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ABSTRACT. The workshop concentrated on various aspects of optimization
problems with systems of nonlinear partial differential equations (PDEs) or
variational inequalities (VIs) as constraints. In particular, discussions around
several keynote presentations in the areas of optimal control of nonlinear or
non-smooth systems, optimization problems with functional and discrete or
switching variables leading to mixed integer nonlinear PDE constrained op-
timization, shape and topology optimization, feedback control and stabiliza-
tion, multi-criteria problems and multiple optimization problems with equi-
librium constraints as well as versions of these problems under uncertainty
or stochastic influences, and the respectively associated numerical analysis as
well as design and analysis of solution algorithms were promoted. Moreover,
aspects of optimal control of data-driven PDE constraints (e.g. related to
machine learning) were addressed.
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Introduction by the Organizers

Nonlinear optimization problems with partial differential equation or variational
inequality constraints play an ever increasing role in the applied sciences and con-
front mathematical research with major new challenges. This is even more the case
if additional features such as data-driven model components or data uncertainty
become relevant. As a result, besides new mathematical models, novel analytical
as well as numerical tools need to be developed. Correspondingly, motivated by
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optimization problems for nonlinear partial differential equation (PDE) systems
which are related to practical applications, the aims of workshop were to gather a
group of international experts working at the forefront of research in the field, to
foster in-depth-discussions crystallizing around a number of keynote presentations
as well as discussion groups on focal topics that emerged during the workshop,
and to establish an (international) exchange forum for problems, techniques and
solutions, both analytically as well as numerically.

Following the above motivation, the workshop consisted of 13 keynote presen-
tations which were complemented by 17 short communications. Based on the
various discussions following some of these presentations, on Wednesday evening
of the workshop week a discussion forum on future topics and trends was sched-
uled. The latter focused in particular on the importance of machine-learning and
data-driven techniques in optimization and control with PDEs, uncertainty of
various constituents entering the problems under investigation, and major novel
application fields resulting in nonlinear and possibly non-smooth coupled systems.

In general, the scientific activity of the workshop developed around keynote
topics with associated keynote presentations, short communications, and the or-
ganization of discussion groups on emerging focal points. Within this context, the
following focus topics were discussed:

e Control of non-smooth or nonlocal operators. Nonsmooth PDEs of-
ten give rise to non-differentiable, but yet Hadamard differentiable control-
to-state mappings. For their tractable representations tools from set-
valued analysis need to be further advanced. Subsequently, this will yield
sharp stationarity conditions for characterizing solutions and the ansatz
for developing tailored numerical solution schemes. Concerning nonlin-
ear and nonlocal PDE operators in the constraints fractional operators
as well as nonlocal phase field models which may also involve nonsmooth
potentials were studied.

e Shape and topology optimization. This is an important branch of
optimal design subject to partial differential equations with many applica-
tions in engineering and recently also biomedical sciences. Specific topics
of interest are related to an efficient representation of the shape derivative,
the establishment of analytical tools for enabling a joint shape and topolog-
ical derivative, higher-order shape analysis, and problems with non-smooth
components, either in the cost term or through considering variational in-
equality (VI) type state systems. Also Riemannian manifold techniques
based on work by Michor and Mumford have been studied recently in the
community and appear very promising also from a computational perspec-
tive.

In the workshop we also discussed phase-field techniques which have
recently become a popular alternative to the above mentioned shape sen-
sitivity and manifold approaches. They allow for a combined shape and
topology optimization at the expense of operating with a diffuse (rather
than a sharp) interface, only. Technically, the phase field method contains
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a parameter dependent approximation of the interface perimeter and, in
the limit for vanishing parameter and under suitable assumption, the de-
rivative of the reduced objective of an associated minimization problem
can be related to the shape gradient. Correspondingly, analytical and nu-
merical aspects were highlighted in several presentations, along with spe-
cific applications, e.g., resulting from fluid structure interactions in marine
technologies.

e Feedback control and stabilization. Feedback stabilization and con-
trol are important topics including aeronautics and fluid flow, flow over
surfaces, injection of polymer solutions, mass transport through porous
walls. Some of the major research questions involve the type of feedback
law (linear vs. nonlinear), the proper choice of Lyapunov functionals, and
the treatment of Riccati equations. The envisaged problem class typically
requires to develop suitable solution techniques for ultra-high dimensional
Riccati equations upon discretization. Nonlinear feedback relies on the
Hamilton-Jacobi-Bellman equation. Its practical realization is impeded
by the curse of dimensionality. Recent advances for numerical realization
based on tensor analysis or approximate nonlinear closed feedback by deep
neural networks were addressed.

e Uncertainty and stochasticity. For several reasons (e.g. modeling
material or manufacturing imperfections, uncertain measurements or, in
market applications, uncertain demands) it is of interest to study prob-
lems with uncertain parameters giving rise to stochastic states, while even
assuming deterministic controls. Currently, the transfer to coupled or non-
smooth structures (such as VIs) needs to be accomplished and the efficient
numerical treatment is still a considerable challenge.

The main difficulty in the context of optimal control of (genuinely) sto-
chastic PDEs (SPDEs) consists in solving the adjoint problem, which is
a system of backward stochastic PDEs. Inverting time in stochastic dy-
namics is not straightforward and results in the introduction of additional
variables. Moreover, in many cases the classical variational theory for
backward SPDEs cannot be applied directly due to the presence of cou-
pling terms and of possibly nonlinear terms (such as potentials in phase
separation approaches) present in the equations.

e Data-driven PDE models. Due to the availability of vast amounts of
data it has recently become feasible to hybridize ab initio PDE models
with data-driven components in order to, e.g., cover wide ranges of appli-
cability of a model family. Very often tools from machine learning, e.g.,
relying on deep networks help to identify data-driven components. De-
spite several analytical questions, e.g., related to density considerations
in approximation through neural networks generated maps, optimization
theoretic aspects arise, e.g., related to the derivation of adjoint systems.
This novel research area may decisively shape the future of the entire field.
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e Nash games with PDEs. Not only in multi-criteria engineering design,

but also in markets with transport (of, e.g., energy carriers when con-
sidering models for the energy turnaround) the involved agents (controls)
may have conflicting objectives while accessing a common state system
(with possible state constraints). The appropriate mathematical formula-
tion leads to (generalized) Nash games with PDE constraints and possibly
under uncertainty. While there is some literature on the subject in finite
dimensions, this field is rather open when it comes to PDE constraints.
Numerical analysis and algorithm design / analysis. As many of
the aforementioned problem classes are either entirely new or have been
studied from an analytical point of view only, the workshop also strives
for advancing the development of proper discretization and numerical so-
lution schemes. Exemplarily we mention that optimal control problems
for VIs cannot be solved by techniques known for the iterative solution
of optimal control problems for PDE-systems. This is related to the non-
smooth character of the VI problem and the constraint degeneracy which
prevents existence of Karush-Kuhn-Tucker-type multipliers. Another ex-
ample relates to sparse controls which gives rise to questions concerning
the discretization of measures and their efficient numerical treatment.
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Abstracts

Second Order Necessary Conditions for Optimal Control Problems of
Evolution Equations Involving Final Point Equality Constraints

HELENE FRANKOWSKA
(joint work with Qi Lii)

Let T > 0, R denote the set of all reals, H, Ho be separable Hilbert spaces and
A: D(A) — H an infinitesimal generator of a Cy-semigroup on H. For a separable
Banach space H; and a nonempty bounded closed subset U C H; put

U={u:[0,T] = U|u(-) is Lebesgue measurable}.
Given xg € H and f :[0,7] x H x H; — H, consider the control system:

(1) xe(t) = Az(t) + f(t, z(t),u(t)), t € (0,T], (0) = xo, u €U,
under the following final state constraints
(2) 9;(@(1)) <0, j=1,..,r, h(z(T)) =0,

where g; € C(H;R) for j = 1,...,7, h € C(H; H2) and solutions z(-) of (1) are
understood in the mild sense. Any trajectory-control pair (x,u) of (1) satisfying
(2) is called an admissible pair.

Let go € C(H;R) be a given cost function. We state here a second order
necessary optimality condition for the Mayer type optimal control problem:
(3) minimize go(x(7T'))

over all admissible trajectories z(-). An admissible pair (Z,a) is called a local
minimizer of (3) if for some € > 0, we have go(z(T')) > go(Z(T)) for each admissible
trajectory-control pair (z,u) such that |u — @|p10,7;m,) < €.

