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Abstract. Inverse problems in partial differential equations (PDEs) consist
in reconstructing some part of a PDE such as a coefficient, a boundary condi-
tion, an initial condition, the shape of a domain, or a singularity from partial
knowledge of solutions to the PDE. This has numerous applications in nonde-
structive testing, medical imaging, seismology, and optical imaging. Whereas
classically mostly boundary or far field data of solutions to deterministic
PDEs were considered, more recently also statistical properties of solutions
to random PDEs have been studied. The study of numerical reconstruction
methods of inverse problems in PDEs is at the interface of numerical analy-
sis, PDE theory, functional analysis, statistics, optimization, and differential
geometry. This workshop has mainly addressed five related topics of cur-
rent interest: model reduction, control-based techniques in inverse problems,
imaging with correlation data of waves, fractional diffusion, and model-based
approaches using machine learning.
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Introduction by the Organizers

The workshop Computational Inverse Problems for Partial Differential Equations,
organised by Liliana Borcea (Ann Arbor), Thorsten Hohage (Göttingen) and Bar-
bara Kaltenbacher (Klagenfurt) was well attended with over 44 participants. The
pandemic situation at the time of the workshop allowed only people from Germany
to participate without at least 5 days of quarantine. Therefore, the meeting was
carried out in a hybrid format. Seven participants came to Oberwolfach, among
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them one woman and two from outside of Germany. In addition, 37 participants,
among them 9 women, attended the workshop online. To allow numerous partici-
pants from Northern and Central America to follow talks at reasonable times, the
sessions were scheduled in the afternoons and evenings European time, despite of
the inconvenience for two participants from Asia.

Online attendance during the talks was quite good. Furthermore, we had lively
debates in three discussion sessions. However, virtual break-out rooms to allow
coffee-break talks for online participants were hardly used.

Let us first summarize the talks and discussions in the five focus areas:

• Inverse problems with fractional diffusion:
PDEs containing fractional derivatives have recently found much interest
due to their relevance in a wide range of applications. Fractional diffusion
arises, e.g., phenomenological in the context of power law frequency de-
pendent attenuation, but also first principles based, as a macroscopic limit
of continuous time random walks with non-Gaussian increments. Mathe-
matically, this results in non-local operators, whose numerical and analytic
treatment requires tools that are to some extent parallel to their local coun-
terparts, e.g., in variational and energy based PDE theory and numerics.
To a large extent they are yet to be developed, though, for example when
it comes to defining boundary conditions that often play the role of obser-
vations in inverse problems, or in the presence of nonlinearities. Besides
the immediate impact of such PDE techniques onto inverse problems for
PDEs, there are also inherent inverse problems questions like ill-posedness
and uniqueness, that turn out to sometimes yield very different answers as
soon as fractional derivative terms arise in the models. Also the stochas-
tically and physically (biologically, economically etc.) correct modeling of
anomalous diffusion itself is a crucial step in which inverse methods can
and should be involved. These and further questions have been addressed
in a discussion session chaired by William Rundell.

• Optimal control techniques:
A vast majority of regularization methods are based on the minimization of
a combination of functionals penalizing deviation from the observed data,
counteracting the ill-posedness, and enhancing desired features of quan-
tities to be reconstructed. Thus, the synergies between inverse problems
and optimal control are obvious on the level of computational methodol-
ogy. More specifically, in view of the fact that forward models often consist
of (partial) differential equations, there are strong common interests with
PDE constrained optimization also on the analytical side. Recent find-
ings on regularization with - sometimes statistics based - nonsmooth and
nonconvex cost functions as well as constraints have inspired advances in
optimization methodology. On the other hand, methodology from opti-
mization theory such as duality based reasoning or the use of properties of
Lagrange multipliers are about to find their way into regularization theory.
Joint interests and distinguishing features were highlighted in a discussion
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session on “Optimal control, optimization, and inverse problems” chaired
by Christian Clason.

• Reduced order modeling:
Reduced order modeling is a methodology that has been driven by the
computational dynamical systems and linear algebra community. Recently
it has emerged as a promising tool for solving inverse problems. There
are two ideas that have been pursued, and both were represented in the
workshop: The first idea is to obtain an algebraic model, a matrix of
small size, for the forward mapping from the coefficients in the PDE to
the measurements. This facilitates fast forward model evaluations which
are important for example in optimization approaches to solving inverse
problems. The second idea seeks a matrix as a reduced order model of the
PDE operator. This can be done in a data driven way (i.e., using only the
measurements given in the inverse problem) and moreover, the reduced
order model can be built so that it inherits important properties of the
PDE operator which can then be exploited for inversion.

• Correlation based imaging:
Correlation based imaging has emerged over the past 20 years as a pow-
erful technique for solving inverse problems for wave equations with ran-
domly fluctuating wave speed and impedance. Various imaging modalities
have been proposed, and they all rely on the assumption that with careful
statistical smoothing techniques such as windowing and convolutions, the
empirical correlations of wave components (modes) are statistically stable,
meaning that they are approximated by statistical second moments. This
assumption generically holds in mixing random media (i.e., with rapidly
decaying correlation function of the fluctuations). However, there are sys-
tems, such as open waveguides that arise in shallow water acoustics, where
coupling between the propagating modes and the modes that radiate in the
ocean floor breaks the assumption. One presentation in the workshop in-
troduced and analyzed mathematically this important discovery. Another
presentation in the workshop considered a situation where the assumption
holds. In particular, it described the mathematics of beam propagation at
long distance in random media and how it can be used for understanding
emerging techniques like speckle imaging.

• Model-based approaches using machine learning:
Despite the tremendous success of machine learning, and in particular
deep learning methods in many areas of imaging sciences, a straightfor-
ward application of such methods to inverse problems in PDEs is usually
not competitive. The challenge is to incorporate our understanding of
nature modelled by partial differential equations into machine learning
approaches. This provides the opportunity to learn from large data sets
under the constraint of the laws of nature, and may lead to significantly
improved results. An example addressed in one of the talks are special
neural network architectures for approximating highly nonlinear functions
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whose inputs are linear operators. Such so-called operator recurrent neural
networks can be used for the solution of nonlinear inverse problems in wave
equations with operator-valued data. A discussion session on “Potential
and limitations of data-driven approaches in inverse problems” organized
by Peter Maaß focused on the integration of model based expert knowledge
into data-driven concepts, a regularization theory for neural network based
approaches, and mathematical concepts for addressing novel challenges in
data-driven inverse problems.

In addition to these focus areas, topics such as the reconstruction of singularities
either in electrical impedance tomography or in geophysics, lower bounds on the
feasibility of broadband passive cloaking, magnetic particle imaging, and reaction-
diffusion models for cancer prediction were addressed.



Computational Inverse Problems for Partial Differential Equations 1907

Workshop (hybrid meeting): Computational Inverse Problems
for Partial Differential Equations

Table of Contents

Harbir Antil
Role of Fractional Operators in Inverse Problems . . . . . . . . . . . . . . . . . . . . 1909

Elena Beretta (joint with Andrea Aspri, Anna Mazzucato, Maarten de
Hoop)
Analysis of a model of elastic dislocations in geophysics . . . . . . . . . . . . . . 1911

George Biros (joint with Shashank Subramanian, Klaudius Scheufele,
Miriam Mehl)
Where did the tumor start? Sparse reconstruction of initial conditions
for reaction-diffusion PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1912

Maxence Cassier (joint with Graeme W. Milton)
Bounds on Herglotz functions and physical limits to broadband passive
cloaking in the quasitatic regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1913

Herbert Egger (joint with Jürgen Dölz, Matthias Schlottbom)
On model reduction for tomographic inverse problems . . . . . . . . . . . . . . . . 1916

Josselin Garnier
Wave Propagation and Correlation-based Imaging in Random Media:
From Gaussian to non-Gaussian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 1918

Maarten V. de Hoop (joint with Matti Lassas, Christopher A. Wong)
Deep learning architectures for nonlinear operator functions and
nonlinear inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1919

Bangti Jin (joint with Zhi Zhou)
Numerical analysis of diffusion coefficient identification for elliptic and
parabolic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1920

Tobias Kluth (joint with Hannes Albers)
Simulation of non-linear magnetization effects and parameter
identification problems in magnetic particle imaging . . . . . . . . . . . . . . . . . 1922

Roman Novikov (joint with Petr Grinevich, Iskander Taimanov)
Moutard transform for the generalized analytic functions and for the
conductivity equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1925

Hans-Georg Raumer (joint with Thorsten Hohage, Carsten Spehr, Daniel
Ernst)
Numerical Methods for Source Power Reconstruction in Experimental
Aeroacoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1928



1908 Oberwolfach Report 39/2020

Kui Ren (joint with Ru-Yu Lai, Yimin Zhong, Ting Zhou)
Inverse Problem for Semilinear Radiative Transport with Internal Data . 1930

William Rundell (joint with Barbara Kaltenbacher)
The influence of a fractional subdiffusion operator: A tale of two inverse
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1933

Otmar Scherzer (joint with Clemens Kirisits, Michael Quellmalz, Monika
Ritsch-Marte, Eric Setterqvist, Gabriele Steidl)
Reconstruction formulae for diffraction tomography with optical tweezers 1934
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Abstracts

Role of Fractional Operators in Inverse Problems

Harbir Antil

Nonlocal (fractional) operators such as fractional Laplacian and fractional time de-
rivative have shown remarkable promise in many applications in capturing anoma-
lous behavior and processes involving jump across the interfaces. In complex/he-
terogeneous material mediums, the long-range correlations or hereditary material
properties are presumed to be the cause of this anomalous behavior. Besides being
able to capture long range effects, these operators enforce less smoothness than
their classical counterparts.

We begin this talk by introducing various definitions of fractional Laplacian in
a bounded domain Ω ⊂ RN with boundary ∂Ω. There are several ways to define
fractional Laplacian in this setting, we consider the two most popular ones. With
fractional exponent s ∈ (0, 1), we first define the Spectral fractional Laplacian as

(−∆)su =

∞∑

k=1

λskukϕk

where uk =
∫
Ω uϕk dx, with {(λk, ϕk)}∞k=1 denoting the eigenvalues and eigenfunc-

tions of the standard Laplacian with zero Dirichlet conditions, i.e., −∆ϕk = λkϕk

in Ω and ϕk = 0 on ∂Ω. The second definition is the so-called Integral fractional
Laplacian given by

(−∆)su(x) = CN,sP.V.

∫

RN

u(x)− u(y)

|x− y|N+2s
dy

where CN,s is a normalization constant and P.V. denotes the Cauchy principle
value. It is clear from the second definition that fractional Laplacian is a nonlocal
operator, unlike the standard Laplacian. See [2] and [11] for rigorous definitions
of both these operators.

Next, we discuss how to use fractional Laplacian as a regularizer in inverse
problems arising in imaging science. In particular, we discuss image denoising
problems. Recall that, typically one uses Total Variation (TV) seminorm as a reg-
ularizer in such settings [16]. Since fractional Laplacian enforces less smoothness
and is a nonlocal operator, therefore it is excellent in capturing sharp transitions
across interfaces. We establish that one can obtain comparable results using frac-
tional Laplacian to TV and our proposed approach is significantly cheaper, one
only needs to solve a linear equation instead of the nonlinear/degenerate problem
in case of TV [1]. Notice that here one can simply define fractional Laplacian
using periodic boundary conditions and can use Fast Fourier transform to solve
the fractional PDE.

Next, we introduce yet another novel regularizer, i.e., a fractional operator
where the fractional exponent is allowed to be spatially dependent, i.e., s(x) instead
of being a constant. Our approach is motivated the extension approach of [12, 17].
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We allow the fractional exponent function to touch the extreme case of 0. We
establish that, in this setting, we may not have density of smooth functions. We
introduce novel function spaces and prove a trace theorem. Using this new operator
as a regularizer in image denoising problems, we show that one can obtain almost
perfect reconstructions which are significantly superior than TV based approaches
[7].

