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Introduction by the Organizers

The study of self-contact preventing energies started roughly thirty years ago with
the definition of so-called knot energies. The underlying concepts trace back to
earlier work by Menger in the 1930s and Federer in the 1950s.

In pursuit of finding nicely shaped representatives within isotopy classes, a
variety of different functionals such as ropelength and its smooth variants has
been proposed. This stimulated quite a lot of activity in both geometric topology
and geometric analysis. These efforts were partly motivated by the idea to pave a
new way to the decision problem in knot theory.

While preventing self-contact and thereby self-penetrations, the functionals pro-
vide a “measure” for the quality of an embedding. Subsequently, interesting con-
nections to harmonic analysis surfaced. By their nature, repulsive energies are
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highly nonlocal. Many of them naturally lead to fractional Sobolev spaces, pro-
viding yet another motivation for investigating these.

The respective Euler–Lagrange equations and the corresponding evolution equa-
tions are nonlocal geometric PDEs whose analysis turns out to be particularly
challenging. Furthermore, the design of efficient optimization schemes demands a
deep understanding of the structure of the underlying operators.

The concept of repulsive energies is also related to fundamental questions in
topology. It is still unclear whether there is a gradient flow of some knot energy
that realizes a retract of the trivial loops to round circles. Although such a mech-
anism exists due to the Smale conjecture, no explicit construction is known so
far. Of course, any candidate functional must not admit critical points within the
unknot class apart from circles.

Even more importantly for applications, repulsive energies can also be em-
ployed to model steric constraints. This is normally achieved via a regularization
approach that is both analytically and numerically demanding. In particular, it
involves fine-tuning of several parameters. For instance, in the case of the elastic
energy, strong forces related to bending effects have to be compensated by repul-
sive forces related to the regularization term in order to avoid self-intersections.
However, analytical properties of the energy may allow for proving rigorous re-
sults on discrete flows which are not feasible for some ad-hoc approaches that are
employed in applications.

Qualitative properties of minimizers often rely on intricate topological results.
For instance they can be used in order to extend lower bounds on energies in given
isotopy classes to larger domains. Moreover, the topology of the respective energy
landscape seems to be quite complex. In some cases it remains an open question
whether minimizers or stationary points within certain isotopy classes exist at all.

Overall, this field seems to be particularly appealing due to the synthesis of
questions and tools at the interface of topology, analysis, numerics, optimization,
and modeling.

The mini-workshop Nonlocal Analysis and the Geometry of Embeddings, organ-
ised by Simon Blatt (Salzburg), Philipp Reiter (Chemnitz), and Armin Schikorra
(Pittsburgh), took place under the restrictions imposed by the covid-19 pandemic.
However, this situation provided the opportunity to implement an actual “work-
shop” format that focused on discussions, mostly in plenum, rather than talks.

The workshop gathered researchers from different fields such as topology, geo-
metric and harmonic analysis, numerics, and elasticity theory. Particular attention
was paid to including early career researchers, a third of our participants being
doctoral students.

In order to enable everyone to participate, a hybrid format has been imple-
mented. Thereby eleven participants from Austria, the Czech Republic, Germany,
Poland, Switzerland, and the United States have been included remotely. A num-
ber of seven people residing in Germany could actually stay in person at Oberwol-
fach.
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The technical facilities allowed for bridging the gap between these two groups.
The amount of interaction exceeded the expectations by far, resulting in a lot of
intense discussions. Unfortunately, due to different time zones the US participants
were to miss the morning sessions. However, in order not to discourage anyone
from sharing ideas and conjectures, the discussions have not been recorded.

On Monday and Tuesday afternoon two sessions of five short talks each were
held. In particular, young participants were given the opportunity to present a
current research project at this occasion. Furthermore, a couple of additional
talks were included in the course of the workshop. By special agreement with the
institute, the talk by John Maddocks on Tuesday evening was streamed as a part
of a weekly hosted online seminar run by the same group of organizers.

At the first day, a preliminary schedule for the rest of the week was set by
identifying questions of common interest. Topics that were discussed extensively
include regularity issues and gradient flows, numerics, applications in elasticity the-
ory, namely elastic rod theories, and the energy landscape within isotopy classes,
mainly focusing on critical points within the unknot class.

While curves with and without frames constitute the central class of examples,
the workshop clearly demonstrated the availability of both theoretical and com-
putational tools being required for the treatment of surfaces. One may expect
some progress in this direction in near future. A couple of new energy functionals
have been proposed that may be better suited in the context of higher-dimensional
objects.

The concept sketched above seems to have worked out. For instance, this is
demonstrated by the fact that one strand of the discussion has been continued via
email between many workshop participants for about two weeks after the meeting.

Despite the difficult circumstances, the participants experienced a true Ober-
wolfach atmosphere which did not only consist of intense scientific interaction but
also comprised social activities such as the traditional hiking tour which has been
shifted to Thursday morning.

Overall, direction and staff of the MFO did great efforts to accommodate both
online and on-site participants which highly added to the success of this workshop.
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Abstracts

Möbius-invariant self-avoidance energies for non-smooth sets in
arbitrary dimensions

Heiko von der Mosel

(joint work with Bastian Käfer)

The Möbius-invariance of J. O’Hara’s well-known Möbius energy [7] for closed
curves γ : R/Z → R

n can easily be seen using Doyle and Schramm’s cosine formula

(1) EMöb(γ) =

ˆ
γ

ˆ
γ

1− cosϑγ(x, y)

|x− y|2 dH 1(x)dH 1(y),

where ϑγ(x, y) denotes the conformal angle between the two circles S1(x, x, y) and
S1(y, y, x) through x and y, the first circle being tangent to the curve γ at x,
and the second tangent to γ at y; see [8, Chapter 3.4]. Indeed, the numerator
of the energy density depends only on the angle which by definition is invariant
under any conformal transformation, and this numerator is integrated against the
conformally-invariant singular measure |x−y|−2 dH 1(x)H 1(y). R. B. Kusner and
J. M. Sullivan pointed out in [6] that the same is true in higher dimensions: Inte-
grating a purely angle-dependent function L(ϑM (x, y)) such as (1−cosϑM (x, y))m

against the singular surface measure |x− y|−2m dH m(x)dH m(y) over the carte-
sian product M × M of an embedded C1-submanifold M ⊂ Rn gives rise to
Möbius-invariant energy functionals. Here, ϑM (x, y) is the conformal angle be-
tween the two unique m-dimensional tangential spheres Sm(x, x, y) tangent to M

at x, and Sm(y, y, x) tangent to M at y and both containing both points x and y.
Motivated by variational considerations we extend in [2, 3] the domain of such

energy functionals to a wide class of non-smooth admissible sets Σ ⊂ Rn, prove
self-avoidance effects of the energies, and show that every embedded submanifold
of a mild fractional Sobolev regularity has finite energy. The class of admissible
sets Σ contains in particular finite unions of immersed compact C1-manifolds or
embedded compact Lipschitz submanifolds, as well as countably infinite unions of
entire Lipschitz graphs, but also sets (possibly of full n-dimensional measure) that
can be foliated by m-dimensional submanifolds of uniformly bounded curvature;
see Figure 1.

