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Introduction by the Organizers

The workshop Classical and Quantum Mechanical Models of Many-Particle Sys-
tems, organized by Eric Carlen (New Brunswick), Klemens Fellner (Graz), Isabelle
Gallagher (Paris) and Pierre-Emmanuel Jabin (College Park), focused on partial
differential equations describing the collective behavior of many-particle systems
in various application fields: physics (gas dynamics, plasmas, quantum mechan-
ics), mathematical biology (cell mobility, evolution of trait-structured species),
and social sciences (wealth distribution).

The many innovative talks highlighted recent progress on analytical results (like
global-in-time well-posedness, regularity of solutions), model reduction (i.e., the
rigorous derivation of simpler or mesoscopic models from many-particle master
equations and asymptotic limits), efficient numerical schemes (preferably preserv-
ing the physically conserved quantities), and quantitative solution properties (like
convergence to the equilibrium for large time).

Due to the present circumstances, the workshop took place entirely online. The
workshop was organized around a limited number of zoom talks of about 40min
each, 3 per day, bridging European and American time zones. Priority was given
as much as possible to younger or more junior researchers for speakers.

The workshop made used of break-up rooms for virtual coffee. This turned out to
be quite effective to get the participants to interact together with an open problem
session that ran for an hour the last day of the conference.

Overall we were very happy to be able to still have this workshop but obviously
missed the interactions outside of the talks that form a traditional part of the
Oberwolfach experience.
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The Cauchy problem for The Boltzmann Equation Modeling Polyatomic
Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1889

Jean Dolbeault
L2 hypocoercivity, inequalities and applications . . . . . . . . . . . . . . . . . . . . . . 1893



Classical and Quantum Mechanical Models of Many-Particle Systems 1861

Abstracts

Quasilinear Approximation of the Vlasov Equation

Claude Bardos

(joint work with Nicolas Besse)

The object of this talk was a report on joint on going program with Nicolas Besse
from the Observatory of the Cote d’Azur “Nice -University”. We have already
two contributions one submitted [1] and one already posted on Arxiv.org [2]. It
is devoted to the quasi linear approximation for solutions of the Vlasov equation.
This is a very popular tool in Plasma Physic cf. [4] which proposes, for the
quantity:

(1) q(

∫

Rd
v

f(x, v, t)dx) ,

the solution of a parabolic, linear or non linear evolution equation

(2) ∂tq(t, v)−∇v(D(q, t; v)∇vq) = 0

Since the Vlasov equation is an hamiltonian reversible dynamic while (2) is not
reversible whenever D(q, t, v) 6= 0 the problem is subtle. Hence I did the following
things:

(1) Give some sufficient conditions, in particular in relation with the Landau
damping that would imply D(q, t, v) ≃ 0 . a situation where the equation
(2) with D(q, t; v) = 0 does not provides a meaning full approximation.

(2) Building on contributions of [8] and coworkers show the validity of the
approximation (2) for large time and for a family of convenient random-
ized solutions. This is justified by the fact that the assumed randomness
law is in agreement which what is observed by numerical or experimental
observations ( cf. [1]).

(3) In the spirit of a Chapman Enskog approximation formalize the very clas-
sical physicist approach ( cf. [7] pages 514-532) one can show [3] that
under analyticity assumptions this approximation is valid for short time.
As in [7] one of the main ingredient of this construction is based on the
spectral analysis of the linearized equation and as such it makes a link
with a classical analysis of instabilities in plasma physic.

Remarks
In some sense the two approaches are complementary. The short time is purely
deterministic and the stochastic is based on the intuition that over longer time the
randomness will take over of course the transition remains from the first regime to
the second remains a challenging open problem. The similarity with the transition
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to turbulence in fluid mechanic is striking. It is underlined by the fact that the
tensor

lim
ǫ→0

D
ǫ(t, v) = lim

ǫ→0

∫
dx

∫ t

ǫ2

0

dσ Eǫ(t, x+ σv) ⊗ Eǫ(t− ǫ2σ, x)

which involves the electric fields here plays the role of the Reynolds stress tensor.
Obtaining, for some macroscopic description, a space homogenous equation for

the velocity distribution is a very natural goal. Here the Vlasov equation is used
as an intermediate step in the derivation. Along such line, deeper connection with
the use of the Lenard-Balescu equation as presented in the talk [5] of Mitia Duer-
inckx, “Propagation of chaos and corrections to mean field for classical interacting
particles ” in this workshop (cf. also [6]) should be considered in the future.
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Mean field limits for inertialess particles sedimenting in a Stokes flow

Richard Höfer

(joint work with Richard Schubert, Juan J.L. Velázquez)

Suspensions of many small particles are ubiquitous in nature and technology.
We consider models of identical spherical particles Bi := BR(Xi), 1 ≤ i ≤ N ,

where the gravitational acceleration g is the driving force for the dynamics. The
fluid could be modeled by the incompressible Navier-Stokes equations

ρf (∂tu+ u · ∇u)− µ∆u+∇p = 0, divu = 0 in R
3\

N⋃

i=1

Bi,

u(x) → 0 as x→ ∞, u = Vi +Ωi × (x−Xi) in Bi,
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and the particle evolution by Newton’s equations.

mi
d

dt
Vi = (ρp − ρf )|Bi|g +

∫

∂Bi

σ[u, p]ndH2,

d

dt
(IiΩi) =

∫

∂Bi

(x−Xi)× σ[u, p]ndH2

Here, Ii ∈ R
3×3 denotes the moment of inertia of Bi, and σ[u, p] = µ(∇u +

(∇u)T )− pId the fluid stress.
We are interested in the limit N → ∞, R → 0 in a suitable scaling such that

the collective effects of the particles is of order one. The implicit, singular and
long-range nature of the interaction renders the problem very difficult.

For a single particle with velocity V in a quiescent Stokes flow, it is well known
that the drag force exerted on the particle by the fluid is 6πµR(u∞ − V ), where
u∞ is the fluid velocity at infinity.

Even for positive Reynolds numbers, the fluid is formally well approximated by
the Stokes equations at the length-scale of a single particle. Thus, by a superpo-
sition principle and a action-reaction principle, one formally obtains the following
Vlasov-Navier-Stokes system as the limit of the microscopic system under a suit-
able scaling:

∂tf + v · ∇xf + λdivv

(
ĝf +

9

2
γ(u− v)f

)
= 0,

Re(∂tu+ u · ∇u)−∆u+∇p = 6πγ

∫

R3

(v − u)fdv, divu = 0,

where Re, γ, λ are dimensionless parameters. The derivation of this coupled system
is completely open. Neglecting the particle evolution the derivation of the fluid
equations, the so called Brinkman equations, has been obtained (see e.g. the
classical works [1, 3] and recent improvements [2, 4, 8]).

Formally setting the Reynolds number and Stokes number equal to zero (Re =
λ = 0 for γ > 0), one obtains the coupled transport-Stokes system for the sedi-
mentation of inertialess particles

∂tρ∗ + (u∗ +
2

9
γ−1ĝ) · ∇xρ∗ = 0,

−∆u∗ +∇p = 4π

3
ρ∗ĝ, divu∗ = 0.

This has been made rigorous in [7].
This system can be derived rigorously from the microscopic inertialess dynamics

−∆uN +∇pN = 0, divuN = 0 in R
3\

N⋃

i=1

Bi,

uN = Vi + (x−Xi)× Ωi in Bi, 1 ≤ i ≤ N,
d

dt
Xi(t) = Vi,

∫

∂Bi

σ[uN , pN ]ndH2 = − g

N
,

∫

∂Bi

σ[uN , pN ]n× (x−Xi)dH2 = 0.
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After the preliminary result [11] this has been achieved in [6] (see also [12]). The
main assumptions are that the particles are well separated and their volume frac-
tion tends to zero .

Recently, in [9], we extended the result to account for a first order correction in
the volume fraction φ of the particles. It is well-known that inertialess particles
increase the effective viscosity of suspensions and the first order effect in terms
of the particle volume fraction has been computed by Einstein in his PhD thesis
in 1905. Einstein’s formula has been proved rigorously in recent years (see [13]
and later works). Consequently, we obtain that the microscopic dynamics is well
approximated in the p-Wasserstein distance by the macroscopic system

∂tρ+ (ueff + (6πNR)−1g) · ∇ρ = 0, ρ(0, ·) = ρ0,

div

(
2

(
1 +

5

2
φNρ

)
Dueff

)
+∇p = ρg, divueff = 0.

The proof is based on explicit approximations of the particle velocities through
the fluid PDE based on the method of reflections following the work [10]. Moreover,
we adapt and improve classical results by Maxime Hauray [5] to pass to the limit
by controlling simultaneously the infinte Wasserstein distance and the minimal
particle distance.
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[5] M. Hauray, Wasserstein distances for vortices approximation of Euler-type equations, Math-
ematical Models and Methods in Applied Sciences 19 (2009), 1357–1384.

[6] R.M. Höfer, Sedimentation of inertialess particles in Stokes flows, Communications in Math-
ematical Physics 360 (2018), 55–101.
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The Landau equation: Particle Methods & Gradient Flow Structure

José A. Carrillo

(joint work with Matias G. Delgadino, Laurent Desvillettes, Jingwei Hu,
Li Wang, Jeremy Wu)

The Landau equation is an important partial differential equation in kinetic theory.
It gives a description of colliding particles in plasma physics [9], and it can be
formally derived as a limit of the Boltzmann equation where grazing collisions are
dominant [10]. Similar to the Boltzmann equation, the rigorous derivation of the
Landau equation from particle dynamics is still a huge challenge. For a spatially
homogeneous density of particles f = ft(v) for t ∈ (0,∞), v ∈ R

d the homogeneous
Landau equation reads

(1)

∂tf(v) = ∇v ·

(

f(v)

∫

Rd

|v − v∗|
2+γΠ[v − v∗](∇v log f(v)−∇v∗ log f(v∗))f(v∗)dv∗

)

.

