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Abstract. The workshop concentrated on various aspects of optimization
problems with systems of nonlinear partial differential equations (PDEs) or
variational inequalities (VIs) as constraints. In particular, discussions around
several keynote presentations in the areas of optimal control of nonlinear or
non-smooth systems, optimization problems with functional and discrete or
switching variables leading to mixed integer nonlinear PDE constrained op-
timization, shape and topology optimization, feedback control and stabiliza-
tion, multi-criteria problems and multiple optimization problems with equi-
librium constraints as well as versions of these problems under uncertainty
or stochastic influences, and the respectively associated numerical analysis as
well as design and analysis of solution algorithms were promoted. Moreover,
aspects of optimal control of data-driven PDE constraints (e.g. related to
machine learning) were addressed.
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Introduction by the Organizers

Nonlinear optimization problems with partial differential equation or variational
inequality constraints play an ever increasing role in the applied sciences and con-
front mathematical research with major new challenges. This is even more the case
if additional features such as data-driven model components or data uncertainty
become relevant. As a result, besides new mathematical models, novel analytical
as well as numerical tools need to be developed. Correspondingly, motivated by
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optimization problems for nonlinear partial differential equation (PDE) systems
which are related to practical applications, the aims of workshop were to gather a
group of international experts working at the forefront of research in the field, to
foster in-depth-discussions crystallizing around a number of keynote presentations
as well as discussion groups on focal topics that emerged during the workshop,
and to establish an (international) exchange forum for problems, techniques and
solutions, both analytically as well as numerically.

Following the above motivation, the workshop consisted of 13 keynote presen-
tations which were complemented by 17 short communications. Based on the
various discussions following some of these presentations, on Wednesday evening
of the workshop week a discussion forum on future topics and trends was sched-
uled. The latter focused in particular on the importance of machine-learning and
data-driven techniques in optimization and control with PDEs, uncertainty of
various constituents entering the problems under investigation, and major novel
application fields resulting in nonlinear and possibly non-smooth coupled systems.

In general, the scientific activity of the workshop developed around keynote
topics with associated keynote presentations, short communications, and the or-
ganization of discussion groups on emerging focal points. Within this context, the
following focus topics were discussed:

• Control of non-smooth or nonlocal operators. Nonsmooth PDEs of-
ten give rise to non-differentiable, but yet Hadamard differentiable control-
to-state mappings. For their tractable representations tools from set-
valued analysis need to be further advanced. Subsequently, this will yield
sharp stationarity conditions for characterizing solutions and the ansatz
for developing tailored numerical solution schemes. Concerning nonlin-
ear and nonlocal PDE operators in the constraints fractional operators
as well as nonlocal phase field models which may also involve nonsmooth
potentials were studied.

• Shape and topology optimization. This is an important branch of
optimal design subject to partial differential equations with many applica-
tions in engineering and recently also biomedical sciences. Specific topics
of interest are related to an efficient representation of the shape derivative,
the establishment of analytical tools for enabling a joint shape and topolog-
ical derivative, higher-order shape analysis, and problems with non-smooth
components, either in the cost term or through considering variational in-
equality (VI) type state systems. Also Riemannian manifold techniques
based on work by Michor and Mumford have been studied recently in the
community and appear very promising also from a computational perspec-
tive.

In the workshop we also discussed phase-field techniques which have
recently become a popular alternative to the above mentioned shape sen-
sitivity and manifold approaches. They allow for a combined shape and
topology optimization at the expense of operating with a diffuse (rather
than a sharp) interface, only. Technically, the phase field method contains
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a parameter dependent approximation of the interface perimeter and, in
the limit for vanishing parameter and under suitable assumption, the de-
rivative of the reduced objective of an associated minimization problem
can be related to the shape gradient. Correspondingly, analytical and nu-
merical aspects were highlighted in several presentations, along with spe-
cific applications, e.g., resulting from fluid structure interactions in marine
technologies.

• Feedback control and stabilization. Feedback stabilization and con-
trol are important topics including aeronautics and fluid flow, flow over
surfaces, injection of polymer solutions, mass transport through porous
walls. Some of the major research questions involve the type of feedback
law (linear vs. nonlinear), the proper choice of Lyapunov functionals, and
the treatment of Riccati equations. The envisaged problem class typically
requires to develop suitable solution techniques for ultra-high dimensional
Riccati equations upon discretization. Nonlinear feedback relies on the
Hamilton-Jacobi-Bellman equation. Its practical realization is impeded
by the curse of dimensionality. Recent advances for numerical realization
based on tensor analysis or approximate nonlinear closed feedback by deep
neural networks were addressed.

