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Abstract. The primary purpose of this workshop was to take account of
progress on an ongoing six-volume cultural history of mathematics from an-
tiquity to the present. This project is led by nine editors working with a
large team of authors. Since the workshop had to be held remotely, it took
the form of various group meetings held throughout the week. The final ses-
sion involved assessments by editors of the six volumes with an eye toward
completing the project by the end of 2021. The abstracts below summarize
the contents of the individual chapters in the entire project, which will be
published in Bloomsbury’s cultural history series.
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Introduction by the Organizers

Culture, history, and mathematics are words that seldom appear together. Yet as
the six volumes outlined below will demonstrate, mathematical activity has played
a pervasive role in diverse cultures throughout human history. Indeed, these vol-
umes represent merely an introduction to a vast and highly diverse range of de-
velopments that form an important component within and integral part of human
civilization. Written by some fifty leading scholars, A Cultural History of Math-
ematics traces the many ways in which individuals and societies have interacted
with mathematical phenomena from antiquity to the present. It also addresses the
wide range of meanings and associations that have attached to the word mathe-
matics. Originally, in the ancient Greek language, máthēma simply meant “that
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which one learns,” though by the time of Plato and Aristotle the discipline of
mathematics was clearly associated with the study of numbers (arithmetic) and
figures (geometry).

Since this project aims to provide an overall global history based on current
scholarship, volume editors had to confront difficult choices about which topics
and cultures to include. In doing so, they have tried to strike a balance between
representative features of the period, on the one hand, and particular develop-
ments of long-term significance, on the other. All six volumes, the first two of
which stretch over the ancient and medieval worlds, have placed special emphasis
on the material culture of mathematical activities as well as on how mathematical
knowledge changed over time alongside new forms of communication and circula-
tion.

At the same time, each volume has its own distinctive character as described
in the introductory essays written by their respective editors. Yet all six address
seven general themes in as many chapters, which provide the overall structure for
this project. Thus, each volume begins with three chapters – Everyday Numeracy,
Practice and Profession, Inventing Mathematics – that deal with three different
levels of mathematical expertise within the period under study. These chapters
thus explore mathematics per se, as the notion evolved over time, whereas the
three that follow – Mathematics and Worldviews, Describing and Understanding
the World, and Mathematics and Technological Change – consider the larger im-
pact of mathematics on other dimensions of human culture. Finally, the broader
understanding of how mathematics manifests itself in other cultural spheres and
what sorts of activities are deemed mathematical forms the subject of the final
chapter on Representing Mathematics.



History of Mathematics: A Global Cultural Approach 2023

Workshop (online meeting): History of Mathematics: A Global
Cultural Approach

Table of Contents

Michael N. Fried
Volume 1: Introduction, A Cultural History of Mathematics in Antiquity 2027

Merav Haklai
Volume 1: Everyday Numeracy in Antiquity. Mathematics in the
Everyday Lives of Citizens in Greco-Roman Times . . . . . . . . . . . . . . . . . . 2027

Cécile Michel
Volume 1: Practice and Profession in Antiquity. Mathematics and its
Transmission in Mesopotamia and Egypt . . . . . . . . . . . . . . . . . . . . . . . . . . . 2029

Christine Proust, Reviel Netz
Volume 1: Inventing Mathematics in Antiquity. Contexts of Invention in
Mesopotamia and The Greek Invention of the Author . . . . . . . . . . . . . . . . 2030

G.E.R. Lloyd
Volume 1: Mathematics and Worldviews in Antiquity. The
Distinctiveness and Diversity of Greco-Roman Mathematics and the
Visions of the World It Underpinned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2031

Francesca Rochberg, J. Lennart Berggren
Volume 1: Describing and Understanding the World in Antiquity. From
Counting and Measuring to Mathematical Modeling in Babylonian and
Greco-Roman Worlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2032

Eduardo Escobar
Volume 1: Mathematics and Technological Change in Antiquity.
Technology, Expertise, and Numerical Knowledge in Cuneiform
Procedural Texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2033

Liba Taub
Volume 1: Representing Mathematics in Antiquity. Depictions of Ancient
Mathematics in Word and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2034

Joseph W. Dauben, Clemency Montelle, Kim Plofker
Volume 2: Introduction, A Cultural History of Mathematics in the
Medieval Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2036

Joseph W. Dauben, Clemency Montelle, Kim Plofker
Volume 2: Everyday Numeracy in the Medieval Age . . . . . . . . . . . . . . . . . . 2036

Clemency Montelle
Volume 2: Practice and Profession in the Medieval Age . . . . . . . . . . . . . . 2037



2024 Oberwolfach Report 41/2020

Kim Plofker
Volume 2: Inventing Mathematics in the Medieval Age . . . . . . . . . . . . . . . 2038

Joseph W. Dauben
Volume 2: Mathematics and Worldviews in the Medieval Age . . . . . . . . . 2040

Jeff Chen
Volume 2: Describing and Understanding the World in the Medieval Age 2041

Joseph W. Dauben, Clemency Montelle, Kim Plofker
Volume 2: Mathematics and Technological Change in the Medieval Age . 2042

Sonja Brentjes, Nathan Sidoli
Volume 2: Representing Mathematics in the Medieval Age . . . . . . . . . . . . 2043

Jeanne Peiffer, Volker Remmert
Volume 3: Introduction, A Cultural History of Mathematics in Early
Modern Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2045

Maryvonne Spiesser
Volume 3: Everyday Numeracy Through the Mirror of Arithmetic
Textbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2046

Jim Bennett
Volume 3: Practice and Profession. Range and Change in Mathematical
Lives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2047
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Abstracts

Volume 1: Introduction, A Cultural History of Mathematics
in Antiquity

Michael N. Fried

Volume I concerns the cultural history of mathematics in the ancient world. Every
word in that description contains subtleties and complexities. Culture, history, and
mathematics, each by itself is far less clear than one might think, not to speak of
the combinations, “cultural history,” “history of mathematics,” and even “ancient
world.” Part of the collective goal of the chapters in this volume is to bring
out the subtleties and complexities of these words and their associated meanings,
most of all the difficulty of grasping the idea of mathematics itself in the context
of the ancient world. The chief aim of the chapters individually, though, will be
to present concrete aspects of mathematics in ancient times in ways that will be
new, informative, and eye opening for the reader.

The problem of mathematics in the ancient world is a particularly difficult one
since it is not clear what mathematics was before there was a name for it, and
even after the Greek name was adopted. “Mathematics” obviously included less
of what might be called mathematics today, but also included many things that
are no longer considered to be “mathematics” at all (music, for example). This is
all the more so true for the ancient cultures of Mesopotamia, China, and India,
that which never used the Greek name for their own versions of “mathematics.”
It might be said that mathematics arose in all cultures from a basic observation of
nature and various practical necessities. But this suggests other difficulties, if only
because, unlike today, the separation between mathematics and its applications
was not so sharply drawn in ancient times.

Adopting a cultural view of mathematics means beginning with this indefinite-
ness as to what mathematics was taken to be. A cultural point of view also has
implications for the historiography of mathematics. And historiography brings us
back to epistemological questions about how one should understand mathematics:
is it something eternal, essentially unchanging, perhaps only waiting to be dis-
covered, or is mathematics a historical phenomenon, always changing, never quite
defined, or rather always redefining itself? Is it one thing, or as varied almost
as humanity itself? Such questions are always in the background of any cultural
history of ancient mathematics.

Volume 1: Everyday Numeracy in Antiquity. Mathematics in the
Everyday Lives of Citizens in Greco-Roman Times

Merav Haklai

Numeracy is the ability to count, calculate, and measure. It is based on natural
abilities of human beings, such as, a basic ability to estimate size and small clusters.
Yet, numeracy may also be understood in terms of cultural practices and beliefs
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building on these basic abilities. Tools and artifacts are also culturally conditioned.
This chapter is concerned with these cultural and historically-located aspects of an-
cient numeracy. It focuses chiefly on Greco-Roman civilizations, though it includes
some remarks on Mesopotamian and Egyptian cultures. For other, ‘non-western
ancient societies readers are referred to the corresponding chapter in Volume II of
this series. A working hypothesis of this chapter is, that numeracy comprises a
spectrum of abilities of varying degrees, moving from a basic capacity to appreci-
ate sizes, to an acquaintance with numerals and counting systems, to being able
to do sums, to performing complicated calculations. Based on historic texts and
artifacts, the chapter analyzes the variety of cultural practices which manifest this
spectrum of mathematical knowledge in the everyday lives of the general public,
that is, of non-professionals, in the ancient world.

A difficulty here is that both ‘general public and ‘non-professionals’ are ambigu-
ous categories. While ‘professionals’ may be viewed as high ranking state officials
or persons allocated with complicated tasks, such as, land-surveying, architecture,
or financial book-keeping, it is harder to define ‘the unskilled, and not easy to
say always where one begins and the other ends. In ancient societies, work was
carried out by different individuals, from unskilled laborers to those with practical
experience, from those with some expertise to those with specialist knowledge. It
is also difficult to say who along this chain should be considered a practitioner
with special mathematical knowledge. For example, an inscription from Rome
preserves the self-testimony of an imperial freedman who took pride for being a
“dealer (negotiator) in food and wine at [the fountain of] the Four Scauri (a IIII
scaurisaram) in the Velabrum”. One may assume that his job did not require
extraordinary mathematical knowledge; yet, even its description demonstrates an
acquaintance with numerals. In fact, at least in Greco-Roman antiquity, almost
everyone had to deal regularly with numerical notions and often with highly nu-
merate professionals; hence, would need some level of numeracy to handle their
affairs to the best of their interest or to have close, trust-based relationship with
a person who had such knowledge.
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Volume 1: Practice and Profession in Antiquity. Mathematics and its
Transmission in Mesopotamia and Egypt

Cécile Michel

This chapter concerns the practice of mathematics in the Ancient Near East and to
the professionals involved. It covers a long period of three thousand years, from the
invention of writing on clay tablets in Southern Mesopotamia to the Achaemenid
Empire, but it focuses on the Old Babylonian period (ca. 2000–1600), from which
we have substantial cuneiform educational material. Data from ancient Egypt are
more scarce, due to the use of perishable writing media (papyri). However, several
papyri, presumably written for educational purposes, illustrate practical uses of
mathematics.

There are mainly two categories of available texts that provide us with data
on ancient mathematics. The mathematical texts are problems, procedure texts
and tables entirely dedicated to the topic. The corpus of these texts for both
Mesopotamia and Egypt is well delimited and has been the subject of many de-
tailed studies. We will present it briefly, linking the texts to their general historical
contexts.

The use of metrology and mathematics is quite widespread in the Ancient Near
East, and not restricted to ‘mathematicians’. Thus, practitioners of mathematics
come from a great variety of milieus. The mathematical methods they use vary
according to milieus and professions. These methods are taught in ‘schools’, in
private context by masters, or passed on from generation to generation. Signifi-
cantly, most of the documents containing mathematical work are unsigned: while
the type of mathematics involved can be seen, the identity of mathematical prac-
titioners has to be guessed through their professions and activities. Only then can
we consider their role and status in society.

This chapter opens with a presentation of the different types of texts involving
mathematics both in Mesopotamia and in Egypt. A description of the various
professions requiring some mathematical knowledge will then move on to a discus-
sion of the social role and status of mathematical practitioners. The chapter ends
with some considerations concerning the transmission of mathematical knowledge
and the place of mathematics in education.

References
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Volume 1: Inventing Mathematics in Antiquity. Contexts of Invention
in Mesopotamia and The Greek Invention of the Author

Christine Proust, Reviel Netz

The chapter considers the idea and problem of mathematical invention in the
cuneiform culture that flourished in Southern Iraq and in the Classical world of
Greece.

In the case of the cuneiform culture, transmissions, continuities or conceptual
shifts between moments or places of invention can in some instances be described.
But in general, it is relatively arbitrary to decide that a particular text contains a
specific invention. As far as cuneiform texts are concerned, we do not know which
results or practices were perceived as innovative by their authors, nor exactly when
notions or methods that appear at a given time in a given document were invented.
This part of the chapter presents mathematical texts that present novelties or
breaks from those attested in previous periods, at least in our eyes as modern
historians. Among other things, it presents the principles of the sexagesimal place
value system and notation which are, in one form or another, at the heart of
mathematical concepts and practices in the Near East.

The decisive feature of Greek mathematics, by contrast with that of Mesopota-
mia, is its break away from the state. Neither bureaucrats nor merchants, Greek
mathematicians, instead, were authors – making their name via their individual
contributions. This put a premium on originality and made ‘invention’, for once, a
useful metaphor. This, of course, does not mean that Greek mathematicians acted
alone. Their very individuality was predicated on particular social conditions and
their endeavor soon give rise to a widely shared set of written practices – a kind
of literary genre – that would remain stable and define mathematics, with no
more than local variations, for two millennia, well beyond Greek antiquity itself.
As these genres came to encompass mathematics, a new kind of mathematical
interest was put to the fore: one that aimed simultaneously at effect (hence, aiming
for more surprising results) as well as persuasion (hence, aiming at proof). The
mathematical treatise was a series of structured proofs presented via a formulaic
language and a diagram of a labeled network of lines and points. The origins of the
genre are difficult to pin down but its consequences for deduction are enormous.
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Volume 1: Mathematics and Worldviews in Antiquity. The
Distinctiveness and Diversity of Greco-Roman Mathematics and the

Visions of the World It Underpinned

G.E.R. Lloyd

The interactions between ‘mathematicians’ and ‘cosmologists’ are complicated by
the fact that neither dealt with an agreed and well-defined subject-area. Never-
theless, in Greece, and in other ancient civilisations, many were sufficiently im-
pressed by the prestige and power of ’mathematics’ to see it as in some sense
the key to the understanding of the world in general. Yet the way in which that
was imagined differed profoundly. In the Greco-Roman world what came to im-
press many commentators in this regard the certainty of mathematics. Given
self-evident axiom and valid inferences from them, the conclusions are incontro-
vertible. Yet the notion and practice of axiomatic-deductive demonstration were
not a necessary condition for the preeminent prestige of mathematics. Without
this kind of axiomatic-deductive approach, ancient Egypt, Mesopotamia and In-
dia still engaged in sophisticated mathematical investigations. Another ancient
culture, China, where again no equivalent to axiomatic-deductive demonstration
existed, provided texts explicitly proclaiming that mathematics enables one to
solve many puzzling questions. It is possible, for instance, to determine the height
of distant objects by taking angular measurements from two positions at a given
distance and using similar right angled triangles. In a text that dates from the
turn of the millennium, the Zhoubi suanjing, this technique was even used to assess
the height of the sun - on the assumption of a flat earth.

