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Introduction by the Organizers

The workshop Nonstandard Finite Element Methods, organised by Daniele Boffi
(KAUST and Pavia), Carsten Carstensen (Berlin), Alexandre Ern (Paris) and
Jun Hu (Peking) was well attended with 56 virtual and 7 participants at the
MFO with 30 presentations and an overall broad geographic representation from
all continents. The meeting was in a hybrid format and showed an enthusiastic
participation despite some difficulties related to the different time zones.

Unlike meetings with an engineering-oriented focus on applications, this work-
shop focussed primarily on the mathematical foundation of nonstandard discretiza-
tions. Relevant discussions involved, in particular, a priori and a posteriori error
analysis, stability estimates and estimates for inf-sup constants related to various
operators, convergence and superconvergence properties, definition and construc-
tion of new spaces and schemes, convergence and optimality of adaptive algorithms.
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The meeting brought at least three communities in the modern numerical analy-
sis of partial differential equations together: nonconforming finite element methods
in various flavors, novel finite elements based on discrete complexes, fast solvers
and adaptive methods. Several applications to challenging nonlinear problems
were also highlighted.

Nonconforming finite element methods have been extensively developed in the
last few years, leading to new families of methods including virtual element meth-
ods, hybrid higher-order methods, discontinuous Petrov Galerkin methods, and
hybridizable discontinuous Galerkin methods. As compared to the classical finite
element method, the striking advantages of these novel techniques include the use
of general cell domains and arbitrarily high orders of approximation, without the
need for special stabilization parameters. Some links have already been uncovered
between these approaches, and some more should presumably appear in the near
future. Moreover, some model applications were discussed on fourth-order or shell
problems, when the conforming finite element practice appears cumbersome in
relation to nonconforming ones.

Complexes on the continuous and discrete level for tensor problems provoked
new finite elements and there was even an interface opened to neural networks
and deep learning. The Hellan-Herrmann-Johnson finite element method caught
particular interest. These topics were, so far, less consolidated in the reference
community and got an interesting momentum from the interactions undergone
during this workshop.

Besides the theoretical nature of the workshop, an increasing interest towards
fast solvers and adaptivity has been observed. A salient example is the conver-
gence proof of an adaptive method for the Hamilton–Jacobi–Bellman equation with
Cordes coefficients. Quite interestingly, several contributions focused on challeng-
ing nonlinear problems, including eigenvalue problems, contact and friction prob-
lems, and hyperbolic problems. Other innovative applications dealt with ill-posed
problems as in the unique continuation problem and on indefinite second-order
PDEs.

A new topic of this workshop is the finite element complex construction of
tensor-based problems like the linearized Einstein-Bianchi equation and the related
biharmonic equation within the mixed divdiv formulation. Given the importance
of the nonlinear Einstein field equations and the challenge of the corresponding
numerical methods, such a topic deserves more attention and efforts from the finite
element method community.

The workshop consisted of many one hour talks but also of a few shorter presen-
tations by younger scientists, who thankfully enjoyed the opportunity to present
their ideas to the community.
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Abstracts

Robust Strain Gradient Finite Elements: Analysis and Numerics

Pingbing Ming

(joint work with Hongliang Li, Yulei Liao, Zhong-ci Shi, Huiyu Wang)

We consider robust finite elements approximation of a linear strain gradient elastic
model proposed by Aifantis et al [2], which could be regarded as a simplification
of the more general strain gradient elastic models [3] because it contains only
one extra material parameter besides the Lamé constants. This simplified strain
gradient model successfully eliminated the strain singularity of the brittle crack
tip field.

From the mathematical point of view, this model is a singular perturbed elliptic
system of fourth order. A natural candidate for approximating such problem is
C1 conforming elements such as Argyris triangle. However, such choice is not
preferred in practical computations because the number of the local degrees of
freedom is too large, which is more remarkable in three dimension. To overcome
this difficulty, we first prove a new H2 Korn inequality and its discrete analog.
The latter is dubbed as H2 Korn inequality. These inequalities improved the
older ones in the literature, e.g., [4] and [1]. It follows from the broken H2 Korn
inequality that a tensor product of the H1 conforming but H2 nonconforming
element could be a good element for this strain gradient elastic model. We employ
the Specht triangle [6] and its three-dimensional extension [8] as representative.
Based on a new established enriching operator, we prove sharp error estimates
for these elements for both the smooth solution and the solutions with sharp
layers. All estimates are uniform with respect to small strain gradient materials
parameter. Numerical results are reported to confirm the theoretical results. It
is worth mentioning that a family of rectangular and cuboidal elements for this
model may be found in [5], and more three dimensional tests may be found in [7].
Possible further work is to design robust elements for the nonlinear strain gradient
elastic models, thin beam and thin plate with strain gradient effect.
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Conforming Finite Element Gradgrad and Divdiv complexes

Jun Hu

This talk consists of two parts. The first part considers the finite element method
of the so called linearized Einstein-Bianchi system from [1]

Ė+ curlB = 0, divE = 0,

Ḃ− curlE = 0, divB = 0,

with symmetric and traceless tensor fields E and B. Introducing a new variable

σ(t) =
∫ t

0 div divEds, the linearized Einstein-Bianchi system can be realized as a
Hodge wave equation [1]

(1)

σ̇ = div divE,

Ė = − gradgradσ − symcurlB,

Ḃ = curlE.

Given initial conditions σ(0),E(0) and B(0), and with appropriate boundary con-
ditions, the equation (1) is well-posed [1].

The mixed finite elements for the linearized Einstein-Bianchi system is closely
related to the discretization of an associated differential complex. Such a Gradgrad-
complex, introduced in [2] to derive a Helmholtz-like decomposition for biharmonic
problems in R3, is given by

(2)
P1(Ω)

⊂−→ H2(Ω;R)
grad grad−→ H(curl,Ω; S)

curl−→ H(div,Ω;T)

div−→ L2(Ω;R3) −→ 0,

where the space H(div,Ω;T) consists of square-integrable tensors with square-
integrable divergence, taking value in the space T of traceless matrices. The com-
plex is exact provided that the domain Ω is contractible and Lipschitz [2], that is,
the range space of each map is the kernel space of the succeeding map. The purpose
of this part is to construct conforming finite element spaces Uh ⊂ H2(Ω;R),Σh ⊂
H(curl,Ω; S), Vh ⊂ H(div,Ω;T) and Qh ⊂ L2(Ω;R3) such that

(3) P1(Ω)
⊂−→ Uh

grad grad−→ Σh
curl−→ Vh

div−→ Qh −→ 0

is an exact sub-complex of (2).
The first main ingredient of the construction is a crucial structure ofH(curl,Ω; S)

finite element spaces with additional regularity at vertices:

Σk,h = {σ ∈ H(curl,Ω; S) : σ = σc + σb, σc ∈ C0(Ω; S),

σc is C2 at all vertices, σc

∣∣
K

∈ Pk(K; S), σb

∣∣
K

∈ Σ∗
K,k,b, ∀K ∈ Th},
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where the bubble function space with additional regularity conditions on K reads

Σ∗
K,k,b := {

3∑

i=0

λjλlλmP
(i,0)
k−3 (K;R)nin

T
i }+ {λ0λ1λ2λ3Pk−4(K; S)}

with the auxiliary space P
(i,0)
k (K;R) := {p ∈ P

(i)
k (K;R) : p = 0 at the vertices of

f i}.
The second main ingredient of the construction is an essential structure of

H(div,Ω;T) finite element spaces with additional regularity at vertices as follows

Vk,h := Ṽk,h +Bk,h with Bk,h :=
∑

K

V ∗
K,k,b,

where

Ṽk,h := {v ∈ H1(Ω;T),v is C1 at all vertices,v
∣∣
K

∈ Pk(K;T), ∀K ∈ Th}
and

V ∗
K,k,b :=

3∑

i=0

∑

0≤j<l≤3
j,l 6=i

λjλlP
(j,l,0)
k−2 (K;R)nit

T
j,l

with the auxiliary space P
(i,j,0)
k (K;R) := {u ∈ Pk(K;R) : u vanishes at xi,xj}.

Given K ∈ Th, define

Q⊥
k (K) := {q = (q1, q2, q3)

T ∈ Pk(K;R3) :

∫

K

qi = 0, 1 ≤ i ≤ 3,

∫

K

(xq1 + yq2 + zq3) = 0}.

and
R⊥

k (K) := {q ∈ Q⊥
k (K) : q(xi) = 0, 0 ≤ i ≤ 3}.

The third main ingredient of the construction is the following algebraic result

div V ∗
K,k,b = R⊥

k−1(K).

for any K ∈ Th when k ≥ 3.
Define the space of piecewise polynomials of degree ≤ k that are C0 at vertices

Qk,h := {q ∈ L2(Ω;R3) : q is C0 at all vertices,q|K ∈ Pk(K;R3), ∀K ∈ Th}
Finally, the main result of this part is: Take Σh to be Σk,h, Vh to be Vk−1,h,

Qh to be Qk−2,h, with k ≥ 7, the discrete complex

P1(Ω)
⊂−→ Uh

gradgrad−→ Σh
curl−→ Vh

div−→ Qh −→ 0

is exact. More details can be found in [3].
The second part introduces a new family of mixed finite elements for solving

a mixed formulation of the biharmonic equations in two and three dimensions.
The symmetric stress σ = −∇2u is sought in the Sobolev space H(divdiv,Ω; S)
simultaneously with the displacement u in L2(Ω). Stemming from the structure
of H(div,Ω; S) conforming elements for the linear elasticity problems proposed
by J. Hu and S. Zhang, the H(divdiv,Ω; S) conforming finite element spaces are
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constructed by imposing the normal continuity of divσ on the H(div,Ω; S) con-
forming spaces of Pk symmetric tensors.

For two dimensions, the degrees of freedom are defined as follows

σ(a) for alla ∈ V(K);(4)

(σn, φ)e for allφ ∈ Pk−2(e;R
2), e ∈ E(K);(5)

(divσ · n, q)e for all q ∈ Pk−1(e), e ∈ E(K);(6)

(σ,∇2 q)K for all q ∈ Pk−2(K);(7)

(σ,∇curl q)K for all q ∈ λ1λ2λ3Pk−3(K)/P0(K);(8)

(σ,J q)K for all q ∈ (λ1λ2λ3)
2Pk−4(K).(9)

The global finite element space is defined by

Σk,△2 :={τ ∈ H(divdiv,Ω; S) : τ |K ∈ Pk(K; S) for all K ∈ Th,
all the degrees of freedom (4)–(9) are single-valued}.(10)

For three dimensions, the degrees of freedom are defined as follows

σ(a) for alla ∈ V(K);(11)

(t⊺eσnj , q)e, (n
⊺

i σnj , q)e 1 ≤ i, j ≤ 2, for all q ∈ Pk−2(e), e ∈ E(K);(12)

(σn, φ)F for allφ ∈ Pk−3(F ;R3), F ∈ F(K);(13)

(divσ · n, q)F for all q ∈ Pk−1(F ), F ∈ F(K);(14)

(σ,∇2q)K for all q ∈ Pk−2(K);(15)

(σ,∇φ)K for allφ ∈ Wk−1(K;R3);(16)

(σ, τ)K for all τ ∈ Mk(K; S).(17)

The global conforming finite element space is defined by

Σk,△3 :={τ ∈ H(divdiv,Ω; S) : τ |K ∈ Pk(K; S) for all K ∈ Th,
all the degrees of freedom (11)–(17) are single-valued}.

The inheritance makes the basis functions easy to compute. The discrete spaces
for u are composed of the piecewise Pk−2 polynomials without requiring any conti-
nuity. Then the mixed finite element discrete problem of the biharmonic problem
finds σh ∈ Σk,△d

, and uh ∈ Ph,△d
such that

(18)
(σh, τh) + (divdiv τh, uh) =0 for all τh ∈ Σk,△d

,

(divdivσh, vh) =− (f, vh) for all vh ∈ Ph,△d
.

Such mixed finite elements are inf-sup stable on both triangular and tetrahedral
grids for k ≥ 3, and the optimal order of convergence is achieved. Besides, the
superconvergence and the postprocessing results are displayed. More details can
be found in [4].
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Space-time discontinuous Galerkin methods for the wave equation

Ilaria Perugia

(joint work with Pratyuksh Bansal, Andrea Moiola, Joachim Schöberl,
Christoph Schwab, Paul Stocker, Christoph Wintersteiger)

Space-time finite element methods for the approximation of time-dependent PDEs
present some advantages, as compared to more standard space discretization plus
time-stepping: high-order approximation both in space and time is simple to ob-
tain, spectral convergence of the space-time error can be obtained by p-refinement,
stability is achieved under a local CFL condition, and the approximate solutions
are available at all times in the interval of interest. Their main drawback is their
high complexity. In fact, in order to approximate a time-dependent problem in d
space dimensions, one needs to implement and solve a (d+1)-dimensional problem.

Here, we focus on discontinuous Galerkin (DG) space-time approximations of
the acoustic wave equation, and on two ideas to reduce their complexity, asymp-
totically, to that of one d-dimensional elliptic solve. The first idea consists in using
Trefftz polynomial spaces, instead of complete polynomial spaces, in combination
with a tent-pitching mesh design [4, 6]. The second idea consists in applying
the so-called combination formula to a sequence of anisotropic, tensor product
(in time) space-time discretizations, exploiting the unconditional well-posedness
of suitably designed space-time discontinuous Galerkin methods [1]. We refer to
the references in [4, 1] for a literature overview.