• Uncertainty and stochasticity. For several reasons (e.g. modeling
material or manufacturing imperfections, uncertain measurements or, in
market applications, uncertain demands) it is of interest to study prob-
lems with uncertain parameters giving rise to stochastic states, while even
assuming deterministic controls. Currently, the transfer to coupled or non-
smooth structures (such as VIs) needs to be accomplished and the efficient
numerical treatment is still a considerable challenge.

The main difficulty in the context of optimal control of (genuinely) sto-
chastic PDEs (SPDEs) consists in solving the adjoint problem, which is
a system of backward stochastic PDEs. Inverting time in stochastic dy-
namics is not straightforward and results in the introduction of additional
variables. Moreover, in many cases the classical variational theory for
backward SPDEs cannot be applied directly due to the presence of cou-
pling terms and of possibly nonlinear terms (such as potentials in phase
separation approaches) present in the equations.

• Data-driven PDE models. Due to the availability of vast amounts of
data it has recently become feasible to hybridize ab initio PDE models
with data-driven components in order to, e.g., cover wide ranges of appli-
cability of a model family. Very often tools from machine learning, e.g.,
relying on deep networks help to identify data-driven components. De-
spite several analytical questions, e.g., related to density considerations
in approximation through neural networks generated maps, optimization
theoretic aspects arise, e.g., related to the derivation of adjoint systems.
This novel research area may decisively shape the future of the entire field.
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• Nash games with PDEs. Not only in multi-criteria engineering design,
but also in markets with transport (of, e.g., energy carriers when con-
sidering models for the energy turnaround) the involved agents (controls)
may have conflicting objectives while accessing a common state system
(with possible state constraints). The appropriate mathematical formula-
tion leads to (generalized) Nash games with PDE constraints and possibly
under uncertainty. While there is some literature on the subject in finite
dimensions, this field is rather open when it comes to PDE constraints.

• Numerical analysis and algorithm design / analysis. As many of
the aforementioned problem classes are either entirely new or have been
studied from an analytical point of view only, the workshop also strives
for advancing the development of proper discretization and numerical so-
lution schemes. Exemplarily we mention that optimal control problems
for VIs cannot be solved by techniques known for the iterative solution
of optimal control problems for PDE-systems. This is related to the non-
smooth character of the VI problem and the constraint degeneracy which
prevents existence of Karush-Kuhn-Tucker-type multipliers. Another ex-
ample relates to sparse controls which gives rise to questions concerning
the discretization of measures and their efficient numerical treatment.
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Abstracts

Second Order Necessary Conditions for Optimal Control Problems of
Evolution Equations Involving Final Point Equality Constraints

Hélène Frankowska

(joint work with Qi Lü)

Let T > 0,ℜ denote the set of all reals, H, H2 be separable Hilbert spaces and
A : D(A) → H an infinitesimal generator of a C0-semigroup on H . For a separable
Banach space H1 and a nonempty bounded closed subset U ⊂ H1 put

U = {u : [0, T ] → U
∣∣ u(·) is Lebesgue measurable}.

Given x0 ∈ H and f : [0, T ]×H ×H1 → H , consider the control system:

(1) xt(t) = Ax(t) + f(t, x(t), u(t)), t ∈ (0, T ], x(0) = x0, u ∈ U ,
under the following final state constraints

(2) gj(x(T )) ≤ 0, j = 1, ..., r, h(x(T )) = 0,

where gj ∈ C(H ;ℜ) for j = 1, ..., r, h ∈ C(H ;H2) and solutions x(·) of (1) are
understood in the mild sense. Any trajectory-control pair (x, u) of (1) satisfying
(2) is called an admissible pair.

Let g0 ∈ C(H ;ℜ) be a given cost function. We state here a second order
necessary optimality condition for the Mayer type optimal control problem:

(3) minimize g0(x(T ))

over all admissible trajectories x(·). An admissible pair (x̄, ū) is called a local
minimizer of (3) if for some ε > 0, we have g0(x(T )) ≥ g0(x̄(T )) for each admissible
trajectory-control pair (x, u) such that |u− ū|L1(0,T ;H1) < ε.

