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Abstract. Relativistic Hydrodynamics is the description of fluid motion in
regimes where relativistic effects are important. This is the case for flu-
ids moving at high velocities or interacting with very strong gravitational
fields, such as in the physics of black hole accretion disks or neutron star
mergers but also in the microscopic dynamics of high-energy heavy-ion colli-
sions. Although the first formulation of hydrodynamic equations dates back
to the beginning stages of relativity theory, many mathematical problems
remain wide open. In particular, the development of the theory of relativis-
tic viscous fluids was slow and mathematical progress only made recently.
The purpose of this Mini-Workshop was to bring together a diverse group of
researchers, including specialists in nonlinear PDEs and physicists, to jump-
start the mathematical development of this field. This allowed for a vital
exchange of ideas between mathematics and physics communities.
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Introduction by the Organizers

The mini-workshop Relativistic Fluids at the Intersection of Mathematics and

Physics, organized by Shabnam Beheshti (London), Marcelo M. Disconzi (Nash-
ville) and Vu Hoang (San Antonio) took place 13 December - 16 December and
was attended by 19 participants from Europe, Australia and the United States.
The group was a diverse blend of researchers from the Mathematical Physics and
Theoretical Physics communities, the majority of which is working on different
areas of relativistic physics. Due to travel restrictions and the global pandemic
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situation, the mini-workshop took place in an online form. In order to emphasize
interaction among its participants, the speakers agreed to giving 45 minute talks,
so that discussion could take place after the talks.

The talks on the first day considered various models for relativistic plasmas,
with Oliver Rinne opening the meeting by speaking about the Einstein-Vlasov
system. This was followed by Michael Kiessling introducing the audience to the
problem of deriving the kinetic description of plasmas from a microscopic model
of particle motion. The final talk of the day was given by Michael Strickland, who
gave an introduction to the physics of the quark-gluon plasma.

The second day of the meeting started with a talk by Juan Valiente Kroon,
who discussed the stability of perturbations of cosmological solutions via conformal
methods. This was followed by an hour of free remarks and discussions. The second
day was concluded with A. Shadi Tahvildar-Zadeh’s talk where he addressed a
broad range of questions concerning the propagation of singularities in theories
involving gravitational and other fields.

The focus on the third day was fluid models, with talks by Todd Oliynyk,
Luciano Rezzolla and Jorge Noronha. Todd Oliynyk presented the state-of-the-
art theory of relativistic liquid bodies, Luciano Rezzolla introduced the audience to
cutting-edge applications of relativistic fluids to astrophysical problems, especially
involving strong gravitational fields. Finally, Jorge Noronha discussed a novel
theory of first-order viscous relativistic hydrodynamics.

On its fourth day, the meeting continued with Annegret Burtscher, Matthias
Hanauske and Jeremie Joudioux. Annegret Burtscher addressed the question of
singularity formation of a spherically symmetric Einstein-Euler system, whereas
Matthias Hanauske gave an overview about the properties of hypermassive stars
containing different phases of neutron and quark matter. Jérémie Joudioux gave
an overview and open problem talk introducing the challenging problem of stability
of steady states in relativistic kinetic theory.

On the final day of the workshop, talks were given by Susanne Reffert, who
discussed large charge expansion in relativistic effective field theory and Michael
Hott, who gave an overview talk about the derivation of mean field equations
from an underlying many-particle quantum theory. In between the two talks, free
discussions took place.

Many of the talks were followed by lively and stimulating discussion. A detailed
description of all such discussions is beyond the scope of this report. But in order
to provide an illustration of the depth and quality of the discussions, we highlight
here three questions that generated significant interaction:

• How broad is the class of matter models for which the conformal method
for the stability of cosmological solutions can be applied (Juan Valiente
Kroon)?