Model problem. We consider as a model problem the wave equation formulated
as a first order system. Let Q := Ω×(0, T ) be a space-time domain, where Ω ⊂ Rd

is a Lipschitz, bounded polytopic domain, and let c = c(x) > 0 be a bounded
function in Ω, which is assumed to be piecewise constant on a finite polytopic
partition {Ωi} of Ω, and which represents the wave velocity. Given f ∈ L2(Q),
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v0 ∈ L2(Ω), and σ0 ∈ L2(Ω)d, the problem reads as follows:





find (v,σ) such that

∇v +
∂σ

∂t
= 0, ∇ · σ + c−2 ∂v

∂t
= f in Q

v(·, 0) = v0, σ(·, 0) = σ0 on Ω

v = 0 on ∂Ω× [0, T ].

We denote by Lwave the wave operatorLwave(w, τ ):=
(
∇ · τ + c−2 ∂w

∂t
, ∇w +

∂τ

∂t

)
.

Space-time DG methods. Consider polytopic meshes Th of the space-time
domain Q, which are aligned with the partition {Ωi}. Space-time DG methods
are defined by taking the space-time variational formulation in each element K ∈
Th, by discretizing test and trial functions in discontinuous, piecewise polynomial
spaces V (Th), and by replacing the interelement traces by numerical fluxes, which
we denote by the hat symbol in the following formulation:

−
∫

K

[
vh

(
∇ · τh + c−2 ∂wh

∂t

)
+ σh ·

(
∇wh +

∂τh

∂t

)]
dV

+

∫

∂K

[
(v̂h τh + σ̂hwh) · nx

K +
(
σ̂h · τ h + c−2 v̂h wh

)
nt
K

]
dS =

∫

K

f wh dV

for all K ∈ Th, where (nx

K , nt
K) ∈ Rd+1 denotes the unit normal vector to ∂K

pointing outside K. Adding over all K ∈ Th, we obtain the complete space-time
DG method denoted as follows:

ADG(vh,σh;wh, τh) = ℓDG(wh, τh).

Under the following assumptions:

i) meshes : all interior faces are either space-like, namely c |nx

F | < nt
F , or

time-like, namely nt
F = 0,

ii) numerical fluxes : we choose upwind fluxes on space-like faces and standard
DG-elliptic fluxes on time-like faces,

iii) approximation spaces : if (wh, τh) ∈ V p(Th), then Lwave(wh, τh) ∈ V p(Th),
existence and uniqueness of DG solutions can be proven by modifying the argument
from [5]. Moreover, on any space-like surface, the L2 norm of the Galerkin error
is bounded by a DG-type norm of a projection error [4, 1]. We remark that these
results hold true unconditionally. Conditions on the ratio between the size in space
and the size in time of the space-time elements are required in order to achieve
the highest possible convergence rates.

Notice that, if V (Th) is locally made by standard space-time polynomials, by
tensor product (in time) polynomials, or by Trefftz polynomials (namely polyno-
mials in the kernel of Lwave), then assumption iii) is satisfied. We underline that,
unlike in the case of the Helmholtz problem, the wave equation in the time domain
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admits polynomial Trefftz spaces with the same h-version approximation proper-
ties, for functions in the kernel of Lwave, as the complete spaces of polynomials of
the same degree.

Trefftz methods. A complete analysis of space-time Trefftz DG methods for the
case f = 0 is presented in [4], where error estimates in mesh-independent norms in
Q are also derived by a modified duality argument. While local complete spaces
of space-time polynomials of degree p have number of degrees of freedom that
scale like pd+1, the local spaces of Trefftz polynomials have number of degrees
of freedom that scale like pd. The desired reduction of the number of degrees of
freedom is therefore achieved. Being based on shape functions in the kernel of
Lwave, the Trefftz DG formulation contains integrals on the mesh skeleton only.

In order to improve computational efficiency, the Trefftz DG method can be
combined with tent-pitching. Tent-pitching (see e.g. [7]) is a PDE-driven, front-
advancing mesh construction technique for hyperbolic problems, which consists in
stacking tent-pitched objects on top of each other. Each tent is union of (d + 1)-
dimensional simplices, whose high (local advancement in time) is chosen so that
the casuality constraint of the PDE is respected (local CFL condition). In this
way, the PDE is explicitly solvable within each tent. The solution within tents on
the same level can be done in parallel. The Trefftz approach combines very well
with tent-pitching. In fact, as the Trefftz DG method contains no volume terms,
the evolution of the solution within each tent, from bottom to top, is performed
by solving a small algebraic linear system. A discussion on the implementation
and numerical results are presented in [6].

Tensor-product methods and combination formula. The unconditional
well-posedness of the considered space-time DG methods can be exploited, in
case of tensor-product (in time) elements, in order to reduce the complexity of the
method by applying the so-called combination formula [2]. In [1], this strategy
is discussed, with focus on possible solution singularities. Restricting to the case
d = 2, the regularity theory of the wave equation (see e.g. [3]) states that acoustic
waves exhibit conical singularities in space at the vertices of the partition {Ωi}.
These singularities can be numerically resolved by using, in space, the same graded
meshes as for elliptic problems. In [1], unconditional stability is proven and an
error analysis is performed. With a suitable mesh grading in space, and relating
the time mesh size to the space mesh size, it is shown that the same convergence
rates as for smooth solutions are obtained.

The optimal h-convergence rates are achieved with a number of degrees of free-
dom that scales like h−3. The question whether this can be achieved with a
number of degrees of freedom that scales like h−2 is affirmatively answered by
taking a weighted sum of suitably selected solutions obtained with anisotropic
(in time) space-time meshes, with different levels of space and time refinements
(combination formula). The unconditional well-posedness of the space-time DG
method guarantees that, although not accurate, solutions obtained with strongly
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anysotropic meshes still contain meaningful information. The sum of the dimen-
sions of the problems to be solved in order to construct the combined solution
scales like h−2. Numerical experiments are presented in [1].
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Approximation by Piecewise Polynomials: Finite Elements versus
Neural Networks

Jinchao Xu

This talk is devoted to piecewise polynomial discretization of 2m-th-order partial
differential equations in Rd for any m, d ≥ 1. We first recall a family of non-
conforming element of piecewise polynomial degree m by Wang and Xu [2] when
m ≤ d. We then report a recent solution in Wu and Xu [3] of the open problem for
the case m > d by still using piecewise polynomials of degree m by adding some
additional (and minimal number of) stabilization terms. But how to construct
conforming finite element methods is still an unsolved open problem for general
m and d. Instead, we report a family of Hm-conforming piecewise polynomials
study in Xu [4] based on the artificial neural network using ReLUk as activation
function, referred to as the finite neuron method (FNM), for numerical solution of
2m-th-order partial differential equations in Rd for any m, d ≥ 1 and then provide
a convergence analysis for this method. By combing the results in Xu [4] and
Siegel and Xu [1], we can prove the following error estimates

(1) ‖u− un‖Hm = O(nm−(k+1) log(n))

where un is the finite neuron approximation with O(n) parameters. We further
point out that the error estimate (1) for finite neuron method is significantly
better than the corresponding finite element solution approximation, say uFE

n ,
from a finite element space of O(n) dimensions. Roughly speaking, the following
estimate holds:

(2) ‖u− un‖Hm ≈ ‖u− uFE
n ‖dHm .
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A discussion is also provided on the difference and relationship between the finite
neuron method and finite element methods (FEMs). For example, for the finite
neuron method, the underlying finite element grids are not given a priori and the
discrete solution can be obtained by only solving a non-linear and non-convex
optimization problem which can be very challenging.
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Invariant domain preserving approximation of nonlinear hyperbolic
systems using finite elements

Jean-Luc Guermond

(joint work with Matthias Maier, Murtazo Nazarov, Ignacio Tomas,
Bojan Popov)

The objective of this talk is to report on recent advances made on the approxima-
tion of nonlinear hyperbolic systems in conservative form using nonstandard finite
element techniques; say, ∂tu + ∇·f(u(x, t)) = 0, t> 0, x∈D⊂Rd. This work is
part of a long term research program involving the following collaborators: M.
Maier (Texas A&M Univ., USA), M. Nazarov (Uppsala Univ., Sweden), I. Tomas
(Sandia Natl. Lab., NM, USA), and B. Popov (Texas A&M Univ., USA).

The key idea behind this project is to construct approximation techniques that
are explicit in time, use finite elements in space, and preserve important prop-
erties of the continuous system, like the positivity of the density and internal
energy for the compressible Euler equations, or the positivity of the water height
for the shallow water equations. For more general systems, these properties can
be formulated in terms of invariant sets. Assuming that the dependent variable
u takes values in Rm, a subset B of Rm is said to be an invariant domain of
the hyperbolic system if for any initial data that takes values in B, the solution
also takes values in B. The notion of invariant domains generalizes the maximum
principle, which we recall holds true only for scalar conservation equations. The
existence of nontrivial invariant domains can be established for most hyperbolic
systems. Moreover, under mild assumptions, one can also show that invariant
domains are necessarily convex, [1, 6, 7]. Another important idea is that the ap-
proximate solution should also satisfy discrete entropy inequalities, since for most
hyperbolic systems uniqueness is only guaranteed if additional entropy inequalities
are satisfied. Being invariant domain preserving and satisfying discrete entropy in-
equalities are essential features that guarantee robustness. These ideas have been
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implemented in a generic algorithm proposed in [3] and which proceeds as follows.
Let un

h =
∑

i∈V U
n
i ϕi be the approximation of u(·, tn), where {ϕi}i∈V are the

scalar shape functions and U
n
i ∈ Rm for all i ∈ V . Here V is the set enumerating

all the scalar shape functions. The update at time tn+1 = tn + τ is obtained by
setting miU

n+1
i = miU

n
i − τ

∑
j∈I(i) f(U

n
i )cij + τ

∑
j∈I(i)\{i} d

n
ij(U

n
j −U

n
i ), where

mi is the lumped mass matrix coefficient associated with the shape function ϕi,
I(i) is the set collecting the indices of the degrees of freedom in the stencil of i,
cij =

∫
D ϕi∇ϕjdx ∈ Rd, and dnij is an artificial viscosity coefficient. (Here the

shape functions are assumed to be continuous, but cij can be defined for discon-
tinuous finite elements as well.) It is established in [3] that, under an appropriate

CFL restriction on the time step τ and provided
dn
ij

‖cij‖ℓ2
is larger than the maxi-

mum wave speed in the Riemann problem with left-right Riemann data (Un
i ,U

n
j )

and flux f(v)
cij

‖cij‖ℓ2
, this algorithm is invariant domain preserving and satisfies a

discrete entropy inequality for all the entropies of the system. This result hods true
in any space dimension d and for every flux f provided there exists an invariant
domain B such that the flux f(v)n is hyperbolic for all v in B and all unit vector
n in Rd. The only restriction on the finite element mesh is that it is a member of
a shape-regular sequence of meshes.

The above algorithm is robust at the cost of being only first-order accurate in
time and space (in compliance with Godunov’s theorem). Higher-order accuracy
in time can be achieved up to fourth order by using an explicit Runge–Kutta
time stepping technique that is strong stability preserving (SSP RK). Achieving
higher-order accuracy in space while maintaining the invariant domain preserving
properties and satisfying discrete entropy inequalities is nontrivial. It is doable
though by introducing a nonlinear post-processing called convex limiting. One
must abandon the idea of enforcing every possible invariant domain preserving
properties and every entropy inequalities, and instead restricts oneself to enforcing
only a finite set of convex constraints. A convex limiting technique has been
developed in [4] for the Euler equations and generalized in [5] for any hyperbolic
flux. These algorithms are easy to implement. They also give results that are
reproducible since they are unambiguously defined and do not depend on any
user-dependent stabilization parameters.

There are some limitations of the techniques described above. The first one
is that the approximation is based on scalar-valued shape functions; that is, the
approximation in Rm is done by using m copies of the scalar-valued finite element
space. This may be an obstacle when one solves the magnetohydrodynamic equa-
tions where Gauss’ laws of magnetism and electricity must be enforced. Using
edge elements in that case would naturally enforce these constraints. Another
limitation is that the convex limiting method is not yet robust with respect to the
polynomial degree of the finite element approximation. Finally, as mentioned in
[2], it is not yet clear how the convex limiting method can incorporate traditional
linear stabilization techniques (upwind dG, Galerkin Least Squares, Continuous
Interior Penalty, Subgrid Stabilization, Local Projection Stabilization, Orthogonal
Subgrid Scales, etc).
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An arbitrary-order discrete de Rham complex on polyhedral meshes

Daniele Antonio Di Pietro

(joint work with Jérôme Droniou)

The design of stable and convergent methods for the numerical approximation of
certain classes of partial differential equations requires to reproduce, at the discrete
level, the underlying geometric, topological, and algebraic structures. This leads
to the notion of compatibility, which can be achieved either in a conforming or
non-conforming numerical setting. Relevant examples include PDEs that relate to
the de Rham complex. For an open connected polyhedral domain Ω ⊂ R3, this
complex reads

R H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) {0},iΩ grad curl div 0

where iΩ denotes the operator that maps a real value to a constant function over
Ω, H1(Ω) the space of scalar-valued functions over Ω that are square integrable
along with their gradient, H(curl; Ω) (resp. H(div; Ω)) the space of vector-valued
functions over Ω that are square integrable along with their curl (resp. divergence).