How mathematics was brought to bear on world-views differs not only across
ancient civilizations, but also within the Greco-Roman civilization. Topics on
which different Greek and Roman writers engaged in vigorous debate included the
following fundamental questions. (1) What does mathematics study? Are there
separate mathematical objects and if so how do these relate to the rest of the
phenomena of experience? (2) Do different branches of mathematics have indeed
different such objects? How do the objects of ‘arithmetic’ relate to those of ’geom-
etry’, not to mention those of such ’applied’ studies as ‘harmonics’, ‘astronomy’,
statics, dynamics, mechanics and cartography? (3) What modes of cognition does
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mathematics secure? How far can a model of axiomatic-deductive demonstra-
tion be reasonably applied? (4) What understanding of natural phenomena and
the cosmos as a whole, including of the place of humans in it, can mathematics
yield? While a mathematical approach gives robust-seeming results over a certain
range, other areas of experience appear to resist such an approach. How far do
the claims for mathematics as the best or even the only sound method have to be
qualified in the light of the difficulties it encounters? (5) For many, mathematics
was good for more than just knowledge and understanding. By providing access
to the profoundest truths it contributed to happiness and fulfilment. On that view
this discipline had moral and even religious implications. Training in mathematics
was compared with, even seen as an example of, a kind of initiation, whose aim
was to reveal the mysteries of the universe. Yet once again this point of view was
contested. These five issues must be borne in mind as we tackle some of the rich,
if often problematic, evidence in our sources.

References

[1] A. Barker, Greek Musical Writings: Vol 2 Harmonic and Acoustic Theory, Cambridge,
1989.

[2] S. Cuomo, Ancient Mathematics, London, 2001.
[3] C.A. Huffman, Philolaus of Croton: Pythagorean and Presocratic, Cambridge, 1993.
[4] C.A. Huffman, Archytas of Tarentum: Pythagorean, Philosopher and Mathematician King,

Cambridge, 2005.
[5] W.R. Knorr, The Evolution of the Euclidean Elements, Dordrecht, 1975.
[6] G.E.R. Lloyd, The Revolutions of Wisdom, Berkeley, 1987.
[7] G.E.R. Lloyd, Aristotelian Explorations, Cambridge, 1996.
[8] G.E.R. Lloyd, Principles and Practices in Ancient Greek and Chinese Science, Aldershot,

2006.

Volume 1: Describing and Understanding the World in Antiquity.
From Counting and Measuring to Mathematical Modeling in

Babylonian and Greco-Roman Worlds

Francesca Rochberg, J. Lennart Berggren

The long tradition of numeracy in cuneiform culture with its consequent mastery
of advanced arithmetic and its algorithms enabled the Babylonian scribes to man-
age a sophisticated administrative bureaucracy and a complex economy. It also
lay at the basis of the first empirical and quantitative astronomy, which included
relations for the cyclical movements of the Sun, Moon and planets, the intro-
duction of the system of degrees for recording zodiacal positions, and records of
observations going back to the early eighth century. All of these were ingredients
for astronomical modelling by linear mathematical methods which were imported
to the Greek world during the Hellenistic period (after the 2nd century BCE) and
adapted for both astronomy and astrology. Greek astronomy, however, focused
on predicting positions of heavenly bodies at any given time instead of the Baby-
lonians’ interest in synodic moments. Most importantly the Greek astronomers
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and mathematicians expanded their methods to include geometry and trigonome-
try. This Greek development in geometrical methods and modelling enabled new
mathematical treatments of the dimensions of the cosmos. Some of the same in-
dividuals who worked in this geometric tradition also applied astronomical data
and geometrical methods to create planar maps of the known world that gave a
reasonable approximation to the earth’s curved surface and were, even in the 15th
century, the best basis for scientific geography.
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Volume 1: Mathematics and Technological Change in Antiquity.
Technology, Expertise, and Numerical Knowledge in Cuneiform

Procedural Texts

Eduardo Escobar

‘Technology’, despite its global ubiquity, is among the most plastic terms in use
today. Referencing anything from machinery, language, and communication, to
religion, it may come as some surprise to learn that ‘technology’ was introduced to
the English lexicon only as recently as the nineteenth century, and the adaption of
the term ‘technology’ into anglophone academic studies was slow and incremental.
But the goal of this chapter is not to explore the rich history of technology as
a concept. Rather, in considering the linguistic, cultural, and intellectual scope
of technology viz-a-viz ancient mathematics, this chapter aims to challenge one
particular scholarly definition of technology as it relates to science.

Like the term technology itself, the ‘applied science’ model is also historically
recent and has led to a semantic shift making ‘technology’ nearly synonymous with
‘applied science’. Using textual sources from ancient Iraq, this chapter will argue
that such uses of the terms ‘technology’ and ‘applied science’ constitute in fact
an epistemic claim regarding the dependence of knowledge on another; it is also
a claim subdivides knowledge types in a way incompatible with the non-Western
intellectual cultures we will examine.
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Conceptualizing technology as dependent on, or as the ‘handmaiden’ of the sciences
can be traced to attitudes of figures like Aristotle, who, for example, drew a stark
boundary between knowing-how, i.e., technē, and the mental process of reasoning
and abstraction and knowing-that, i.e, epistēmē. This fundamental bifurcation
of knowledge types resonates in modern philosophical and historical scholarship
where technological advances are taken as fundamentally distinct from scholarly
ones. On the one hand, the study of ancient technology (technē) is focused on the
reconstruction of ancient craft practices and somatic know-how, in sum: making
things. Studies of ancient science, on the other hand, deal in numbers, axioms and
abstract claims (epistēmē ) made by literate scholarly communities.

Overcoming the inherited boundary that separates the head from the hand is
challenging precisely because it is deeply cultural. Cultural reifications of the prac-
tical and theoretical knowledge dichotomy are found all over our society: making
the intuitive leap that they must have also existed in past knowledge cultures
comes rather naturally. As we shall find, these epistemological boundaries are
consequential for how we understand the intellectual interaction of technology
and mathematical knowledge in cuneiform cultures.
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Volume 1: Representing Mathematics in Antiquity. Depictions of
Ancient Mathematics in Word and Image

Liba Taub

Ancient verbal and visual depictions of mathematics – including activities involv-
ing mathematical skills, as well as individuals identified as mathematicians – are
considered here, with a focus on Greek and Roman culture. Mathematics was part
of broader culture and society, not confined only to specialists. Mathematics is
represented as practical, theoretical (or philosophical), as well as recreational, in-
cluding riddles and games. There is evidence that a good number of people, mainly
but not only men, took pleasure in displaying – even flaunting – their mathemat-
ical knowledge. The practical desirability of certain calculations contrasted with
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the special intellectual ability and training required by such tasks. Some notable
accounts of mathematical problems and solutions were quite literally legendary.

Terms for the branches of mathematics, including arithmetic, geometry, as-
tronomy, harmonics, logistikē (calculation), stereometry, and spherics carry other,
non-mathematical meaning, such as measurement of the earth or land (geometry),
knowledge of the stars (astronomy), and musical theory (or how things are joined
together=harmonics). These other meanings color the representation of mathe-
matics. For example, in (ca. 446 – ca. 386 BCE) play Clouds, Aristophanes
jokes about whether geometry (Greek gē = earth; metron = measure) refers to
measuring a farm or the entire Earth.

This chapter examines ancient representations of mathematical work and of
mathematical practitioners. The nature and character of mathematical texts in
different cultures is considered elsewhere in this volume. Here, the focus is on
how mathematics and mathematicians were portrayed not only to those reading
specifically mathematical works, but also texts which – for a variety of reasons –
depicted mathematics and those engaged in mathematical work.

Those texts that describe and portray mathematics and mathematicians were
not always written by mathematicians themselves. Plato is a case in point. The
genre of dialogue, particularly in the form of the Socratic model devised by Plato,
is well suited to the presentation and consideration of problems. However, very
few of the ‘problems’ presented in the Socratic dialogues are concerned with math-
ematics; rather, Plato was concerned with philosophical issues. So, for example,
in the Theaetetus the problem of incommensurability is touched upon only briefly
(e.g. at 148a), while the question of the nature of knowledge underpins the work as
a whole. Nevertheless, historically there has been a strong sense of a link between
Plato and his valorization of mathematics, for a variety of purposes, including the
creation of the world. Plutarch (ca. 46 – ca. 120 CE), one of the few ancient
authors to compose a dialogue concerned with scientific and mathematical ques-
tions, did present some mathematics in his dialogue On the face on the Moon. Yet,
surprisingly, of all the interlocutors named in the dialogue, it is only the one de-
scribed as a mathematician, Theon, who never himself speaks. Plutarch presents
the mathematician as a silent participant in the discussion of the problems posed.
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Volume 2: Introduction, A Cultural History of Mathematics in the
Medieval Age

Joseph W. Dauben, Clemency Montelle, Kim Plofker

This volume will offer a culturally balanced view of global mathematics in the
period extending from the aftermath of the expansion of ancient empires to the
beginnings of early modern European imperial enterprises, as reflected in main
literate mathematical traditions preserved primarily in Chinese, Sanskrit, Arabic
and Persian, Greek, and Latin (CSAPGL) texts.

It very briefly surveys the surviving traces of contemporary regional mathemat-
ical cultures in, e.g., North and South America, sub-Saharan Africa, Polynesia,
etc., that are not included in this treatment, and stress the importance of their
historical investigation although the scope of our volume precludes it.

We also discuss briefly the role of vernacular languages and so-called “adjacent”
literate traditions, such as late medieval Italian and German vis-a-vis Latin, Dra-
vidian literature vis-a-vis Sanskrit, Hebrew vis-a- vis Arabic, Latin and Byzantine
Greek, Japanese vis-a-vis Chinese, etc. Although all of these languages include
corpora of mathematical knowledge in some form, due to the lack of space we will
treat them intermittently and usually in the context of the dominant linguistic
traditions they interacted with.

Volume 2: Everyday Numeracy in the Medieval Age

Joseph W. Dauben, Clemency Montelle, Kim Plofker

The main connecting theme is the cross-cultural spread of decimal place-value nu-
merals and their arithmetic techniques. The rival systems they paralleled/replaced,
vernacular arithmetic education, vocational requirements, etc., will be treated
here. So will the general topic of class and gender roles in medieval mathemati-
cal practice, and the mathematical contributions and/or cultural expectations of
women. Basic numerical literacy was required of those engaged in trades, com-
merce, arts and crafts, as well as bureaucrats and various officials throughout
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China. We compare this documentation to mid-first millennium sources on edu-
cation and numeracy in Latin and Greek, Sanskrit, Arabic, and adjacent cultures.

The elements that helped shape the eventually universal system of Indo-Arabic
numerals (Mesopotamian sexagesimal place-value and the use of zero tokens in
its descendants, glyphs for the first nine natural numbers, the decimal place-value
principle) will be dealt with in Volume 1. Here the focus will be on its creation
and spread as well as its absorption into everyday numeracy in the various cultures
which it reached. Part of the story of innovations is the introduction of zero as an
actual symbol (in China this seems to have occurred first in astronomical tables
in texts recovered from Dunhuang). Broadly, we’ll need to address the problem of
how gaps or empty spaces may represent the concept of zero early on in Babylonian
cuneiform tablets, on the Chinese counting board, etc. (presumably covered in vol.
1), and how the introduction of actual symbols for zero affected that. In Chinese
one needs to differentiate between kong (empty, vacant, appearing in astronomical
tables) and ling (zero, in mathematical texts). The early appearance of zero as a
written symbol in Indian texts as well and its significance will be discussed here,
and in particular, how it was passed along with decimal place-value arithmetic
and crucial paper technology from Indian sources through Arab mathematics to
the Latin and Greek worlds.
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Volume 2: Practice and Profession in the Medieval Age

Clemency Montelle

This chapter will discuss the primary professional contexts of medieval mathemat-
ics, especially astrology, commerce, and a range practical-oriented activities such
as surveying, architecture and construction. For instance, Chinese and Islamic
state and local engineering projects such as canals, construction of state buildings
and observatories, etc., required mathematics, as did the elaborate decoration on
Indian temples. Mathematics was indispensable for the Medieval European agri-
mensores, as well as in military logistics and architecture. Various administrative
demands required computation, as did everyday financial transactions and trade.

We also explore the education and training, status, and support of professionals
using and developing the mathematical sciences during this time. What were the
demographics of these professionals in various contexts and how did that affect
their modes of operation as well as collaboration and communication between
them? Where did practitioners carry out their professions and how were they
supported, be it from patronage, government salaries, returns from small business
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enterprises, and the like? What was their professional status with respect to other
disciplines and how did public attitudes towards them impact their profession?
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Volume 2: Inventing Mathematics in the Medieval Age

Kim Plofker

This chapter stresses how advanced research emerged organically from interest in
particular types of problems and the social/cultural phenomena that provided in-
centive and impetus for understanding them. In turn, individual breakthroughs
eventually reshaped the standard mathematical background of practitioners. These
can be tentatively specified using the following general categories of problems as
matrices of innovation:

Techniques for facilitating computation with known quantities More
sophisticated methods (e.g., classical prosthaphairesis in trigonometry) joined an-
cient tools like “function” tables and arithmetic techniques. Sophisticated place-
value computation methods in decimal and sexagesimal bases were developed for
rapid and efficient calculations, including complicated tasks like root extraction.
Numbers were encoded verbally and graphically in tables for rapid retrieval and
convenient use.

Techniques for facilitating computation with unknown quantities This
category includes various methods comprising what we now call algebra, linear al-
gebra, indeterminate equations, etc. Elaborate classification schemes for equations
and algorithms for solving them led to solutions for equations of higher order or
in more than one variable, Diophantine problems, and systems of multiple equa-
tions, involving subtle concepts of algebraic sign, surds, and so on. Examples
include Chinese systems of simultaneous linear equations, Indian techniques for
first- and second-order indeterminate equations, and techniques of Arabic algebra
as adopted by late medieval cossists in Europe.

Properties of numbers, including series, primality, harmonics, etc.
Different mathematical traditions emphasized different numerical properties. For
instance, integer characteristics like primality and amicability were eagerly studied
by the Islamic and European direct heirs of the Euclidean tradition, while Sanskrit
and Chinese mathematics investigated types of series and equations.

Techniques of enumeration, combinations etc. The number of possible
ways to choose a particular outcome from a set of options was a line of inquiry
encountered again and again in a variety of contexts, from counting metrical pat-
terns in Sanskrit verse, to algorithms for enumerating all the possible Arabic words
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that can be formed from a given number of root letters, to the so-called “Pascal
triangle” organizing the coefficients of equations.

