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Introduction by the Organizers

The workshop Geometry, Dynamics and Spectrum of Operators on Discrete Spaces,
organized by David Damanik (Houston), Matthias Keller (Potsdam), Tatiana Nag-
nibeda (Geneva) and Felix Pogorzelski (Leipzig), brought together experts and
young researchers from spectral theory in various geometric settings. A particular
emphasis was laid on discrete models such as graphs with the goal of illustrating
bridges to continuous models such as manifolds, but at the same time highlight-
ing fascinating new phenomena that can be observed in one of the realms but
not in the other, respectively. Moreover, the gathering aimed at identifying new
research perspectives given by the interplay between geometric, dynamical and
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spectral theoretic aspects in either model. In this framework the participants pre-
sented results in various mathematical areas. This concerns aspects of Laplace
and Schrödinger operators (Fischer, Frank, Stollmann, Veselić, Wojciechowski),
aperiodic order (Baake, Beckus, Grigorchuk, Kellendonk, Lenz, Smilansky), the
heat flow (Rose, Schmidt, Wirth) and curvature (Münch, Peyerimhoff).

The conference featured several talks about recent results on Laplace and Schrö-
dinger operators in various geometric settings. For Laplace operators on graphs,
Peter Stollmann explained a new uncertainty principle at low energies in terms of
subsets of positive density with respect to a decomposition of the graph with a
spectral gap. The approach bears witness of a general method that is applicable in
various models. In analogy to Euclidean potential theory and going beyond various
stochastic models, Florian Fischer presented a Fatou–Näım–Doob-type theorem for
positive sub-critical Schrödinger operators on graphs. Radoslaw Wojciechowski’s
talk was devoted to new insights into essential self-adjointness of Laplace operators
on graphs. He described the tight connections to the ℓ2-Liouville property and
a stability criterion for subgraphs. Rupert Frank presented new insights into the
spectrum of (possibly random) Schrödinger operators on the real line with constant
electric field motivated by a prominent model in solid state physics. He detected
the sensitive connections between the choice of the key parameters and the (type of
the) occurring spectrum. In the realm of Schrödinger operators in Euclidean space,
Ivan Veselić presented a quantitative scale free unique continuation principle with
applications in mathematical physics, such as Wegner and observability estimates.

The theory of aperiodic order was reflected in several talks covering a wide
range of research topics. Rostislav Grigorchuk reported on several results on
the spectrum of Laplace and Markov operators on Schreier graphs arising from
finitely generated groups defined via dynamical data. One central focus was laid
on criteria leading to Cantor spectrum of Lebesgue measure zero. Taking the
Heisenberg group as an example, Siegfried Beckus explained a path via dilations
towards symbolic substitutions, thus revealing a source of linearly repetitive and
aperiodic subshift systems in a class of non-abelian groups. In the framework
of translation bounded measures on locally compact abelian groups, Daniel Lenz
characterized key aspects of mathematical diffraction theory via notions of almost
periodicity for the autocorrelation measure. A classification of cut-and-project sets
in Rd via affine group invariant ergodic measures on the space of lattices (so-called
“Ratner–Marklof–Strömbergsson measures”) with applications to counting statis-
tics was presented by Yotam Smilansky. Michael Baake explained that weak model
sets of maximal density are pure point diffractive and illustrated some specifics
via models of number-theoretic origin such as the visible lattice points and the
square-free integers in the Gaussian integers. Johannes Kellendonk discussed dy-
namical aspects of one-dimensional symbolic shift systems via the underlying Ellis
semigroup. Among other things, this included a characterization of tameness for
Toeplitz systems of finite Toeplitz rank.
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Another emphasis was laid on the impact of geometric-analytic conditions on the
behavior of the underlying heat kernel. Christian Rose described geometric con-
ditions for subsets of Riemannian manifolds in order to admit a bounded Sobolev
extension operator. This leads to uniform Neumann heat kernel estimates for such
subsets under integral Ricci curvature bounds. Marcel Schmidt explained a sharp
criterion for stochastic completeness via volume growth for graphs endowed with
an intrinsic metric with finite distance balls. Using globally local (GL) graphs as
a tool, one obtains a discrete analogue of a celebrated theorem of Grigor’yan for
manifolds. Melchior Wirth presented a logarithmic Sobolev inequality for Markov
semigroups in a non-commutative setting via Wasserstein-type distances on den-
sity operators in von Neumann algebras.

Structural insight on the geometry of graphs is also obtained by discrete notions
of curvature. Norbert Peyerimhoff presented in his talk a new formula relating the
Bakry–Émery curvature of a vertex in a weighted graph with the smallest eigen-
value of an associated matrix arising from objects in a semidefinite programming
problem. Introducing a new concept for straight lines in graphs, Florentin Münch
explained the way towards a discrete version of the Cheeger–Gromoll splitting
theorem for Ollivier–Ricci curvature in connected, locally finite graphs.

We dedicate this workshop to Daniel Lenz, whose broad research interests were
reflected in many topics discussed at the workshop, on the occasion of his 50th
birthday.

On the mode of the workshop: Due to the Covid-19 pandemic, the workshop had
to be changed on short notice from a hybrid format to a pure online format. Al-
though there is clearly no way to experience the genuine Oberwolfach spirit via
Zoom, everyone was looking at the bright side. There were 16 inspiring online talks
and insightful discussions in parallel Zoom meeting rooms. The slots that opened
up after cancellations could be filled also on short notice and we are grateful to the
MFO administration for generously allowing us to extend more invitations than
originally planned. In particular, this created a unique opportunity for young
researchers in the current situation. The organizers are grateful to the reporter
Siegfried Beckus and to the two video conference assistants Florian Fischer and
Elias Zimmermann who guaranteed a smooth technical process during the work-
shop.

Acknowledgement: Florian Fischer participated in the workshop as a recipient of
a prize granted by the DMV for his excellent master thesis. Siegfried Beckus,
Florian Fischer and Elias Zimmermann are grateful for financial support through
the MFO. The MFO and the workshop organizers would like to thank the Si-
mons Foundation for supporting Radoslaw Wojciechowski in the “Simons Visiting
Professors” program at the MFO.
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Abstracts

A new uncertainty principle at low energies

Peter Stollmann

(joint work with Daniel Lenz, Gunter Stolz and Martin Tautenhahn)

1. Introduction

This talk is about a new uncertainty principle at low energies and its very simple
proof. Based on joint works in preparation with Daniel Lenz, Gunter Stolz and
Martin Tautenhahn.

• Classical unique continuation doesn’t hold for graphs.
• There are estimates

‖φ‖2 ≤ κ−1‖φ1D‖2 for all φ ∈ Ran(PI)

where,
– D is spread out in X in the sense that for some R > 0

X ⊂
⋃

p∈D

BR(p),

– I = [0, E] where E is small enough,
– and the geometry of the graph, R and E are suitably related and

determine κ.

Estimates of this type are mostly based on a spectral theoretic uncertainty princi-
ple from [1]. They have been established, e.g. for the lattice in [2, 8] and for quite
general graphs in [5]; see also [4].

2. A new method

Let X be a weighted graph with energy form E . This means that we are given
the following data:

• X is an arbitrary set, whose elements are referred to as vertices ;
• b : X×X → [0,∞) is a symmetric function with b(x, x) = 0 for all x ∈ X .
• m : X → (0,∞) is a function on the vertices.

An element (x, y) ∈ X×X with b(x, y) > 0 is then called an edge and b is denoted
as edge weight ; The positive function m : X → (0,∞) gives a measure on X of
which we think as a volume. In particular, we define

m(Ω) :=
∑

x∈Ω

m(x)

for Ω ⊂ X . A natural distance to consider is

d(x, y) := inf{L(γ) | γ a path from x to y},
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where the length L(γ) of a path γ is given by

L(γ) :=
∑

j=0,...,k−1

1

b(xj , xj+1)
.

Setting d(x, x) = 0 we obtain a pseudo-metric, i.e., d is symmetric and satisfies
the triangle inequality. Clearly, in this generality, d need not separate the points
of X . The energy form is given by

E(f) :=
1

2

∑

x,y∈X

b(x, y)(f(x)− f(y))2 for f ∈ RX ,

(with the obvious domain) on the underlying Hilbert space

ℓ2(X,m) := {f ∈ RX |
∑

x∈X

|f(x)|2m(x) <∞}.

For finite [connected] C ⊂ X :

λN1 (C) = inf{E(f) | f ∈ ℓ2(C,m) with 〈f, 1〉 = 0 and ‖f‖ = 1},
denotes the spectral gap or first nonzero eigenvalue of the Laplacian HN

C with
Neumann boundary conditions.

A decomposition C of X with spectral gap λ is a sequence (Cn)n∈N
of

pairwise disjoint, finite and connected subsets of X such that

X =
⋃

n∈N

Cn and λN1 (Cn) ≥ λ (n ∈ N).

We have the following general result:

Theorem 1. Let C be as above and assume that D ⊂ X has relative density ρ
w.r.t. C, i.e.,

m(D ∩ Cn) ≥ ρ ·m(Cn) for all n ∈ N.

Assume that

E(f) ≤ 1

42
λρ‖f‖2.

Then
1

42
ρ‖f‖2 ≤ ‖f1D‖2.

The proof is based upon the following local estimate:

Proposition 1. Let D ⊂ C ⊂ X, C connected and finite. Assume that

m(D) ≥ ρm(C)

and f ∈ ℓ2(C),

E(f) ≤ 1

4
λN1 (C)ρ‖f‖2.

Then
1

5
ρ‖f‖2 ≤ ‖f1D‖2.
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To transfer the local result that can be used for the members of a decomposition
in the above sense to the global case, we employ the following easy observation.
We couldn’t find a reference in the form stated below although the estimate should
be well-known; however, a similar statement was communicated to us, see [6].

Lemma 1 (Neißichkait’s Lemma). Let 0 ≤ ak, bk for k ∈ N and 0 < α < β.
Assume that

∞ >
∑

k∈N

ak ≥ β
∑

k∈N

bk.

Then ∑

k∈N:ak≥αbk

ak ≥
(

1− α

β

)∑

k∈N

ak.

The result is one possible special form of a whole class of uncertainty principles
that can be established by the above method. We comment on possible variants:

• For the lattice, and more generally, Cayley graphs of polynomial volume
growth, we obtain estimates that are considerably stronger than what was
known before.
• For very general weighted graphs: use [5] and [4].
• Continuum results: Easy, lead to uncertainty principles complementary

and partially more general than the ones in [9]. However, the lower bounds
for infinite coupling obtained in the latter article are beyond the scope of
the new method: this will be discussed elsewhere.
• The use of a Poincaré inequality under similar circumstances is not new at

all; for a much older result in a different but somewhat related direction,
see Gesztesy, Graf, Simon [3]; see also [8].
• In the same direction there are results by Pesenson [7] for graphs and

metric measure spaces for spectral projectors. The key word is ’Paley
Wiener spaces’; we still have to check out the precise relation to our results
since we found this reference only recently!
• Application to lower bounds for Schrödinger operators on graphs: in prepa-

ration.
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A Fatou–Näım–Doob-type Theorem for Schrödinger Operators
on Graphs

Florian Fischer

(joint work with Matthias Keller)

Fatou–Näım–Doob-type theorems state that the limit to the Martin boundary of
a fraction of two positive superharmonic functions is given by a certain Radon–
Nikodým derivative. This result is classical in Euclidean potential theory (see e.g.
[1, 4, 10] or more recently [5]), in axiomatic Brelot-type potential theory (see [8])
as well as in probabilistic potential theory (see e.g. [3], and for random walks on
trees see [2, 9]). Our version of this Fatou–Näım–Doob theorem generalizes the
probabilistic results to arbitrary graphs.

Let X be a countable discrete set. By a graph we mean a symmetric func-
tion b : X ×X → [0,∞) with zero diagonal such that b is locally summable, i.e.,∑

y∈X b(x, y) < ∞ for all x ∈ X . We also assume that the graph is connected,
i.e., for every vertices x, y ∈ X there is a path x0, . . . , xn ∈ X, such that x = x0,
y = xn and b(xi−1, xi) > 0 for all i ∈ {1, . . . , n− 1}.