The Hamiltonian and the terminal Lagrange function are defined by

H(t,x,u,p) = <pa f(t7x7u)>H7 l(x,a,ﬁ) = Zajgj(x) + <6’ h(x»Hz’
=0

wherep€ H, a = (ag, a1, ..., ) € R and 8 € Hy. Set K := {z € H| gj(z) < 0}
for j =1,...,r. Clearly, for every x € 0K, we have g;(x) = 0.
Let (Z, @) be a local minimizer of problem (3) and assume

(H1) For all (z,u) € H x Hy, f(-,x,u) is Lebesque measurable, for all (t,z) €
[0,T] x H, f(t,x,-) is continuous. The maps f(t,-,-), g; (j =0,...,7) and h are
twice continuously Fréchet differentiable for a.e. t € [0,T]. Moreover,

I fe(ts 2 w) || + || ot 2 w) || + | fou(t 2 w) | + || fu(t 2 w) || + || fuu(t, 2, u)]| < C,
for all (t,z,u) € [0,T] x Hx U and
> i=0 (95,2 (@) + 119522 (@) + [ha(@) | + [[hea(2)]| < C, V2 € H,

where || - || refers to operator norms in the corresponding spaces.
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Then the first order necessary optimality condition is as follows: there exist
a = (g, a1,....,a,) € R and B € Ha, not vanishing simultaneously, satisfying

(4) a; =0 if j¢l={j=1,.r|z7T) €K}

and such that for the (mild) solution p € C([0,T]; H) of

(5)  —pu(t) = A™p(t) + Ha (L, Z(t), u(t), p(t)), t € [0,T), p(T) = lo(Z(T), v, B),
we have

(6) HECi;l(fﬁ(t)) Hu(ta j(t)v ﬂ(t),p(t))(/i) > 07 for a.e. t € [0, T]a

where H, and H, are the Fréchet derivatives of H with respect to x and u,
respectively and Cy(u(t)) is the Clarke tangent cone to U at @(t). Put

Az, 1) = {(o, B,p) R x Hyx C([0,T); H)| (v, B, p) # 0 and satisfies (4)—(6)} .

Denote by TH(i(t)) the adjacent tangent to U at a(t), see [1, Chapter 4], and
consider two linearizations of control system (1) along (Z,%). The first one is

() ye = Ay + fultly + fult]u(t), u(t) € TH(a(t), y(0) =0, u € L'(0,T; H),
where f,[t] = f.(¢,Z(t),a(t)) and fu[t] = fu(t,Z(t), @(t)). The second one is

®)  G:(t) = Ay(t) + fu[t]g(t) + v(t), v(t) €0 f(t,2(t),U) = f[t], §(0) =0,
where v : [0, 7] — H;j is measurable and f[t] = f(¢, Z(¢), u(t)).
The reachable set of (8) at time T is R = {§(T)|¢(-)is a trajectory of (8)}.

Clearly, RE is convex. Put = ([0, T); H) x L*(0,T; Hy).
To express second order necessary conditions we introduce the set C(Z, @) of all
critical pairs (y,u) € Z solving the linear system (7) such that

90,2 (Z(T)) (Y(T)) <0, he (T(T)) (y(T') = 0, gje ((T)) (y(T)) <0, Vj € I,
and for some dp > 0, ¢ € L?(0,T;R,) and for any § € [0, o] we have
dist(a(t) + su(t),U) < c(t)6* for a.e. t €[0,T).

The critical set C(Z,u) can be seen as the set of all the solutions to the strength-
ened linearized system (7) that satisfy the linearized final point constraints. It
can be shown that for any (y,u) € C(Z,u) we have go.(Z(T))(y(T)) = 0 and,
consequently, the word critical is inherited from the classical Calculus.

For any («, 8,p) € A(Z, ), u € U and t € [0,T], define

T(u(t), p(t)) = inf { Ha[t)(0)|v € T5 @), u(t) }

p(t
where H,[t] = H(t, (L), u(t), p(t)), and, by convention, inf ) = +oo.
With every (y7 u) € Z we associate the second order quadratic form:

2y, u, @, 5,p) = by (3T ) B) W(T), y(T))
+Jo (Max[tl(y(®), y(0) + 2Hau[tl(y(t), u(®)) + Huult] (u(t), u(t)) dt,

where Hyy[t] = Hao(t, Z(2), ﬂ(t),p( )) and Hyy[t], Huwlt] are similarly defined.
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Fix a trajectory-control pair (y,u) € Z of (7) and let T[l}(z) (u(t), u(t)) stands for
the second order adjacent tangent to U at (@(t), u(t)), see [1, Chapter 4]. Consider
the following second order linearization of control system (1) along (z,a), (y,u)

wi(t) = Aw(t) + folt]w ()+fu[t]v() %[f [ty (t), y(t))
9) + 2 fou[t](y(1), u(t)) + fuult](u(t), u(t))],
w(0) =0, ve LY0,T; Hy), v(t) € T (a(t), u(t)) a

where foz[t] = fou(t,Z(t), u(t)) and fyu[t], fuu[t] are similarly defined. Denote by
RP®) the reachable set at time T of (9). It is well known that its closure, cl R*(2)
is convex. Define the convex sets

0= {0.¢ HI1(a(T)0+ e (2(T) (D). 0(T) =0},

(:):{0—/{|9€@, /fécl(RL(Q))}.

and assume that

(H2) There exists a closed subspace H of H such that © C H and intﬁ(:j # 0.

Theorem 1. Assume (H1) and let (T, @) be a local minimizer of (3) satisfying the
two surjectivity assumptions: hy (2(T)) (H) = Hy and 0 € int clhy (Z(T)) (R*).
Let (y,u) € C(Z,u) be such that (H2) holds and there exists a selection v(t) €
T;}(Q)(ﬂ(t),u(t)) for a.e. t € [0,T) such that v € L?(0,T; Hy). Then for some
(v, B,p) € A(Z, 1) such that aj = 0 whenever g; .(Z(T))(y(T)) < 0, the function
Y (u,p) is integrable and

T
%Q(y,u,a,ﬁ,p)Jr/o T (u(t),p(t))dt > 0.

The proof of this result is based on a metric inverse mapping theorem that
implies a relevant second order variational inequality. Then a separation theorem
is applied. Assumption (H2) is crucial to separate two convex sets in the infinite
dimensional Hilbert space H. Details can be found in [2], where we also discuss
how some assumptions can be relaxed using a regularizing effect of the semigroup
and provide examples of application to a parabolic and a hyperbolic controlled
PDEs. In the difference with the previous literature, we do not make reduction
of the optimal control problem to an abstract mathematical programming one.
Instead we linearize twice the control system and the constraints in the original
state space. This allows us to work with merely measurable controls without any
additional structure by the methods of variational analysis. Our approach yields
also sufficient conditions for the normality of multipliers, that is for having ag > 0.

Question of strengthening of the above second order condition to become suffi-
cient for local minima is open.
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First and Second Order Optimality Conditions for the Optimal
Control of Fokker—Planck Equations

FREDI TROLTZSCH
(joint work with M. Soledad Aronna)

We consider the optimal control of the Fokker-Planck equation with associated
initial and boundary conditions

Op(z,t) — vAp(z,t) — div(p(z,t) Blu(®)](z)) = 0 in @,
(1) p(z,0) = po(z)  inQ,
(VVp(x,t) n p(x,t)B[u(t)](a:)) n(z) = 0 on %,

where v > 0, pg € L*(Q2), Q C R" is a bounded domain with Lipschitz boundary
I, and weset ¥ :=Tx (0,7), Q := 2 x (0,7). The control is u = (u1,...,uy) €
L>(0,T;R™), and the function B: R™ x QO — R is defined by
Blu](z) := c(z) + b(z) @ u,

with ¢,b € L*°(Q; R™) being fixed. In (1), the differential operators A and div act
only with respect to the spatial coordinate x.

Given pg € L*(Q), pa € L3(Q), B> 0,7 > 0, Umin < Umaz, @g > 0, ag > 0,
we discuss the (slightly simplified compared with [1]) optimal control problem

T
. a aQ
min J(pu) =52 [ 10(0) = po(0) st + SE0(T) = pallo

n T
+3l+8Y [ wiar
=1

subject to the Fokker-Planck equation (1) and to the control constraints
U € Upg = {u € L0, T;R™) : ™™ < u(t) < u™™*  a.e. in [0,7T]}

with inequalities defined componentwise.

Slightly extending an existence and uniqueness result of [2], we have that for
all w € L%*(0,T;R") equation (1) has a unique solution p € W(0,T). By the
implicit function theorem, we are able to show that the control-to-state mapping
G : L*(0,T;R") — W(0,T), G : u s pis of class C*°. This is due to the bilinear
appearance of p and v and to the boundedness of b and c. The existence of at
least one optimal control u with associated state p is an easy consequence.

Since the reduced objective functional F(u) = J(G(u),u) is of class C*°, too,
the first-order necessary optimality condition F'(@)(u — @) > 0 Vu € Uyq follows
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immediately. Here, the control v does not appear in an explicit form. Therefore,
the adjoint equation

—Owp —vAp+ Blu]-Vp = ag(p—pg) in Q,
2) pT) = ao(p(T)~pa) inQ,
Opp = 0 on

is considered, where p is the solution of (1) associated with w.

We can show that a unique weak solution p € W(0,T) exists provided that u
belongs to L°°(0,T;R"). For u € L?(0,T;R"), we can only show a unique weak
solution p € W;’O(Q). If @ € U,q is an optimal solution with associated state p,
then the first-order necessary optimality condition can be formulated in the form

T —
(3) /0 B(t) - (u(t) —a(t))dt >0 Vu € Una,

where ®(t) = (®1(t),...,Pu(t) ", Pilt) == — [, p(t)bi%ﬁ dr + yu;(t) + B,i =
1,...,n, and the adjoint state p is the solution of (2) associated with p.