Properties of figures in general Ancient geometry knowledge provided the
foundations for innumerable explorations and demonstrations of the nature of
geometric shapes. These shapes might model real-world phenomena, like cyclic
quadrilaterals inscribed in circles of planetary orbits, or polygons representing
quantities such as distance or time in the late medieval scholastic discourse of
“latitude of forms”. Or they might be highly abstract refinements of earlier re-
sults, such as constructions of the regular heptagon and similar findings in Islamic
Euclidean geometry.

Solutions of triangles and relations between triangles and circles,
trigonometry Sharing a common ancestor in Hellenistic Greek trigonometry of
chords, various methods for quantitatively relating triangle sides to angles and/or
circular arcs developed together with geometric study of circles and triangles.
Their origin in Hellenistic spherical astronomy is reflected in their 360-degree cir-
cles, in their accompanying celestial coordinate systems and in their focus on
the mathematization of space. Examples here include the development of Indian
trigonometry of sines from Greek trigonometry of chords, relations between cir-
cle measurement in Chinese geometry and trigonometric techniques from Indian
and Islamic sources, and the cross-fertilization of Indian trigonometry with Greco-
Islamic spherical trigonometry.

Techniques for refining approximate solutions: interpolation, itera-
tive methods, etc. Many practical computations, especially of astronomical
quantities involving irregular planetary motions, were not amenable to exact so-
lutions. Simple linear approximations were often employed instead, and were also
corrected by various numerical methods. Not being easily analyzable by rigorous
mathematical demonstration, such methods were not always admitted as accept-
able practices. Examples of this are “false position” methods in Chinese, Islamic,
and European sources, plus iterative techniques in Sanskrit and Arabic mathe-
matics.

Mathematics of infinitely large and small quantities The nature of pro-
cesses infinitely repeatable or divisible allowed for additional ways to refine ap-
proximations of, e.g., the value of the ratio of the circumference to the diameter.
Concepts of enumerability and infinity were also applied to extrapolating beyond
known large numbers, and the problems of how to express numerical quantity at
such scales.
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Volume 2: Mathematics and Worldviews in the Medieval Age

Joseph W. Dauben

Mathematics and its relation to world views throughout the medieval period are
interlinked with general philosophical outlooks and the most fundamental rela-
tions between the individual, larger social frameworks, correspondences between
the terrestrial and celestial realms of nature, and connections between the micro-
and macro-cosms. Mathematics as it relates to the basic organizing principles of
the universe, in religious and philosophical contexts, will also be explored in this
chapter. These involve mathematics in so far as it relates to general matters of
cosmology and conceptions of time and space, cyclical versus linear views of time,
specific details like calendars and almanacs, as well as abstract questions of infin-
ity and infinitesimals. These themes can be tentatively divided into the following
categories:

• Modifications in geometric models of the universe, especially “two-sphere”
with emphasis on Ptolemaic along with non-spherical alternatives;

• Celestial divination, astrology, and calendric timekeeping;
• Abstract concepts such as sacred shapes/numbers, periodicity, predictabil-
ity, and the role of the divine in worldviews.

These categories suggest a kind of thesis-anthesis-synthesis setup: the infinite
regularity of astronomical models contrasts with the supposed unpredictability of
divination and the untidiness of physical time, which metaphysical views on the
ultimate meaning of the universe are somehow supposed to resolve.

One challenge will be to distinguish between traditions that clearly originated
much earlier and will already have been covered in Volume 1 versus those that are
uniquely medieval. Here the emphasis will be on innovations or reinterpretations
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that significantly changed during the Middle Ages due to new discoveries or ways
of thinking about mathematics.
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Volume 2: Describing and Understanding the World in the
Medieval Age

Jeff Chen

A primary focus of mathematics in China in the Medieval period was on astronom-
ical modeling and astrological prediction, particularly trigonometric techniques in
models. While the computations of the distance between stars or planets in the
heaven are fairly common in astronomy in China, it is pre-mature to categorize
the usage as techniques in spherical trigonometry. Even in the well-studied cal-
endar reform in the 13th century, modern historians cannot agree whether the
computational methods can be qualified as a version of spherical trigonometry.

The geomancy and astrology in the Chinese context appear to be different
from those practiced in Europe or Africa and have more to do with the year
and dates in the sexagenary cycle (ganzhi). The numerical mysticism in China is
usually associate with the “magic squares”, the arrangement of numbers in various
shapes that result the equal sum of numbers and the images of the hexagrams in
the studies of the Book of Change (Yijing). In several 14th- and 15th-century
mathematical treatises, these magic “shapes” symbolize the mysterious origin of
numbers and mathematics. In several mathematical works can be seen a procedure
of numerical counting that predicts the gender of an unborn baby. A trend can
be observed that the numerical mysticism diverged gradually from the treatment
of legitimate mathematics while the astronomical bureau continued to conduct
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astronomical observations and computations as well as to perform as the royal
diviners in determining the auspicious hours, dates, and sites for important events.

Map making, also greatly advanced in ancient China, was also developed in
the medieval period. The arrival of the Jesuits and the famous maps of Matteo
Ricci at the end of the 16th century precipitates an advance in cartography in
China although they fall out of the time frame in volume 2 and should be treated
in volume 3. Closely related to the mathematical problems of map-making are
various means Chinese inventors devised to measure actual ground distances, a
subject pioneered in the Han dynasty when it was necessary to measure accurately
distances travelled throughout the empire, for which a mechanical odometer of
sorts was constructed.
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Volume 2: Mathematics and Technological Change in the
Medieval Age

Joseph W. Dauben, Clemency Montelle, Kim Plofker

This chapter will survey important and more modest advances in a number of
different directions, among which are the following.

Observational, navigational, and timekeeping devices The ancient math-
ematical devices of the astrolabe, armillary sphere, sighting tube, compass, water-
and sand-clocks, and various forms of sundials were refined and modified in in-
numerable ways during this period, and spread throughout much of the Eurasian
world. This period ends before the development of glass lenses for effective high-
power magnification and the concurrent proliferation of early modern mathemati-
cal instruments. Important innovations included Islamic and Chinese astronomical
instruments as well as varied types of non-astronomical clocks and other naviga-
tional devices.

Architecture, construction and mechanics A substantial body of knowl-
edge from antiquity (Vitruvius etc.) was greatly expanded during this period. The
“practical geometry” of European stonemasons, the elaborate tilings and vaults of
Islamic buildings, the śilpa formulas used by Indian builders, and so forth, all at-
test to conscious reliance on mathematics in developing these technologies as well
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as profound “subscientific” mathematical understanding in traditional designs and
techniques.

Transport and military science This includes methods of medieval ship-
building, military architecture and fortifications. Most applications of mathemat-
ics to ballistics and fort design occurred near or beyond the end of the period.
Key technological innovations such as the riding stirrup were influential but not
explicitly mathematical.

Agriculture, manufacture and mining/metallurgy Mathematical texts
contain classic formulas and problems involving mensuration in agriculture and
manufacture. Geometrical optics likewise discusses the physical behavior of lenses
and mirrors. But the specific material innovations that had the greatest impact
(e.g., the medieval European development of the heavy plough) were not necessar-
ily mathematical in nature; similarly for mechanical mills, pumps and looms. This
illustrates the familiar scholar/artisan divide,” which suggests that the impact of
mathematics on technological developments came later.
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Volume 2: Representing Mathematics in the Medieval Age

Sonja Brentjes, Nathan Sidoli

Structuring mathematical texts through various devices such as titles, tables of
content, headlines, subdivisions, foliations, formula, diagrams and other organi-
sational means seems to be an ordinary representational practice when looked at
it from modern writing, printing and reading practices. But this was not always
the case. In our period, the overwhelming number of mathematical treatises were
handwritten on various kinds of material such as parchment or vellum, papyrus,
paper, birch bark and palm or banana leaves. The exception to this rule is found
in East Asia where wood-block printing was introduced at the end of the sixth
century.

East Asian print culture and West Asian manuscript culture were materially
linked through their use of different sorts of paper. Most treatises meant for the
practical use of experts, or in teaching, were written or printed on cheaper types
of paper, while expensive, gilded and patterned papers served for works produced
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for courts, including mathematical texts. Parchments and vellums were used in
the eastern Roman Empire as well as western Christian Europe for written work
in all intellectual fields until about the fifteenth century, including mathematical
works.

Around the middle of this century, paper finally replaced those two media as
the main material carrier of scholarly productions at universities, scribal work-
shops and private homes in western Europe, while the eastern Roman Empire was
conquered by the Ottoman dynasty (r. c. 1300-1922). In North Africa, parchment
or vellum served as the primary writing material, in particular for sacred books,
until about the thirteenth century and paper seems to have entered into book
production after 1100, when the first paper mill is recorded for Fez. In the Islamic
parts of the Iberian Peninsula, al-Andalus, paper seems to have made its entrance
some decades later and soon acquired a special reputation for its quality.

Birch bark, palm or banana leaves became standard material for text production
in South and possibly also Southeast Asia in the first millennium BCE. While birch
bark was mostly used in northern South Asia, palm or banana leaves dominated in
the South as well as the Southeast. Paper spread there centuries later. It was the
preferred medium of Muslim scholarly and administrative cultures in South and
Southeast Asia since the establishment of Turkic dynasties and the conversion of
local rulers soon after the tenth century.

In addition to those dominant material carriers of mathematical knowledge in
post-Antiquity, metals, in particular copper and brass, silk, bamboo and stones
were used in the forms of plates, dishes, temple walls or rocks for royal and other
institutional inscriptions of various lengths, containing calendar information, as-
tronomical data, astrological interpretations and, occasionally, even calculations
or drawings. Those different material carriers of mathematical texts shaped sub-
stantially the knowledge that we have today about representational practices in
the mathematical sciences and that we can possibly acquire.
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Volume 3: Introduction, A Cultural History of Mathematics in Early
Modern Europe

Jeanne Peiffer, Volker Remmert

The Early Modern Period, from the fall of Constantinople (1453) to the publication
of Isaac Newton’s seminal Philosophiae Naturalis Principia Mathematica (1687)
is a period of tremendous change esp. in Western Europe. In the history of sci-
ence it is often labeled “Scientific Revolution,” although serious nuances have been
formulated, also in this volume. In the mathematical sciences this is a period of
transition from the medieval quadrivium (arithmetic, geometry, astronomy, music)
to the invention of the new analysis towards the end of the seventeenth century. It
is difficult to assess the meaning of mathematics in the narrow sense and the math-
ematical sciences in a wider sense in the period. Both are characterized by a great
heterogeneity, strongly depending on the time period, local contexts and demands,
and individual approaches. Scholars working on commented editions (and trans-
lations) of ancient Greek mathematical texts, mathematical practitioners such as
astrologers, mapmakers, surveyors, seamen, stonemasons, court mathematicians
like Galileo, Kepler and many others, Jesuits teaching mathematics throughout
the world, university based mathematicians – they all share practices and pas-
sions, for which we would be hard pressed to find a common denominator. At
some point during the early modern period there was a turn to mathematics in
as well as outside the universities. When precisely is subject to discussion. Many
factors contributed to this development: the rise of the printed book clearly stim-
ulated mathematics and facilitated growing libraries in universities, but also in
courts, cities and in individual households. The spreading of the mathematical
sciences and their applications profited from networking through letters as well
as the exchange of books and instruments. The mathematical sciences facilitated
and profited from encounters with other kinds of knowledge (missions to China,
discovery of the new world,...). The so-called practical mathematics – surveying,
building, navigating, gauging – developed in opposition to or in collaboration with
scholarly bookish knowledge. Mathematics was increasingly considered highly use-
ful (first for astrology, medicine, civil administration in the fifteenth century then
for crafts, bankers, ...). The volume will shed light on when this happened and
where and who did it. At the same time mathematics was increasingly deemed
the most certain kind of knowledge humanely attainable. The debate about its
certainty shaped philosophies and worldviews. The seventeenth century was a pe-
riod of intense mathematical invention. In a context characterized by the debate
between Ancients and Moderns, new curves were discovered, like the cycloid for
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instance; new fields opened to mathematical investigation like the theory of prob-
abilities; new methods brought about tremendous change, like Vieta’s symbolic
algebra which Descartes applied to geometry, and infinitesimal methods inherited
from Archimedes which eventually led to the invention of the calculus by Newton
and Leibniz. These innovations were crucial for a better understanding of the
world in all its complexity.

Volume 3: Everyday Numeracy Through the Mirror of Arithmetic
Textbooks

Maryvonne Spiesser

The central topic of the chapter concerns the evolution/transformation of the dif-
ferent systems of numeration inherited from the past and whose features are de-
scribed in Volume 2 (taking into account different geographical areas and chrono-
logical evolutions). During the medieval period and long after, different methods
of calculation were used. These were linked to material tools and to the type of
number system employed. In Europe, there were two principal methods:

• calculations with counters on calculating boards (of different kinds), asso-
ciated with Roman numeration;

• calculations by writing (on paper or another medium) with Indo-Arabic
numerals (positional decimal system).

These systems will be discussed in connection with geographic areas, users’ needs,
and with some attention to technical improvements (such as printing techniques).
The positional decimal system spread first in Southern Europe, from the 12th
century onward, and progressively supplanted calculation with counters, though
for a long time both methods continued to coexist, as did finger counting during
the period.

In early modern Europe, during a period of great technological changes, those
“who know by doing and those who know by thinking” were not in opposition.
More and more people were using mathematics for technical or practical purposes –
trade, surveying, navigation, etc. – and many educated men were widely interested
in theory as well as practice. The study of numeracy therefore takes place in the
context of a rising interest in practical mathematics.

Numbers representations are at the core of numeracy. During the Renais-
sance, Hindu-Arabic calculation, already well established in the Islamic world,
was spreading unevenly throughout Europe but had yet to supplant its competi-
tors. The ongoing evolution of the various methods of calculation was crucial,
but also complex. For this reason we will focus on Western European science.
Even within this limited framework, part of the difficulty lies in the heterogeneity
of numerical skills. The local shopkeeper does not have the same needs as the
international merchant. Accounting techniques were more sophisticated in large
Italian cities than in most other European areas, and the literacy rate was higher
among the urban population.
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The first two sections of this chapter tackle the following questions: what were the
techniques and devices in use to solve problems involving numbers? How could
people become numerate? The third section addresses the issue of numeracy in
daily (professional or private) life. The most accessible information available on
everyday arithmetic has been passed down to us through textbooks. From the
fifteenth to the seventeenth centuries, these sources multiplied and diversified. It
is chiefly through the analysis of these texts that we will address the issue of
everyday numeracy.
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Volume 3: Practice and Profession. Range and Change in
Mathematical Lives

Jim Bennett

The question of the disciplinary position and setting of mathematics must ex-
plain that it is a not a ‘given’ but a set of assumptions, conventions and patterns
that are modulated over time and place and renegotiated by those who identify
themselves as mathematicians. Further, these mathematicians seek to instanti-
ate their understanding of such matters through academies, teaching institutions,
professional guilds and positions in public administration. Characteristic tools of
mathematical activity – books and instruments – are used on both sides of this dis-
tinction: to give disciplines shared mathematical identity and to regulate teaching
and institutional character.