• Is there a fully relativistic, well-posed theory of fluid bodies containing
several phases of matter that includes effects of surface tension between
the different phases (Luciano Rezzolla and Matthias Hanauske)?
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• Why are there regimes of the quark-gluon plasma where one would expect
hydrodynamics to fail, due to a low number of particles, still very well
described by the relativistic fluid equations (Michael Strickland)?

The workshop was thus successful in providing a platform for exchanging ideas
between the theoretical physics and mathematics communities and to inspire future
collaborations.

The organizers invited all participants to respond to a brief anonymous survey
about the workshop, consisting of the following questions: Q1: Please rate the
overall quality of the workshop. Q2: Please rate your satisfaction with the level
of the math-physics interaction in the workshop. Q3: If we organize a similar
workshop in the future, would you be interest in attending it? In addition, the
respondents could enter general comments about the workshop. In total, ten
participants answered the survey, and their responses are summarized below.

Q1: Please rate the overall quality of the workshop.

Possible answer Number of responses
Excellent 3
Very good 7

Good 0
Fair 0
Poor 0

Q2: Please rate your satisfaction with the level of the math-physics interaction in
the workshop.

Possible answer Number of responses
Excellent 4
Very good 2

Good 3
Fair 1
Poor 0

Q3: If we organize a similar workshop in the future, would you be interest in
attending it?

Possible answer Number of responses
Yes 10
No 0

In additions, respondents provided the following comments:

I may be good to have one or more moderated panel discussions
in addition to the talks

Online workshops are not the optimal solution but I was surprised
of how engaging this one was.
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I liked the broad range of topics. In view of this maybe some
of the talks should have been a little more introductory in order
to be able to follow topics that are quite remote from one’s own.
Another idea would be dedicated discussion sessions on specific
topics.

In-person would obviously work much better for such a workshop
but under the circumstances it was fine.

Encouraging more socializing, even over Zoom would be great.

A more concrete common theme would help to align talks and dis-
cussions more (including introductory talks to bridge the gap be-
tween math and physics); sometimes motivations in physics talks
did not come across enough for me (probably because I haven’t
heard these things before)
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Abstracts

Numerical evolution of the axisymmetric Einstein-Vlasov system

Oliver Rinne

(joint work with Ellery Ames and H̊akan Andréasson)

Numerical simulations of collisionless matter are challenging due to the number
of phase-space dimensions. In order to alleviate this problem, we perform an
axisymmetric reduction of the Einstein-Vlasov equations based on the (2+1)+1
formalism, including rotation [1]. The numerical implementation is based on a
constrained (mixed hyperbolic-elliptic) evolution scheme. The collisionless matter
is treated using a particle-in-cell method. We tune smooth one-parameter families
of initial data to the threshold of black hole formation and observe type I critical
behaviour, in particular power-law scaling of the lifetime of the near-critical solu-
tion. The qualitative behaviour close to the critical point is found to depend on
the sign of the binding energy: in the case of positive binding energy, marginally
supercritical evolutions perform a series of damped oscillations before forming a
black hole, whereas in the case of negative binding energy they collapse immedi-
ately after the initial expansion phase. Further problems we intend to investigate
using our code are the stability (under time evolution) of stationary rotating ax-
isymmetric solutions [2] and a re-assessment of cosmic censorship in gravitational
collapse [3].

References

[1] E. Ames, H. Andréasson and O. Rinne, Dynamics of gravitational collapse in the axisym-
metric Einstein-Vlasov system, arXiv:2010.15771 (2020).
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Microscopic foundations of relativistic kinetic plasma theory

