysis

In Schiela and Ortiz (2020) we performed a local convergence analysis of Algo-
rithm 1, which we will sketch here, in the framework of affine covariant Newton
methods (Deuflhard, 2011). We will denote by x∗ a local solution of (1) and impose
the following assumptions:
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Algorithm 1 Local SQP method

Require: initial iterate x
repeat
compute a Lagrange multiplier estimate px ∈ Tc(x)Y ∗

compute ∆x by solving (6), using R◦

x
, S◦

c(x), Sc(x)

x← Rx(∆x)
until converged

Assumption 3.1. Let Ux∗
be a neighborhood of x∗. Assume that there are

constants ρ0 > 0, ωf ′ , ωc, such that the following estimates hold for all x ∈ Ux∗
,

and all v ∈ TxX , ξ, δx ∈ Bx
ρ0
:

‖f ′(δx)− f ′(x)‖x,∗ ≤ ωf ′‖δx‖x,(7)

c′(ξ) surjective, ‖c′(ξ)−(c′(δx) − c′(x))v‖x ≤ ωc‖δx‖x‖v‖x(8)

Here c′(ξ)− denotes the minimal norm pseudo-inverse of c′(ξ) with respect to ‖·‖x.
Further, assume that there are constants ωL, αL′′

◦
> 0,ML′′

◦
, Mφ such that for

all x ∈ Ux∗
and all δx ∈ Bx

ρ0
:

|(L′′(δx, px)− L′′(0x, px))(v, w)| ≤ ωL‖δx‖x‖v‖x‖w‖x ∀v, w ∈ TxX(9)

L′′
◦
(0x, px)(v, v) ≥ αL′′

◦
‖v‖2x ∀v ∈ ker c′(x)(10)

|L′′
◦
(0x, px)(v, w)| ≤ML′′

◦
‖v‖x‖w‖x ∀v, w ∈ TxX(11)

‖(R−1
x ◦R◦

x
)′′(0x)(v, w)‖x ≤MΦ‖v‖x‖w‖x ∀v, w ∈ TxX.(12)

The use of the affine covariant Lipschitz constant ωc for c′ in (8) follows the
ideas of Deuflhard (2011). It avoids the use of norms on TyY and can be estimated
a-posteriori during the run of a globalized algorithm. The other assumptions are
all standard for local convergence analysis. Due to (12) Rx need not be a second
order retraction to obtain fast local convergence.

Theorem 3.2. Suppose that Assumption 3.1 holds at x∗. Then for initial values,
sufficiently close to x∗, Algorithm 1 converges quadratically to x∗

More details, a globalization strategy, discussion of transition to local conver-
gence, and numerical results can be found in Schiela and Ortiz (2020) and also
in Ortiz (2020).
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A Quotient Geometry with Simple Geodesics on the Manifold of
Fixed-Rank Positive-Semidefinite Matrices

Estelle Massart

(joint work with Pierre-Antoine Absil, Julien M. Hendrickx)

Positive-semidefinite (PSD) matrices are ubiquitous in nowadays’ life, appearing,
e.g., as variables in semidefinite programming, covariance matrices in statistics,
diffusion tensors in brain imaging, and covariance descriptors in image set classi-
fication. In some cases (e.g., when the data points are low-rank representatives of
large PSD matrices), the rank of the matrices can be assumed to be fixed, and the
data belong to the set S+(p, n) of PSD matrices of size n and rank p.

The set S+(p, n) does obviously not have a vector space structure: the sum of
two PSD matrices of rank p has usually a rank larger than p. However, this set
can be turned into a Riemannian manifold. Different geometries were proposed
for the manifold S+(p, n), none of them having the desirable property of turning
S+(p, n) into a geodesically complete manifold with closed-form expressions for
both the exponential and the logarithm maps Vandereycken et al. (2009, 2013);
Bonnable and Sepulchre (2009).

In this talk, we follow the route of Journée et al. (2010) by identifying S+(p, n)
with the quotient manifold R

n×p
∗ /Op, where R

n×p
∗ is the set of full-rank n × p

matrices and Op is the orthogonal group of order p. The total space R
n×p
∗ is

equipped with the Euclidean metric.
There are two main reasons to consider this geometry. The first one is the

fact that the computation cost of the resulting exponential and logarithm maps
is low in comparison with other proposed geometries, so that this geometry is
particularly suitable for numerical computations.

The second motivation is the fact that the associated distance coincides with the
Wasserstein distance between degenerate centered Gaussian distributions. Indeed,
any degenerate centered Gaussian distribution is parameterized by a positive-
semidefinite covariance matrix. The Wasserstein metric between degenerate cen-
tered Gaussian distributions induces then a distance between positive-semidefinite
matrices, that coincides with the distance on R

n×p
∗ /Op computed here. The latter

is also a direct generalization of the Bures–Wasserstein distance between positive-
definite matrices, presented in, e.g., Takatsu (2011); Bhatia et al. (2018).

The main drawback of this geometry is that it does not turn the manifold into
a complete metric space. This drawback is mitigated by two observations. First,
this situation is not isolated, see, e.g., Absil and Oseledets (2014) that proposes
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several retractions (first-order approximations of the exponential map) on the low-
rank manifold, that are not defined everywhere. Secondly, several recent works
take into account situations where the exponential map (or more generally the
retraction) is not defined everywhere, see, e.g., Boumal et al. (2018).