To set up second-order sufficient optimality conditions, we need higher regu-
larity of p, namely p € C([0,T]; H}(Q2)). To this end, we require the following
conditions on the functions b and ¢ in B, unless ag = 0. These assumptions are
adopted from [2].

Assumption (A) The function b belongs to W (Q; R™) and it holds
(b(z) ®u) -n(xz) =0 for allueR" and a.a. v €T.

The function ¢ has a potential —V € W2>(Q) so that ¢ = VV or c belongs to
WL (Q,R"™) and satisfies the orthogonality relation c(x) - n(z) = 0 a.e. onT.
The initial and the desired distributions py and pq belong to H ().

Under (A), we have that p € C([0,7]; H'(2)). To set up second-order sufficient
optimality conditions, we invoke Thm. 2.2 of [3] and confirm the assumptions
therein. Here, the higher regularity of p is essential. In the result below, C(@)
denotes the critical cone, cf. [3], and B2(a) is the closed ball of L?(0,T; R™) with
radius € centered at .

Theorem([1]) Let @ satisfy, along with the associated state p and the adjoint state
D defined by (2), the necessary optimality condition (3) and

F'"(@)v? >0 for allv € C(u)\{0}.

Assume that v > 0. If ag =0 or (A) is satisfied, then there exist € > 0 and § > 0
such that the quadratic growth condition

0
F(u) > J(a) + EHu — |2 for all u € Upq N B2 (a)
holds. Therefore, i is locally optimal in the sense of L*(0,T;R™).

With z := G’ (@)v, the second-order derivative F”(#)v? is given by

F‘”('L_l,)'l}2 = /‘/Q [0[@22 —2Vp- (2b® U):| dxdt + ’YHU”%?(O,T;R“) + aq A Z(T)de
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Optimal Feedback Stabilization via Deep Neural Network
Approximation

DANIEL WALTER
(joint work with Karl Kunisch)

In this talk we focus on stabilization problems of the form

]‘ o 2 2
: / (IQuI + Blu®)?) di

o , inf 5
(P,B ) u€L2(0,00;R™),y
st. y=f(y)+ Bu, y(0)=yo,

where f describes the nonlinear dynamics, B € R™*™ is the control operator,
Q € R™ ™ is positive semi-definite, 5 > 0. The initial condition yq is contained in
a given compact set Yy C R™. Our interest lies in optimal feedback controls i.e.
control inputs that are constructed as a function of the state variable at every time
point ¢t. More in detail we are looking for an optimal feedback law F*: R™ — R™
such that:

e For every yg € Y there is a solution y* to

y=[fy)+BF (y), y(0) = yo.

e For every yo € Yp, the pair (y*, F*(y*)) is a minimizer to (Pgo).
Constructing an optimal feedback F* is closely related to the computation to
the optimal value function V(yo) = inf (P§°) which satisfies a Hamilton-Jacobi-
Bellman equation, a hyperbolic system whose dimension is that of the state space.
Once available, the optimal control to (P§°) can be expressed in feedback form as
u*(t) = —BTVV(y*(t)). Following the HJB approach one is inevitably faced with
the curse of dimensionality: 1If M degrees of freedom are used to discretize the HJB
equation in each of the spatial directions, then this results in a discrete system with
M™ degrees of freedom. Except for small dimensions n of the state equation this
is unfeasible and alternatives must be sought. In this paper we propose to replace
the control u in (P§°) by the closed loop expression Fy(y) where F denotes a
deep neural network described by a finite dimensional parameter 6. Subsequently,
a feedback law is determined from solving

5 [ (QuOP +5IF o))

st. y=f(y)+BFg(y), y(0)=ryo,

(PYO)
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It can be expected that the effectiveness of such a procedure depends on the
location of the orbit O = {y(t;yo) : t € (0,00)} within the state space R™. To
accommodate the case that O does not ‘cover’ the state-space sufficiently well,
we propose to look at the ensemble of orbits departing from the compact set Y
of initial conditions and reformulate the problem accordingly. For this purpose
we introduce a probability measure p on Yy describing a “training set” of initial
conditions and replace (Py,) by

inf % /yo /000 (1Qy(t:yo)* + BIF (y(tyo))[*) dtdp

s.t. y(yo) = f(y(yo)) + BFF (y(v0)),  y(0) = yo,

(P)

Here y is to be understood as an ensemble of state variables which assigns to
every yo in the support of p the solution of the closed loop state equation. Our
work gives mathematical rigor to this formulation. This includes existence results
for optimal neural network based feedback laws as well as the derivation of first
order sufficient optimality conditions. Moreover we also address the convergence of
feedback laws obtained as the networks get wider and deeper. Several numerical
examples illustrate the practical applicability of our learning approach. These
range from highly unstable low dimensional systems to extremely high dimensional
examples stemming from the discretization of PDE systems. The approach itself
is highly flexible in the sense that it directly allows to include control and/or state
constraints into the problem as well as constraints on the feedback function itself,
see e.g. [2].

In summary, on the one hand, the results presented in this talk show the great
potential and success of learning feedback laws for the stabilization of unstable
nonlinear systems. On the other hand, they also reveal open questions which
stimulates further research. Amongst other things, this encompasses the develop-
ment of fast and reliable solution methods as well as the extension of our approach
to PDE systems.
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Semidiscrete Approximation and Error Estimates for Feedback Gains
Stabilizing Parabolic Systems - Application to the
Navier—Stokes Equations

JEAN-PIERRE RAYMOND
(joint work with Mehdi Badra)

We consider pairs (A, B) of operators, and approximate pairs (Ay,, By,) for h > 0,
where (A, D(A)) is the infinitesimal generator of an analytic semigroup on a Hilbert
space Z and B is an unbounded control operator, and (Ap, D(4y)) is the infini-
tesimal generator of an analytic semigroup on a Hilbert space Z,. But Zj, is not
a subspace of Z. Thus we have to deal with nonconform approximations. Under
some approximation assumptions satisfied by the pairs (A, B) and (Ap, By), we
prove that feedback laws stabilizing reduced order models for the system (A, By,),
based on spectral projections, also stabilize the pair (A, B).

We apply these results to the semidiscrete approximation, by a finite element
method, of the linearized Navier-Stokes equations with a Dirichlet boundary con-
trol. In that case, feedback laws stabilizing reduced order models for the semidis-
crete approximation of the linearized Navier-Stokes equations, also stabilizes the
linearized Navier-Stokes equations, and locally the Navier-Stokes equations.

Convergence rates of semidiscrete approximations by finite element methods of
feedback gains for parabolic equations and distributed controls have been obtained
in [3]. These results have been extended to boundary controls in [5] and [4]. But
in all these papers only conforming finite element methods are considered.

Here, because of the divergence condition in the Oseen system, it is natural to
consider nonconforming finite element methods. In [1], we extend the results of
[3], [5], and [4] to nonconforming finite element methods both in the case of either
a distributed control or a boundary control.

In [2], to stabilize the Oseen system, we study feedback laws constructed by
stabilizing unstable invariant subsets of the Oseen system. We prove convergence
rates in that case too, which are better than those in [1] where we do not use
reduced order models based on spectral projections.
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A Primal-Dual Algorithm for Large-Scale Risk Minimization
Drew P. KOURI
(joint work with Thomas M. Surowiec)

Many practical applications require the optimization of partial differential equa-
tions (PDEs) with uncertain inputs such as unknown problem data, random op-
erating conditions, and unverifiable modeling assumptions. In this work, we for-
mulate these problems as stochastic optimization problems and seek to minimize
a measure of risk associated with a given system output. For many popular risk
models, the resulting risk-averse objective function is not differentiable, signifi-
cantly complicating the numerical solution of the optimization problem. Unfortu-
nately, methods for nonsmooth optimization are limited by slow (i.e., sublinear)
convergence rates and therefore are often intractable for problems in which the
objective function and its derivatives are expensive to evaluate. To address this
challenge, we introduce a primal-dual algorithm for solving large-scale nonsmooth
risk-averse optimization problems. At each iteration of the algorithm, we ap-
proximately solve a smooth optimization problem using, e.g., a rapidly-converging
Newton-type method.