The Hamiltonian and the terminal Lagrange function are defined by

H(t, x, u, p) = 〈p, f(t, x, u)〉H , l(x, α, β) =

r∑

j=0

αjgj(x) + 〈β, h(x)〉H2 ,

where p∈H , α = (α0, α1, ..., αr) ∈ ℜr+1
+ and β ∈ H2. SetKj := {x ∈ H | gj(x) ≤ 0}

for j = 1, ..., r. Clearly, for every x ∈ ∂Kj, we have gj(x) = 0.
Let (x̄, ū) be a local minimizer of problem (3) and assume

(H1) For all (x, u) ∈ H × H1, f(·, x, u) is Lebesgue measurable, for all (t, x) ∈
[0, T ]×H, f(t, x, ·) is continuous. The maps f(t, ·, ·), gj (j = 0, ..., r) and h are
twice continuously Fréchet differentiable for a.e. t ∈ [0, T ]. Moreover,

‖fx(t, x, u)‖+ ‖fxx(t, x, u)‖+ ‖fxu(t, x, u)‖+ ‖fu(t, x, u)‖ + ‖fuu(t, x, u)‖ ≤ C,

for all (t, x, u) ∈ [0, T ]×H × U and
∑r

j=0 (|gj,x(x)|H + ‖gj,xx(x)‖) + ‖hx(x)‖ + ‖hxx(x)‖ ≤ C, ∀ x ∈ H,

where ‖ · ‖ refers to operator norms in the corresponding spaces.
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Then the first order necessary optimality condition is as follows: there exist
α = (α0, α1, ..., αr) ∈ ℜr+1

+ and β ∈ H2, not vanishing simultaneously, satisfying

(4) αj = 0 if j /∈ Ig :=
{
j = 1, ..., r

∣∣ x̄(T ) ∈ ∂Kj

}

and such that for the (mild) solution p ∈ C([0, T ];H) of

(5) −pt(t) = A∗p(t) +Hx(t, x̄(t), ū(t), p(t)), t ∈ [0, T ), p(T ) = lx(x̄(T ), α, β),

we have

(6) inf
κ∈CU (ū(t))

Hu(t, x̄(t), ū(t), p(t))(κ) ≥ 0, for a.e. t ∈ [0, T ],

where Hx and Hu are the Fréchet derivatives of H with respect to x and u,
respectively and CU (ū(t)) is the Clarke tangent cone to U at ū(t). Put

Λ(x̄, ū) =
{
(α, β, p)∈ℜr+1

+ ×H2×C([0, T ];H)| (α, β, p) 6= 0 and satisfies (4)–(6)
}
.

Denote by T b
U (ū(t)) the adjacent tangent to U at ū(t), see [1, Chapter 4], and

consider two linearizations of control system (1) along (x̄, ū). The first one is

(7) yt = Ay + fx[t]y + fu[t]u(t), u(t) ∈ T b
U (ū(t)), y(0) = 0, u ∈ L1(0, T ;H1),

where fx[t] = fx(t, x̄(t), ū(t)) and fu[t] = fu(t, x̄(t), ū(t)). The second one is

(8) ỹt(t) = Aỹ(t) + fx[t]ỹ(t) + v(t), v(t) ∈ co f(t, x̄(t), U)− f [t], ỹ(0) = 0,

where v : [0, T ] → H1 is measurable and f [t] = f(t, x̄(t), ū(t)).
The reachable set of (8) at time T is RL = {ỹ(T ) | ỹ(·) is a trajectory of (8)} .

Clearly, RL is convex. Put Ξ = C([0, T ];H)× L2(0, T ;H1).
To express second order necessary conditions we introduce the set C(x̄, ū) of all

critical pairs (y, u) ∈ Ξ solving the linear system (7) such that

g0,x (x̄(T )) (y(T )) ≤ 0, hx (x̄(T )) (y(T )) = 0, gj,x (x̄(T )) (y(T )) ≤ 0, ∀ j ∈ Ig,

and for some δ0 > 0, c ∈ L2(0, T ;ℜ+) and for any δ ∈ [0, δ0] we have

dist(ū(t) + δu(t), U) ≤ c(t)δ2 for a.e. t ∈ [0, T ].

The critical set C(x̄, ū) can be seen as the set of all the solutions to the strength-
ened linearized system (7) that satisfy the linearized final point constraints. It
can be shown that for any (y, u) ∈ C(x̄, ū) we have g0,x

(
x̄(T )

)(
y(T )

)
= 0 and,

consequently, the word critical is inherited from the classical Calculus.
For any (α, β, p) ∈ Λ(x̄, ū), u ∈ U and t ∈ [0, T ], define

Υ(u(t), p(t)) = inf
{
Hu[t](v)| v ∈ T

b(2)
U (ū(t), u(t))

}
,

where Hu[t] = Hu(t, x̄(t), ū(t), p(t)), and, by convention, inf ∅ = +∞.
With every (y, u) ∈ Ξ we associate the second order quadratic form:

Ω(y, u, α, β, p) := lxx (x̄(T ), α, β) (y(T ), y(T ))