Michael K.-H. Kiessling

It is argued that the relativistic Vlasov–Maxwell equations of the kinetic theory of
plasma approximately describe a relativistic system of N charged point particles
interacting with the electromagnetic Maxwell fields in a Bopp–Landé–Thomas–
Podolsky (BLTP) vacuum, provided the microscopic dynamics lasts long enough.
The purpose of this talk is not to supply an entirely rigorous vindication, but to
lay down a conceptual road map for the microscopic foundations of the kinetic
theory of special-relativistic plasma, and to emphasize that a rigorous derivation
seems feasible. Rather than working with a BBGKY-type hierarchy of n-point
marginal probability measures, the approach proposed in this paper works with
the distributional PDE of the actual empirical 1-point measure, which involves
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the actual empirical 2-point measure in a convolution term. The approximation
of the empirical 1-point measure by a continuum density, and of the empirical 2-
point measure by a (tensor) product of this continuum density with itself, yields a
finite-N Vlasov-like set of kinetic equations which includes radiation-reaction and
nontrivial finite-N corrections to the Vlasov–Maxwell–BLTP model. The finite-
N corrections formally vanish in a mathematical scaling limit N → ∞ in which
charges ∝ 1/

√
N . The radiation-reaction term vanishes in this limit, too. The

subsequent formal limit sending Bopp’s parameter κ → ∞ yields the Vlasov–
Maxwell model.
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Landé–Thomas–Podolsky vacuum, in preparation (2021).

[EK] Elskens, Y., and Kiessling, M. K-H., Microscopic foundations of kinetic plasma theory:
The relativistic Vlasov–Maxwell equations and their radiation-reaction-corrected gener-
alization, J. Stat. Phys. 180:749–772 (2020).

[K] Kiessling, M.K.-H., Force on a point charge source of the classical electromagnetic field,
Phys. Rev. D 100, 065012(19) (2019); Errata, Phys. Rev. D 101:109901(E) (2020).

[KTZ] Kiessling, M.K.-H., and Tahvildar-Zadeh, A. S., Bopp-Landé-Thomas-Podolsky electro-
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Relativistic hydrodynamics in the quark-gluon plasma

Michael Strickland

In the first part of my talk, I will review the application of relativistic hydrodynam-
ics to the physics of the quark-gluon plasma created in ultrarelativistic heavy-ion
collisions. I will present some of the phenomenological successes of hydrodynam-
ical modeling and then turn to the challenges that must be faced going forward.
In the second part of my talk, I will address the question of how is it possible
for dissipative hydrodynamics to be applicable on such a short time scale. In the
highest energy heavy-ion collisions, it is estimated that this time scale is on the
order of 10−24 seconds after the nuclei pass through one another. I will discuss our
current understanding of this astonishing finding in the context of non-equilibrium
dynamical attractors in relativistic kinetic theory and dissipative hydrodynamical
models.
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Conformal methods for the Einstein-Euler and
Einstein-Vlasov systems

Juan A. Valiente Kroon

In this talk I discuss how methods based on Friedrich’s conformal Einstein field
equations can be used to obtain stability results for the de Sitter spacetime in the
case that the matter content is given by: (i) a perfect fluid with the equation of
state of radiation [1]; (ii) a Vlasov model consisting of massless particles [2]; (iii) a
collection of self-gravitating dust balls in an expanding Universe with positive Cos-
mological constant [3]. In all three cases the energy-momentum tensor is tracefree
and, thus, the matter equations have good conformal transformation properties.
The conformal approach advocated in this talk has the advantage of rendering
global existence and stability results which require only of general properties of
symmetric hyperbolic systems —in particular, Cauchy stability. A key limitation
at the moment is that this approach is restricted to matter models with a tracefree
energy-momentum tensor (so that the energy-momentum equation is conformally
invariant). However, the analysis of the Einstein-dust system on which the anal-
ysis of self-gravitating dust balls is based gives the tantalising hope that these
methods can be extended to more general classes of matter.

Details on the use of conformal methods in General Relativity can be found in the
monograph [4].
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Classical and Quantum Laws of Motion for Singularities of Spacetime

Shadi Tahvildar-Zadeh

(joint work with Michael Kiessling, Matthias Lienert, Annegret Burtscher, et al.)