Let Z be a reflexive Banach space and let (2, F,P) be a probability space, where
Q) denotes the set of outcomes, F C 2% is a o-algebra of events, and P : F — [0, 1]
is a probability measure. We consider optimization problems with the form
(1) min R(FE) +p(2)
where Z,q C Z is a nonempty, closed and convex set of admissible optimization
variables, F : Z — L?(Q, F,P) is a random loss function, p : Z — R is a deter-
ministic loss functional, and R : L?(Q, F,P) — R is a risk functional. We make
the following basic assumptions on the risk functional: R is convex, positively
homogeneous and satisfies the monotonicity condition

VX, X' e L*(Q,F,P) with X <X as. = R(X)<RX).
Under these assumptions, the Fenchel-Moreau Theorem [2] ensures that

(2) R(X)=sup E[#X] where 2:=09R(0)C {0¢c L*(Q,F,P)[6>0 as.}.
feA

Here, E[Y'] denotes the expected value of the random variable Y and 9R(0) denotes
the convex subdifferential of R at 0. Substituting (2) into the optimization problem
(1) results in the min-max problem
(3) min sup {£(z,0) :=E[0F(2)] + p(2)}.
2€Zad e

The functional £(z, 9) in (3) resembles the Lagrangian functional from nonlinear
programming. With this as motivation, we define the augmented Lagrangian
functional as

0 L(z, A ) = max {E(z, 0) - L[\ - 9)2]}

=0 2r
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forz € Z, A € L*(Q, F,P) and r > 0. Applying results from convex and variational
analysis, one can show that L(z, A, r) is continuously Fréchet differentiable with
respect to z and A as long as o and F are. In this case, the partial derivative of
L(z, A, r) with respect to z is given by

Li(z,\ 1) = ¢'(2) + E[Pu(rF(2) + N F'(2)],
where Py denotes the metric projection onto the convex set 2 [1, 3]. Based on

these properties of L, we define the primal-dual risk minimization algorithm as
the following generalization of the classical method of multipliers.

Algorithm 1 Primal-Dual Risk Minimization

Initialize: Given zg € Zaq, 1o > 0 and Ay € 2.

While(“Not Converged”)
(1) Compute zx11 € Zaq that approximately minimizes L(-, Ag, rg)-
(2) Set Agr1 = Po(rpF(zr+1) + Ag)-
(3) Update rg41.

End While

If the iterates zg41 of Algorithm 1 are eg-minimizers of L(-, A\, 7x), i.e.,

L(Zk+1,)\k,7“k) — é%f L(z,)\k,rk) < €L
2€Zad

for e > 0, then any weak accumulation point of {z;} is an e-minimizer of (1) [4,
Thm. 1] with e given by

K2

* + 6*’

r
where K > 0 is the Lipschitz modulus of R at 0, v* > 0 is the limit of {ry}
(possibly 4+00) and €* > 0 is the limit of {e;} (possibly 0). If {ex} satisfies the
additional conditions

€ =

2
o = M

o0
= with e <00, Nk >0,
27’]@ kZ:O

then the entire sequence of dual variables {\;} converges to a maximizer of the
dual problem

(5) max v(f) where v(0):= Zér%fad £(z,0)

[4, Thm. 2]. This result exploits the relationship between Algorithm 1 and the
proximal point method [5] applied to solve the dual problem. Aside from convex
problems, we typically cannot ensure that zx11 is an ex-minimizer. Consequently,
these results are of little practical use for general PDE-constrained optimization
problems. For nonconvex problems, we often can only ensure that the iterates
Zk+1 are eg-stationary points of L(-, Mg, 7). That is, if p and F are continuously
Fréchet differentiable, then

(0 (z41) + EXps1 F' (zr41))s 2 — 2k41) 20,2 > —€il|2 — 2kg1llz V2 € Zaa.
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Under additional assumptions on the continuity of @’ and F’, we can prove that
if zx11 are eg-stationary points with €, — 0 and rry — oo, then any weak
accumulation point of {zx} is a stationary point of (1) [4, Thm. 3].

To demonstrate the primal-dual risk minimization algorithm, we apply Algo-
rithm 1 to two convex (elliptic 1d/2d) and one nonconvex (burgers) PDE-
constrained optimization problems. We investigate the numerical performance for
five common risk measures: mean plus semi-deviation (MPSD), mean plus semi-
deviation from a target (MPSDFT), a convex combination of the expectation and
the conditional value-at-risk (CVaR), the second-order higher moment coherent risk
measure (HMCR), and the buffered probability (bPOE). In Table 1, we compare Al-
gorithm 1 with the nonsmooth, nonconvex bundle method described in [6].

PD Algorithm Bundle Speed
example risk iter nfval ngrad subiter | iter neval Up
MPSD 7 14 14 7 31 208 | 14.86x
MPSDFT 7 11 11 4 24 206 | 18.73x
elliptic 1d | CVAR 7 23 23 16 39 88 | 3.83x
HMCR 6 16 15 10 40 104 | 6.50x
BPOE 11 49 36 38| -—- - -
MPSD 5 10 10 5 -—- -—= -—=
MPSDFT 6 13 13 T -——- - -
elliptic 2d | CVAR 9 35 30 26 | -—- - -
HMCR 7 25 23 18| --- -—= -—=
BPOE 9 72 41 63 | --—- - -
MPSD 12 31 26 19 51 176 | 5.68x
MPSDFT 9 17 17 8 53 123 | 7.24x
burgers CVAR 8 46 44 38 69 197 | 4.28x
HMCR 8 79 73 71 84 182 | 2.17x
BPOE 9 52 42 43 | --- - -

TABLE 1. Numerical comparison of the primal-dual risk mini-
mization algorithm with a nonsmooth, nonconvex bundle method.

We see that Algorithm 1 requires between 2 and 18 times fewer function and gradi-
ent evaluations than the bundle method. In Table 2, we compare Algorithm 1 with
epi-regularization [3]. For consistency, we update the epi-regularization parameter
in a similar fashion to r. In particular, the epireg algorithm in Table 2 is simply
Algorithm 1 with A\g set to zero for all k, which is analogous to a quadratic penalty
method. Again, we see that Algorithm 1 outperforms the epi-regularization ap-
proach. For a thorough discussion of these results see [4].
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example algo iter nfval ngrad nhess subiter
L pdrisk 7 23 23 90 16
elliptic 1d | . reg 8 33 29 99 25
. pdrisk 9 35 30 138 26
elliptic 2d | . eg| 10 80 45 296 70
ureors pdrisk 8 46 a2 128 38
g epireg 8 72 63 182 64

TABLE 2. Numerical comparison of the primal-dual risk mini-
mization algorithm with epi-regularization.
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Optimal Control of a Semilinear Critical Wave Equation
HANNES MEINLSCHMIDT
(joint work with Karl Kunisch)

This talk is based on [1]. We consider the optimal control problem

min  4(y,u)
Yyu

(OCP) (S uady

t.
® { y is the solution to (CWE),
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where the underlying partial differential equation is the H!-critical defocusing wave
equation on a bounded domain Q C R3 with smooth boundary over a finite interval
(0, T), complemented with homogeneous Dirichlet boundary conditions and with
distributed control, in the prototype form

0Py — Ay +y° =u in (0,T) x £,
(CWE) y=20 on (0,T) x 09,
(¥(0),2y(0)) = (yo,y1) in Q.

We suppose that (yo,y1) € € = H}(Q) x L%(Q) which is the natural energy
space, and that u € L(0,T;L2(Q)). The particular feature of this critical wave
equation is that, as the nomenclature suggests, its power nonlinearity is exactly
the extreme case for which one has unconditional well-posedness and eventually
globally-in-time existence. The performance index ¢ for (CWE) is chosen to be

Uy, uw) == ly(T) = vallf2q) + 510y (M IE-10) + FYlTac0 1112000
+ BullullLo, iz + Ellullfzo 1)

for yq € L2(Q2). The objective in (OCP) is thus to find a control u € Uyq such that
the associated solution to (CWE) y(T) at time T matches a given profile y4 as well
as possible in the L2-sense while simultaneously minimizing the (scaled) velocity
Oyy(T) at time T. While the L2(0, T; L2(92)) term in ¢ describes a quadratic control
cost, the L1(0, T; L2(2)) term is known to be sparsity enhancing. We also consider
an L4(0, T; L'2(Q2)) regularization for the state y which is used in the proof of
existence of a globally optimal solution for (OCP). The constraint set Uaq is of
the form

Und = {v: (0,T) = L2(Q): [o(t)|12() < w(t) faa. t € (0, T)}

for a measurable function w which is nonnegative almost everywhere on (0,T),
so spatially integrated pointwise-in-time constraints of Trust-Region type. To the
best of our knowledge, this kind of constraint has not been investigated yet in an
evolution equation setting.

Basing on recent papers by wave equation experts ([2, 3]), we show that for
every control u € L1(0, T; L2(12)), there exists a unique (mild) solution y for which
(y,0:y) € C([0,T];€) and y € L5(0, T; L1%(€2)). The additional integrability for y
is exactly such that y° € L*(0, T;L?(2)). Together with Strichartz estimates as
in [3], this regularity is an important ingredient in local wellposedness for (CWE).
Global-in-time existence is proven by localizing the wave equation to backwards
light cones; then a nontrivial L8-nonconcentration property for y allows to boot-
strap boundedness in L3(0, T; L1%(Q2)) on these light cones, from which a contin-
uation argument yields global-in-time existence. We consider this the first main
result of our work.

We moreover obtain existence of globally optimal solutions to (OCP). Since
mild solutions are also weak ones, the proof follows the standard reasoning from
the calculus of variations; however, as mentioned above, due to the critical power
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nonlinearity, we can only show that the limit state is unique if we admit the state
regularization in the objective, i.e., if v > 0 in /.