Recall that, classical PDE based inverse problems are limited to identifying
source/control located either on the boundary ∂Ω or in the interior of the domain
Ω. However, with the help of fractional PDEs with integral fractional Laplacian,
in [6, 8] we have introduced a completely new notion of inverse problems, i.e., the
so-called external source/control problems.

We also discuss the notion of optimal control problems with semilinear fractional
PDEs as constraints. Here we also allow control constraints. In the spectral case,
we allow the control to be either in the interior or on the boundary [2]. In the
integral case, the control is allowed to be in the interior [11] or in the exterior
[6, 8]. We also present optimal control problems with fractional p-Laplacian (a
quasilinear PDE) as constraints. The control here is given by the coefficient [10].
We also refer to [9] for results on state constrained problems.

In the last part of the talk we propose novel Deep Neural Networks (DNNs)
derived using fractional time derivatives [5]. Fractional time derivatives are an-
other class of nonlocal operators which have a distinct ability to capture memory
effects. We first illustrate that the DNNs can be written as a constrained op-
timization problem. Next, we establish that fractional time derivatives, due to
their nonlocal nature, can significantly help with the vanishing-gradient problem
in DNNs. We conclude by illustrating the impact of fractional DNNs on Bayesian
inverse problems.
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Analysis of a model of elastic dislocations in geophysics

Elena Beretta

(joint work with Andrea Aspri, Anna Mazzucato, Maarten de Hoop)

In my talk I analyse a mathematical model of elastic dislocations with applications
to geophysics, where by elastic dislocation we mean an open, oriented Lipschitz
surface in the interior of an elastic solid, across which there is a discontinuity of
the displacement. I first briefly present the results in [1]; here we consider the case
of the earth modelled as a inhomogeneous, isotropic elastic half-space and assume
Lipschitz continuity of the elastic moduli and prove the existence and uniqueness
of a very weak global solution to the forward problem of determining the displace-
ment by imposing traction free boundary conditions at the surface of the earth,
continuity of the traction and a given jump (slip-field) on the displacement across
the fault.

Then I illustrate in details the results obtained in [2] for the case of discontinuous
elastic moduli; the earth is a finite isotropic, inhomogeneous elastic layered medium
(e.g. the earth) occupying a bounded region Ω in space, and the Lamé parameters
are Lipschitz in each layer of the medium. In this case the displacement u due to
the slip-field g acting on the dislocation (fault) S satisfies:
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(1)





div (C∇̂u) = 0, in Ω \ S,
(C∇̂u)ν = 0, on ΓN ,

u = 0, on ΓD

[u]S = g,

[(C∇̂u)n]S = 0,

where C is the piece-wise Lipschitz isotropic stiffness tensor and ∂Ω = ΓD ∪ ΓN .
I show existence of a unique variational solution to the forward problem as-

suming that the slip-field belongs to a suitable Sobolev trace space. I then use
the well-posedness of the forward problem and the unique continuation property
for solutions to the Lamé system, in the case of Lipschitz continuous parameters,
to establish uniqueness in the inverse problem of determining the fault S and the
displacement jump g from measuring the displacement at the surface.

In the final part of my talk I describe some partial results obtained for the
anisotropic case in the two-dimensional setting, [3], and some work in progress
concerning a shape-derivative based algorithm for the reconstruction of a piece-
wise linear dislocation from boundary measurements.
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Where did the tumor start? Sparse reconstruction of initial conditions
for reaction-diffusion PDEs

George Biros

(joint work with Shashank Subramanian, Klaudius Scheufele, Miriam Mehl)

We present a numerical scheme for solving an inverse problem for parameter es-
timation in tumor growth models for glioblastomas, a form of aggressive primary
brain tumor. The growth model is a reaction-diffusion partial differential equa-
tion (PDE) for the tumor concentration. We use a PDE-constrained optimization
formulation for the inverse problem.

The unknown parameters are the reaction coefficient (proliferation), the diffu-
sion coefficient (infiltration), and the initial condition field for the tumor PDE.
Segmentation of Magnetic Resonance Imaging (MRI) scans from a single time
snapshot drive the inverse problem where segmented tumor regions serve as par-
tial observations of the tumor concentration. The precise time relative to tumor
initiation is unknown, which poses an additional difficulty for inversion. We per-
form a frozen-coefficient spectral analysis and show that the inverse problem is
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severely ill-posed. We introduce a biophysically motivated regularization on the
tumor initial condition.

In particular, we assume that the tumor starts at a few locations (enforced with
a sparsity constraint) and that the initial condition magnitude in the maximum
norm equals one. We solve the resulting optimization problem using an inexact
quasi-Newton method combined with a compressive sampling algorithm for the
sparsity constraint. Our implementation uses PETSc and AccFFT libraries.

We conduct numerical experiments on synthetic and clinical images to highlight
the improved performance of our solver over an existing solver that uses a two-
norm regularization for the calibration parameters. The existing solver is unable
to localize the initial condition. Our new solver can localize the initial condition
and recover infiltration and proliferation. In clinical datasets (for which the ground
truth is unknown), our solver results in qualitatively different solutions compared
to the existing solver.

Bounds on Herglotz functions and physical limits to broadband
passive cloaking in the quasitatic regime

Maxence Cassier

(joint work with Graeme W. Milton)

Introduction: Cloaks are specific structures placed near or around an object that
render the electromagnetic response of cloak plus object equal or almost equal to
that of free space. Ideally passive cloaks should work for waves in a broadband
frequency range, giving rise to the challenging question: Is it possible to perform
broadband passive cloaking over a finite frequency band? In the context of the
quasistatic approximation of Maxwell’s equations we prove that it is impossible
and give quantitative limitations to cloaking over a finite frequency range. Our
results, published in [2], hold for a cloak or object of any geometrical shape and do
not depend on the cloaking methods: transformation optics, anomalous resonance,
complementary media.

1) The passive cloaking problem. Let O be a bounded simply-connected dielectric
inclusion with Lipschitz boundary that one wants to cloak. O is characterized by
its permittivity ε(x, ω) = ε I, where ε > ε0 is constant on the frequency range
of interest [ω−, ω+] and strictly larger than the permittivity of the vacuum ε0.
The passive cloak is made of an anisotropic material of any shape characterized
by its dielectric tensor ε(x, ω) which depends both on the spatial variable x and
the frequency ω. The whole device, the inclusion and the cloak, occupies an open
bounded set Ω ⊂ B(0, R0) of characteristic size R0 and the remainder of space
R3 \Ω is vacuum of permittivity ε(x, ω) = ε0 I. The observer is assumed to be at
a distance R ≫ R0.

We send a plane wave towards the device and assume that its wavelength is
considerably larger than R in the frequency range of interest ω ∈ [ω−, ω+] ⊂ R+,∗

so that we can use the quasistatic approximation in this frequency band. In this
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approximation, the curl-free electrical fieldE(x, ω) is given in terms of the gradient
of some potential V (x, ω), i.e. E(x, ω) = −∇V (x, ω), the incident plane wave in
the vicinity of a closed ball B(0, R) corresponds to a uniform field E0 ∈ C3 so
that the potential ∇V (x, ω) satisfies the following elliptic equation

(1) ∇ ·
(
ε(x, ω)∇V (x, ω)

)
= 0 on R3,

and admits the asymptotic expansion as |x| → ∞:

(2) V (x, ω) = −E0 · x+
p(ω) · x
4πε0|x|3

+O
( 1

|x|3
)
, with p(ω) = α(ω)E0.

Thus, the main contribution of the scattered far field is a dipolar term p(ω) ∈ C3

which depends linearly on E0 via the polarizability tensor α(ω) ∈M3(C). Hence,
to cloak the device Ω at a sufficient large distance R to any incident field E0 ∈ C3

at a frequency ω ∈ [ω−, ω+], one needs that α(ω) vanishes at ω.
The electric induction D is given within the cloak Ω\O by the constitutive law

(CL): D = ε0E + ε0χE ⋆t E, where ⋆t stands for the time convolution product
between the real-valued susceptibility tensor χE(x, t) and the electrical fieldE. To
define this convolution, one assumes for simplicity that χE ∈ L1(Rt, L

∞(Ω \ O)9)
and that E, ∂tE ∈ L2(Rt, L

2(Ω \ O)3). The cloak is a passive material since it
is causal: χE is supported in (Ω \ O) × R+

t and passive, i.e. for any real fields
(E,D) satisfying the (CL) (and the regularity assumptions for E):

∫ t

−∞

∫

Ω\O

∂tD(x, t) ·E(x, t)dxdt ≥ 0, ∀t ∈ R.

Let C+ := {ω ∈ C | Imω > 0} and clC+ := C+ ∪ R. For any causal f ∈ L1(Rt),

one defines the Fourier-Laplace transform as f̂(ω) :=
∫
R+ f(t)e

iωtdt, ∀ω ∈ clC+

so that it coincides with the Fourier transform for real frequency. The (CL) in

the frequency domain becomes: D̂(x, ω) = ε(x, ω) Ê(x, ω) with ε(x, ω) = ε0(1 +
χ̂E(x, ω)), ∀ω ∈ R. Thus, one shows that the passivity of the cloak is equivalent
in the frequency domain to

(H̃1): for a.e. x ∈ Ω \ O, ε(x, ·) is analytic on C+ and continuous on clC+,

(H̃2): for a.e. x ∈ Ω \ O, ∀ω ∈ clC+, ε(x,−ω) = ε(x, ω),

(H̃3): for a.e. x ∈ Ω \ O, ∀ω ∈ R+, Im ε(x, ω) ≥ 0 (passivity),

(H̃4): for a.e. x ∈ Ω \ O, ε(x, ω) → ε0 I as |ω| → ∞ in clC+.

2) Bounds on Herglotz functions and passive systems. Herglotz functions are ana-
lytic functions of the upper-half plane with non-negative imaginary part. In [2], we
derive bounds on Herglotz functions which apply to a wide class of linear passive
systems and generalize those provided in [1]. To this aim, we consider a passive
linear system characterized by a function f : clC+ → C in the frequency domain
which satisfies the assumptions

(H1) f is analytic on C+, continuous on clC+, (H2) f(−ω) = f(ω), ∀ω ∈ clC+,

(H3) Im f(ω) ≥ 0, ∀ω ∈ R+, (H4) f(ω) → f∞ > 0, when |ω| → ∞ in clC+,

i.e. (H̃1 − H̃4) but for a scalar function. We define the square root by
√
ω =
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|ω| 12 ei argω/2 if argω ∈ (0, 2π) and by
√
x = |x| 12 for x ∈ R+. In [2], we show that

v defined by v(ω) := ωf(
√
ω), ∀ω ∈ C is a Herglotz function that is analytic in

C \R+, negative on R−,∗ and satisfies by (H2): v(ω) = v(ω), ∀ω ∈ C+ ∪R−,∗ and
by (H4): v(ω) = f∞ω + o(ω) when |ω| → ∞ in C+.

Then, we introduce the Herglotz functions hm and vm defined by:

hm(ω) =

∫

R

dm(ξ)

ξ − ω
and vm(ω) = hm(v(ω)), ∀ω ∈ C+,

where m ∈ M with M is the set of probability measures on R. Using a sum rule
derived in [1], we show (see [2]) the following theorem.

Theorem 1. Let [x−, x+] be a compact interval of R+∗, then one has:

(3) lim
y→0+

1

π

∫ x+

x
−

Im vm(x+ iy) dx ≤ 1

f∞
∀m ∈ M,

and Dirac measures (δξ)ξ∈R optimize the inequality (3) since

sup
m∈M

1

π
lim

y→0+

∫ x+

x
−

Im vm(x+ iy) dx = sup
ξ∈R

1

π
lim

y→0+

∫ x+

x
−

Im vδξ(x+ iy) dx.

We prove this result in [2] for compactly supported measures m ∈ M but it can be
shown exactly in the same way for any m ∈ M. If Im f(ω) = 0 for ω ∈ [ω−, ω+],
we show by using Dirac measures (δξ)ξ∈R in inequality (3) that

(4) ω2
0(f(ω0)− f∞) ≤ ω2(f(ω)− f∞), ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω.