For notational convenience, we sometimes abbreviate f = ft(v) and f∗ = ft(v∗).
We also denote the differentiations by ∇ = ∇v and ∇∗ = ∇v∗ . The physically
relevant parameters are usually d = 2, 3 and γ ≥ −d − 1 with Π[z] = I − z⊗z

|z|2

being the projection matrix onto {z}⊥. In this paper, for simplicity we will focus
in the case d = 3 and vary the weight parameter γ, although most of our results
are valid in arbitrary dimension. The regime 0 < γ < 1 corresponds to the so-
called hard potentials while γ < 0 corresponds to the soft potentials with a further
classification of −2 ≤ γ < 0 as the moderately soft potentials and −4 ≤ γ < −2 as
the very soft potentials. The particular instances of γ = 0 and γ = −d are known
as the Maxwellian and Coulomb cases respectively.

The purpose of this talk is to propose a new perspective inspired from gradient
flows for weak solutions to (1), which is in analogy with the relationship of the heat
equation and the 2-Wasserstein metric, see [8, 2]. Moreover, we aim at showing
how to use this intepretation to propose a deterministic particle method to solve
efficiently the Landau equation (1). One of the fundamental steps is to symmetrize
the right hand of (1). More specifically, if we consider a test function φ ∈ C∞

c (Rd)
we can formally characterize the equation by
(2)
d

dt

∫

Rd

φfdv = −
1

2

∫∫

R2d

ff∗|v−v∗|
2+γ(∇φ−∇∗φ∗) ·Π[v−v∗](∇ log f−∇∗ log f∗)dv∗dv,

where the change of variables v ↔ v∗ has been exploited. Building our analogy
with the heat equation and the 2-Wasserstein distance, we define an appropriate
gradient

∇̃φ := |v − v∗|1+
γ
2 Π[v − v∗](∇φ −∇∗φ∗),
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so that equation (2) now looks like

d

dt

∫

Rd

φfdv = −1

2

∫∫

R2d

ff∗∇̃φ · ∇̃ log fdv∗dv,

noting that Π2 = Π. To highlight the use of this interpretation, we notice that
∇̃φ = 0, when we choose as test functions φ = 1, vi, |v|2 for i = 1, . . . , d which
immediately shows that formally the equation conserves mass, momentum and
energy. The action functional defining the Landau metric mimics the Benamou-
Brenier formula [3] for the 2-Wasserstein distance. In fact, the Landau metric is
built by considering a minimizing action principle over curves that are solutions
to the appropriate continuity equation, that is

(3) dL(f, g) := min
∂tµ+

1
2 ∇̃·(V µµ∗)=0

µ0=f, µ1=g

{
1

2

∫ 1

0

∫∫

R2d

|V |2 dµ(v)dµ(v∗)dt
}
,

where the ∇̃· is the appropriate divergence; the formal adjoint to the appropriate
gradient. Also, we notice that analogously to the heat equation, written as the
continuity equation ∂tf = ∇ · (f∇ log f), the Landau equation can be formally
re-written as

∂tf =
1

2
∇̃ · (ff∗∇̃ log f),

equivalent to the continuity equation with non-local velocity field given by

(4)





∂tf +∇ · (U(f)f) = 0

U(f) := −
∫

Rd

|v − v∗|2+γΠ[v − v∗] (∇ log f −∇∗ log f∗) f∗dv∗ .

Considering the evolution of Boltzmann entropy we formally obtain

d

dt

∫

Rd

f log fdv =: −D(ft) = −1

2

∫∫

R2d

|∇̃ log f |2ff∗dv∗dv ≤ 0.(5)

In physical terms this is referred to as the entropy dissipation or entropy production
for it formally shows that the entropy functional

H[f ] :=

∫

Rd

f log fdv

is non-increasing along the dynamics of the Landau equation. Moreover, by inte-
grating equation (5) in time one formally obtains

H[ft] +

∫ t

0

D(fs)ds = H[f0].(6)

Similar to H-solutions our approach will also be based on the entropy dissipation
(6). Following De Giorgi’s minimizing movement ideas [1, 2], we characterize the
Landau equation by its associated Energy Dissipation Inequality. More specifically,
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we show that weak solutions to (1) with initial data f0 are completely determined
by the following functional inequality:

H[ft] +
1

2

∫ t

0

|ḟ |2dL
(s) ds+

1

2

∫ t

0

D(fs) ds ≤ H[f0] for a.e. every t > 0,

where |ḟ |2dL
(s) stands for the metric derivative associated to the Landau metric

defined above. Our analysis is also largely inspired by Erbar’s approach in viewing
the Boltzmann equation as a gradient flow [7] and recent numerical simulations
of the homogeneous Landau equation in [5] based on a regularized version of (4).
In contrast with the classical 2-Wasserstein metric, one of the main features of
the Landau equation (1) and metric (3) is that they are non-local. Hence, the
convergence analysis usually relying on convexity and lower-semi continuity needs
to be adapted to deal with the non-locality of this equation.

From the numerical viewpoint we will propose a deterministic particle scheme
that preserves all the conserved quantities at the semidiscrete level for the regular-
ized Landau equation and that is entropy decreasing. We will illustrate the per-
formance of these schemes with efficient computations using treecode approaches
borrowed from multipole expansion methods for the 3D relevant Coulomb case.

From the theoretical viewpoint, we use the theory of metric measure spaces
for the Landau equation, we carefully study the Landau distance dL. Moreover,
we show for a regularized version of the Landau equation that we can construct
gradient flow solutions, curves of maximal slope, via the corresponding variational
scheme. The main result obtained for the Landau equation shows that the chain
rule can be rigorously proved for the grazing continuity equation, this implies that
H-solutions with certain apriori estimates on moments and entropy dissipation
are equivalent to gradient flow solutions of the Landau equation. We crucially
make use of estimates on Fisher-like quantities in terms of the Landau entropy
dissipation developed in [6].
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The 3-particles collision integral +condensate: condensate growth?

Miguel Escobedo

The three particles collision integral for an isotropic dilute gas of bosons may be
written (cf.[2]):

C1,2(F ) =

∫∫

R3×R3

(R(k,k1,k2)−R(k1,k,k2)−R(k2,k1,k) d
3k1d

3k2

R(k,k1,k2) = |M(k,k1,k2)|2 δ (ω(k)− ω(k1)− ω(k2))×
× δ (k− k1 − k2) (F1F2(1 + F )− (1 + F1)(1 + F2)F )

where F (t,k) is the density of particles at time t and momentum k and we denote
Fj(t) ≡ F (t,kj) for j = 1, 2, 3, 4, ω(k) is the energy of particles of momentum k,

|M(k,k1,k2)|2 is the scattering amplitude.

Different functions ω(k), |M(k,k1,k2)|2 may arise for different types of parti-
cles or waves For a gas of bosons in presence of the condensate, the dispersion law
is usually taken as being (cf.[2]):

ω(t,k) =
√
2gn(t)|k|2 + |k|4, (m = 1/2)

g = 4πa, a : s-wave scattering length

n(t) : condensate’s density

As described in [2, 3]; the collision integral C1,2 describes number-changing pro-
cesses between superfluid component (condensate) and the normal fluid. In the
moderately low temperature

ω(k) = k2, |M(k,k1,k2)|2 = 32a2n(t).

For a spatially homogeneous isotropic gas:

F (t,k) = F (t, |k|); g(t, x) = |k|F (t, |k|), x = |k|2;
and the system may be written:

∂F

∂t
(t,k) = C1,2(F )(t,k), (F (t,k) ≡ F (t, k))(1)

dn(t)

dt
= −

∫

R3

C1,2(F )(t,k) d
3k(2)

where n = n(t) represents the condensate density. Notice that this system satisfies
the formal conservation of number of particles and energy. The particles density
F (t) may be a measure, but the description assumes: F (t, {0}) = 0 for all t > 0.
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If g(t, x) = k F (t, k) where x = k2 is a function defined for x > 0 and bounded at
the origin, simple integration by parts would give:

n′(t) = −n(t)M1/2(g)(t)

and n would decrease for all t.
However, it was shown in [1] that for all initial data ∀g0 ∈ M

+
1 ([0,∞)), n0 > 0

there exists a weak solution g ∈ C([0,∞);M+
r ([0,∞)), n ∈ L∞(0,∞) such that,

for ϕε(x) =
(
1− x

ε

)2
+

n′(t) = −n(t)
(
M1/2(g)(t)− T (g)(t)

)

T (g) = lim
ε→0

∫∫

(0,∞)2

ϕε(x+ y) + ϕε(|x− y|)− 2ϕε(max{x, y}).√
xy

g(x)g(y)dxdy > 0.

As a Corollary, it was deduced in [1] that, if g has no atoms and g(t, x) ∼
x→0

a(t)xθ

for some θ then θ = −1/2. That is exactly the behavior of the equilibria
√
x

ex−1 and it

is known (cf.[4]) that if x−1/2g(x) is bounded for large x, such that x−1/2g(x) →
x→0

a

and g has some Hölder regularity for 0 < x < 1 then

lim
δ→0

∫ ∞

δ

√
x I(g)(x)dx = −a

2 π2

3
+ 2M1/2(g).

None of these conditions is proved to be satisfied by the weak solutions obtained
in [1]. Our purpose is then to prove existence of regular global radially symmetric
solutions to (1) that behave like x−1/2 as x→ 0 for all t > 0. A possible strategy
is to start linearizing the equation around an equilibria as follows

F (t,k) = F0 + F0(1 + F0)Ω(t).