Finally, we also consider optimality conditions. For first order necessary ones,
we combine smoothness of the control-to-state mapping u +— y with the theory
established in [4] for j(u) := ||u||L1(0,T;1.2(0))—Which is nonsmooth—to obtain a
bounded Lagrange multiplier f associated to the constraint given by U,q for every
locally optimal control @ € Uyg.

The second main result(s) are then second-order optimality conditions of both
necessary and sufficient type. Here, we deal with both nonsmoothness of j and
with the nonzero curvature of the Trust-Region type constraint given by Us,q.
For the second-order necessary conditions, this necessitates to carefully combine
Taylor expansion for j (away from nonsmoothness points) with a nonlinear path
of controls Uuq > u, — 4. From there, we obtain sufficient conditions in the sense
that if £/(#)(v,v) > 0 for all v # 0 from the critical cone, then the strong quadratic
growth property

Uy, u) + g”u — 320 11200y < Ay,u) for all u € Ung, [lu—llL20, 20 < €

holds true for appropriate 1, > 0. We point out that we need the fully quadratic
control regularization, i.e., 82 > 0 in £ here; the case $2 = 0 is an open problem.
The strong form of the quadratic growth property then allows to derive stability
estimates for (OCP) for controls satisfying the second-order sufficient condition.
Possible extensions of this work would concern the case of homogeneous Neu-
mann boundary conditions instead of Dirichlet ones, based on [5], and moreover,
much more involved, the case of boundary control instead of distributed one.
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Shape Optimization with Phase Fields and a W1*° —Descent Approach
MicHAEL HINZE

(joint work with Harald Garcke, Christian Kahle, and Andrew Lam (with
phasefield approach), Klaus Deckelnick and Philip Herbert
(with W% —descent))

We sketch two approaches for PDE constrained shape optimization of domains.
In the first approach we consider a phasefield method for fluid mechanic shape
optimization, where the shape of the sought domain is approximated by the zero
level set of a phasefield function. This turns the shape optimization problem into
a PDE constrained optimization problem where the phasefield enters as control
in the coeflicients of the PDE. The second approach uses the method of map-
pings, where we propose a new minimization approach using steepest descent in
the W — topology. The numerical example indicates that minimization in the
W1>°_ topology seems to be superior over the classical minimization in Hilbert
spaces, in particular when the optimal shape has sharp corners.

Diffuse interface approach. Let 2 C R™ denote an open bounded hold-all do-
main with Lipschitz-boundary. We assume an incompressible fluid inside £ C
and a non-permeable obstacle B = Q\ E. The velocity field u together with the
pressure field p satisfy the Navier—Stokes equations in F with prescribed boundary
data g € HY?(99) and volume force f € L?(Q2). Moreover, u = 0 on B. We iden-
tify E C Q with ¢ :=2xg —1 € BV (Q,{£1}). Then for any ¢ € BV (Q, {£1})
the set E¥ := {¢ = 1} is the corresponding Caccioppoli set describing the fluid
region. The shape optimization problem for those vector fields w and controls ¢
then reads

(P) min Jwpp) = [ mowp.gdo+ [ holupw)dDel + FDA(@)
Here, v, is the outer normal on T' := QN JE¥, and 3|Dy|(Q) = v [ ds is the
perimeter regularization, where Dy denotes the distributional derivative of ¢ and
represents a finite Radon measure concentrated on I" with | D] its total variation.
The functions hy(u, p, ¢) and hr(u,p, v,) contain mathematical expressions of the
physical quantities to be minimized, like drag, lift, hydrodynamic force, and/or
total potential power of the flow. The minimization problem (P) also may be
accompanied by further integral constraints on the state variables.

g=0

g=0

E
7

g=0 g=0

BV —approach (left) and phasefield relaxation (right)

g+0

LTTTT

Since this minimization problem may lack well-posedness and is formulated within
a complicated mathematical framework, we relax the sharp interface formulation
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through introducing a phasefield approximation ¢, of ¢ combined with a Darcy-
flow relaxation of the fluid flow and substitute all quantities related to ¢ in (P)
by according expressions with .. This leads to a mathematical setting where
v € HY(Q)N LX), |p] < 1and E. = {z € Q|p(z) = 1}, Bc = {z €
Q| pe(z) = =1}, and T'e = {z € Q||pe(z)| < 1} (diffuse interface) denote the
relaxed counterparts of F/, B and I, respectively. An important ingredient is the
relaxation of the perimeter regularization in (P) by the Ginzburg-Landau energy

associated to ¢, which is known to be I'—convergent to a multiple of the perimeter
[5], i.e.

1 :
6o = [ 51Vl + 2w ds ea [ ds

holds with some ¢y > 0 only depending on the free energy W. This free energy
could be chosen as logarithmic, double well, or double obstacle potential. The final
step consists in approximating the fluid equation by a porous medium approach

[2]. This is performed by introducing the interpolation function a.(p.) = @152

with @ Y 5. The final optimization problem then is of the form

1
min J(U,p, (Pe) ::/ hb(uapv QOF) dl‘—f—/ §hr(uap7 V@e) dx
Q Q

(uv‘/’e)

1 1
) + L [ S9al + T W o+ [ Sadpolul de
co Jo 2 € a2

subject to

ae(p)u+ (uV)u — pAu+Vp=0 inQ,
(NS) —divu=0 in{,
u=g on 0f,

complemented with additional constraints on the state v and/or the control ..
For ¢, = —1 the term «.(pe)u dominates in the momentum equation, which
corresponds to Darcy flow. The last term in the cost functional is added to further
enforce v = 0 on the obstacle for ¢ — 0. Problem (P) is a constrained control-
in-the-coefficient problem, for which one can prove e.g. existence of solutions and
establish first order necessary optimality conditions, see [3], where also a couple
of numerical examples can be found.

Shape optimization with W descent. Let Q2 C R" be a bounded and open
Lipschitz domain. Let

Qy :=Q+V(Q2), where V € Wl’oo(Rnan)y

so that for ||V|1,00 < 1 the transformed domain Qy is Lipschitz. Let J denote a
shape differentiable shape functional with DJ(€)[-] denoting its differential at €.
Our idea now consists in using W1 — steepest descent directions V* of J in a
shape optimization algorithm. Those directions are characterized as solutions to
the minimization problem

(A) V= arg min DJ(Q)[V].
{Vewbloo(R? R"),[|V 1,00 <1}
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Known practical approaches use Hilbert space methods, i.e. seek fields V* deter-
mined by

a(V*, W) = DJ(Q)[W] for all W € H'(R™)",
where a(-,-) denotes an appropriate inner product on H!(R"), see [1] for an ex-
tensive discussion. A mathematical framework for the solution of minimization
problems of type (As) is provided in e.g. [4].

Numerical example for a model problem: Set F(z1,z2) = 0 and z(z1,22) =
|1 + 22|+ |21 —22|. Let 0 < ¢y < 1 denote a given constant. For f € W1 (S!) let
2y denote the domain enclosed by the curve 0€)y := {y ER?:y=uaf(z), € Sl}.

We consider the shape optimization problem of finding a function f* € W := { fe
Whee(Sh) : [ f2 =m, f > co} which solves

ff=argmin J(f) := 1/ lup — z|*d,
Qyf

few 2

and where uy € H} () is the solution to

Vu-Vou = (Flg,,v) Vo€ Hj( ).

Qg
Since in the present example uy = 0 for all f € W and z is constant on the
2
boundary of the square Qp« := (—4, 4) with center 0 € R2, it can be

shown that (J'(f*),g) = 0 for all g € W'°(S') satisfying [, f*gdo, = 0, so
that Q- is a minimizer. We solve this minimization problem with the steep-
est descent algorithm initialized with € the unit circle corresponding to f = 1.
We employ the Armijo step size rule with slope factor 107® and use 1072 as
lower bound for the Armijo step size. After 185 iterations, the Lipschitz method
terminated, while the H'— method
was stopped after the maximum of 250
iterations. The picture on the right
shows a zoom on the right upper cor-
ners of the respective triangulated final
domains. As one can clearly see the
Lipschitz method yields significantly
better pronounced corners.
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First-Order Mean Field Games of Controls
LAURENT PFEIFFER
(joint work with P. Jameson Graber and Alan Mullenix)

INTRODUCTION

Mean field game (MFG) theory aims at describing Nash equilibria involving a
large number of agents, all optimizing their own dynamical system. Mathemati-
cally, MFGs take the form of a coupled system of PDEs, the Fokker-Planck and
the Hamilton-Jacobi-Bellman equations. It has been known, since the early de-
velopments of the theory by P.L. Lions and J.M. Lasry in 2006, that the coupled
system coincides with the optimality system associated with two convex PDE-
optimization problems in duality (under appropriate assumptions). Later this
observation allowed P. Cardaliaguet and co-authors to obtain existence results for
MFGs with congestion when the diffusion is degenerate in [1]. We follow this
methodology in [2] in order to prove the existence of a solution of a mean field
game involving some interaction term via the controls of the agents.