In this talk I report on recent developments towards a relativistic quantum-me-
chanical theory of motion for a fixed, finite number of electrons, photons, and their
anti-particles. I will briefly explain the necessary conditions under which world-
lines of charged particles can be identified with time-like singularities of spacetime
and/or classical fields permeating the spacetime, and show examples of classical
as well as quantum theories of motion for them when these conditions are satis-
fied. I will then show how one can define a quantum-mechanical wave function for
a single photon, and use that to obtain a Lorenz-covariant system of multi-time
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wave equations for an interacting two-body system in one space dimension, com-
prised of one electron and one photon. I will demonstrate that the corresponding
initial-boundary-value problem is well-posed, and that both electron and photon
trajectories exist globally for typical initial particle positions. I will conclude by
presenting preliminary results of numerical experiments that illustrate Compton
scattering in this context. This talk is a summary of joint work with Michael
Kiessling, Matthias Lienert, Annegret Burtscher, and others.

References

[1] A. Burtscher, M. Kiessling, & A. S. Tahvildar-Zadeh, “Weak second Bianchi identity for
spacetimes with time-like singularities,” (in preparation.)

[2] M. Kiessling, M. Lienert, & A. S. Tahvildar-Zadeh, “A Lorentz-Covariant Interacting
Photon-Electron System in One Space Dimension,” Lett. Math. Phys. 110 3153–3195 (2020)
[arXiv:1906.03632].

[3] M. Kiessling & A. S. Tahvildar-Zadeh, “The Dirac point electron in zero-gravity Kerr–
Newman spacetime,” Journal of Mathematical Physics 56 042303 (2015) [arXiv:1410.0419].

[4] M. Kiessling & A. S. Tahvildar-Zadeh, “A novel quantum-mechanical interpretation of the
Dirac equation,” Journal of Physics A 49 135301 (2016) [arXiv:1411.2296].

[5] M. Kiessling & A. S. Tahvildar-Zadeh, “On the Quantum Mechanics of a Single Photon,”
Jour. Math Phys. 59, 112302 (2018).[arXiv:1801.00268]

[6] A. S. Tahvildar-Zadeh, “On a zero-gravity limit of Kerr–Newman spacetimes and their elec-
tromagnetic fields,” Journal of Mathematical Physics. 56 042501 (2015) [arXiv:1410.0416].

Dynamical relativistic liquid bodies: local-in-time existence and
uniqueness

Todd Oliynyk

In this talk, I will discuss a new approach to establishing the well-posedness of
the relativistic Euler equations for liquid bodies in vacuum. During the talk, I
will focus on giving an overview of the main ideas and I will try to keep the talk
as non-technical as possible. The complete well-posedness proof and all of the
technical details can be found in the article [1]. It is also worth noting that related
ideas for establishing a prioi estimates are given in [2].

The new approach is based on a wave formulation of the relativistic Euler
equations that consists of a system of non-linear wave equations in divergence
form together with a combination of acoustic and Dirichlet boundary conditions.
The equations and boundary conditions of the wave formulation differs from the
standard one by terms proportional to certain constraints, and one of the main
technical problems to overcome is to show that these constraints propagate, which
is necessary to ensure that solutions of the wave formulation determine solutions
to the Euler equations with vacuum boundary conditions. During the talk, I
will describe the derivation of the wave equation and boundary conditions, the
origin of the constraints, and how one shows that the constraints propagate. Time
permitting, I will also discuss how energy estimates can be obtained from this
new formulation paying particular attention to the role of the acoustic boundary
conditions.
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Relativistic hydrodynamics in strong gravitational fields

Luciano Rezzolla

Relativistic hydrodynamics is an incredibly successful approach to study a large
variety of problems that range from relativistic collisions of heavy ions to the in-
spiral and merger of neutron stars. I have reviewed the basic mathematical and
numerical frameworks for the solution of the equations of relativistic hydrody-
namics in arbitrary spacetimes and discuss how the corresponding solutions can
be used to answer fundamental questions in physics and astrophysics.