Without such assumption on Im f , by using the uniform probability measure on
[−∆,∆] with ∆ = max[ω2

−

,ω2
+] |v(x)| in the bound (3) it follows that:

(5)
1

4
(ω2

+ − ω2
−)f∞ ≤ max

ω∈[ω
−
,ω+]

|ω2f(ω)|.

3) Fundamentals limits to broadband cloaking. We apply now the above bounds to
cloaking. We give in [2] a functional framework to equations (1) and (2) (which
are physically relevant in [ω−, ω+] where the quasistatic approximation is valid
but holds for any ω ∈ clC+ by using the analytic extension of the permittivity in
the inclusion and in the vacuum). Then, we show (with a coercivity assumption,

see [2]) that for a passive cloak satisfying (H̃1 − H̃4) and a reciprocity principle,
the function fE0

given by

fE0
(ω) := α(ω)E0 ·E0 =

∫

Ω

(ε(x, ω)− ε0I)E(x, ω) ·E0 dx, ∀ω ∈ clC+

is well-defined for E0 ∈ C3 and satisfies (H̃1 − H̃4) with fE0,∞ := α(∞)E0 · E0

where α(∞) := lim|ω|→+∞ α(ω) is the positive definite polarizability tensor of the
inclusion O depending only on its geometry and contrast in permittivity. If the
cloak is a lossless (i.e if Im ε(x, ω) = 0 inside the cloak on [ω−, ω+]), one shows
that Im fE0(ω) = 0 on [ω−, ω+]. Thus, using (4) on functions fE0 gives

ω2
0 (α(ω0)−α(∞)) ≤ ω2 (α(ω)−α(∞)), ∀ω, ω0 ∈ [ω−, ω+] such that ω0 ≤ ω,

which turns to be an optimal bound (see [2]). Now assume that one can cloak at
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a frequency ω0. Thus α(ω0) = 0 and it yields to

α(ω) ≤ −α(∞)
ω2
0 − ω2

ω2
, ω ∈ [ω−, ω0] and α(∞)

ω2 − ω2
0

ω2
≤ α(ω), ω ∈ [ω0, ω+]

which obviously forces α(ω) to be non-zero away from the frequency ω0 on [ω−, ω+]
and makes cloaking impossible on [ω−, ω+]. If the cloak is not lossless, one applies
the bound (5) on the functions fE0

to get:
1
4 (ω

2
+ − ω2

−)α(∞)E0 ·E0 ≤ max
ω∈[ω

−
,ω+]

|ω2α(ω)E0 ·E0|, ∀E0 ∈ C3.

This positive lower bound also gives a limitation to cloaking on [ω−, ω+].
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On model reduction for tomographic inverse problems

Herbert Egger

(joint work with Jürgen Dölz, Matthias Schlottbom)

Tomographic applications typically involve measurements for multiple excitations
and detectors which can be interpreted as finite dimensional projections of infinite
dimensional measurement operators. The corresponding inverse problems can then
be phrased as ill-posed linear operator equations

(1) T (c) = Mδ

with c denoting the unkown field to be determined and Mδ representing a per-
turbed version of the complete measurement operator. In typical applications, like
inverse scattering or optical tomography, the forward operator or its linearization
has a canonical factorization [5]

(2) T (c) = V∗D(c)U
with operators U and V representing excitation or detectors fields and D(c) de-
scribing the intercation with the medium to be probed. This factorization reveals
the tensor product structure of the forward operator T (c).

After discretization, the forward operator can be interpreted as a high-dimen-
sional mapping T : Rm → Rk×k, with m denoting the number of parameters to be
determined, and k the number of excitations and detectors. A single evaluation of
the forward operator T (c) may then already have a very high complexity O(mk2)
and some model reduction or low-rank approximation is required for an efficient
solution of the inverse problem.

For any given accuracy, the low-rank approximation of minimal rank is given by
the truncated singular value decomposition [4] which, however, will in general not
have a tensor-product form. As a consequence, even for approximations generated
by stochastic algorithms [8], the setup and memory cost of the TSVD is usually too
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high for practical purposes. Alternative low-rank approximations, explicitly taking
account of the underlying tensor-prodcut structure, have been investigated in [1,
6, 7]. While these approaches reduce the computational complexity of the setup
and memory cost, the rank of the resulting approximations is usually much higher
than that of the corresponding TSVD, and the solution of the inverse problem
remains computationally demanding.

In this talk, we present a strategy that is based on an intermediate sparse
tensor-product approximation [3] and a sub-sequent truncated singular value de-
composition. This allows us to generate an approximation TN (x) = QNT (c) of
the forward operator via an orthogonal projection QN in data space with quasi-
optimal rank for a given accuracy but at a computational cost which essentially
amounts to that of a single evaluation T (c) of the full forward operator. A rigor-
ous analysis is given in [2]. After setup of the low-rank approximation TN for the
forward operator, the regularized solution of the inverse problem can be executed
very efficiently in a three step procedure

Mδ
N = QNMδ (data compression)

zδα,N = gα(T T ∗)Mδ
N (regularized inversion)

cδα,N = T ∗zδα,N (back projection)

Note that the regularized inversion now only depends on the dimension N of the
low-rank approximation can therefore be computed extremely efficient. Assuming
that the dimension k × k of the full data Mδ is larger then the dimension m of
the parameter c to be determined, the data compression step turns out to be of
the highest computational complexity. Using the underlying sparse tensor-product
structure of QN , this step can still be computed rather efficiently and in a way
such that access to the full data Mδ is never required.
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Wave Propagation and Correlation-based Imaging in Random Media:
From Gaussian to non-Gaussian Statistics

Josselin Garnier

In this talk we consider wave propagation in random open media and in random
open waveguides. In both cases an asymptotic analysis based on a separation of
scales technique [3] makes it possible to compute the statistics of the wave field
and to design imaging algorithms based on the empirical cross correlations of the
recorded signals.

In random open media the wave field can be characterized in the random
paraxial regime, when the wavelength is smaller than the correlation length of
the medium and the beam radius, which are themselves smaller than the typical
propagation distance [6]. The mean or coherent wave decays exponentially with
the propagation distance and the mean Wigner transform (the partial Fourier
transform of the two-point covariance function of the wave field) satisfies a radia-
tive transfer equation. The fourth-order moment analysis [7] also reveals that the
statistics of the wave field behaves as a Gaussian process, in the sense that the
fourth-order moments satisfy the Isserlis formula and the scintillation index (the
relative variance of the intensity) goes to one for large propagation distances.

In random open waveguides, the wave field can be expanded on the complete set
of the modes of the unperturbed waveguide. When random perturbations affect
the index of refraction within the core of the waveguide or the geometry of the core
boundary, the mean guided mode amplitudes decay exponentially and the mean
guided mode powers satisfy a coupled mode equation, which can be interpreted
as a discrete form of the radiative transfer equation [1, 5]. The coupling between
guided and radiating modes also induces effective losses for the mean guided mode
powers [4]. The fourth-order moment analysis reveals that the fluctuations of
the guided mode powers grow exponentially with the propagation distance [4].
This is, therefore, in contrast with the situation in open random medium. By
studying the exponential growth rates of the relative variances of the guided mode
powers, it is possible to show that, when the number of guided modes increases,
the exponential growth rates vanish and the scintillation index becomes equal to
one [4], as observed in open medium in the random paraxial regime [7].

These results show that incoherent imaging in a random open waveguide, such
as a Pekeris waveguide in underwater acoustics, is challenging when the number of
propagating modes is not large. Indeed incoherent imaging is based on the use of
the cross correlations of the recorded signals. The estimation of the second-order
moments of the wave field is, however, difficult because of the large variances of
the empirical second-order moments and one may need to average over a lot a
samples, while the medium may be not stationary as in underwater acoustics.
This is in contrast with the situation in open random media where smoothed
Wigner transforms are statistically stable [7]. It is, however, possible to extract
some limited information about the environment from the cross correlations of the
recorded signals in random open waveguides by Bayesian inference [2].
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More generally, the results on the fourth-order moments show that the predictions
of the coupled mode equations, which describe the evolutions of the statistical
second-order moments of the wave field, are not easy to exploit experimentally
in random open waveguides when the number of guided modes is not large. The
situation is easier in random closed waveguides because of the absence of radiating
modes.
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Deep learning architectures for nonlinear operator functions and
nonlinear inverse problems

Maarten V. de Hoop

(joint work with Matti Lassas, Christopher A. Wong)

We develop a theoretical analysis for special neural network architectures, termed
operator recurrent neural networks, for approximating highly nonlinear functions
whose inputs are linear operators. Such functions commonly arise in solution al-
gorithms for inverse problems for the wave equation. Traditional neural networks
treat input data as vectors, and thus they do not effectively capture the mul-
tiplicative structure associated with the linear operators that correspond to the
measurement data in such inverse problems. We therefore introduce a new para-
metric family that resembles a standard neural network architecture, but where
the input data acts multiplicatively on vectors.

Motivated by compact operators appearing in boundary control and the analysis
of inverse boundary value problems for the wave equation, we promote structure
and sparsity in selected weight matrices in the network. After describing this
architecture, we study its representation properties as well as its approximation
properties. We furthermore show that an explicit regularization can be introduced
that can be derived from the mathematical analysis of the mentioned inverse prob-
lems, and which leads to some guarantees on the generalization properties. We
observe that the sparsity of the weight matrices improves the generalization esti-
mates. Lastly, we discuss how operator recurrent networks can be viewed as a deep
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learning analogue to deterministic algorithms such as boundary control for recon-
structing the unknown wavespeed in the acoustic wave equation from boundary
measurements.

Numerical analysis of diffusion coefficient identification for elliptic and
parabolic systems

Bangti Jin

(joint work with Zhi Zhou)

Parameter identifications for differential equations represent a wide class of inverse
problems. Many deep results on conditional stability have been established for con-
crete parameter identification problems. Meanwhile, a large variety of inversion
schemes have been proposed, often based on Tikhonov regularization. Thus, it is
natural to ask whether one can use conditional stability results to analyze relevant
numerical procedures. Conditional stability has been employed to derive conver-
gence rates for Tikhonov regularization in [2]. However, it has not been employed
to analyze discrete schemes.

In this work, we make an attempt to exploit “stability” results for deriving con-
vergence rates for a discrete scheme for recovering a spatially dependent diffusion
coefficient q in an elliptic or parabolic type problem. Let Ω ⊂ Rd (d = 1, 2, 3) be
a convex polyhedral domain with a boundary ∂Ω. Consider the following elliptic
problem:

(1)

{
−∇ · (q∇u) = f, in Ω,

u = 0, on ∂Ω,

where the function f denotes a given source term. The solution to problem (1) is
denoted by u(q). The inverse problem is to recover the exact diffusion coefficient
q† from the pointwise observation zδ, with a noise level δ, ‖zδ − u(q†)‖L2(Ω) ≤ δ.
The diffusion coefficient q is assumed to satisfy 0 < c0 ≤ q ≤ c1 in Ω. Problem (1)
is the steady state of the following parabolic type problem

(2)





∂αt u−∇ · (q∇u) = f, in Ω× (0, T ],

u(0) = u0, in Ω,

u = 0, on ∂Ω× (0, T ],

where T > 0 is the final time, and 0 < α ≤ 1. The functions f and u0 are the
given source term and initial condition, respectively. The notation ∂αt u denotes
the Djrbashian-Caputo fractional derivative of order α ∈ (0, 1), defined by

∂αt u(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αu′(s)ds,

where Γ(z) denotes Euler’s Gamma function. For α = 1, it coincides with the
usual first-order derivative. In this case, the inverse problem is to recover the
spatially dependent diffusion coefficient q† from the distributed observation zδ

over Ω × (0, T ), with a noise level δ, i.e., ‖zδ − u(q†)‖L2(0,T ;L2(Ω)) ≤ δ. Problems
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(1) and (2) describe many important physical processes, and for 0 < α < 1, the
model describes the so-called subdiffusion process.