+
∫ T

0

(
Hxx[t]

(
y(t), y(t)

)
+ 2Hxu[t](y(t), u(t)) +Huu[t] (u(t), u(t)) dt,

where Hxx[t] = Hxx(t, x̄(t), ū(t), p(t)) and Hxu[t], Huu[t] are similarly defined.
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Fix a trajectory-control pair (y, u) ∈ Ξ of (7) and let T
b(2)
U (ū(t), u(t)) stands for

the second order adjacent tangent to U at (ū(t), u(t)), see [1, Chapter 4]. Consider
the following second order linearization of control system (1) along (x̄, ū), (y, u)

(9)





wt(t) = Aw(t) + fx[t]w(t) + fu[t]v(t) +
1
2

[
fxx[t](y(t), y(t))

+ 2fxu[t](y(t), u(t)) + fuu[t](u(t), u(t))
]
,

w(0) = 0, v ∈ L1(0, T ;H1), v(t) ∈ T
b(2)
U (ū(t), u(t)) a.e.,

where fxx[t] = fxx(t, x̄(t), ū(t)) and fxu[t], fuu[t] are similarly defined. Denote by
RL(2) the reachable set at time T of (9). It is well known that its closure, clRL(2),
is convex. Define the convex sets

Θ =

{
θ ∈ H |hx(x̄(T ))θ +

1

2
hxx (x̄(T )) (y(T ), y(T )) = 0

}
,

Θ̃ =
{
θ − κ | θ ∈ Θ, κ ∈ cl (RL(2))

}
.

and assume that

(H2) There exists a closed subspace H̃ of H such that Θ̃ ⊂ H̃ and intH̃Θ̃ 6= ∅.

Theorem 1. Assume (H1) and let (x̄, ū) be a local minimizer of (3) satisfying the
two surjectivity assumptions: hx (x̄(T )) (H) = H2 and 0 ∈ int clhx

(
x̄(T )

) (
RL
)
.

Let (y, u) ∈ C(x̄, ū) be such that (H2) holds and there exists a selection v(t) ∈
T

b(2)
U (ū(t), u(t)) for a.e. t ∈ [0, T ] such that v ∈ L2(0, T ;H1). Then for some

(α, β, p) ∈ Λ(x̄, ū) such that αj = 0 whenever gj,x(x̄(T ))(y(T )) < 0, the function
Υ(u, p) is integrable and

1

2
Ω(y, u, α, β, p) +

∫ T

0

Υ(u(t), p(t))dt ≥ 0.

The proof of this result is based on a metric inverse mapping theorem that
implies a relevant second order variational inequality. Then a separation theorem
is applied. Assumption (H2) is crucial to separate two convex sets in the infinite
dimensional Hilbert space H . Details can be found in [2], where we also discuss
how some assumptions can be relaxed using a regularizing effect of the semigroup
and provide examples of application to a parabolic and a hyperbolic controlled
PDEs. In the difference with the previous literature, we do not make reduction
of the optimal control problem to an abstract mathematical programming one.
Instead we linearize twice the control system and the constraints in the original
state space. This allows us to work with merely measurable controls without any
additional structure by the methods of variational analysis. Our approach yields
also sufficient conditions for the normality of multipliers, that is for having α0 > 0.

Question of strengthening of the above second order condition to become suffi-
cient for local minima is open.
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First and Second Order Optimality Conditions for the Optimal
Control of Fokker–Planck Equations

Fredi Tröltzsch

(joint work with M. Soledad Aronna)

We consider the optimal control of the Fokker-Planck equation with associated
initial and boundary conditions

(1)

∂tρ(x, t)− ν∆ρ(x, t) − div
(
ρ(x, t)B[u(t)](x)

)
= 0 in Q,

ρ(x, 0) = ρ0(x) in Ω,(
ν∇ρ(x, t) + ρ(x, t)B[u(t)](x)

)
· n(x) = 0 on Σ,

where ν > 0, ρ0 ∈ L2(Ω), Ω ⊂ Rn is a bounded domain with Lipschitz boundary
Γ, and we set Σ := Γ× (0, T ), Q := Ω× (0, T ). The control is u = (u1, . . . , un) ∈
L∞(0, T ;Rn), and the function B : Rn × Ω → Rn is defined by

B[u](x) := c(x) + b(x)⊗ u,

with c, b ∈ L∞(Ω;Rn) being fixed. In (1), the differential operators ∆ and div act
only with respect to the spatial coordinate x.