To formulate the precise statements let G (n,m) denote the Grassmannian of all
m-dimensional subsets of Rn, equipped with the angle metric <)(F,G) := ‖ΠF −
ΠG‖ for F,G ∈ G (n,m), where ΠF ,ΠG denote the orthogonal projections onto F
and G, respectively. Moreover, we denote by Cx(β, F ) :=

{
z ∈ Rn :

∣∣ΠF⊥(z−x)
∣∣ ≤

β
∣∣ΠF (z − x)

∣∣} the cone around the affine m-plane x + F , centered at the point
x ∈ Rn with opening angle 2 arctanβ.
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a b

Figure 1. Admissible sets. Finite unions of smooth subman-
ifolds (a) and the annulus (b) as the uncountable union of circles
with positively bounded radii are contained in A m(α,M) for all
α,M > 0.

Definition 1 (Admissible sets). 1 Let m,n ∈ N, 1 ≤ m ≤ n, α > 0, M > 0.
Then the admissibility class A m(α,M) is the set of all closed subsets Σ ⊂ Rn

equipped with a function H : Σ → G (n,m) satisfying the following: There exists
a dense subset Σ∗ ⊂ Σ such that for all compact sets K ⊂ Σ, there are a radius
RK > 0 and a constant cK > 0, such that for all p ∈ Σ∗ ∩ K, there is a dense
subset Dp ⊂ (p +H(p)) ∩ BRK

(p), such that for all x ∈ Dp, there exists a point
ηx ∈ Σ ∩ Cp(α,H(p)) with Πp+H(p)(ηx) = x, and

H
m (Eα,M (p) ∩Br(ηx)) ≥ cKr

m for all r ∈
(
0, RK/10

5
]
,

where Eα,M (p) := {µ ∈ Σ : <)(H(µ), H(p)) < Mα} .
Now we define a one-parameter family of Möbius-invariant energies. For given

τ ∈ R, α,M > 0, and Σ ∈ A m(α,M) set

(2) Eτ (Σ) :=

ˆ
Σ

ˆ
Σ

<)
(
Sm(x, x, y), Sm(y, y, x)

)(1+τ)m

|x− y|2m dH m(x)dH m(y),

where now the classic tangent planes at x and y are replaced by the “mock” tangent
planes H(x) and H(y), to determine the conformal angle between the tangential
spheres Sm(x, x, y) and Sm(y, y, x) as the angle between H(x) and the reflection2

of H(y) at the hyperplane (x − y)⊥. We say that an admissible (and therefore
possibly non-compact) set Σ has locally finite energy if Eτ (Σ∩BN (0)) <∞ for all
N ∈ N. Notice that we work with the angle metric to measure the angle in contrast
to Kusner and Sullivan who use the principal angles 0 ≤ ϑ1 ≤ · · · ≤ ϑm ≤ π/2 to
form the combined angle ϑ by means of cosϑ := Πm

i=1 cosϑi. But we can relate
our energies Eτ to their cosine energy: for τ ∈ [0, 1) our energy dominates theirs,
whereas for τ ∈ (1,∞) their energy dominates Eτ up to a multiplicative constant.

1This class is not directly comparable to the admissibility classes considered in previous
work on geometric curvature energies on non-smooth sets. The requirement of a uniform RK

for a given compact set K ⊂ Σ is stronger, whereas we presently do not require that Σ is

locally contained in a cone as in [10], nor do we assume any relation between the Jones’ β- and
Reifenberg’s θ-numbers as, e.g., in [5].

2This convenient way to compute this angle was already pointed out by Kusner and Sullivan
[6, Section 11].
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For τ = 1, however, Eτ is equivalent to the cosine energy of Kusner and Sullivan,
so that any of the following results specified to the case τ = 1 holds for their cosine
energy as well.

Theorem 1 (Self-avoidance). For fixed dimensions 2 ≤ m ≤ n there is a universal
constant δ = δ(m) such that for any α,M > 0 with

(3) α(M + 1) < δ/50

every admissible set Σ ∈ A m(α,M) with locally finite Möbius energy Eτ , τ ∈
(−1,∞), is an embedded Lipschitz submanifold of Rn.

Initially granted smoothness of an admissible set transfers to the submanifolds
obtained by finite energy.

Corollary 1. Let k ∈ N and suppose Σ = f(M ) satisfies Eτ (Σ) < ∞ for τ ∈
(−1,∞), where M is an m-dimensional compact Ck-manifold, and f : M → Rn

is a Ck-immersion. Then Σ is an embedded m-dimensional Ck-submanifold of
R

n.

The equivalence of the Kusner-Sullivan cosine energy with Eτ for τ = 1 together
with Corollary 1 might help to generalize O’Hara’s recent C2-self-repulsiveness
result [9, Theorem 3.3] to suitably normalized C1-submanifolds in the C1-topology.

In view of Theorem 1 and Corollary 1 one may ask, on the other hand, what
regularity of embedded submanifolds actually guarantees finite energy. It turns
out that a relatively low fractional Sobolev regularity suffices.

Theorem 2 (Sufficient fractional Sobolev regularity).
If Mm ⊂ Rn is an embedded compact submanifold with local graph representations

of class C0,1 ∩W 2+τ
1+τ

,(1+τ)m for some τ ∈ (0,∞), then Eτ (M ) <∞.

This shows in particular for τ = 1 that embedded submanifolds with local graph
representations of class C0,1∩W 3/2,2m have finite Eτ -energy, and hence also finite
cosine energy. Open at this point, however, is if finite energy implies exactly that
fractional Sobolev regularity3. Such an energy space characterization is what one
would hope for in view of S. Blatt’s result for m = 1 [1, Theorem 1.1]. We know
that our energies Eτ do exhibit regularizing effects: by direct computation one can
show that a wedge-type singularity produces an infinite amount of energy, so finite
energy implies a regularity beyond Lipschitz. Since our estimates for Theorem 1
depend on the absolute continuity of the energy’s integral we do not have a priori
estimates on the size of local graph patches depending only on the energy value.
This would be very helpful for variational applications such as energy minimization
in prescribed isotopy classes.

3For the scale-invariant tangent-point energy such a characterization for C1-submanifolds
holds true; see [4].
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Variational approach to the Arnold invariants of immersed planar
curves via knot energies

Anna Lagemann

The talk is based on the current research results of my dissertation. Planar im-
mersed curves can be classified by the Whitney-Graustein theorem up to regular
homotopy, which states that the space of immersions of the circle into the plane
with the same winding number of the tangent-vector is connected. In other words,
the winding number is an invariant in the space of immersions. Arnold took a
much deeper look into so-called generic immersions, these are curves where all
self-intersection points are transverse double points [1]. The set of all non-generic
immersions is called the discriminant. Arnold then defined three important parts
of the discriminant that correspond to a certain type of non-generic immersions:
curves with direct and inverse self-tangencies and curves with triple points. His
idea was to define three invariants J+, J− and St that are dual to these three parts
of the discriminant. It turns out that the discriminant is indeed a hypersurface
in the space of immersions with codimension one and the three parts mentioned
above are co-oriented. Due to the Whitney-Graustein theorem one can find a ho-
motopy in the space of immersions between any two immersions with the same
winding number. Furthermore, that homotopy can be chosen in such a way that
it intersects the discriminant only in the above mentioned three parts in a trans-
verse manner. The co-orientation of the discriminant then delivers a sign at those
intersections. Now the three invariants are defined as follows: For each winding
number a representative curve will be fixed and on those curves the values of the

https://arxiv.org/abs/2010.03906
https://arxiv.org/abs/2004.02351
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invariants are prescribed. Then one establishes precise rules on how the invari-
ants change along a homotopy in the space of immersions at intersections with
the discriminant according to the signs at the intersections. Arnold proved that
those invariants exist and are uniquely defined by the normalizing conditions on
the representative curves. The question that arises is to what extent a connected
component in the complement of the discriminant - i.e. generic immersions with
prescribed values of J+, J− and St - is a “potential well” for some knot energy.