In this talk we discuss an arbitrary-order discrete de Rham (DDR) complex
suitable for the numerical approximation of PDEs on general polyhedral meshes
originally introduced in [1, 2]; see also the precursor works [4, 5]. This complex is
obtained by replacing the spaces and vector calculus operators by discrete counter-
parts. Specifically, given a polyhedral mesh Th regular in the sense of [5, Chapter
1], the spaces in the DDR complex are spanned by vectors of polynomials whose
components are attached to mesh entities (possibly including vertices, edges, faces,
and elements according to the space) and are selected so as to:

(1) emulate, at the discrete level, the continuity properties of the correspond-
ing continuous space;
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(2) enable the reconstruction of discrete counterparts of vector calculus oper-
ators and of the corresponding potentials.

The discrete vector calculus operators, on the other hand, are constructed by
emulating local discrete integration by parts formulas on edges, faces, and el-
ements, and by taking component-wise L2-orthogonal projections on the DDR
spaces. Based on the above construction, one can define discrete counterparts of
the L2-products in the DDR spaces composed of two terms: the first, involving
the L2-product of the potentials, is in charge of consistency, whereas the second,
involving a least-square penalisation of high-order residuals inside each element,
ensures stability.

The DDR sequence enjoys the following properties, which play a key role for
its application to the discretization of PDE problems:

(1) Complex and exactness properties. The sequence forms a complex, i.e.,
the image of each discrete vector calculus operator is contained in the
kernel of the next one. Moreover, the following exactness properties are
reproduced at the discrete level: Im iΩ = Kergrad (since Ω is connected);
Imgrad = Ker curl if the first Betti number of Ω is zero; Im curl =
Ker div if the second Betti number of Ω is zero; Imdiv = L2(Ω) (since we
are in dimension three).

(2) Uniform Poincaré inequalities. Whenever a function from a space in the
sequence lies in some orthogonal complement of the kernel of the vector
calculus operator defined on this space, its (discrete) L2-norm is controlled
by the (discrete) L2-norm of the operator up to a multiplicative constant
independent of the mesh size.

(3) Primal and adjoint consistency. The discrete vector calculus operators sat-
isfy appropriate commutation properties with the interpolators and their
continuous counterparts. Additionally, these operators along with the cor-
responding (scalar or vector) potentials approximate smooth fields with
sufficient accuracy. Finally, the vector calculus operators enjoy suitable
adjoint consistency properties. The notion of adjoint consistency accounts
for the failure, in non-conforming settings, to exactly verify global inte-
gration by parts formulas, and is relevant whenever a formal integration
by parts is used to derive the weak formulation of the problem at hand.

The theoretical and numerical properties of the DDR sequence are showcased
on a model problem inspired by magnetostatics. The discretization is obtained
in a natural way: starting from the weak formulation of the problem set in
H(curl; Ω)×H(div; Ω), the numerical scheme is obtained by replacing the contin-
uous spaces, vector calculus operators, and L2-products with their discrete coun-
terparts discussed above. We show that, when the DDR complex of degree k ≥ 0
is used as a starting point, the approximations of the magnetic field and of the
corresponding vector potential converge to their exact counterparts as hk+1 (with
h denoting the mesh size) in the natural discrete graph norms. These results are
confirmed numerically on a variety of classical and polyhedral meshes.
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Some recent interpolation and stability estimates for Virtual Elements

Lourenço Beirão da Veiga

(joint work with Giuseppe Vacca)

The Virtual Element Method (VEM) was introduced in [1, 2] as a generalization
of the finite element method (FEM) that is able to cope with general polytopal
meshes; since its introduction, the VEM enjoyed a large success in the numerical
analysis and engineering communities.

The present talk will not deal with advanced applications of the method but
rather with its foundations, and may be of interest in general for schemes making
use of polygonal meshes. Standard h-interpolation (and convergence) estimates for
shape regular meshes in FEM and VEM involve the diameter hE of elements as the
main grid parameter; in the presence of triangular (or quadrilateral) shape regular
meshes this gives a complete picture. Instead, in the presence of more general
meshes one may wonder if polygons with many small edges (and an associated
richer discrete space such as those used in VEM or Polygonal FEM) can yield, in
some sense, better interpolation properties and if this will reflect also on the final
error among the discrete and exact solutions. Basically, the answer is no, but the
investigation allows to shed more light on the matter and develop an interesting
variant.

Looking into the interpolation capabilities of the VEM space, by a refined anal-
ysis we show that the H1 interpolation error on each element (polygon) E can
be split into a boundary contribution and a bulk contribution. Although for ba-
sic VEM spaces the bulk contribution will dominate the error, this investigation
leads to the following idea: if one increases the degree of the VEM only inside the
element then the bulk approximation order improves. For such “enriched” VEM,
elements with small edges indeed lead to more accurate interpolation in a sense
that we will make precise.

https://dx.doi.org/10.1016/j.jcp.2020.109991
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In the VEM setting, in order for such refined interpolation property to reflect
also on an improved convergence property, one needs also to ameliorate the stabil-
ity estimates of the scheme. Indeed, standard VEM stabilization estimates assume
a bounded number of edges, an hypothesis that we are able to eliminate leading
to final convergence estimates that show an improvement in the presence of many
small edges (with respect to standard estimates looking only at the element diam-
eter). Finally, we will show some numerical test both for quadrilateral/Voronoi
meshes with edge subdivision and on meshes generated by an agglomeration pro-
cedure. The numerical experiments are in accordance with the theoretical results
and help to appreciate from the practical standpoint the two separate bulk and
boundary contributions to the error.

The results of this talk can be found in the recent preprint [3]. Possible future
investigations include the possibility of extending this approach also to Hdiv and
Hcurl exact complex spaces (see for instance [4]) recently analyzed in [5] under
more stringent mesh requirements.
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H1-conforming finite element cochain complexes on Cartesian meshes

Francesca Bonizzoni

(joint work with Guido Kanschat)

In recent years considerable effort was put into the development of H1-conforming
methods with exact divergence constrain in two and three dimensions. This talk,
instead, is concerned with the full finite element cochain complex on Cartesian
meshes of arbitrary dimension.

The starting point is the one-dimensional H1-conforming finite element cochain
complex based on cubic polynomials with modified Hermitian interpolation, and
quadratic polynomials with Lagrangian interpolation. Applying a general result
on the cochain property of interpolation operators, we provide commuting inter-
polation operators for differentiable functions. Quasi-interpolation operators with
weighted node functionals are then derived, and proved to be commuting with the
exterior derivative and L2-stable.
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Based on the tensor product construction (see [2]), we obtain H1-conforming
finite element spaces on Cartesian meshes of arbitrary dimension. Moreover, com-
muting tensor product interpolation operators as well as commuting L2-stable
tensor product quasi-interpolation operators are derived.

The construction of the H1-conforming finite element cochain complex and the
corresponding commuting quasi-interpolation operators is then extended to higher
order polynomial spaces.
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A hybridized high-order method for unique continuation subject to
the Helmholtz equation

Guillaume Delay

(joint work with Erik Burman, Alexandre Ern)

We study the following unique continuation problem for the Helmholtz equation:

−∆u− ω2u = f in Ω, u = g in ̟,

where Ω ⊂ Rd and ̟ ⊂ Ω. Moreover f and g are given data and ω > 0 is the wave
number. This problem is ill-posed since no boundary conditions are given. In the
sequel, we have only noised data gδ := g + δ instead of g where δ is unknown.

This problem is classically regularized at the continuous level, using for instance
the Tikhonov regularization [5] or the quasi-reversibility method [3]. The regu-
larized problem is then discretized. In the present work, we first discretize the
ill-posed problem and then regularize it at the discrete level [1, 2].

A hybrid discontinuous Galerkin method is considered. For a polynomial degree
k ≥ 1, we define

UT := {vh ∈ L2(Ω) | vh|T ∈ P
k(T ) ∀T ∈ Th},

UF := {vh ∈ L2(Fh) | vh|F ∈ P
k(F ) ∀F ∈ Fh},

where Fh is the set of all faces of the mesh Th. Moreover, we define the space
Uh := UT ×UF and Uh0 is the subset of Uh with null polynomials attached to the
faces composing ∂Ω. In the sequel, for all vh ∈ Uh and all T ∈ Th, we denote by
uT the polynomial of uh attached to the cell T and by u∂T the polynomials of uh

attached to the faces composing ∂T . Moreover we define uT := (uT )T∈Th
.

The numerical method used is: Find (uh, ξh) ∈ Uh × Uh0 such that

(uh, vh)̟ + sh(uh, vh) + ah(ξh, vh) = (gδ, vh)̟ ∀vh ∈ Uh,

ah(uh, ηh)− σh(ξh, ηh) = (f, ηh)Ω ∀ηh ∈ Uh0,
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Figure 1. Considered configurations for ̟ and B.

where sh(uh, vh) :=
∑

T∈T h2k(uT , vT )T+h−1
T (uT−u∂T , vT−v∂T )∂T , ah(uh, ηh) :=∑

T∈Th
(∇uT ,∇ηT )T−(uT−u∂T ,∇ηT ·nT )∂T−(ηT−η∂T ,∇uT ·nT )∂T−ω2(uT , ηT )T

and σh(ξh, ηh) :=
∑

T∈Th
(∇ξT ,∇ηT )T + h−1

T (ξT − ξ∂T , ηT − η∂T )∂T .
This discretization has the advantage of using arbitrary high-order polynomials,

which is motivated by the fact that high-order is well-suited to solve the Helmholtz
problem [4]. Moreover, we can use a static condensation technique so that the
global system involves the face degrees of freedom only. Also note that the primal-
dual formulation of the problem makes the scheme stable unconditionally, which
is not always the case for the well-posed Helmholtz problem.

Using an inf-sup condition and the consistency of the scheme, we can prove the
convergence of the error in residual norm:

|||Ikh(u)− uh, ξh||| ≤ C(hk‖u‖Hk+1(Ω) + ‖δ‖̟),

where Ikh(u) ∈ Uh is an approximation of u and |||vh, ηh|||2 := sh(vh, vh)+‖vh‖2̟+
‖vh‖2R+σh(ηh, ηh) with ‖vh‖2R :=

∑
T∈Th

h2
T ‖∆vT+ω2vT ‖2T+

∑
F∈Fh

hF ‖J∇vT KF ‖2F
where J∇vT KF denotes the jump of ∇vT across F .

This convergence result is then combined with the following conditional stabil-
ity. Let B ⊂ Ω. There exist C(ω) > 0 and α ∈ (0, 1] (depending on ̟ and B)
such that for all v ∈ H1(Ω), we have

‖∇v‖B + ω‖v‖B ≤ C(ω)ω(‖v‖Ω + ρ(v))1−α(‖v‖̟ + ρ(v))α,

with ρ(v) := ‖∆v+ ω2v‖H−1(Ω). Possible configurations for ̟ and B are given in
Figure 1. For more information, the reader can report to [2].

Using the convergence of the error in residual norm and the conditional stability,
we can prove that

‖∇(u− uh)‖B + ω‖u− uh‖B ≤ C(ω)ωhαk(‖u‖Hk+1(Ω) + h−k‖δ‖̟).

Note that the convergence rate in energy norm is αk. Moreover, when h−k‖δ‖̟
becomes larger than ‖u‖Hk+1(Ω), one has to stop the refinement, otherwise the
error will increase.

Numerical tests have been run in order to corroborate these results on the two
configurations of Figure 1. We observed convergence rate of k for the configuration
on the left panel and of about 0.3 × k for the configuration on the right panel.
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Note that this corroborates the fact that we expect the configuration on the left
to be more stable than the configuration on the right.
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Finite Elements For Divdiv-Conforming Symmetric Tensors

Long Chen

(joint work with Xuehai Huang)

Let Ω ⊂ R3 be a three dimensional bounded domain. Let S be the space of all
symmetric matrices of dimension R3×3. We study the space

H(divdiv,Ω; S) := {τ ∈ L2(Ω; S) : divdivτ ∈ L2(Ω)}
and construct corresponding finite element spaces, which can be applied to dis-
cretize the linearized Einstein-Bianchi system [4, Section 4.11] and the mixed for-
mulation of the biharmonic equation [3].

Let K be a polyhedron. The set of edges of K is denoted by E(K), the faces by
F(K), and the vertices by V(K). Based on a polynomial complex and a Koszul
complex, we first obtain a decomposition of the polynomial tensor space

(1) Pk(K; S) = symcurlPk+1(K;T)⊕ xx⊤
Pk−2(K),

whereT is the space of all traceless matrices.We can show that divdiv :xx⊤Pk−2(K)
→ Pk−2(K;R3) is a bijection.

We then present a Green’s identity. Let τ ∈ C2(K; S) and v ∈ H2(K). Then

(divdivτ , v)K = (τ ,∇2v)K −
∑

F∈F(K)

∑

e∈E(F )

(n⊤
F,eτn, v)e

−
∑

F∈F(K)

[
(n⊤τn, ∂nv)F − (2divF (τn) + ∂n(n

⊤τn), v)F
]
,(2)

which motivates two trace operators

tr1(τ ) = n⊤τn, tr2(τ ) = 2divF (τn) + ∂n(n
⊤τn).

Let K be a tetrahedron. Take the space of shape functions

Σℓ,k(K) := symcurlPℓ(Ω;T)⊕ xx⊤
Pk−2(Ω)
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with k ≥ 3 and ℓ ≥ max{k − 1, 3}. By the decomposition (1), we have

Pmin{ℓ,k}(K; S) ⊆ Σℓ,k(K) ⊆ Pmax{ℓ,k}(K; S) and Σk,k(K) = Pk(K; S).