In order to simplify as much as possible the presentation we change to x = |k|
variable. Then, ω(k) = |k|2 = x2 and F0(k) ≡ F0(x) =

1
ex2−1

. If one consider the

new function f(t, x) = Ω(t,x)
x2 and keep only linear terms in the equation,

∂f

∂t
(t, x) = n(t)L (f(t))(x), t > 0, x > 0,

L (f(t))(x) =

∫ ∞

0

(f(t, y)− f(t, x))M(x, y)dy

M(x, y) =

(
1

sinh |x2 − y2| −
1

sinh(x2 + y2)

)
y3 sinhx2

x3 sinh y2

It is then possible to prove the following:

Theorem. Suppose that u0 ∈ L1(0,∞) satisfies

(3) sup
0<x<1

xθ|u0(x)| + sup
x>1

|u0(x)| <∞

for some θ ∈ (0, 1). Then, there exists

u ∈ C([0,∞);L1(0,∞)) ∩ L∞
loc((0,∞);L∞(0,∞)); pc ∈ C([0,∞))(4)
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such fhat for every t > 0, u(t) ∈ C(0,∞),

∂u

∂t
, L (u) ∈ L∞

loc((0,∞);L∞(δ,∞) ∩ L1(0,∞)), ∀δ > 0,(5)
∣∣∣∣
∂u(t, x)

∂t

∣∣∣∣+ |L (u)(t, x)| ≤ Ξ
(
||u0||L∞(1,∞) + ||u0||1; t, x

)
(6)

for some explicit function Ξ

(7)
∂u(t, x)

∂t
= L (u(t))(x) + F (u(t))(x).

It is tempting to use the arguments in [4] using the approximated solution F0 +
F0(1 + F0)x

2u(t, x) in (2) and obtain

n(t) ≈
∫ ∞

0

I(F0 + F0(1 + F0)x
2u(t))(x)x2dx =

(1 + a(t))2π2

3
−

−
∫ ∞

0

(F0 + F0(1 + F0)x
2u(t, x))x3dx

The proof of this Theorem is based on the approximation of L , where the
kernel M is replaced by its asymptotic behavior for x << 1, y << 1:

L(f)(x) =

∫ ∞

0

K(x, y)(f(t, y)− f(t, x))dy

K(x, y) =

(
1

|x2 − y2| −
1

x2 + y2

)
y

x
, ∀x > 0, ∀y > 0, x 6= y.

When f is a regular function, L(f) may be written,

L(f)(x) =

∫ ∞

0

H

(
x

y

)
∂f

∂y
(y)

dy

y

H(z) =
H(1− z)

z
log

(
1 + z2

1− z2

)
+

H(z − 1)

z
log

(
1− 1

z4

)

where H is the Heaviside’s function and the problem

∂f

∂t
= L(f), f(0) = f0

is solved and studied in detail, using Mellin transform.
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The Vlasov-Poisson-Landau System with Specular Reflection
Boundary Condition

Yan Guo

(joint work with Hongjie Dong, Zhimeng Ouyang)

A collisional plasma confined in a non-convex bounded domain (e.g. a tokamak)
is described by the Vlasov-Poisson-Landau system, in which charged particles
interact with a self-consistent electrostatic potential and their Coulombic collisions,
and reflect specularly at the boundary. Global well-posedness of this model is
established near Maxwellians via combining nonlinear energy method with the Sp

estimate for Fokker-Planck type of equations. This is a joint work with Hongjie
Dong and Zhimeng Ouyang [1].
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On the correction to Einstein’s formula for the effective viscosity

Amina Mecherbet

(joint work with David Gérard-Varet)

Rigorous justification of effective models for suspensions of viscous particles has
attracted a lot of attention recently. Applications range from geophysics (sed-
imentation), biophysics (modelling of respiratory aerosols) to biology (bacterial
suspensions a low Reynold number, polymeric fluids).

This talk concerns the problem related to Einstein’s formula for the effective
viscosity. A first investigation by the first author in collaboration with M. Hillairet
[2] leads to the conclusion that the mean-value of the second order approximation
of the effective viscosity is explicitly given by a mean-field limit as soon as the
microscopic velocity is close to the solution of an effective Stokes model. In this
presentation based on the preprint [1], I will explain how can we prove the recip-
rocal property, that is, the convergence to an effective Stokes model is ensured
as soon as the second order correction corresponds to a mean-field limit quantity
encoding the pairwise interactions between particles.

Given n identical spherical particles defined by Bi = B(xi, r) where xi the

center of mass of the ith particle and r their radius, we set Fn = R
3 \

n⋃
i=1

B̄i the

domain occupied by the fluid and consider the following Stokes equation

(1)





−µ∆u+∇p = 0, div(u) = gn, on Fn

u = ui + ωi × (x − xi), on Bi, 1 ≤ i ≤ n,
lim

|x|→∞
|u(x)| = 0.
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where µ the fluid viscosity, gn ∈ L2(R3) ∩ L6/5(R3) models some forcing. ui, ωi

correspond to the linear and angular velocity of the ith particle. They are un-
knowns, associated to the newtonian dynamics of the particles: in the absence of
inertia, relations are of the form

(2)

∫

∂Bi

σ(un, pn)ν = −
∫

Bi

gndx,

∫

∂Bi

[σ(un, pn)ν]× (x− xi) = −
∫

Bi

gn × (x − xi)dx,

where ν the unit outer normal on the sphere ∂Bi, (ρp, ρf ) the particle and fluid
density, Σ(u, p) corresponds to the stress tensor associated to the Stokes equation

Σ(u, p) = 2µD(u)− pI.

with I the 3× 3 identity matrix and D(u) the symmetric gradient of u.
We assume that the particles occupy a volume of size one in the sense that

(A0) ρn =
1

n

∑

i

δxi
−→
n→∞

ρ

in the sense of measures with ρ a bounded density with support O where O a
smooth bounded domain such that |O| = 1. we assume that we are in a regime
such that the volume fraction of the particles λ = 4

3πr
3n is small but of order

one (independent of n). Note that this means that the radius of the particles r
scales like n−1/3. We also assume the following separation assumption between
the particles

(A1) min
i6=j

|xi − xj | ≥ cn−1/3,

for a given constant c > 0. The aim is to show that the fluid-particle system
converges to a Stokes equation with a viscosity coefficient µeff = µeff(x) different
from the fluid viscosity µ locally in O due to the presence of the particles. We
show that the limit equation can be approximated, up to an error of order o(λ2),
by the following effective model

(3)

{
−div(2[µ+ µ1λ+ µ2λ

2]D(ū)− Ip̄) = g, on R
3,

div(ū) = 0, on R
3,

with an appropriate first and second order corrections µ1, µ2. It is important to
emphasize that these corrections are not scalar neither constants but can be seen
as measures on the space R

3 × R
3 with values in the space

Sym
(
Sym3,σ(R)

)
:= {M : Sym3,σ(R) → Sym3,σ(R), M t =M}

of symmetric isomorphisms of the space of trace-free symmetric 3 × 3 matrices
denoted by Sym3,σ(R). Using the method of reflections we are able to identify µ2 as
a mean-field limit of a measure µ2,n defined as a compactly supported distribution



Classical and Quantum Mechanical Models of Many-Particle Systems 1873

on R
3
x×R

3
y, with values in the space Sym

(
Sym3,σ(R)

)
: for F = F (x, y) ∈ C∞(R3×

R
3) (even for F ∈ C1(R3 × R

3)),

(4) 〈µ2,n, F 〉 =
75µ

16π

(
1

n2

∑

i6=j

M(xi − xj)F (xi, xj) −
∫

R3

∫

R3

M(x− y)F (x, y)ρ(x)ρ(y)dy

)
,

where M = M(x) ∈ Sym
(
Sym3,σ(R)

)
is given by

M(x)S : S′ = −D
(
x⊗ x : S

|x|5 x

)
: S′,

= −2
Sx · S′x

|x|5 + 5
(S : x⊗ x)(S′ : x⊗ x)

|x|7 , ∀S, S′ ∈ Sym3,σ(R).

The main result is the following

Theorem 1. Let λ > 0, g ∈ L3+ǫ, ǫ > 0, µ2 ∈ L∞ (
R

3, Sym
(
Sym3,σ(R)

))
. For

all n, let rn such that λ =
4π

3
nr3n, gn ∈ L

6
5 (R3). Let un,λ the solution of (1)-(2)

in Ḣ1(R3) ∩ L6(R3). Assume (A0)-(A1), that gn → g in L
6
5 (R3), and that

(A2) µ2,n → µ2(x)δx=y in D′ (
R

3 × R
3, Sym

(
Sym3,σ(R)

))

with µ2,n defined in (4). Then any accumulation point uλ of un,λ solves

(5)

{
−div(2[µ+ 5

2µρλ+ µ2λ
2]D(uλ)− Ipλ) = g +Rλ, in R

3,
div(uλ) = 0, in R

3,

where Rλ satisfies for all q ≥ 3

(6) |〈Rλ, φ〉| ≤ Cλ
7
3 ‖Dφ‖q, ∀φ ∈ Ḣ1(R3) ∩ Ẇ 1,q(R3).

Estimate (6) shows in particular that the model (5) is close to the effective
model (3) up to a o(λ2) error.
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From the many-body quantum dynamics to the Vlasov equation

Chiara Saffirio

(joint work with Laurent Laflèche)

We consider the Vlasov-Poisson system

(1)





∂tf + v · ∇xf − (∇| · |−1 ∗ ̺) · ∇vf = 0 ,

̺f (t, x) =
∫
Rd f(t, x, v) dv ,

where the unknown f : R+ × R
d × R

d → R+ represents the density of charged
particles in a plasma and ̺f : R+×R

d → R+ is the spacial density associated with
f . In what follows we will restrict our analysis to the spacial dimensions d = 2, 3,
which are the physical interesting cases.

Well-posedness of the Cauchy problem associated with (1) in dimension d = 2
is well known from the work of Okabe and Ukai [7]. The three dimensional case
has been addressed by Pfeffelmoser [8] and Lions and Perthame [6] in the 90s.
They show that a solution of Eq. (1) exists and is unique under integrability and
regularity assumptions on the initial datum.