On the formal space

F = {f ∈ C(X) :
∑

y∈X

b(x, y) |f(y)| <∞ for all x ∈ X}

we define the Schrödinger operator H = Hb,c,m on F with respect to 0 < m ∈
C(X) and c ∈ C(X) via

Hf(x) =
1

m(x)

∑

y∈X

b(x, y)
(
f(x)− f(y)

)
+

c(x)

m(x)
f(x), x ∈ X.

A function s ∈ F is called (super)harmonic on X if Hs = 0 (Hs ≥ 0) on X .
Assume further that H is non-negative and subcritical, i.e., there exists a pos-

itive Green function G : X ×X → (0,∞) to H . Let G be the set of G-integrable
functions. Then we define the Green operator G on G via

Gf(x) =
∑

y∈X

G(x, y)f(y),

and call Gf a potential with charge f . By the Riesz decomposition (cf. [7])
we have that for any non-negative superharmonic function s there is a unique
decomposition

s = GHs+ ghms on X,

where ghms ≥ 0 denotes the greatest harmonic minorant of s.
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Furthermore, for ∅ 6= A ⊆ X , 0 ≤ s superharmonic we define the reduced
function rAs of s relative to A via

rAs (x) = inf{u(x) : 0 ≤ u superharmonic on X,u ≥ s on A}.

This non-negative superharmonic function has many nice properties (cf. [6]) and
some of them allow us to define the so-called minimal fine topology as follows:

Let X̂ be the Martin compactification of X with corresponding Martin bound-

ary M, Martin kernel K : X × X̂ and unique Martin measure µs for s ≥ 0 su-
perharmonic (cf. e.g. [11] for details). Then, by the Riesz decomposition we
have

rAK(·,ξ) = GHrAK(·,ξ) + ghmrA
K(·,ξ)

.

We now call A ⊆ X minimally thin at ξ ∈M if

µghm
rA
K(·,ξ)

(ξ) = 0.

In this talk, we will also see a long list of characterizations of minimally thin sets
(cf. [6]). Via the minimally thin sets one can define the so-called minimal fine
filter

Fξ = {X \A : A is minimally thin at ξ}, ξ ∈Mmin,

where Mmin denotes the minimal Martin boundary. Along this filter one defines
the minimal fine limits mf lim and induces the minimal fine topology. One can
show that the minimal fine topology is indeed finer than the Martin topology.

Now, we are in a position to state the main result of this talk.

Theorem 1 (Fatou–Näım–Doob’s Theorem, [6]). Let H be non-negative and sub-
critical, and s, t > 0 be superharmonic. Let f be the Radon–Nikodým derivative of
the absolutely continuous component of µghms

with respect to µghmt
. Then,

mf lim
x→ξ

s(x)

t(x)
= f(ξ) at µghmt

-a.e. ξ ∈ Mmin.

In the special case of p being a potential with non-negative charge and h is
harmonic, we even have

mf lim
x→ξ

p(x)

h(x)
= 0 at µh-a.e. ξ ∈M.

Similarly to the results in the continuum, one also deduces on graphs that

lim inf
x∈X,x→ξ

s(x)

G(o, x)
= mf lim

x→ξ

s(x)

G(o, x)
, mf lim

x→ξ

s(x)

K(x, ξ)
= µghms

(ξ) = inf
x∈X

s(x)

K(x, ξ)

for all ξ ∈ Mmin and s > 0 superharmonic.
That this discrete theory fits perfectly beside the continuous theory seems not

to be a coincidence. Using the here presented approach one can show that these
graphs are also examples of balayage spaces (cf. [6]).
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Geometric aspects of Sobolev extension operators

Christian Rose

(joint work with Olaf Post, Xavier Ramos Olivé)

This talk is based on the recent article [3] where we constructed Sobolev extension
operators for subsets of manifolds with norms depending quantitatively only on
the curvature of the boundary and its tubular neighborhood. We explain how
those operators are used to derive uniform Neumann heat kernel estimates for
whole classes of subsets of manifolds satisfying integral Ricci curvature conditions.

If M = (Mn, g) is a smooth Riemannian manifold of dimension n ≥ 2 and
Ω ⊂M non-empty and open we call a linear and bounded EΩ : H1(Ω)→ H1(M)
with

EΩu ↾Ω= u u ∈ H1(Ω)

a Sobolev extension operator. Studying such extension operators has a long history
and starts with famous work of Whitney [5]. The existence of EΩ for given Ω
depends on the properties of its boundary ∂Ω. A famous construction for Lipschitz
boundaries is due to Stein [4]. Nowadays Sobolev extension operators pop up in
several contexts and are built based on the needs of a specific application. Usually,
the norms of extension operators for fixed Ω depend crucially on the properties
of a given atlas of ∂Ω. Geometric applications to classes or sequences of subsets
Ω ⊂M require uniform bounds on the norm of EΩ in terms of geometric quantities
like curvature rather than properties of atlases, though. It is clear that curvature
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restrictions for ∂Ω cannot yield any control on its atlases. For the following classes
of subsets we constructed Sobolev extension operators with uniform upper bounds
on the norm in terms of geometric parameters.

Definition 1. Let M be a Riemannian manifold of dimension n ≥ 2, R > 0, and
H,K ≥ 0. A non-empty, open Ω ⊂M is called (R,H,K)-regular if:

• Ω 6= M is a connected manifold with (smooth) boundary ∂Ω;
• the exterior and interior rolling R-ball condition holds: for any x ∈ ∂Ω
there exist p ∈M \Ω and q ∈ Ω such that B(p,R) ⊂M \Ω, B(q, R) ⊂ Ω,

and B(p,R) ∩ ∂Ω = {x} = B(q, R) ∩ ∂Ω;
• the second fundamental form satisfies −H ≤ IIΩ ≤ H;
• in the tubular neighborhood ∂ΩR the sectional curvature satisfies −K ≤

Sec ≤ K.

Our first result is the existence of Sobolev extension operators for the classes of
(R,H,K)-regular domains given R,H , and K.

Theorem 1 (Post, Ramos, R. ’20, [3]). Fix H,K ≥ 0 and a complete Riemannian
manifold M of dimension n ≥ 2. There exists R0 = R0(H,K) > 0 such that
for any R ∈ (0, R0] there exists a constant C(R,H,K) > 0 such that for any
(R,H,K)-regular Ω ⊂M there exists an extension operator

EΩ : H1(Ω)→ H1(M)

satisfying

‖EΩ‖ ≤ C(R,H,K).

For the proof of Theorem 1, we extend functions u ∈ C1(Ω) along geodesics
perpendicular to ∂Ω to a function EΩu outside Ω depending on u’s values inside
Ω and compute its H1-norm w.r.t. distance hypersurfaces. The main technical
difficulty consists of controlling |∇EΩu| along the geodesic in terms of the geo-
metric parameters and |∇u| inside Ω. To this end, we construct variations of EΩu
through geodesics for all directions in the tangent space of ∂Ω, compute the partial
dervatives, and show that |∇EΩu| can be controlled in terms of Jacobi fields of
the variation. Moreover, one needs to bound |∇EΩu| in terms of a non-orthogonal
frame along a geodesic, which might be a result of independent interest.

Our motivation to study Sobolev extension operators is based on our interest
in quantitative estimates for Neumann heat kernels. In their famous paper [1], Li
and Yau showed Neumann heat kernel estimates of the form

ht(x, y) ≤ C1√
Vol(B(x,

√
t))Vol(B(y,

√
t))

exp

(
C2Kt− C3

d(x, y)2

t

)
(1)

for M being a compact manifold with Ricci curvature bounded below by −K,
K ≥ 0, and (smooth) convex boundary ∂M , or M being a geodesic ball B in a
manifold with Ricci curvature bounded below by −K, K ≥ 0. Wang relaxed the
conditions of the first mentioned result to compact manifolds with Ricci curvature
bounded below by −K, K ≥ 0 and boundary not necessarily convex but satisfying
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the interior rolling R-ball condition (cf. Definition 1) and second fundamental form
w.r.t. the outward normal bounded below.

In the last decades there was an increasing interest in relaxing uniform lower
Ricci curvature bounds to integral curvature bounds, since the latter are more
stable under perturbations of the metric. For p > n/2 and D > 0, we let

κ(p,D) := sup
x∈M

D2

(
1

Vol(B(x,D))

∫

B(x,D)

|Ric−|pdvol

)1/p

.

Petersen and Wei proved Laplacian comparison estimates for the distance function
[2] and that κ(p,D) is a scaling invariant quantity. Note that if Ric ≥ −K, K ≥ 0,
then κ(p,D) is small for D > 0 small enough. Among all the generalizations of
results depending on uniform lower bounds on the Ricci curvature to integral Ricci
curvature assumptions that appeared during the last decades, a Neumann heat
kernel estimate for classes of subsets with boundaries satisfying certain regularity
assumptions was missing. Our second main result is the following variant of (1) if
only integral Ricci curvature conditions hold.

Theorem 2 (Post, Ramos, R. ’20, [3]). Let 2p > n ≥ 2, D > 0, and K,H ≥
0. There exists an explicitly computable R0 = R0(H,K) > 0 such that for any
R ∈ (0, R0], there are explicitly computable constants C = C(n, p,R,D,H,K) > 0
and ǫ = ǫ(n, p,R,H,K) > 0 such that if M is a complete Riemannian manifold of
dimension n satisfying

κ(p,D) ≤ ǫ,
then for any (R,H,K)-regular domain Ω ⊂ M with diamΩ ≤ D/2, the Neumann
heat kernel hΩ of Ω satisfies

hΩt (x, x) ≤ C

Vol(Ω ∩B(x,
√
t))
, x ∈ Ω, t > 0.(2)

To prove the statement, we first show that our assumptions yield a family of
local Gagliardo-Nirenberg inequalities on (0, D]. Theorem 1 then implies quan-
titative global Gagliardo–Nirenberg inequalities on (0,∞) for (R,H,K)-regular
Ω ⊂ M with diamΩ ≤ D/2. We infer from more general statements that this is
already equivalent to (2).

It is worth noting that we derived Neumann eigenvalue estimates as well, which
basically follow from Theorem 2 and generalize many other earlier results on eigen-
value estimates to our (R,H,K)-regular domains even if M = Rn. Moreover, we
derived Harnack inequalities for the Neumann heat kernel, which generalize Li and
Yau’s result, yielding lower bounds for the Neumann heat kernel, too.
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Essential self-adjointness of the Laplacian on graphs: stability and
Liouville properties

Rados law K. Wojciechowski

(joint work with Bobo Hua, Jun Masamune and Atsushi Inoue, Jun Masamune)

We discuss the essential self-adjointness of the Laplacian on weighted graphs fol-
lowing the setting established by Matthias Keller and Daniel Lenz in [1]. More
specifically, if X is a countably infinite set of vertices, b is a symmetric edge weight
with zero diagonal which is summable at each vertex and m is a strictly positive
vertex measure such that

∑
y∈X b2(x, y)/m(y) < ∞ at each vertex x ∈ X , then

restricting the formal Laplacian

Lf(x) =
1

m(x)

∑

y∈X

b(x, y)(f(x)− f(y))

to the finitely supported functions results in a symmetric operator on the Hilbert
space ℓ2(X,m). The question then arises under which conditions this operator has
a unique self-adjoint extension. In this case, the Laplacian is said to be essentially
self-adjoint.

In [1] one finds a condition for essential self-adjointness in terms of the mea-
sure of infinite paths. This extended a result in [6] for the case of standard edge
weights and counting measure. Furthermore, for locally finite graphs, [3] gives a
condition for essential self-adjointness in terms of metric completeness with re-
spect to intrinsic path metrics. All of these results rely on a characterization of
essential self-adjointness of the Laplacian in terms of the triviality of λ-harmonic
square summable functions for λ < 0. More specifically, essential self-adjointness
is equivalent to the fact that functions f ∈ ℓ2(X,m) which are in the domain of
the formal Laplacian and satisfy

Lf = λf

must be trivial for λ < 0. We first highlight the connection between this crite-
rion for essential self-adjointness and the constancy of harmonic square summable
functions, i.e., the case when λ = 0 in the equation above. More specifically, we
say that a graph satisfies the ℓ2-Liouville property if every function which satisfies
Lf = 0 and is in ℓ2(X,m) is constant.