Now we describe one inversion scheme based on Tikhonov regularization and
Galerkin FEM approximation. Let Th be a shape regular quasi-uniform triangu-
lation of the domain Ω into d-simplexes with a mesh size h. Over Th, we define
two finite element spaces: Xh = {vh ∈ H1

0 (Ω) : vh|K ∈ P1(K) ∀K ∈ Th} and
Vh = {vh ∈ H1(Ω) : vh|K ∈ P1(K) ∀K ∈ Th}, which are used to approximate the
state u and the diffusion coefficient q, respectively. Now the inversion scheme for
problem (1) reads

(3) min
qh∈Ah

Jγ,h(qh) =
1

2
‖uh(qh)− zδ‖2L2(Ω) +

γ

2
‖∇qh‖2L2(Ω),

with Ah = {qh ∈ Vh : c0 ≤ qh(x) ≤ c1 in Ω} and uh(qh) satisfying

(qh∇uh(qh),∇vh) = (f, vh), ∀vh ∈ Xh.(4)

Then in the work [4], the following weighted error estimate was proved using
an energy argument, with a novel test function.

Theorem 1 (Elliptic case). Let the exact diffusion coefficient q† ∈ H2(Ω) ∩
W 1,∞(Ω), u(q†) the solution to problem (1) with f ∈ L∞(Ω), and q∗h ∈ Ah a

minimizer of problem (3)-(4). Then with η = h2 + δ + γ
1
2 , there holds

∫

Ω

(q† − q∗h)
2
(
q†|∇u(q†)|2 + fu(q†)

)
dx ≤ c(hγ−

1
2 η +min(h+ h−1η, 1))γ−

1
2 η.

Theorem 1 allows deriving the standard L2(Ω) bound, under condition (5),
which holds for certain problem data [1].

Corollary 1. Let q† ∈ H2(Ω)∩W 1,∞(Ω) and f ∈ L∞(Ω), and assume that there
exists some β ≥ 0 such that

(5) (q†|∇u(q†)|2 + fu(q†))(x) ≥ c dist(x, ∂Ω)β a.e. in Ω.

Then the approximation q∗h satisfies

‖q† − q∗h‖L2(Ω) ≤ c((hγ−
1
2 η +min(h−1η, 1))γ−

1
2 η)

1
2(1+β) .

For any δ > 0, the choices γ ∼ δ2 and h ∼
√
δ imply ‖q† − q∗h‖L2(Ω) ≤ cδ

1
4(1+β) .

To discretize problem (2), we divide the time interval [0, T ] uniformly, with grid
points tn = nτ , n = 0, . . . , N , and a time step size τ = T/N , and then employ the
standard Galerkin finite element method in space and backward Euler convolution
quadrature in time. The latter, denoted by ∂̄ατ ϕ

n (with ϕj = ϕ(tj)), is defined by
[3]:

∂̄ατ ϕ
n = τ−α

n∑

j=0

b
(α)
j ϕn−j , with (1 − ξ)α =

∞∑

j=0

b
(α)
j ξj .

Then the inversion scheme in the parabolic case reads

(6) min
qh∈Ah

Jγ,h,τ (qh) =
τ

2

N∑

n=1

‖Un
h (qh)− zδn‖2L2(Ω) +

γ

2
‖∇qh‖2L2(Ω),
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with zδn = τ−1
∫ tn
tn−1

zδdt, and Un
h (qh) ∈ Xh satisfying U0

h(qh) = Phu0 and

(∂̄ατ (U
n
h − U0

h), χ) + (q∇Un
h ,∇χ) = (fn, χ), ∀χ ∈ Xh, n = 1, 2, . . . , N,(7)

with fn = 1
τ

∫ tn
tn−1

f(s) ds.

Then the following error estimate holds for the standard parabolic case [4]; see
also [5] for the case 0 < α < 1. Just as in the elliptic case, a similar positivity
condition can be verified to derive the standard L2(Ω) bound.

Theorem 2 (Standard parabolic case). Let q† ∈ H2(Ω)∩W 1,∞(Ω), u0 ∈ H2(Ω)∩
H1

0 (Ω)∩W 1,∞(Ω), and f ∈ L∞((0, T )×Ω)∩C1([0, T ];L2(Ω))∩W 2,1(0, T ;L2(Ω)).

Let q∗h ∈ Ah be a solution to problem (6)–(7). Then with η = τ + h2 + δ + γ
1
2 ,

there holds

τ3
N∑

j=1

j∑

i=1

j∑

n=i

∫

Ω

(q† − q∗h
q†

)2(
q†|∇u(tn)|2 + (f(tn)− ∂tu(tn))u(tn)

)
dx

≤ c(hγ−
1
2 η +min(1, h−1η))γ−

1
2 η.

One- and two-dimensional numerical experiments show that a steady conver-
gence can be observed, but the theoretical prediction remains suboptimal. The
optimal rates remain to be established.
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Simulation of non-linear magnetization effects and parameter
identification problems in magnetic particle imaging

Tobias Kluth

(joint work with Hannes Albers)

Magnetic particle imaging (MPI) is an emerging imaging modality exploiting the
magnetization behavior of nanoparticles in a highly dynamic applied magnetic
field (see [4] for a comprehensive review on MPI methodology). A proper solution
to the imaging problem, i.e., the reconstruction of a space- and potentially time-
dependent concentration function, requires an adequate solution to the calibra-
tion problem, i.e., a proper model and parameters therein for the mean magnetic
moment m̄ of an ensemble of nanoparticles. Finding a suitable solution to the
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model-based calibration problem is one of the open challenges in MPI such that a
fully measured approach is still the state of the art.

The dynamic behavior of the nanoparticles’ magnetic moments is affected by
Brownian and Néel mechanisms. The former describes the magnetic moment ro-
tation due to rotation of the whole particle while the later describes the internal
rotation of the magnetic moment (see, e.g., [2] for details in the context of MPI).
Both of these magnetic moment dynamics can be modeled individually in an effec-
tive manner for large ensembles of nanoparticles using the Fokker-Planck equation
to reformulate the stochastic ODE into a deterministic PDE whose solution is the
probability density over all magnetic moment directions (for a detailed derivation,
see [2]). In particular, we obtain an advection-diffusion equation on the sphere S2

for the probability density function (pdf) f : S2×I×Ω → R+∪{0} (measurement
time interval I = [0, T ] ⊂ R, field-of-view Ω ⊂ R3):

∂

∂t
f = divS2(

1

2τ
∇S2f − b(·,H+ δh)f)

with relaxation time constant τ > 0, applied magnetic field H : I × Ω → R3, and
the (velocity) field b : S2 × R3 → R3 given by

b(m,h) =p1h×m+ p2(m× h)×m

for pi ≥ 0, i = 1, 2. The domain of δh may differ depending on the modeling
of particle behavior, e.g., in the case of uniaxial anisotropy with δh : S2 → R3,
δh(m) = p3(m · n)n for an easy axis n ∈ S2 and p3 > 0. The choice of param-
eters (pi)i depends on the chosen rotation model and physical properties of the
tracer material. These scalar parameters may only be known approximately in
practice; thus it may be advantageous to include their identification in the pa-
rameter identification scheme described in the following. Once the Fokker-Planck
equation has been solved, the desired mean magnetic moment can be obtained in
a straightforward manner by taking the mean of the resulting pdf f , i.e.,

m̄(x, t) = m0

∫

S2

mf(m, t, x) dm.

In the general MPI setting we thus obtain an observation operator CMPI mapping
the concentration and the pdf to a time-dependent voltage measurement and a
state equation M with respect to the pdf, taking the following form:

CMPI(c, f) = −µ0m0a ∗
(∫

Ω

c(x)pR(x)T
∫

S2

m
∂

∂t
f(m, ·, x) dm dx

)
= v

M(f, δh) =
∂

∂t
f − divS2(

1

2τ
∇S2f − b(·,H+ δh)f) = 0, f(·, 0, ·) = f0,(1)

where m0 > 0 is the magnetic moment of a single particle, pR : R3 → R3 denotes
the coil sensitivity, a : R → R is an analog filter function, and H is the applied
magnetic field as defined before. The calibration problem now takes the form of
identifying a δh from given tuples (c, v), where δh encodes unknown or uncertain
aspects of the nanoparticle behavior, such as particle anisotropy or deviations in
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the effective magnetic field, which may be the result of technical inaccuracies or
of physical effects that have been neglected in the model formulation.

In principle, three main settings for the parameter identification problem can
be distinguished. If δh is considered as a purely time-dependent function, i.e.,
δh : I → R3, deviations in the applied magnetic field as well as potential effective
modeling of particle behavior (for example, a time-dependent effective anisotropy
constant) can be covered. Taking δh as purely space-dependent, i.e., δh : S2 → R3,
a static anisotropy of arbitrary form can be described, potentially including non-
anisotropy-related effects into an effective anisotropy term. The most general case,
δh : I×S2 → R3, then allows for modeling the fully coupled case of Brownian and
Néel rotation with arbitrary anisotropy. All settings might also have a dependence
on the field-of-view variable x ∈ Ω.

Numerical simulations for the first case, δh : I → R3, have been carried out and
further extensions remain future work: For this setting, we consider the following
adapted setup without parametric dependence on x. We note that the adaption
to more general cases is straightforward in theory, but may require more careful
consideration in implementation details. We consider the observation operator
that takes the mean of a given probability density function, C : W := {f ∈
L2(I,H1(S2))|f ′ ∈ L2(I,H1(S2)∗)} → L2(I)3 with

C(f) =

∫

S

mf(·,m) dm = m̄,

and the state equation as in (1). This yields the parameter-to-state operator
S : H1(I)3 →W , such that

M(S(δh), δh) = 0 ∧ S(δh)(0) = f0,

and the forward operator F : H1(I)3 → L2(I)3, F = C ◦ S. In this case, we
have chosen H1(I)3 as a parameter space for δh to ensure some smoothness in
the reconstruction; in general, a subset of an Lp-space is possible as well, ensuring
well-definedness of the parameter-to-state mapping.
This setting leads to the Landweber iteration for given noisy m̄δ

δh(k+1) = δh(k) − wkIS ′(δh(k))∗C∗(CS(δh(k))− m̄δ),

where I = (Id − ∆)−1 is the Riesz isomorphism in H1(I)3, C∗ : L2(I)3 →
W ∗, (C∗v)(u) =

∫
I

∫
S2〈m, v(t)〉R3u(m, t) dmdt, and, as proven for a very general

case in [1],

S ′(δh)∗z =

∫

S2

S(δh)
(
∂b

∂h
(m,H+ δh)

)T

∇S2pz dm,

where pz ∈ W solves

−(pz)′(t) = −divS2

(
b(·,H(t) + δh(t))pz(t)− 1

2τ
∇S2pz(t)

)
+ z(t), t ∈ (0, T ),

pz(T ) = 0.
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Figure 1. Reconstruction of x and y component of a three-
dimensional applied magnetic field δh for different noise levels.
The chosen domain H1(I)3 of F results in a smoothing in each
iteration.

Reconstructions of the applied magnetic field for different noise levels are displayed
in Fig. 1, where the iteration with the best reconstruction error is shown.

Future work includes a thorough analysis of the formulated parameter identifi-
cation problem of MPI system calibration, investigation of further function space
assumptions for δh, and an experimental evaluation with real data.
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Moutard transform for the generalized analytic functions and for the
conductivity equation

Roman Novikov

(joint work with Petr Grinevich, Iskander Taimanov)

The transformations of the Darboux-Moutard type go back to the publications of
T.F. Moutard [10] and G. Darboux [3]; see the survey given in [13]. Recently, we
have constructed and studied Moutard type transformations for the generalized
analytic functions and further for the conductivity equation. This talk is based,
in particular, on the works [6]-[9] and [11], [12].
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1. Generalized analytic functions
We consider the equation

∂z̄ψ = uψ̄ in D ⊆ C, (1)

where u = u(z) is a given function in D, D is open in C. The functions ψ = ψ(z)
satisfying (1) are known as generalized analytic functions in D. The notation
f = f(z) does not mean that f is holomorphic. In the literature it is usually
assumed that

u ∈ Lp(D), p > 2, if D is bounded. (2)

And it is also assumed that u has sufficient decay at infinity if D is unbounded.
The generalized analytic functions arise in PDE’s and complex analysis, dif-

ferential geometry, mechanics and mathematical physics. The classical theory of
generalized analytic functions is presented in [1], [14.] However, before our recent
works [6], [11], algebraic Moutrad-type transforms going back to the article [10]
were not yet considered in the framework of this theory.