The most interesting cases are ℓ = k − 1 and ℓ = k which correspond to RT and
BDM H(div)-conforming elements for the vector functions, respectively.

For each edge, we chose two normal vectors n1 and n2. The degrees of freedom
are given by

τ (δ) ∀ δ ∈ V(K),(3)

(n⊤
i τnj , q)e ∀ q ∈ Pℓ−2(e), e ∈ E(K), i, j = 1, 2,(4)

(n⊤τn, q)F ∀ q ∈ Pℓ−3(F ), F ∈ F(K),(5)

(2divF (τn) + ∂n(n
⊤τn), q)F ∀ q ∈ Pℓ−1(F ), F ∈ F(K),(6)

(τ , ς)K ∀ ς ∈ ∇2
Pk−2(K)⊕ sym(x× Pℓ−2(K;T)),(7)

(τn,n× xq)F1 ∀ q ∈ Pℓ−2(F1),(8)

where F1 ∈ F(K) is an arbitrarily but fixed face. The degrees of freedom (8)
will be regarded as interior degrees of freedom to the tetrahedron K, that is the
degrees of freedom (8) are double-valued on each face F ∈ F i

h when defining the
global finite element space. Unisolvence can be found in our work [2].

A two dimensional version of H(divdiv,Ω; S) element has been constructed in
[1]. In addition, a discrete div-div complex has been established

(9) RT
⊂−→ Vℓ+1

symcurl−→ Σℓ,k
divdiv−→ Pk−2 → 0.

We plan to construct finite element for H(symcurl,Ω;T) and obtain similar dis-
crete complex in three dimensions.
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Polygonal staggered discontinuous Galerkin methods

Eun-Jae Park

(joint work with Lina Zhao, Dohyun Kim)

In this report, we propose and analyse polygonal staggered discontinuous Galerkin
(DG) methods with applications to the coupled Stokes and Darcy-Forchheimer
problem and Darcy flows in fractured porous media (cf. [1, 2]). The key idea of the
staggered DG methods is to divide the initial partition (general polygonal meshes)
into the union of triangles by connecting the interior point to all the vertices of
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the initial partition (see Figure 1 for an illustration). Then the corresponding
basis functions for the associated variables with staggered continuities are defined
on the resulting triangulations. Consequently, the method can be defined without
resorting to numerical flux. In summary, staggered DG methods offer the following
salient features: It is locally conservative over each dual element; superconvergence
can be obtained; it works on fairly general meshes; it handles hanging nodes
naturally; it is stable without numerical flux or penalty term.

S( )

D(e)

Figure 1. Schematic of the primal mesh, the dual mesh and the
primal simplicial sub-meshes.

The fluid flow between porous media and free-flow zones can be viewed as a
coupled problem with two physical systems interacting across an interface. The
coupled model has received great attention and our goal is to develop a numerical
scheme for the coupled Stokes and Darcy-Forchheimer problem:

∇ · uD = fD in ΩD,

µ

ρ
K−1uD +

β

ρ
|uD|uD +∇pD = gD in ΩD

and

∇ · σS +∇pS = fS in ΩS ,

σS = −ν∇uS in ΩS ,

∇ · uS = 0 in ΩS ,

where ΩS and ΩD represent the Stokes region and Darcy-Forchheimer region,
respectively. Here the Beavers–Joseph–Saffman interface conditions are exploited.

In the proposed scheme the interface conditions are enforced by switching the
roles of the variables met on the interface, which eliminate the hassle of intro-
ducing additional variables. The main difficulty lies in the proof of the optimal
convergence for the flux variable. To this end, a new discrete trace inequality and
a generalized Poincaré–Friedrichs inequality are established. Our analysis can be
carried out by exploiting these two inequalities and the monotone property of the
nonlinear operator under certain regularity assumptions without any restrictions
on the source terms. The theoretical results show that optimal convergence rates
O(hk+1) can be achieved for all the variables measured in L2 norm if k-th order
polynomials are used for all the variables.
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The fluid flow in fracture porous media can be described by Darcy’s law with
appropriate jump conditions along the fracture. Darcy’s law in the porous media
ΩB and along the fracture Γ is given by

u+K∇p = 0 in ΩB,

∇ · u = f in ΩB,

−∇t · (KΓ∇tpΓ) = ℓΓfΓ + [u · nΓ] on Γ,

p = p0 on ∂ΩB,

pΓ = gΓ at ∂Γ.

Here u, p are the flow velocity and the pressure in ΩB and pΓ is the pressure along
Γ, respectively. Then the jump conditions on Γ are given by

ηΓ{u · nΓ} = [p], αΓ[u · nΓ] = {p} − pΓ.

We discretize ΩB by the staggered DG method and Γ by standard continuous
Galerkin method. The jump conditions along the fracture are enforced similarly
to the previous case.
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Figure 2. Underlying polygonal mesh (Tu, left), modified mesh

(T̃u, center) and its magnified view with dual edges (right). The
modified mesh contains both sliver elements and small edges.

Staggered DG methods are numerically verified that they are robust to mesh
distortion and work reliably even when the underlying mesh contains small edges.
These properties make staggered DG method favorable since generating a mesh
satisfying strong regularity assumption can be difficult and time consuming when
the fracture has complex geometry. Our analysis is carried out without the as-
sumption on the ratio between mesh size and edge size. A priori error estimates
are carried out with optimal convergence O(hk+1) for all variables measured in
L2-norm. Several numerical examples are presented to verify the theoretical find-
ings and to demonstrate performance of the proposed method on meshes with
extreme cases. Finally, the proposed method is implemented on meshes obtained
from background mesh without a priori knowledge on the fracture so that the re-
sulting mesh contains small edges and sliver elements, see Figure 2. The numerical
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experiments suggest that our method can handle fairly general meshes so that it
can be flexibly applied to fractured porous media with complex geometries.
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Recent Developments in the TDNNS method

Joachim Schöberl

(joint work with Astrid Pechstein)

We consider mixed variational formulations for elasticity, i.e. we search for a
symmetric stress tensor σ and a displacement vector u such that

∫
Aσ : τ + 〈div τ, u〉 = 0,

〈div σ, v〉 = f(v)

holds for all test functions τ and v. Different mixed methods differ in the inter-
pretation of the duality pairing 〈div σ, v〉. It may be interpreted as (div σ, v)L2 =∫
div σ v, or as 〈div σ, v〉H−1×H1 = −

∫
σ : ∇v. Different formulations lead to

different smoothness of spaces, and thus different types of finite elements. In the
TDNNS method we define the duality pair as 〈div σ, v〉H(curl)∗×H(curl. The re-

quired smoothness is continuity for the tangential component of the displacement
vector, and continuity of the normal-normal component of the stress matrix (thus
the name of the method). It is easy to construct finite element spaces with this
requirements, in 2D as well as in 3D. The discrete variational formulation is given
by

∫
Aσ : τ +

∑
T

{∫
T div τ · u−

∫
∂T τnτuτ

}
= 0,

∑
T

{∫
T div σ · v −

∫
∂T σnτvτ

}
= −

∫
f · v.

The continuity of the normal component of u, as well as the tangential component
of the normal stress vector σn follows from the formulation in weak sense. In early
works [1, 2] the method has been proposed, and analyzed in discrete norms.

In more recent work [3] we proved error estimates in the norm

‖σ − σh‖H(div div),h + ‖u− uh‖H(curl),

where the discrete norm

‖σ‖H(div div),h := ‖σ‖L2 + sup
wh∈Wh⊂H1

〈div div σ,wh〉
‖wh‖H1

mimics the norm H(div div) = ‖σ‖L2 + ‖ div div σ‖H−1 . With this norm, we
could extend the method as well as the analysis to the Reissner Mindlin plate
model [4]. The moments are taken in H(div div), the rotations in H(curl), and
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the vertical displacement in H1. Thus, discrete rotations in the Nédélec finite
space can match exactly with gradients from Lagrangian finite elements, and shear
locking is avoided.

The Hellan-Herrmann-Johnson finite element method (see [5] and references
therein) for the Kirchhoff plate equation uses symmetric, nn-continuous finite
elements for the moments, and continuous finite elements for the vertical displace-
ment: Find σh ∈ Σh ⊂ H(div div) and wh ∈ Wh ⊂ H1 such that

∫
σhτ +

∑
T

∫
T div τ ∇wh +

∫
∂T τnt∇twh = 0

∑
T

∫
T
div σh∇v +

∫
∂T

σnt∇tv =
∫
fv

for all discrete τ and v. This mixed method satisfies the magic discrete kernel
inclusion

Vh,0 ⊂ V0

which leads to best-approximation property of the bending moments σ without
the need of approximation of the displacement:

‖σ − σh‖L2 ≤ inf
τh∈Σh

‖σ − τh‖L2 + ‖f − Ihf‖.

The distributional evaluation of the div div-operator has led to equilibrated resid-
ual error estimates for the Kirchhoff plate [6].

The discrete bilinear forms for 〈div σ, v〉 of the TDNNS-method and the HHJ
method are tightly related, i.e.

bTDNNS(σ,∇w) = bHHJ (σ,w).

This relation has lead to the design of special bubble functions, and improved
error estimates for the TDNNS method:

‖σ− σh‖L2 + ‖ curl(u− uh)‖L2 � inf
τh,vh

‖σ− τh‖L2 + ‖ curl(u− vh)‖L2 + ‖f − Ihf‖.

A bad approximation of gradient components in the displacement field does not
hurt the stress approximation.

The following version of an elasticity complex is useful for the design of finite
elements:

[H1]2
sym- curlT−→ H(div div)

div−→ H(curl)∗
div−→ [H1]∗

⋃ ⋃[1] ⋃[1] ⋃[1]

Wh
sym- curlT−→ Σh

div−→ N ∗
h

div−→ L∗
h

[1] slightly non-conforming

• range(sym- curlT ) = kern(div div)
• the operator div div : Σh → L∗

h from Hellan-Herrmann-Johnson is onto
• the operator div : Σh → N ∗

h from TDNNS is not onto

• Adding sym- curlT of bubbles from Wh to Σh leads to LBB-stability of
TDNNS method and does not spoil the exactness of HHJ



Nonstandard Finite Element Methods 115

This complex guided the design of the cheapest, second order accurate method:
choose Σh = P 1,sym + sym- curlT (b, 0) + sym- curlT (0, b), where b is the cubic
bubble, and Vh = N I

2 , the second order type-I Nédélec space. The element has 11
+ 8 degrees of freedom.

Another recent developement of TDNNS methods is the extension to geometric
non-linear elasticity, including robustness of nearly incompressible materials [7, 8].
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Mixed Finite Element Methods for Nonlinear Elasticity and Shells

Michael Neunteufel

(joint work with Astrid Pechstein, Joachim Schöberl)

Nonlinear elasticity. The TDNNS method [6] is a mixed formulation for linear
elasticity, where the stresses are normal-normal continuous and the displacements
Nédélec elements. We extend it to nonlinear elasticity by lifting the distributional
gradient ∇u to a regular field F with the first Piola–Kirchhoff stress tensor P

L(u,F ,P ) =

∫

T

W(F )− f · u dx− 〈F − (∇u + I),P 〉h,

where W(·) denotes an energy potential. Considering a lifting of the distributional
Cauchy–Green strain tensor C(u) to an independent C leads to

L(u,C,Σ, û) =
∑

T∈T

∫

T

W(C) +
1

2
(C −C(u)) : Σ dx −

∫

∂T

(F (u)Σ)nn(u − û)n ds.

It is crucial to break the normal-normal continuity of Σ and enforcing this con-
tinuity of P = F (u)Σ with û [2]. Incompressible materials can be handled by a
lifting of the distributional determinant to a new field J [5].
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Nonlinear shells. The HHJ method for plates [1] uses continuous displacements
and normal-normal continuous moments. We extend it to nonlinear Koiter shells
given by a triangulation T , skeleton E , thickness t, and (co-)normal vector µ̂, ν̂ [3]

L(u,σ) = t

2
‖Eτ (u)‖2M − 6

t3
‖σ‖2

M−1 +
∑

T∈T

∫

T

(F⊤
τ ∇τν −∇τ ν̂) : σ dx+

+
∑

E∈E

∫

E

(arccos(νL · νR)− arccos(ν̂L · ν̂R))σµ̂µ̂ ds.

M denotes the material tensor, ν the deformed normal vector, and Eτ (u) =

0.5(F⊤
τ F τ − P τ ), P τ = I − ν̂ ⊗ ν̂, the Green strain tensor. By adding shearing

unknowns [5] the TDNNS method for plates [6] gets extended to Naghdi shells. To
alleviate membrane locking for shells discretized by triangles we propose to use the
interpolation operator IR

h into the Regge elements. Inserted into the membrane
term ‖IR

h Eτ (u)‖2M it relaxes the kernel constraints [4].
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A normal-tangential stress space - The MCS method for
incompressible flows and pressure robust equilibration

Philip L. Lederer

(joint work with Jay Gopalakrishnan, Christian Merdon, Joachim Schöberl)

Let u, p be the velocity and pressure respectively, and f, ν be a given force and
viscosity. On a bounded Lipschitz domain Ω ⊂ R

d the Stokes problem reads as



1

ν
σ −∇u = 0 in Ω, div(σ)−∇p = −f in Ω,

div(u) = 0 in Ω, u = 0 on ∂Ω.