Our first result can be summarized as follows: essential self-adjointness always
implies the ℓ2-Liouville property. On the other hand, the ℓ2-Liouville property
along with strict positivity and the fact that the entire space has infinite measure,
implies essential self-adjointness. This comes from recent joint work with Bobo
Hua and Jun Masamune [2]. Let us note that the formulation given in [2] is general
enough to also cover an analogous result for Laplacians on Riemannian manifolds.
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Furthermore, [2] contains examples of graphs and manifolds which show that the
additional assumptions of strict positivity and infinite measure are necessary. The
graph examples can be achieved using birth-death chains (i.e., graphs over the
natural numbers where the only edges are those that connect subsequent numbers)
which always satisfy the ℓ2-Liouville property but for which the Laplacian is not
necessarily essentially self-adjoint or by gluing birth-death chains together in a
way that preserves the ℓ2-Liouville property but so that essential self-adjointness
fails.

We also mention that [2] gives a technique for gluing birth-death chains to-
gether in order to break the ℓ2-Liouville property on a graph over the integers.
The main idea for this approach is that strict positivity implies the existence of
a Green’s function which is in ℓ2(X,m) and is harmonic except for at one vertex.
By removing this vertex and attaching appropriate birth-death chains, the Green’s
function can be extended to the new graph so that it remains in ℓ2(X,m). In par-
ticular, taking a birth-death chain whose Laplacian is strictly positive, removing
the origin and gluing a second birth-death chain whose edge weights and vertex
measure satisfy

∞∑

r=0

(
r∑

k=0

1

b(k, k + 1)

)2

m(r + 1) <∞

allows the extension of the Green’s function to the entire graph in such a way that
the resulting function is harmonic everywhere and is in ℓ2(X,m). In particular,
the resulting graph does not satisfy the ℓ2-Liouville property and the Laplacian
is not essentially self-adjoint. This shows that both the ℓ2-Liouville property and
essential self-adjointess are not particularly stable when gluing graphs together.

The second result we highlight provides a further discussion of the stability of
essential self-adjointness. To put this result into context, let us mention that [1]
shows that if the Dirichlet Laplacian on a subgraph gives a stochastically incom-
plete process and if the weighted vertex degree from the subgraph to the entire
graph is bounded, then the process on the entire graph is stochastically incom-
plete. Furthermore, [1] gives examples to show that the boundedness condition
on the vertex degree is necessary as every stochastically incomplete graph can be
made into a subgraph of a stochastically complete graph. Our result concerning
the stability of essential self-adjointness can be stated as follows: if the weighted
vertex degree of the boundary between a subgraph and its complement is bounded,
then the Laplacian on the entire graph is essentially self-adjoint if and only if the
Laplacians with Neumann conditions at the boundary between the subgraph and
its complement on each of the subgraphs are essentially self-adjoint. Here, by
weighted vertex degree of the boundary we mean the following: if X1 ⊆ X and
X2 = X \X1, then we require that the functions defined on X via

Deg∂Xk
(x) =

1

m(x)

∑

y 6∈Xk

b(x, y)

are bounded on Xk for k = 1, 2. This result can be found in work in progress
with Atsushi Inoue and Jun Masamune [5]. In particular, gluing a birth-death
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chain whose Laplacian is essentially self-adjoint to another birth-death chain whose
Laplacian is not essentially self-adjoint at one vertex results in a graph whose
Laplacian is not essentially self-adjoint similar to the discussion concerning the
ℓ2-Liouville property above.

Furthermore, [5] gives an example of a birth-death chain with a Laplacian which
is not essentially self-adjoint but by gluing infinitely many additional vertices, we
make the Laplacian on the entire graph essentially self-adjoint. The construction
is in the spirit of one found in [1] and involves attaching a terminal vertex to
every vertex in the birth-death chain. Finally, let us mention that using recently
established results of Atsushi Inoue concerning limit point-limit circle theorems for
graphs over the integers [4] along with the stability and Liouville results discussed
above, in [5] we characterize the essential self-adjointness of the Laplacian on
birth-death chains as well as on the integers. The proof of these characterizations
involves a reduction to the case of harmonic functions and the criterion is in terms
of the double sum introduced in the context of the Green’s function above. For
details, see the forthcoming paper [5].
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Spectra, self-similar groups, aperiodic order and random
Schrödinger operators

Rostislav Grigorchuk

(joint work with Artem Dudko, Daniel Lenz, Tatiana Nagnibeda and Daniel Sell)

The results presented in the talk are based on joint results of the speaker with
Artem Dudko, Daniel Lenz, Tatiana Nagnibeda and Daniel Sell presented in arti-
cles [4, 7, 8, 9, 10].

Given an action of a finitely generated group G with a system of generators
A = {a1, . . . , am} on a set X , one can associate with each point x ∈ X an orbital
graph Γx with the set of vertices the orbit Gx and the set of edges of the form
{(y, ay) : a ∈ A, y ∈ Gx}. Additionally, we supply the edges by the corresponding
labels a ∈ A. Given an element m =

∑
g∈A∪A−1 cg · g ∈ C[G] of the group

algebra using the coefficients cg ∈ C one can convert Γx into a weighted graph
Γx,m and consider the convolution operator Lx,m in the Hilbert space l2(Gx).
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If m is a self-adjoint element with real coefficients, the operator Lx,m could be
interpreted as (discrete) Laplace (or Markov) operator on Γx,m. Study of spectra
of such operators (i.e. spectra of weighted graphs) is related to many problems
of mathematics. The following major problems are still open. What could be the
shape of the spectrum? Can Cayley graphs have Cantor spectrum? Can a torsion
free group have a gap in the spectrum of a Cayley graph?

In fact, operators of the type Lx,m can be obtained from the regular repre-
sentation λG (the case of Cayley graphs) or quasi-regular representation λG/Gx

(the case of Schreier graph) in the Hilbert spaces l2(G) and l2(G/Gx) respectively
(where Gx is the stabilizer subgroup of x).

More generally, any unitary representation ρ of G in a Hilbert space H extends
to a ⋆-representation of the group algebra C[G] by bounded operators in H, and
for any m ∈ C[G] one gets the operator ρ(m). Study of spectral properties of
such operators is a huge area of mathematics that includes the spectral problem
for graphs. As an example, let us mention the “almost Mathieu operator” arising
from the well known unitary representation of the Heisenberg group.

Given an action of G on a measure space (X,µ) with quasi-invariant measure
µ one can consider the Koopman type representation κ in L2(X,µ): κ(g)f(x) =√

dg⋆µ
dµ (x)f(g−1x) or the groupoid representation π in L2(R, ν) where R ⊂ X×X

is the equivalence relation induced by the partition into orbits and where ν = µ×θ,
θ being the counting measure on the fibers (for precise definition see [4]). With each
point x ∈ X one can associate an orbit graph Γx and a permutational representa-
tion ρx in l2(Gx) (which is unitary equivalent to the quasi-regular representation
λG/Gx

).

Theorem 1. [Artem Dudko, Rostislav Grigorchuk [4]] Let (G,X, µ) be an action
of a countable group G with quasi-invariant probability measure µ. Then for any
m ∈ C[G]

sp(κ(m)) ⊇ sp(ρx(m) = sp(π(m))

µ-almost surely.
If in addition the equivalence relation given by the partition into orbits is hy-

perfinite (i.e. is amenable in Zimmer’s sense) then in the above statement the
relation ⊇ can be replaced by the equality relation.

In the case when support of m is A ∪ A−1 and Γx, x ∈ X are converted into
weighted graphs with weight determined by the coefficients of m, the spectrum of
the operator ρx(m) coincides with the spectrum of the weighted Laplace operator
on Γx. The above theorem is a modification of the result from [1] concerning
the case when the group acts on the rooted tree T by automorphisms and hence
acts on its boundary ∂T by homeomorphisms (or to be more precise by solenoidal
maps). In that case the coincidence of spectra holds for graphs associated with all
points of the boundary by [1].

The result from [1] and Theorem 1 allow to compute in many cases spectra
of graphs associated with self-similar groups, as shown in [1, 12] and many other
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articles cited in [3, 11] for instance. One particular case concerns the group G of
intermediate growth between polynomial and exponential, introduced in [5]. The
group G has a presentation by generators and relations

G = 〈a, b, c, d : 1 = a2 = b2 = c2 = d2 = bcd = σk((ad)4)

= σk((adacac)4), k = 0, 1, 2, . . . 〉

where σ is the substitution σ : a→ aca, b→ d, c→ b, d→ c. G acts on the binary
rooted tree T by automorphisms and Schreier graphs Γx, x ∈ ∂T associated with
the points of the boundary ∂T have a “linear” structure discovered in [1]. Let
m = xa + yb + zc + ud ∈ C[G] and Γx,m be a weighted Schreier graph given by
coefficients of m. If y = z = u then the spectrum of Γx,m is a union of two
intervals (or one interval). If at least two numbers from {y, z, u} are distinct then
the spectrum of Γx,m is a Cantor set of Lebesgue measure zero. This is proved by
Daniel Lenz, Tatiana Nagnibeda and Rostislav Grigorchuk in [7, 9]. The proof of
this fact is based on the relation of the Laplacian on Γx,m with the dynamically
defined random Jacobi-Schrödinger operator associated with the minimal subshift
(Ωσ, T ) determined by the substitution σ. In [7, 8, 9], various dynamical and
combinatorial properties of the subshift (Ωσ, T ) are investigated in details. Also
the result of Siegfried Beckus and Felix Pogorzelski from [2] about Cantor spectrum
for such operators is used.

The group G is in an particular case of uncountable family Gω, ω ∈ {0, 1, 2}N
of 4-generated groups introduced in [6]. All these groups act by automorphisms
of T and hence act by homeomorphisms on ∂T . As before, the corresponding
Schreier graphs Γω,x, ω ∈ {0, 1, 2}N, x ∈ ∂T can be supplied with a weight coming
from coefficients of the element m of the group algebra. In [10] the notion of a
leading sequence condition (LCS) for subshifts has been introduced, a combina-
torial criterion for it has been found, and it has been proved that (LCS) implies
the uniformity of locally constant cocycles, which in turn implies the Cantor spec-
trum of zero Lebesgue measure for the random Jacobi-Schrödinger operator with
dynamically defined Jacobi matrix satisfying natural conditions.

It is shown in [10] that Sturmian subshifts and simple Toeplitz subshifts satisfy
(LCS). This is used to show that in the case when the relations y = z = u do not
hold the spectrum of the weighted Laplace operator on graphs Γω,x is a Cantor
set of Lebesgue measure zero which does not depends on x .

The latter result has consequences for the dynamics of multidimensional rational
maps discovered for the first time in [1] and carefully inspected in [3] in view of the
alternative “integrable vs not integrable”. It gives important information about
the shape of a joint spectrum of the pencil of Laplace operators determined by the
element m of the group algebra with the support on the generating set of Gω. This
spectrum is invariant set for corresponding map and has the shape of a closed set
whose crossings by vertical lines are Cantor sets. The corresponding pictures can
be found in [11].
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Bakry–Émery curvature on graphs as an eigenvalue problem

Norbert Peyerimhoff

(joint work with David Cushing, Supanat Kamtue, Shiping Liu)

Following an idea by David Cushing, we reformulate the semidefinite programming

problem of computing Bakry–Émery curvature of a vertex x ∈ V of a weighted
graph G = (V, b,m) as a problem of finding the smallest eigenvalue. This refor-
mulation is not only of practical importance for more speedy explicit curvature
computations but has also various interesting theoretical implications.

A weighted graph G = (V, b,m) is given by a vertex set V , a symmetric function
b : V ×V → [0,∞) with b(x, x) = 0 for all x ∈ V representing the edge weights, and
a vertex measure m : V → (0,∞). Two vertices x, y ∈ V are adjacent (notation
x ∼ y) iff b(x, y) > 0. We assume that each vertex has only finitely many neighbors.
The combinatorial sphere and the ball of radius k ∈ N around x is denoted by

Sk(x) and Bk(x), respectively. Moreover, let pxy = b(x,y)
m(x) and dx =

∑
y b(x, y) be

the “vertex degree”. In the special case dx = m(x) for all x ∈ V , the pxy can be
understood as transition probabilities of a reversible Markov chain.
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The Laplacian ∆ : C(V )→ C(V ) (with C(V ) the vector space of all functions
f : V → R) is given by

∆f(x) =
∑

y

pxy(f(y)− f(x)).