In general, knot energies have infinite values on curves that exhibit self-inter-
sections. But planar curves without self-intersections are embedded and therefore
homotopic to the circle. Therefore, we will consider an energy that is truncated
near the points of self-intersection, an approach that Dunning used in his disser-
tation [2]. Since we are dealing with immersions it is natural to consider a knot
energy that takes derivatives into account, a potentially suitable energy is the
tangent-point energy introduced by Gonzalez and Maddocks [3] and investigated
in detail by Strzelecki and von der Mosel [4] and Blatt [5].

Definition 1. Let γ ∈ C1
(
R/Z,R2

)
be a rectifiable curve of unit length and be

parametrized by arclength. For any 2 ≤ q <∞ we define the tangent-point energy

Eq(γ) :=

¨

(R/Z)2

(
2 dist(l(t), γ(s))

|γ(t)− γ(s)|2
)q

dsdt,

where l(t) := {γ(t) + λγ′(t) | λ ∈ R} is the tangent line at the point γ(t).

As a first step, we look at the simple case of figure-eight shaped cuves, denote by
I1 be the isotopy class of planar figure-eight shaped curves.

Definition 2. Let λ ∈
(
0, 12

]
and η ∈

[
0, λ4

)
. Define Fλ,η ⊂ I1 ∩ C1

(
R/Z,R2

)
as

the subset of all curves γ ∈ I1 ∩ C1
(
R/Z,R2

)
satisfying

(1) The curve γ has unit length.
(2) The curve γ is parametrized by arclength.
(3) The self-intersection is at the origin.
(4) The self-intersection is transversal.
(5) Within arclength η of the self-intersection, γ consists of two linear seg-

ments.
(6) If u, v ∈ R/Z are the distinct times that yield the self-intersection, the

length of the shorter arc dγ(γ(u), γ(v)) equals λ.

Hence, curves in Fλ,η look like a skewed plus-sign around the self-intersection.
Then we define the troublesome set

Yδ :=
{
(x, y) ∈ (R/Z)2 | (|x− u| < δ and |y − v| < δ) or

(|x− v| < δ and |y − u| < δ)
}
.

The δ-renormalized energy of γ ∈ Fλ,η is then defined as

Eq
δ (γ) :=

¨

(R/Z)2\Yδ

(
2 dist(l(t), γ(s))

|γ(t)− γ(s)|2
)q

dsdt.
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In the previously defined class of curves there exists a minimizer of the δ-renor-
malized tangent-point energy:

Theorem 1. Let q > 2, λ ∈
(
0, 12
]
and η ∈

[
0, λ5

)
. Then for every δ ∈ (0, η] there

exists an immersion γηδ ∈ Fλ,η such that

Eq
δ (γ

η
δ ) ≤ Eq

δ (γ) for all γ ∈ Fλ,η.

A question that naturally arises is whether it is possible to send the truncation
parameter δ to zero and obtain a converging subsequence of minimizers and in-
vestigate geometric properties of the limit curve. The following theorems are still
work in progress.

Theorem 2. Let q > 2, λ ∈
(
0, 12
]
and 0 < δ < η for η sufficiently small. Further,

let γηδ ∈ Fλ,η be a minimizer of Eq
δ . Then there exists a curve Γη ∈ Fλ,η and a

subsequence, again denoted by (γηδ )δ>0, such that

γηδ
C1

−−→ Γη as δ → 0.

Theorem 3. The limit curve Γη intersects itself at a right angle.
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A finite element approach for the computation of the Möbius energy

Lothar Banz

(joint work with Simon Blatt)

A widely discussed task is the computation of an energy minimizing knot. Most
often the chosen energy is the so-called Möbius energy

E(γ) :=

ˆ 1

0

ˆ 1

0

[
1

|γ(y)− γ(x)|2 − 1

D(γ(y), γ(x))2

]
|γ̇(y)||γ̇(x)| dy dx

with D(γ(y), γ(x)) = min
{´max{x,y}

min{x,y} |γ̇(t)| dt, L−
´ max{x,y}

min{x,y} |γ̇(t)| dt
}

for a non-

intersecting, rectifiable curve γ : [0, 1] → R3 of length L. Crucial for the necessary



Mini-Workshop: Nonlocal Analysis and the Geometry of Embeddings 1835

numerical scheme is the discretization of the otherwise infinite dimensional min-
imization problem. For that we may replace the knot γ by some finite element

knot γhp ∈ V
(s)
hp with the finite dimensional space

V
(s)
hp :=

{
vhp ∈

[
Cs

per [0, 1]
]3

: vhp|Ii ◦ Fi ∈ [Ppi
[−1, 1]]3 , 0 ≤ i ≤ n

}
.

Here, n denotes the number of elements, each element has the length hi, pi is the
local polynomial degree and

Cs
per [a, b] :=

{
v ∈ Cs[a, b] : v(i)(a) = v(i)(b), 0 ≤ i ≤ s

}
.

We discuss several challenges in the evaluation of E(γhp) such as the choice of
quadrature formulas, singularities of the integrands and loss of significant error.
We show that if γhp is the L2-projection of some knot γ then there holds

E(γ)− E(γhp) =
1

2
(γ − γhp, z) +

1

2
(∇E(γhp)− zhp, γ − vhp)

+
1

2

ˆ 1

0

∇3E(γhp + se)(e, e, e) · s(s− 1) ds

with e = γ − γhp, z = ∇E(γ) and

zhp ∈ V
(s)
hp : (zhp −∇E(γhp), ψhp) = 0 ∀ψhp ∈ V

(s)
hp ,

leading to an easy to implement, efficient and reliable a posteriori error estimate
on the signed Möbius energy error. Crucial for its numerical efficiency is the
alternative representation of the gradient

∇E(γ)(ϕ) =

ˆ
I

ˆ
I

{
q

(
2D̃(x, y)

L

)
1

D̃2(x, y)

〈
γ̇(y)

|γ̇(y)| −
γ̇(x)

|γ̇(x)| ,
ϕ̇(y)

|γ̇(y)| −
ϕ̇(x)

|γ̇(x)|

〉

− 2〈γ(y)− γ(x), ϕ(y) − ϕ(x)〉
[

1

|γ(y)− γ(x)|4 − 1

D̃4(x, y)

]

+2
〈γ̇(x), ϕ̇(x)〉

|γ̇(x)|2

[
1

|γ(y)− γ(x)|2 − 1

D̃2(x, y)

]}
|γ̇(y)||γ̇(x)| dy dx

with q(t) = 2
3 t

3 − t2 + 1
3 and D̃(x, y) = D(γ(y), γ(x)).

We present several numerical examples showing that the error E(γ) − E(γhp)
exhibits a convergences rate depending on p and s of at least 5 with respect to

the dimension of V
(s)
hp and may even be exponential if γ is sufficiently smooth. In

all experiments the efficiency index (a posteriori error estimate divided by signed
error) is, as typical for DWR ones, (almost) one.
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Fractional Operators: Analysis, Control, and Applications

Harbir Antil

Fractional calculus and its application to anomalous diffusion has recently received
a tremendous amount of attention. In complex/heterogeneous material mediums,
the long-range correlations or hereditary material properties are presumed to be
the cause of such anomalous behavior. Owing to the revival of fractional calculus,
these effects are now conveniently modeled by fractional-order differential opera-
tors and the governing equations are reformulated accordingly. We begin this talk
by discussing one such application of fractional Laplacian in geophysical electro-
magnetism [17]. Here, we have derived the fractional Helmholtz equation from
first principle arguments in conjunction with a constitutive relationship.