We derive expressions for the Riemannian logarithm and the injectivity radius
on this manifold, as well as tight bounds on its sectional curvature. These last
two concepts play a key role in convergence guarantees of several optimization and
consensus algorithms, and allow to ensure continuity of the results of some data
fitting algorithms. This talk relies on the two papers Massart and Absil (2020);
Massart et al. (2019).
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Higher-Order Non-Smooth Optimization on Manifolds

Jan Lellmann

(joint work with Willem Diepeveen, Caterina Rust)

We consider manifold-valued optimization problems of the form

(1) inf
p∈M
{f(p) + g(Λ(p))},

whereM and N are smooth Riemannian manifolds, Λ :M→ N is a general
differentiable non-linear map, and f :M→ R̄ and g : N → R̄ are non-smooth. In
the context of mathematical image processing, such problems occur for example
in variational approaches to diffusion tensor magnetic resonance imaging, inter-
polation on SO(3), and the analysis of interferometric synthetic aperture radar
data.

Existing strategies for numerically finding a minimizer of (1) can be catego-
rized into first-order and higher-order methods. First-order methods are based
on subgradient- or proximal steps, have been found to be relatively robust in
practice, but suffer from slow tail convergence Bergmann et al. (2016, 2020) or re-
quire highly specialized approaches Storath et al. (2016). In contrast, higher-order
methods provide superlinear or even quadratic convergence Hintermüller (2010);
Xiao et al. (2018), but so far have not been successfully applied to the non-smooth
manifold-valued setting.

In order to achieve this goal, we rely on a dualization approach on manifolds
developed in Bergmann et al. (2020): After fixing a base point m ∈M, we replace
(1) by a linearized saddle-point problem,

(2) inf
p∈M

sup
ξn∈T∗

n

{f(p) + 〈DmΛ[logm p], ξn〉 − g∗n(ξn)}.

Here DmΛ[v] denotes the differential of Λ at m ∈M applied to the tangent vector
v ∈ TpM and we choose n := Λ(m) as the base point of the generalized conjugate
g∗n.

In Bergmann et al. (2020), it was shown that in the Hadamard case, a saddle
point can be found by solving the linearized primal-dual optimality system

p = proxσf

(

expp

(

Pm→p

(

−σ (DmΛ)∗
[

Pn→Λ(m)ξn
])♯

))

,(3)

ξn = proxτg∗
n

(

ξn + τ
(

PΛ(m)→nDmΛ [logm p]
)♭
)

,(4)

where Pm→p denotes parallel transport and ♯, ♭ are the musical isomorphisms con-
verting between tangent- and cotangent spaces, and proxσf (·) denotes the gener-
alized proximal map with respect to the function f and step size σ.

The recently proposed first-order lRCPA method Bergmann et al. (2020) can be
understood as a fixed-point iteration on this system. In order to apply a Newton-
type method to (3)–(4) instead, we rewrite the system as the problem of finding a
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zero of the vector field X :M× T ∗
nM→ TM× T ∗

nM:

(5) X(p, ξn) :=





− logp proxσf

(

expp

(

Pm→p

(

−σ (DmΛ)
∗ [Pn→Λ(m)ξn

])♯
))

ξn − proxτg∗
n

(

ξn + τ
(

PΛ(m)→nDmΛ [logm p]
)♭
)





The non-differentiability of X prohibits the use of a classical Riemannian New-
ton method Absil et al. (2009). Therefore we apply a superlinearly convergent
Riemannian Semismooth Newton (RSSN) method de Oliveira et al. (2020), which
relies on choosing an element from the Clarke generalized differential ∂M,CX(qk)
of X at the current iterate qk := (pk, ξkn), and solving a Newton system for the
step.

In order to account for inexact steps and Quasi-Newton approaches, we also
investigate an inexact version of RSSN:

Algorithm 1 Inexact Semismooth Newton

Initialization: q0 ∈M× T ∗
nM, a0 ≥ 0

for k = 0, 1, . . . do
Choose Vk(q

k) ∈ ∂M,CX(qk)
Solve Vk(q

k)dk = −X(qk) + rk, where ‖rk‖(qk) ≤ ak‖X(qk)‖(qk)
qk+1 := expqk(q

k)

Choose ak+1 ≥ 0
end for

We can show the following theorem regarding superlinear convergence:

Theorem 1. (1) There exist a > 0 and δ > 0 such that for every q0 ∈ Bδ (q
∗)

and ak ≤ a, the sequence (qk)k≥0 generated by Alg. 1 is well-defined, is
contained in Bδ (q

∗), and converges Q-linearly to the solution q∗.
(2) If the sequence (qk)k≥0 generated by Alg. 1 converges to the solution q∗

and further ‖rk‖(qk) ∈ o
(

‖X(qk)‖(qk)
)

, then the rate of convergence is
Q-superlinear.

(3) If the sequence (qk)k≥0 generated by Alg. 1 converges to the solution q∗,

X is µ-order semismooth at q∗, and ‖rk‖(qk) ∈ O
(

‖X(qk)‖1+µ
(qk)

)

, then the

rate of convergence is Q-order 1 + µ.

Consequently, if the relative residual can be bounded, we obtain linear conver-
gence. If the relative residual converges to zero, the convergence is superlinear,
and even of higher order if the decrease is fast enough and the optimality system
is higher-order semismooth.

An implementation based on the manopt.jl library exhibits superlinear local
convergence as predicted. Interestingly, the method appears to work well not only
on Hadamard manifolds such as the symmetric positive definite matrices P(3) as
supported by the duality theory, but experimentally also shows rapid convergence
on the positively-curved unit sphere S2.
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1211 Genève 4
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