Given the broad range of expertise in the workshop’s participants, the presen-
tation was organised in two distinct parts. The first one provided a brief overview
of the mathematical tools and approaches developed to solve the equation rela-
tivistic hydrodynamics and magnetohydrodynamics (MHD) in general-relativistic
regimes. The second one, on the other hand, concentrated on specific applications
of fully general-relativistic hydrodynamics – such as the merger of two neutron
stars – or of general-relativistic MHD – such as the problem of disk accretion onto
a rapidly rotating black hole.

In both examples it was highlighted the ability of these approaches not only
to reproduce the results of the observations, but also the considerable predictive
power of some of the simulations performed. Finally, the prospects and the areas
of future development – both at the mathematical and at the numerical level –
have been illustrated and discussed.
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Deconstructing General-Relativistic Viscous Fluid Dynamics

Jorge Noronha

With the dawn of the multi-messenger astronomy era marked by the detection
of a binary neutron star merger, it became imperative to understand how ex-
tremely dense fluids behave under very strong gravitational fields. In this talk I
will critically review the foundations of relativistic viscous fluid dynamics and its
formulation in curved spacetime. I will present the first set of fluid dynamic equa-
tions [1] that satisfies all of the following properties: (a) the system when coupled
to Einstein’s equations is causal and strongly hyperbolic (the initial value problem
is well-posed); (b) equilibrium states are stable; (c) all leading dissipative contri-
butions are present, i.e., shear viscosity, bulk viscosity, and thermal conductivity;
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(d) effects from non-zero baryon number are included; (e) entropy production is
non-negative in the regime of validity of the theory. The properties above hold
in the nonlinear regime without any simplifying symmetry assumptions and are
mathematically rigorously established. This is achieved using a new formulation
of relativistic fluid dynamics [2, 3] containing only the hydrodynamic variables
and their first-order derivatives. The framework presented here provides the start-
ing point for systematic investigations of general-relativistic viscous phenomena in
neutron star mergers.
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Singularity formation for perfect fluids with linear equation of state

Annegret Burtscher

The Penrose singularity theorem relates the presence of a black hole to the exis-
tence of a trapped surface [7]. A trapped surface is a closed spacelike two-surface
with the property that its surface area is decreasing in the direction of both future-
directed null normals. In what follows we provide a brief overview of the current
mathematical research on showing that such trapped surfaces can form during evo-
lution from initial data that do not already contain trapped surfaces. We focus here
on spacetimes with matter, in particular, on perfect fluids and elaborate on some
open questions in this direction. The vacuum case studied by Christodoulou [5] and
subsequently by Klainerman, Luk and Rodnianski [6] has been surveyed by Bieri
[2]. Some discussion related to the scalar-field model studied by Christodoulou
and the collisionless gas model studied by Andréasson, Kunze and Rein as well as
a further discussion of the perfect fluid results can be found in [3].

Singularity formation for matter models has been studied in the spherically
symmetric situation. The principal result that an accumulation of matter leads
to black holes via Penrose’s singularity theorem is already due to Schoen and Yau
[12] but it took several more years for the mathematical observation of dynamical
trapped surface formation, starting with an extensive investigation of the scalar
field model by Christodoulou in the 1990s. For Einstein–Euler equations describing
compressible fluids with a linear equation of state this involves the analysis of a sys-
tem of two balance laws for the fluid coupled to two integral equations describing
the geometry. Using generalized Eddington–Finkelstein coordinates and a gener-
alized Glimm scheme LeFloch and the author have established a local existence
result for solutions of bounded variation, including an estimate of the existence
time and growth of parameters involved. Initial data have been used that are large
pertubations of static solutions, and it was shown that the set of untrapped initial
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data leading to trapped surfaces during the evolution is nonempty [4]. This result
has been shown in a rather restricted setting, and several improvements would be
desirable, related to:

(1) The local existence proof is based on the theory of conservation laws (and
thus a compactness argument) and does not imply uniqueness, certainly a
major shortcoming.