Besides capturing nonlocality (long range effects), fractional Laplacian enforces
less smoothness than its classical counterpart. As a result, it is excellent in captur-
ing sharp transitions across interfaces. We illustrate the effect of using fractional
Laplacian as a regularizer in image denoising problems. Recall that, typically one
uses Total Variation (TV) seminorm as a regularizer in such settings [15]. We
establish that one can obtain comparable results using fractional Laplacian and
our proposed approach is significantly cheaper, one only needs to solve a linear
equation instead of the nonlinear/degenerate problem in case of TV [1]. A bilevel
optimization framework to identify the fractional exponent is provided in [5].

In a bounded domain Ω ⊂ R
N with boundary ∂Ω, there are several ways to de-

fine fractional Laplacian. We consider the two most popular ones. With fractional
exponent s ∈ (0, 1), we first define the Spectral fractional Laplacian as

(−∆)su =

∞∑

k=1

λskukϕk

where uk =
´
Ω
uϕk dx, with {(λk, ϕk)}∞k=1 denoting the eigenvalues and eigenfunc-

tions of standard Laplacian with zero Dirichlet conditions, i.e., −∆ϕk = λkϕk in
Ω and ϕk = 0 on ∂Ω. The second definition is the so-called Integral fractional
Laplacian given by

(−∆)su(x) = CN,sP.V.

ˆ
RN

u(x)− u(y)

|x− y|N+2s
dy

where CN,s is a normalization constant and P.V. indicates the Cauchy principle
value. It is clear from the second definition that fractional Laplacian is a nonlocal
operator, unlike the standard Laplacian. See [2] and [10] for rigorous definitions
of both these operators.

We discuss various novel numerical methods to solve fractional PDEs using
reduced basis method [3, 13] via the so-called extension approach [11, 16, 14] or
the Kato formula [12]. We also presented a novel spectral approach with almost
linear complexity to solve fractional PDEs with integral fractional Laplacian [4].

We have paid special attention to optimal control problems with semilinear
fractional PDEs as constraints. Here we also allow control constraints. In the
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spectral case, we allow the control to be either in the interior or on the bound-
ary [2]. In the integral case, the control is allowed to be in the interior [10] or
in the exterior [6, 8]. We also present optimal control problems with fractional
p-Laplacian (a quasilinear PDE) as constraints. The control here is given by the
coefficient [9].

We conclude the talk by introducing a novel fractional operator where the frac-
tional exponent is allowed to be spatially dependent instead of being a constant.
Our approach is motivated by the extension approach. We allow the fractional ex-
ponent function to touch the extreme case of 0. We establish that, in this setting,
we may not have density of smooth functions. We introduce novel function spaces
and prove a trace theorem. Using this new operator as a regularizer in image
denoising problems, we show that one can obtain almost perfect reconstructions
which are significantly superior than TV based approaches [7].
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Total curvature of curves in the C
1-closure of knot classes

Elisabeth Wacker

The Fary-Milnor theorem [1] gives a lower bound on the total curvature TC of a
simple closed curve γ:

TC(γ) ≥ 2π · br([γ]).
In this inequality, br([γ]) denotes the bridge number of the knot class [γ] that is the
infimum of the number of minima which can be achieved in any one-dimensional
projection of any curve in [γ]. Our goal is to transfer this bound to elements of
the C1-closure of the knot class in the following sense:

Theorem 1. Let (γk)k∈N be a sequence of simple closed curves in the same knot
class, i.e., [γk] = [γk+1] for all k ∈ N, such that γk −→ γ in C1 as k → ∞. Notice
that the limit γ might contain self-intersections. The inequality

TC(γ) ≥ 2π · br([γk])

holds for γ ∈ W 2,2 with only finitely many, isolated and transversal self-inter-
sections, i.e., self-intersections with linearly independent tangents.

In its simplest form for bridge number 2 such a result was proven in using
E. Denne’s theorem on the existence of alternating quadrisecants [3] for every
non-trivial knot. But this approach to prove a generalized Fary-Milnor theorem
cannot be generalized to arbitrary bridge number. However, Theorem 1 could turn
out to be quite useful to characterize elastic knots for more general knot classes
than treated in [2].

We prove Theorem 1 using ambient isotopic deformations P̂k of γk which ap-
proximate the total curvature of γ such that

2π · br([γk]) ≤ TC(P̂k)
k→∞−−−−→ TC(γ).

For simplicity, we consider exactly one transversal self-intersection of finite mul-
tiplicity. The argumentation for all remaining self-intersections is analogous due
to the isolation property. We start with defining polygons Pk inscribed in γk, i.e.,
polygons with vertices γk(s) for a partition S(k) ⊂ R\LZ and s ∈ S(k). W.l.o.g.
we choose the partition S(k) sufficiently fine to satisfy [Pk] = [γk]. We remark
that Pk could contain more and more vertices with growing k, and this amount of
vertices needs to be bounded in order to control the total curvature. We further
transform Pk in two steps.
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Figure 1. One self-intersection of multiplicity two: Pk is
deformed to γ outside of the neighborhood N(k) of the self-

intersection of γ and thus yields P̃k.

Step 1: Outside a neighborhoodN(k) of the self-intersection, we deform Pk directly
onto γ\N(k). For that, we define an explicit foliation of a compact neighborhood
of Pk and γ consisting of disjoint, compact, convex and planar cross-sections such
that both, Pk and γ, intersect each such cross-section transversely. This setting
allows to apply [4, Theorem 1.2.4], which delivers the ambient isotopy between Pk

and P̃k, where P̃k equals Pk in N(k) and γ outside of N(k) except for some small
transition zones between (see Figure 1).

Step 2: It remains to transform P̃k insideN(k). Let n be the multiplicity of the self-
intersection of the limit curve γ and let the parameters t1, . . . tn ∈ R\LZ realize

the self-intersection such that γ(t1) = . . .= γ(tn). We further define P̃ i
k, P̃

j
k ⊂

P̃k ∩ N(k) to be two fixed ropes of references (parts of the polygon P̃k running
through N(k)) for 1 ≤ i < j ≤ n and fix the planes

Eij := {x ∈ R
3|x ⊥ (γ′(ti)× γ′(tj))}.

Projecting P̃ i
k, P̃

j
k for fixed i, j into the plane Eij delivers pairwise unique self-

intersections ΠEij
(P̃ i

k) ∩ ΠEij
(P̃ j

k ). We fix all polygon edges of P̃ i
k which realize

these self-intersections and construct open cones at the ends of the fixed edges with

opening angles α(k)
k→∞−−−−→ 0 and axes in the direction of ±γ′(ti). We apply this

construction for all P i
k, 1 ≤ i ≤ n and intersect open cones facing each other to

double cones (see Figure 2). Due to the transversality property, the so constructed
cones are all disjoint and contain exactly one rope of reference running transverse
through it. The cones might contain more and more vertices with growing k.

However, we can now transform P̃k between the apices to their direct connection
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Figure 2. Example with self-intersection of multiplicity three:
At the left, open cones are constructed at the ends of
two edges whose projection in Eij realizes a self-intersection

ΠEij
(P̃ i

k) ∩ ΠEij
(P̃ j

k ). At the right, all remaining open cones are
added. The intersections of open cones facing each other consti-
tute the double cones.

by ambient isotopies. We call the transformed polygon P̂k and then recalculate

TC(P̂k)
k→∞−−−−→ TC(γ), which proves Theorem 1.