We now consider a system of N interacting fermions in R
d in the mean-field

limit, whose dynamics is expected to be approximated, for N large enough, by the
Hartree-Fock equation (Cf. for instance [10], [2], [1])

(2) i ~ ∂t ωN,t = [ h(t) , ωN,t ]

where ωN,t is a one-particle operator on L2(Rd) with tr ωN,t = N , ~ is the Planck
constant, the parentheses [A,B] denote the commutator AB−BA of the operators
A and B, and h(t) is the time-dependent Hartree-Fock Hamiltonian

h(t) = −~∆+ | · |−1 ∗ ̺− X ,

where ̺ is given in terms of the diagonal kernel of the operator ωN,t by the identity

̺(t, x) = N−1ωN,t(x, x) ,

and X is the exchange operator defined through its kernel

X(x, y) = N−1|x− y|−1ωN,t(x, y) .

As already pointed out in [2], the fermionic mean-field scaling for fermions initially
confined in a volume of order one forces the Planck constant to scale proportionally

to N− 1
d . In other words, the mean-field limit for fermions is coupled with the

semiclassical limit. For this reason, we will fix from now on ~ = N− 1
d .

Furthermore, we observe that the Hartree-Fock equation is still N dependent.
It is therefore natural to investigate its limit as N goes to infinity, i.e. to study its
semiclassical approximation as ~ goes to zero. Our main result (based on [4]) shows
that in fact the solution of the Hartree-Fock equation (2) can be approximated
by a solution of the Vlasov-Poisson equation (1) in strong topology under very
general regularity assumptions on the initial datum of the Vlasov-Poisson system.
Moreover, the rate of convergence is given explicitly. This improves on previous
results [5] (where the convergence is in weak topology without rate of convergence),
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[3] (where a rate of convergence is provided in weak-topology) and [9] (where a
strong convergence with explicit rate is proven only for a very special class of initial
data).

Before writing the precise theorem, we recall the notion of Wigner transform
and Weyl quantization. Let ω be a one particle operator on L2(Rd) with tr ω = N .
We define the Wigner transform of ω as

f(x, v) =

(
~

2π

)d ∫
ω

(
x+

~y

2
, x− ~y

2

)
e−iv·y dy .

Conversely, given a function f on the phase space R
d × R

d, we define its Weyl
quantization by

ωf(x, y) = N

∫
f

(
x+ y

2
, v

)
eiv·

(x−y)
~ dv.

Define furthermore the Sobolev spaces

Wk,p
m (Rd × R

d) = {f ∈ Lp(Rd × R
d) |

k∑

j=0

‖(1 + x2 + v2)
m
2 ∇jf‖Lp <∞} ,

Hk
m(Rd × R

d) = Wk,2
m (Rd × R

d) ,

then our main result reads

Theorem 1. Let f be a solution to the Vlasov-Poisson system (1) and ωN,t a
solution to the Hartree-Fock Eq. (2) with initial conditions

f0 ∈ Wk+1,∞
m (Rd × R

d) ∩Hk+1
k (Rd × R

d) ,

tr ωN,0 = N , tr (−~
2∆ωN,0) ≤ CN ,

for m > d and k > m+ 6.
Then, there exists λ(t) ∈ C0(R+;R+) and C(t) ∈ C0(R+;R+) depending only on
the initial conditions on the solution of the Vlasov-Poisson Eq. (1) such that

tr |ωN,t − ωf | ≤ (tr |ωN,0 − ωf,0|+ C(t)N ~
1) eλ(t) ,

where ωf and ωf,0 denote respectively the Weyl quantization of f and f0.
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A new Lyapunov functional for the (spatially homogeneous) Landau
equation with Coulomb potential

Laurent Desvillettes

(joint work with Ling-Bing He and Jin-Cheng Jiang)

Landau collision operator (Landau, 1938) for charged particles writes

Q(f, f)(v) = ∇ ·
{∫

R3

|v − w|−1 Π(v − w)

(
f(w)∇f(v)− f(v)∇f(w)

)
dw

}
,

where

Πij(z) := δij −
zizj
|z|2

is the i, j-component of the orthogonal projection Π on z⊥ := {y / y · z = 0}.
The corresponding equation (spatially homogeneous Landau equation with

Coulomb potential) writes (for f := f(t, v) ≥ 0):

∂tf(t, v) = Q(f, f)(t, v), f(0, v) = fin(v).

For the theory of existence of solutions to this equation, we refer to [4], [6], [8],
[2], and the references therein.

The Landau operator can also be viewed as a parabolic operator:

Q(f, f) = (a ∗ f) : ∇∇f + 8π f2,

where a is a matrix-valued function whose components are given by

aij(z) = Πij(z) |z|−1,

and the associated equation can be compared to other parabolic equations, such
as the nonlinear heat equations, the quadratic reversible reaction-diffusion system

∂tuk − dk ∆uk = (−1)k (u1 u3 − u2 u4), k = 1, .., 4,

and the 3D-incompressible Navier-Stokes equation

∂tu+ (u · ∇)u +∇p = ∆u, ∇ · u = 0.

A recent result analogous to the estimate by Caffarelli, Kohn, Nirenberg (cf.
[1]) of the Hausdorff dimension of the set of singular times for the solutions of the
3D-incompressible Navier-Stokes equation was obtained in [5]:
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Theorem (Golse, Gualdani, Imbert, Vasseur): For initial data with finite entropy
and third moment, the set of singular (positive) times for (suitable) solutions to
the Landau equation (with Coulomb potential) is of Hausdorff dimension ≤ 1/2.

Other classical results due to Leray (cf. [7]) on the 3D-incompressible Navier-
Stokes equation include the following statements:

• If ||u||L2 ||u||Ḣ1 is small enough, then there is a unique strong solution to
the 3D-incompressible Navier-Stokes equation,

• For all initial data with finite energy, the solutions to the 3D-incompressible
Navier-Stokes equation become strong after some time T > 0.

We now present our main result (cf. [3]), whose parts ii) and iii) can be seen as
analogues of the results by Leray described above:

Theorem: Let f0 ∈ L logL(IR3)∩L1
55(IR

3)∩Ḣ1(IR3) be a nonnegative normalized
initial datum. Then there exist (explicitly computable) constants B,C > 0, k0 >
7/2, k > 0 (depending only on K satisfying ‖f0‖L1

55(IR
3) + ‖f0 | ln f0|‖L1(IR3) ≤ K)

such that the three following statements hold:

(i)(Monotonicity of a functional). We denote by f := f(t, v) a smooth and quickly
decaying nonnegative solution to Landau equation (with Coulomb potential) with
initial datum f0.

We define h := f −µ, where µ := (2π)−3/2 exp(−|v|2/2) is the centered reduced

Maxwellian and H :=
∫ [

f ln
(

f
µ

)
− f + µ

]
the relative entropy.

Then the following a priori estimate holds:

d

dt

[
H(t)− 5

2

(
‖h(t)‖2

Ḣ1 +B (1 + t)−k0+1

)− 2
5
]
+ C (1 + t)k ≤ 0.

(ii)(Global regularity for initial data below threshold). If moreover

H(0)
(
‖h(0)‖2

Ḣ1 +B
) 2

5 ≤ 5

2
,

then Landau equation (with Coulomb potential) admits a (unique) global and
strong (that is, lying in L∞(IR+;H

1(IR3))) nonnegative solution satisfying that

∀t > 0, ‖h(t)‖Ḣ1

(
H(t) +

C

k + 1

[
(1 + t)1+k − 1

]) 5
4

≤
(
2

5

)− 5
4

.

(iii)(No blowup after a finite time). If finally

H(0)
(
‖h(0)‖2

Ḣ1 +B
) 2

5 >
5

2
,

we denote

T ∗ :=

(
1 + k

C

[
H(0)− 5

2

[
‖h(0)‖2

Ḣ1 +B
]−2/5

]
+ 1

) 1
k+1

− 1.

Then one can construct a global weak (or H-) nonnegative solution of Landau
equation with Coulomb potential such that for t > T ∗, it becomes global and
strong (that is, it lies in L∞

loc(]T
∗,∞[;H1(IR3))).
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We also present an extra result, relative to a the behavior of a solution at a possible
blowup time:

Proposition: Let f := f(t, v) be a nonnegative solution of the Landau equation
with Coulomb potential, corresponding to initial data f0 satisfying the assumptions
of the previous theorem.

We suppose that f ∈ L∞
loc([0, T̄ [;H

1(IR3)) and that ‖f(t)‖Ḣ1(IR3) blows up at

time T̄ .
Then for T̄ − t≪ 1 and some explicitly computable constants c, C0 (depending

only on K such that ‖f0 | ln f0| ‖L1(IR3) + ‖f0‖L1
55(IR

3) ≤ K and T̄ ),

‖h(t)‖Ḣ1 ≥ C0 (H(t)− H̄)−
5
4 , inf

s∈[t,T̄ ]
‖h(s)‖Ḣ1 ≤ c (T̄ − t)−

30
7 exp

{
c [T̄ − t]−

225
7

}
,

where H̄ := limt→T̄− H(t).

We end up with a few open questions related to the results described above:

• Is it possible to find a space which would be the equivalent of H1/2(IR3)
for the 3D incompressible Navier-Stokes equation?

• Lorentz spaces are used in the proof: is the use of those spaces unavoidable
(this may have to do with the issue of possible criticality of the Coulomb
case)?

• Is it possible to obtain an algebraic estimate for the solution at a possible
blowup time?
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Quantitative Fluid Approximation in Transport Theory:
A Unified Approach

Clément Mouhot

(joint work with Émeric Bouin)

The study of transport processes, i.e. linear collisional kinetic equations, has its
theoretical roots in the mean-free path argument of Maxwell and the kinetic theory
of gases of Maxwell and Boltzmann. A linear version of the Maxwell-Boltzmann
equation can be written for the movement of a tagged particle within a rarefied
gas, but the study of such transport processes was given a crucial new impetus in
the twentieth century with (1) the radiative transfer theory where the kinetic dis-
tribution models the flux of photons that are transported in the plasma making up
the internal layers of the sun, (2) the nuclear reactor theory where the kinetic dis-
tribution models the neutrons transported and scattered inside the reactor, whose
flux is used to initiate and maintain the chain reaction, (3) the semi-conductor
theory where the kinetic distribution models the flow of charge carriers in semi-
conductors, i.e. the evolution of the position-momentum distribution of negatively
charged conduction electrons or of positively charged holes, which are responsible
for the current flow in semiconductor crystals. The main mathematical object of
study in transport theory is the linear equation

∂tf + v · ∇xf = Lf

on the time-dependent density of particles f = f(t, x, v) ≥ 0 over (x, v) ∈ R
d×R

d,
for t ≥ 0. The left hand side accounts for free motion and the right hand side
accounts for the interaction with a background, for instance scatterers, with an
operator L that acts only on the kinetic variable v. In nuclear reactor, radiative
transfer and semi-conductor theories it is common to consider scattering operators,
sometimes also called linear Boltzmann operators

Lf(v) =
∫

Rd

b(v, v′)
[
f(v′)M(v)− f(v)M(v′)

]
dv′

for some collisional kernel b and some equilibrium distribution M. In astrophysics,
one also considers Fokker-Planck operators

Lf := ∇v ·
(
M∇v

(
f

M

))
.