The period witnessed a confident spread of mathematics through a number of
fields of practice. This was commonly presented as the reform of manual or me-
chanical arts into mathematical arts by re-founding their practice on mathematical
science. A realm of (in English) ‘speculative’ mathematics was recognised, where
notions were pursued for purely intellectual exercise, but it is mistaken to char-
acterise mathematical practice in the various disciplines with the modern idea of
being ‘applied’. This implies that there is an independent mathematics that is ap-
plied as a separate step, whereas practitioners saw themselves doing mathematics
through the exercise of their disciplinary practice. Astronomy played a major role
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in this story, as it served as the exemplar for the general development. Other in-
stances include dialing, warfare – offensive (artillery) and defensive (fortification)
– surveying, cartography, commerce, architecture, perspective, navigation, etc.

Organisational factors must also be taken into account. In addition to teach-
ing and learning (schools, universities, private tuition, subscription courses), one
finds examples of mathematical societies alongside widespread courtly patronage.
Mathematical practitioners had relations with religious institutions, held posi-
tions in public/civic administration (excise, military and naval boards, standards,
metrology, etc.), and were members of professional bodies, such as guilds, corpo-
rations, and trading companies. The tools of their trade were reflected in a wide
variety of books and scientific instruments. The Latin title “Mathematicus”, or its
linguistic equivalents, might thus derive from an official position, office or respon-
sibility, whether at court, in a university or in a civil administration. Alternatively
an individual might come to be recognised as a mathematician through activates
undertaken outside any office or employment.

Almost every adult member of society uses mathematics, while only a few are
acknowledged as mathematicians. By reviewing a wide range of examples, this
chapter offers an account of how mathematicians achieved and sustained their sta-
tus in early-modern Europe. The transcendent claims of mathematicians notwith-
standing, mathematical practice is located in time and place, and to affirm this
we will begin with a particular time (May, 1547), followed by a more extended
account of activity in a particular place (Nuremberg). By invoking the more ab-
stract concept of ‘locus’, we then consider types of places, such as observatories,
printing-houses and colleges, that are found in many locations. Finally, general-
ising further, we look at principles, tools and methodologies that are common to
mathematical practice across time and location.
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Volume 3: Inventing Mathematics. Between Tradition and Modernity

Sébastien Maronne

The role of invention in the mathematics of the Early Modern Period was closely
tied with various efforts to recover or restore classic works from Greek Antiquity
but also to supplement them, either by producing “upgrades” or to go beyond
the Ancients by inventing entirely new methods. Thus, the Moderns were deeply
aware of how their own approaches to mathematics were linked with the Greek
tradition. On the one hand, they relied on classical methods (Pascal’s mechani-
cal quadrature method was inspired by Archimedes) but also Greek foundational
principles (classical proportion theory, geometry of indivisibles, and the method of
exhaustion). On the other hand, early modern mathematicians were not content
with classical synthetic demonstrations but felt the need to develop analytic and
algebraic (Descartes) methods of invention which would reveal the presumed hid-
den analysis of Ancient geometers. In this way, they re-conceptualized the classical
topos of analysis and synthesis.

Early modern mathematicians placed a strong emphasis on the resolution of
mathematical problems rather than demonstrating theorems. Here, too, they took
inspiration from Greek geometers, who according to Pappus took great care to
discover whether a given problem could be solved by straightedge and compass
constructions or required more sophisticated tools. The resolution of mathematical
problems was thus submitted to methodological constraints. Such constraints
might originate in tradition or derived from philosophical prerequisites (such as
Descartes’ notion of “clear and distinct” ideas).

Mathematical innovations can be found in various kinds of texts, both printed
as well as manuscript sources. By the end of the Early Modern Period, scientific
journals began to appear, such as the Mémoires de l’Académie des Sciences and
the the Acta Eruditorum. Prior to this, apart the printed books, scientific corre-
spondence played a crucial role, mediated by key figures, such as Mersenne. As
regards texts, our period begins with the first printed edition of Euclid’s Elements,
which appeared in 1492. It was based on a Latin translation made by Campanus,
a medieval scholar. It ends, two centuries later, with the publication in 1684 of a
very different type of work, namely Leibniz’s rather abstruse “Nova Methodus pro
Maximis et Minimis” in the journal Acta Eruditorum.

Infinitesimal calculus, which was the most famous and important mathematical
invention of this era, mainly developed in the first decades of eighteenth century. It
originated with Leibniz’s publications and Newton’s contemporary works on flux-
ions. The 1492 text of Euclid’s Elements, on the other hand, initiated the erudite
tradition of printed editions of ancient Greek works. These objective boundaries
point to a long-lasting and continuous process from tradition to invention, clas-
sicism to modernity, which reflects many of the developments in early modern
mathematics. These are some of the main paths we will travel to gain an overview
of mathematical invention in the early modern period. At its end, Isaac Newton’s
Philosophiae Naturalis Principia Mathematica (1687) – which borrowed heavily
from classical geometry while adding to it modern infinitesimal considerations –
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will offer an exemplary epilogue to our journey passing from tradition to moder-
nity.

References

[1] H.J.M. Bos, Redefining Geometrical Exactness. Descartes’ Transformation of the Early
Modern Concept of Construction, New York, Springer, 2001.

[2] G. Desargues, The Geometrical Work of Girard Desargues, J.V. Field, J. Gray, eds., New
York, Springer, 1987.

[3] N. Guicciardini, Isaac Newton on mathematical certainty and method, Cambridge, MA and
London, MIT Press, 2009.

[4] V. Jullien, ed., Seventeenth-Century Indivisibles Revisited, Cham, Birkhäuser, 2015.
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Volume 3: Mathematics and Worldviews. Mathematics as a
Touchstone for “Certainty”

David Rabouin

The Early Modern Period is often seen as a time where the very criterion of truth
changed. Whereas the Ancient tradition tends to emphasize the fact that truth
should be considered as a way in which knowledge corresponds to reality (adae-
quatio rei et intellectus), the Modern Age would be marked by the overwhelming
power of the criterion of certitudo. In this development, mathematics plays a cru-
cial role precisely because it offers a model in which no correspondence to reality
is needed. It is no surprise then when explaining the famous Rules of his method,
Descartes immediately refers to mathematics. However, it is very important to
keep in mind the role of the debate on the certainty of mathematics to assess the
way in which early modern authors related the standard of mathematics with the
search of a method. Indeed, there are many ways to refer to mathematics and
what Descartes has in mind is, in many aspects, the kind of mos geometricus one
can find in authors such as Spinoza or Leibniz. In this chapter, this diversity
will be emphasized as well as the danger attached to a retrospective and univocal
meaning of what is supposed to be behind the “mathematical method.”

In assessing the relationship between mathematics and worldviews in Early
Modern Europe, one immediately confronts the role played by the “Scientific Rev-
olution” and, in particular, the Copernican Revolution that preceded it. By ex-
pelling the Earth from the centre of the world and by seeing the universe as a
geometrical infinite space, a new era, it has been said, had begun. Mathematics
suddenly entered, for better or worse – and not without resistance – in the way
the so-called Western world looked at the universe. As expressed by Galileo in
a famous passage of the Assayer (1623): “Philosophy [nature] is written in that
great book which ever lies before our eyes – I mean the universe – but we cannot
understand it if we do not first learn the language and grasp the symbols in which
it is written. The book is written in mathematical language.” Following a time
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when Aristotelian scholasticism stood against the impulse to mathematize nature,
the time had come, as Alexandre Koyré put it, for ‘Plato’s revenge’.

According to Koyré, the Early Modern period is an era in which the Universe
was, for the first time, identified with the infinite geometrical Euclidean space. As
mathematics entered into physics, it destroyed the old image of a ‘closed world’
and gave its place to infinity. This launched several questions about the way in
which this mathematical infinity could relate to the traditional place for infinity –
and until then the only legitimate one: theology. The late debate between Newton
– speaking through the theologian Samuel Clarke – and Leibniz represents a good
example of how hotly the nature of physical space was contested. Koyré’s view,
however, is very simplistic and, as will be shown in this chapter, it does not
accord with the way in which philosophers and mathematicians addressed the
issues surrounding infinity.
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Volume 3: Describing and Understanding the World in Early Modern
Europe

Antoni Malet

Mathematics fundamentally contributed to optics, mechanics, cosmography, and
map-making in Early Modern times. Mathematical knowledge not only provided
inspiration to design new scientific instruments but many original mathematical
results and new curves were invented or gained currency and legitimacy for being
needed in describing or understanding the world. In what follows we will focus
on chosen exemplary problems that provide insights in the ways mathematics
contributed to understand nature, or in which mathematical inventions appeared
in answer to natural philosophical questions.
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Up to the 15th century the relations between mathematics and the description and
understanding of the material world were essentially circumscribed to the science of
optics and to Ptolemaic geometrical models describing the motions of the heavenly
bodies. Outside of these disciplines, mathematics also played a role in the medieval
science of weights (scientia de ponderibus), a discipline that was not central to
the natural philosophical medieval curriculum. As we enter into the early modern
period things will strikingly change. New geometrical techniques are introduced in
optics, and in kinematics and mechanics, all sciences that expand enormously while
undergoing radical reformulations. Moreover, new fields and problems appeared
that incorporate mathematical methods to their standard tools – map making,
artificial perspective, and games of chance being the most substantial ones. These
new fields generate in turn new mathematical results.

The chapter is organized thematically. First it presents the mathematics of
cartography, a science that dramatically changed in our period and which posed
substantial mathematical problems involving what is now called integration and
rectification. Next we will turn to optics, where geometry underpinned a major
shift in painting. Mathematics also crucially contributed to Kepler’s explanation
of the optical properties of the eye, and the first theoretical explanations of the
properties of optical instruments. We will turn next to the mathematics of motion
and impact, paying particular attention to Huygens’ work on the cycloid, directly
inspired by his interest in inventing a perfectly isochronous pendulum clock. We
will also include an overlook of the first mathematical analyses of games of chance
and their application to actuarial problems.
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Volume 3: Mathematics and Technological Change. The Silent Rise of
Practical Mathematics

Thomas Morel

The role of technology changed considerably in the Early Modern Period. Conflicts
and epidemics had plagued Europe in the Late Medieval Age, and the somewhat
calmer recovery period correlated with an accelerated rate of technological innova-
tion. This development, marked in Western and Central Europe, exerted a crucial
influence on a global scale due to overseas exploration and subsequent colonisation.
As a reference work on the history of technology puts it, “the technical level that
was reached and mastered put the European States in the position to define the
course of World history” in the coming centuries, with far reaching consequences.

The exact role played by mathematical sciences in this process, difficult to as-
sert as it may be, will be the subject of this chapter. A few preliminary remarks
should be made, however, in order to qualify any further claim about the rela-
tionship between science and technology in the Early Modern Period. First of all,
most of the technical fields were free from mathematisation or from any scientific
formalisation of knowledge. In other words, most early modern technicians and
artisans never considered using mathematics, be it numerical tables or technical
drawing, simply because it could not be expected to be useful in any way.

This was true for many prevalent activities of the time such as agriculture, min-
ing, textile manufacturing or dyeing and tanning, but also for innovations such as
the printing press, whose development did not involve formal exact knowledge.
Even technical achievements such as the medieval cathedrals were based on craft
knowledge that was almost completely non mathematical. It would be hard to
overstate how much this approach differs from our Modern World, where the rela-
tionship between mathematics and technology have been deeply reshaped during
the Industrial Revolution. This observation corroborates, in the technical world,
conclusions drawn in the previous chapter: in the Early Modern Period, mathe-
matizing nature was still an ambitious project, not yet a general reality.

Among historians, there has been a marked discrepancy with regard to their
views on the importance of mathematics for early modern technicians. This mainly
comes down to the versatility of what “mathematics” has meant, but also to its
uneven applicability to various technological fields. This chapter uses the category
of “practical mathematics” to denote a knowledge mainly produced by technicians,
engineers, artists or merchants for their own practical needs. In other words,
it forms a disparate set of useful formulas, methods or techniques used in civil
life. While these persons cared about accuracy and steadiness, little attention
was given to abstraction or demonstration. This use of mathematics thus differs
markedly from both our modern conception of science based technology and from
the academic disciplines of the contemporary quadrivium.

This chapter presents a nuanced view of the impact mathematics had on tech-
nical activities. Some classic and well-known examples are given, together with
more specific or esoteric case studies, in order to underline the diversity of actors,
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methods and possible outcomes. We deliberately begin with the unsuccessful at-
tempts to improve the design of water wheels using mathematical theories. We
then turn to the various uses of surveying. From Dutch polders to German mines,
and from the draining of the English Fens to map-making, it was one of the most
tangible successes for early geometry. A growing use of tables, data collection and
formulas was a much less visible evolution, but its impact ultimately proved even
more transformative. Finally, a selection of major architectural enterprises will
underline the growing scale of engineering projects developed in the burgeoning
nation-states of Western Europe.
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Volume 3: Representing Mathematics. Selling the
Mathematical Sciences

Robert Goulding, Volker Remmert

The Early Modern Period was a time of transition for mathematics. Mathemati-
cians in the universities could no longer rely on the established instruction in
the quadrivium (i.e. arithmetic, geometry, music and astronomy). They were
compelled to define their place with respect to both the ever more dialectical cur-
riculum of the arts faculty, and the new challenge of the humanistic disciplines.
Beyond the universities, there were opportunities for mathematical entrepreneur-
ship in princely courts and in crafts and industries – for mathematicians, at least,
who were able to persuade others of the utility of their expertise – as well as in the
growing worldwide cosmos of Jesuit Colleges reaching into Asia and the Americas.
And as mathematical printing was perfected through the sixteenth century, the



History of Mathematics: A Global Cultural Approach 2055

works of ancient and modern mathematicians vied in the bookstore for the edu-
cated reader’s attention. In such a climate, mathematicians developed strategies
to represent their art and expertise to interested parties – to sell it in a highly
competitive marketplace. This chapter will examine ways in which mathematics
was represented to enhance its desirability and prestige as well as to raise its epis-
temological (cf. chapter 4: quaestio de certitudine mathematicarum) and social
status.
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Science 35(1997), 155–188.