A follow-up question is how to prove the statement for limit curves with non-
transversal self-intersections. The argumentation above does not apply because
we can not guarantee that the constructed double cones are disjoint to yield well-
defined ambient isotopies. Constructing other explicit ambient isotopies of γk ap-
proximating the total curvature of γ by an adapted procedure is work in progress.
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Confined elastic rods

Pascal Weyer

(joint work with Sören Bartels)

Given a arc length parametrized curve u : I = [0, L] → R3 with length L, its
bending energy can be stated as

Ebend[u] =
1

2

ˆ
I

|u′′|2dx.

This can be derived from three-dimensional plasticity theory by a rigorous dimen-
sion reduction [6]. Such curves then represent the centerline of an inextensible
elastic rod embedded in R3. We focus on rods that are confined to a closed and
convex domain D. Among them we seek for the least bent curve. This can be used
to model DNA [5] or polymers [7] inside a cell. Therefore, we use a confinement
energy functional that penalizes curves penetrating the space outside of D. Let
ε > 0 and assume that D be defined as D = {y ∈ R3 : (y −m)⊤GD(y −m) ≤ 1}
for a symmetric and positive semi-definite matrix GD and the center of mass m of
D. Then the confinement penalty is defined as

CP[u] =
1

2ε

ˆ
I

((
(u−m)⊤GD(u−m)

)1/2 − 1
)2
+
dx.

To minimize the sum of bending and confinement energy, we employ a gradient
flow approach (cf. for instance [4]) that searches a solution of

(∂tu, v) = −δEbend[u][v]− δCP[u][v]

for all test functions v. To calculate the gradient flow numerically, we use a
backwards time difference quotient to approximate ∂tu. The curve u itself is
projected onto a conforming finite-dimensional subspace of H2(I) and represented
by piecewise cubic polynomials. The inextensibility of the curve ensures that the
parametrization by arc length is maintained, i.e. that |u′| = 1 at all points in
space and time. We impose the linearized version [∂tu]

′ · u′ at the discrete nodes.
The variation δEbend is treated implicitly. The resulting scheme is unconditionally
stable and was proposed for non-confined curves in [1]. The integrand of CP is
split into a quadratic-convex and a concave part. The former is treated implicitly,
the latter explicitly. This leads to unconditional stability also in the confined case.
We can show that the pointwise penetration depth of u into R3\D decreases for
ε→ 0.

When numerically relaxing closed rods that are confined to a ball of radius R,
interesting shapes arise as stationary points of the gradient flow. We find numerical
evidence that these are in fact global minimizers of Ebend + CP for a fixed ratio
L/(2πR). The shapes can be classified into multiply covered circles and m-n-
clews, cf. Figure 1. The former ones arise if L/(2πR) is approximately an integer.
The latter ones are fully described by two integers m,n ≥ 1 with gcd(m,n) = 1.
We find two families, where either m or n is even, whereas the other one is odd.
Assume that L/(2πR) = p+ ξ for an integer p and ξ ∈ (0, 1). Then we find that
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Figure 1. Left: Shapes of (numerical) elasticae for closed rods
confined to balls. Colors indicate the pointwise curvature. Right:
Energy scaling with the ratio L/(2πR). Adapted from [2].

there is a threshold ξp such that both the p-(p + 1)-clew and the (p + 1)-p-clew
have the same bending energy. If ξ < ξp, the p-(p+1)-clew is the stationary point
with least bending energy found in our gradient flow experiments. For ξ > ξp,
the numerically found elastica is the (p + 1)-p-clew. Experiments that support
this claim have been carried out up to p = 4. This finding is also illustrated in
Figure 1. The 1-2-clew has also been observed for L/(2πR) slightly larger than 1
in the setting of polymer rings [7].

So far, our numerical evidence furthermore indicates that we have found con-
fined elasticae, that they all lie on the surface of the ball in the limit ε → 0, and
that the initial rod shape does not influence the final shape. It would be very
insightful to find rigorous versions of these statements, possibly relating them to
the findings of Brunnett and Crouch [3].
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Simulation of self-avoiding plates

Christian Palus

(joint work with Sören Bartels, Frank Meyer)

In engineering and physics, a plate is defined as a (three-dimensional) structural
element whose thickness is orders of magnitude smaller than its other dimensions.
Thus, it seems natural to describe the bending behavior of a plate using a di-
mensionally reduced model. We consider a two-dimensional Kirchhoff model for
bilayer plates, i. e. plates consisting of two thin layers with slightly different ma-
terial properties, in which the energy corresponding to a deformation y : ω → R3

is given by

Ebend[y] =
1

2

ˆ
ω

|II y − αI2|2 dx−
ˆ
ω

f · y dx,

and the set of admissible deformations consists of mappings y ∈ H2(ω;R3) that
satisfy given clamped boundary conditions as well as the isometry constraint

[∇y]⊤∇y = I2

almost everywhere in ω. Here, the domain ω ⊂ R2 is equivalent to the plate’s mid-
surface in the reference configuration, II y(x) denotes the second fundamental form
of the deformed surface, the parameter α ∈ R describes the material mismatch
between the two layers of the plate and f : ω → R3 is a given body force. This
plate model can be rigorously derived from three dimensional elasticity in the limit
of vanishing thickness [2,4,6].
Motivated by the findings in the context of self-avoiding inextensible curves [3],
we augment the bending energy Ebend via addition of the tangent-point potential
of the deformed surface [5,7], given for some q ≥ 2 by

TP[y] =
2−q

q

ˆ
ω

ˆ
ω

1

rq(y(x), y(x̃))
dx̃dx,

where r(y(x), y(x̃)) denotes the radius of the (unique) sphere which is tangent to
the surface in y(x) and intersects it in the point y(x̃).
In order to numerically approximate minimizers of the resulting energy

E[y] = Ebend[y] + ρTP[y],

with weighting parameter ρ ≥ 0, we propose a practical method that is based on
a discretization of the energy using DKT (discrete Kirchhof triangle) elements in
space, cf. [1]. For the minimization of the discretized energy functional we choose
a (discrete) H2 scalar product (·, ·)∗ as well as a pseudo time step size τ > 0, and
then employ the discrete gradient flow

(
τ−1(yk − yk−1), w

)
∗
= −E′

bend[y
k− 1

2 ;w]− ρTP ′[yk−1;w]

which we restrict to appropriate tangent spaces arising from a linearization of
the isometry constraint. The index k − 1

2 represents a semi implicit treatment of
the bending energy’s variation, resulting in linear systems in every (pseudo-) time
step. In the case ρ = 0 we establish Γ-convergence of the discrete energies towards
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Figure 1. Approximating the minimal energy configuration of a
twisted strip with compressive boundary conditions.

the continuous energy, as well as energy stability and a bound on the constraint
error for the iterates in the discrete gradient flow under a mild condition on the
step size τ . In the case ρ > 0 we present numerical experiments which indicate
that self-intersections can be successfully prevented (Fig. 1). Drawbacks are long
computation times on finer grids, and the fact that it is not clear a priori how the
involved parameters τ, ρ, q need to be chosen to guarantee stability of the discrete
gradient flow.
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Ribbonlength of folded ribbon knots

Elizabeth Denne

Take a long thin strip of paper, tie a trefoil knot in it then gently tighten and
flatten it. As can be seen in the figure below, the boundary of this “tight” trefoil
knot is in the shape of a pentagon. L. Kauffman [7] introduced a mathematical
model of such a folded ribbon knot. Kauffman viewed the ribbon as a set of rays
parallel to a polygonal knot diagram with the folds acting as mirrors, and the
over-under information appropriately preserved. An overview of the history of
folded ribbon knots can be found in [3].