Given ρQ ∈ L2(Q), ρΩ ∈ L2(Ω), β ≥ 0, γ ≥ 0, umin < umax, αQ ≥ 0, αΩ ≥ 0,
we discuss the (slightly simplified compared with [1]) optimal control problem

min J(ρ, u) :=
αQ

2

∫ T

0

‖ρ(t)− ρQ(t)‖2L2(Ω)dt+
αΩ

2
‖ρ(T )− ρΩ‖2L2(Ω)

+
γ

2
‖u‖22 + β

n∑

i=1

∫ T

0

ui(t)dt,

subject to the Fokker-Planck equation (1) and to the control constraints

u ∈ Uad := {u ∈ L∞(0, T ;Rn) : umin ≤ u(t) ≤ umax a.e. in [0, T ]}
with inequalities defined componentwise.

Slightly extending an existence and uniqueness result of [2], we have that for
all u ∈ L2(0, T ;Rn) equation (1) has a unique solution ρ ∈ W (0, T ). By the
implicit function theorem, we are able to show that the control-to-state mapping
G : L2(0, T ;Rn) →W (0, T ), G : u 7→ ρ is of class C∞. This is due to the bilinear
appearance of ρ and u and to the boundedness of b and c. The existence of at
least one optimal control ū with associated state ρ̄ is an easy consequence.

Since the reduced objective functional F (u) = J(G(u), u) is of class C∞, too,
the first-order necessary optimality condition F ′(ū)(u − ū) ≥ 0 ∀u ∈ Uad follows
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immediately. Here, the control u does not appear in an explicit form. Therefore,
the adjoint equation

(2)
−∂tp− ν∆p+B[u] · ∇p = αQ(ρ− ρQ) in Q,

p(T ) = αΩ(ρ(T )− ρΩ) in Ω,
∂np = 0 on Σ

is considered, where ρ is the solution of (1) associated with u.
We can show that a unique weak solution p ∈ W (0, T ) exists provided that u

belongs to L∞(0, T ;Rn). For u ∈ L2(0, T ;Rn), we can only show a unique weak

solution p ∈ W 1,0
2 (Q). If ū ∈ Uad is an optimal solution with associated state ρ̄,

then the first-order necessary optimality condition can be formulated in the form

(3)

∫ T

0

Φ̄(t) · (u(t)− ū(t)) dt ≥ 0 ∀u ∈ Uad,

where Φ̄(t) = (Φ̄1(t), . . . , Φ̄n(t))
⊤, Φ̄i(t) := −

∫
Ω
ρ̄(t)bi

∂p̄(t)
∂xi

dx + γūi(t) + β, i =

1, . . . , n, and the adjoint state p̄ is the solution of (2) associated with ρ̄.
To set up second-order sufficient optimality conditions, we need higher regu-

larity of p̄, namely p̄ ∈ C([0, T ];H1(Ω)). To this end, we require the following
conditions on the functions b and c in B, unless αΩ = 0. These assumptions are
adopted from [2].

Assumption (A) The function b belongs to W 1,∞(Ω;Rn) and it holds
(
b(x)⊗ u

)
· n(x) = 0 for all u ∈ R

n and a.a. x ∈ Γ.

The function c has a potential −V ∈ W 2,∞(Ω) so that c = ∇V or c belongs to
W 1,∞(Ω,Rn) and satisfies the orthogonality relation c(x) · n(x) = 0 a.e. on Γ.
The initial and the desired distributions ρ0 and ρΩ belong to H1(Ω).

Under (A), we have that p̄ ∈ C([0, T ];H1(Ω)). To set up second-order sufficient
optimality conditions, we invoke Thm. 2.2 of [3] and confirm the assumptions
therein. Here, the higher regularity of p̄ is essential. In the result below, C(ū)
denotes the critical cone, cf. [3], and B2

ε (ū) is the closed ball of L2(0, T ;Rn) with
radius ε centered at ū.

Theorem([1]) Let ū satisfy, along with the associated state ρ̄ and the adjoint state
p̄ defined by (2), the necessary optimality condition (3) and

F ′′(ū)v2 > 0 for all v ∈ C(ū)\{0}.
Assume that γ > 0. If αΩ = 0 or (A) is satisfied, then there exist ε > 0 and δ > 0
such that the quadratic growth condition

F (u) ≥ J(ū) +
δ

2
‖u− ū‖22 for all u ∈ Uad ∩B2

ε (ū)

holds. Therefore, ū is locally optimal in the sense of L2(0, T ;Rn).