2. ∂̄-approach to two-dimensional inverse problems
Equation (1) is one of the basic equations of the ∂̄-approach to two-dimensional
inverse problems. In particular, the Faddeev solutions for the two-dimensional
Schrödinger equation (with real-valued potential) at fixed real energy are gener-
alized analytic functions in spectral parameter; see [4], [5]. It is well-known that
this approach works very well (in all senses) when related generalized analytic
functions are regular as for the case of two-dimensional electrical impedance to-
mography with real positive conductivity. However, it is also known that Faddeev
solutions are singular generalized analytic functions if Faddeev exceptional points
are present. The point is that using Moutard-type transform we reduce singular
generalized analytic functions to regular ones. For more information, see [7], [9]
and references therein.

3. Conductivity equation
The two-dimensional conductivity equation

div (σ(x)∇ϕ(x)) = 0, x = (x1, x2) ∈ D ⊆ R2, (3)

reduces to (1) by formulas:

ψ = σ1/2∂zϕ, u = −1

2
∂z lnσ, (4)

where σ ≥ σ0, ϕ is real-valued; see [2].
Using this reduction, in [8] proceeding from results of [6] we constructed Mou-

tard type transforms for the conductivity equation. The simplest of these trans-
forms are given below by formulas (5)-(7).

Consider the conductivity equation

div
(
σ(x)∇ψ(x)

)
= 0, x = (x1, x2, . . . , xd), x ∈ D ⊆ Rd, (5)

in dimension d ≥ 1 (and, in particular, in dimension d = 3).
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Let the transform σ → σ̃, ψ → ψ̃ be defined by

σ̃ = Mσ = f2σ, (6)

ψ̃ = Mψ = f−1ψ,

where ψ denotes an arbitrary solution of (5), and f is a fixed solution of (5). Then
the following Moutard-transformed conductivity equation holds:

div
(
σ̃(x)∇ψ̃(x)

)
= 0, x ∈ D ⊆ Rd. (7)

In addition, the voltage-to-current maps Λσ and Λσ̃ for equations (5) and (7)
are related by the formula

Λσ̃ = fΛσf − fσ
∂f

∂ν
. (8)

We recall that Λσ is defined by

Λσ(ψ|∂D) = νσ∇ψ|∂D (9)

fulfilled for all sufficiently regular solutions ψ of equation (5) in D, where D is
bounded, ∂D is smooth, ν denotes the outward normal to ∂D.

In particular, formulas (5)-(9) can be used in the framework of numerical testing
of algorithms of electrical impedance tomography.

Note that studies of the action of the Darboux-Moutard transforms on DtN-type
boundary maps were started in [12].
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Numerical Methods for Source Power Reconstruction in Experimental
Aeroacoustics

Hans-Georg Raumer

(joint work with Thorsten Hohage, Carsten Spehr, Daniel Ernst)

We consider the inverse source problem of reconstructing the power of a bounded,
compactly supported and uncorrelated acoustic source, given the covariance op-
erator of pressure data within a bounded measurement domain. Such problems
arise for example from aeroacoustic wind tunnel experiments.
In the presented model, the sound pressure field p satisfies the convected Helmholtz
equation

(1) (k + im · ∇)2p+∆p = −Q ,

where k denotes the wavenumber, m (s.t. |m| < 1) the Mach vector and Q a
random source. We assume that the support of Q belongs to a bounded domain
Ω ⊂ Rd (source domain), where d ∈ {2, 3}. Furthermore the sourceQ is considered
to be spatially uncorrelated, therefore its covariance operator Cov(Q) is given by
the multiplication operator Mq : L

2(Ω) → L2(Ω)

(2) (Mqv)(x) = v(x)q(x) ,

where the source power function q is bounded and non-negative. The observed
data of this inverse problem is given by the covariance operator of the pressure
field within a measurement domain M ⊂ Rd \ Ω. The volume potential operator
between source and measurement domain is given by G : L2(Ω) → L2(M)

(3) (Gv)(x) =

∫

Ω

g(x, y)v(y)dy ,

where g denotes the Green’s function of Equation 1. Using these operators, the
observed covariance operator can be factorized as

(4) GMqG
∗ =: C(q)

and C(q) is a Hilbert-Schmidt operator on L2(M). Further we have the following
uniqueness result (see [1, Theorem 3.6]).

Theorem 1 (Uniqueness). If q1, q2 ∈ L∞ (Ω) such that C(q1) = C(q2), then
q1 = q2 .

We note here that the deterministic inverse source problem

given p ∈ L2(M) find q s.t. Gq = p

is not uniquely solvable since there exist so-called non radiating sources q ∈ C∞
c (Ω)

such that Gq vanishes everywhere outside Ω.
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The adjoint of the forward operator C : L2(Ω) → HS(L2(M)) has the following
useful characterization (see [1, Proposition 4.1]).

Proposition 1 (Adjoint forward operator). The adjoint of C is given by

C∗ : HS(L2(M)) → L2(Ω), (C∗K) (y) = 〈K,Py〉HS ,

for K ∈ HS(L2(M)) and y ∈ Ω with the monopole operator Py ∈ HS(L2(M))
defined by

(Pyϕ) (x1) =

∫

M

g(x1, y)g(x2, y)ϕ(x2)dx2

for ϕ ∈ L2(M) and x1 ∈ M.

There exist source imaging methods that estimate the source power for each
point y ∈ Ω separately. In experimental aeroacoustics such methods are usually
referred to as Beamforming methods. Given observed covariance data Cobs, the
standard Beamforming imaging functional is characterized as

I(y) = argminµ∈C‖Cobs − µPy‖2HS =
〈Cobs,Py〉HS

‖Py‖2HS

=

(
C∗(Cobs)

)
(y)

‖Py‖2HS

.

The resolution of the imaging result can be improved by replacing the standard
inner product 〈·, ·〉2 on the data space by a weighted version. For discrete and
vectorized covariance data ĉ ∈ Cn the weighted inner product is given by

〈·, ·〉W := 〈·,W−1·〉2 ,
where W ∈ Cn×n is a Hermitian, positive definite matrix. Each weighting matrix
then defines an imaging functional IW by replacing the standard norm in the
characterizing minimization problem by the norm induced by the weighted inner
product. One can show that the optimal weighting in terms of the variance is given
by the covariance matrix of the correlation data Σ = Cov(ĉ) (see [2, Theorem 4.1]).

Theorem 2 (Minimal variance). Let Σ ∈ Cn×n be regular, then for any Hermit-
ian, positive definite weighting matrix W ∈ Cn×n we have

Var (IΣ(y)) ≤ Var (IW (y)) .

Beamforming methods provide estimators for the features of the source power
function rather than a quantitative reconstruction. For the latter purpose one may
consider generalized Tikhonov generalization. Since the source power function
appears to be sparse for many aeroacoustic applications, we consider the following
Tikhonov functional with sparsity promoting mechanisms

(5) J (q) =
1

2
‖C(q)− Cobs‖2HS(L2(M)) + χA(q) +

α2

2
‖q‖2L2(Ω) + α1‖q‖L1(Ω) .

Where α1, α2 ≥ 0 and χA denotes the characteristic function of the set of non-
negative functions A =

{
f ∈ L2(Ω) : f ≥ 0 a.e.

}
. A Tikhonov minimizer q̂α1,α2 ∈

argmin{J (q)} can be approximated by the accelerated proximal gradient method
(often called FISTA) [3].
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Inverse Problem for Semilinear Radiative Transport with
Internal Data

Kui Ren

(joint work with Ru-Yu Lai, Yimin Zhong, Ting Zhou)

Let Ω ⊆ Rd (d ≥ 2) be a domain with boundary ∂Ω, and Sd−1 the unit sphere in
Rd. We define the phase space X := Ω× Sd−1 and the incoming boundary of the
phase space Γ− := {(x,v) | (x,v) ∈ ∂Ω×Sd−1 s.t. −ν(x) ·v > 0}, ν(x) being the
unit outer normal vector at x ∈ ∂Ω. We are interested in the semilinear radiative
transport equation:

(1)
v · ∇u+ (σa + σs)u(x,v) + σb〈u〉u(x,v) = σs(x)Ku(x,v), in X

u(x,v) = g(x,v), on Γ−

where 〈u〉 denotes the average of u(x,v) over the variable v, that is,

(2) 〈u〉 :=
∫

Sd−1

u(x,v)dv ,

with dv being the normalized surface measure on Sd−1. The linear operator K is
defined through the relation

(3) Ku(x,v) :=

∫

Sd−1

Θ(v,v′)u(x,v′)dv′,

with the kernel Θ(v,v′) ≥ θ > 0 being symmetric and satisfying the normalization

conditions

∫

Sd−1

Θ(v,v′)dv′ =

∫

Sd−1

Θ(v,v′)dv = 1.

Transport equations such as (1) often appear in the literature as the mathematical
models to describe radiative transfer processes in heterogeneous media.
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Well-posedness of the Forward Problem. Under the assumption that Θ(v,v′) ≥ θ
for some θ > 0, and that all the coefficient functions are bounded in L∞(Ω):

0 < c0 ≤ Ξ(x), σa(x), σs(x), σb(x) ≤ C0(4)

for some positive constants c0 and C0, we can show that the transport equation (1)
is well-posed for any sufficiently small g(x,v) ∈ L∞

dξ(Γ−), and solution is non-

negative if the boundary source g is [8, 7].

We assume that we have data encoded in the map:

(5) ΛT : g ∈ L∞
dξ(Γ−) 7→ HT ∈ L∞(Ω)

where

(6) HT (x) = Ξ(x)
[
σa(x)〈u〉(x) + σb(x)〈u〉2(x)

]
, x ∈ Ω̄.

The inverse coefficient problem we are interested in solving is the following:

(IP): Determine the triplet (σa, σb, σs) in (1) from the data encoded in ΛT defined
in (5).
Inversion with Full ΛT Data. When data encoded in the full ΛT map are available,
we can establish uniqueness and stability results on the inverse problem based on
the linearization technique of Isakov and others [2, 3, 4, 5, 6] and the result of
Bal-Jollivet-Jungon for the linear transport equation [1].

More precisely, let ε > 0 be a small parameter. We consider the following
boundary value problem:

(7)
v · ∇u+ σa(x)u(x,v; ε) + σb〈u〉u(x,v; ε) = σs(x)K(u), in X

u(x,v; ε) = εg(x,v), on Γ− .

We can then show that data encoded in the operator

(8) Λ
(1)
T : g(x,v) ∈ L∞

dξ(Γ−) 7→ H
(1)
T ∈ L∞(Ω)

with

(9) H
(1)
T (x) := ∂εHT (x; ε)|ε=0 = Ξσa〈u(1)〉(x), u(1)(x,v) := ∂εu(x,v; ε)|ε=0

are sufficient to determine σa and σs, under the assumption that Ξ is known,
according to a result of Bal-Jollivet-Jugnon [1]. Moreover, the second order data

(10) H
(2)
T (x) := ∂2εHT (x,v)|ε=0 = Ξ

(
σa〈u(2)〉+ 2σb〈u(1)〉〈u(1)〉

)
(x),

with u(2)(x,v) := ∂2εu(x,v; ε)|ε=0 are sufficient to determine σb as stated in the
following theorem [7].

Theorem 1. Let HT and H̃T be the internal data corresponding to the coefficient
sets (Ξ, σa, σb, σs) and (Ξ, σa, σ̃b, σs), both satisfying (4), respectively. Under ad-

ditional mild assumptions, σb and σ̃b can be reconstructed from H
(2)
T and H̃

(2)
T ,

that is,

(11) ‖σb − σ̃b‖L2(Ω) ≤ C‖H(2)
T − H̃

(2)
T ‖L2(Ω)

for some constant C ≥ 0.
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A similar result can be derived for the diffusion approximation to the transport
equation (1); see [7] for more details.
Inversion with Finite Data Sets. In the case where we have only a finite num-
ber of data sets, the inverse problem is more complicated to analyze. In [8], we
show, under some assumptions, that the coefficient pair (σa, σb) can be uniquely
reconstructed from two well-selected data sets.