THE MFG SYSTEM AND ITS INTERPRETATION

We give in this extended abstract a very rough overview of that methodology. A
(slightly) simplified version of the mean field game that we have considered is the
following:

(1) —Ow+ H(Du(z,t)+ P(t)) = f(m(z,t)), (z,t)€Q,

(t4) Om+V-(vm) =0 (z,t) € Q,
(1) (iii) P(t) = V( fra v(z, t)m(z, t)dz) t 0,7},

(iv) wv(z,t) = —DH(Du(z,t) + P(t)) (z,t) € Q,

(v) m(z,0) =mo(z), u(z,T)=ur(x), r € T

Here Q := T¢ x [0,7]. The maps H: R? — R, f: R, — R, ¥: R? — R4,
mo: T — R, and uz: T? — R are given. The unknown variables are u: Q — R,
m:Q— R, v: Q—RI P:[0,T] — R™

The heuristic interpretation of the above system is the following. Each agent
controls the following dynamical system in T%:

dXt = Oétdt.

The associated cost (to be minimized) is given by

T
/ (H* (=) + (P(t), a0) + f(m(z, ) )t + ur(X7).
0
At optimality, the control « is in feedback form, i.e.
ar = v(X,t) = —DH(Du(X, t) + P(t)),

where u denotes the associated value function. Its evolution is given by the
Hamilton-Jacobi-Bellman equation (equation (z)). The variable m denotes the
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distribution of all agents with respect to their state variable. Its evolution is given
by the Fokker-Planck equation (). On top of the interaction induced by the con-
gestion term, we have an interaction through the variable P, defined in equation
(#i7) as the average value of the control variable. This interaction is classical in
Cournot equilibrium models.

The basic structural assumptions are the following:

e the Hamiltonian H is convex,
e the congestion function f is increasing,
e the price function V¥ is the gradient of some convex function ®.
The analysis requires additional growth assumptions on f, H, ¥ and regularity
assumptions on mg and up which we do not detail, see [2, Section 1.2].
After performing the Benamou-Brenier change of variables w = mwv, we obtain
the system:

(1) —Ow+ H(Du(z,t)+ P(t)) =0 (x,t) € Q,
(t4) Om+V-w=0 (z,t) € Q,
(2) (iii) P(t) = V( [ra w(z,t)dz) t€0,7],
(v) w(zx,t) =—-DH(Du(z,t) + P(t))m(z,t) (z,t) € Q,
(v) m(z,0)=mo(z), u(z,T)=ur(x), r €T

THE TWO PROBLEMS IN DUALITY
We define
Flm) = / £()do
0

if m > 0 and F(m) = 400 otherwise. Note that F' is convex.

Formally, the coupled system (2) is the optimality system associated with two
problems in duality. The first one is an optimal control problem of the Hamilton-
Jacobi-Bellman equation:

T
(3) (u%rll)fv) - /Td u(z,0)mo(z)dz —l—/o O (P(t))dt + //Q F*(vy(z,t))dzdt,

—0wu + H(Du(x,t) + P(t)) = v,

subject to: { uw(z,T) = ur(x).

The second one is an optimal control problem of the Fokker-Planck equation:

(4) inf //Q (H*(— w(x’t))m(x,t) +F(m(x,t)))dxdt
T

(m,w) m(x, t)

+/ <I></ w(x,t))dxdt—i—/ ur(x)m(z, T)dzx,
0 Td Td
8tm +V-w= 0,

bject to:
subjeck o { m(x,0) = mo(x).
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The main steps of analysis are the following.

e We formulate Problem (3) in spaces of (sufficiently) smooth functions, so
that the HJB equation can be understood in the classical sense.

e We prove that Problem (4) is the dual problem to (3). By the Fenchel-
Rockafellar duality theorem, it possesses a solution, which is shown in
Lemma 2.1 to lie in some LP-space, thanks to the growth assumption on
H and F. The Fokker-Planck equation is understood in the weak sense.

e It is unclear whether Problem (3) has a solution. One can instead prove
the existence of a solution to a relaxed variant in some LP space, see
Proposition 3.10. The relaxed problem is obtained by requiring that u is
(only) a weak subsolution to the HJB equation. The existence is obtained
with the direct method of the calculus of variations. Again, the growth
assumptions on the data functions play an important role to bound the
minimizing sequence.

o Using the solution to problem (4) and the solution to the relaxed variant of
(3), we construct a quadruplet (u,m, P,v) which is shown to be a solution
in a relaxed sense to the MFG system (1). See Theorem 4.3.

SOME OPEN ISSUES

Some classical issues from MFG theory are still open for problems of the form (1).
They concern in particular: (i) the asymptotic behavior when T — oo, (ii) the
numerical resolution in the second-order case, (iii) the convergence of the fictitious
play method, which would indicate that such equilibria are likely to arise.
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On Pre-Shape Calculus
VOLKER SCHULZ
(joint work with Daniel Luft)

Studies in shape optimization are motivated by a wide variety of applications in
practice. Current examples of application projects involving the author are the
determination of shapes for gas turbine blades aiming at robustness with respect
to low cycle fatigue (BMBF project GIVEN with partners Trier University, Uni-
versity of Wuppertal, DLR, Siemens AG, 2018-2021) or shape optimization for
mitigating coastal erosion (DFG-SPP 1962 project with partners Trier Univer-
sity and University Cheikh Anta Diop of Dakar, 2019-2022). The handling of the
computational mesh is of special importance in all applications. During geometry
changes, this mesh has to be carried along, which often leads to problems in the
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solution of partial differential equations on the changed meshes. In the publication
[2] it was shown, how by mesh deformations, which are based on the solution of the
elasticity equation, a shape-Hessian approximation of Steklov-Poincaré type and
an efficient and practicable mesh fitting in normal direction can be accomplished
at the same time.

However, almost all shape optimization studies, like [2], focus on geometry
changes in normal directions, which is quite natural since according to [3] shape
optimization can be interpreted as optimization on the manifold of shapes, where
shapes are considered as equivalence classes of embeddings that are invariant un-
der (tangential) reparametrizations. Nevertheless, all mesh deformations have
tangential effects on the surface mesh, which are thus systematically overlooked
and not controlled. Often, deformations form regions on the shape where tangen-
tial stretching or compression occurs. In these regions, one would actually like to
move surface mesh points during optimization in such a way that the mesh quality
of the deformed mesh does not suffer. So far, no methods are available for this
purpose. The publication [1], which treats this problem for the first time and is
the basis of this talk, goes one step behind [3] and opens the notion of a shape for
the explicit consideration of the parameterization of the shape and thus implicitly
also for the control of the surface mesh. The notion of pre-shape, which goes back
to [4], is used here as a shape concept motivating a pre-shape calculus based on
it, which includes the classical shape calculus as a special case. On the one hand,
this leads to an exciting new mathematical calculus with sophisticated theoretical
results. On the other hand, from a numerical point of view, degradation of the
tangential mesh quality, which is otherwise observed during shape optimization, is
prevented. This effect is supported by preliminary numerical examples. Further
research may involve the choice of proper shape cost functionals taking into ac-
count meshes, detailed analysis of the interplay between a pure shape functional
and a mesh oriented functional and details on the numerical implementation in a
practical environment.
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Optimality Conditions and Regularization for Convex Stochastic
Optimization with Almost Sure State Constraints

CAROLINE GEIERSBACH
(joint work with Michael Hintermiiller and Winnifried Wollner)

Let (Q, F,P) be a probability space. Consider a risk-neutral stochastic optimiza-
tion problem of the form
(P)

e . 2

minimize ro(s,w) — s))* ds dP(w +a/ x1(s) ds
oyimmize [ (@)~ () ds dP@) o [ oG
—V - (a(s,w)Vrza(s,w)) = z1(s) + g(s,w) on D x Q a.e. a.s.,
s.t. x2(s,w) =0 on 9D x Q a.e. a.s.,
xa(s,w) < Y(s,w) on D x Q ae. a.s.,

where yp € L?(D), a > 0, and ¢ € L*(£2, X5). This PDE-constrained problem
with uncertainty and “almost sure”’-type constraints on the state is new. One
can, however, understand this problem in the setting of two-stage stochastic op-
timization, where x; is the first stage and zo is the second stage. Such prob-
lems are well-understood, thanks to a series of papers by Rockafellar and Wets
[2, 3, 4, 5]. In these works, they consider second-stage variables belonging to the
space L>=(Q,R™). In [1], we revisit these papers to handle problems like (P"). It
turns out that in spite of the analytical difficulties, one can develop rich dual-
ity theory if the problem is convex. We work with the state space L>=(Q, X5),
where X5 is a real, reflexive, and separable Banach space with enough regularity
to satisfy a constraint qualification; for example, if D C R? is a bounded Lipschitz
domain, one needs Xy = Wy*(D), p > 2 for problem (P’).