[3] J. Ellinghaus, V. Remmert, Visual Worlds on Early Modern Scientific Instruments: Types
and Messages, R. Noyes, ed., Reassessing epistemic images in the early modern world,
Amsterdam, 2021.

[4] R. Goulding, Defending Hypatia: Ramus, Savile, and the Renaissance rediscovery of math-

ematical history, New York, Springer, 2010.
[5] R. Goulding, Five Versions of Ramus’s Geometry, M. Meserve and A. Ossa-Richardson,

eds., Et Amicorum: Essays on Renaissance Humanism and Philosophy in Honour of Jill
Kraye, Leiden, Brill, 2018, pp. 355–387.

[6] I. Imhausen, V. Remmert, The Oration on the Dignity and the Usefulness of the Mathe-
matical Sciences of Martinus Hortensius (Amsterdam, 1634): Text, Translation and Com-
mentary, History of Universities 21(2006), 71–150.

[7] A. Marr, ed., The worlds of Oronce Fine: mathematics, instruments, and print in Renais-
sance France, Donington: Shaun Tyas, 2009.

[8] E. Reeves, Galileo’s glassworks: The telescope and the mirror, Cambridge, MA, Harvard
University Press, 2008.

[9] V. Remmert, Picturing the Scientific Revolution: Title Engravings in Early Modern Scien-
tific Publications, Philadelphia, 2011.

[10] A.M. Smith, From Sight to Light: The Passage from Ancient to Modern Optics, Chicago,
University of Chicago Press 2014.

[11] J. Williams, Robert Recorde: Tudor Polymath, Expositor and Practitioner of Computation,
New York, Springer, 2011.

Volume 4: Introduction, A Cultural History of Mathematics in
Enlightenment Europe

Maarten Bullynck

The long 18th century or the period of (European) Enlightenment is in many ways
a period of transition. The late 17th century had marked the end of the religious
wars in Europe to make place for increasing tensions over economic issues, both lo-
cally and globally, putting the existing often still feudal structures under pressure.
The slow transformation of the societal and economic structures mobilized old and
new practices of mathematics and redefined the role(s) of mathematics in society.
Though mathematics certainly played its role in the many discussions (religious
and otherwise) in the Republic of Letters, it became increasingly interwoven with
the factual reorganization of society. Reform of the taxation system, advances
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in military technology, engineering design or data gathering for the centralized
administration, all required people with varying mathematical competences.

The body of mathematical knowledge is equally reshaped during this period.
While the great inventions of symbolic algebra and the calculus properly belong
to the 17th century, they come to full fruition and application in the 18th century.
The success of these new branches put the old classic build-up of mathematics
and its status within the sciences in question. While the discussions over the sta-
tus of mathematics certainly had theoretical bearings, its practical counterpart
was the integration of mathematics into society and, in particular, in the educa-
tional system. As professional groups, be they engineers, officers or civil servants,
increasingly made use of mathematics, they needed access to more advanced and
recent mathematical knowledge, whether in the form of advanced courses, manuals
or specialized journals.

Volume 4: Everyday Numeracy in Enlightenment Europe. The Slow
March towards Universal Numeracy and Universal Measurement

Maarten Bullynck

Over the course of the 18th century, mathematics, and in particular arithmetic,
acquired considerable social prestige. Instead of being mostly associated with the
clerical work of writing, copying and accounting, its virtues for society as a whole
and for improving the human mind began to be extolled. The trope of the utility
of mathematics for the human mind and for mankind was not altogether new, but
it gained much momentum during this era. The success of mathematical methods
in the natural sciences made their mark on literature, philosophy and theology and
the usefulness of mathematics for science and society were quite widely promoted in
Enlightenment literature. The influential philosopher and manual writer Christian
Wolff praised mathematics both for its intellectual virtues as well as its practical
utility. Baron Anne-Robert-Jacques Turgot, who tried to reform the French tax
system by placing it on a more data-based and scientific foundation, vaunted
mathematics because it led to truth and avoided errors.

On the whole, this positive attitude towards mathematics, in combination with
changing economic circumstances, made numeracy slowly appear as a prominent
goal on the political agenda of newly modernizing states. Indeed, both the in-
ternationalization of trade and the rise of industrialization created a new need
for people conversant in (elementary) mathematics. Also the state’s role changed
and in many places the court and administration evolved from being a class-based
system to a mixed system where merit played in increasing role alongside class
in the recruitment and advancement of civil servants. As European states tried
slowly (and often unsuccessfully) to abolish old feudal privileges and install more
modern ways of administrating, they needed civil servants who could readily apply
a number of mathematical techniques. As a consequence, state authorities took
steps to organize some form of teaching to promote numeracy as well as literacy
by supporting, supplementing, or even supplanting earlier initiatives. Although
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mostly limited to cities or regions that were tied in to international and/or in-
dustrial developments, these measures eventually spawned a general trend toward
promoting numeracy throughout much of Europe.

If there was one watershed moment in the history of numeracy during the 18th
century, this came in the year 1773. That year witnessed the suppression of the
Jesuit order and, as a consequence, the reorganization of the school systems in
larger parts of Continental Europe. For many states, this was an opportune mo-
ment to seize control of education and redefine its contents. This modernization of
education promoted a new élan, both institutionally and methodologically, with
the goal of attaining universal literacy. As part of this process, concrete steps
towards establishing universal numeracy were spelled out as well. Throughout the
18th century, many local initiatives had begun to spread numeracy, but only from
1773 onwards did a more general movement to establish a truly universal numeracy
grow and endure, even though the ambitions of progressive law-makers and edu-
cators would only be generally realized in practice far into the nineteenth century.
While the larger horizon for 18th-century numeracy was the inclusion of elemen-
tary arithmetic into universal literacy, the landscape of numeracy throughout the
period was filled with a bewildering variety of experiments that defy easy catego-
rization and generalization. The geographical and social distribution of numeracy
reflects a number of global societal divisions, but the scene is mainly dominated by
local practices and individual trajectories. There were also numerous continuities,
so the the traditions and practices of previous centuries persist and many earlier
forms of numeracy coexist throughout long 18th century.
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Volume 4: Practice and Profession in Enlightenment Europe.
Embedding Mathematical Practices in the Modernization of the State

Maarten Bullynck

In many ways the 18th century can be seen as a continuation of the centuries
before, but there are quite some changes happening in the social fabric and in the
communication patterns that underly and support mathematical practices and
professions. The accumulation and confluence of those changes slowly prepare the
way for the 19th century institutionalization and professionalization of mathemat-
ics featuring the new social phenomenon of the professional mathematician (see
chapter 2 in volume 5). In previous centuries, it is more accurate to speak of
mathematical practitioners or of trades and professions that make use of (some)
mathematical knowledge and skill. In this chapter we will therefore focus on those
changes that made this transition possible. We will contrast especially the time
before and after Austrian Succession War (1740-1748) and the Seven Years’ War
(1756-1763), because it will allow us to describe mathematical practice in mo-
tion while embedding them in their immediately practical, economic and political
contexts.

A rather new and typical institutional creation of the 18th century are the acad-
emies of sciences. They are institutions that award a limited number of pensions
to some of the most prominent scientific minds in all branches of the sciences,
ranging from the belles-lettres (history and literature) to the exact sciences. In
general, there were three categories of academicians: the full members, the asso-
ciate members and the corresponding and/or foreign members. One had to ascend
in the ranks from the lower to the higher categories, with only the full members
receiving a full pension, the other positions being less financially rewarding. In
most academies these pensions did not suffice for a living and had to be supple-
mented with other sources and opportunities of income, or rather vice versa, the
academy pension in most cases was just a supplement. Most of the academicians
had a job within the government, many in the educational system (the collèges,
the universities, the officer’s schools etc.), but frequently also a consulting or su-
pervisory function in more technical endeavors such as the Mint, the mines, the
navy, the military. the observatory etc. (Hahn 1975) Apart from their rôle in the
government, the academicians also played an important part in the Republic of
Letters, the 18th century public space of opinion that was constituted of letter
correspondences, journals, pamphlets and books.
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Volume 4: Inventing Mathematics in Enlightenment Europe.
Mathematical Challenges and their Disciplinary Offspring

Jeanne Peiffer

In the seventeenth century, mathematics underwent profound transformations af-
fecting methods of proof and objects of investigation (as we have seen in volume
3). The eventual invention of the calculus – namely of a method for finding tan-
gents and calculating areas (or quadratures) – may be seen as the starting point of
a new phase of mathematical research, at the origin of an emerging mathematical
field, analysis, one of the outstanding inventions of the 18th century. Indeed, the
Ancients considered mainly two mathematical disciplines: arithmetic and geom-
etry. With the Arabs, the Italians and Vieta, algebra or a new “ars analytica”
came into being. Descartes applied algebra to geometry, later in the 17th century
the invention of the calculus was mainly understood as an extension of algebra to
infinitely small quantities. The development of eighteenth-century analysis is in-
extricably linked to mechanics. Indeed, mathematicians striving to test the newly
invented methods applied them to problems often taken from mechanics, put in an
idealized form that changed them into mathematical entities and problems. The
solution of those problems often led to the invention of new mathematical tech-
niques which in turn allowed to solve questions hitherto considered inaccessible in
mechanics, and more generally in physics.

In the following, we will investigate the main changes that intervened in eigh-
teenth century mathematics. We will distinguish three sometimes overlapping time
periods. The first concerns the turn of the century after the publication in 1687
of Isaac Newton’s seminal Philosophiae naturalis principia mathematica. Deeply
anchored in the problem solving tradition of the seventeenth century, mathemati-
cians tended to extend the methods of the newly created calculus by means of
challenge problems, a frequent source of innovation. The second period, centred
on the middle of the century, may be characterized (even if the polemics and
contests among mathematicians did not disappear) by a greater effort of system-
atization of the acquired knowledge, which was considerable. When put in order,
the map of knowledge showed lacunas, lack of foundations, contradictions which
had to be treated. Mathematics was by then considered part of the enlightened
culture that came to dominate whole parts of the European continent. Finally in
the last period, we will concentrate on what can be seen as emerging disciplinary



2060 Oberwolfach Report 41/2020

developments which were to give birth to distinct mathematical disciplines in the
nineteenth century.
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Volume 4: Mathematics and Worldviews in Enlightenment Europe

David Bellhouse, Jip van Besouw

The dominant physical worldview of the eighteenth century was based on Newto-
nian mechanics, a theory greatly refined by leading mathematicians of the period,
including d’Alembert, the Bernoullis, Euler, and Lagrange. On the cosmic level,
this was a refined version of the mechanical clockwork universe dating back to the
early modern period (see Volume 3). The update came about through a new phys-
ical theory that opened the way to celestial mechanics. Newton’s law of universal
gravitation now regulated the movements of heavenly bodies, thereby exposing the
mechanism behind the divine machine as designed by its Creator.

Whereas the religious implications of Newtonian natural philosophy dominated
discussion in various eighteenth-century circles, the actual development of celestial
mechanics fell to an array of talented Continental mathematicians, beginning with
Jakob and Johann Bernoulli, the foremost followers of Leibniz. They, together with
Leonhard Euler, another native of Basel, elaborated the mathematical methods of
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the Leibnizian differential and integral calculus. This new mathematical language
soon became the modern vernacular for solving problems in mechanics.

Within the realm of celestial mechanics, Pierre-Simon Laplace published the
five-volume Traité de mécanique celeste between 1798 and 1825. During these
years, he also published major works on probability theory, including A Philo-
sophical Essay on Probabilities (1814). This contains a famous passage, often
cited as “Laplace’s demon,” which captures the determinism underlying the Deist’s
worldview. Laplace imagined an intellect capable at a certain moment in time of
grasping the position of all particles in the universe and the forces acting on them,
but also able to subject this data to mathematical analysis. For such a being, he
asserted, the future as well as the past would lie open before its eyes. Laplace
and other leading Deists broke entirely with Newton’s own theological and meta-
physical views. His celestial mechanics aimed to prove the long-term stability of
the solar system, a central tenet for Deists, who espoused a clockwork universe,
just as Leibniz had earlier. Samuel Clarke, speaking for Newton, strongly opposed
this view in his correspondence with Leibniz, calling this the “Notion of Materi-
alism and Fate, [which] tends, (under pretense of making God a Supra-mundane
Intelligence,) to exclude Providence and God’s Government in reality out of the
World.”

The providentialist Newtonian philosophy, however, held little persuasive power
over those who did not already share most of its assumptions. It is well documented
that many of the later readers of for example Clarke’s works took a different
direction. To name just two, both Benjamin Franklin and David Hume digested
Clarke’s works with enthusiasm, but in the end decided that the camp that Clarke
set out to refute actually had the better arguments. Deists, too, found much
to their liking in the Principia as the book implied that the motions of all the
heavily bodies could be explained mathematically via the laws of mechanics – this
was not Newton’s view to be sure – and thus dispensed with a God needing to
balance things everywhere at all times.

Indeed, throughout the eighteenth century natural philosophers gradually moved
away from metaphysics, as a certain strand of Newtonianism arose that was averse
to such reasoning. Its proponents were committed to a search for the laws of nature
expressed in terms of forces that emulated Newton’s laws of motion and gravity.
Initially, most Newtonian philosophers of this brand argued that the laws of na-
ture in general, and the law of gravity in particular, depended on God in some
mysterious manner. One of these was Willem Jacob ’s Gravesande, a professor in
Leiden, who argued convincingly that none of the available metaphysical ground-
ings of the laws could be confirmed. Like Newton, he claimed we could only know
the laws that God had created, not the ultimate principles behind them. Instead
of searching for these, natural philosophy should seek to uncover as many laws as
possible through hard experimental investigations.

By downplaying the metaphysical debates, ’s Gravesande and others managed
to make Newtonianism the uniting banner for Christian natural philosophers of all
kinds of religious denominations. These included Dissenters, Huguenots, various
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atypical forms of Protestantism in the Netherlands, and even Catholicism later
in the century. In this form, Newtonianism quickly became the dominant natural
philosophical worlview, first in Great Britain and the Netherlands, then over most
of Protestant Europe, reaching as far as the Spanish Americas in the last third of
the century.
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Volume 4: Describing and Understanding the World in
Enlightenment Europe

Helmut Pulte

Our understanding of science in the Age of Enlightenment has probably been
influenced by no other discipline so strongly as by mathematics. This can be
said for both aspects of mathematics as it was understood during this era. During
the Enlightenment, mathematics was a science of reason that made new knowledge
possible (mathesis pura) as well as a tool that enables a better understanding of the
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physical world and a better human life within this world (mathesis mixta or math-
esis applicata). Although the utilitarian thinking of the Enlightenment favoured
applications of mathematics to a considerable extent, most mathematicians, scien-
tists and philosophers were aware that practical use could not be achieved without
new basic developments of the discipline.