With z := G′(ū)v, the second-order derivative F ′′(ū)v2 is given by

F ′′(ū)v2 =

∫∫

Q

[
αQz

2 − 2∇p · (zb⊗ v)
]
dxdt+ γ‖v‖2L2(0,T ;Rn) + αΩ

∫

Ω

z(T )2dx.
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Optimal Feedback Stabilization via Deep Neural Network
Approximation

Daniel Walter

(joint work with Karl Kunisch)

In this talk we focus on stabilization problems of the form

(P y0

β )





inf
u∈L2(0,∞;Rm),y

1

2

∫ ∞

0

(
|Qy(t)|2 + β|u(t)|2

)
dt

s.t. ẏ = f(y) +Bu, y(0) = y0,

where f describes the nonlinear dynamics, B ∈ Rn×m is the control operator,
Q ∈ Rn×n is positive semi-definite, β > 0. The initial condition y0 is contained in
a given compact set Y0 ⊂ Rn. Our interest lies in optimal feedback controls i.e.
control inputs that are constructed as a function of the state variable at every time
point t. More in detail we are looking for an optimal feedback law F ∗ : Rn → Rm

such that:

• For every y0 ∈ Y0 there is a solution y∗ to

ẏ = f(y) +BF ∗(y), y(0) = y0.

• For every y0 ∈ Y0, the pair (y∗, F ∗(y∗)) is a minimizer to (P y0

β ).

Constructing an optimal feedback F ∗ is closely related to the computation to
the optimal value function V (y0) = inf (P y0

β ) which satisfies a Hamilton-Jacobi-
Bellman equation, a hyperbolic system whose dimension is that of the state space.
Once available, the optimal control to (P y0

β ) can be expressed in feedback form as

u∗(t) = −B⊤∇V (y∗(t)). Following the HJB approach one is inevitably faced with
the curse of dimensionality: IfM degrees of freedom are used to discretize the HJB
equation in each of the spatial directions, then this results in a discrete system with
Mn degrees of freedom. Except for small dimensions n of the state equation this
is unfeasible and alternatives must be sought. In this paper we propose to replace
the control u in (P y0

β ) by the closed loop expression F σ
θ (y) where F σ

θ denotes a
deep neural network described by a finite dimensional parameter θ. Subsequently,
a feedback law is determined from solving

(PY0)





inf
θ

1

2

∫ ∞

0

(
|Qy(t)|2 + β|F σ

θ (y(t))|2
)
dt

s.t. ẏ = f(y) +BF σ
θ (y), y(0) = y0,
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It can be expected that the effectiveness of such a procedure depends on the
location of the orbit O = {y(t; y0) : t ∈ (0,∞)} within the state space Rn. To
accommodate the case that O does not ‘cover’ the state-space sufficiently well,
we propose to look at the ensemble of orbits departing from the compact set Y0
of initial conditions and reformulate the problem accordingly. For this purpose
we introduce a probability measure µ on Y0 describing a “training set” of initial
conditions and replace (PY0) by

(P)





inf
θ

1

2

∫

Y0

∫ ∞

0

(
|Qy(t; y0)|2 + β|F (y(t; y0))|2

)
dt dµ

s.t. ẏ(y0) = f(y(y0)) +BF σ
θ (y(y0)), y(0) = y0,

Here y is to be understood as an ensemble of state variables which assigns to
every y0 in the support of µ the solution of the closed loop state equation. Our
work gives mathematical rigor to this formulation. This includes existence results
for optimal neural network based feedback laws as well as the derivation of first
order sufficient optimality conditions. Moreover we also address the convergence of
feedback laws obtained as the networks get wider and deeper. Several numerical
examples illustrate the practical applicability of our learning approach. These
range from highly unstable low dimensional systems to extremely high dimensional
examples stemming from the discretization of PDE systems. The approach itself
is highly flexible in the sense that it directly allows to include control and/or state
constraints into the problem as well as constraints on the feedback function itself,
see e.g. [2].

In summary, on the one hand, the results presented in this talk show the great
potential and success of learning feedback laws for the stabilization of unstable
nonlinear systems. On the other hand, they also reveal open questions which
stimulates further research. Amongst other things, this encompasses the develop-
ment of fast and reliable solution methods as well as the extension of our approach
to PDE systems.
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Semidiscrete Approximation and Error Estimates for Feedback Gains
Stabilizing Parabolic Systems - Application to the

Navier–Stokes Equations

Jean-Pierre Raymond

(joint work with Mehdi Badra)

We consider pairs (A,B) of operators, and approximate pairs (Ah, Bh) for h > 0,
where (A,D(A)) is the infinitesimal generator of an analytic semigroup on a Hilbert
space Z and B is an unbounded control operator, and (Ah,D(Ah)) is the infini-
tesimal generator of an analytic semigroup on a Hilbert space Zh. But Zh is not
a subspace of Z. Thus we have to deal with nonconform approximations. Under
some approximation assumptions satisfied by the pairs (A,B) and (Ah, Bh), we
prove that feedback laws stabilizing reduced order models for the system (Ah, Bh),
based on spectral projections, also stabilize the pair (A,B).