As a simplified model of long-range collisional interactions in a gas of charged
particles, we also consider Lévy-Fokker-Planck operators for s ∈ (12 , 1) and α > s

L(f) = ∆s
vf +∇v · (U f)

with U(v) = U(|v|) radially symmetric so that ∆s
vM + ∇v · (UM) = 0 (the

fractional Laplacian is defined by Fourier-transforming the symbol −|ξ|2s). The
transport equation is too intricate for many applications. When the relevant time
and space scales of observation are much larger than the mean free time and mean
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free path, it is thus natural to search for a simplified diffusive regime, i.e. a limit
of fε in the rescaled equation

θ(ε)∂tfε + εv · ∇xfε = Lfε
as ε → 0 and for an appropriate time-scale θ(ε). We propose a unified method
for such limit in the whole space. The limit is of fractional diffusion type for
heavy tail equilibria with slow enough decay, and of diffusive type otherwise. The
proof is constructive and the diffusion matrix is obtained. A generalised weighted
mass condition is assumed on the equilibrium M which allows for infinite mass.
The method combines energy estimates and quantitative spectral methods to con-
struct a ‘fluid mode’ for small x-frequencies (see figure), motivated by the recent
papers [4, 3] and providing a new conceptual connexion with the seminal paper
[1] on hydrodynamic limit. The method is applied to scattering models (without

−λ
r0

−µ(η)

The fluid mode µ(η) → 0 as η = ε|ξ| → 0.

assuming detailed balance conditions), Fokker-Planck operators and Lévy-Fokker-
Planck operators. It proves a series of new results, including the fractional diffusive
limit for Fokker-Planck operators in any dimension, for which the characterization
of the diffusion coefficient was not known (see [2]), and for Lévy-Fokker-Planck
operators with general equilibria. It also unifies and generalises the results of ten
previous papers with a quantitative method; the estimates on the fluid approxi-
mation error seem novel in these cases. The abstract method is 15 pages long, and
the application to each equation is about 5 pages long.
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Propagation of chaos and corrections to mean-field for
interacting particles

Mitia Duerinckx

(joint work with L. Saint-Raymond and R. Winter)

We consider a system of N classical particles in the torus T
d, interacting via a

smooth potential V , in the mean-field regime: trajectories are given by Newton’s
equations in the phase-space D = T

d × R
d,

(1) ∂txj = vj , ∂tvj = − 1
N

∑N
l:l 6=j ∇V (xj − xl), for 1 ≤ j ≤ N .

For a statistical description, we consider a random ensemble of trajectories: for
simplicity, we choose initial data {(x◦j , v◦j )}1≤j≤N to be independent and identi-

cally distributed (iid) with some smooth law F ◦ on D. In terms of the probability
density FN for the ensemble of particles on the N -particle phase-space DN , New-
ton’s equations (1) are equivalent to the Liouville equation

(2) ∂tFN +
∑N

j=1 vj · ∇xj
FN = 1

N

∑
j 6=l ∇V (xj − xl) · ∇vjFN ,

with chaotic initial data FN |t=0 = (F ◦)⊗N . Looking for a simplified description
of the system, we define the m-particle probability density as the mth marginal
Fm
N (z1, . . . , zm) =

∫
DN−m FN (z1, . . . , zN) dzm+1 . . . dzN , with the notation zj =

(xj , vj). For a large number N ≫ 1 of particles, the 1-particle density F 1
N remains

close to the solution F of the Vlasov equation

(3) ∂tF + v · ∇xF = (∇V ∗ F ) · ∇vF,

with F |t=0 = F ◦. We refer to [1] for a review of this well-travelled mean-field result.
Formally, starting from the BBGKY hierarchy, the Vlasov equation is obtained
by neglecting 2-particle correlations, thus replacing F 2

N by (F 1
N )⊗2 in the equation

for F 1
N . A rigorous proof was obtained in the 1970s following Klimontovich’s ideas:

starting from the representation F 1
N = E[µN ] in terms of the empirical measure

µN = 1
N

∑N
j=1 δ(xj ,vj),

one notices that µN is a distributional solution of the Vlasov equation (3) and
that initially µN |t=0 converges weakly to F ◦ a.s., hence the stability of the Vlasov
equation in weak topology ensures the a.s. weak convergence µN ⇀ F . This
further entails Fm

N ⇀ F⊗m for all m ≥ 1, which is known as propagation of chaos.

Corrections to this mean-field theory are driven by the 2-particle correlation func-
tion G2

N = F 2
N − (F 1

N )⊗2 and are formally obtained by only neglecting 3-particle
correlations in the BBGKY hierarchy. A rigorous proof requires to show that the
2-particle correlation function is of order G2

N = O( 1
N ), while 3-particle correlations

are of higher order G3
N = O( 1

N2 ). Such a refined version of propagation of chaos
is provided by the following main result.
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Theorem A (see [2, Theorem 1]).
For m ≥ 0, the (m+ 1)-particle correlation function Gm+1

N satisfies for all t ≥ 0,

‖Gm+1
N (t)‖W−2m,1(Dm+1) ≤ N−mCme

Cmt,

where Cm only depends on d,m, V, F ◦.

Due to the loss of derivatives (cf. ∇v in the right-hand side of (2)), this result
cannot be deduced from the BBGKY hierarchy — in stark contrast with e.g. the
quantum mean-field setting in [3]. Instead, as for the mean-field result, we develop
an approach à la Klimontovich based on the empirical measure µN . First, we note
that G2

N is equivalent to the variance of µN ; the following representation formula
holds more generally for all m ≥ 1 and φ ∈ Cb(D),∫

Dm φ⊗mGm
N = κm[

∫
D
φdµN ] + lower-order terms,

where κm[·] stands for the mth cumulant. Next, to estimate the variance of µN

(and its higher-order cumulants), we appeal to discrete stochastic calculus tech-
niques with respect to iid data. For a random variable Y , we define its Glauber
derivative with respect to the initial data of the jth particle as DjY = Y −Ej [Y ],
where Ej [·] stands for the expectation with respect to (x◦j , v

◦
j ) only. In these terms,

a variance estimate is given by the following Efron–Stein inequality [4],

Var[Y ] ≤ ∑N
j=1 E[(DjY )2].

Noting the similarity to Malliavin calculus and arguing as in [5], we prove corre-
sponding cumulant estimates in form of higher-order Poincaré inequalities. We are
then reduced to evaluating the multiple Glauber derivatives of µN with respect
to iid data. Sensitivity estimates for trajectories are easily performed since the
mean-field regime corresponds to weak interactions: we find for instance

maxj 6=l |Dl(x
t
j , v

t
j)| ≤ N−1CeCt.

Combining these different ingredients yields the conclusion of Theorem A.

As a consequence, the above correlation estimates can be used to rigorously trun-
cate the BBGKY hierarchy to any order, and justify the so-called Bogolyubov
corrections to the mean-field Vlasov limit. Alternatively, cumulant estimates also
yield an optimal quantitative central limit theorem for µN , thus improving on the
well-established qualitative result in [6]. We refer to [2, Sections 5–7] for details.

In a spatially homogeneous system F ◦(x, v) = f◦(v), the mean-field force vanishes
and the Vlasov solution remains constant F ≡ f◦. The evolution of the 1-particle
density is then described to leading order by the Bogolyubov correction, which
takes on the following guise for the velocity density f1

N(v) =
∫
Td F

1
N (x, v) dx,

{
∂tf

1
N ∼ 1

N

∫
Td

∫
D
∇V (x− x∗) · ∇v(NG

2
N )(x, v, x∗, v∗) dx∗dv∗dx,

∂t(NG
2
N ) + iLf1

N
(NG2

N ) ∼ ∇V (x1 − x2) · (∇v1 −∇v2)(f
1
N ⊗ f1

N ),

where iLf1
N
stands for the linearized Vlasov operator at f1

N . The effect of particle

correlations takes form of a non-Markovian collision process. However, the equa-
tions display a timescale separation: f1

N evolves on the slow timescale t = O(N)
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while NG2
N evolves on the mean-field timescale t = O(1). In view of linear Landau

damping in form of weak relaxation for iLf1
N
, we may thus formally replace NG2

N

in the first equation by its long-time limit as obtained from the second. After te-
dious computations, as predicted by Guernsey, Balescu, and Lenard independently
in 1960 (e.g. [7, Appendix A]), this yields the so-called Lenard–Balescu equation

∂tf
1
N ∼ 1

N LB(f1
N ), LB(f) = ∇ ·

∫
Rd B(v, v − v∗;∇f) (f∗∇f − f∇∗f∗) dv∗,

where the collision kernel B brings a strong nonlinearity and is explicit in terms
of the potential V . This equation is viewed as a correction to Landau’s equation,
further taking into account collective screening effects. It satisfies an H-theorem
and formally describes relaxation to Maxwellian equilibrium on the slow timescale
t = O(N). Due to dynamical screening, even local well-posedness is a reputedly
difficult open problem in the Coulomb setting. For a smooth potential V , a work
in progress with R. Winter proves global well-posedness close to equilibrium.