(2) The assumption of spherical symmetry should be dropped. This property
has been imposed for all matter models studied so far, but could already
not be used in the vacuum case [2, 5, 6] (due to Birkhoff’s Theorem).

(3) The regularity obtained is too low to actually apply the singularity theo-
rem. It should either be improved or the singularity theorems strength-
ened. Some result related to an improvement of the regularity by adjusting
the coordinates used are due to the work of Reintjes and Temple [8, 9, 10].

(4) The trapping result has been shown for linear equations of state with
small sound speeds. A generalization to other equations of state is highly
desirable. This requires a thorough understanding and analysis of suitable
initial data (see also next point).

(5) The initial data used are large perturbations of static solutions localized in
a shell around the center. Andersson and the author [1] have further ana-
lyzed the asymptotic behavior of static solutions with the aim to extend the
set of admissible initial data, in part achieved by the author in [3]. While
global existence and uniqueness of solutions to the Tolman–Oppenheimer–
Volkhoff equation for reasonable equations of state was shown by Rendall
and Schmidt [11] (and spherical symmetry is expected by the fluid ball
conjecture/theorem), further analysis of the qualitative and global behav-
ior of static solutions for general equations of state is still needed.

Ideally, of course, one would like to be able to tell from properties of the initial
data (and equation of state) alone whether trapped surfaces and black holes will
ever form – or not. And those initial data should not just be some sort of very
special large localized perturbations of static spherically symmetric solutions but
indeed very arbitrary and physically relevant initial data.
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Properties of hypermassive hybrid stars from binary compact
star mergers

Matthias Hanauske

With the first detection of gravitational waves from a binary system of neutron
stars GW170817, a new window was opened to study the properties of relativistic
fluids at and above the nuclear-saturation density. Reaching densities a few times
that of nuclear matter and temperatures up to 100 MeV, such mergers also rep-
resent potential sites for a phase transition (PT) from confined hadronic matter
to deconfined quark matter. If the remnant of a binary compact star merger does
not immediately collapse into a black hole, a hypermassive/supramassive compact
star is created. Hypermassive/supramassive hybrid stars (HMHS,SMHS) are ex-
treme astrophysical objects and in contrast to their purely hadronic counterparts
(hypermassive/supramassive neutron stars (HMNS,SMNS)), these highly differ-
entially rotating objects contain deconfined strange quark matter in their slowly
rotating inner region. HMHS and HMNS are both metastable configurations and
can survive only shortly after the merger, before collapsing to rotating Kerr black
holes, whereas SMHS and SMNS end up in a stable final configuration.

The gravitational wave signatures of the production of quark matter, both dur-
ing the inspiral [1], merger and postmerger phase of a compact star merger had
been addressed in this talk. The evolution of the density and temperature distri-
butions and the rotational properties inside the produced HMHS were visualised
by using fully general-relativistic hydrodynamic simulations [2, 3, 4, 5]. Depending
on the properties of the PT, a HMHS/SMHS can be created promptly after the
merger or during the post-merger evolution [6]. During the collapse of a HMHS
to a Kerr Black the color degrees of freedom of the pure quark core gets macro-
scopically confined by the formation of the event horizon [7, 8].
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Stability of steady states in kinetic theory - Overview and
selected results

Jérémie Joudioux

The purpose of this note is to give an overview of existing mathematical results of
the stability of steady states for self-gravitating systems of collisionless particles.
The bibliography is not exhaustive but provides references which we believe are
important to illustrate the research in the field. Unless explicitly mentioned, all
the results stated here are for massive particles. The interested reader must refer
to the living review by Andréasson [3].