We apply these results to the semidiscrete approximation, by a finite element
method, of the linearized Navier-Stokes equations with a Dirichlet boundary con-
trol. In that case, feedback laws stabilizing reduced order models for the semidis-
crete approximation of the linearized Navier-Stokes equations, also stabilizes the
linearized Navier-Stokes equations, and locally the Navier-Stokes equations.

Convergence rates of semidiscrete approximations by finite element methods of
feedback gains for parabolic equations and distributed controls have been obtained
in [3]. These results have been extended to boundary controls in [5] and [4]. But
in all these papers only conforming finite element methods are considered.

Here, because of the divergence condition in the Oseen system, it is natural to
consider nonconforming finite element methods. In [1], we extend the results of
[3], [5], and [4] to nonconforming finite element methods both in the case of either
a distributed control or a boundary control.

In [2], to stabilize the Oseen system, we study feedback laws constructed by
stabilizing unstable invariant subsets of the Oseen system. We prove convergence
rates in that case too, which are better than those in [1] where we do not use
reduced order models based on spectral projections.
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A Primal-Dual Algorithm for Large-Scale Risk Minimization

Drew P. Kouri

(joint work with Thomas M. Surowiec)

Many practical applications require the optimization of partial differential equa-
tions (PDEs) with uncertain inputs such as unknown problem data, random op-
erating conditions, and unverifiable modeling assumptions. In this work, we for-
mulate these problems as stochastic optimization problems and seek to minimize
a measure of risk associated with a given system output. For many popular risk
models, the resulting risk-averse objective function is not differentiable, signifi-
cantly complicating the numerical solution of the optimization problem. Unfortu-
nately, methods for nonsmooth optimization are limited by slow (i.e., sublinear)
convergence rates and therefore are often intractable for problems in which the
objective function and its derivatives are expensive to evaluate. To address this
challenge, we introduce a primal-dual algorithm for solving large-scale nonsmooth
risk-averse optimization problems. At each iteration of the algorithm, we ap-
proximately solve a smooth optimization problem using, e.g., a rapidly-converging
Newton-type method.

Let Z be a reflexive Banach space and let (Ω,F ,P) be a probability space, where
Ω denotes the set of outcomes, F ⊆ 2Ω is a σ-algebra of events, and P : F → [0, 1]
is a probability measure. We consider optimization problems with the form

(1) min
z∈Zad

R(F (z)) + ℘(z)

where Zad ⊆ Z is a nonempty, closed and convex set of admissible optimization
variables, F : Z → L2(Ω,F ,P) is a random loss function, ℘ : Z → R is a deter-
ministic loss functional, and R : L2(Ω,F ,P) → R is a risk functional. We make
the following basic assumptions on the risk functional: R is convex, positively
homogeneous and satisfies the monotonicity condition

∀X, X ′ ∈ L2(Ω,F ,P) with X ≤ X ′ a.s. =⇒ R(X) ≤ R(X ′).

Under these assumptions, the Fenchel-Moreau Theorem [2] ensures that

(2) R(X) = sup
θ∈A

E[θX ] where A := ∂R(0) ⊆ { θ ∈ L2(Ω,F ,P) | θ ≥ 0 a.s. }.

Here, E[Y ] denotes the expected value of the random variable Y and ∂R(0) denotes
the convex subdifferential ofR at 0. Substituting (2) into the optimization problem
(1) results in the min-max problem

(3) min
z∈Zad

sup
θ∈A

{ℓ(z, θ) := E[θF (z)] + ℘(z)}.

The functional ℓ(z, θ) in (3) resembles the Lagrangian functional from nonlinear
programming. With this as motivation, we define the augmented Lagrangian
functional as

(4) L(z, λ, r) := max
θ∈A

{
ℓ(z, θ)− 1

2r
E[(λ − θ)2]

}
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for z ∈ Z, λ ∈ L2(Ω,F ,P) and r > 0. Applying results from convex and variational
analysis, one can show that L(z, λ, r) is continuously Fréchet differentiable with
respect to z and λ as long as ℘ and F are. In this case, the partial derivative of
L(z, λ, r) with respect to z is given by

L′
z(z, λ, r) = ℘′(z) + E[PA(rF (z) + λ)F ′(z)],

where PA denotes the metric projection onto the convex set A [1, 3]. Based on
these properties of L, we define the primal-dual risk minimization algorithm as
the following generalization of the classical method of multipliers.