Let X1, W, R be real, reflexive, and separable Banach spaces. Our results
concern optimality theory for the general class of problems

x;:(ml@2)?)1(91:%13&00(97)(2) {j(z) := Ji(z1) + E[Ja(z1, 22(+), )]}
(P) T € C,
s.t. e(r1, z2(w),w) =0 a.s.,

i(r1, 22 (w),w) <k 0 a.s.,

where e : X1 Xx Xo x Q — W and 7 : X1 x Xo x Q2 — R. Given a cone K C R,
the partial order <y is defined by r <x 0 & —r € K. Technical assumptions
providing measurability, integrability, and convexity can be found in [1].

The central tool in our analysis is the decomposition of elements from L (2, W)
and L*>(£, R) into absolutely continuous and singular terms. This motivates the
definition of a Lagrangian with paired spaces U := L*®(Q, W) x L*°(£, R) and
A= LYQ,W*) x LY(Q, R*):

(1) L(Z‘, /\) = j(.]?) =+ EK/\Ea e(xlvaaW»W*,W =+ </\7a i(xla xQ’w»R*,R]-

With Xo = {& = (z1,22) € X : 21 € C} and Ag := {A = (A, i) € A
Ai(w) € K% a.s.}, where K% denotes the dual cone to K, we seek saddle points
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to Lagrangian L, i.e., those (Z,\) € Xy x Ag satisfying
L(z,\) < L(z,)\) < L(z,\) V(z,)\) € Xo x Ag.

Saddle points are shown to exist under the following conditions (in addition to the
technical assumptions mentioned above):

(Cl) Fhq,y is bounded for all w in a neighborhood of zero or j is radially un-
bounded, meaning j(z) — oo as ||z||x — oo.
(C2) Strict feasibility: 0 € int domv, where v(u) := infyex j(z) if ¥ € Faq,y :=
{reX:11€C, e(x1,22(w),w) = ue(w) a.s.,i(z1, x2(w),w) <k u;(w) a.s.}
and v(u) = co otherwise, where u = (ue, u;) € U.
(C3) Relatively complete recourse: C € C = {x; € X; : Tz € L®(, X3) s.t.
e(z1,x2(w),w) =0 as.,i(zr, r2(w),w) <gx 0 as.}
Additionally, we prove that saddle points are equivalent to (necessary and suf-
ficient) Karush-Kuhn—Tucker (KKT) conditions for optimality. Notably, these
conditions include an additional multiplier from the implicit nonanticipativity con-
straint 1 (w) = x1; as a classical stochastic optimization problem, the first stage is
deterministic, i.e., not depending on w. An advantage of obtaining Lagrange mul-
tipliers that are integrable is that one can obtain strong (almost sure) conditions
for optimality, which is useful for computations, for instance via sample average
approximation.

In current work, we focus on relaxing condition (C3) with the observation that
the original example problem (P’) does not satisfy it except for trivial choices of 1.
Without this condition, we expect the presence of singular multipliers, motivating
the definition of an extended Lagrangian, where U paired with U*:

f’(‘xv A, /\o) = L(xa /\) + </\Za 6(.231, .132('), '))>(L°°(Q,W))*,L°°(Q,W)
+ (A7 (22, 22(4), ) (L= (2, R))*, L= (2, R)-

We again rely on the decomposition on the spaces L (), R) and L>°(Q, W), with
S. and §; denoting their respective subspaces of singular elements. With feasible
singular multipliers from the set

Ag={A =ML A) €S xSt A (y) > 0Vy € L®°(Q,R) 1y >k 0 as.},

we show that conditions (C1) and (C2) are enough to show the existence of saddle
points to extended Lagrangian L. Additionally, saddle points can be shown to be
equivalent to strongly formulated KKT conditions. In view of computations, we
propose solving a Moreau—Yosida regularized problem

minimize {j7(x) := j(z) + E[87(—i(z1, z2(-), )]}

z€X
(P’Y) r1 € C,
{e(xl,xg(w),w) =0 a.s.,

where 87(k) = infyeu{0x, (y) + Lk — yl|};} and R — H = H* — R*, where
H is a Hilbert space where the projection onto Ky := K N H can be cheaply
computed. Current work involves analyzing the consistency of Problem (P7) as

s.t.
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v — oo to the original Problem (P). Additionally, we are currently working on
obtaining optimality conditions for risk-averse objective functions.

FUTURE RESEARCH

These investigations will provide the theoretical framework to design algorithms.
Additionally, we are interested in applications to stochastic generalized Nash equi-
librium problems, where our theory can be applied in the search for variational
equilibria.
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Real Time Estimation of 3D Advection Diffusion Equations
JOHN ALLEN BURNS

(joint work with James Cheung, Michael Demetriou, Nikolaos Gatsonis,
Weiwei Hu, and Xin Tian)

Consider the convection diffusion equation

W % =V [KVz2(t,2))] - V- [Kz(t,z)] + g(z)n(t)

on a domain £ C R3. We assume there are p > 0 sensor platforms with locations
Bj € R3 that produces the sensed output

2) w) = [[[ w8zt 0)in + Bt
Q

¢;(x,y) is a kernel function. If (formally) ¢;(z,y) = d(x—y) is the delta “ function”
then we are assuming point sensors. Let

(3) B=1[6 P2 .. BP]T eR*® and y(t) = [y1(t) y2(t) ... yp(t)]T € RP
Define A : L2(Q) — L3(2) on D(A) = H?(Q) N H3(2) by
(4) Ap() =V - [KVe(-)] = V- [Kp()].
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Also, we define C(83) : L?(Q) — R? and G : R™ — L?(Q) by

(5) c@e0), = [[[ s spewis and Gy = g
Q

respectively. The corresponding distributed parameter formulation of the system
id defined by

(6) 2(t) = Az(t) + Gn(t)

(7) y(t) = C(B)=(t) + Ev(t)

We seek a (Luenberger) observer of the form

(8) Ze = Aze(t) + Gn(t) + F (y(t) — C(B) ze(1)),

where F = F : RP? — L?(Q) is a bounded linear operator. The goal is to find an
observer gain operator such that the error between the state z(¢) and the estimated
state z.(t) given by error(t) = ||z(t) — z.(t)||? is “asymptotically small” (see [4]).

Note that the Kalman filtering gain operator FX%(83) is a steady state Luen-
berger observe and given by

9) Fral(g) = 2(B)C(B)*
where ¥(8) satisfies the Riccati equation
(10) AZ(B) + Z(B)A" — Z(B)C(B)"C(B)X(B) + 99" = 0.

In this case once seeks the optimal location 3
of the mean square error

to minimize the expected value

(11) J(B) = {E(||2(t) — z(t, B)) || : B € 2,0 <t < 400}
and
(12) J(B°") = in J(8) = in Trace[S(8)).

There are (at least) two challenges to achieving real-time estimation:
1. Determining (computing) the observer gain F(3), and
2. Solving the estimation equation (8) in real-time.

In addition, we considered the case where the p sensor platforms (e.g., typically
an unmanned air vehicles - UAVs) so that the flight vehicles dynamics have form

(13) Bi(t) = f(B(t), Bi(t),u (1)),

where u; is the control input for the j*® UAV and ;(t) € R? is the position of
the UAV at time ¢. Including the flight dynamics requires two additional issues
be resolved. Namely:

3. Determining a (feedback) guidance law for the controllers, and
4. Solving the combined flight dynamic equations (13) and estimation equa-
tion (8) in real-time.
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In this talk we presented some new results where we show that by applying
high order hp - finite element methods one can develop accurate numerical approx-
imations of the Riccati equation (10) with low order finite dimensional systems.
Preliminary results can be found in the paper [1, 2]. Finally, employing a compu-
tational scheme based on a simple guidance law with a CFD algorithm developed
at WPI which uses a heterogeneous non-overlapping domain decomposition ex-
plicit finite volume method (NODDE-FVM-TVD-RK) one can achieve real time
computation of the estimator equations using hyper-threading on a small laptop.
This was achieved for one moving sensor platform with flight dynamics included.
The idea is to use a Luenberger observer near the sensor location and a “naive” ob-
server in the spatial regions outside a neighborhood of the UAV location. Details
of these results will appear in the paper [3].

Open Issues and Future Work

The results described above do not use the “optimal” Kalman filter gains FX(3).
Although this choice of observer gain allows for an easy parameterizations of the
optimal sensor location problem, it is not clear that in the problem with UAV
dynamics that the Kalman filter is the “best” choice to achieve good and practical
real time tracking. We are currently exploring other options that allow for joint
optimization of sensor locations and performance that is suitable for finite (short)
time intervals.

The domain decomposition method allows for the use of different observers on
different subdomians. This is critical in achieving real time estimation. One open
issue is whether or not one can combine adaptive hp - finite element methods to
obtain a sub-optimal Kalman filter near the moving sensor platform and a crude
but stabilizing Luenberger observer on the rest of the domain 2.