Justifying physicists’ calculations for the relaxation of NG2
N , we obtain the follow-

ing result with L. Saint-Raymond [8, 2]. Note that the exponential time growth in
Theorem A requires to restrict to the intermediate timescale 1 ≪ t≪ logN : al-
though missing the kinetic timescale t = O(N), this constitutes the first rigorous
result in this direction starting from particle system (1).

Theorem B (see [2, Corollary 4]).
Given F ◦ spatially homogeneous, compactly supported, and linearly Vlasov-stable,
and given V smooth and small enough, there holds for 1 ≪ tN ≪ logN ,

N∂tf
1
N |t=tN τ ∼ LB(f◦), in D′

τ,v(R
+ × R

d).

In order to reach the kinetic timescale t = O(N), the correlation estimates of The-
orem A are no longer applicable: propagation of chaos needs to be complemented
with some decorrelation mechanism. In [8], with L. Saint-Raymond, we consider
a linearized setting: time-uniform estimates on linear correlation functions then
follow from an orthogonality argument as in [9]. Yet, due to resonant effects that
are reminiscent of plasma echoes, these estimates only allow to extend Theorem B
to 1 ≪ tN ≪ N

1
4 , and all improvements remain open questions.
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Rigorous derivation of cross-diffusion equations from interacting
particle systems

Ansgar Jüngel

(joint work with L. Chen, E. Daus, and A. Holzinger)

Cross-diffusion models describe the evolution of multicomponent systems arising
in, for instance, cell biology, gas mixture theory, and population dynamics. Their
derivation from microscopic models is important to determine the range of validity
of the diffusive equations and to understand their possible formal gradient-flow or
entropy structure. We review in this note two many-particle limits from stochastic
interacting particle systems, based on the works [2, 3].

The aim is the rigorous derivation of quasilinear parabolic systems of the form

(1) ∂tui = div

( n∑

j=1

Aij(u)∇uj
)
+ div(ui∇Ui), ui(0) = u0,i in R

d, t > 0,

where i = 1, . . . , n is the species index, u = (u1, . . . , un) is the vector of (parti-
cle) densities, Aij(u) are the diffusion coefficients, and Ui(x) are environmental
potentials, from stochastic interacting particle systems of the type

(2) dXk,i = −aN,η(X)dt+ bN,η(X)dWk,i(t), Xk,i(0) = ξk,i, i = 1, . . . , n,

where k = 1, . . . , N is the particle number, X = (Xk,i) is the vector of random
positions of the particles, the parameter η > 0 models the interaction radius,
(Wk,i) are d-dimensional Brownian motions, and ξ1,i, . . . , ξN,i are independent
and identically distributed random variables. We wish to prove the limit N → ∞
and η → 0 (in a certain sense) in (2) leading to (1). For this, we consider two
examples for aN,η(X) and bN,η(X).

1. First model: interactions in the drift term

The first model is given by

(3) dXN,η
k,i (t) = −

n∑

j=1

1

N

N∑

ℓ=1

∇Bη
ij

(
XN,η

k,i −XN,η
ℓ,j

)
dt+

√
2σidWk,i(t),

where σi > 0 are constant diffusion coefficients and the smooth interaction poten-
tials Bij satisfy Bη

ij(x) = η−dBij(|x|/η) for x ∈ R
d with

∫
Rd Bij(|x|)dx =: aij and

Bη
ij → aijδ0 in the sense of distributions as η → 0.
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The limit N → ∞, η → 0 has to be understood in the following sense (see [6, 8]).
For fixed η > 0, system (3) is approximated for N → ∞ by the intermediate
system

(4) dX̄η
k,i(t) = −

n∑

j=1

(∇Bη
ij ∗ uη,j)(X̄

η
k,i(t), t)dt+

√
2σidWk,i(t),

where uη,j = uη,j(x, t) satisfies the nonlocal cross-diffusion system

∂tuη,i = σi∆uη,i + div

( n∑

j=1

uη,i∇Bη
ij ∗ uη,j

)
in R

d, t > 0.

System (4) depends on the particle index k = 1, . . . , N only via the initial data
X̄k

η,i(0) = ξk,i, i.e., X̄
η
k,i(t) are N independent copies of the solution to (4). Since

∇Bη
ij ∗ uη,j → aij∇uj in L2, the limit η → 0 in (4) leads to the limiting system

dX̂k,i(t) = −
n∑

j=1

aij∇uj(X̂k,i(t))dt+
√
2σidWk,i(t),

where the law of X̂k,i, ui = law(X̂k,i), is a solution to

(5) ∂tui = σi∆ui + div

( n∑

j=1

aijui∇uj
)

in R
d, t > 0,

and ui(0) = ui,0 is the common probability density function of ξk,i. This model
describes segregation effects in multi-species populations [1, 5].

The main result of [2] is the proof of the estimate

sup
k=1,...,N

E

( n∑

i=1

sup
0<s<t

∣∣XN,η
k,i (s)− X̂k,i(s)

∣∣
)

≤ C(t)η,

under the condition that η−(2d+4) ≤ ε logN , where ε > 0 is sufficiently small. This
estimate implies propagation of chaos [9]. The idea of the proof is to estimate

the differences |XN,η
k,i − X̄η

k,i| and |X̄η
k,i − X̂k,i|. The first difference is of order

N−1η−d−2, coming from the properties of ∇Bη
ij , while the second difference is of

order η, which comes from estimating |∇Bη
ij ∗∇uj − aij∇uj | in terms of η|D2uj |.

2. Second model: interactions in the diffusion term

The second model is given by

(6) dXN,η
k,i = −∇Ui(X

N,η
k,i )dt+

(
2σi+2

n∑

j=1

1

N

N∑

ℓ=1

Bη
ij(X

N,η
k,i −XN,η

ℓ,j )

)1/2

dWk,i(t),

where we exclude (ℓ, j) 6= (k, i) in the sum over ℓ. The idea of the many-particle
limit is as before. We first pass to the limit N → ∞, leading to an intermediate
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nonlocal system, and then perform the limit η → 0, giving

dX̂k,i = −∇Ui(X̂k,i)dt+

(
2σi + 2

n∑

j=1

aijuj(X̂k,i)

)1/2

dWk,i(t),

and the function ui = law(X̂k,i) satisfies

(7) ∂tui = div(ui∇Ui) + ∆

(
σiui + ui

n∑

j=1

aijuj

)
, ui(0) = ui,0,

where i = 1, . . . , n. Model (7) corresponds to the population system suggested
by Shigesada, Kawasaki, and Teramoto [7]. It distinguishes from the first model
(5) by the additional diffusion div(

∑n
j=1 aijuj∇ui). It is shown in [3] that if

Ui(x) = − 1
2 |x|2 and η−(2d+2) ≤ ε logN for some sufficiently small ε > 0 then

sup
k=1,...,N

E

( n∑

i=1

sup
0<s<t

∣∣XN,η
k,i (s)− X̂k,i(s)

∣∣
)

≤ C(t)η.

This result can be extended in various directions. First, we may choose general
smooth potentials Ui such that ∇Ui is globally Lipschitz continuous, D2Ui is neg-
ative semidefinite, and DkUi is sufficiently small for k ≥ 3. Second, the diffusion
coefficient in (6) can be replaced by

(
2σi + 2

n∑

j=1

fη

(
1

N

N∑

ℓ=1

Bη
ij(X

N,η
k,i −XN,η

ℓ,j )

))1/2

,

where fη is a globally Lipschitz continuous approximation of a function f that may
be only locally Lipschitz continuous (for instance, f(z) = zp for p > 1). Then the
sum

∑n
j=1 aijuj in (7) has to be replaced by

∑n
j=1 f(aijuj). This generalization

provides a derivation of the porous-medium equation from interacting particle
systems. Indeed, let n = 1, σ1 = 0, U1 = 0, and a11 = 1. Then (7) can be
written as ∂tu = ∆(uf(u)). We remark that another derivation was published in
[4] assuming a double-convolution potential in the drift term.
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Short- and long-time behavior in (hypo)coercive ODE-systems and
Fokker-Planck equations

Anton Arnold

(joint work with Franz Achleitner, Eric Carlen; Christian Schmeiser,
Beatrice Signorello)

Abstract

We are concerned with the short- and large-time behavior of Fokker-Planck equa-
tions with linear drift, i.e. ∂tf = div(D∇xf +Cxf). A coordinate transformation
can normalize these equations such that the diffusion and drift matrices are linked
as D = Cs, the symmetric part of C.

The first main result of this talk is the connection between normalized Fokker-
Planck equations and their drift-ODE ẋ = −Cx: Their L2-propagator norms
actually coincide. This implies that optimal decay estimates on the drift-ODE
(w.r.t. both the maximum exponential decay rate and the minimum multiplicative
constant) carry over to sharp exponential decay estimates of the Fokker-Planck
solution towards the steady state.

Secondly, we define an “index of hypocoercivity”, both for ODEs and Fokker-
Planck equations that describes the interplay between the dissipative and conser-
vative part of their generator. This index characterizes the polynomial decay of
the propagator norm for short time.

Hypocoercive estimates

The goal of this presentation is to analyze the short and long-time behavior of
linear evolution equations d

dtf = −Lf, t ≥ 0 with a constant-in-t operator L, such
that −L is dissipative and L has a unique (normalized) steady state: Lf∞ = 0.

Optimal long-time decay estimates: We aim at deriving exponential decay esti-
mates of the form

‖f(t)− f∞‖ ≤ ce−µt‖f(0)− f∞‖ , t ≥ 0,

possibly with the sharp (= maximum) rate µ > 0 and the minimal multiplicative
constant c ≥ 1 (uniform for all initial conditions f(0)). To this end we shall
consider specially constructed Lyapunov functionals.
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Figure 1. Time decay of a solution to a hypocoercive ODE. left:
‖x(t)‖ in the Euclidean norm (blue) and in the P-norm (red);
right: solution trajectory in R

2 (blue), level curves of the Eu-
clidean norm (black) and the P-norm (red).

To illustrate the situation we first consider the simple ODE

ẋ = −Cx, with C =

(
1 −1
1 0

)
.