The new infinitesimal calculus, discovered independently by Newton and Leib-
niz, was in this respect paradigmatic for the 18th century. It became the decisive
mathematical instrument of science under the rule of mechanism and it served –
in quite different forms – as the key technical achievement that made this new ap-
proach to natural philosophy possible. While in the early development of rational
mechanics geometry still played a role both as a source of intuition (synthetical
thinking) and as a scientific ideal due to its axiomatic foundation, later devel-
opments strove for a purification of the calculus as the one and only means for
a mathematical understanding of the physical world. The achievements of Euler
and, to an even greater extent, Lagrange are typical in this respect. Lagrange
understood a ‘higher form of the calculus, the so-called calculus of variations, as
‘clé universelle’ (universal key) for a proper understanding of the whole of nature.
This general process was accompanied by the development of further mathemat-
ical tools such as potential theory and the theory of differential equations. By
the end of the 18th century, rational mechanics was a largely mathematised sci-
ence clothed in ‘analytical garments’. In close connection with the more analytical
method, which Newton had advocated in his philosophical commentaries, this new
mechanics sought to decipher the last secrets of nature. Areas such as optics, elec-
tricity or magnetism – even chemistry and biology – were believed to be reducible
to mechanical laws that could be understood completely by means of the latest
mathematical principles and techniques.

This chapter will mainly focus on describing these developments using as little
technical jargon as possible, though one cannot avoid formulas completely. Never-
theless, a more or less non-technical presentation of the developments in question
can be achieved. Certain philosophical aspects will also be addressed, such as the
‘semantical unloading’ of mathematical concepts from rational mechanics, which
went so far that by the end of the 18th century mechanics could hardly be called a
natural science. Mathematical physics served as a model that spread to new dis-
ciplines, like the social sciences and economics. Alongside this core theme stands
another of great relevance for cultural history of mathematics, namely, the ap-
plications of mathematics in engineering and craftsmanship, which were in many
ways closely connected with developments in mathematical physics.
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Volume 4: Mathematics and Technological Change in
Enlightenment Europe

Jane Wess

Focusing on Western Europe, and in particular Britain, this chapter touches on
a range of activities which were mathematised during the period. It explores
areas in which the new calculus, or as Leonard Euler termed it ‘sublime mathe-
matics, was first applied, as well as fields that involved large numbers of people
who became mathematically competent for the first time. The 18th century saw
developing industrialisation and imperialism, which was changing the nature of
the physical and cultural landscape in Europe. For both industrial and imperial
purposes mathematics was increasingly applied to technology. Mathematical lit-
eracy was becoming a requirement for significant sections of society, and relatively
new branches of mathematics were starting to be applied to a range of physical
problems, although in most cases without real tangible benefits.

Several authors concur with Eric Ash, who wrote: “One of the most charac-
teristic driving impulses of state formation in early modern Europe was the need
to quantify, rationalise, and exploit the natural environment.” Europe’s popula-
tion was growing, a market economy had developed, and the increasing pressures
on resources gave rise to new attitudes towards their efficient use. It is thus
natural to ask: what technical and technological problems were posed by the
newly-developing economy, and what knowledge and mathematical skills did these
developments generate?

The needs of an industrialised society were considerable: surveying for new
land use, improved agriculture to feed an increasing population, civil engineering,
efficient transport systems, and water supply on an unprecedented scale. Power
sources of men, animals, wind, and water, and later steam engines, needed to
be evaluated and compared. Imperial interests also required mathematical skills.
Navigational techniques needed to be extended from the local surveys of coast-
lines on the basis of the largely Portuguese portolans, or coastal charts, to meet
the demands of those sailing further afield. Expanding rival nation states were in
competition, hence the need for effective artillery which was increasingly mathe-
matised to optimise results. To pay for this expansion and increasing expenditure
on wars, taxes on alcohol had been introduced in England and France in the 17th
century. Assessing this tax spawned an army of excise men performing quite com-
plicated mathematics by the 18th century. These examples suggest the larger
context of social, economic, and political themes that set the stage for the devel-
opments described in this chapter.
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Volume 4: Representing Mathematics in Enlightenment Europe

Franziska Bomski

The ways in which philosophers, writers, and artists in the 18th century engaged
with mathematics are numerous and diverse. In the following, important aspects
of these images of mathematics will be highlighted, without claiming to exhaust
the subject. Further, the development of the history of ideas, even if it deals with
mathematics, does not strictly adhere to the caesuras marked by dates. Therefore,
there will be some retrospection into the late 17th century as well as outlooks
into the early 19th century in order to trace important lines of tradition. The
essay is divided into two main sections. The first section deals with philosophical
images of mathematics conceived by Leibniz, D’Alembert, Mendelssohn, Kant and
others. Their reflections on mathematics pursued the question of the nature of
mathematical truth in general, its position in the order of knowledge and, closely
related, its potential as a leading discipline and a universal role model for epistemic
progress.

The question of the relationship between the philosophical view of nature and
the mathematical description of the cosmos assumed a central place in the poetical
thinking of German Romanticism in the late 18th and early 19th centuries. Re-
jecting more rigorous forms of argumentation in favor of aesthetic knowledge and
sensory intuition, German Romantics probed new perspectives, embraced litera-
ture as a means of philosophizing, played with semantic ambiguity, and employed
metaphors along with other forms of associative thinking. The second part of this
essay will discuss the poetic reflections on mathematics of Friedrich Schlegel, No-
valis, and Goethe. Like the aforementioned philosophers, they have been chosen
not only because they are important representatives of the literary resp. intellec-
tual life in the 18th century, but also because each exemplifies important tendencies
of the images of mathematics, though of course there are many other instances
and authors as well.
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Brouillon, Athenäum 7(1997), 113–140.

[13] C.J. Posy, ed., Kant’s Philosophy of Mathematics. Modern Essays, Dordrecht, 1992.
[14] B. Specht, Physik als Kunst. Die Poetisierung der Elektrizität um 1800, Berlin, 2010.

Volume 5: Introduction, A Cultural History of Mathematics in the
Long Nineteenth Century

Tom Archibald, David E. Rowe

A cultural history of mathematics, like this one, is predicated on the assumption
that mathematical practice, like any other form of human activity, has been deeply
affected by social, political, and technological developments, but particularly so
over the last two centuries. Even well before the onset of the electronic age and
the IT revolution, the dominant modes of communication used by mathematicians
underwent a profound transformation, which had major repercussions for math-
ematical research. This involved not only written forms of communication but
also oral exchanges, which became increasingly important over the course of the
long nineteenth century. As professional societies proliferated, their members con-
tributed to shaping new communities with their own distinctive cultural identities.
Along with these developments came new mathematical practices, some based on
group endeavors rather than activities pursued by a handful of geniuses working
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in splendid isolation. In lecture halls and seminar rooms, the spoken word gradu-
ally assumed a central place in making as well as for disseminating mathematical
knowledge. At the same time, the first scientific journals specializing in mathe-
matics arose as outlets for disseminating and circulating newly found knowledge.
A few of them served as hubs for networks of researchers well before the formation
of national mathematical societies.

Volume 5: Everyday Numeracy in the Long Nineteenth Century.
Numeracy in the Age of Mass Education

Adrian Rice

The nineteenth century was the period when the current conception of the utility
of basic arithmetic began to emerge. Although everyday numeracy had long been
the ability to understand and compute with numbers, it was during this era that
the fields in which these numerical skills could be applied increased dramatically,
driven by rapidly-evolving developments in technology, economics, trade and in-
dustry. Yet, while the notion of what was meant by a basic competence in the use
and manipulation of numbers would have been largely understood throughout the
nineteenth century, no single term existed to describe such a skill. It would not
be until the word ‘numeracy was coined in a 1959 report for the British Ministry
of Education that the English language was provided with a term analogous to
the meaning of ‘literacy’ – itself a concoction of late-nineteenth-century American
English. This chapter will thus discuss a concept for which no name existed at
the time. It is therefore perhaps unsurprising that some basic parameters will be
necessary before we begin.

For the entirety of the nineteenth century, everyday numeracy would have
mainly comprised the ability to perform numerical calculations correctly. But
since no understanding or appreciation of the underlying reasoning or logic was
required, such mechanistic skills were largely considered to be beneath the higher
concerns of true mathematicians. As Leibniz had lamented in 1685: ‘It is unwor-
thy of excellent men to lose hours like slaves in the labor of calculation which could
be relegated to anyone else if machines were used.’ Such sentiments were common
among the educated elites in the eighteenth and nineteenth centuries – in 1847,
an article in the Dublin Review observed: ‘We suppose it will hardly be disputed,
that to speak the opinion of mankind, we must say that of all disgusting drudgery,
numerical calculation is the worst: a combination of all the worry of activity with
all the tediousness of monotony and all the fear of failure.’

But numeracy was not all mere number crunching. Although nineteenth-century
education in arithmetic continued the eighteenth-century emphasis on memory,
rote-learning and reckoning, the demands of a changing society ultimately re-
quired increasing sections of the populace to be able to use, interpret and apply
the results of numerical computations in an ever expanding variety of settings,
from household management to commerce, demography to social reform. To un-
derstand this nineteenth-century expansion in the applicability of numeracy, we
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will attempt to answer a variety of questions. To what extent was education in
arithmetic available at this time, and to whom? What form did this education
take, and what skills were imparted by contemporary textbooks? What systems
of weights, measures and currency were in place, and what efforts were made to
facilitate their use? What other resources were available to facilitate everyday
numerical computations? And to what extent were people exposed to data and
numerical information in everyday life?

Clearly, the answers to such questions are highly location-dependent and, even
if all the necessary historical sources were available, it would still be impossible to
provide satisfactory answers on a global scale. However, an illustrative case study
provides an excellent alternative. And since Britain was the world’s foremost eco-
nomic, industrial and military power throughout this period, it makes sense to use
Victorian Britain as a geographical focus for this chapter, as developments there
were often highly influential elsewhere around the globe, particularly in contem-
poraneous and former colonies, such as the United States of America. During the
nineteenth century, the close cultural connection between Britain and the United
States, which had existed since colonial times, remained strong. Thus, since ba-
sic numerical mathematics was a fundamental component of this shared cultural
relationship, this chapter will focus on aspects of everyday numeracy in Britain
and the United States in the nineteenth century, comparing and contrasting the
provision, application, and manifestations of numeracy in the daily life of both
cultures.
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Volume 5: Practice and Profession in the Long Nineteenth Century.
National Models for Professionalization

Tom Archibald, David E. Rowe

Professionalization in mathematics, as we know it today, largely evolved over the
course of the nineteenth century, a development brought about by institutions
that not only promoted research but also trained a new generation of researchers.
Innovation in admissions and in teaching methods were hallmarks of the newly
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founded École Polytechnique in Paris, an elite school for training engineers, who
had to master large doses of mathematics. The social status of higher mathe-
matics had already taken a dramatic turn upward over the course of the French
Enlightenment, whose proponents helped mold the political ideals of the Revo-

lution. Mathematics, as taught at the École Polytechnique, thus came to serve
as a gateway to the higher echelons of the French meritocracy. Under Napoleon,
who cultivated close personal relations with leading mathematicians, in particular
Gaspard Monge and Joseph Fourier, France embraced the spirit of a new soci-
ety dominated by technocratic elites. This message, reflecting the significance of
mathematics as a harbinger of social change, echoed throughout Europe during
the first decades of the century. A very different educational model emerged, how-
ever, in Prussia, an eastern German state that acquired territories along the Lower
Rhine in 1815.

Berlin University spearheaded an educational movement in Prussia, which even-
tually led to widespread reforms at other universities during the period that cul-
minated with the political unification of the German states in 1871. This educa-
tional system aimed not so much to foster the acquisition of technical knowledge
and skills, but rather to promote spiritual development, or Bildung, mainly by
pursuing neo-humanist ideals. According to this conception, there was no better
way to build character and discipline in young men than by immersing them in the
world of classical antiquity. At the Gymnasien, which were elite secondary schools,
Greek and Latin dominated the curriculum; mathematics was valued as well, but
mainly as a tool for developing the mind. Thus, whereas the French created a new
elite comprised of scientist-engineers, the Germans placed humanists, especially
philologists and philosophers, at the pinnacle of quite different type of intellec-
tual elite. For mathematics, both of these competing models enjoyed impressive
success and each exerted a strong influence on institutions in other nations, both
within Europe and beyond, as part of a general modernization process. Out of
this international mix emerged a kind of template for what we recognize today as
the professional mathematician.

In surveying these developments, we begin with social and institutional innova-
tions that took place in France, the dominant mathematical culture in Continental

Europe up until 1848. Its École Polytechnique served as a kind of model for the
polytechnical schools founded in various German states (Karlsruhe, Munich, and
Dresden) as well as in Zurich and in the Italian states, notably Piedmont. French
textbooks were also quite popular in Germany, largely because professors at the
universities lectured without using a text and often on material that went beyond
this literature. By mid-century, mathematicians at leading German universities
had begun to spawn various schools of mathematics with a strong accent on pure
research in analysis, geometry, algebra, and number theory.

Professionalization also went hand in hand with growing specialization, as wit-
nessed by a proliferation of journals devoted exclusively to the publication of re-
search in pure and applied mathematics. This situation contrasts sharply with
the role played by professional mathematicians during the early modern period
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(volume 3), which covered mathematical practices ranging from conducting ballis-
tics tests to composing horoscopes. The locus of activities in higher mathematics
shifted during the eighteenth century to the learned academies in Paris, Berlin,
and St. Petersburg. The many leading mathematicians who worked at these in-
stitutions often undertook projects of a more mundane nature, whereas celestial
mechanics was one of their dominant theoretical interests. By the end of the nine-
teenth century, the notion of a natural philosopher in the tradition of Isaac Newton
had disappeared giving way to a new breed: the natural scientist. The new term
aptly fits figures like Hermann von Helmholtz or Lord Kelvin, but it no longer ap-
plies to Henri Poincaré or David Hilbert; even if their interests were exceptionally
broad: they were mathematicians. By 1900, the trend toward specialization thus
led to the formation of separate national societies for the disciplines of mathemat-
ics, astronomy, and physics. At the same time, these trends led to the growth of a
class of professional mathematicians, paid to do and to disseminate mathematical
research while imparting their ideas to others.
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Birkhäuser, 1990.
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Volume 5: Inventing Mathematics in the Long Nineteenth Century.
Rigor, Creation, and the Unexplored

Jeremy Gray

The profound changes that mathematics underwent in the long 19th century can
usefully be reviewed under three headings: new subjects, better proofs, and dif-
ferent answers. Included among the new subjects are topics which became math-
ematised that were not simple extensions of what was already known. The idea of
better proofs refers to a new, more abstract and autonomous sense of rigour that
changed what could be said and what had to be done. Improved rigour was not
an insistence on spelling out the obvious, but a tool for making new discoveries
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and for moving mathematics away from a reliance on naive intuition – one reason
higher standards of rigour were required was to legitimize some of these new re-
search areas. Different answers refers to answers of a qualitatively different kind,
often more conceptual and less explicit, answers that might, for example, prove
that a certain equation has a solution but do nothing to exhibit it explicitly (or
show that an equation has no solutions of a given kind at all). It will become clear
that the ideas of better proofs and different answers are linked, much in the way
that new means of discovering things lead to new kinds of things being discovered.