For a knot (or link) diagramK, we denote a folded ribbon knot as Kw, where w
is the fixed width of the ribbon. We define the folded ribbonlength Rib(Kw) to be
the length of K divided by the width of the ribbon. The ribbonlength problem asks
to find the minimum folded ribbonlength needed to tie a folded ribbon knot for a
particular knot or link type. There are a number of papers [1, 6, 7, 8, 9] which
find upper bounds for folded ribbonlength of both specific knots and families of
knots. For example, the pentagonal trefoil shown on the right in the figure above
has folded ribbonlength Rib(Kw) ≤ 5 cot(π/5) ≤ 6.882.

A separate, but equally interesting, open problem is to relate the ropelength of
a knotK to its crossing number Cr(K). The ribbonlength crossing number problem
asks us to find positive constants c1, c2, α, β such that

(1) c1 · Cr(K)α ≤ Rib(K) ≤ c2 · Cr(K)β .

In 2017, Grace Tian [9] used grid diagrams to show that Rib(K) ≤ 2Cr(K)2 +
6Cr(K)+ 4. Thereby showing β ≤ 2 for all knots and links. In 2020, we improved
Tian’s result (see [2]) to show that any non-split link type L with arc-index α(L)
contains a folded ribbon link Lw such that

(2) Rib(Lw) ≤
{
0.32Cr(L)2 + 1.28Cr(L) + 0.23 when α(L) is even,

0.64Cr(L)2 + 2.55Cr(L) + 2.03 when α(L) is odd.

Also in [2], we proved that any knot or link type K contains a folded ribbon
knot Kw such that

(3) Rib(Kw) ≤ 72Cr(K)3/2 + 32Cr(K) + 12
√
Cr(K) + 4.

We note that the larger expression in Equation 2 is smaller than Equation 3 when
Cr(K) ≤ 12, 748, and so both results are useful. However Equation 3 means that
β ≤ 3/2 for all knots and links in the ribbonlength crossing number problem.
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Together with J.C Haden, T. Larsen and E. Meehan, we examined several infinite
families of knots (see [4]). We used a variety of techniques to show these families
of knots all have β ≤ 1 in Equation 1. Namely,

• Any 2-bridge knot type K contains a folded ribbon knot Kw such that
Rib(Kw) ≤ 6Cr(K)− 2.

• Any (2, p) torus knot type K contains a folded ribbon knot Kw such that
Rib(Kw) ≤ 2p = 2Cr(K).

• Any pretzel knot type K = P (p, q, r) contains a folded ribbon knot Kw

such that Rib(Kw) ≤ 2(|p|+ |q|+ |r|) + 2. This result implies for certain
families of pretzel knots and all twists knots that Rib(Kw) ≤ 2Cr(K) + 2.

In addition, we found a completely new way of folding (p, q) torus knots. We
proved (see [4]) that any (p, q) torus link type L (with p, q ≥ 2) contains a folded
ribbon link Lw such that Rib(Lw) ≤ p+q. This means that the trefoil knot can be
constructed with a folded ribbonlength of 5! This is much smaller than previous
known bounds ([7, 8, 9]). We used this bound to deduce the following.

Theorem 1 ([4]). Suppose L is an infinite family (p, q) torus link types, where
p, q ≥ 2, and p = aq + b for some a, b ∈ Z≥0. Then for each q = 2, 3, 4, . . . , L
contains a folded ribbon link Lw with

Rib(Lw) ≤ 2
√
2

(
a+

b

2

)
(Cr(L))1/2.

For example, for each q = 2, 3, 4, . . . , the (q + 1, q) torus link type contains

a folded ribbon link Lw with Rib(Lw) ≤ 3
√
2Cr(L)1/2. Thus Theorem 1 gives

evidence that α = 1/2 in the ribbonlength crossing number problem.
There are many questions to be answered about folded ribbon knots.
(1) Minimizing folded ribbonlength of knot and link types. Just about all known

examples give an upper bound on the minimum folded ribbonlength. Can we find
lower bounds for folded ribbonlength?

(2) Relating folded ribbonlength to crossing number. Is it possible to find a
different embedding of a knot such that Rib(Kw) ≤ O(Cr(K)p) for some constant
1 ≤ p < 3/2? Alternatively, is there a family of knots and links for which folded
ribbonlength has super-linear growth in crossing number?

(3) Folded ribbonlength and ribbon equivalence. A folded ribbon knot is a
framed knot with ribbon linking number (given by the linking number of the knot
diagram and one boundary component of the ribbon). Most of the previous work
has ignored the framing of the ribbon when computing folded ribbonlength. We
expect there to be a difference between folded ribbonlength bounds depending on
the ribbon linking number. For example, in previous work [6], we showed that
the ribbon linking number was different for two distinct (5, 2) torus knots (given
in [8]). We have also examined the folded ribbonlength of unknots with different
ribbon linking numbers in [5, 8]. There is much to explore here.
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Injective nonlinear elasticity via surface penalty terms

Stefan Krömer

(joint work with Jan Valdman)

The parametrization of a deformed object representing an elastic body is the “de-
formation” map y : Ω → Rd, linking the deformed body Ω ⊂ Rd to its undeformed
original shape, the “reference configuration”. By contrast to geometric models for
knots and other embedded manifolds, it encodes important information includ-
ing local compression and stretching. In some elastic models, it is constrained
to be “incompressible”, i.e., locally volume preserving: det∇y = 1. For d = 1,
incompressible deformations are precisely local isometries, but the notions differ
in higher dimensions. In general, however, an elastic material is usually at least
slightly compressible, and in variational models of Nonlinear Elasticity governed
by a local energy density W (∇y(x)) associated to y, the latter resists extreme
local compressions in the sense that W (F ) → +∞ as detF → 0+. This implies a
weak form of local injectivity for finite energy deformations, and global injectivity
in an almost-everywhere sense can also be included in the model as a constraint,
the Ciarlet-Nečas condition (CNC).

A numerical approach to compute elastic deformations satisfying (CNC) as
critical points of an elastic energy was presented in [2]. As no numerically viable
projection to (CNC) is known, global invertibilty is approximated by a penalty

https://arxiv.org/abs/2010.03611
https://arxiv.org/abs/2010.04188
https://math.mit.edu/research/highschool/rsi/documents/2017Tian.pdf
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term in the energy, which, similar to knot energies, acts repulsively once the de-
formation is close to self-contact. Reflecting the nonlocal character of global injec-
tivity, it is a nonlocal functional, a double integral on Ω, which is computationally
extremely expensive. A second drawback of [2] is that convergence (actually,
Gamma-convergence) of the penalized energies to the constrained limit problem
is only shown for models of non-simple materials whose elastic energy includes an
additional regularizing term with higher order derivatives.