On a given triangulation T , the MCS method (see [1, 2]) approximates (u, p) in
RTk(T ) × P k(T ), i.e. the Raviart-Thomas space and the space of element-wise
polynomials of order k, respectively. The normal-tangential continuous stress
space is denoted by

Σh(T ) := {τh ∈ Pk(T )d×d : [[(τh)nt]]F = 0 for all facets F, tr σh = 0},
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where [[·]]F denotes the jump operator and (·)nt the normal-tangential trace. Then
we define the method, find (σh, uh, ph) ∈ Σh × RTk × P k such that

(ν−1σh, τh) + 〈div(τh), uh〉Vh
= 0 for all τh ∈ Σh(T ),

〈div(σh), vh〉Vh
+ (div vh, ph) = (−f, vh)Ω for all vh ∈ RTk(T ),

(div uh, qh) = 0 for all qh ∈ P k(T ),

with the discrete duality pair

〈div(τh), vh〉Vh
:=
∑

T∈T

∫

T

div(τh) · vh −
∑

F∈F

∫

F

[[(τh)nn]](vh)n.

The MCS method provides exactly divergence-free discrete velocities leading to
pressure robustness, energy stability (for the Navier-Stokes equations) and con-
verges with optimal order. Further it can be used to derive a pressure robust
equilibration with guaranteed upper bounds and local efficiency (see [3]), and a
novel method for the stream function formulation (see [4]).
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A posteriori error analysis of the inf-sup constant for the divergence

Dietmar Gallistl

In this contribution, two a posteriori error estimates for the numerical approxi-
mation scheme from [1] for the inf-sup constant for the divergence (also known
as the LBB constant) are shown. Given a polyhedral, connected, bounded, open
Lipschitz domain Ω ⊆ Rn, n ≥ 2, the inf-sup constant β = β(Ω) is defined by

β := inf
p∈L2

0(Ω)\{0}
sup

v∈H1
0 (Ω;Rn)\{0}

(p, div v)L2(Ω)

‖p‖L2(Ω)‖Dv‖L2(Ω)
,

where L2
0(Ω) and H1

0 (Ω;R
n) are the usual Lebesgue and Sobolev spaces for the

pressure and velocity variable in a Stokes flow problem. Under the two assumptions
that

(A) the squared inf-sup constant µ := β2 is an eigenvalue of the Cosserat oper-
ator separated from the remaining part of the spectrum by some spectral
gap δ > 0

and
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(B) that the mesh size of the finite element triangulation is so small that the
first normalized discrete Cosserat eigenfunction ξh and its projection Πξh
to the continuous eigenspace satisfy

λ ≤ (Πξh, ξh)L2(Ω) ≤ 1

for some λ > 0 and all meshes in the class of possible refinements,

the first reliability estimate bounds the eigenvalue error from above and below by
an error estimator up to multiplicative constants. More precisely, for any positive
0 < ε < ∞, the eigenfunction error satisfies

(µh − µ)
[
(Πξh, ξh)L2(Ω) −

ε

2

]
≤ µh

[ n

2εδ
+ 1
]
‖R‖2L2(Ω)

and ‖R‖2L2(Ω) ≤ (µh − µ)

(
1

µ
+

1

δ

)
.

Here, R is the divergence-free part in the Helmholtz decomposition of the discrete
eigenfunction ξh, and is regarded as a basically computable quantity.

In the second reliability error estimate

(µh − µ)b(Πξh, ξh) ≤
√
nµh‖R‖L2(Ω),

the reliability constant converges to 1 as the mesh size decreases (at the expense
of a suboptimal efficiency estimate) and so allows for guaranteed enclosures of the
inf-sup constant on sufficiently fine meshes. The results, their proofs, and actual
computations can be found in [2].
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Multigrid injection operators for hybridized mixed and discontinuous
Galerkin methods

Guido Kanschat

(joint work with Peipei Lu, Andreas Rupp)

Multigrid methods in the literature on mixed and discontinuous Galerkin methods
in hybridized form (summarized as HDG methods following [5]) were confined
to heterogeneous methods where the HDG discretization is first projected to a
nonconforming [1, 8] or conforming [4, 6] finite element space in which standard
multigrid methods can be applied. In our work, we apply the geometric multigrid
method in a homogeneous way to the HDG method, such that we employ an HDG
discretization on every level.

While we can use standard smoothers like the Jacobi and Gauß-Seidel methods
analyzed in [2], the construction of injection operators from coarse to fine level
requires additional effort for methods defined on the skeleton of the mesh. The
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first successful effort in this direction was [3], and indeed we were able to prove
uniform convergence using this injection operator in [7].

The injection operator from [3] uses interpolation into a conforming subspace.
From the implementation point of view, this is a drawback, since it involves a
wide stencil and thus breaks data locality. Therefore, we decided to look further
for more local injection operators. On this quest, we were guided by two crucial
properties of the injection operator Iℓ from mesh level ℓ− 1 to mesh level ℓ:

(1) Weak stability of the injection operator: there is a constant c independent
of ℓ, such that

‖Iℓλ‖ℓ ≤ c‖λ‖ℓ−1 ∀λ ∈ Mℓ−1.

Here, Mℓ−1 is the space of finite elements on the skeleton and the norm
‖ · ‖ℓ is a scaled L2-norm on the skeleton commensurate with the L2-norm
in the domain.

(2) Trace identity for conforming linear finite elements:

Iℓγℓ−1w = γℓw ∀w ∈ V c
ℓ−1,

where V c
ℓ−1 is the lowest order conforming finite element space on the

coarser level, and γℓ denotes the trace operator from the domain to the
faces on mesh level ℓ. In words, the injection operator must transform a
function which is coplanar on the boundary of a coarse level cell into a
function which is coplanar on all the boundary faces of the cells obtained
by refinement.

The multigrid convergence analysis can be based solely on these two assumptions
on the injection operator and a set of assumptions on the particular HDG method,
yielding proven, uniform convergence. These are met by a wide class including
hybridized LDG, Raviart-Thomas and Brezzi-Douglas-Marini methods. Further-
more, we currently require elliptic regularity. Note that the stability assumption
is fairly weak, since it does not involve the energy norm. Nevertheless, paired with
the second assumption, energy stability can be shown for a wide class of HDG
methods.

Given now sufficient conditions for uniform convergence on the injection oper-
ator, can we improve on the previously known one? First, observe that the weak
stability assumption is met very easily, just by assuring that the values of Iℓλ are
bounded by those of λ due to a finite dimensional argument. Second, consider
refining a mesh Tℓ−1 from level ℓ− 1 to level ℓ. The refinement will result in faces,
which are refinements of the faces on the boundary of a cell T ∈ Tℓ−1 plus faces
in positions where there were no faces before. Observe, that an injection operator
which acts as identity on the first set of edges does not violate the second con-
dition. Therefore, we propose to employ this class of injections, which now must
be completed by the definition on the second set of edges, those inside the cell T .
Here, we propose two options:

(1) interpolating the values on the boundary faces in a linear preserving way,
(2) or using the HDG reconstruction by the local solver, in which case the

consistency of the local solver ensures preservation of linear functions.
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Both versions yield a local operator which can be computed cell by cell on the
coarse mesh. The results presented will be published on arXiv in short time.
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Adjoint-based superconvergent approximations of linear functionals by
Galerkin methods

Bernardo Cockburn

(joint work with Zhu Wang, Shiqiang Xia)

To approximate a functional J(u), where u solves a PDE, the standard way is to
obtain a numerical approximation uh of the exact solution u and then use J(uh)
as an approximation of the functional. The adjoint-based method we study here
improves the accuracy of these approximations in two ways. First, by increasing
the accuracy of the numerical solution uh by means of the filtering technique
devised in [1]. Then, by modifying the formula to approximate the functional by
using the adjoint-correction approach proposed in [4].

The filtering is carried out by a simple convolution. It takes advantage of
the well-known fact that the Galerkin solution must oscillate around the exact
solution in a certain pattern (provided the mesh is translation invariant) because
of the Galerkin orthogonality property. Hence, convolving the Galerkin solution
with a specific B-spine kernel filters out these oscillations and provides a more
accurate solution. For example, the continuous Galerkin method using polynomials
of degree k ≥ 1 converges with order k + 1 whereas the filtered approximation
converges with order 2k, provided the exact solution is smooth enough.

The adjoint-based method for approximating functionals more accurately is the
adjoint-correction method of [4]. This simple and powerful technique consists in
numerically solving the adjoint problem for the functional J(·) so that, an extra,
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computable correction term can be added to J(uh) which results in a much better
approximation.

In [2], these two components were put together which resulted in the method
we are reporting on here. Therein, numerical experiments were carried out using
the hybridizable discontinuous Galerkin method with polynomial degree k. The
results indicate that the approximation defined by this new adjoint-based method
converges to the functional J(u) with order h4k. Compared to the standard ap-
proximation J(uh), which converges with order h2k+1, this new method essentially
doubles the order of convergence by only doubling the computational effort for ob-
taining J(uh). These results were theoretically proven in [3].

In this talk, we describe the method, display a numerical experiments confirm-
ing the theoretical results and provide examples which point to the necessity of
incorporating adaptivity in order to compensate the loss of convergence due to the
lack of regularity of the exact solution and the functional.
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Residual-based a posteriori error analysis for symmetric mixed
Arnold–Winther FEM

Joscha Gedicke

(joint work with Carsten Carstensen, Dietmar Gallistl)

This talk introduces an explicit residual-based a posteriori error analysis for the
symmetric mixed finite element method in linear elasticity after Arnold–Winther
with pointwise symmetric andH(div)-conforming stress approximation. The resid-
ual-based a posteriori error estimator is reliable and efficient and truly explicit in
that it solely depends on the symmetric stress and does neither need any addi-
tional information of some skew symmetric part of the gradient nor any efficient
approximation thereof. Numerical experiments verify the proven reliability and
efficiency of the residual a posteriori error estimator and illustrate the improved
convergence rate in comparison to uniform mesh-refining. A higher convergence
rate for piecewise affine data is observed in the L2 stress error and reproduced in
non-smooth situations by the adaptive mesh-refining strategy.

For mixed finite element methods like the symmetric Arnold–Winther finite ele-
ment schemes, the subtle term is the nonconforming residual: Given any piecewise
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polynomial σh ∈ H(div,Ω; S), compute an upper bound η(T , σh) of

inf
v∈H1

ΓD
(Ω;R2)

‖C−1/2σh − C
1/2ε(v)‖L2(Ω) . η(T , σh).

This talk presents a reliable and efficient residual-based a posteriori error estimator
of the nonconforming residual with the typical contributions to η(T , σh) computed
from the (known) Green strain approximation εh := C−1σh. Besides oscillations
of the applied forces in the volume and along the Neumann boundary, there is
a volume contribution h2

T ‖ rot rotεh‖L2(T ) for each triangle T ∈ T and an edge
contribution with the jump [εh]E across an interior edge E with unit normal νE ,
tangential unit vector τE , and length hE , namely

h
1/2
E ‖τE · [εh]EτE‖L2(E) + h

3/2
E ‖τE · [rotNC εh]E − ∂(νE · [εh]EτE)/∂s‖L2(E),

and corresponding modification on the edges on the Dirichlet boundary with the
(possibly inhomogeneous) Dirichlet data.

The main result is reliability and efficiency to control the stress error robustly
in the sense that the multiplicative generic constants neither depend on the (local
or global) mesh-size nor on the parameter λ > 0 but may depend on µ > 0 and
on the shape regularity of the underlying triangulation T of the domain Ω.
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Convergence of adaptive discontinuous Galerkin and C0-interior
penalty finite element methods for Hamilton–Jacobi–Bellman and

Isaacs equations

Iain Smears

(joint work with Ellya L. Kawecki)

Hamilton–Jacobi–Bellman (HJB) and Isaacs equations arise in stochastic optimal
control problems and two-player stochastic games, and find diverse applications
in engineering, industry, economics, and finance. In many cases, these equations
are fully nonlinear second-order PDE, i.e. the nonlinearity includes the second
derivatives. As a model problem, we consider the Isaacs equation

(1)
inf
α∈A

sup
β∈B

[
Lαβu− fαβ

]
= 0 in Ω,

u = 0 on ∂Ω,

where Ω is a nonempty bounded convex polytopal open set in R
d, d ∈ {2, 3},

where A and B are nonempty compact metric spaces, and where the second-
order nondivergence form elliptic operators Lαβ , α ∈ A , β ∈ B, are defined by

(2) Lαβv := aαβ : ∇2v ∀v ∈ H2(Ω).
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It is also possible to consider problems with lower-order terms in the operators
Lαβ. The infimum and supremum in (1) are understood in the pointwise sense
over Ω, and it is also possible to consider (1) with the infimum and supremum in
reverse order without affecting our results. If either A or B is a singleton set,
then the Isaacs equation (1) reduces to a HJB equation for the value function of
the associated stochastic optimal control problem. Many other nonlinear PDE
can also be reformulated as HJB and Isaacs equations, a notable example being
the (simple) Monge–Ampère equation, which admits a reformulation as an HJB
equation. The importance of these equations therefore stems from both their
applications and their connections to other PDE.

Due to the full nonlinearity of the problem, finite element approximations of (1)
are necessarily nonstandard. One approach is to consider monotone finite element
methods, based on discrete maximum principles, that can be shown to converge to
the viscosity solution [1]. In recent years there has also been significant progress
in the design of stable, convergent and high-order methods, without discrete max-
imum principles, for the class of problems with Cordes coefficients [4, 5, 6, 7],
where it is assumed that there exists a ν ∈ (0, 1] such that

(3)
|aαβ(x)|

Tr(aαβ(x))
≤ 1√

d− 1 + ν
∀x ∈ Ω, ∀(α, β) ∈ A × B.