Since the symmetric part ofC is not coercive, the Euclidean norm of solutions does
not decay uniformly, but rather in waves, having occasionally horizontal tangents.
In the phase plane this can be seen from the fact that solution trajectories are
occasionally tangential to level curves of the Euclidean norm, see Figure 1. But

when introducing a “distorted” vector norm ‖x‖P :=
√
xT Px, with an appropriate

matrix P > 0, ‖x(t)‖P decays exponentially.
In the talk we are mainly interested in the long-time behavior of (possibly

degenerate, i.e. hypocoercive, see [6]) Fokker-Planck equations with linear drift,
i.e.

(1) ∂tf = div(D∇xf +Cxf), x ∈ R
d, t ≥ 0 ,

with D ≥ 0, C positive stable. In particular, we shall reduce it to the long-time
behavior of its drift ODE, i.e. ẋ = −Cx.

Short-time decay estimate: When decomposing the matrix C = C1 +C2 into its
anti-Hermitian and, respectively, its non-negative Hermitian part, we define the
hypocoercivity index of C a the smallest integer

mHC ∈ N0, such that

mHC∑

j=0

Cj
1C2(C

∗
1)

j > 0 .

This index mHC describes the structural complexity of the ODE ẋ = −Cx and,
in particular, the interplay between its (anti-)Hermitian parts. An analogous def-
inition can be made for (1), using the matrices C, D.
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We shall show that this index characterizes the short-time behavior of both ODEs
and Fokker-Planck equations – in the following sense:

(2) ‖f(t)− f∞‖ ≤
[
1− cta +O(ta+1)

]
‖f(0)− f∞‖, t→ 0+

holds with a = 2mHC + 1.

Notation

f(x, t) solution to the Fokker-Planck equation (1)
f∞(x) unique (normalized) steady state of the Fokker-Planck equa-

tion (1)
D ≥ 0 diffusion matrix in the Fokker-Planck equation
C drift matrix in the Fokker-Planck equation
mHC hypocoercivity index of the linear ODE ẋ = −Cx
C = C1+C2 decomposition of the ODE matrix into its anti-Hermitian and

Hermitian part
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The Cauchy problem for The Boltzmann Equation Modeling
Polyatomic Gases

Irene Mart́ınez Gamba

(joint work with Milana Pavić-Čolić)

This presentation focused on the Boltzmann equation describing a homogeneous
flow of a polyatomic gas in three dimensions modeled in R

4+ := R
3 × [0,∞) after

the addition of a continuous microscopic internal energy variable. In [5], we have
established the existence and uniqueness theory under an extended Grad assump-
tion on transition probability rates, that comprises hard potentials for both the
relative speed and internal energy with the rate in the interval (0, 2], proportional
to integrable angular and partition transition functions. The Cauchy problem’s
solution is obtained by means of an abstract ODE flow in Banach spaces, for an
initial data with finite and strictly positive gas mass and energy, finite momen-
tum, and additionally finite number polynomial moment k∗ depending on transi-
tion probability rates as well as on the structure of a polyatomic molecule or its
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internal degrees of freedom. Moreover, we prove that, both, the solution’s polyno-
mially and exponentially weighted Banach norms are propagated and generated
uniformly in time, respectively.

More precisely, we study the scalar Boltzmann flow for interacting polyatomic
gases [2], interchanging binary pairs of pre and post molecular velocities v ∈ R

3

and internal energies I ∈ [0,∞). This collisional model describes the statistical
time evolution of probability distribution density f(t, v, I) in the Banach space
C([0,∞0);L1

k(R
4+)), of integrable functions in the upper half space R

4+ := R
3 ×

[0,∞) with the Lebesgue weight function 〈v, I〉k := (1+ |v|2
2 + I

m )k/2, wherem is the
molecular mass. Consequently, ‖f‖L1

k
(R4+)(t) are also referred as the k−Lebesgue

moments associated to the solution of the Boltzmann flow, given by the evolution of
colliding pair of molecules (v′, I ′), (v′∗, I

′
∗) ∈ R

4+, under the assumption of binary
elastic interactions, are linked through the conservation laws of local momentum
and total (kinetic + microscopic internal) molecular energy, written in center of
mass and relative velocities coordinates,

v + v∗ = v′ + v′∗,
m

4
|u|2 + I + I∗ =

m

4
|u′|2 + I ′ + I ′∗ =: E,

whose local conservation equations interchange energy according to the Borgnakke-
Larsen procedure [3]. For the parameter R ∈ [0, 1], the local energy

m

4
|u′|2 = RE, I ′+I ′∗ = (1−R)E and I ′ = r(1−R)E, I ′∗ = (1−r)(1−R)E.

distributes the energy proportion R of the total energy E into a pure kinetic
part RE and a pure internal part (1 − R)E; and a parameter r ∈ [0, 1] is set
to distribute the proportion of total internal energy (1− R)E to each interacting
states corresponding to the incoming molecular internal energy pair I ′, I ′∗ . In
addition, the classical scattering direction associated to the elastic theory, σ ∈ S2,

parametrizes pre-collisional relative molecular velocities u′ = |u′|σ = 2
√

RE
m σ.

This relation reduces to the classical monatomic single species model in the absence
of internal energy modes for which |u′| = |u|. This Boltzmann type collision
operator, written in strong bilinear form, is modeled by the non-local operator
acting on a pair of probability density measures (f, g)(v, I) defined by

Q(f, g)(v, I)=

∫∫

R4+×K

(

′

f
′

g∗

(

II∗
′I ′I∗

)α

−fg∗

)

Bϕα(r)ψα(R)(1−R)R
1/2
dRdrdσdI∗dv∗,

α > −1, with partition functions ϕα(r) = (r(1 − r))α, ψα(R) = (1 − R)2α. The
region of integration is the upper half 4-dimensional space of definition of molec-
ular velocity v and internal energy I, and K := [0, 1]2 × S2 a compact manifold
embedded in the four dimensional space. The transition probability rate (or col-
lision kernel) B = B(v, v∗, I, I∗, R, r, σ), such that B ϕα(r)ψα(R)(1−R)R1/2 ∈
L1(K, dRdrdσ), i.e. it is integrable on the compact manifold K. In addition, the
dependance of B with respect to the interacting pairs (v, I) and (v∗, I∗) must satisfy
sufficient conditions to obtain upper and lower estimates that yield an existence
and uniqueness global in time solution that propagates and generates statistical
moment of any order, for a sufficiently high k∗ > 1, depending only on the initial
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data and the constitutive form of the transition function B as described in [5], Sec-
tion 3. This binary collisional form conserves total mass, momentum and energy
transfer, as well as dissipates initial entropy.

Thus, the corresponding Cauchy problem consists in solving the initial value
problem in a suitable subspace of C(0,∞, L1

k(R
4+) to

(1) ∂tf(t, v, I)=Q(f, f)(t, v, I), for f(0, v, I)=f0(v, I), ∀ (t, v, I)∈R
+×R3×R+,

wheref0(v, I) must have at least a finite k∗-moment higher than the energy. No
assumption of needed on finiteness of the initial entropy, yet if initially bounded,
the entropy will globally bounded as well.

Inspired in a recent review for the classical Boltzmann theory [1], an analyt-
ical keypoint consists in showing that the bilinear collisional operator, for poly-
atomic gas model, generates dissipation, which is manifested in the decay of its
k-polynomial moment for k ≥ k∗, depending not only on the data with initial
finite mass and energy, zero momentum and a k-moment of order k ≥ k∗, with
k∗ > 1, (where the k = 1-moment is the macroscopic mass plus the total (kinetic
+ internal) energy), but also depends on the transition probability rate γ ∈ (0, 2]
and the parameter α related to the degrees of freedom for translational as well
as rotational and vibrational motion associated to the binary interaction. The
choice of these transition probability forms, not only have physical meaning in the
framework of extended thermodynamics for macroscopic polyatomic gas models
calculated near equilibrium [4], but also enables a rigorous analysis on such tran-
sition rates which lead to two fundamental estimates. The first one consists in
estimating from above the positive contributions from the k-Lebesgue moments of
the collisional form. The second one controls from below the k-Lebesgue moments
of the negative contributions from collisional form, in this case referred as the loss
operator.

The former is obtained by a detailed the k-Lebesgue bracket of pre-collisional
pairs (′v,′I) multiplied by Bϕα(r)ψα(R)(1−R)R1/2 and averaged across the com-
pact manifold K. Such result follows from the Compact Manifold Averaging
Lemma, proved in [5], Section 4, which essentially calculates a contractive con-
stant µk, for k > 1, with µ1 = 1 and µk ց 0, for k → ∞. As a consequence, the
k-moments of the collision gain operator are dominated by the negative superlinear
contributions corresponding to k-moments of the loss operator, when calculated for
any moment order k > k∗. On the other hand, the later estimate from below, finds
a lower bound for the negative contribution of the polyatomic collisional operator,
that enables a fundamental component of the coerciveness estimate in the natural
non-reflexive Banach space L1

k(R
4+). Such lower control is obtained by estimating

the collision frequency associated to the potential rate γ ∈ (0, 2] from below by
a constant clb := clb(m0[f0],m1[f0],mk∗

[f0], γ), proportional to the γ-Lebesgue
bracket, as shown in the Lower Bound Lemma, proved in [5], Section 5, which can
be viewed as a functional estimate in a subset of the Banach space L1

k(R
4+) given

by all positive elements, whose mass and variance are bounded by a positive and
finite constant, zero mean, and a 1+-moment, independently of being solutions of
the Boltzmann flow. In addition, the negative contributions from the loss operator
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are proportional to the coercive factor Ak∗
= (1−µk∗

)clbm0[f0]
−γ/(2k∗), such that

1− µk∗
> 0.