In our present work, we show how to obtain a more efficient penalty term which
acts only on the surface, thereby reducing the effective dimension of the problem.
In its simplest form, this surface penalty energy with parameters ε, β > 0, the
latter fixed and the former the penalization parameter to be chosen as small as
computationally feasible, is given by

E∂Ω(y) :=
1

εβ+d−1

ˆ
∂Ω

ˆ
∂Ω

[
|x− x′| − 1

ε
|y(x)− y(x′)|

]+
dHd−1(x)dHd−1(x′),

where [·]+ denotes the positive part. It does not enforce added regularity of the
deformation and therefore has at least a theoretical chance of (provably) working
even for standard models of elasticity without higher order terms, where a Lavri-
entiev phenomenon can prevent the use of deformations with higher regularity.

As we will show for the regularized model where an energy bound ensures
strictly orientation preserving deformations bounded in C1,α or better, finiteness
of E∂Ω(y) with ε small enough implies injectivity of y|∂Ω provided that β > d− 1.
Such deformations, as well as their possible weak limits in a Sobolev space associ-
ated to the elastic energy, are naturally approximately invertible on the boundary
as defined in [1]. For topologically simple domains, the theory provided there in
particular yields that (CNC) automatically holds – injectivity on the boundary
transfers to the interior.

Whether or not similar results can be obtained for models without higher order
terms is an open problem. While [1] does not need higher regularity, our analysis of
the penalty term heavily uses that deformations are locally bi-Lipschitz, a property
obtained from the interplay of the higher regularity of the deformations and the
energy enforcing the integrability of det∇y−1 to a suitable power (using a result
of Healey&.K., 2009). To what degree weaker bounds for the penalty term can
be obtained from weaker assumptions remains to be seen. Another open problem
is the convergence of forces (functional derivatives of the energy) stemming from
the penalty term. Do they correctly predict forces caused by self-contact in the
constrained limit problem?

In practice, the penalty term can be used for computations even without regu-
larizing terms as well as for models of linear elasticty, as it is perfectly well defined
in L1 and just a compact perturbation of the elastic energy as long as ε is fixed.
The crucial local bi-Lipschitz regularity of deformations needed for the limit analy-
sis can in principle be checked a posteriori. Notice that outside of rather particular
setups involving extreme external forces or boundary conditions, elastic materials
usually do not have incentives to locally stretch or compress drastically.
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On the analyticity of critical points for the generalized integral
Menger curvature in the Hilbert case

Daniel Steenebrügge, Nicole Vorderobermeier

We prove the analyticity of smooth critical points γ : R/Z → Rn for generalized
integral Menger curvature energies [1, 2, 3]

intM(p,2)(γ) =

ˆ ˆ

(R/Z)3

ˆ |(γ(y)− γ(x)) ∧ (γ(z)− γ(x))|2|γ′(x)||γ′(y)||γ′(z)| dxdy dz
|γ(y)− γ(x)|p|γ(z)− γ(x)|p|γ(z)− γ(y)|p ,

with p = (73 ,
8
3 ), subject to a fixed length constraint. This implies, together with

already well-known regularity results [3], that finite-energy, critical C1-curves of

generalized integral Menger curvature intM(p,2) subject to a fixed length constraint
are not only C∞ but also analytic.

Our result serves as the last missing piece to complete the regularity theory of
critical points for the subfamily of generalized integral Menger curvature energies
stated above, which correspond to non-degenerate Euler-Lagrange operators. In
case of the three-dimensional Euclidean space, analyticity of critical points implies
that optimal representatives of knot types are analytic, fulfilling the expectation

that knot energies like intM(p,2) produce particularly nice embeddings as local
minimizers.

Our approach is inspired by analyticity results on critical points for O’Hara’s
knot energies based on Cauchy’s method of majorants [4, 5] and roughly works
as follows: A curve γ ∈ C∞(R/Z,Rn) is analytic if and only if we have constants
C > 0 and r > 0 such that for all l ∈ N0

‖γ(l)‖L∞ ≤ C
l!

rl
.

Suppose we had a recursive estimate

‖γ(l+1)‖ ≤ Φl(‖γ‖, . . . , ‖γ(l)‖)
and an analytic function c : (−ε, ε) → R with

c(l+1)(0) = Φl(c(0), . . . , c
(l)(0)) and c(0) ≥ ‖γ‖.

Then, by induction,

0 ≤ ‖γ(l+1)‖ ≤ Φl(c(0), . . . , c
(l)(0)) = c(l+1)(0) ≤ C

(l + 1)!

rl+1

for all l ∈ N and so, γ is analytic.
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In order to obtain this recursive estimate, we require a decomposition of the first
variation given in [3] into a highest- and a lower-order part; Q(γ) and R(γ). For
critical γ, these have pointwise equal absolute value. We show that

‖γ(l+3)‖Hm+3p−7 ≤ C‖∂lQ(γ)‖Hm

and, with help of a fractional Leibniz rule, that

‖∂lR(γ)‖Hm ≤ CΦ(‖γ′‖
Hm+3

2
p−3 , . . . , ‖γ(l+2)‖

Hm+3
2
p−3).

Unlike in the cases inspiring our work, the resulting gap in orders of differentiability
is smaller than 1, so the main new idea is an additional iteration in the recursive
estimate of the derivatives to enable the induction presented above. This leads to
an estimate of the form

‖γ(l+3)‖ ≤ Φ
(
Φ(‖γ‖, ‖γ′‖), . . . ,Φ(‖γ‖, . . . , ‖γ(l+2)‖)

)
.

The corresponding analytic majorant can be found similarly to [4] but we have to
use a second-order ODE to accommodate the nested terms.

We expect the method to be applicable to other self-repulsive energies as well
as non-local differential equations in one or higher dimensions.
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Ideal knots: The trefoil, analysis and numerics to experiment

John Maddocks

Geometrical knot theory is an area of mathematics that has been growing in
activity over the last few decades. It involves the study of specific shapes of
knotted curves, rather than their topology, where the specific knot shape is fixed
by some criterion, typically minimizing some form of knot energy. In this talk I
will introduce some older work of both my collaborators and I, as well as others,
on the specific case of ideal, or tightest, knot shapes. I will start by explaining the
analytical difficulties, along with some associated theorems. Then I will describe
some numerical results concentrating on the specific case of the ideal trefoil. And
finally I will describe some very recent experimental results for the ideal trefoil
obtained by the group of Pedro Reis at the EPFL.

https://arxiv.org/abs/1904.13129
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Polyhedral discretizations of tangent-point energies

Henrik Schumacher

The (generalized) tangent-point energy of an n-dimensional, closed, embedded sub-
manifold Σ ⊂ Rm is given by

Eq
p (Σ) :=

ˆ
Σ

ˆ
Σ

Φ(x, y) dHn(y) dHn(x), where Φ(x, y) :=
|P (x) (y − x)|q

|y − x|p .

Here P (x) denotes the orthoprojector onto TxΣ
⊥, Hn denotes the n-dimensional

Hausdorff measure and the exponents q ≥ 1 and p ≥ 1 are supposed to satisfy
2 q − p + n > 0. For p = 2 q the kernel reduces to the q-power of the inverse
tangent-point radius: Φ(x, y) = rTP(x, y)

−q.
It was shown in the case of p = 2 q [7] and in the case of n = 1, q−p+2n < 0 [2]

that these energies have beautiful self-avoidance properties. In particular, C1-
paths of finite energy in the space of embeddings cannot leave the isotopy class of
the starting point. Moreover, embedded C1-submanifolds have bounded tangent-
point energy if and only if they are of fractional Sobolev-Slobodeckij class W s,q

with s = (p − n)/q [1]. All these properties make the tangent-point energies
interesting as regularizers for various applications.