We are interested here in adaptive methods for Isaacs and HJB equations with
Cordes coefficients, based on successive mesh refinements driven by computable
error estimators. Building on our recent analysis of a posteriori error estimators
in [3], we prove in [2] the convergence of a broad family of adaptive discontinu-
ous Galerkin and C0-interior penalty methods using adaptively refined conforming
simplicial meshes in two and three space dimensions, with fixed but arbitrary poly-
nomial degrees greater than or equal to two. Convergence is shown for all choices
of penalty parameters that are sufficient for stability of the discrete problems.

Our analysis rests upon a detailed theory for the limit spaces, which are non-
standard function spaces that describe the limiting structure of the finite element
spaces under adaptive mesh refinement. A key ingredient of our approach is a
novel intrinsic characterization of the limit space in terms of characterizations
of the distributional derivatives, which enables us to identify the weak limits of
bounded sequences of finite element functions. We provide a detailed theory for
the limit spaces, and also some original auxiliary function spaces, that resolves
some foundational challenges and that is of independent interest to adaptive non-
conforming methods for more general problems. These include Poincaré and trace
inequalities, a proof of the density of functions with nonvanishing jumps on only
finitely many faces of the limit skeleton, symmetry of the Hessians, approximation
results by finite element functions and weak convergence results.
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Non-Lagrange finite element approximations of linear elliptic
equations in non-divergence form and Hamilton–Jacobi–Bellman

equations with Cordes coefficients

Shuonan Wu

This talk is concerned with C0 (non-Lagrange) finite element approximations of the
linear elliptic equations in non-divergence form and the Hamilton–Jacobi–Bellman
(HJB) equations with Cordes coefficients. Motivated by the Miranda–Talenti es-
timate, a discrete analog is proved once the finite element space is C0 on the
(n− 1)-dimensional subsimplex (face) and C1 on (n− 2)-dimensional subsimplex.
The main novelty of the non-standard finite element methods is to introduce an
interior stabilization term to argument the PDE-induced variational form of the
linear elliptic equations in non-divergence form or the HJB equations. As a distinc-
tive feature of the proposed methods, no stabilization parameter is involved in the
variational forms. As a consequence, the coercivity constant (resp. monotonicity
constant) for the linear elliptic equations in non-divergence form (resp. the HJB
equations) at discrete level is exactly the same as that from PDE theory. The
quasi-optimal order error estimates as well as the convergence of the semismooth
Newton method are established. Numerical experiments are provided to validate
the convergence theory and to illustrate the accuracy and computational efficiency
of the proposed methods.
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New Development of Conforming Finite Elements - Beyond Nédélec

Zhimin Zhang

(joint work with Qian Zhang)

In this survey, we discuss the conforming finite element discretization of high-order
equations involving operators such as (curl curl)2, grad∆div, and − curl∆ curl.
These operators appear in various models, such as continuum mechanics, inverse
electromagnetic scattering theory, magnetohydrodynamics, and linear elasticity.
Naively discretizing these operators and their corresponding eigenvalue problems
using the existing H2-conforming element might lead to wrong solutions or spu-
rious eigenvalues. On the other hand, using non-conforming and DG methods to
deal with these operators would have difficulty in implementing boundary condi-
tions. Therefore, it is essential to design conforming finite elements for equations
containing these high-order differential operators.

The curl curl-conformity or grad curl-conformity requires that the tangential
component of curluh is continuous. Recall that the Nédélec element requires only
uh ∈ H(curl) (or H(div)). Due to the continuity requirement and the naturally
divergence-free property of the curl operator, it is challenging to construct curl curl-
conforming elements. We start from the two dimensional (2D) case, where curluh

is a scalar. Our construction [6, 4] is based on the existing polynomial spaces
Qk−1,k × Qk,k−1, Rk, and Pk. The restriction of k ≥ 4 for a triangular element
or k ≥ 3 for a rectangular element has to be imposed since an interior bubble
should be included in the shape function space of curluh, and hence the simplest
triangular or rectangular element has 24 degrees of freedom (DOFs). To remove
the restriction, in a subsequent study, we resort to the discrete de Rham complex to
construct curl curl-conforming elements. The Poincaré operator enables us to tailor
the shape function space to our needs (not necessarily the existing polynomial
spaces). As a result, the new triangular and rectangular finite elements [2] have
only 6 and 8 DOFs, respectively.

Unlike the 2D case, curluh in three dimensions (3D) should be a divergence-free
vector in the space H1, which relates the (curl curl)2 problem to the Stokes prob-
lem. However, it is challenging to construct an inf-sup stable finite element Stokes
pair that preserves the divergence-free condition at the discrete level. Neilan [5]
constructed a finite element complex that includes a stable Stokes pair and an
H1(curl)-conforming element on tetrahedral meshes. Based on the same Stokes
pair, we proposed a curl curl-conforming element in [8]. Compared to theH1(curl)-
conforming element [5], our curl curl-conforming element has weaker continuity (uh

is in H(curl) instead of H1) and thus fewer DOFs. However, our element still has
at least 315 DOFs. Recently, Guzmán and Neilan stabilized the lowest-order 3D
Scott-Vogelius pair by enriching the velocity space with modified Bernardi-Raugel
bubbles [1]. This work inspires us to construct simple curl curl-conforming ele-
ments. To obtain a family of elements, we first generalize their construction to an
arbitrary order by enriching the velocity space with modified face or/and interior
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bubbles. Then we construct a finite element complex which contains curl curl-
conforming elements on tetrahedral meshes. The lowest-order element has only 18
DOFs [3].

The graddiv-conformity requires that the normal component and divergent of
the finite element function uh are continuous. Since divuh is a scalar, the construc-
tion of graddiv-conforming elements is similar with the 2D gradcurl elements. The
simplest tetrahedral and cuboid elements have only 8 and 14 DOFs, respectively
[7].

To summarize, we have constructed not only the grad curl-conforming or grad
div-conforming elements but also the whole finite element complexes. One may
further investigate robust solvers in the framework of subspace correction. We will
also extend our construction to quadrilateral and hexahedral meshes and study
superconvergence properties of the newly developed elements.
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A Basis for High-Order Crouzeix-Raviart Elements

Stefan Sauter

In this work, we discuss a construction of a basis for high-order Crouzeix-Raviart
spaces.

1. Introduction

Crouzeix-Raviart (CR) finite element spaces have been introduced in the seminal
paper [4] as a non-conforming finite element space. A main motivation for intro-
ducing these spaces is to obtain a stable pair of finite elements for discretizing the
Stokes equation with relatively few degrees of freedom.
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The definition in [4] is implicit via moment conditions across the mesh interfaces
and it is a non-trivial problem to define a basis for these spaces. In this work, we
introduce a basis for general polynomial degree p in two dimensions.

2. Crouzeix-Raviart Elements – the Implicit Definition

Let Ω ⊂ Rd be a bounded Lipschitz polytope with boundary Γ := ∂Ω. We consider
finite element meshes G consisting of (closed) simplices K, where hanging nodes
are not allowed. We set Gd := G and decompose the boundaries of the simplices
in Gd recursively into lower-dimensional simplices.

The boundary of a simplex Kd ∈ Gd can be split into d+1 simplices of dimension
d−1. The set of these facets are denoted by Gd−1 with facet elements Kd−1; again,
by convention, (relatively) closed sets. The boundary of each Kd−1 ∈ Gd−1 can
be split into d simplices of dimension d− 2. We iterate this process iteratively so
that G0 denotes the set of simplex vertices.

The interior of a simplex K is denoted by
◦

K and we write
◦

Kj to denote the
(relative) interior of a lower-dimensional simplex Kj ∈ Gj , 0 ≤ j ≤ d − 1. For

0 ≤ j ≤ d, the subset consisting of all elements Kj ⊂ Gj with
◦

Kj ⊂ Ω is denoted
by GΩ,j while those Kj ⊂ Gj with Kj ⊂ ∂Ω are collected in G∂Ω,j .

We recall the definition of conforming hp-finite element spaces. For p ∈ N0, let
Pd
p denote the space of d-variate polynomials of total degree ≤ p. For a connected

subset ω ⊂ Ω, we write P
p
d (ω) for polynomials of degree ≤ p defined on ω. For a

connected m-dimensional manifold ω ⊂ Rd, for which there exists a subset ω̂ ∈ Rm

along an affine bijection χω : ω̂ → ω, we set Pm
p (ω) :=

{
v ◦ χ−1

ω : v ∈ P
m
p (ω̂)

}
. If

the dimension m is clear from the context, we write Pp (ω) short for P
m
p (ω).

The conforming hp-finite element space (for problems with homogeneous Dirich-
let boundary conditions) is given by

(1) Sp
G,c :=

{
u ∈ C0

(
Ω
)
| ∀K ∈ G u|K ∈ Pp (K)

}
∩H1

0 (Ω) .

Let N p denote the usual set of nodal points for the p-th order Lagrange inter-
polation on G and we denote by N p

Ω := N p∩Ω the inner ones. The Lagrange basis
for Sp

G,c can be indexed by the nodal points N ∈ N p
Ω and is characterized by

(2) BG
p,N ∈ Sp

G,c and ∀N′ ∈ N p
Ω BG

p,N (N′) = δN,N′ ,

where δN,N′ is the Kronecker delta.

Definition 1. For 0 ≤ j ≤ d and Kj ∈ GΩ,j , the conforming space Sp
c (Kj) is

Sp
c (Kj) := span

{
BG

p,N | N ∈
◦

Kj ∩ N p
Ω

}
.

Further, we set

(3) ω (Kj) :=
⋃

K∈G
Kj⊂K

K.
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It is well known that

supp v ⊂ ω (Kj) ∀v ∈ Sp
c (Kj)

and that these spaces give rise to a direct sum decomposition

(4) Sp
G,c =

⊕

K∈G

Sp
c (K)⊕

⊕

Kd−1∈GΩ,d−1

Sp
c (Kd−1)⊕ . . .⊕

⊕

K0∈GΩ,d−1

Sp
c (K0) .

The non-conforming Crouzeix-Raviart finite element spaces will be a subspace
of

H1
G (Ω) :=

{
u ∈ L∞ (Ω) | ∀K ∈ G u|K ∈ H1 (K)

}
.

For the inner facets Kd−1 ∈ GΩ,d−1, let K ′,K ′′ be the two simplices in G which

share Kd−1 as a common facet. The jump [·]Kd−1
: H1

G (Ω) → H1/2 (Kd−1) across

Kd−1 is defined by

(5) [w]Kd−1
= γKd−1

(wK′′ )− γKd−1
(wK′) ,

where for K ∈ G we denote by wK the restriction of w ∈ H1
G (Ω) to K and for

a facet Kd−1 ⊂ ∂K we denote by γKd−1
: H1 (K) → H1/2 (Kd−1) the standard

trace operator.
The definition of the non-conforming finite elements involves orthogonal poly-

nomials on facets which we introduce first. For Kd−1 ∈ Gd−1 we define the set of
orthogonal polynomials on Kd−1 by
(6)

P
⊥
p,p−1 (Kd−1) :=

{
P0 (Kd−1) p = 0,{
u ∈ Pd−1

p (Kd−1) |
∫
Kd−1

uv = 0 ∀v ∈ P
d−1
p−1 (Kd−1)

}
p ≥ 1.

The orthogonal polynomials on facets allows us to formulate the weak compati-
bility condition (wcc) which is employed for the definition of non-conforming finite
element spaces. For u ∈ H1

G (Ω), we set

(7)
[u]Kd−1

∈ P⊥
p,p−1 (Kd−1) , ∀Kd−1 ∈ GΩ,d−1

and u|Kd−1
∈ P

⊥
p,p−1 (Kd−1) , ∀Kd−1 ∈ G∂Ω,d−1.

We have collected all ingredients for the (implicit) characterization of the non-
conforming Crouzeix-Raviart finite element space.

Definition 2. The non-conforming finite element space Sp
G,wcc with weak compat-

ibility conditions across facets is given by

(8) Sp
G,wcc :=

{
u ∈ H1

G (Ω) | ∀K ∈ G u|K ∈ Pp (K) and u satisfies (7)
}
.

We are interested to derive a local decomposition of this space as a direct sum.
For K ∈ G and Kd−1 ∈ GΩ,d−1, we set

Sp
wcc (K) :=

{
v ∈ Sp

G,wcc | supp v ⊂ K
}
,

Sp
wcc (Kd−1) :=

{
v ∈ Sp

G,wcc | supp v ⊂ ω (Kd−1)
}
.
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Clearly, there exist linearly independent functions BK,nc
p,j ∈ Sp

G,wcc with BK,nc
p,j

∣∣∣
Ω\K

= 0, 1 ≤ j ≤ nd, such that

Sp
wcc (K) = Sp

c (K)⊕ S̃p
nc (K) with S̃p

nc (K) := span
{
BK,nc

p,j : 1 ≤ j ≤ nd

}
.

Let Kd−1 ∈ GΩ,d−1 with adjacent simplices K ′,K ′′ ∈ G. There exist linearly

independent functions B
Kd−1,nc
p,j ∈ Sp

G,wcc, 1 ≤ j ≤ nd−1, with

(9)
Sp
wcc (Kd−1) = Sp

c (Kd−1)⊕ Sp
wcc (K

′)⊕ Sp
wcc (K

′′)⊕ S̃p
nc (Kd−1)

with S̃p
nc (Kd−1) := span

{
B

Kd−1,nc
p,j : 1 ≤ j ≤ nd−1

}

and we set

(10) S̃p
G,nc := Sp

G,c +
⊕

K∈G

S̃p
nc (K) +

⊕

Kd−1∈GΩ,d−1

S̃p
nc (Kd−1) .