Bakry–Émery curvature is a concept for spaces with a Laplace operator (or a
Markov generator) and is motivated by Bochner’s formula, a fundamental identity
on Riemannian manifolds (M, g). Using the quadratic forms

Γ(f, g) =
1

2
(∆(fg)− f∆g − g∆f) , Γ(f) = Γ(f, f),

Γ2(f, g) =
1

2
(∆Γ(f, g)− Γ(f,∆g)− Γ(g,∆f)) , Γ2(f) = Γ2(f, f),

Bochner’s formula implies for N -dimensional manifolds (M, g) with Ricci curvature
bounded below by K ∈ R at x ∈M the curvature-dimension inequality

Γ2(f)(x) ≥ 1

N
|∆f(x)|2 +KΓ(f)(x)

for all functions f ∈ C∞(M). This motivates the following definition:

Definition 1. Let N ∈ (0,∞]. The Bakry–Émery curvature KG,x(N) for dimen-
sion N is the largest value K ∈ R such that

Γ2f(x) ≥ 1

N
(∆f(x))2 +KΓf(x) ∀ f ∈ C(V ).

We also say that the vertex x satisfies CD(K,N).

Variants of this curvature notion are CDE, CDE′ and CDψ introduced in [1]
and [3], respectively. KG,x is fully determined by the information of the 2-ball
B2(x). Using an observation by Schmuckenschläger [4] to drop columns and rows
corresponding to the center vertex x, the computation of KG,x(N) boils down to
solution of the semidefinite programming problem

maximize K

subject to Γ2(x)1̂ −
1

N
v20(v20)⊤ −KΓ(x)S1,S1 ≥ 0,

with matrices Γ2(x),Γ(x) given in [2, Section 10] and v0 = (
√
pxy1 , . . . ,

√
pxym)⊤

with S1(x) = {y1, . . . , ym}. Indexing by 1̂ means removal of first column and row,
squaring a vector means squaring each entry, and indexing by “S1, S1” means
choosing the block corresponding to the vertices in S1(x). Moreover, the smaller
matrices are extended by zero-blocks to match the size of Γ2(x)1̂.

For the eigenvalue reformulation we employ the Schur complement of a block

matrix M =

(
M11 M12

M21 M22

)
, namely Q(M,M22) = M11−M12M

−1
22 M21. We choose

Q = Q(Γ2(x)1̂,Γ2(x)S2,S2) and define

A∞(x) = 2D−1QD, AN (x) = A∞(x) − 2

N
v0v

⊤
0
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with the diagonal matrix D = diag(v0). Note that AN (x) is a rank one perturba-
tion of A∞(x). Our main result is

Theorem 1. Let G = (V, b,m) be a weighted graph. Then we have for x ∈ V ,

KG,x(N) = λmin(AN (x)).

Using the Matrix Determinant Lemma, we have

Corollary 1. Assume that A∞ = A∞(x) is positive definite. Then we have
KG,x(N0) = 0 at precisely the dimension

N0 = 2v⊤0 A
−1
∞ v0 = 2

∑

ij

√
pxyipxyj(A−1

∞ )ij .

The variational Rayleigh quotient description

λmin(AN (x)) = inf
v 6=0

v⊤AN (x)v

v⊤v

leads to the following upper curvature bound:

Theorem 2. Let G = (V, b,m) be a weighted graph. Then we have for x ∈ V and
N ∈ (0,∞],

(1) KG,x(N) ≤ 2
v⊤0 AN (x)v0

v⊤0 v0
= K0

∞(x)− 2

N

dx
m(x)

with

K0
∞(x) =

1

2


 dx
m(x)

+ 3
m(x)

dx
p(2)xx −

m(x)

dx

∑

z∈S2(x)

p(2)xz


 ,

where p
(2)
uv =

∑
w puwpwv. If (1) holds with equality for some N ∈ (0,∞], we say

that x is N -curvature sharp.

Our main theorem is also useful to derive various further properties of the
continuous curvature function KG,x : (0,∞] → R. Let Emin be the eigenspace of
the smallest eigenvalue of the symmetric matrix A∞(x). Then we have:

(i) The curvature function is either analytic, strictly concave and strictly
monotone increasing on (0,∞] or there is a threshold N1 such that KG,x is
analytic, strictly concave and strictly monotone increasing on (0, N1] and
constant on [N1,∞].

(ii) If v0 is N1-curvature sharp with maximally chosen N1 ∈ (0,∞], then (1)
holds with equality for all N ≤ N1 and KG,x is constant on [N1,∞].

(iii) v0 is an eigenvalue of A∞(x) if and only if KG,x is N1-curvature sharp for
some N1 ∈ (0,∞].

(iv) KG,x is constant on a nontrivial segment [N1,∞] if and only if v0 is per-
pendicular to Emin.

We also show that a sufficient criterion for a vertex x ∈ V to be N -curvature sharp
fo some N ∈ (0,∞] are the following two homogeneity properties: p−(y) = pyx



Geometry, Dynamics and Spectrum of Operators on Discrete Spaces 55

is independent of y ∈ S1(x) (x is S1-in regular) and p+(y) =
∑

z∈S2(x)
pyz is

independent of y ∈ S1(x) (x is S1-out regular).
Finally, let us mention that our main theorem can also be used to prove a

Conjecture in [2]:

Theorem 3 ([2, Conjecture 6.13]). Let G = (V,E) be a combinatorial graph with
the non-normalized Laplacian (that is m ≡ 1 and b(x, y) = 1 if x ∼ y) and x ∈ V .
Let G′ = (V ′, E′) be the graph obtained from G by one of the following operations:

• Delete a leaf in S2(x) and its incident edge.
• Delete z ∈ S2(x) and its incident edges {{y, z} ∈ E : y ∈ S1(x)}; add a
new edge between every two of {y ∈ S1(x) : {y, z} ∈ E}.

Then we have for any N ∈ (0,∞]: KG′,x(N) ≥ KG,x(N).
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Primitive substitutions beyond abelian groups: The Heisenberg group

Siegfried Beckus

(joint work with Tobias Hartnick and Felix Pogorzelski)

This talk is devoted to the 50th birthday of Daniel Lenz.
Substitutions in the geometric or the symbolic setting are local rules replac-

ing a tile or a colored vertex by a finite pattern. They are used to define tilings
in abelian groups (e.g. Penrose tiling) or symbolic dynamical systems (e.g. Fi-
bonacci sequence) producing aperiodic dynamical systems with low complexity.
For abelian groups these dynamical systems are minimal and uniquely ergodic if
the substitution is primitive [8, 9, 10]. Moreover, the existence of proximal pairs
implies aperiodicity [3, 2]. Another approach proving aperiodicity in the geometric
setting is by requiring that the substitutions are injective [1, 11].

In this talk, we present two works [6, 7] in progress with Tobias Hartnick and
Felix Pogorzelski where these concepts have been extended to the non-abelian
world. This has its origin in finding uniquely ergodic and minimal dynamical
systems with low complexity as well as in the recent developments [4, 5].

In [6], the concept of linearly repetitive configurations is extended to (colored)
Delone sets in amenable groups. Such sets are called linearly repetitive if there
is a C > 0, such that each pattern supported on a ball Br can be found in any
pattern supported on ball BCr. Replacing balls by suitable Følner sequence, the
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concept of tempered repetitivity is introduced leading to uniquely ergodic hulls of
the corresponding (colored) Delone set.

With this at hand, one can ask for the existence of such aperiodic sets. A
large class of examples are constructed in [7] extending the concept of a primitive
substitutions to certain nilpotent Lie groups. In order to get aperiodic elements,
the concept of non-periodic substitution is introduced. Besides that we provide an
algorithm to explicitly construct non-periodic primitive substitutions, which works
for a large class of groups. For instance, one can find already more than 60 different
groups up to dimension 7 (excluding products of lower dimensional nilpotent Lie
groups) falling into our setting while only a handful of them are abelian. In order
to show their beauty and the difficulties that arise in the non-abelian world, we
will focus in this talk on the Heisenberg group. We need two ingredients for our
framework

• geometric data: a locally compact second countable group G (ambient
space), a family of dilations (Dλ)λ≥0 on G and a lattice Γ that is invariant
under some of the dilations together with a fundamental domain V
• combinatorial data: a finite alphabet A, a scaling factor λ and a substitu-

tion rule S0

Let G := H3(R) be the 3-dimensional Heisenberg group, which we can think of
as R3 with multiplication and inverse given by

(x, y, z)(a, b, c) := (x+ a, y + b, z + c+ xb − ya), (x, y, z)−1 := (−x,−y,−z).

The Cygan-Korányi norm ‖(x, y, z)‖ := ((x2 +y2)2 +z2)1/4 defines a left-invariant
metric via d(g, h) := ‖g−1h‖ for g, h ∈ H3(R). For λ > 0, the automorphismDλ on
H3(R) defined by Dλ(x, y, z) := (λx, λy, λ2z) satisfies d(Dλ(g), Dλ(h)) = λd(g, h).

A lattice in G with fundamental domain V :=
[
− 1

2 ,
1
2

)3 ⊆ H3(R) is given by

Γ := H3(Z) := {(x, y, z) ∈ H3(R) : x, y, z ∈ Z}

Then Dλ(Γ) ⊆ Γ holds if and only if λ ∈ N. In this model, we conclude

(1) Γ =
⊔

g∈Γ

Dλ(g)
(
Dλ(V ) ∩ Γ

)
, for λ ∈ N.

Having all geometric data at hand, let us consider the combinatorial data:

A =
{
•, •

}

λ = 2

Dλ(V ) ∩ Γ = {−1, 0}2 × {−2,−1, 0, 1}
x

y

z

S0( ) =
-1-1

-2

-1

1

0
x

y

z

S0( ) =
-1-1

-2

-1

1

0
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Figure 1. The pattern S3(•) is plotted on the left for the Heisen-
berg group H3(Z) and on the right for Z3 for the same S0.

Invoking (1), for every γ ∈ Γ, there is a unique g ∈ Γ and h ∈ Dλ(V ) ∩ Γ such
that γ = Dλ(g)h. With this at hand, the substitution rule S0 can be extended to

S : A∗∗ → A∗∗ :=
⊔

K⊆Γ

AK , S(ω)(γ) := S0(ω(g))(h), γ = Dλ(g)h.

The countable group Γ acts on the compact product space AΓ via (γω)(g) :=
ω(γ−1g) and we conclude for λ ∈ N:

Proposition 1. The map S : AΓ → AΓ is continuous, S(γω) = Dλ(γ)S(ω) and

Ω(S) := {ω ∈ AΓ : ω admits only legal patterns w.r.t. S}
is closed, S-invariant (S(ω) ∈ Ω(S) for ω ∈ Ω(S)) and Γ-invariant (γω ∈ Ω(S)
for γ ∈ Γ and ω ∈ Ω(S)). If, additionally, λ is sufficiently large relative to V ,
then Ω(S) is non-empty.

It is worth pointing out that the main technical difficulty is to show Ω(S) 6= ∅
for which one needs to study the growth of the support Sn(a) in n ∈ N for some
a ∈ A. As we can observe in Figure 1, the non-abelian behavior differs from
the abelian. Here, we call λ sufficiently large relative to V if λ ≥ 1 + r+

r−
where

r−, r+ > 0 satisfy Br−(e) ⊆ V ⊆ Br+(e).

For our chosen metric on H3(Z), one computes r− = 1
4 and r+ = 4

√
1
2 implying

λ ≥ 5 is sufficiently large relative to V . However, one can show that for λ = 2,
the set Ω(S) is nonempty (and hence for λ ≥ 2). In order to do so one first shows
that Br

(
(−1,−1, 0)

)
⊆ Dλ

(
(Dλ(V ) ∩ Γ)V

)
where the set on the right hand side



58 Oberwolfach Report 2/2021

is the support S2(a) for any a ∈ A and r := 1.682. The choice of r leads to
λ = 2 > r

r−r+
. Then there are arbitrarily large legal patterns for any substitution

rule with λ = 2 by a straightforward adjustment of the proof of the theorem of
the support growth in [7].

The substitution rule S0 is called primitive if there is an L ∈ N such that the
letter a occurs in SL(b) for all a, b ∈ A. Furthermore, S0 is called non-periodic if
S0 is injective and for all γ ∈

(
Dλ(V ) ∩ Γ

)
\ {e} and a, b ∈ A:

(
γ−1S0(a)

)
|γ−1Dλ(V )∩Dλ(V ) 6= S0(b)|γ−1Dλ(V )∩Dλ(V ).