Corollary 1. Let (σa, σb) and (σ̃a, σ̃b) be two sets of absorption coefficients, and

H := (H1, H2) and H̃ := (H̃1, H̃2) the corresponding data generated with g =
(g1, g2). Under some assumptions on the coefficients and the data, we have that,
there exists constants c, c̃ > 0 such that

(12) c̃‖H− H̃‖L2(Ω) ≤
∥∥∥∥
(
σa
σb

)
−
(
σ̃a
σ̃b

)∥∥∥∥
L2(Ω)

≤ c‖H− H̃‖L2(Ω).

The proof of this result is constructive. It is based on a fixed point argument
that leads to an explicit reconstruction algorithm.
Parametric Sensitivity Analysis of Inversion. The derivation of the inversion results
allows us to perform a sensitivity analysis on the sensitivity of the reconstruction
of the absorption coefficients (σa, σb) with respect to the change of the scattering
coefficient σs. This is something that is useful in characterizing the impact of the
inaccuracy in the value of σs on the reconstruction of (σa, σb).

Theorem 2. Let (σa, σb) and (σ̃a, σ̃b) be reconstructed with σs and σ̃s respectively,
from the same data set HT . Under additional mild assumptions, we have that,

(13) ‖(σa − σ̃a)‖L2(Ω) + ‖(σb − σ̃b)‖L2(Ω) ≤ c‖(σs − σ̃s)‖L2(Ω)

for some constant c > 0.
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The influence of a fractional subdiffusion operator: A tale of two
inverse problems

William Rundell

(joint work with Barbara Kaltenbacher)

Fractional order calculus has a long history dating from the work of Abel two
hundred years ago, but it is only relatively recently that the modelling aspects of
fractional derivatives have become apparent. The standard diffusion equation is
based on a random walk model of Brownian type; at each fixed time step the parti-
cles move a fixed distance in a random direction. More complex models, but again
leading to parabolic equations are obtained if the fixed time steps and distances
are replaced by values obtained from sampling given probability distributions pro-
vided these have sufficiently convergent moments. If this latter assumption is
relaxed then one obtains a so-called anomalous diffusion process which no longer
has the standard Markovian property of parabolic operators and, under specific
conditions, can be shown to be equivalent to space-time differential operators of
fractional order. For the case of time fractional derivatives the long-time behaviour
of the solution is very different from the parabolic case: there is only linear decay
for the solution as opposed to exponential decay. One consequence of this is the
damping effect which with a classical time derivative gives exponential decay of all
frequencies, is replaced by a more selective one where the decay is much slower.
This has seen application beyond actual physical models designed specifically to
take advantage of these effects. This talk were give some of the background to the
above but also will illustrate the effect for two specific classes of inverse problems.
The result is the severe ill-conditioning of the classical case can, again under spe-
cific circumstances, be replaced by a much milder ill-conditioning leading to much
superior reconstructions.

The first inverse problem is the recovery of both the coefficients a(x) and q(x)
in

Dα
t u−∇ · (a∇u) + q u = ru t ∈ (0, T ) , u(0) = u0

Dα
t v −∇ · (a∇v) + q v = rv t ∈ (0, T ) , v(0) = v0

with prescribed impedance boundary and given initial conditions and subject to
measured data gu(x) := u(x, T ) gv := v(x, T ) x ∈ Ω. Here 0 < α ≤ 1

One can prove a uniqueness result for all values of α but the inverse problem is
ill-conditioned. For a given level of noise in data g and the value of T the number
N of effective Fourier coefficients can be computed In the case of the parabolic
operator, α = 1 the exponential decay of the solution with T severally limits the
effective recovery of the high frequency information in both a(x) and q(x) resulting
in poor reconstructions of all but the lowest Fourier modes; that is N is typically
very small. In the fractional case the situation is similar except that N is now
considerably larger resulting in superior reconstructions of these coefficients.

A second problem seeks to recover the nonlinear reaction term f(u) in

∂αt u(x, t) + Lu(x, t) = f(u) 0 < α ≤ 1.
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where Lu = −∇ · (a(x)∇u) + q(x)u be defined on a domain Ω ⊂ Rn with smooth
boundary ∂Ω: with now known coefficients a(x) and q(x) ≥ 0. There is a fun-
damental difference between recovery of the coefficients {a, q} and the reaction
term f . In the case of {a, q} we know their domain - Ω whereas in the case of
f(u) the domain is actually all values that the solution u has taken on during the
evolution process. This leads to much more restrictive conditions on the allowed
data. However, by projecting the differential operator onto the boundary t = T a
natural iteration scheme for the recovery of f is obtained.

In the case α = 1 conditions can be given under which this scheme leads to a
contraction mapping and providing both a uniqueness result and effective numeri-
cal recovery of the unknown f . For the fractional case α < 1 the problem is much
more challenging and we are only able to prove significantly weaker results.

Reconstruction formulae for diffraction tomography with
optical tweezers

Otmar Scherzer

(joint work with Clemens Kirisits, Michael Quellmalz, Monika Ritsch-Marte, Eric
Setterqvist, Gabriele Steidl)

Introduction. We consider 3D imaging of single particles by means of optical
diffraction tomography [2, 3, 4]. During the experiment the µm-sized object is
trapped and moved using optical tweezers [1]. In the present mathematical studies
we assume that the motion has been determined already beforehand, but can be
rather irregular. This makes the derivation of reconstruction formulae as well as
the numerical solution a challenging task.
Experiment. A scattering object, characterized by nonzero scattering potential
f , is illuminated with a plane wave uinc = eik0r3 . The scattered wave u is mea-
sured at a plane perpendicular to the direction of propagation of uinc. Using
optical tweezers the specimen is rotated during irradiation. The aim of diffraction
tomography is to recover f from the measurements. Depending on the location
of the measurement plane (relative to the object) we distinguish two experimen-
tal setups: transmission imaging and reflection imaging. A schematic overview is
shown in Figure 1.
Fourier diffraction theorem. The Fourier diffraction theorem is the basis for
reconstruction algorithms in diffraction tomography. Assuming that Born’s ap-
proximation is valid, it relates the 2D Fourier transform of the measurements
F1,2u to the 3D Fourier transform of the scattering potential Ff :

(FDT) F1,2u(k1, k2,±rM ) =

√
π

2

eiκrM

κi
Ff(k1, k2,±κ− k0).

Here, r3 = rM is the location of the measurement plane for transmission imaging,
and r3 = −rM is the location for reflection imaging. Mathematically speaking,
equation (FDT) holds for all spatial frequencies (k1, k2) ∈ R2 such that κ2 :=
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r3 = – rM

Figure 1. Experimental setup. The support of f is indicated by
a grey ball. Left: Transmission imaging. The scattered wave is
measured at the plane r3 = rM . Right: Reflection imaging. The
measurement plane is located at r3 = −rM .

k20 − k21 − k22 6= 0. Practically speaking, however, only the frequencies k21 + k22 < k20
are taken into account in a reconstruction process.
k-Space coverage. According to the Fourier diffraction theorem illuminating the
specimen from a single direction provides access to the values of Ff on a semi-
sphere. However, by continuously rotating the object we can obtain knowledge
of Ff in a volume A. In Figure 2 this volume is visualized for a full rotation
about the r1-axis. To account for the fact that in optical trapping experiments
the motion of the specimen cannot be controlled entirely, we need in general to
consider rotations about a moving axis.

k1

√2k0

k0

2k0
k1

√2k0

k0

2k0

Figure 2. Left: Volume A for transmission imaging with rota-
tion of the specimen about the r1-axis. Middle: 2D slice of A.
Right: 2D slice of the corresponding volume for reflection imaging.

Reconstruction formula. The Fourier inversion theorem can be used to obtain
an approximation of the form

f(r) ≈ (2π)−
3
2

∫

A

Ff(k)eik·rdk.
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Figure 3. Numerical experiment for f being a characteristic
function of a ball with a small segment removed. Rotation is
about the r1-axis. Left: Slice plot of f . Right: Numerical reconstruction.

Parametrizing A by means of a map T depending on k1, k2 and a rotation param-
eter s ∈ [0, 2π) we get from the Fourier diffraction theorem

(R) f(r) ≈ i

2π2

∫ 2π

0

∫

Bk0

κF1,2us(k1, k2,±rM )ei(T (k1,k2,s)·r−κrM)Dd(k1, k2) ds,

where us denotes the scattered wave resulting from a rotation of the object ac-
cording to s ∈ [0, 2π), D is the Jacobian determinant of T and Bk0 is the disk of
of radius k0.
Numerical Tests. Figure 3 shows numerical results based on a discretization of
the reconstruction formula (R).
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Some inverse source problems in semilinear fractional PDEs

Marian Slodička

(joint work with Katarina Šǐsková)

The talk deals with some inverse source problems in time-fractional evolutionary
partial differential equations. Determination of a missing source term is a hot
topic in the inverse problem community in the last decades. Generally, the missing
source could be a function of time and space F (t, x) in transient problems. Frankly
speaking, we do not have a closed theory for this class of problems. Most of
the existing papers deal with separated sources F (t, x) = h(t)f(x). What is an
appropriate choice of an additional measurement needed for the recovery? It
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depends on the situation. If f(x) is missing a final time measurement is a good
choice; if h(t) has to be found, an (local) integral operator

∫
Ω
ω(x)u(t, x) dx seems

to sufficient for this purpose (the locality is modelled by the support of the function
ω).

Can we choose a single-point time-measurementm(t) = u(t, x0) at some x0 ∈ Ω
to determine missing h(t)? It turns out that it depends on the location of x0. It
can be shown that already in a simple example

(1)

ut(t, x)− uxx(t, x) = h(t)f(x) x ∈ Ω = (0, 1),
u(0) = u(1) = 0

u(0, x) = 0
u(t, x0) = m(t) x0 ∈ Ω

we can find multiple solutions (u(t, x), h(t)) if x0 is a zero point of an eigenfunction
of the operator Au = −uxx subject to homogeneous boundary conditions. To get
rid of this shortcoming one has to avoid all zero points of all eigenfunctions, which
is a dense set in Ω (in our situation it is Q). This is definitely a problem for
computations, because of all computers work with finite decimals. To avoid this
problem one can switch to non-local measurementm(t) =

∫
Ω ω(x)u(t, x) dx instead

of a single-point measurement. Then the uniqueness of the inverse source problem
can be established.

In the next part of the talk, a short introduction to fractional calculus is given.
Here, the Riemann-Liouville and Caputo fractional derivatives are introduced.
Both are convolution integrals with a Riemann-Liouville kernel

gβ(t) :=
tβ−1

Γ(β)
, t > 0, β > 0

which is strongly positive definite, [Nohel and Shea, 1976].
The Caputo fractional derivative can be also rewritten as

∂αt v(t) =
∂αv

∂tα
:=





(g1−α ∗ ∂tv) (t), α ∈ (0, 1)
(g2−α ∗ ∂ttv) (t), α ∈ (1, 2)

∂tv(t), α = 1

where K ∗ u denotes the usual convolution in time, namely

(K ∗ u(x))(t) =
∫ t

0

K(t− s)u(x, s) ds.

The rest of the talk is devoted to recovery of h(t) in the evolutionary time-
fractional PDEs of the parabolic (0 < β < 1)

(g1−β ∗ ∂tu(x)) (t) + L(x, t)u(x, t) = h(t)f(x) +

∫ t

0

F (x, s, u(x, s)) ds,

or hyperbolic (1 < β < 2)

(g1−β ∗ ∂ttu(x)) (t) + L(x, t)u(x, t) = h(t)f(x) + F (x, t, u(x, t)),

type, where L is a general second order elliptic operator, subject to given initial
and boundary conditions.
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The missing h(t) can be recovered from an additional measurement of the type

m(t) =

∫

Ω

ω(x)u(t, x) dx, or m(t) =

∫

Γ

ω(x)u(t, x) dγ.