Clear, it holds

S̃p
G,nc ⊆ Swcc,p

G .

In most cases (including the case of two-dimensional triangulations, cf. [2]), the
inclusion “⊆”, holds with an “=” sign. However, there exist examples in 3D where
the inclusion is strict and we refer for a detailed discussion to [3, Ex. 36].

It is not guaranteed that both sums “+” in (10) are direct – in fact this does not
even hold for the P1 Crouzeix-Raviart elements. Hence, it is common to employ
subspaces Sp,−

G,c ⊆ Sp
G,c, S

p
nc (K) ⊆ S̃p

nc (K), Sp
nc (Kd−1) ⊆ S̃p

nc (Kd−1) such that all
sums in

Sp
G,nc := Sp,−

G,c ⊕
⊕

K∈G

Sp
nc (K)⊕

⊕

Kd−1∈GΩ,d−1

Sp
nc (Kd−1)

are direct. We do not require that Sp
G,nc = Sp

G,wcc but impose as a minimal
requirement that

Sp
G,c ⊂ Sp

G,nc

so that standard approximation properties for conforming hp finite elements carry
over to Sp

G,nc.

Theorem 3. Let Ω be a two-dimensional polygonal domain and G a triangulation
as in §2. For F ∈ GΩ,1 with endpoint A1 and A2 and adjacent triangles K1, K2

and K ∈ G with vertices A1, A2, A3, we define

BF,nc
p,1 :=

{
1 +

∑2
j=1 Lp

(
−1 + 2λKi,Aj

)
i = 1, 2,

0 in Ω\ωF ,

BK,nc
p,1 :=

1

2




3∑

j=1

Lp

(
−1 + 2λ

i,Aj

)
− 1



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with barycentric coordinates λK,Aj
∈ P1 (K) such that λK,Aj

(Ai) = δi,j, 1 ≤
i, j ≤ 3. We set

Sp
nc (F ) :=

{
span

{
BF,nc

p,1

}
p odd,

{0} p even,
Sp
nc (K) :=

{
{0} p odd,

span
{
BK,nc

p,1

}
p even.

Then,

Sp
G,wcc =





⊕

K∈G

Sp
c (K)⊕

⊕

F∈GΩ,1

Sp
c (F )⊕

⊕

F∈GΩ,1

Sp
nc (F ) p odd,

⊕

K∈G

Sp
c (K)⊕

⊕

F∈GΩ,1

Sp
c (F )⊕

⊕

N∈GΩ,0

Sp
c (N)⊕

⊕

K∈G

Sp
nc (K) p even.

For a proof we refer to [1], [5], [2].

Remark 4. The three-dimensional case is more involved and we refer for an
explicit basis for the high-order Crouzeix-Raviart spaces to [3, Ex. 36].
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DPG schemes for thin structures

Norbert Heuer

(joint work with Thomas Führer, Antti H. Niemi)

The DPG method (discontinuous Petrov–Galerkin method with optimal test func-
tions) is a paradigm for numerical schemes to solve PDEs, proposed by Demkowicz
and Gopalakrishnan [12, 13]. It aims at automatically ensuring discrete stability,
and combines, in its standard form, an ultra-weak formulation [10] with indepen-
dent trace variables [7], optimal test functions [5], and product test spaces induced
by an underlying mesh. Important advantages are, besides the automatic discrete
stability, that systems are Hermitian positive definite and that there is inherent a
posteriori error estimation made up of local error indicators [14, 9].

Our motivation is to make the potential of this technique available for the
solution of problems from the mechanics of thin structures. Prototype cases
are the Reissner–Mindlin and Kirchhoff–Love models for plate bending, and the
Naghdi and Koiter shell models combining, respectively, the Reissner–Mindlin and
Kirchhoff–Loves models with membrane elasticity. The numerical solution of such
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problems is challenging due to issues of reduced regularity, singular perturbations,
locking phenomena, both individually and combined. Whereas there has been
much progress during the last decades, see, e.g., [1, 2, 3, 4, 6, 11, 19, 20, 21], the
numerical treatment of singularities and locking phenomena in thin structures is
still a non-trivial challenge. Our conjecture is that the DPG paradigm can open
efficient strategies to tackle these problems. Initial results for DPG applied to thin
structures are reported in [18, 8].

In our talk we discuss DPG techniques for the Kirchhoff–Love plate bending
model (“KL”) and the case of a shallow Koiter shell (“sK”). The solutions to
both problems suffer from low regularity at incoming corners and, depending on
data, geometry, and the type of boundary conditions, numerical methods for sK
suffer from various locking phenomena. We present trace operators for these cases
[16, 15] that are uniformly well posed (uniformly bounded from above and from
below) and allow for efficient approximations of the KL and sK models. We
discuss stability properties of the sK model to show which test norms have to
be chosen to achieve uniform discrete stability, and be potentially locking free.
Several numerical experiments underline our theoretical results. Similarly to the
KL-sK case, we expect to combine our Reissner–Mindlin techniques [17] with the
Naghdi shell model.

Our conjecture is that the DPG framework can be adapted to different cases of
shell models so that numerical approximations are locking free, or show at least
reduced locking. It is motivated by the fact that DPG schemes in the ultraweak
setting are essentially characterized by their traces. Their conforming approxima-
tions are substantially easier to construct and analyze than those of field variables
with corresponding regularity.

Support by ANID (formerly CONICYT) through FONDECYT projects 1190009
and 11170050 is gratefully acknowledged.
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Error analysis of the lowest-order nonconforming VEM for
second-order linear indefinite elliptic problems

Rekha Khot

(joint work with Carsten Carstensen, Amiya K. Pani)

The finite element method (FEM) is the most widely used numerical method for
solving model problems involving differential equations. FEM allows to divide the
domain on which problem is posed into triangles or rectangles in 2D and simi-
larly in higher dimension. Recently this idea has been extended to ‘fairly general”
polygonal/polyhedral finite elements and various methods are developed to han-
dle such elements efficiently - mimetic finite difference method, virtual element
method, hybrid high order method, discontinuous Galerkin finite element method
to name a few. The virtual element method (VEM) introduced in [1] is one of
the well-received polygonal methods for approximating the solutions to partial
differential equations (PDEs) in the continuation of the mimetic finite difference
method [2]. On the account of its versatility in shape of polygonal domains, the
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local finite-dimensional space (the space of shape functions) comprises polynomial
as well as non-polynomial functions. The novelty of this approach lies in the fact
that it does not demand for the explicit construction of non-polynomial functions
and the knowledge of degrees of freedom along with projections onto polynomials
is sufficient to implement the method.

The nonconforming virtual element method approximates the weak solution
u ∈ H1

0 (Ω) to the second-order linear elliptic boundary value problem

Lu := −div(A∇u+ bu) + γu = f in Ω(1)

for a given f ∈ L2(Ω) in a bounded polygonal Lipschitz domain Ω ⊂ R2 subject
to homogeneous Dirichlet boundary conditions. Beirão da Veiga et al. discuss a
conforming VEM for the indefinite problem in [3]. Cangiani et al. [4] develop
a nonconforming VEM under the additional condition which makes the bilinear
form coercive and significantly simplifies the analysis. The two papers [3, 4] prove
a priori error estimates for a solution u ∈ H2(Ω) ∩H1

0 (Ω) in a convex domain Ω.
The a priori error analysis for the nonconforming VEM in [4] can be extended to
the case when the exact solution u ∈ H1+σ(Ω)∩H1

0 (Ω) with σ > 1/2 as it is based
on traces. We prove it for all σ > 0 and circumvent any trace inequality. Medius
analysis [5] is known in FEM literature for problems with minimal regularity as-
sumptions. Very recently, this analysis has been applied to the nonconforming
VEM for Poisson and Biharmonic problems by Huang et al. in [6]. An a posteri-
ori error estimate in [7] explores the conforming VEM for (1) assuming coercive
problem. We investigate in [8] both the a priori and a posteriori error estimates
for the nonconforming VEM assuming reduced regularity, but under the assump-
tion that the Fredholm operator L is injective. We assume that the coefficients
A,b and γ are piecewise Lipschitz continuous functions, and also A is symmet-
ric positive definite and satisfies uniformly elliptic condition. These assumptions
imply the existence of a unique solution to the model problem.

The first step of discrete setting is the decomposition of Ω into polygonal do-
mains. T is an admissible polygonal mesh if any two polygonal domains in T
are disjoint, share either a finite number of edges or vertices. Mesh regularity as-
sumption in [1] essentially implies that each polygonal domain in T can be divided

into triangles such that the resultant sub-triangulation T̂ of Ω is shape regular.
Since the discrete space is not a subset of H1

0 (Ω), the substitution of a discrete
function in a continuous problem leads to an error and this error is regarded as
a nonconformity error. The main tool to analyze such error is the construction
of mapping between nonconforming virtual element space (Vh) and the Sobolev

space V := H1
0 (Ω). First we map Vh to Crouzeix-Raviart finite element space on T̂

through an interpolation operator ICR and then map it to V using the well-known
enrichment or averaging operator Eh in [9]. This enrichment operator Eh is ex-
tended to a companion operator J ′ which has additional special properties [10]. So
the composition J ′◦ICR is another linking between Vh and V . Then we reconstruct
a conforming companion operator J which is a right inverse of an interpolation
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operator Ih : V → Vh and has properties like orthogonality, approximation esti-
mates etc. This newly constructed linear operator J is an important tool in error
analysis. The stability of the discrete solution allows for the proof of existence of a
unique discrete solution, of a discrete inf-sup estimate and, consequently, for error
estimates in the piecewiseH1 and L2 norms. We develop an explicit residual-based
a posteriori error estimate, which is reliable and efficient up to the stabilization
and oscillation terms. The four local quantities namely the volume residual, the
stabilization term, the inconsistency term, and the nonconformity term contribute
to the upper bound.

The numerical experiments provide evidence for the sharpness of the mathe-
matical a priori and a posteriori error analysis in this work and illustrate the
superiority of adaptive over uniform mesh-refining. The empirical convergence
rates in all examples for the H1 and L2 errors coincide with the theoretically
predicted convergence rates. The ratio of the estimator by the error, sometimes
called efficiency index, remains bounded. The volume residual clearly dominates
the a posteriori error estimates, while the stabilisation term remains significantly
smaller for the natural stabilisation. The analysis can be extended to the non-
conforming VEM space of higher-order and also to 3D. The future work on the
theoretical investigation of the performance of adaptive mesh-refining algorithm is
clearly motivated by the successful numerical experiments.
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Nonstandard adaptive FEMs with smoothing

Ornela Mulita

(joint work with Stefano Giani, Luca Heltai)

In this work we propose a new nonstandard approach for Adaptive Finite Element
Methods (AFEMs) based on smoothing iterations (S-AFEM), for linear, second-
order, elliptic partial differential equations (PDEs). The algorithm is inspired by
the ascending phase of the V-cycle multigrid method: accurate algebraic solutions
in intermediate cycles of the classical AFEM are replaced with the application of
a prolongation step, followed by the application of a smoother. Even though these
intermediate solutions are far from the exact algebraic solutions, their a-posteriori
error estimation produces a refinement pattern that is substantially equivalent to
the one that would be generated by classical AFEM, at a considerable fraction of
the computational cost.

We provide a qualitative analysis of how the error propagates throughout the
algorithm, and we present a series of numerical experiments that highlight the
efficiency and the computational speedup of S-AFEM. In particular, we consider
some variants of our algorithm, where different smoothers are used in the interme-
diate cycles (respectively Richardson iteration, the CG method, and the GMRES
method). We conclude that, in general, CG and GMRES act as robust smoothers
in SAFEM also for high order approximations, and for non-symmetric problems,
like, for example, drift-diffusion problems with dominant transport.

In [1] we analyze the error propagation properties of the S-AFEM algorithm, and
provide a bound on the a-posteriori error estimator applied to the approximated
algebraic solution. The results are not sharp, and do not provide a definitive answer
on the convergence of the final S-AFEM solution to the AFEM one, but could be
used as a ground state for further investigation, which is currently ongoing.
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A Hybrid High-Order discretization combined with Nitsche’s method
for contact and Tresca friction in small strain elasticity

Nicolas Pignet

(joint work with Franz Chouly, Alexandre Ern)

We present a Hybrid High-Order (HHO) method to discretize unilateral and bi-
lateral contact problems with Tresca friction in small strain elasticity [1] (see [2]
for the pioneer work using a conforming Lagrange discretization). The nonlin-
ear frictional contact conditions are enforced weakly by means of a consistent
Nitsche’s technique with symmetric, incomplete, and skew-symmetric variants.
The present HHO-Nitsche method supports polyhedral meshes and delivers opti-
mal energy-error estimates for smooth solutions under some minimal thresholds
on the penalty parameters for all the symmetry variants. An explicit tracking of
the dependency of the penalty parameters on the material coefficients is carried
out to identify the robustness of the method in the incompressible limit, showing
the more advantageous properties of the skew-symmetric variant.

HHO methods have been introduced for linear elasticity in [3] and are formu-
lated in terms of face unknowns that are polynomials of arbitrary order k ≥ 1
on each mesh face and in terms of cell unknowns which are polynomials of order
l ∈ {k, k± 1}, with l ≥ 1, in each mesh cell. The devising of HHO methods hinges
on two operators, both defined locally in each mesh cell: a strain reconstruction
operator and a stabilization operator. The cell unknowns can be eliminated locally
by static condensation leading to a global problem posed solely in terms of the
face unknowns.