It is straightforward to check that our example S0 is primitive and non-periodic.
An element ω ∈ AΓ is called non-periodic if γω = ω implies γ = e where e ∈ Γ is
the neutral element. Then Ω(S) is weakly aperiodic if there exists a non-periodic
element in Ω(S) and it is strongly aperiodic if all elements of Ω(S) are non-periodic.

Theorem 1 ([6, 7]). Let Γ := H3(Z), λ ≥ 2 and S0 : A → ADλ(V )∩Γ.

(a) If S0 is primitive, then every element in Ω(S) is linearly repetitive and
Ω(S) is minimal and uniquely ergodic.

(b) If S0 is non-periodic, then Ω(S) is weakly aperiodic.
(c) If S0 is non-periodic and primitive, then Ω(S) is strongly aperiodic.

Assertion (c) does not hold in full generality while the other statements extend
to a large class of nilpotent Lie groups. It is an open question if Ω(S) is strongly
aperiodic whenever S0 is non-periodic and primitive.
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Pure point diffraction

Daniel Lenz

(joint work with Timo Spindeler and Nicolae Strungaru)

A pivotal article on the topic of diffraction for aperiodic structures was written by
Bombieri–Taylor in 1986 [5]. It has as its title:

Which distributions of matter diffract? An initial investigation.

The article by Bombieri–Taylor is motivated by the discovery of materials with
a new form of order. These materials were discovered by Shechtman in 1982 in
diffraction experiments [12]. They were later called quasicrystals and Shechtman
war awarded a Nobel prize in chemistry for the discovery. The diffraction experi-
ments showed

• sharp Bragg peaks (point diffraction), indicating long range order;
• 10-fold symmetry, indicating absence of lattice structure.

In this way the diffraction experiments clearly indicated a new form of order. In
mathematics the term aperiodic order was coined to describe it. Since the discovery
of Shechtman there has been a lot of activity in the investigation of aperiodic
order and (pure) point diffraction in physics, material sciences, chemistry and
mathematics. We refer to the monographs [1, 2] for further discussion, background
and references.

Here we are concerned with the harmonic analysis behind pure point diffraction.
Our results can be understood to answer the question in the title of the Bombieri /
Taylor article if ‘diffract’ is understood to mean having pure point diffraction and
‘distribution of matter’ is modeled by translation bounded measure. The results
answer various questions posed in an influential survey article on the topic by
Lagarias [8].

To be more specific, we shortly summarize the framework of mathematical
diffraction theory as systematically developed by Hof [7] and later extended by
various people (see e.g. the survey article [3] for details and references): Let G be
a locally compact abelian group. Let A = (An) be a van Hove sequence on G. To
a translation bounded measure µ on G we then associate its autocorrelation along
A, which is defined as the Eberlein convolution

γ := lim
n→∞

1

|An|
(µ|An ∗ µ̃|−An)

(if the limit exists). Here, the limit is taken in the vague sense and the translation

bounded measure µ̃ is defined by µ̃(ϕ) = µ(ϕ(−·)) for continuous complex valued
ϕ on G with compact support. Then γ is a positive definite measure and, hence,
possesses a Fourier transform γ̂, which is a positive measure on the dual group of
G. This Fourier transform is known as diffraction measure. Let us emphasize that
existence of the autocorrelation is an assumption.
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The connection of this setup to diffraction experiments is given as follows: The
distribution of matter is modeled by µ and the outcome of the diffraction experi-
ment is governed by γ̂. In particular, the case where γ̂ is a pure point measure is
of utmost interest. Thus, the first question in this context is the following:

Question 1: Which conditions on µ ensure that γ̂ is a pure point measure?

Moreover, one is interested in further pieces of information concerning the atoms
of γ̂. In fact, it is desirable to have a Fourier type expansion

µ ∼
∑

aξξ with γ̂ =
∑
|aξ|2δξ. (∗)

Here, the sums run over all ξ in the dual group of G and only countably many of
the aξ are non-zero. A measure µ satisfying (∗) is said to solve the phase problem
(see [8] for further discussion and note that giving a precise sense to the symbol ∼
is part of the problem). So, the second question in this context can be formulated
as follows:

Question 2: When does µ solve the phase problem?

So far, our investigation was based on a fixed van Hove sequence. Of course, it
is natural to strive for independence of the van Hove sequence. This leads to the
final question:

Question 3: When does µ solve the phase problem independent of the van Hove
sequence?

All three questions have been answered by Lenz–Spindeler–Strungaru in [9]:

Theorem 1. Let µ be a translation bounded measure on the locally compact abelian
group G.

(1) Assume that µ has autocorrelation γ along the van Hove sequence A. Then,
γ̂ is a pure point measure if and only if µ is mean almost periodic.

(2) The measure µ solves the phase problem along the van Hove sequence A if
and only if µ is Besicovitch almost periodic.

(3) The measure µ solves the phase problem along any van Hove sequence if
and only if µ is Weyl almost periodic.

Remarks.

(a) Each part of the theorem is characterization of desired property by means
of almost periodicity. This is in the spirit of the mentioned article of
Lagarias and, as mentioned already, answers specific questions posed in
this article.

(b) Part (1) of the theorem generalizes results of Solomyak [13], Baake–Moody
[4] and Gouéré [6].

(c) Part (2) of the theorem covers all classes of examples with pure point
diffraction discussed so far, including weak model sets of maximal density
(see [9] for detailed discussion).
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(d) Part (3) of the theorem covers regular model sets as well as the smooth/
dense Dirac combs discussed by various authors as well as the ‘generalized
almost periodic measures’ introduced by Meyer in [11] (see [9] for detailed
discussion).

(e) Mean almost periodicity seems not to have been introduced explicitely be-
fore. It has been implicitly present in investigations of Solomyak [13] and
Gouéré [6]. Besicovitch almost periodicity is well established for functions
and so is Weyl almost periodicity. Mean, Besicovitch and Weyl almost
periodicity for measures come about by dualizing the definition for func-
tions: µ is ♦-almost periodic if µ∗ϕ is ♦-almost periodic for all continuous
complex valued ϕ on G with compact support.

(f) Related results on dynamical systems can be found in [10].
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Classification and statistics of cut-and-project sets

Yotam Smilansky

(joint work with René Rühr and Barak Weiss)

Cut-and-project point sets in Rd are constructed by identifying a strip of a fixed n-
dimensional lattice or grid (the “cut”), and projecting the points in that strip to a
d-dimensional subspace (the “project”), and are a well-studied model of aperiodic
order. Dynamical results concerning the translation action on the hull of a cut-
and-project set are known to shed light on certain properties of the point set
itself, but what happens when instead of restricting to translations we consider
all volume preserving affine actions? More specifically, we are interested in the
following questions:

• What are the probability measures on cut-and-project sets in Rd, for d ≥ 2,
that are affine group invariant and ergodic?
• What kind of counting statistics can we establish for typical cut-and-

project sets, with respect to such measures?

Cut-and-project sets. Fix n = d + m and a direct sum decomposition of Rn

into a d-dimensional physical space Vphys and an m-dimensional internal space
Vint, together with the associated projections πphys and πint. Also fix a window
W ⊂ Vint and an n-dimensional grid L. The cut-and-project set corresponding
to this information is Λ = Λ(L,W ) = πphys

(
L ∩ π−1

int (W )
)
. It is irreducible if

πint(L) = Vint and πphys is injective on L, and if W is bounded, has non-empty
interior and boundary of measure zero, in which case Λ is a Delone set with a well-
defined asymptotic density D(Λ). A famous example is the Ammann-Beenker
vertex set in R2, with L a lattice in R4 associated with the ring of integers of
Q(
√

2), and W a regular octagon. This set also arises via a substitution rule with

substitution constant 1 +
√

2, see [1] for more details.

RMS measures. The following construction is due to Marklof and Strömbergsson
and first appeared in [2]. Let ASL(d,R) be the group of all volume and orientation
preserving affine maps on Rd, which is the semidirect product of SL(d,R) and Rd.
Consider the following top-left embedding of ASL(d,R) in ASL(n,R)

(g, v) 7→ (̃g, v) =

((
g 0d,m

0m,d Idm

)
,

(
v
0m

))
.

Denote by Yn = ASL(n,R)/ASL(n,Z) the space of grids. Due to the special
embedding described above, for any (g, v) ∈ ASL(d,R) and a grid L ∈ Yn we have

(g, v).Λ(L,W ) = Λ
(

(̃g, v).L,W
)
,

and so the orbit of a cut-and-project set under ASL(d,R) can be described via an
orbit in the space of grids. By a celebrated theorem of Ratner, any orbit closure
ASL(d,R)L ⊂ Yn supports an ASL(d,R)-invariant probability measure, which can
be described using a Haar measure on an algebraic group H satisfying

ASL(d,R) < H < ASL(n,R), ASL(d,R)L = HL.
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Define Ψ(L) = Λ(L,W ). Given an ASL(d,R)-invariant ergodic measure µ on Yn,
the measure µ = Ψ∗µ is a Ratner–Marklof–Strömbergsson (RMS) measure on a
space {Λ(hL,W ) |h ∈ H} of cut-and-project sets.

Classification theorem. The following new results can be found in [3]. Every
ASL(d,R)-invariant ergodic measure assigning full measure to the set irreducible
cut-and-project sets is an RMS measure. For any such measure there exists d ≤
k ≤ n and a real number field K so that H is a semidirect product of H ′ and Rn,
where H ′ ⊂ SL(n,R) arises via restriction of scalars from the field K and either
the group SLk and then n = k · deg(K/Q), or Sp2k which can only arise if d = 2,
and then n = 2k · deg(K/Q).

For example, if dim Vphys = dimVint = 2, then the possibilities for H ′ are either
H ′ = SL(4,R), H ′ = Sp(4,R), or a group arising via a restriction of scalars of
a quadratic number field K and SL2. This is the case for the Ammann-Beenker
vertex set with K = Q(

√
2). It would be interesting to further examine the

connection between the emergence of such arithmetic examples and their possible
description using substitution rules.

Statistics of typical cut-and-project sets. Following the work of Schmidt on
spaces of lattices [4], we apply a Siegel-type summation formula and a Rogers-type
second moment bound, for which the above classification is instrumental, to estab-
lish effective point counting results for typical cut-and-project sets. An unbounded
ordered family is a collection of Borel subsets {ΩT |T ∈ R+} of Rd so that if
0 ≤ T1 ≤ T2 then ΩT1 ⊂ ΩT2 , for all T vol(ΩT ) <∞ and vol(ΩT )→∞. Our first
result is that given an RMS measure µ, for every ε > 0, every unbounded ordered
family and for µ-a.e. cut-and-project set Λ

#(Λ ∩ ΩT ) = D(Λ)vol(ΩT ) +O(vol(ΩT )1/2+ε).

This matches even the best known result for lattices and centered balls.
Unlike the case of lattices, it is interesting to study the statistics of local con-

figurations in cut-and-project sets. For a point x ∈ Λ and R > 0, the R-patch of
Λ at x is PΛ,R(x) = (Λ− x) ∩B(0, R). A well-known observation is that given an
R-patch in Λ = Λ(L,W ), the set of points x ∈ Λ for which PΛ,R(x) = P is itself
a cut-and-project set corresponding to the same L and to a window generated by
intersecting finitely many translations of the original window W . This allows us to
establish the following result for patches: given an RMS measure µ and a window
W ⊂ Vint with dimB ∂W < m = dimVint, There is θ > 0 so that every unbounded
ordered family, for µ-a.e. cut-and-project set Λ and for any patch P in Λ

#{x ∈ Λ ∩ ΩT ) |PΛ,R(x) = P} = D(Λ, P )vol(ΩT ) +O(vol(ΩT )1−θ).

In the Ammann-Beenker case, dimB ∂W = 1 and any θ < 1/4 would suffice.
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The spectrum of the Kronig-Penney model in a constant electric field

Rupert L. Frank

(joint work with Simon Larson)

We are interested in the nature of the spectrum of the one-dimensional Schrödinger
operator

− d2

dx2
− Fx+

∑

n∈Z

gnδ(x− n) in L2(R)

with a constant F > 0 and for two different choices of the coupling constants gn.
In the first model we have gn ≡ λ 6= 0 and in the second model the gn = ωn are
i.i.d. random variables with mean zero, variance λ2 and a compactly supported,
absolutely continuous distribution. We write HF,λ and Hω

F in the first and second
model, respectively.