The second one represents a non-invasive measurement over a part of the boundary
Γ.

Stability analysis plays a crucial role in the study of PDEs. In the process
of deriving a priori estimates, the term containing the fractional derivative has
to be handled in a special way. The crucial inequality for this can be found in
[Slodička and Šǐsková, 2016], which originates from [Zacher, 2008, Zacher, 2013].
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Beam Propagation in Random Media with Applications to Imaging
and Communication

Knut Sølna

(joint work with Josselin Garnier)

We are interested in describing (time harmonic) wave beams propagating through
a complex medium modeled as a random field. Altough one may be interested
in using an incoherent source beam [8] we discuss here the case with a coherent
or deterministic source beam. When the beam propagates through the medium it
gradually loses is coherence due to scattering. That is, the wave energy is scattered
and transferred from the coherent to the incoherent part of the beam. We want
to describe this process. We are not interested in describing the wave beam in
a particular realization of the random medium, but rather the statistics of the
wave field and how it depends on the statistics of the random medium. In fact, we
describe the wave statistics via the lower order moments of the field, such moments
are typically what is needed to analyze the applications we have in mind which
relates to imaging and communication through a complex medium. For instance,
in wireless communication when the beam propagates through a complex medium
like the turbulent atmosphere, the so called fading and fluctuations of the wave
intensity reaching a receiver is fundamental to describe the channel capacity or
ability to communicate, see [2].
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In order to reach the goal of describing the wave statistics we exploit separations of
scales that are present in the problem. The main scales we consider are the central
wave-length λ0, the beam width r0, the medium coherence length in range ℓz and
in cross-range ℓx and also the total propagation distance L. We then consider the
basic beam scaling regime:

λ0 ≪ ℓz ∼ ℓx ∼ r0 ≪ L.

In this scaling regime the back scattering will be very small and we arrive at a
description of the forward propagating beam via the ansatz

û(ω, z,x) ∼ ic0
2ω

eikz â(ω, z,x)

where û is the solution of the (time harmonic) Helmholtz equation. Note that
here we “took out” a rapidly oscillating phase with k the wave number and z the
propagation or range direction, so that the wave amplitude â oscillates relatively
slower in the z direction. In the high frequency scaling limit we then arrive at a
description of the wave amplitude in terms of a so called Itô-Schrödinger evolution
equation derived in [3]. This is a statistical or “weak description” that can be used
to deduce closed equations for all the moments of the harmonic wave field. This
equation reads

dz â =
1

2ik
∆⊥â dz −

k2γ(0)

8
â dz +

ik

2
â dBz

with B being a real valued Brownian field with covariance:

E[Bz1(x1)Bz2(x2)] = min{z1, z2}γ(x1 − x2)

where

γ(x) =

∫ ∞

−∞

E [µ(0,0)µ(z,x)] dz. γ(0) <∞.

Here µ is the random field giving the random fluctuations in the medium

c−2(z,x) = c−2
0

{
1 + µ(z,x) if z ∈ (0, L),
1 else

with µ(z,x) being centered, stationary and with coherence lengths ℓx, ℓz as men-
tioned above.

We now ask the question what part of the medium statistics determines the wave
field statics. The first moment, or mean field E[â(ω, z,x)], decays exponentially
fast due to scattering of the wave energy on a length scale, the so called scattering
mean free path, which is determined by the one medium parameter, the medium
range correlation length γ(0). We remark that here we take the expectation with
respect to the model for the random medium fluctuations. The second moment at
range z, E[â(ω, z,x)â(ω, z,x+∆x)], can also be derived explicitly. However, this
cross moment depends in general on the full spectrum γ(x). In order to describe
in particular the fluctuations of the intensity of the transmitted wave field one
needs the fourth moment of the wave field. The Itô-Schrödinger equation leads
to a transport equation for the fourth moment, but an explicit solution for this
is not known. In [5] we show however that an explicit description for the fourth
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moment can be obtained in a secondary scaling regime, the so called scintillation
regime, corresponding the a relatively broad beam or r0 larger than ℓx. In fact,
the resulting description corresponds to a quasi Gaussian property in that the
fourth moment can be described in terms of the second moment as in the case
of a Gaussian random field. The wave description we just outlined is used in
particular in [6] to analyze a so called speckle imaging configuration. Here the
statistics of the transmitted speckle, a fourth order quantity, is used in a source
imaging procedure.

We summarize the complexity of the wave descriptions outlined above. We start
out with the Helmholtz equations for the random field in a random medium which
is typically prohibitive to solve numerically in the applications we have in mind
due to the relatively short wave length and rapid medium fluctuations. Then we
identify in the high frequency scaling regime the Itô-Schrödinger equation which
may form the basis for feasible numerically simulations via so called phase screen
methods. Moreover, this description leads to explicit descriptions for the first two
wave moments. The fourth moment derives from a complicated transport equation,
a pde with in general eight lateral coordinates in addition to the range coordinate.
However, in the so called scintillation regime we arrive at explicit expressions also
for the fourth moment, a description that is important in a number of applications.

We next remark on a medium fabric imaging configuration. We assume here
an anisotropic medium scaling so that

λ0 ∼ ℓz ≪ ℓx ∼ r0 ≪ L.

In this case the backscattering from the medium will be stronger than in the scale
isotropic case described above. In this case the medium parameters that determine
the backscattered wave spectrum are in the simplest case

∆xγ̌(0,0, γ̌(2k,0), ∆xγ̌(2k,0),

for

γ̌(k,κ) =

∫ ∫
E[µ(0,0)µ(z,x)]ei(zk+x·κ) dz dx.

Here the argument 2k reflects the coupling between the forward propagating and
reflected waves. In general the medium may be only “locally stationary” so that
the above parameters vary with respect to range and in [4] we describe how mea-
surement of in particular the (spectral) dynamic width of the backscattered wave
energy can be used in an imaging procedure for the changes in the medium statis-
tics with respect to range.

We finally remark that above we discussed relatively long range propagation.
It is also of interest to describe the wave corruption over relatively short ranges,
for instance for so called “last mile” links in communication applications. In this
case different tools need to be used for the wave description and work on such a
characterization is in progress [7].
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The Noise Collector for sparse recovery in high dimensions

Chrysoula Tsogka

(joint work with Miguel Moscoso, Alexei Novikov and George Papanicolaou)

We are interested in imaging sparse scenes, accurately, using limited and noisy
data. Such imaging problems arise in many areas such as medical imaging, struc-
tural biology, radar and geophysics. Both the passive and the active array imaging
problems with or without multiple scattering can be reduced to finding the solution
of a linear system of the form

Aρ = b0 + e,

where e is the noise. It is well known, that a sparse solution of this system can be
found efficiently with an ℓ1-norm minimization approach,

(1) ρ∗ = argmin
ρ

‖ρ‖ℓ1 , subject to Aρ = b0 + e,

if the data is noiseless. However, determining ρ from data corrupted by noise
is still a challenging problem. For optimal results, current approaches need to
tune parameters that depend on the level of noise, which is often difficult to be
estimated in practice. In this talk, the Noise Collector [1, 2], a new parameter-
free, ℓ1 norm minimization approach was presented. In lieu of (1), we solve the
augmented system

(2)
(ρτ ,ητ ) = argminρ,η (τ‖ρ‖ℓ1 + ‖η‖ℓ1) ,
subject to Aρ+ Cη = b0 + e,

where τ is an O(1) no-phantom weight and C is the Noise Collector matrix. The
unknown η does not correspond to a physical quantity. It is introduced to pro-
vide an appropriate linear combination of the columns of C that produces a good
approximation to the noise vector e.



1942 Oberwolfach Report 39/2020

The Noise Collector has a zero false discovery rate (no false positives) for any level
of noise, with probability that tends to one as the dimension of b0 increases to
infinity and provides exact support recovery when the noise is not too large. A Fast
Noise Collector Algorithm has been implemented which makes the computational
cost of solving the minimization problem comparable to the original one. The
effectiveness of the method has been demonstrated in imaging applications.
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Proximal gradient methods applied to optimization problems with
Lp-cost, p ∈ [0, 1)

Daniel Wachsmuth

(joint work with Carolin Natemeyer)

Let Ω ⊂ Rn be Lebesgue measurable with finite measure. We consider a possibly
non-smooth optimal control problem of type

(P) min
u∈L2(Ω)

f(u) +

∫

Ω

g(u(x)) dx.

Here, the function g : R → R ∪ {+∞} is nonconvex and nonsmooth. In this
report, we restrict ourselves to

g(u) = |u|p, p ∈ (0, 1),

and

g(u) = |u|0 :=

{
1 if u 6= 0

0 if u = 0.
.

The function f : L2(Ω) → R is assumed to be continuously Frechet differentiable.
Here, we have in mind to choose f(u) := f(y(u)) as the smooth part of an op-
timal control problem incorporating the state equation and possibly smooth cost
functional.

Due to the lack of weak sequentially lower semicontinuity of u 7→
∫
Ω g(u(x)) dx

one cannot prove existence of solutions. In fact, one can construct problems that
have no solutions, [1]. In the case that a solution exists, we can characterize it by
the Pontryagin maximum principle.

Let us describe and analyze the proximal gradient algorithm. For details and
proofs, we refer to the technical report [2].
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Algorithm 1. Choose L > 0 and u0 ∈ L2(Ω). Set k = 0.

(1) Compute uk+1 as solution of

(1) min
u∈L2(Ω)

f(uk) +∇f(uk)(u − uk) +
L

2
‖u− uk‖2L2(Ω) + g(u).

(2) Set k := k + 1, repeat.

The minimization problem (1) can be solved by means of pointwise a.e. mini-
mization. In the case p = 0, there is an explicit formula for the solution [1]. For
p ∈ (0, 1), one has to carry out some iterative optimization method to compute a
global minimum.

We have the following result regarding convergence. We assume that ∇f is
Lipschitz continuous with modulus Lf . Let χk denote the characteristic function
of the support of (uk).

Theorem 2. For L > Lf let (uk) be a sequence of iterates generated by Algorithm
1. Then the following statements hold:

(1) The sequence (f(uk) + j(uk)) is monotonically decreasing and converging.
(2) The sequences (uk) and (∇f(uk)) are bounded in L2(Ω) if f + j is weakly

coercive on L2(Ω), i.e., f(u) + j(u) → ∞ as ‖uk‖L2(Ω) → ∞.
(3) ‖uk+1 − uk‖L2(Ω) → 0.

(4) The sequence of characteristic functions (χk) is converging in L1(Ω) and
pointwise a.e. to some characteristic function χ.

The condition L > Lf is important to prove (1)–(3). In order to prove (4), we
employ the following property of solutions of (1): There exists u0 > 0 such that
for almost all x ∈ Ω

uk+1(x) = 0 or |uk+1(x)| ≥ u0.

Additional results in the case p = 0 can be found in [1]. Unfortunately it is not
possible to prove that a weak limit point u∗ of the iterates satisfy the Pontryagin
maximum principle. Due to the presence of the additional quadratic term with
factor L > 0, we can at best hope to prove that in the limit we have

u∗(x) = argmin
u∈R

∇f(u∗)(x) · u+
L

2
(u∗(x) − u)2 + g(u).

Here, the set of all points (∇f(u∗)(x), u∗(x)) satisfying this relation is non-convex.
Hence, passing to the weak limit will introduce some additional convexification.
For details, we refer to [2].
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Parameter identification for the Landau-Lifshitz-Gilbert equation in
Magnetic Particle Imaging

Anne Wald

(joint work with Tram T. N. Nguyen, Barbara Kaltenbacher, Thomas Schuster)

Magnetic particle imaging (MPI) is a relatively new imaging technique aiming
at the reconstruction of magnetic nano-particles (serving as tracers) to visualize,
e.g., the blood flow in the cardiovascular system (see also [6, 7]). The signal
generation is based on the response of the magnetic nano particles to a dynamic
external magnetic field with a field-free point (FFP): The FFP is driven through
the field-of-view and the magnetization of the magnetic particles undergoes an
abrupt change when the FFP passes them (which assures the inclusion of local
information on the particle concentration in the signal generation). This change
in the magnetization generates a time-dependent voltage in the receive coils, which
serves as data.