In order to make them amenable to numerical computations, these energies
have to be discretized. Most standard pipelines for geometry processing work
with simplicial meshes (e.g., polygonal lines for n = 1 and triangle meshes for
n = 2). Although simplicial submanifolds have infinite tangent-point energy, a
discrete analogue can readily be written down: Let K ⊂ Rm be a simplicial mesh
and denote by T the set of its n-simplices. Then the midpoint rule suggests the
following discrete tangent-point energy:

Eq
p (K) :=

∑

S,T∈T , S 6=T

|P (S) (x̄(T )− x̄(S))|q
|x̄(T )− x̄(S)|p Hn(S)Hn(T ).

Here P (S) denotes the orthoprojector onto the normal space of the simplex S and
x̄(S), x̄(T ) are the barycenters of the simplices S and T .

Typically, the quadrature error of the midpoint rule can be controlled by the
L∞-norm of the second derivative of the integrand. However, even if Σ is smooth,
the integrand Φ|Σ×Σ need not be continuous when dim(Σ) > 1. This can be seen
by recalling that the tangent-point radius rTP(x, y) along C

2 curves approximates
the curvature of the curve at x for y → x: For x ∈ Σ and X ∈ TxΣ we thus have

Φ(x, expx(X)) = |IIx(X,X)/|X |2|q |expx(X)− x|2q−p + o(|X |2q−p) for |X | → 0,

where expx : TxΣ → Σ denotes the Riemannian exponential map and where
IIx : TxΣ × TxΣ → Rm denotes the second fundamental form. For example, if
we write X = ̺ (e1 cos(ϕ) + e2 sin(ϕ)) in polar coordinates with respect to unit
principal curvature directions e1, e2 ∈ TxΣ with principal curvatures κ1, κ2, we
obtain

Φ(x, expx(X)) = |κ1 cos2(ϕ) + κ2 sin2(ϕ)|q ̺2q−p + o(̺2q−p) for ̺→ 0.(1)
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Then for n > 1 and p = 2 q, the limit of Φ(x, expx(X)) for |X | → 0 does not exist.
Thus, also the second derivatives of Φ|Σ×Σ have to blow up for |x − y| → 0. So
estimating the quadrature error is not as straight-forward and techniques similar
to [5] and [4] have to be applied. The above analysis also tells us that some narrow
band along the diagonal of Σ×Σ can be neglected. For example, if Σ is compact
and has positive reach (so that II is essentially bounded), then˜

|y−x|≤̺
Φ(x, y) dHn(y) dHn(y) = O(̺2q−p+n) for ̺→ 0.(2)

Hence we may focus on the complement of such a band. For simplicity and as
a first step towards a rigorous error analysis, instead of inscribed simplices, we
consider disjoint patches S ⊂ Σ and T ⊂ Σ satisfying R(S, T ) := inf{|y − x| | x ∈
S, y ∈ T } > 0. We would like to compare their local energy contribution

Eq
p (S, T ) :=

ˆ
S

ˆ
T

Φ(x, y) dHn(y) dHn(x)

to their local contribution with respect to the midpoint rule

Eq
p,mid(S, T ) :=

|P̄ (ȳ − x̄)|q
|ȳ − x̄|p Hn(T )Hn(S).

Here P̄ :=
ffl
S P (x) dHn(x), x̄ :=

ffl
S xdHn(x), and ȳ :=

ffl
T y dHn(y) denote cor-

responding quantities averaged over S and T . We have the following result in
which we measure the patch sizes by the radii r(S) := sup{|x − x̄| | x ∈ S} and
r(T ) := sup{|y − ȳ| | y ∈ T }:
Lemma 1. Let Σ ⊂ R

m be a C1,β-submanifold satisfying

|P (x) (y − x)| ≤ K |y − x|1+β and ‖P (y)− P (x)‖ ≤ K |y − x|β(3)

for some K ≥ 0 and all x, y ∈ Σ. Suppose that the patches S, T ⊂ Σ satisfy the
separation condition 0 < r(S), r(T ) ≤ h ≤ θ R(S, T ) for some h > 0 and θ > 0.
Then there is a C > 0 such that

∣∣Eq
p (S, T )− Eq

p,mid(S, T )
∣∣ is bounded by

C h2β
ˆ
S

ˆ
T

( |P (y) (y − x)|q−2

|y − x|p−2
+

‖P (y)− P (x)‖q−2

|y − x|p−q

)
dHn(y) dHn(x).

For a global approximation, one can decompose Σ into patches Σ =
⋃

T∈P T
with r(T ) ≤ h and approximate Eq

p (Σ) by the sum of all Eq
p,mid(S, T ), (S, T ) ∈

P × P that satisfy R(S, T ) ≥ θ−1h. This way, only a band of width ̺ ∼ θ−1h is
neglected. To illustrate the consequences, let us suppose again that Σ has finite
reach and that p = 2 q. Then β in Lemma 1 can be taken as β = 1. With (2) and
(3) we obtain the following as error bound:

O(̺n) + C′′ h2
¨

|y−x|>̺

1

|y − x|2 dHn(y) dHn(x).

The latter integral is dominated by log(diam(Σ)) − log(̺) for n = 1 and by
diam(Σ)n−1−̺n−1 for n > 1. Thus, with ̺ ∼ h we obtain the following error rates:
O
(
h1 + h2 (1 + |log(h)|)

)
= O(h1) for n = 1 and O

(
hn + h2 (1 + hn−1)

)
= O(h2)

for n > 1. Apparently, the consistency rate is better for n > 1 than for n = 1.
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However, one has to keep in mind that polyhedral discretizations do not have
direct access to patch averages: If S̃ is a simplex of radius h inscribed into a man-
ifold Σ of positive reach and if S ⊂ Σ is its metric projection onto Σ, then the
orthoprojector of simplex S deviates from the average orthoprojector of patch S
by O(h). A rigorous analysis is yet to be performed, but these thoughts suggest
that (i) one should expect a consistency rate of O(h) for Eq

2q when Σ has positive

reach, independent of the dimension n; and that (ii) higher order finite elements
may achieve the optimal rate O(h2) for the midpoint rule, provided that n > 1.
The numerical experiments carried out so far seem to verify these two conjectures.
Moreover, in view of (1), it might be possible to improve the consistency of Eq

2q

for curves of class C2,1 to O(h2|log(h)|) by adding a consistent discretization of˜
|y−x|≤̺|κ(x)|q dHn(y) dHn(x) (e.g., the one from [6]) instead of fully neglecting

the diagonal.
Lemma 1 has a further practical consequence: Replacing h by θ−1R(S, T ), we

can rewrite the error so that it becomes independent of the absolute patch size h:

C θ2β
ˆ
S

ˆ
T

( |P (y) (y − x)|q−2

|y − x|p+2β−2
+

‖P (y)− P (x)‖q−2

|y − x|p+2β−q

)
dHn(y) dHn(x).

So instead of decomposing Σ into a collection of small patches, it suffices to de-
compose Σ × Σ into patch pairs S × T with small relative size, i.e., such that
max(r(S), r(T )) ≤ θ R(S, T ). This allows one to group many nearby simplices to-
gether into a single patch. Then for two such patches, instead of computing all the
pairwise interactions, one just has to compute the single interaction between the
patches’ averages. Algorithms like the Barnes-Hut method and the fast multipole
method exploit this systematically to reduce the effort for computing the energy
Eq
p (K) of a simplicial surface K with N faces from O(N2) to O(N log(N)). These

techniques have already been applied to the tangent-point energy of curves [3]; a
transfer to the tangent-point energy of surfaces is under current development by
the same authors.
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