Our main results are

Theorem 1. In the first model, under the assumption F ∈ π2Q ∩ (0,∞),

σac(HF,λ) = R , σsc(HF,λ) = ∅ , σpp(HF,λ) ⊆
{
π2

3p
m+ λ : m ∈ Z

}
,

where we wrote F = (π2/3)(q/p) with p, q ∈ N.

Theorem 2. In the second model, one has, almost surely,

σ(Hω
F ) = R

and the spectrum is, almost surely,

• purely singular continuous if F > λ2/2
• pure point if F < λ2/2.

Both models were popular in solid state physics in the early eighties and there
are also some rigorous mathematical results on these and related models. Delyon,
Simon and Souillard [3] showed that in the second model for small F the spectrum
is a.s. pure point and for large F it is a.s. purely continuous. Our contribution
is to show that this transition occurs precisely at the point F = λ2/2 and that
above this point, the spectrum is a.s. purely singular continuous. A similar result
was shown in a related, but different model by Minami [5]. In our proof we adapt
the techniques of Kiselev, Last and Simon [4]. As in their work, (generalized)
eigenfunctions have a power-like decay with exponent depending on F/λ2.

The first model was studied in the physics literature by Ao [1], who showed
that the delta potential is, in a certain sense, critical. Ao also has predictions
in the case where F/π2 is irrational, which we do not address. In the rational
case, the absolute continuity of the spectrum away from a discrete set is suggested
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in non-rigorous work of Buslaev [2], which was made rigorous by Perelman [6]
for periodic potentials slightly more regular than delta potentials. We emphasize
that our rationality assumption enters only at the end of our proof and that our
arguments make the predictions of Buslaev rigorous, both in the rational and in
the irrational case. To do so, we proceed, however, rather differently from Buslaev
and instead similarly as Perelman.

For the proof of both theorems, we fix an energy E ∈ R and consider a real
solution ψ of the corresponding differential equation, that is,

−ψ′′ − Fxψ = 0 in R \ Z , ψ′(n+0)− ψ′(n−0) = gnψ(n) for all n ∈ Z .

We can write

ψ(x) = α(n)ω(x) + α(n)ω(x) for x ∈ (n− 1, n)

for a sequence (α(n)) and a certain fixed solution ω of −ω′′−Fxω = 0 on R, which
can be explicitly expressed in terms of Airy functions. Of relevance for us is only
its phase γ, whose derivative satisfies

γ′(x) ∼
√
F x1/2 as x→∞ .

The equation for ψ is equivalent to an equation for α which in transfer matrix
form reads (

α(n+ 1)

α(n+ 1)

)
= An

(
α(n)

α(n)

)

with

An = 1 +
U(n)

2i

(
1 e−2iγ(n)

−e2iγ(n) −1

)
, U(n) := − gn

γ′(n)
.

This system is reminiscent of that arising for a discrete Schrödinger operator on
Z with effective potential U(n) (this is only correct modulo an additional phase,
which, however, is irrelevant in the second model). In fact, the system is even
more reminiscent of that arising for CMV matrices. This is, of course, consistent
with the F -periodicity of the spectrum of our operators because of their behavior
under translations.

In the situation of the second model one is therefore essentially in the situation
of a Schrödinger operator with decaying randomness, and the techniques of [4]
apply with some modifications.

The analysis in the first model is more complicated. Following Perelman [6] we

coarse grain the system and consider α̃(ℓ) := α(n(ℓ)) with n(ℓ) ∼ π2

F ℓ
2 for ℓ ≥ 1.

It turns out that α̃ satisfies a similar equation as α with an effective potential
Ũ(ℓ) given essentially by −λ/

√
Fℓ. In this coarse graining process, however, the

oscillating factor e2iγ(n) changes to e2iΓ(ℓ) with

Γ(ℓ) := −π
3ℓ3

3F
+
πℓ

F
(E − λ) +

5π

8
.

The equation for α̃ is closely related to the tilted band picture of Ao and the
effective equation of Buslaev and its rigorous derivation constitutes the technical
main result of our work. We emphasize again that this does not use the rationality
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of F/π2. The latter assumption is only used to deduce absolute continuity of the
spectrum of HF,λ, away from a discrete set, from the equation for α̃.
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On the uniqueness class, stochastic completeness and volume growth
for graphs

Marcel Schmidt

(joint work with Xueping Huang and Matthias Keller)

In 1980 Azencott [1] gave an example of a complete Riemannian manifold on
which Brownian motion has finite lifetime. Such manifolds are referred to as
stochastically incomplete and typically are of very large volume growth. On the
other hand it was shown that stochastic completeness is guaranteed under certain
volume bounds which were improved over the years, see Gaffney [4], Karp/Li [12],
Davies [2] and Takeda [14]. An optimal result was obtained by Grigor’yan [5] (see
also [6]) who proved stochastic completeness of a geodesically complete manifold
under the condition ∫ ∞ r

log♯ vol(Br)
dr =∞,

where log♯ = max{log, 1}. He also showed by examples that his criterion is sharp.
Later, Grigor’yan’s result was extended by Sturm [13] to strongly local Dirichlet
forms where the phenomenon is referred to as conservativeness and distance balls
are considered with respect to a so called intrinsic metric. Indeed, in spirit the
proof in this more general situation follows Grigor’yan’s. A remarkable feature
of Grigor’yan’s proof is that it not only yields stochastic completeness but di-
rectly implies a uniqueness class statement for the heat equation. Precisely, while
stochastic completeness is equivalent to uniqueness of bounded solutions to the
heat equation, the uniqueness class statement extends this uniqueness to a class
of unbounded solutions which satisfy a certain growth bound.

In recent years the phenomenon of stochastic completeness was intensively stud-
ied for graphs. The interest in this topic was sparked by the PhD thesis [15] and
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follow up work [16] of Wojciechowski who presented examples of graphs of polyno-
mial volume growth, which are stochastically incomplete. This showed that there
is no analogous result to Grigor’yan’s for graphs when one considers volume growth
of balls with respect to the combinatorial graph distance. However, in view of the
work of Sturm [13] for local Dirichlet forms, which uses intrinsic metrics, it seemed
promising to consider distance balls with respect to a metric that is adapted to the
heat flow on the graph. While such a theory of intrinsic metrics was developed at
this time also for non-local (and thus for all regular) Dirichlet forms, this idea was
used by Grigor’yan/Huang/Masamune [7] to prove a first result in this direction
that guaranteed stochastic completeness of the graph provided

vol(Br) ≤ exp(Cr log r)

for r large enough and some constant 0 < C < 1/2. Shortly afterwards Grigor’yan’s
result for manifolds was recovered for graphs using so called intrinsic (or adapted)
metrics by Folz [3] and shortly after that an alternative proof was given by Huang
[9]. See also [11] for results on the closely related problem of escape rates.

In spirit, the proofs of these results used techniques that relate the non-local
graph to a more local object. Specifically, Folz [3] compared the heat flow on the
combinatorial graph with a corresponding metric (or quantum) graph and Huang
and Shiozawa [11] decreased non-locality of the graph by inserting additional ver-
tices in the edges (which probabilistically decreased the jump size of the process).
Although this was a breakthrough, there are two aspects in which the results are
not completely satisfying – one of technical the other of structural nature. The
technical aspect is that the results were proven under rather restrictive conditions
such as local finiteness of the graphs, finite jump size of the metric and uniform
lower bounds on the measure. Moreover, the only metrics considered were special
path metrics. These restrictions did not inspire much hope that the proof strate-
gies can be carried over to more general jump processes. The second aspect, which
may be seen as a shortcoming of more fundamental nature, is that the proofs do
not allow to recover Grigor’yan’s uniqueness class for the heat equation. Indeed,
this is not a shortcoming of the proofs but the optimal uniqueness class that is
known for manifolds does not hold for general graphs. In his PhD thesis [8] Huang
gave an example of a nontrivial solution to the heat equation with initial value
0 on the integer line Z, which showed that the corresponding uniqueness class
statement of Grigor’yan is already wrong for this simple graph.

In this talk we present recent results from [10], where we amend these short-
comings. In order to obtain Grigor’yan’s uniqueness class for the heat equation
we introduce the class of globally local graphs (GL graphs for short). These are
graphs whose jump size decays fast enough outside large balls. On GL graphs we
establish Grigor’yan’s uniqueness class and directly use it to obtain Grigoryan’s
optimal volume growth criterion for stochastic completeness (with respect to an
intrinsic metric). This part of the results is general and also applies to jump pro-
cesses associated with regular Dirichlet forms. In a second step we establish the
optimal volume growth criterion for stochastic completeness for general graphs
under the only assumption that they admit an intrinsic metric with finite distance
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balls. For this we use the ideas from [11] to refine the given graph to a GL graph
of the same volume growth, establish stochastic completeness of the refined graph
and then use stability of stochastic completeness under refinements.
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Uncertainty relations and applications in spectral and control theory

Ivan Veselić

Unique continuation is a prominent phenomenon encountered in the study of sev-
eral classes of functions, e. g. subsets of holomorphic functions or spaces of solutions
of partial differential equations. The study of this phenomenon, in the multidimen-
sional setting, goes back at least to Carleman and Müller. It is impossible to give
here an adequate overview of the gradual development of understanding of this
phenomenon. Let us just mention that it has crucial consequences in a plethora of
applied problems: Absence of eigenvalues embedded in the continuous spectrum of
Schrödinger operators, size and dimensionality of nodal sets of Laplace-Beltrami



Geometry, Dynamics and Spectrum of Operators on Discrete Spaces 69

operators on compact manifolds, inverse problems for partial differential equations,
like the Calderon problem or the control problem for evolution equations.

More recently, the unique continuation principle has been successfully applied
to the study of mathematical models in solid state and condensed matter physics.
A particular feature of these models is the presence of a microscopic and a macro-
scopic length scale, where the latter is many orders of magnitude larger than the
former. For periodic and ergodic Schrödinger operator, the ratio between the
macroscopic and microscopic scale is determined by the spacing between atoms in
crystals, which is typically a few Ångströms.

Consequently, the unique continuation principles have to take into account this
geometric structure to be applicable in the mentioned physical context. This means
that on the technical level we have to consider the unique continuation problem
on large domains — ‘large’ compared to some reference scale, e. g. the atomic
scale in the case of ergodic Schrödinger operator. It is this reference scale at which
changes of the coefficient functions (e. g. the electric potential) are observed.

As in other situations of statistical and condensed matter physics, it is natural
to approximate large bounded domains by unbounded ones, and hence include the
latter in our analysis. Now we have set the stage to formulate unique continuation
estimates on unbounded and (large) bounded domains and spell out thereafter
applications in three different questions of mathematical physics.

Quantitative scale free unique continuation principles. Let d ∈ N, G >
0, δ > 0 and Γ = ×d

i=1(αi, βi) ⊂ Rd with αi, βi ∈ R ∪ {±∞}. Assume that
ΛG := (−G/2, G/2)d ⊂ Γ. We say that a sequence Z = (zj)j∈(GZ)d ⊂ Rd is
(G, δ)-equidistributed, if

∀j ∈ (GZ)d : B(zj , δ) ⊂ (−G/2, G/2)d + j.

For a (G, δ)-equidistributed sequence Z define

Sδ,Z =
⋃

j∈(GZ)d

B(zj , δ) ∩ Γ.

For a real V ∈ L∞(Γ) define H = −∆ + V on L2(Γ) with Dirichlet or Neumann
boundary conditions.

Theorem 1 ([1]). There is an N > 0 depending only on d, such that for all G > 0,
all ΛG ⊂ Γ ⊂ Rd as above, all δ ∈ (0, G/2), all (G, δ)-equidistributed sequences Z,
all V ∈ L∞(Γ), all E ∈ R, and all ψ ∈ Ran1(E,∞)(H) we have

‖ψ‖2L2(Sδ,Z ) ≥ Cuc(E)‖ψ‖2L2(Γ), where t+ := max{0, t} for t ∈ R

and Cuc(E) = sup
λ∈R

(
δ

G

)N
(
1+G4/3‖V −λ‖2/3

∞
+G
√

(E−λ)+)

.