Finally, we note that the same methods used in the tracking problem above
should be applicable to “plume” source location problems. Further work is needed
to determine if these ideas can be employed for real time source location problems.
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An Interior Point Approach for a Class of Risk-Averse
PDE-Constrained Optimization Problems with Coherent
Risk Measures

THOMAS M. SUROWIEC
(joint work with Sebastian Garreis and Michael Ulbrich)

PDE-constrained stochastic optimization problems offer a natural, data-driven
modeling paradigm for a wide array of applications in engineering and the nat-
ural sciences. By taking cues from traditional stochastic programming and risk
management, there are many ways to obtain solutions that are resilient to out-
lier events. One popular technique is to model risk preferences by employing risk
measures in the objective functions or as part of the constraints. This leads to
so-called risk-averse optimization problems. However, due to the fact that many
PDE-constrained optimization problems are non-convex and a number of popular
risk measures non-smooth, this convenient modeling approach presents a number
of major theoretical, algorithmic, and numerical challenges.
On an abstract level, the problems of interest have the following structure:

inf RIT(SG)]+p(2).

Here, U and Z are the deterministic state and decision spaces, S(z,£) € U cor-
responds to the random field solution of the forward problem as a function of
the decision variable z € Z and realization of the random variable ¢ € Z C R¢,
J(w)(&) = J(u(§),§) is the state-dependent part of objective function, p: Z — R
is a cost or regularization term for decision z, Z,q C Z is a nonempty, closed, and
convex set and R : L}(Z, F,P) — R is a risk measure.

In the interest of finding a solution that performs well on average but also seeks
to minimize tail events, we take as R the following class of functionals

R[X] = (1 — ME[X] + ACVaRs[X] X € (0,1).

Here, E is the usual expectation, 8 € (0,1) is the “risk level”, and CVaRg[X]
is the well-known conditional value-at-risk (also known as average value-at-risk).
This is defined as the tail expectation of X beyond the -quantile, i.e.,

1
CVaR[X] := ﬁ //3 gl X]dor,

where ¢, [X] is the upper a-quantile of the random variable X. In this case, it is
possible to show that
R[X] = min E[t + W] over (t,z, W) € R x R" x L}(Z, F,P)
s.t.
W >a(X —t), i=1,2 P-a.s.

for 0 <a; <1< ag where \=1—a; € (0,1] and 3 = -2=L € (0,1). This would

az2—ai
indicate that the nonsmoothness of R in the objective can be removed from the

original problem by introducing the scalar variable ¢, slack W, and two inequality
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constraints. However, the inequality constraints may be not only non-convex and
high dimensional (d > 1), but they need to hold almost surely. In order to remedy
this problem, yet still enforce the constraints, we suggest a log-barrier approach.

The log-barrier approach allows us to eliminate the slack W and subsequently
obtain a new class of risk measures, which we call the “log-barrier risk measure”
R,. This has the general form of an optimized certainty equivalent

R, [X] = inf ¢ + E[o, (X ~ 0)]},

where 9, satisfies 9,(0) = 0, 9;,(0) = 1, and is strictly convex. The exact form
can be seen in [1]. A number of important properties can be demonstrated. For
example, as a mapping from L'(Z, F,P) to R, R, is finite-valued, closed, con-
vex, invariant on constants, risk-averse, translation equivariant, and monotonic.
As a mapping from LP(E, F,P) to R, R, is Hadamard differentiable for p = 1,
continuously Fréchet differentiable for 1 < p < oo, and the differential has the
form

Ry [X] = v, (X — (X)),

where t,(X) = argmin, E[t+9,(X —t)]. In addition, using several techniques from
the theory of variational convergence, it is possible to show that R, I'-converges
to R as pul 0.

These results can then be used to derive primal and primal-dual optimality
conditions for the abstract setting under additional smooth assumptions on the
objective J, control-to-state mapping S, and cost functionals . These conditions
are strongly reminiscent of the relaxed optimality conditions used in traditional
interior-point methods. Using these optimality conditions, we can build primal and
primal-dual interior point algorithms for the numerical solution of these challeng-
ing risk-averse optimization problems. A further consequence of the log-barrier
approach is the ability to take advantage of recent computational advances for
parametric PDEs using tensor-based decomposition methods. After justifying the
application of Newton’s method in a fully continuous setting, we conclude with a
numerical example that demonstrates the viability of the tensor-based approach.

Several open questions remain. For example, a fully intertwined numerical
method that links inexact calculation of the Newton steps, adaptive sampling
(where necessary), and hierarchical methods or adaptive finite elements with the
interior-point parameter p > 0 has yet to be developed.
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Optimal Feedback Law Recovery by Gradient-Augmented Sparse
Polynomial Regression

BEHZAD AZMI
(joint work with Dante Kalise and Karl Kunisch)

In this talk, we aim at approximating the solutions of Hamilton-Jacobi-Bellman
(HJB) equations associated with a class of optimal control problems based on
machine learning techniques. We are concerned with the optimal control problems
which consist of minimizing

T
(1) J(usto, z) = / (Cy(t) + Bllu()|2) dt.

to

subject to

@ {%y(t) = [y(®) +9l(O)u(t)  forte (t,T),

y(to) =z,

where > 0, 0 < tp < T, and the vectors y(¢f) € R™ and u(t) € R™ stand for
the state and the control, respectively. Further, we assume that the dynamics
f:R” -5 R" ¢g:R" — R" ™ and the running cost function £ : R” — R are
continuously differentiable.

Here, our objective is to approximate the value function V and the optimal
feedback control u* associated to the optimal control problem (1)-(2). The value
function V : [0,7] x R™ — R is defined by

(3) Vt,z) = Iqrtl(i.r)l{J(u;t,a:) subject to (2)}.

It is well-known [2] that the value function is the unique solution of the following
differential equation

(HIB)
OV (t,x) — 55 VV (t, ) g(2)g" (x)VV (t,2) + VV (¢, 2)" f(x) + £(x) = 0,
V(T,z) =0,
and the optimal feedback control u* can be obtained by
1
(4) u'(t,x) = —%gt(t,x)VV(tw)-

Due to the so-called “curse of dimensionality”, finding the direct solutions to
(HJB) is numerically intractable for high-dimensional optimal control problems.
To overcome the curse of dimensionality, we present a data-driven approach [1], in
which the solution of (HJB) is approximated by using orthogonal polynomials and
sampling strategies. Then, by using the approximated solution of (HJB), we can
derive the optimal feedback control for the corresponding optimal control problem.
This approach exploits the control theoretical link between (HJB) and first-order
optimality conditions via Pontryagin’s Maximum Principle and it is based on the
following main elements:
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(1) Generating a random dataset consisting of different state-value pairs,

(2) Hyperbolic cross approximation of the value function with respect to or-
thogonal polynomials including Chebyshev and Legendre polynomials,

(3) Sparse recovery via a (weighted LASSO) ¢; minimization decoder.

Numerical experiments are also given which reveal that enriching the dataset with
gradient information reduces the number of training samples and that the sparse
polynomial regression consistently yields a feedback law of lower complexity.

Future Research:

e The extension of the presented results in the context of time-dependent,
and second-order stochastic control problems.

e The extension of the presented results for infinite-horizon optimal control
problems by employing the receding horizon framework.
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Characterization of Generalized Derivatives for the Solution Operator
of the Bilateral Obstacle Problem and a Posteriori Error Estimators
for FE-Approximations of the Subgradient

STEFAN ULBRICH
(joint work with Anne-Therese Rauls)

We consider optimal control problems for bilateral obstacle problems where the
control appears in a possibly nonlinear source term. The non-differentiability of
the solution operator poses the main challenge for the application of efficient op-
timization methods and the characterization of Bouligand generalized derivatives
[2, 10] of the solution operator is essential for their theoretical foundation and nu-
merical realization. We derive specific elements of the Bouligand generalized dif-
ferential if the control operator satisfies natural monotonicity properties [6, 8. We
construct monotone sequences of controls where the solution operator is Gateaux
differentiable and characterize the corresponding limit element of the Bouligand
generalized differential as being the solution operator of a Dirichlet problem on a
quasi-open domain. In contrast to a similar recent result for the unilateral obstacle
problem [7], we have to deal with an opposite monotonic behavior of the active
and strictly active sets corresponding to the upper and lower obstacle. For the
reduced objective functional, we obtain two elements of the Clarke subdifferential
by using an adjoint formula. Note that in the unilateral case for the particular
case of the Laplace operator and distributed control in H~!(Q) the full Bouligand
generalized differential has been characterized in [9].
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Moreover, for the unilateral case we derive an a posteriori error estimator for
Clarke subgradients of the reduced objective functional that are computed using a
finite element discretization [6]. We address the inexactness that arises due to the
lack of knowledge on the correct active and strictly active sets, which are, by the
previous analysis, the sets determining the domain on which generalized derivatives
can be computed. We focus on the generalized derivative that is obtained on the
complement of the strictly active set. Using a nondegeneracy condition [5] that
is well known in the literature concerning the analysis of free boundaries [1, 4],
we can show that the strictly active set and the weakly active set have a suitable
structure. Now, based on an L*-error estimator for the discrete state, see for
example [5], we derive discrete approximations of the complement of the strictly
active set from the interior to use it as the domain for the discrete subgradient
and from the exterior to find an upper bound for the error. The error estimator
can be used to control the error in inexact bundle methods, see for example [3].
We illustrate our findings in a numerical example [6].
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