Since HHO methods involve both cell unknowns and face unknowns, this leads
to different formulations of Nitsche’s consistency and penalty terms, either using
the trace of the cell unknowns (cell version) or using directly the face unknowns
(face version). This talk focuses on the face version, which has better robustness
properties than the cell version in the incompressible limit. The key idea to prove
optimal convergence rates for this face version is to increase the polynomial order
to (k+1) for all the faces that are on the contact boundary (which increase slightly
the size of the global problem).

This work can be pursued in several directions, such as extending the analysis to
Coulomb friction which is more physically relevant but more difficult mathemat-
ically; or add a plastic behavior which implies to modify the discrete formulation
since nonlinear terms appear for the test functions.
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Adaptive mixed finite element methods for non-selfadjoint indefinite
second-order elliptic PDEs

Rui Ma

(joint work with Carsten Carstensen)

In this talk, we establish optimality of adaptive mixed finite element methods for
non-selfadjoint indefinite second-order elliptic problems in three dimensions. The
error is measured in L2 norms and then allows for an adaptive algorithm with
collective marking. The axioms of adaptivity apply to this setting and guarantee
the rate optimality for sufficiently small initial mesh-sizes and bulk parameter.
This talk introduces an alternative proof for the discrete reliability of the mixed
Poisson problem.
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On a discrete embedding inequality for two types of fourth order
elliptic equations (Biharmonic and Quad-Curl)

Weifeng Qiu

(joint work with Gang Chen, Huangxin Chen, Amiya Pani, Liwei Xu)

Biharmonic equation and Quad-Curl problem are two fourth-order elliptic partial
differential equations with wide applications. First of all, we will show regularities
of solutions spaces for these two PDEs. Then we will present a discrete embedding
inequality to handle the stability estimates of C0-IP type methods for these two
PDEs. In fact, this discrete embedding inequality can be utilized to show stability
of several numerical methods including DG.
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Distributed solution of symmetric eigenvalue problems

Antti Hannukainen

(joint work with Jarmo Malinen, Antti Ojalammi)

I discuss solution of large-scale eigenvalue problems in distributed computing en-
vironments where communication between tasks is expensive, such as a cluster
in cloud computing service or on networked workstations running the HTCondor
batch system. As a model problem, I consider computing eigenvalues on (0,Λ) of
the Dirichlet Laplacian discretized using conforming first order FEM. However, I
believe that the applied techniques are more general and can also be used with
other elliptic PDEs. The talk is based on [1, 2].

Consider the problem: find (λ, 0) ∈ (0,Λ)× Vh0(Ω) \ {0} satisfying

(1) (∇u,∇v) = λ(u, v) for all v ∈ Vh0(Ω).

Here, and in the following, Vh0(ω) and Vh(ω) denote the FE-space over the set
ω ⊂ Ω ⊂ Rd for d = 2, 3 with and without imposed zero Dirichlet b.c.. The
corresponding algebraic EVP is: find (λ, x) ∈ (0,Λ) × Rn \ {0} satisfying A~x =
λM~x.

We develop a Ritz method using method subspace constructed from local Ritz
spaces associated to an overlapping decomposition of the computational domain
into subdomains {U (p)}Pp=1. Each local Ritz space is independent of others. In [2]
the partition of unity method is used to combine the local spaces into a conforming
global space. If the overlap is of the size of one element layer, one can simply work
with matrices.

Instead of A~x = λM~x, we solve QTAQ~y = µQTMQ~y. Here Q ∈ Rn×k, k ≪
n. Accuracy of approximations λ ≈ µ and ~x ≈ Q~y depends on subspace V =
range(Q). Our method uses a “non-standard” choice of V = VU(1) × . . . × VU(P )

corresponding to

Q =



Q1

. . .

QP


 where VU(i) = rangeQi for i ∈ {1, . . . , P}.

We call {VU(p)}Pp=1 local subspaces, as each VU(p) is associated to the subdomain

U (p). Under sufficient assumptions on V and σ(A,M), the relative eigenvalue
error (λ−µ)λ−1 on (0,Λ) is bounded by the approximability of the corresponding
eigenvector ~x s.t. A~x = λM~x, ‖~x‖M = 1 in V as

(λ − µ)λ−1 ≤ Cmin
v∈V

‖~x− ~v‖2A ≤ C

(
P∑

p=1

‖~xU(p) − vp‖A(p)

)2

.

Here A(p) is the FE-matrix block corresponding to interior degrees of freedom on
U (p). The local Ritz space VU(p) is designed accordingly to approximate ~xU(p) .

Designing the subspace VU(p) requires information on eigenvectors correspond-
ing to eigenvalues on (0,Λ). For this purpose, we attach an extended subdomain

Û (p) to U (p). For notational convenience, denote U = U (p) and Û = Û (p). Let
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(λ, u) ∈ (0,Λ)×Vh0(Ω)\ {0} satisfy (1) and ~x be the coordinate vector of u. Then
u|Û satisfies

(∇u|Û ,∇v0)− λ(u|Û , v0) = 0 for all v0 ∈ Vh0(Û).

We use the above equation to express ~xU as a function of the unknown boundary
trace γ∂Ûu|Û . This function features a finite-dimensional part and λ-dependent
boundary-to-interior mapping, a linear operator mapping boundary traces from

∂Û to U . In [2], we show that in the continuous setting the boundary-to-interior
mapping is compact for λ ∈ (0,Λ).

We obtain the space VU from the finite dimensional part, and by approximating
the range of the λ-dependent boundary-to-interior mapping as follows: First, we
approximate it by interpolation. Then we linearise the approximation. Finally,
singular value decomposition is used to obtain VU . For detailed description of this
process and error analysis, see [2].

Numerical examples indicate that the proposed method has potential. As an
example, we approximate 200 lowest eigenvalues of three dimensional Dirichlet
Laplacian using cluster of 25 workstations. The largest example computation has
ten million unknowns and took approximately two hours to solve.

References

[1] A. Hannukainen, J. Malinen, and A. Ojalammi, Efficient solution of symmetric eigenvalue
problems from families of coupled systems, SIAM Journal Numerical Analysis 57(4) (2019),
1789–1814.

[2] A. Hannukainen, J. Malinen, and A. Ojalammi, PU-CPI solution of Laplacian eigenvalue
problems, arXiv preprint (2020), 2006.10427.

Least-Squares and discontinuous Petrov-Galerkin methods for the
approximation of eigenvalues

Fleurianne Bertrand

(joint work with Daniele Boffi, Henrik Schneider)

Accurate flux approximations are of interest in many applications and a lot of
attention has recently been devoted to the reconstruction of the flux from a pri-
mal formulation since they are usually not H(div)-conforming. The reconstruction
procedures for fluxes are also of particular importance for a posteriori error esti-
mation and have a long history with ideas dating back at least as far as [1] and
[2]. They have received large attention recently: a unified framework for Stokes is
presented in [3], polynomial-degree robustness is shown in [4], extensions to three
space dimensions [5]. An alternative approach uses flux-based variational formu-
lations involving the flux as an independent variable approximated in a suitable
H(div)-conforming finite element spaces. Such approaches may either lead to a
saddle-point problem or a symmetric positive definite system. The first one, have
been intensively studied and we refer to [9] for an overview. This talk, therefore,
focuses on the second type and covers the Least-Squares Method (see [10] for a
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comprehensive overview) and the discontinuous Petrov-Galerkin method (intro-
duced in a series of papers [11, 12, 13]). Even if the proposed methods may not
be competitive with other solution techniques, the presented analysis should shed
some light on the fundamental properties of these formulations.

1. Computation of the eigenvalues with the Least-Squares method

In this part, we aim at investigating the least-squares finite element approximation
of the eigensolutions of operators associated with second-order elliptic equations.
Given f ∈ L2(Ω), the simplest least-squares formulation for the source problem
−∆u = f with homogeneous Dirichlet boundary conditions, is given by the min-
imization of the following functional F(τ , v) = ‖τ − ∇v‖2 + ‖ div τ + f‖2. The
corresponding variational formulation can be used in a natural way to consider
the following eigenvalue problem: find λ ∈ C and u ∈ H1

0 (Ω) with u 6= 0 such that
for some σ ∈ H(div; Ω) it holds

(LS)

{
(σ, τ ) + (divσ, divτ )− (∇u, τ ) = −λ(u, divτ ) ∀τ ∈ H(div; Ω)

− (σ,∇v) + (∇u,∇v) = 0 ∀v ∈ H1
0 (Ω)

A symmetric equivalent formulation follows from the fact that (u, divτ ) =
−(∇u, τ ) and in particular the eigenvalues are real. Let Σh ⊂ H(div; Ω) and
Uh ⊂ H1

0 (Ω) be conforming finite element spaces. The discretization of (LS)
reads: find λh ∈ R and uh ∈ Uh with uh 6= 0 such that for some σh ∈ Σh it holds

(LSh)

{
(σh, τ ) + (divσh, divτ )− (∇uh, τ ) = −λh(uh, divτ ) ∀τ ∈ Σh

− (σh,∇v) + (∇uh,∇v) = 0 ∀v ∈ Uh

Regarding the source problem, the choice of finite element spaces for the ap-
proximation of the different variables is not restricted by compatibility conditions.
However, for the eigenvalue problem, our framework is restricted to finite element
spaces Σh and Uh satisfying the following approximation properties

inf
τ∈Σh

‖χ− τ‖H(div;Ω) ≤ Chs
(
‖χ‖Hs(Ω) + ‖divχ‖H1+s(Ω)

)
,

inf
v∈Uh

‖p− v‖H1(Ω) ≤ Chs‖p‖H1+s(Ω).

Using duality arguments, we are then able to derive refined L2-estimates that
directly imply the uniform convergence of the discrete solution operator to the
continuous one and thus, the convergence of the eigenvalues, see [14]. If standard
(nodal) finite elements are used for the definition of Σh, then it is not clear in
this case if the uniform convergence is satisfied and if the eigenmodes are well ap-
proximated. We extended successfully these results in [15] to the linear elasticity
problem, although we were not able to obtain a symmetric formulation of the corre-
sponding problem. Our numerical results show that in several cases the computed
eigenvalues are real and positive. Some pairs of complex conjugate eigenvalues may
be present which converge to real numbers according to the developed analysis.
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2. Computation of the eigenvalues with the discontinuous

Petrov-Galerkin method

Another approach consists of the discontinuous Petrov-Galerkin method, which is
a stress-based mixed method that can be seen as a Least-Squares method simulta-
neously. The main idea is to use a suitable discontinuous trial and test functions
that are tailored for stability. The ideal dPG formulation is turned into a practi-
cal dPG formulation [16] where the test function space is easily computable and
arbitrary close to the optimal one. The dPG formulation comes with a natural
a posteriori error indicator that can be used for driving a robust hp adaptivity.
Usually, the trial space U consists of two components and can be presented as
U = U0 × U1, where U0 is a functional space defined on Ω (volumetric part) and
U1 is the remaining part that can be defined on Ω or the skeleton of a given trian-
gulation. The continuous eigenvalue problem then reads: find eigenvalues λ ∈ C

and eigenfunctions u = (u0, u1) ∈ U = U0 × U1 with u0 6= 0 such that

(DPG) b(u, v) = λm(u0, v) ∀v ∈ V.

The fundamental characterization of the solution uh of the DPG system by a mixed
problem defined only via the discrete spaces Uh and Vh leads to the following
eigenvalue problem: find λh ∈ C such that for some uh = (u0,h, u1,h) ∈ Uh =
U0,h × U1,h with u0,h 6= 0 and some εh ∈ Vh it holds

(DPGh)

{
(εh, vh)V + b(uh, vh) = λhm(u0,h, vh) ∀vh ∈ Vh

b(zh, εh) = 0 ∀zh ∈ Uh.

The available error estimates allow us to prove the uniform convergence of the
eigenvalue, using the classical Babǔska–Osborn theory [17] for the primal and the
ultra-weak formulation of the Laplacian. The natural error estimator associated
with the energy residual reads η = ‖εh‖. With natural modifications of the analysis
of [18] global efficiency and reliability can be proved. Both properties rely on the
following (usual) higher-order term λu0 − λhu0,h.
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4, Place Jussieu
75005 Paris
FRANCE

Prof. Dr. Leszek F. Demkowicz

Oden Institute for Computational
Engineering and Sciences (ICES)
University of Texas at Austin
1 University Station C
Austin, TX 78712-1085
UNITED STATES

Prof. Dr. Daniele Di Pietro

IMAG, University of Montpellier
Place Eugene Bataillon
34095 Montpellier Cedex 5
FRANCE

Prof. Dr. Jerome Droniou

Dept. of Mathematics
Monash University
Clayton, Victoria 3168
AUSTRALIA

Prof. Dr. Ricardo G. Durán

Depto. de Matematica - FCEN
Universidad de Buenos Aires
Ciudad Universitaria
Pabellon 1
Buenos Aires C 1428 EGA
ARGENTINA

Prof. Dr. Alexandre Ern

CERMICS - ENPC
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Institut für Analysis und
Scientific Computing
Technische Universität Wien
Wiedner Hauptstrasse 8 - 10
1040 Wien
AUSTRIA

Dr. Iain Smears

Department of Mathematics
University College London
Gower Street
London WC1H 0AY
UNITED KINGDOM

Prof. Dr. Endre Süli
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