The net effect was to make mathematics a more self-contained, autonomous,
and abstract subject, one that was increasingly independent of contemporary sci-
ence and had its own criteria for merit, its own definitions, and its own methods.
Loosely, one could say that it made mathematics more ‘pure’, or perhaps ‘pure’
in a different way, but ultimately it is not helpful to try to divide the subject into
‘pure’ and ‘applied’ halves. The reasons for these changes go beyond the inclina-
tions of a few influential mathematicians and into the creation of a mathematics
profession and the evolving study of physics, and beyond that into broader social
changes. These are discussed elsewhere in this volume: here we concentrate on
the invention of new mathematics in the long 19th century.

To establish the importance of new standards of rigour we will look chiefly
at how the calculus became rigorized. Mathematical analysis, as the rigorized
calculus became known, can be said to start with Augustin Louis Cauchy, who
reformulated the ideas of his 18th-century predecessors, but only to reach a stable
and generally accepted form by the end of the century with the work of Karl
Weierstrass, Richard Dedekind, and others. We can look at this process here only
selectively. One particularly interesting area is its interaction with the ideas of
Joseph Fourier, who claimed to have proposed a dramatic and highly effective way
of representing any function as an infinite series. The extent to which he was
correct and his representations actually useful was to remain unclear for a long
time, as we shall see. The clearest examples of mathematicians creating new fields
come from algebra and geometry. In algebra the theory of numbers was wholly
redefined by Carl Friedrich Gauss in a book of 1801. Thirty years later, the
theory of polynomial equations was given wholly novel foundations by Évariste
Galois, and once these foundations were accepted, in the 1860s, they became a
cornerstone of the new theory of groups. Likewise, in geometry, the description
of a radically different but physically plausible geometry of space that differed
from Euclidean geometry, the so-called non-Euclidean or hyperbolic geometry,
also took a generation to be accepted, but it helped open the way to further
novel formulations of geometries of many kinds when it was connected to Gauss’s
reformulation of the geometry of surfaces. By the end of the century, the drive
for autonomy and rigour was leading to surprising, and sometimes contentious
new branches of mathematics, often of an axiomatic kind, and often with novel
foundations in an emerging theory of sets. This set the stage for the production
of a distinctively modern mathematics in the 20th century.
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Volume 5: Mathematics and Worldviews in the Long Nineteenth
Century. Worldviews in Collision

Ivahn Smadja

To approach this topic, it is useful to begin with some natural questions. What
exactly is meant by “worldviews”? Should this be understood as an actors’ cat-
egory or as an observers’ category? And why? Within the context of German
cultural history, these conceptions were entangled with the natural and human
sciences in complex ways. The notion of Weltanschauung has a rich history of its
own, mostly in the nineteenth and the twentieth-century, with specific inflexions
that one should constantly keep in mind. Wilhelm von Humboldt’s term, for in-
stance, was significantly Weltansicht, not Weltanschauung. He conceived of each
national tongue as an “organic totality”, that is a dynamic activity that shaped
the thought of the speaking subject, not a dead product. The Humboldt scholar
Jürgen Trabant emphasized this distinction, noting that Weltanschauungen came
to mean “visions of the world” in the sense of ideologies, hence it carried an as-
sertive component that affirms the nature of the world and our place within it.
Humboldt’s Weltansichten, on the other hand, affirmed nothing about the world,
insofar as languages do pose no claim as to the ultimate truths of the world, they
merely re-present the world through the mediation of the autonomous, construc-
tive powers inherent in national tongues. Another significant milestone in the
history of the word Weltanschauung came in the 1930s when the term “lost its
solemnity and acquired an everyday, business-like ring” (Victor Klemperer). The
semantic demotion of the term in ordinary Nazi parlance reduced it to a certain
form of staunchness.

This chapter is organized to address worldviews on two levels by jointly con-
sidering a variety contexts and topics. The institutional and intellectual contexts
include:
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• the École Polytechnique together with Comtean positivism;
• the Cambridge Analytical Society and debates over the relationship of
mathematics with the natural sciences;

• the methodological and philosophical commitments of mathematicians in
Berlin;

• tentative unified worldviews (from Fechner to Riemann).

Among the topics considered are:

• Laplacian determinism vs. statistical and probabilistic views;
• the invention of pure mathematics and the consequent demotion of applied
mathematics;

• the divide Natur- und Geisteswissenschaften and its impact on the con-
ception of mathematics;

• the ethos of precision in industrial cultures: quantification, accuracy, cal-
culation;

• Neohumanism vs. a scientific and mechanistic worldview (Helmholtz, Du
Bois Reymond).
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Volume 5: Describing and Understanding the World in the Long
Nineteenth Century. From Probability and Statistics to Field Theory

Scott A. Walter

The final quarter of the eighteenth century saw its share of revolutions. Among
the changes brought about by the new French state was a closer alignment of sci-
ence and technology with state interests, including the establishment of a variety
of standards enforced by the power of the state. Among the most celebrated of
the new French standards was the metric system of decimalized weights and mea-
sures. The meter, gram, and liter were prescribed, with the assistance of members
of the Paris Academy of Sciences, for the measurement of length, mass, and liq-
uid volume. The early years of the French Republic, soon to be overthrown by
Napoleon, produced important institutional changes in the organization of science
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and technology with an impact that soon spread throughout Continetal Europe
and beyond.

If the origins of this movement are to be found in France, the gathering of
statistical data was also gaining momentum in Britain. Part of the motivation
for this movement was provided by the Napoleonic Wars, as accurate census data
were required in order to obtain satisfactory results from orders of conscription
designed to expand the armed forces. In part, the British data-collection efforts
were motivated by the social dislocation brought about by industrialization, and
a concomitant fear of a French-style revolution on British soil. In Britain, as in
France, the “experts in calculation” took an interest in the numbers produced by
the new data-collection schemes. Led by Malthus, Charles Babbage, and others,
a statistical section was formed in the British Association for the Advancement of
Science in 1833.

Quantitative measurements concerned not only the natural but also the human
realm, as the state apparatus collected “statistics”, with which it meant to predict
and control populations, from gathering data on birth, death, crime, education
level, revenue, and the like. The acquisition of such statistics, combined with the
use of mathematical modeling, gave rise, by the end of the century, to “economics”.
A new and important domain of application for probability arose in the aftermath
of Darwin’s theory of natural selection, which inspired his cousin Francis Galton to
examine the statistics of human heredity. In a tangential way, statistical studies of
the early 19th century further motivated the introduction of statistical reasoning
in physics, a movement marked by the mid-century invention of kinetic gas theory
by Maxwell and Boltzmann, and by Henri Poincaré’s new methods of celestial
mechanics. At the end of the century, Max Planck put probabilistic arguments to
use in order to express his law of blackbody radiation, setting the scene for the
20th-century revolution of quantum mechanics.

Alongside these developments, the 19th century, also saw the discovery of new
forces and fields. By mid-century, Maxwell, building on Faraday’s notion of “lines
of force”, proposed a unification of optics and electrodynamics, in a new theory
of the “electromagnetic field”. Although it took another twenty years to win over
physicists, Maxwell’s theory eventually opened up broad new horizons for physics
and technology. Most notably, the propagation of electromagnetic waves in air
was demonstrated by Hertz, giving rise not only to wireless telegraphy, but to two
revolutions of the 20th century: broadcast radio and radio astronomy. These two
streams, electromagnetic field theory and probability, capture broad swaths of new
mathematical thinking about the natural and social worlds in the 19th century.
In some ways they were naturally antagonistic (particle vs. field), and yet they
introduced a fruitful tension for a deeper understanding of the natural world.
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Volume 5: Mathematics and Technological Change in the Long
Nineteenth Century. Connecting the World through Observation,

Calculation, Transportation, and Communication

June Barrow-Green, Tony Royle

Mathematics underpinned much of the technological change witnessed throughout
the nineteenth and early twentieth centuries. Advancements in transportation and
innovative applications of electromagnetism provided a great deal of the impetus
that would revolutionise many aspects of society. These were the two predominant
threads within the fabric of technology that permeated and most influenced other
areas of technological progress. Few would argue that the static steam engine was
the salient device that powered the Industrial Revolution of the early 1800s, but it
was its application to transport that sparked a fundamental change in methods of
communication. The ability to move people and goods more efficiently over land
and sea had a remarkable impact on life in general and radically influenced the
way information was disseminated and exchanged. The ability to move informa-
tion, goods, and people over ever-increasing distances in a timely fashion fostered
efficient communication of ideas, bolstered economies, and enabled more frequent
gatherings of scientific communities. Emergent from these exchanges and collabo-
rations were the nascent propositions and designs that would provide the stimuli
and ingredients for transformation.

Some of the associated mathematics was new, but much that already existed
found novel application. The improving precision of mathematical instruments
also played a key role in progress by enabling the accumulation of more accurate
and abundant data and by allowing observations that offered insight to inform
theory and design. Mathematicians themselves were prime movers in the trans-
formation, many diversifying or adapting to become leaders in the various strands
of engineering and physics that lay at the heart of this flux. Some would be-
come household names whilst others remained more anonymous, but whatever
their profile the hallmark of their influence is stamped on almost every facet of
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the innovation that drove technological advancement as the nineteenth century
unfolded.
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Volume 5: Representing Mathematics in the Long Nineteenth
Century. Material Practices of Producing, Visualizing and Circulating

Mathematical Knowledge

Anja Sattelmacher

The term representation, when used in combination with mathematics, needs to
be carefully specified. In this chapter, it will employed in the sense of “to show”
or “to demonstrate” a particular concept or result connected with mathemati-
cal knowledge. This usage is closely connected with educational practices and
mainly for two reasons. First, the ways in which mathematical knowledge evolved
has always been linked with the ways in which mathematics was taught – at col-
leges and universities, as well as at primary schools. Second, when analysing how
mathematical ideas were disseminated throughout the 19th century, we find many
borrowings from the preceding “century of pedagogy”, with its diverse approaches,
ideas, and concepts. The focus of this chapter will be the history of mathemat-
ics teaching through drawing, modeling, and model demonstrations at universities
and technical colleges, mainly in France and Germany.

An important concept that relates to the word “representation” and that ac-
companied mathematical thinking throughout the entire 19th century was math-
ematical intuition (“Anschauung”). This refers to a mode of visualization that
goes beyond the sense of vision, embracing the haptical sense as well. This term
intuition/Anschauung has different roots in philosophy as well as pedagogy during
the 18th century. When used by German mathematicians of the 19th century it
referred to a certain type of thinking that could be trained with the help of suitable
tools, such as models or drawings. These ideas were advanced by influential peda-
gogues, especially Friedrich Fröbel and Johann Heinrich Pestalozzi, who developed
these ideas for elementary instruction within the German speaking countries and
beyond. Their approach involved a two-step process: first, children should gain
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direct experience with physical objects, like cubes or spheres, and then in a sec-
ond step, they should build on this experience to develop a more abstract form of
geometrical thinking.

Throughout the 19th century, many educators used concrete teaching aids, such
as models or drawings, to promote mathematical understanding. A leading advo-
cate of this approach was Felix Klein, who initiated collections of mathematical
models wherever he taught. For Klein, models had a twofold importance. In
one sense, they represented the visual or material embodiment of a mathemati-
cal concept or formula. In a second sense, their representative value conveyed a
more general meaning. Mathematicians – and particularly geometers like Klein
who wanted to defend the importance of intuition – could point to such models
as symbols of their particular scientific approach. The models they used in their
teaching were in this broader sense status symbols that they could attach to their
scientific reputations.
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Volume 6: Introduction, A Cultural History of Mathematics in the
Modern Global Age

Tom Archibald, David E. Rowe

This volume of essays, covering the period from the end of WWI up to the present,
poses challenges quite unlike any of the five that precede it. During these years,
the role of mathematics in the world diversified enormously as the size of the
communities of mathematical researchers and practitioners grew perhaps 1000-
fold. The images of mathematical manifestations offered in the chapters that
follow must necessarily be both incomplete and tentative. Despite this, one can
easily discern ways in which mathematical activities took place alongside more
familiar currents of political and cultural history.

During the latter half of the long nineteenth century leading up the First World
War, forces of modernization reshaped life in Western Europe and by extension
numerous other societies around the world when global imperialism dominated
world politics. As shown in Volume 5, mathematics, which forged ever-stronger
links with innovations in science and technology, played a major role in this ac-
celerating modernization. Its practitioners shaped these forces just as they and
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their practices were molded by the various social, economic, and political contexts
in which they lived. In a word, mathematics and modernity were inextricably
interwoven, a trend that only intensified during the period covered by the present
volume.

Although these general factors illustrate the entanglement of mathematics with
major scientific and technological innovations of the last century, they tell us rel-
atively little about the typical working environments of professional mathemati-
cians and the ethos that informed those spheres of activity. One pervasive and
long-lasting influence of modernization has been the proliferation of specialized
knowledge, as reflected in the wealth of highly esoteric mathematical research
that grew exponentially throughout the last century and into the present one.
Looking back to the middle of the nineteenth century – the period during which
our modern idea of a professional research mathematician first arose – it seems
remarkable how tiny that world of “mathematical inventors” really was. Even in
Germany, one of the leading countries in the production of mathematical research,
there were well into the last century only around 100 full professorships in mathe-
matics at all of the nearly 40 universities and institutes of technology throughout
the land. By contrast, an estimate a few years ago by Jean-Pierre Bourgignon, a
French mathematician and national research director, put the number of research
mathematicians worldwide around 80,000.