The estimate is called scale free since it is independent of the domain Γ.
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Lifting estimates of edges of essential spectrum by potentials. The min
max principle for hermitean matrices shows and quantifies the lifting of eigenvalues
under the influence of a positive definite perturbation. In the case of Schrödinger
operators, eigenvalues may have accumulation points and/or be located inside gaps
of the essential spectrum. The question is whether analogous shifting estimates
hold in these cases. Furthermore: Do similar lifting estimates hold for the edges of
essential spectrum; and: Are positive semi-definite potentials sufficient to produce
such lifting? We have a positive answer to these questions formulated in the
following

Theorem 2 ([1]). Let N , G, Γ, δ, Z, V , H, and Cuc(E) be as in Theorem 1. Let
W ∈ L∞(Γ) be real-valued with W ≥ ϑ1Sδ,Z

for some ϑ > 0.
Let a, b ∈ σess(H), and a < b such that (a, b) ∩ σess(H) = ∅. We set t0 =

(b − a)/‖W‖∞, and t+ = max{0, t}, t− = max{0,−t}. Then the functions f± :
(−t0, t0)→ R

f−(t) = sup (σess(H + tW ) ∩ (−∞, b− t−‖W‖∞)) ,

f+(t) = inf (σess(H + tW ) ∩ (a+ t+‖W‖∞,∞)) ,

satisfy for all t ∈ (−t0, t0), ǫ > 0 such that t+ǫ ∈ (−t0, t0) the two Lipschitz bounds

ǫ ϑCuc(b+ ‖W‖∞) ≤ f±(t+ ǫ)− f±(t) ≤ ǫ ‖W‖
Analogous bounds hold for discrete eigenvalues in all gaps of the essential spec-

trum (and below it).

Anderson localization for random Schrödinger operators. It is well known
from previous work that unique continuation estimates are a powerful tool for
deriving Wegner estimates, which in turn play a crucial role in proving localization.
We present here a result for a model with non-linear parameter dependence.

For 0 ≤ ω− < ω+ < 1
4 set Ω = ×j∈ZdR, P =

⊗
j∈Zd µ where µ is a probability

measure with supp µ ⊂ [ω−, ω+] and a bounded density ν. Hence, πj(ω) 7→ ωj , j ∈
Zd, are continuous iid random variables. The standard random breather model is
defined as

(1) Hω = −∆ + V br
ω (x) with V br

ω (x) =
∑

j∈Zd

χBωj
(x− j),

and its restriction to the box ΛL (with Dirichlet or Neumann boundary conditions)
is denoted by Hω,L.

Theorem 3 (Wegner estimate for the standard random breather model [2]). Fix

E0 ∈ R and set ǫmax = (1/4) · 8−N(2+|E0+1|1/2), where N is the constant from
Theorem 1. Then there is C = C(d,E0) ∈ (0,∞) such that for all ǫ ∈ (0, ǫmax]
and E ≥ 0 with [E − ǫ, E + ǫ] ⊂ (−∞, E0], we have

E
[
Tr
[
χ[E−ǫ,E+ǫ](Hω,L)

]]
≤ C‖ν‖∞ǫ[N(2+|E0+1|1/2)]−1 |ln ǫ|d Ld.

Of similar importance for the proof of localization is the so-called initial scale
estimate. Seelmann and Täufer succeeded in proving one (and consequently lo-
calization) for energies near spectral band edges of randomly perturbed periodic
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potentials. It is remarkable that they do not need to assume anything about the
extrema for the associated Floquet eigenvalues.

Theorem 4 (Localization at band edges [4]). Let Vper : Rd → R be bounded and
periodic, Hper = −∆ + Vper, V

an
ω =

∑
j∈Zd ωju(· − j) with iid bounded random

variables ωj with bounded density ν and L∞
c (Rd) ∋ u ≥ c χBδ

, for some c, δ > 0,
and Hω = Hper + V an

ω . Assume that a < b, (a, b) ⊂ ρ(Hω), and b ∈ σ(Hω).
Then there is an ǫ > 0 such that in [b, b + ǫ] the operator Hω exhibits Anderson
localization.

Null control and observability estimates for the heat equation. The fol-
lowing observability (and hence the associated control cost) estimates for the gen-
eralized heat equation (on Γ as above) have been derived from Theorem 1.

Theorem 5 ([3]). Let N , G, Γ, δ, Z, V , and H be as in Theorem 1. Then for
all φ ∈ L2(Γ), and all T > 0 we have

‖e−HT ‖2L2(Γ) ≤ Cobs(δ,G, ‖V ‖∞, T )2
∫ T

0

‖e−Htφ‖2L2(S∩Γ)dt,

where for some C1, C2, C3 > 0 depending only on the dimension we have

Cobs =

(
δ

G

)−C2(1+G4/3‖V ‖2/3
∞

)
C1

T
exp

(
C3G

2 ln2(δ/G)

T

)
if κ := inf σ(H) ≥ 0,

Cobs =

(
δ

G

)−C2(1+G4/3‖V−κ‖2/3
∞

)

inf
t∈[0,T )

C1

T − t exp

(
C3G

2 ln2(δ/G)

T − t − 2κt

)
,

if κ > 0.
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Weak model sets and number-theoretic dynamical systems

Michael Baake

The study of cut and project sets has become a powerful tool for many problems,
ranging from number theory [8] all the way to theoretical and applied questions
from the theory of aperiodic order [2, 7]. While the main focus so far has been
on regular model sets [9], where the window in internal space is a topologically
regular set with a boundary of measure zero, the theory is way more general.
In fact, interesting examples of number-theoretic origin need the setting of weak
model sets, where the window is still compact, but may have a boundary of positive
measure, or even consist of boundary only. Here, we present two results on such
systems, one of a spectral nature [3] and another of a more algebraic flavour [1].

The setting within the class of locally compact abelian groups is commonly
summarized by the underlying cut and project scheme (CPS)

(1)

G
π←−−− G× H

πint−−−→ H

∪ ∪ ∪ dense

π(L)
1−1←−−− L −−−→ πint(L)

‖ ‖
L

⋆−−−−−−−−−−−−−−−−−−−→ L⋆

with G assumed σ-compact and H compactly generated, which is a mild, but
natural restriction in a spectral context. Further, L is a lattice in G×H , and the
CPS is commonly abbreviated by (G,H,L).

Given a compact subset W ⊆ H , a projection set of the form

Λ = f(W ) = {x ∈ L : x⋆ ∈W}
is called a weak model set. Given an averaging sequence A in G of van Hove type,
Λ is said to have maximal density when the density of Λ relative to A exists and
satisfies dens(Λ) = dens(L)vol(W ), where the volume of the window is measured
via the (canonically normalized) Haar measure of H .

One recent result, in line with the original theory envisioned by Yves Meyer, is
the following, where we refer to [2] for underlying notions and basic results from
diffraction theory.

Theorem 1. Let (G,H,L) be the CPS from (1), and let an averaging sequence
A in G of van Hove type be specified. Then, a weak model set of maximal density
with respect to A is pure point diffractive, with a constructive and explicit formula
for the diffraction measure, which is supported in the group πint(L0). Here, L0 is

the annihilator of L, which is a lattice in the dual group Ĝ×H ≃ Ĝ×Ĥ.
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Figure 1. Central patch of the visible (or primitive) points of
Z2 (dots) and of the square-free Gaussian integers (circles), with
the symbol + marking the origin, which belongs to neither set.

Let us break this down for two concrete examples, namely the visible (or prim-
itive) points within the lattice Z2 and the square-free integers in the ring Z[i] of
Gaussian integers, where the latter can canonically be viewed as a subset of the
square lattice; see Figure 1. Both are weak model sets of maximal density, relative
to an averaging sequence of centered disks around 0 of increasing radius. In fact,
there are simple closed formulas for the diffraction measures in terms of Dirichlet
series and Euler product expressions for the intensities; see [4, 2] for more.

Both sets define topological dynamical systems under the (continuous) shift
action of Z2, denoted by (XV,Z

2) and (XG,Z
2), where the two compact spaces

are obtained as the orbit closure of the sets from Figure 1 under the shift action,

with the closure taken in the product topology of {0, 1}Z2

, also known as the local
topology; see [2] for background and details. For the spectral result, we use the
patch frequency measure as invariant probability measure on the two spaces, with
the (natural) patch frequencies determined via the above averaging sequence. This
measure is also known as the Mirsky measure; see [3] and references therein.
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Invoking the spectral equivalence theorem from [5], we know that these dynam-
ical systems have pure point dynamical spectrum, which (in additive notation) is
πint(L0) in the setting of Theorem 1. The dynamical spectra of the two systems
turn out to be different subgroups of Q2.

Consequently, by the Halmos–von Neumann theorem, the two systems cannot
be measure-theoretically conjugate, and thus certainly not topologically conjugate
either. But one valid question is whether the topological distinction is possible
more directly, that is, without invoking an invariant measure and the Halmos–von
Neumann theorem. This is indeed possible as follows.

Let Aux(X) denote the group of homeomorphisms of the compact space X,
where we do not demand any commutation properties with the shift action (this
is the automorphism group in the Smale sense, in contrast to what is mostly used
in symbolic dynamics). With G = Z2, we now have two natural algebraic objects,
namely the topological centralizer and the topological normalizer,

(2) S(X) = centAut(X)(G) and R(X) = normAut(X)(G).

Clearly, these groups are topological invariants, and they are often explicitly
accessible. Note that the centralizer agrees with what is often called the automor-
phism group in symbolic dynamics, while it is only the normalizer that captures
the obvious ‘symmetries’ of the systems; see [6] for background and examples.
Here, we get the following result [1], with D4 the dihedral group of order 8.

Theorem 2. One has S(XV) = S(XG) = Z2, while the normalizers are different,
namely R(XG) = Z2 ⋊D4 versus R(XV) = Z2 ⋊ GL(2,Z).

Here, the group D4 ≃ C4 ⋊C2 has a natural origin in algebraic number theory,
which extends to similar systems for general quadratic or cyclotomic fields.
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Ellis semigroup of symbolic shifts

Johannes Kellendonk

(joint work with Marcy Barge, Gabriel Fuhrmann and Reem Yassawi)

A topological dynamical system (X,T, α) is a compact metrizable space X with
an action α by homeomorphisms of a group or semi-group (with unit) T . The
enveloping or Ellis semigroup E(X,T ) of (X,T, α) is the closure of the set of
homeomorphisms {αt : t ∈ T } in XX , the semigroup (under composition) of all
functions from X to X equipped with the topology of pointwise convergence.

In our talk we reviewed recent results obtained in collaboration with the above
named authors about

(1) tameness of Toeplitz shifts [3],
(2) near simplicity and complete regularity of the Ellis semigroup of symbolic

Z-shifts [2],
(3) explicit computations of the Ellis semigroup for bijective substitutions [4].

1. Tameness of Toeplitz shifts

There are several equivalent formulations of what it means for a dynamical system
(or its Ellis semigroup) to be tame. We mention two such formulations:

• (X,T, α) is tame if all elements of E(X,T ) are limits of sequences (as
opposed to nets) of continuous functions.
• (X,T, α) is wild (non-tame) if it admits an independence sequence.

In the context of symbolic shifts, that is, when (X,Z, α) is a subsystem of the full
shift (AZ,Z, σ) over a finite alphabet A, the second condition means the following:
(X,Z, α) admits an independence sequence if there are two distinct symbols {a, b}
from A and an infinite subset J ⊂ Z such that, for any function ϕ : J → {a, b}
there exists x = (xn)n∈Z ∈ X such that for all j ∈ J we have xj = ϕ(j).

A Toeplitz shift is a symbolic shift (X,Z, α) ⊂ (AZ,Z, σ) whose maximal
equicontinuous factor (Y,Z) is an odometer and such that the factor map π :
X → Y admits a singleton fibre. The set {y ∈ Y : |π−1(y)| = 1} is thus not empty
and we refer to its complement as the set of singular points. Toeplitz shifts can
be realized by means of Bratteli-Vershik systems but in a particular way, namely
for any given level n, the number of outgoing edges from each vertex of the ver-
tex set at level n depends only on n. This property is referred to as the ”equal
path number property”. We say that a Toeplitz shift has finite Toeplitz rank, if it
can be realized by such a Bratteli-Vershik system which in addition has an upper
bound on the number of vertices at level n. Primitive, aperiodic, constant length
substitutions with a coincidence are examples of Toeplitz shifts which have finite
Toeplitz rank. We obtain

Theorem 1 ([3]). A Toeplitz shift with finite Toeplitz rank is tame if and only if
the set of singular points is countable.