Popular models of self-gravitating matter interacting solely through gravity are
given by the Vlasov-Poisson system in the classical case or the Einstein-Vlasov sys-
tem in the relativistic case. In these models, the matter is described by a density
function defined on phase space, coupled either to a Newtonian potential satisfy-
ing a Poisson equation or a Lorentzian metric satisfying Einstein’s equations. The
matter fields of these systems admit static compactly supported solutions that
model astrophysical objects such as clouds of gas, or stars. Several important
conjectures for the stability of these physical objects were formulated in the ’60s.
Antonov [7] stated in his seminal work that static spherically-symmetric solutions
of the Vlasov-Poisson system were stable provided that the number of particles
is a decreasing function of their total energy. This work was later revisited and
extended by Ipser-Thorne to the relativistic case [17]. Antonov used the so-called
Casimir-energy method to obtain his results. Simultaneously, Zel’dovich and Po-
durets [29] stated that relativistic spherically symmetric steady states of ”high
temperature” (modeled by a Maxwellian) are unstable.
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A key method in the stability study is the Casimir-energy method, see [15, Section
2] for a comprehensive introduction. Consider a differential system given by a
Hamiltonian, admitting a collection of constants of motions, the so-called Casimir
functionals. If an equilibrium is a critical point of a combination of the Hamiltonian
and a constant of motions, and if the second variation of this combination defines a
positive quadratic form, then, under some assumptions, the equilibrium is orbitally
(or Lyapunov) stable. If a Hamiltonian formulation for the Vlasov-Poisson system
is a classical result, such a formulation was derived for the Einstein-Vlasov system
in the ’90s in [18]. Note that a Lagrangian formulation of the system was recently
obtained in [2].

The dynamical stability of the vacuum state of the Vlasov-Poisson system was
proven in [8]. Shortly after, [9] provided the proof of the classification of static
spherically symmetric steady states of the Vlasov-Poisson system: the matter den-
sity can be expressed as a function of the total energy and the angular momentum
of the particles. This statement is known as Jeans’ theorem. The first use of the
Casimir-energy method to prove that the stability of these steady states is done in
[23]. The most complete proof of the nonlinear stability under the criteria intro-
duced by Antonov [7] was obtained by Lemou-Méhats-Raphael [19]. They prove
that steady states which satisfy Antonov’s criterium and which do not depend
on angular momentum are orbitally stable. Techniques of the proof involve the
characterization of the stable steady states as a fixed point of a transformation de-
creasing the Hamiltonian, coercivity estimates for the second variation of energy,
and a compactness argument. Spherically symmetric steady states which depend
on angular momentum may be unstable under some conditions [10]. Axially sym-
metric stationary steady states have been studied numerically, see for instance
[27, 1], and constructed [24], but the problem of their stability remains largely
open.

Amongst the steady states, the vacuum states play a particular role. The
stability of the vacuum solution to the Einstein-Vlasov system with vanishing
cosmological constant under spherically symmetric perturbations was proven by
Rein-Rendall [22]. The first result for generic perturbations is the stability of
de Sitter space by Ringström [25]. The instability of anti-de Sitter space under
spherically symmetric perturbation as a solution of the massless Einstein-Vlasov
system is obtained in [21]. The nonlinear dynamical stability of Minkowski space as
a vacuum state of the Einstein-Vlasov system has only been recently obtained [11,
20]. Both approaches rely on a vector-field method for the transport equation, see
for instance [12]. Initial data are restricted to compactly supported matter density
and compactly-supported perturbations of the Schwarzschild metric far from the
horizon. There exist a priori arbitrarily small steady states of the Einstein-Vlasov
system. The reason why those are excluded by the dynamical nonlinear stability
result [11, 20] should be investigated. The source of pointwise decay of [11, 20] is
a weighted Sobolev inequality and requires high regularity in velocities. This is
in strong contrast with the small-data global existence result [16] for the Vlasov-
Poisson system.
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The construction of spherically symmetric steady states in the form of those of
Jeans’ theorem was initiated in [22]. Counterexamples to Jeans’ theorem have been
constructed [26]. Wolansky attempted to use the Casimir-energy method [28], but
the proof was unfortunately not correct [4]. Axisymmetric stationary solutions
to the Einstein-Vlasov are obtained in [6, 5], and are investigated numerically in
[1]. [14] provides the first linear (in)stability proof of relativistic static spherically
symmetric solutions. The criterium for instability is the central redshift of the
compact object, in strong contrast to the criterium in the classical case. The
authors obtained more specifically a classical exponential trichotomy for admissible
perturbations of the steady states, and provide the first proof of a turning point
principle for those steady states. A detailed numerical analysis of the stability of
spherical steady states is presented in [13]. The extension of [14] beyond spherical
symmetry and linearization is a deeply challenging and wide-open problem.
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The large charge expansion for relativistic and non-relativistic models