Volume 6: Everyday Numeracy in the Modern Global Age. Numeracy
in the Information Age

Christopher J. Phillips

In 1914, mathematics was one way among many of knowing about the world
and was taught in schools largely as rudimentary reckoning and rote deductive
reasoning. Just over a century later, the field has become the paradigmatic mode of
rigorous analysis. In schools around the world, success in mathematics is seen not
just as a general indicator of intelligence but also as a reliable path to employment
across many sectors. This transition occurred alongside an increase in the number
of fields relying on the analysis of numerical data, from marketing to professional
sports. At the same time, the rise of numbers in many domains necessitated a level
of numeracy simply to visit the doctor or enter the voting booth. A philosophical
and scientific shift from a generally deterministic world to one of probability and
chance was felt by everyday people as well. Though relatively few would ever
understand the mechanisms behind formal statistical tools or the new technologies
of machine learning, preparation in a wide range of fields increasingly includes
numeracy as a prerequisite. If calculating with weights, measures, and money
were the key elements of everyday mathematics in the nineteenth century, by
the end of the twentieth, the focus was on being able to function in a world of
statistical averages, data trends, and probabilistic predictions. Numeracy became
more than a basic ability to reckon with integers. It was a set of skills crucial for
understanding the algorithms and uncertainties central to everyday life.
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Even more profound than this change in the definition of numeracy was the way
access to numerical skills expanded around the globe in this period. In 1914,
only a tiny percentage of humans had access to even rudimentary mathematical
education. Only a handful of countries provided their citizens any conception of
free universal schooling, and beyond those places, mathematical education was
reserved for the elite. The expansion of schooling throughout the century meant
that mathematics increasingly was included as part of what everyone should know.

The very invention of the English term “numeracy” in 1959 was directly tied
to this expansion, in that it drew attention to global disparities in levels of educa-
tional attainment. That is, the very idea of measuring numeracy didn’t exist until
mathematical competence was something that might be reasonably expected for
most people to obtain. After the creation of the International Bureau of Education
in 1925, and the United Nations Educational, Scientific, and Cultural Organization
(UNESCO) after World War II, global data started to be kept systematically on
mathematical attainment as a general condition of educational expansion. Though
disparities in access persisted (even as late as 1975, few countries outside of the
largest economic powers educated girls and boys at similar rates), the general
expansion of access to formal education meant that nearly all children were ex-
posed to basic numeracy education at some point. Global statistics on numeracy
and mathematical achievement are not as robust as those for literacy, but what
evidence does exist suggests that both minimum standards and competency rates
have increased slowly but steadily over time. Mathematics beyond basic arithmetic
was no longer a specialized subject, limited to those training to become scientists,
navigators, or traders; ordinary people around the globe could be expected to have
some knowledge of mathematics. Only in the second half of the twentieth century
could the very notion of “numeracy” as a necessary component of education on
par with literacy be conceivable.
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Volume 6: Practice and Profession in the Modern Global Age. The
Mathematical Sciences and Globalization

Tom Archibald, David E. Rowe

This chapter is structured around three periods familiar from political histories.
The vivid human drama that played out during the course of two world wars
touched the lives of mathematicians in numerous ways. This naturally sets off the
period ending in 1945 from the post-WWII era, dominated in political history by
the Cold War conflict between the USA and the USSR. Throughout the period
1920 to 1933, international relations among mathematicians from the leading na-
tions gradually improved, as highlighted by the 1932 International Congress held
in Zurich. Four years later, at the ICM in Oslo, political tensions largely overshad-
owed the mathematical festivities. The year 1945 marked the starting point of a
new economic world order, one in which mathematical models played a key role
in both government and private economic policy and decision-making. Through-
out much of the period up until 1990, competition between the two superpowers,
the United States and the Soviet Union, created tensions across the international
mathematical landscape. In research mathematics, the USA strengthened its dom-
inant position, a process already begun before WWII but augmented by a large
mathematical immigration to that country, which produced an explosion of edu-
cational and research developments during the postwar period. Meanwhile, the
Soviet school continued to turn out brilliant researchers not only in pure mathe-
matics, but also in scientific fields that depended on sophisticated mathematical
methods. This period thus saw a vastly expanded use of quantitative techniques
in the physical sciences, medicine, and engineering together with the widespread
development and adoption of statistical methods as well as deterministic models
to advance these fields.

The demise of the Soviet Union in 1990 hardly bears comparison with the
collapse of Nazi Germany in 1945. Nevertheless, that year offers a convenient
demarcation point for our present era since it coincides quite closely (and not
coincidentally) with the revolution in communications associated with the rise of
the internet. In 1990 Tim Berners-Lee, then working at the European nuclear
research agency CERN, produced the first web browser and editor, later named
WorldWideWeb. Three years later, it entered the public domain, launching one
of the most massive transformations in human history. From a wider perspective,
the Web stands out as the most visible byproduct of the IT revolution with its
roots in electronic computing, a field whose ties with the mathematical world have
been far from incidental. Today, hardly any field of mathematical research has
remained untouched by the fast-growing developments in computer science and
technology.
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Volume 6: Inventing Mathematics in the Modern Global Age. The
Programs of Bourbaki and the Soviet School

Roger Cooke and Leo Corry

Over the course of the twentieth century, mathematical invention was profoundly
influenced by two somewhat idiosyncratic, but also quite distinct research pro-
grams that arose in Eastern and Western Europe, respectively. The first was
associated with the Soviet school of mathematics, which took shape between 1917
and 1945. Its influence continued throughout the century and extended well be-
yond the borders of the Soviet Union to nearby countries, like Poland and Hungary,
but also beyond to the United States and Israel. The second research program,
developed by a far smaller group of mathematicians that first formed in France
during the mid-1930s, later became famous through its collective works, Éléments
de mathématique, published under the pseudonym Nicolas Bourbaki. Many of the
group’s members were graduates of the École normale supérieure (ENS), where the
Seminar Bourbaki was founded after the Second World War. As a movement that
aimed to establish new foundational principles for modern mathematics, Bour-
baki’s impact gradually spread throughout Europe, the United States, and Latin
America.

These two programs involved large-scale efforts to reform the ways in which
mathematics was both taught but also understood. By drawing on set-theoretically
formulated abstract methods, they helped shape as well as spread new forms of
mathematical knowledge that led to important new innovations and sub-disciplines.
Together, the Soviet school and the Bourbaki movement provided a framework for
the pursuit of mathematical research at several leading centers around the world.
Both embodied modernist impulses that developed into major cultural movements
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shaped by some of the century’s most charismatic personalities, talented mathe-
maticians with personal achievements of the first magnitude, but who also ex-
pressed clear guiding visions for the future course of the discipline at large. Apart
from these shared characteristics, however, the two programs differed quite sharply
regarding major issues, such as the essence of mathematical knowledge or its role
in science and society. As such, each reflected a distinct vision of what inventing
mathematics ought to mean.

Two main centers dominated mathematics in the Soviet Union: Moscow and Pe-
tersburg. Each had formidable leaders whose work and methodological preferences
strongly colored the research activity in their respective localities. In the wake of
the Russian Revolution, both centers came under political pressure to reorganize
their educational programs in accordance with the principles of a Communist so-
ciety. They responded, in turn, by adopting eclectic, vaguely Marxist orientations
predicated on materialist principles. Above all, Soviet mathematicians excelled
in the art of problem solving in work that ranged over problems at all levels of
difficulty and that covered virtually every area of mathematical knowledge. They
cultivated this special talent, in particular, by drawing on a wide variety of tools
and methods taken from several very different disciplines, including probability
theory, number theory and descriptive set theory.

Problem solving, in the concrete sense practiced by Soviet mathematics, played
only a secondary role in the Bourbaki project, which was instead driven by an
ambitious effort to present an overview of what mathematical knowledge had come
to be. With this goal in mind, the group placed a heavy accent on the systematic
development of a few fundamental theories. Their members designed these to
serve as the basic architectonic foundation for all mathematical knowledge, out of
which all future developments should arise. Two main ideas provided the central
organizing principles for Bourbaki’s image of mathematics: formal axiomatics and
the notion of mathematical structures. These general principles guided the work of
Bourbaki as the group gradually developed and promoted a universal program that
would play an instrumental role in shaping the course of mathematical research.
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Volume 6: Mathematics and Worldviews in the Modern Global Age.
Worldviews in the Age of Ideologies

José Ferreirós

This chapter follows a chronology based on three periods: the era of the two world
wars, 1914 to 1945, the post-war years from 1945 to 1990, and the thirty years
1990 to 2020. The first period witnessed the rise of mathematical modernism
and the clash of worldviews manifested in the foundational debates. This conflict
was both a power struggle within the discipline as well as part of an effort to
define normative standards for mathematical research. During the second period,
a strong consensus emerged in the West, partly due to the influence of Hilbert and
of Bourbaki, a pseudonym adopted by a group of young French mathematicians,
most of whom were normaliens (graduates of the École normale supérieure). The
research norms that came to fore in the West reflected disciplinary autonomy
alongside a unified conception of mathematical structures anchored by stringent
conditions for mathematical proof.

The purism of this trend had little influence on mathematical research in the
Soviet Union, however, where such ideals were antithetical to the state ideology
of Marxism. Soviet mathematics was, in fact, highly eclectic, but its practitioners
advocated socialist ideals and rejected bourgeois trends identified with the cap-
italist West. With the fall of the Soviet Union, competing ideologies no longer
played a leading role in the world of mathematics, which became highly diverse
and increasingly interdisciplinary during the third period. On the one hand, this
era saw several unanticipated conceptual developments that served to undermine
the former foundational picture; on the other, the IT revolution exerted a profound
influence on nearly every sphere of mathematical research. If, throughout most of
the last century, much mathematical work was largely invisible, in today’s highly
digitalized world many are well aware that their lives have been deeply affected
by the products and byproducts of mathematical knowledge.
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Volume 6: Describing and Understanding the World in the Modern
Global Age. Quantum Physics and Relativity

Marta Jordi Taltavull, Tilman Sauer

The relationship between mathematics and physical theory in the twentieth cen-
tury was decisively shaped by the occurrence and outcome of two major conceptual
transformations. Quantum mechanics, the fundamental theory of matter, was es-
tablished in the years 1925-27, and the general theory of relativity, the fundamental
theory of space and time, and gravitation and cosmology, was established in 1915.
Quantum mechanics changed the way we understand the microscopic world. One
of the key differences between classical and quantum physics is that, according
to quantum physics, motions and energy exchanges are discontinuous and fun-
damentally unpredictable at a microscopic level. Relativity theory changed our
understanding of the macroscopic world. Space and time turned out to be inter-
twined in ways physicists had never before realized, and spacetime was included
in the dynamics of physical laws. Both transformations of our world understand-
ing implied fundamental mathematical and philosophical changes in our way of
describing physical reality.

In both cases, mathematical concepts and theories played a major role in adapt-
ing physical theory to new experimental findings and empirical evidence as well as
in reacting to problems that had arisen as inner-theoretical difficulties. The out-
come in either case was a novel foundational equation, which to this day govern
our understanding of the physical world, both small and large. The Dirac equa-
tion or its non-relativistic counterpart, the Schrödinger equation, represents the
basis for all of quantum physics, including atomic and molecular physics, nuclear
as well as elementary particle physics. The Einstein equation is the foundation of
the general theory of relativity and of modern gravitation theory, including our
understanding of the cosmos at large and its historical development. Both equa-
tions captured major transformations in the basic physical concepts underlying
our understanding of the world. Both equations went along with the introduc-
tion of new mathematical techniques and formalism into physical theory. And in
both cases, it took many years and much effort in elaborating the consequences
and implications inherent in those equations to fully understand their impact on
our present world view. In this, process, new mathematical concepts and a new
physical semantics evolved together to reflect the new ways of describing and un-
derstanding physical reality. In the quantum case, most prominent among these
new concepts were the notion of a Hilbert space and its vectors or wave functions.
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In the case of relativity theory, the most prominent new concepts were the metric
tensor and affine connection and its associated spacetime curvature.
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Volume 6: Mathematics and Technological Change in the Modern
Global Age. Programming Mathematics

Liesbeth De Mol

This chapter will deal the role of modern computing as a mathematical technology.
A central concern will be the following question: how do the histories of computing
and mathematics intertwine (or not) and what does this tell us about the history
of mathematics itself and how it is perceived today? While the rise of the modern
computer should not be reduced to developments in mathematics, it is also clear
that the field was an important driving force for the early history of large-scale
machine computation. So, how is it that mathematics and mathematicians became
involved with the making and use of this technology?

One important impetus came from an increased need for mathematics research
in the context of military science. In that context it became clear that brute-
force computation would be a necessary tool to develop and deploy ever more
sophisticated weapons, a development dating back to the First World War. This
is part of a very broad and complex history, much of which remains to be written.
It concerns the changing relationship between, on the one hand, mathematics –
its practices, results, and the self-understanding of its practitioners – and, on
the other, computational technologies and the academic fields which are anchored
in them historically. In order to give focus to the present account, this chapter
will concentrate on four major topics as these developed in the United States.
These are 1) the early history of computers in relation to mathematics; 2) the use
of computational technology within mathematics; 3) mathematics as a tool for
computation; and 4) the changing disciplinary identity of mathematics from the
perspective of computational technologies.
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Volume 6: Representing Mathematics in the Modern Global Age.
Mathematics in Literature: Between Rationalization and Creative

Freedom

Nina Engelhardt

In many literary texts of the last century, mathematics serves as a short hand
for reason, while reflecting concerns or revaluations of rationality seen against the
possibilities for individuality and freedom. Almost all texts to some degree ac-
knowledge the common juxtaposition of mathematics, on the one side, and life,
literature, and creative freedom, on the other, even if only to take this as a basis
from which ultimately to denounce the contrast and the reductive image of math-
ematics. Yet, these two aspects need not stand in opposition. In George Orwell’s
dystopian novel Nineteen Eighty-Four (1948), the protagonist Winston Smith at-
tempts to hold on to a simple mathematical truth in a society that manipulates
facts, memories, and perceptions to suit the purposes of its leaders. In this repres-
sive system, which almost annihilates individual liberty, Winston takes a simple
equation as a symbol for the existence of truth that the totalitarian Party cannot
touch: “Freedom is the freedom to say that two plus two make four.”

This chapter is dedicated to exploring the representation of mathematics in
works with literary ambition that have neither a mainly didactic nor a purely en-
tertaining intention. It will discuss only in passing topics such as mathematics
in popular culture, scientists’ biographies, or hard science fiction. The focus lies
instead on literary texts that represent mathematics in more complex terms, re-
vealing surprising aspects of uncertainty, freedom, and creativity connected with
it. These works suggest certain similarities between mathematics and literature,
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while showing that mathematics applied to life can also yield fascinating insights
into its many mysteries.
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Université de Lorraine
91 Avenue de la Libération
5400 Nancy
FRANCE

Prof. Dr. Caroline Ehrhardt
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