Counterexamples show that the condition that the Toeplitz rank is finite cannot
be dropped.
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2. Near simplicity and complete regularity

A semigroup is called completely simple, if it does not admit a non-trivial bi-
lateral ideal and contains an idempotent. Completely simple semigroups are well-
understood, they are isomorphic to so-called matrix semigroups, which are disjoint
unions of isomorphic groups.

A semigroup is called completely regular, if it is a disjoint union of groups.
We call a semigroup nearly simple if it admits a minimal bilateral ideal (called

its kernel) and all its non-invertible elements belong to this ideal. A nearly simple
semigroup is completely regular, provided its kernel contains an idempotent.

It is a consequence of compactness that the Ellis semigroup admits a kernel and
the kernel contains an idempotent. The kernel is thus a matrix semigroup.

Aujogue has shown [1] that the Ellis semigroup associated to the dynamical
system of an almost canonical cut & project set is completely regular, but not
nearly simple. In the context of one-dimensional symbolic shifts we can say the
following

Theorem 2 ([2]). Consider a dynamical system (X,Z, α) for which X is totally
disconnected. The following are equivalent

(1) Any forward proximal pair is forward asymptotic and any backward prox-
imal pair is backward asymptotic,

(2) E(X,Z) is nearly simple,
(3) E(X,Z) is completely regular.

We can furthermore say that, if forward proximality and backward proximality
are transitive relations then E(X,Z) has either one minimal left ideal (which is
the case precisely if two-sided proximality is transitive) or two minimal left ideals,
namely the minimal left ideals of E(X,Z+) and E(X,Z−), the Ellis semigroups
associated to the forward and the backward motions.

3. Ellis semigroup of bijective substitutions

A bijective substitution θ, of length ℓ, on a finite alphabet A, is a concatenation
of ℓ bijections θi : A → A, i = 0, · · · , ℓ− 1, such that for all a ∈ A

θ(a) = θ0(a) θ1(a) · · · θℓ−1(a).

The dynamical system associated to θ is the subshift (Xθ,Z, σ) ⊂ (AZ,Z, σ) of bi-
infinite sequences whose finite parts occur in θn(a) for some a ∈ A and n ≥ 1. The
ℓ-adic odometer Zℓ is an equicontinuous factor of (Xθ,Z) and the factor map π :
Xθ → Zℓ has a unique orbit of singular points (points z ∈ Zℓ for which |π−1(z)| >
|A|), namely that of 0 ∈ Zℓ. The Ellis semigroup of (Xθ,Z, σ) is never tame.
We denote by Efib(Xθ,Z) the elements of E(Xθ,Z) which preserve the fibres of π

and by Efib
0 (Xθ,Z) their restriction to the fibre π−1(0). On (Xθ,Z, σ) forward and

backward proximality coincide with forward and backward asymptoticity, resp., so
that E(Xθ,Z) is the disjoint union of the acting group Z with a matrix semigroup
M [G; I,Λ;A]. As a set, M [G; I,Λ;A] = I×G×Λ where G is a group and I and Λ
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are sets. The semigroup product is encoded by aG-valued matrix A = (aλ i)λ∈Λ,i∈I

and given by

(i, g, λ)(j, h, µ) = (i, gaλ jh, µ).

The minimal left ideals are given by I×G×{λ}, λ ∈ Λ and here there are exactly
two of them, one associated to the forward and one to the backward motion; we
denote them with λ = +,−, resp..

When G is a topological group and I and Λ equipped with a topology then
M [G; I,Λ;A], equipped with the product topology, is semi-topological, that is,
the semigroup product is continuous in both variables. We have

Theorem 3 ([4]). Let θ = θ0 · · · θℓ−1 be a primitive, aperiodic, bijective substitu-
tion such that θ0 = θℓ−1 = id.

(1) Efib
0 (Xθ,Z) ∼= {id} ⊔M [Gθ; Iθ, {±}, Aθ], a finite semigroup, with

Iθ = {θiθ−1
i−1|1 ≤ i ≤ ℓ},

Gθ the group generated by Iθ, and Aθ = (aǫ i)ǫ=±,i∈Iθ , a+i = 1, a−,i = i.

(2) If Efib
0 (Xθ,Z) is generated by its idempotents then

Efib(Xθ,Z) ∼= {α0} ⊔M [G
Zℓ/Z
θ ; Iθ, {±}, Aθ]

the isomorphism preserving the topology. Here G
Zℓ/Z
θ is the set of all func-

tions from the space of Z-orbits Zℓ/Z to G, equipped with the topology of
pointwise convergence, and the matrix elements of A are seen as functions
supported on the orbit of 0.

(3) If Efib
0 (Xθ,Z) is generated by its idempotents then

E(Xθ,Z) ∼= Z ⊔M [G
Zℓ/Z
θ ⋊ Zℓ; Iθ, {±}, Aθ]

however the isomorphism is only algebraic.

If Efib
0 (Xθ,Z) is not generated by its idempotents then it is Z/hZ-graded, for

some h ∈ N which is called the generalized height of θ, and similar expressions for
E(Xθ,Z) incorporating this grading can be obtained [4].
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Logarithmic Sobolev inequalities for quantum Markov semigroups –
an optimal transport approach

Melchior Wirth

(joint work with Haonan Zhang)

Logarithmic Sobolev inequalities are classic tools to quantify the return to equi-
librium of classical and quantum Markovian evolutions. For the heat semigroup
on a complete Riemannian manifold it is known that a logarithmic Sobolev in-
equality can be deduced from a positive lower bound on the Ricci curvature by
optimal transport methods, using convexity properties of the entropy in Wasser-
stein space [5]. In this talk we discuss how this approach can be transferred to
noncommutative geometries.

We work in the following setting. Let M be a von Neumann algebra and
τ : M → C a normal faithful tracial state. A τ -symmetric quantum Markov
semigroup (Pt) is a weak∗ continuous semigroup of unital completely positive
linear maps on M that satisfy

τ((Ptx)y) = τ(xPty).

If (Pt) admits a carré du champ, then its L2-generator can be written as L = ∂∗∂,
where ∂ is a derivation with values in a normal Hilbert bimodule H over M [4].

With the aid of this differential structure one can define a noncommutative
transport distance on the space of density operators [6] by

W2(ρ0, ρ1) = inf

{∫ 1

0

〈ρ̂tξt, ξt〉 dt | ρ̇t = ∂∗(ρ̂tξt)

}
,

where

ρ̂ξ =

∫ 1

0

ρα · ξ · ρ1−α dα.

If (Pt) is the heat semigroup on a complete Riemannian manifold with lower
bounded Ricci curvature, then W coincides with the L2-Wasserstein distance by
means of the Benamou–Brenier formula.

Our first result [6] show that this metric establishes a connection between (Pt)
and the entropy D(ρ) = τ(ρ log ρ). More precisely, if (Pt) satisfies the gradient
estimate

(GE(K,∞)) 〈ρ̂∂(Ptx), ∂(Ptx)〉H ≤ 〈P̂tρ∂(x), ∂(x)〉H,

then (Pt) satisfies the evolution variational inequality

(EVIK)
1

2

d

dt
W2(Ptρ, σ) +

K

2
W2(Ptρ, σ) +D(Ptρ) ≤ D(σ).

If (Pt) is a classical diffusion semigroup, then GE(K,∞) is equivalent to the Bakry–

Émery criterion Γ2 ≥ KΓ, but this equivalence does not hold if the generator of
(Pt) is non-local or the underlying von Neumann algebra is noncommutative.
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By abstract theory of gradient flows in metric spaces, EVIK with K > 0 implies
that (Pt) satisfies the modified logarithmic Sobolev inequality

D(Ptρ) ≤ e−2KtD(ρ),

provided (Pt) is ergodic. For non-ergodic (Pt) the same conclusion remains true
if one replaces D by a suitable relative entropy conditioned on the fixed-point
algebra [7].

It is an open question whether the gradient estimate GE(K,∞) is stable under
taking tensor products. However, if one assumes that (Pt ⊗ IN ) and (Qt ⊗ IN )
satisfy GE(K,∞) for every tracial von Neumann algebra (N , τN ), we can show
[7] that both the tensor product (Pt ⊗Qt) and the free product (Pt ∗ Qt) satisfy
GE(K,∞). We also establish an infinite-dimensional version of an intertwining
criterion for GE(K,∞) going back to Carlen and Maas in the finite-dimensional
case [2, 3].

As an application we prove the modified logarithmic Sobolev inequality with
optimal constant for the QMS on free group factors given by Ptλg = e−tℓ(g)λg,
where ℓ(g) is the number of letters of g as a reduced word in the generators
and their inverses. Our proof relies on the free product structure of (Pt), an
approximation argument using ultraproducts and a new explicit Lindblad form
for the generator of (Pt) using the cocycle associated with ℓ. The same result was
obtained independently using different methods by Brannan, Gao and Junge [1].
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Discrete Cheeger–Gromoll splitting theorem

Florentin Münch

(joint work with Shing-Tung Yau)

An important result in Riemannian geometry is the Cheeger–Gromoll splitting
theorem stating that if a manifold with non-negative Ricci curvature possesses a
straight line, then it is a Cartesian product of R and another manifold. Since a
decade ago, there is growing interest in various discrete Ricci curvature notions,
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see e.g. the seminal paper by Ollivier [1]. According to [2], the Ollivier curvature
of an edge in a locally finite graph G = (V,E) is given by

κ(x, y) = inf
f∈Lip(1)

f(y)−f(x)=1

∆f(x)−∆f(y)

where ∆f(x) =
∑

(x,y)∈E f(y) − f(x) for f ∈ RV and Lip(1) is the set of 1-

Lipschitz functions on V with respect to the combinatorial graph distance d. The
curvature Ric(G) of the whole graph is the infimum of the curvatures of all edges.
For stating a discrete version of the Cheeger–Gromoll splitting theorem it turns
out that defining straight lines in terms of the combinatorial graph distance cannot
give splitting in the sense of Cartesian graph products. The intuitive reason is that
balls are not round enough to give reasonable Busemann functions. In order to
overcome this issue, we define a modified graph distance in the following way:

• For x, y ∈ V , let ℓ(x, y) be the second shortest path length from x to y.
• Let δ, ε : N→ (0, 12 ) with ε(n)→ 0 as n→∞.

Define w : V 2 → [0,∞),

w(x, y) :=





d(x, y) − 1 + ε(d(x, y)) : ℓ(x, y) = d(x, y),

d(x, y) − δ(d(x, y)) : ℓ(x, y) = d(x, y) + 1,

d(x, y) : otherwise.

The function w is not a metric, but can serve as a weight for a path metric ρ given
by

ρ(x, y) := inf

{
n∑

i=1

w(xi−1, xi) : x = x0, y = xn

}
.

A sequence of vertices (xi)i∈Z is called a straight line if

ρ(xi, xj) = |i− j| for all i, j ∈ Z.

With the definition of a straight line, the main theorem of the talk states that for a
connected, locally finite graph G = (V,E), the following statements are equivalent:

(1) Ric(G) ≥ 0, and there is a straight line.
(2) G = Z×H with Ric(H) ≥ 0.

Here, Z×H denotes the Cartesian product of the infinite both sided infinite path
Z with another graph H .

The proof of (2)⇒ (1) is easy and uses the compatibility of the curvature with
Cartesian products. The proof of (1) ⇒ (2) consists of three steps: First, one
shows local splitting around the straight lines, i.e., the one tube around a straight
line has Cartesian product structure and allows for parallel straight lines. Second,
one shows that one can do a parallel transport of a straight line through the entire
graph. Third, one defines Busemann functions with respect to straight lines and
shows that the other factor H can be expressed as a level set of a Busemann
function.
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It stays open whether one can achieve some weaker kind of splitting, e.g. in the
quasi isometry sense, when only assuming straight lines in terms of the combina-
torial graph distance d.
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Jussieu-Paris Rive Gauche
8 place Aurélie Nemours
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