Susanne Reffert

It has become clear in recent years that working in sectors of large global charge
of strongly coupled and otherwise inaccessible CFTs leads to important simplifica-
tions. It is indeed possible to formulate an effective action in which the large charge
appears as a control parameter. In this talk, I will explain the basic notions of
the large-charge expansion using the simple example of the 2+1-dimensional O(2)
model at the Wilson-Fisher point. The same approach can also be applied to
non-relativistic systems.

Derivation of Mean-Field equations from many-body QM

Michael Hott

In this talk, we will see some main ideas on how to derive dynamical effective
theories starting with the many-body Schroedinger equation. We will study two
approaches in particular: One coming from unitary transformations applied in
the second-quantization formalism, found, e.g., in the celebrated works of Erdos,
Schlein and Yau, and one coming from deviation estimates as introduced by Peter
Pickl.
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Starting with the N -body Hamiltonian

HN :=

N
∑

i=1

(−∆xi
)σ +

λ

N − 1

∑

i<j

1

|xi − xj |
(1)

acting on the bosonic Hilbert space L2
s(R

3N ), we are interested in an effective
description for the Cauchy problem

{

i∂tΨN,t = HNΨN,t ,

ΨN,t

∣

∣

∣

t=0

= ΨN,0 .
(2)

For that, we assume a factorized initial state ΨN,0 = φ⊗N
0

that can be found in a
weakly interacting Bose-Einstein condensate. The power σ ∈ { 1

2
; 1} distinguishes

the semi-relativistic (σ = 1

2
) and the non-relativistic (σ = 1) case. It can be proved

that (2) converges to the Hartree equation
{

i∂tφt = (−∆)σφt + λ 1

|·| ∗ |φt|2φt ,

φt

∣

∣

t=0
= φ0

(3)

in the sense that

(4) lim
N→∞

|〈ΨN,t, AΨN,t〉 − 〈φ⊗k
t , Aφ⊗k

t 〉| = 0

for a class of observables A : L2
s(R

3k) → L2
s(R

3k). This convergence has been
shown with a rate of convergence and for a class containing the kinetic energy
operator (−∆)σ. In the semi-relativistic case σ = 1

2
, convergence has been shown

after choosing a regularization of HN by replacing 1

|·| → 1

|·|+αN

for a null sequence

(αN )N∈N. This is due to the fact that HN ceases to be bounded from below when
λ < 0 is chosen such that kinetic energy and potential energy balance each other.
In this case, there is no unique or physical self-adjoint extension of HN , as pointed
out during the conference, by Michael Kiessling.

More recent works study the evoluation beyond the Hartree approximation,
including propagation of soundwaves with Bogoliubov dispersion. In the static,
Fermionic case, the highest order correction that has been established, is the one
coming from diagonalizing pair excitations. This leads to the Random Phase
Approximation. Moreover, instead of considering the Mean-Field scaling for the
potential, scalings where the interaction becomes more δ-like or comparable to the
kinetic energy are studied.
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ysis. Annales Henri Poincaré. Vol. 9. No. 8 (2008), 1503–1574.
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