The factorAk∗
can be viewed as the analog to the coercive constant associated to

elliptic and parabolic flows in continuum mechanics modeling, where coerciveness
is crucial for the existence and uniqueness and global stability theories in Sobolev
functional spaces. In this kinetic of collisional modeled flow context, coerciveness
estimate enables the super-linear negative contribution for the evolution of the
Ordinary Differential Inequality (ODI), with global supersolutions that control, a
priori, the k-moments of the Boltzmann flow [5], Section 6. Thus the dissipative
contractive constant µk and the coerciveness factor Ak∗

, and its consequential
properties on the k-moments of the solution of the Cauchy problem, are sufficient
for the solvability of the Boltzmann flow under consideration in a suitable invariant
region Ω of Banach space C([0,∞);L1

k(R
4+)) to be solvable globally in time [5],

Section 7.
After the existence and uniqueness theory for global in time solutions of problem

(1), solved in [5], Section 8, we also showed that n-partial sums of ks-moments
are also globally bounded, for 0 < s ≤ 1. Again, appealing to estimates, we
are able to generate a set of ODIs, whose solutions propagate the order 2s and
below the rate β0 of the initial data, while only generate up to an order 2s ≤ γ,
for 0 < s < 1. The exponential rate depends on the coercive constant Ak∗

=
(1 − µk∗

)clbm0[f0]
−γ/(2k∗) directly proportional to the calculated rate, uniformly

in the partial sum parameter. This exponential rates exhibit the connection of the
coercive estimates of k-moments. It reflects the thermodynamic properties: the
higher the coerciveness parameter, the lower the exponential rate and the faster
decay rate to the statistical equilibrium. These conclusions have implications in
the spectral gap calculation, as it will be shown in a forthcomming work.

These three pages are fully developed in [5] including extenuating explanations
and rigorous proofs. We also refer the readers for further references to such man-
uscript as well.
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L2 hypocoercivity, inequalities and applications

Jean Dolbeault

Let us consider the kinetic equation

(1) ∂tf + Tf = Lf

where Lf is either the Fokker-Planck operator L1f = ∇v ·
(
M∇v(M−1 f)

)
or a

scattering collision operator Lf =
∫
Rd σ(·, v′)

(
f(v′)M(·)− f(·)M(v′)

)
dv′, for in-

stance the simplest possible one, the linear BGK operator L2f = ρM(v)−f where

ρ(t, x) =
∫
Rd f(t, x, v) dv is the spatial density and M(v) = (2π)−d/2 e−|v|2/2. The

transport operator T on the phase space (with position x and velocity v) can be

rewritten as T = i v · ξ f̂ in the Fourier variable ξ associated to x. With the op-

erators Π and A defined respectively by Πf̂ := M
∫
Rd f̂(ξ, w) dw and Af̂(ξ, v) :=

− i ξ (1+|ξ|2)−1 ·
∫
Rd w f̂(ξ, w) dwM(v), the L2 entropy, or L2 Lyapunov functional

H[f̂ ] := 1
2 ‖f̂‖2+δRe〈Af̂ , f̂〉 where ‖g‖2 :=

∫∫
Rd |g(w)|2 dγ, dγ(w) := M(w)−1 dw,

is such that, if f solves (1), then the entropy – entropy production inequality

d

dt
H[f̂(t, ξ, ·)] ≤ −λH[f̂(t, ξ, ·)]

)

holds if

Q(X,Y ) :=
(
1− δ |ξ|2

1+|ξ|2 − λ
2

)
X2 − δ |ξ|

1+|ξ|2
(
1 +

√
3 |ξ|+ λ

)
X Y +

(
δ |ξ|2
1+|ξ|2 − λ

2

)
Y 2

is a nonnegative quadratic form of X and Y , where X := ‖(1 − Π)f̂‖ and Y :=

‖Πf̂‖. Here it is clear that ξ ∈ R
d can be considered as a parameter, that is, we

can perform a mode-by-mode analysis. Proving the exponential decay of H[f̂ ] for
some δ = δ(|ξ|) with a rate λ = λ(|ξ|) is reduced to the discriminant condition

which guarantees that Q ≥ 0. It turns out that H[f̂ ] is equivalent to ‖f̂‖2 if δ < 2
and one can prove by the method of [9, 5] that

‖f̂(t, ξ, ·)‖2 ≤ C(|ξ|) ‖f̂0(ξ, ·)‖2 e−λ(|ξ|) t ∀ t ≥ 0 , ξ ∈ R
d ,

where C(|ξ|) = (2 + δ(|ξ|))/(2 − δ(|ξ|)). This has been analysed in [5] in terms
of asymptotic decay rates of ‖f(t, ·, ·)‖2L2(Rd×Rd,dx dγ) for a choice of δ which is

independent of ξ but can be refined by taking a ξ-dependent value of δ.

Theorem 1. [2] If f solves (1) with L = L1 or L = L2 for some nonnegative initial
datum f0 ∈ L2(Rd × R

d, dx dγ) ∩ L2
(
R

d, dγ; L1(Rd, dx)
)
, then

‖f(t, ·, ·)‖2L2(Rd×Rd,dx dγ) ≤ (2 π)−d ΨM,Q(t) ∀ t ≥ 0

with M = ‖f0‖L2(Rd,dγ;L1(Rd,dx)), Q = ‖f0‖L2(Rd×Rd,dx dγ), and

ΨM,Q(t) := infR>0

(∫ R

0 C(s) e−λ(s) t sd−1 ds ωd dM
2 + sups≥R C(s) e

−λ(R) tQ2
)
.

The proof of this result is reminiscent of the proof in [11] of Nash’s inequality

(2) ‖u‖2+
4
d

L2(Rd)
≤ CNash ‖u‖

4
d

L1(Rd)
‖∇u‖2L2(Rd)
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and the definition of the operator A is inspired by the diffusion limit: see [9, 2]. It
is well known that a solution to the heat equation

∂tu = ∆u ∀ (t, x) ∈ R
+ × R

d

decays according to

‖u(t, ·)‖2L2(Rd,dx) ≤ C ‖u0‖2L2(Rd,dx) (1 + t)−
d
2

after computing d
dt‖u(t, ·)‖L2(Rd,dx) = −2 ‖∇u(t, ·)‖L2(Rd,dx) and taking (2) into

account. See [7] for a discussion of the optimality of such an estimate. This decay
rate can be recovered also at the kinetic level for the solution of (1): see [5].

The next question is of course to understand what happens in presence of an
external potential. Let us start at diffusive level with the Fokker-Planck equation

(3) ∂tu = ∆u+∇ · (u∇V ) ∀ (t, x) ∈ R
+ × R

d

where V is a given external potential. To fix ideas, we shall assume that V (x) =
|x|α for some α > 0 and discuss the cases depending on the value of α.

⊲ For α ≥ 1, we have the Poincaré inequality
∫

Rd

|v − v̄|2 dµα ≤ C
∫

Rd

|∇v|2 dµα

with v̄ :=
∫
Rd v dµα and dµα := Uα(x) dx, Uα(x) := Z−1

α e−|x|α , Zα :=
∫
Rd Uα dx.

It is then standard to prove that a solution u(t, ·) of (3) is such that v := u/Uα

satisfies
∫

Rd

|v(t, ·)− v̄|2 dµα ≤
∫

Rd

|v(0, ·)− v̄|2 dµα e
− 2 t

C ∀ t ≥ 0 .

⊲ The case α ∈ (0, 1) has been studied in [10] using the weak Poincaré inequality.
This approach requires the existence of a uniform bound. Alternatively, we can
consider the weighted Poincaré inequality

(4)

∫

Rd

|∇v|2 dµα ≥ C
∫

Rd

|v − v̄|2〈x〉−β dµα

with β = 2 (1 − α) and the same notations as above for v̄ and dµα. Here we use

the notation 〈x〉 =
√
1 + |x|2 and notice that β vanishes as α → 1−. In order to

compensate for the additional weight in the right hand side in (4), it is convenient
to introduce a weighted L2 norm with a weight 〈x〉k.

Theorem 2. [4] Assume that α ∈ (0, 1). If u solves (3) with initial datum u0 ∈
L1
+(R

d, dµα) ∩ L2(Rd, 〈x〉k dµα) for some k > 0, v = u/Uα and v0 = u0/Uα, then

∫

Rd

|v(t, ·) − v̄|2 dµα ≤
((∫

Rd

|v0 − v̄|2 dµα

)−β/k

+K t

)−k/β

∀ t ≥ 0 ,

for some constant K depending on k and u0.
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⊲ In the limit case as α → 0+, it makes sense to consider V (x) = γ log |x|. In the
range γ ∈ (0, d), (3) admits no stationary solution in L1(Rd). In that case, we can
again introduce weights and consider the Caffarelli-Kohn-Nirenberg inequality

∫
Rd |x|γ u2 dx ≤ C

(∫
Rd |x|−γ |∇ (|x|γu)|2 dx

)a (∫
Rd |x|k |u| dx

)2 (1−a)

which generalizes Nash’s inequality (2). A decay result goes as follows.

Theorem 3. [6] Let d ≥ 1 and γ ∈ (0, d), k ≥ max{2, γ/2}. If u solves (3) with
initial datum u0 ∈ L1

+(R
d, 〈x〉k dµα) ∩ L2(Rd, dµα), then there is a constant c > 0

depending on u0 such that

‖u(t, ·)‖2L2(Rd,|x|γ dx) ≤ ‖u0‖2L2(Rd,|x|γ dx) (1 + c t)−
d−γ
2 ∀ t ≥ 0 .

Similar results can be obtained at kinetic level when the transport operator is
defined by Tf = v · ∇xf − ∇xV · ∇vf . With L = L1 or L = L2, and appropriate
estimates involving 〈x〉k, results are obtained which are all consistent with a dif-
fusion limit given by (3) and rely on the same functional inequalities. So far we
have considered only Maxwellian local equilibria, but a similar discussion can be
done when M(v) = Z−1

β exp(−|v|β) for some β > 0, depending whether β ≥ 1 or

not, and the case F (v) = 〈v〉−γ has also been studied. Notice that a fractional
diffusion limit has to be considered when

∫
Rd |v|2 F (v) dv is infinite. The method

also adapts to equations with a Poisson coupling. See [6, 4, 8, 3, 1] for detailed
statements.
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