The forward problem of MPI is formulated by

vl(t) =

∫ T

0

ãl(t− τ)

∫

Ω

c(x)sl(x, τ) dxdτ,

where c is the space-dependent particle concentration, vl the voltage measured
in the l-th (l = 1, ..., L) receive coil, s the system function, and the function ã
serves as a filter that separates the particle signal from the external field. The
system function encodes the underlying physical model, i.e., the interaction of the
external field and the particle magnetization.

There are two different inverse problems arising in MPI: The actual imaging
problem, where the concentration is to be determined from the measured particle
signals using a pre-computed system function, and the calibration problem, which
refers to the calculation of the system function from data that is generated in
calibration scans, i.e., scans for known particle concentrations.

We address the calibration problem: The system function is modeled as

sl(x, t) = pR
l · ∂tm(x, t)

with the coil sensitivity pR
l and the particle magnetization m(x, t). In our ap-

proach, the concentration is a dimensionless quantity that can be interpreted as a
characteristic function.

Inspired by models from micromagnetism ([2]), we use the Landau-Lifshitz-
Gilbert (LLG) equation

∂

∂t
m = −α̃1m× (m×Heff) + α̃2m×Heff

to model the evolution of the particle magnetization in response to an external
applied magnetic field. The effective field Heff encodes various physical effects: in
particular, it contains the external field Hext and can be extended to include, for
example, the exchange within the magnetic material itself, such that

Heff = 2A∆m+ µ0mSHext
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with the exchange stiffness constant A, the magnetic permeability µ0 and the
saturation magnetization mS.

The calibration problem in MPI is thus formulated as an inverse problem as
follows: For a given set of known concentrations ck(x), k = 1, ...,K (e.g., delta
samples ck(x) = χVk

(x) with a voxel Vk), we measure the corresponding induced
currents

vkl(t) =

∫ T

0

ãl(t− τ)

∫

Ω

ck(x)p
R
l (x)

T ∂tm(τ,x) dxdτ.

The goal is to determine the system function sl(x, t) = pR
l (x)

T ∂tm(t,x), l =
1, ..., L, from the knowledge of vkl(t), t ∈ [0, T ], under the constraint that m solves
the LLG equation.

We use an equivalent formulation of the LLG equation:

α̂1m
2
Smt − α̂2m×mt −m2

S∆m = |∇m|2m
+m2

Shext − 〈m,hext〉m in [0, T ]× Ω

0 = ∂νm on [0, T ]× ∂Ω

m0 = m(t = 0), |m0| = mS in Ω.

In particular, the constants α̂1, α̂2 are unknown and need to be determined.

We define the forward operator by

F : W → V ,

where

F (α̂1, α̂2,m)kl =

∫ T

0

ãk(t− τ)

∫

Ω

cl(x)p
R
k (x)

T ∂tm(τ,x) dxdτ

and m solves the initial boundary value problem based on the LLG equation.
Since the LLG equation has a unique solution, we can formulate the inverse

problem in the classical reduced formulation

F (α̂) = y,

where y := (vk,l)k,l and

F : D(F )(⊆ X ) → Y, α̂ = (α̂1, α̂2) 7→ K ∂

∂t
S(α̂)

containing the parameter-to-state map

S : X → Ũ

that maps the parameters α̂ to the solutionm := S(α̂) of the LLG initial boundary
value problem and the observation operator K. Here, we have X = R2 (parameter
space) and Y = L2([0, T ])KL (image space).
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In addition, we consider the inverse problem in the all-at-once formulation (see
also [1]):

F(m, α1, α2) =




(LLG)
∂νm

m(t = 0)−m0

F (m)[ck]


 =




0
0
0

(vkl)kl


 =: Y,

where

(LLG) := α̂1m
2
Smt − α̂2m×mt −m2

S∆m− |∇m|2m−m2
Shext + 〈m,hext〉m.

The mathematical analysis (see [3]) of the inverse problem in the two formula-
tions yields

• The forward operator F : U ×R2 → W×L2([0, T ])KL from the all-at-once
setting is well-defined for

U =
{
u ∈ L2

(
0, T ;H2

N(Ω;R3)
)
∩H1

(
0, T ;L2(Ω;R3)

)
: u(0) = 0

}

W = H1
(
0, T ;H1(Ω;R3)

)∗

with hext ∈ L2
(
0, T ;L2(Ω;R3)

)
.

• If we set the state space to be U := H1
(
0, T ;L2(Ω;R3)

)
, the forward

operator

F : R2 → L2([0, T ])KL

is well-defined.
• Both the forward operator F from the all-at-once formulation and the for-
ward operator F from the reduced formulation are Fréchet differentiable.

The inverse problem can thus be solved by the Landweber iteration in both
formulations (see also [5]). In particular, the Landweber iteration for the all-at-
once formulation can be seen as a solver for the LLG equation, see [4].
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A reduced order model approach to inverse scattering in lossy
layered media

Jörn Zimmerling

(joint work with Liliana Borcea, Vladimir Druskin)

We introduce a reduced order model (ROM) methodology for inverse electromag-
netic wave scattering in layered lossy media, using data gathered by an antenna
which generates a probing wave and measures the time resolved reflected wave.
We recast the wave propagation problem as a passive infinite-dimensional dynam-
ical system, whose transfer function is expressed in terms of the measurements at
the antenna. The ROM is a low-dimensional dynamical system that approximates
this transfer function. While there are many possible ROM realizations, we are
interested in one that preserves passivity and in addition is: (1) data driven (i.e.,
is constructed only from the measurements) and (2) it consists of a matrix with
special sparse algebraic structure, whose entries contain spatially localized infor-
mation about the unknown dielectric permittivity and electrical conductivity of
the layered medium. Localized means in the intervals of a special finite difference
grid.

Using some mathematical transformations, it is possible to derive from Max-
well’s equations in the temporal Laplace domain, under the assumption of linear
polarization of the waves, with u modeling the component of the electric field and
û the component of the magnetic field, the following system of ODE’s

(1) [L+R(T ) + sZ(T )]

(
u(T, s)
û(T, x)

)
=

(
δ(T − 0+)

0

)
, T ∈ (0, TL),

with boundary conditions

(2) u(TL, s) = 0 û(0, s) = 0

Here T is the travel time, related to the coordinate along which the medium varies
by a bijective mapping using the wave speed. The differential operator

(3) L =

(
0 ∂T
∂T 0

)

is skew-symmetric and

(4) R(T ) =

(
r(T )ζ(T )−1 0

0 0

)
and Z(T ) =

(
ζ(T )−1 0

0 ζ(T )

)

are multiplication operators. The loss coefficient r is defined as the ratio of the elec-
trical conductivity σ and the dielectric permittivity ε, and ζ is the wave impedance,
determined by ε and the magnetic permeability µ, which is usually a constant.

The system (1) is known as port-Hamiltonian [2, 1] and there is a lot of effort
in the reduced-order modeling community to construct ROMs that approximate
its transfer function

(5) D(s) =

∫ TL

0

(
δ(T ) 0

)
[L+R(T ) + sZ(T )]

−1

(
δ(T − 0+)

0

)
dT,
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which (in this particular setting) can be shown to be a meromorphic function [6]
with a set of poles and zeros closed under conjugation.

To formulate the inverse problem, we use the poles and residues representation
of the transfer function D(s), and assume that the poles are simple. The data
driven ROM we construct has the transfer function

(6) DROM
n (s) =

n∑

j=1

[
yj

s− λj
+

yj

s− λj

]
,

which shares the first n poles (λj)
n
j=1 and residues (yj)

n
j=1 with D(s). The inverse

problem we solve can thus be formulated as: Given the first n poles (λj)
n
j=1 and

residues (yj)
n
j=1 of D(s) compute estimates of the impedance ζ(T ) and the loss

r(T ).
Using the poles and residues one can construct a unique tridiagonal, linear

algebraic system that matches this transfer-function and is of the form

(7) DROM
n (s) = eT1

[
L+R+ sZ

]−1
e1(ĥ1)

−1

by solving the associated inverse eigenvalue problem with the J-symmetric Lanczos
algorithm [7]. This algorithm defines the real 2n × 2n ROM matrices L, R and
Z . To be more specific, the bidiagonal matrix

L = diag
[
(ĥ−1

1 , h−1
1 , . . . , ĥ−1

n ), 1
]
− diag

[
(h−1

1 , ĥ−1
2 , . . . , h−1

n ),−1],

where diag[(. . .), 1] denotes the superdiagonal and diag[(. . .),−1] the subdiagonal,
can be interpreted as a discrete analogue of the operator L. Further, the grid steps

hj/ĥj are only weakly dependent on the medium and can therefore be computed
independently of the medium as shown in [4]. The diagonal matrices

R = diag(r1/ζ1, r̂1ζ̂1, . . . , rn/ζn, r̂nζ̂n), Z = diag(1/ζ1, ζ̂1, . . . , 1/ζn, ζ̂n),

look like discretizations of the multiplication operators R(T ) and Z(T ). However,
the analogy is not right because in R there are artificial dual losses (̂rj)

n
j=1 that

may have negative values. The main difficulty in using the ROM for this inverse
problem is interpreting these nonphysical dual losses. We recently obtained the
following two reconstruction results for media with constant loss and for media
with a small variation in loss.

Defining the primary grids points

(8) Tj =

j−1∑

p=1

hp, j = 2, . . . , n+ 1, T1 = 0,

that are interlaced with the dual points

(9) T̂j =

j∑

p=1

ĥj , j = 1, . . . , n, T̂0 = 0.

we obtain the following result for media with constant losses.
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Proposition 1. Consider the data driven ROM computed from the first n poles

and residues. Extract the coefficients (ζj , ζ̂j)
n
j=1 from the ROM using the grid steps

(hj , ĥj)
n
j=1. Let ζ(n)(T ) be some interpolation (e.g., piecewise constant or linear)

of these coefficients on the grid (8)–(9) i.e.,

(10) ζ(n)(Tj) = ζj , ζ(n)(T̂j) = ζ̂j , j = 1, . . . , n.

Then, ζ(n)(T ) → ζ(T ) pointwise and in L1([0, TL]) as n→ ∞.

Further one can show that the ROM loss coefficients satisfy rj = r0 and r̂j = 0,
for j = 1, . . . , n and a direct interpretation of the ROM coefficients is possible.
For media with small variations in loss we find the following.

Proposition 2. Suppose that the loss function satisfies

(11) r(T ) = r0 + αρ(T ), sup
T∈(0,TL)

|ρ(T )|/r0 = O(1), 0 < α≪ 1.

Then, we have the following pointwise ROM based estimate of the impedance

(12) ζ(n)(T ) = ζ(T )[1 + o(1) +O(α2)].

Moreover, the functions r
(n)(T ) and r̂

(n)(T ) are of the form
(13)

r
(n)(T ) = r0 + αρ(n)(T )[1 + o(1) +O(α)], r̂

(n)(T ) = αρ̂(n)(T )[1 + o(1) +O(α)],

where the O(α) terms satisfy
∫ TL

0

ρ(T )
φ2j(T )

ζj(T )
dT =

∫ TL

0

[
ρ(n)(T )

φ2j(T )

ζj(T )
+ ρ̂(n)(T )ζ(T )φ̂2j(T )

]
dT,(14)

∫ TL

0

ρ(T )
ψ2
j (T )

ζj(T )
dT =

∫ TL

0

[
ρ(n)(T )

ψ2
j (T )

ζj(T )
+ ρ̂(n)(T )ζ(T )ψ̂2

j (T )
]
dT,(15)

for j ≥ 1. Here o(1) is in the limit n → ∞ and φ, ψ, φ̂ and ψ̂ are (computatable)
eigenfunctions associated with certain Sturm-Liouville problems.

More details can be found in [5]. In the future we will try to extend this
framework to higher spatial dimensions with the help of block-linear algebraic
formulations as done for the lossless case in [3] and to the case of strongly varying
losses.
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