Algorithm 1 Primal-Dual Risk Minimization

Initialize: Given z0 ∈ Zad, r0 > 0 and λ0 ∈ A.
While(“Not Converged”)

(1) Compute zk+1 ∈ Zad that approximately minimizes L(·, λk, rk).
(2) Set λk+1 = PA(rkF (zk+1) + λk).
(3) Update rk+1.

End While

If the iterates zk+1 of Algorithm 1 are ǫk-minimizers of L(·, λk, rk), i.e.,
L(zk+1, λk, rk)− inf

z∈Zad

L(z, λk, rk) ≤ ǫk

for ǫk ≥ 0, then any weak accumulation point of {zk} is an ǫ-minimizer of (1) [4,
Thm. 1] with ǫ given by

ǫ =
K2

r⋆
+ ǫ⋆,

where K ≥ 0 is the Lipschitz modulus of R at 0, r⋆ > 0 is the limit of {rk}
(possibly +∞) and ǫ⋆ ≥ 0 is the limit of {ǫk} (possibly 0). If {ǫk} satisfies the
additional conditions

ǫk =
η2k
2rk

with

∞∑

k=0

ηk <∞, ηk ≥ 0,

then the entire sequence of dual variables {λk} converges to a maximizer of the
dual problem

(5) max
θ∈A

v(θ) where v(θ) := inf
z∈Zad

ℓ(z, θ)

[4, Thm. 2]. This result exploits the relationship between Algorithm 1 and the
proximal point method [5] applied to solve the dual problem. Aside from convex
problems, we typically cannot ensure that zk+1 is an ǫk-minimizer. Consequently,
these results are of little practical use for general PDE-constrained optimization
problems. For nonconvex problems, we often can only ensure that the iterates
zk+1 are ǫk-stationary points of L(·, λk, rk). That is, if ℘ and F are continuously
Fréchet differentiable, then

〈℘′(zk+1) + E[λk+1F
′(zk+1)], z − zk+1〉Z∗,Z ≥ −ǫk‖z − zk+1‖Z ∀ z ∈ Zad.
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Under additional assumptions on the continuity of ℘′ and F ′, we can prove that
if zk+1 are ǫk-stationary points with ǫk → 0 and rk → +∞, then any weak
accumulation point of {zk} is a stationary point of (1) [4, Thm. 3].

To demonstrate the primal-dual risk minimization algorithm, we apply Algo-
rithm 1 to two convex (elliptic 1d/2d) and one nonconvex (burgers) PDE-
constrained optimization problems. We investigate the numerical performance for
five common risk measures: mean plus semi-deviation (MPSD), mean plus semi-
deviation from a target (MPSDFT), a convex combination of the expectation and
the conditional value-at-risk (CVaR), the second-order higher moment coherent risk
measure (HMCR), and the buffered probability (bPOE). In Table 1, we compare Al-
gorithm 1 with the nonsmooth, nonconvex bundle method described in [6].

PD Algorithm Bundle Speed

example risk iter nfval ngrad subiter iter neval Up

elliptic 1d

MPSD 7 14 14 7 31 208 14.86x

MPSDFT 7 11 11 4 24 206 18.73x

CVAR 7 23 23 16 39 88 3.83x

HMCR 6 16 15 10 40 104 6.50x

BPOE 11 49 36 38 --- --- ---

elliptic 2d

MPSD 5 10 10 5 --- --- ---

MPSDFT 6 13 13 7 --- --- ---

CVAR 9 35 30 26 --- --- ---

HMCR 7 25 23 18 --- --- ---

BPOE 9 72 41 63 --- --- ---

burgers

MPSD 12 31 26 19 51 176 5.68x

MPSDFT 9 17 17 8 53 123 7.24x

CVAR 8 46 44 38 69 197 4.28x

HMCR 8 79 73 71 84 182 2.17x

BPOE 9 52 42 43 --- --- ---

Table 1. Numerical comparison of the primal-dual risk mini-
mization algorithm with a nonsmooth, nonconvex bundle method.

We see that Algorithm 1 requires between 2 and 18 times fewer function and gradi-
ent evaluations than the bundle method. In Table 2, we compare Algorithm 1 with
epi-regularization [3]. For consistency, we update the epi-regularization parameter
in a similar fashion to rk. In particular, the epireg algorithm in Table 2 is simply
Algorithm 1 with λk set to zero for all k, which is analogous to a quadratic penalty
method. Again, we see that Algorithm 1 outperforms the epi-regularization ap-
proach. For a thorough discussion of these results see [4].
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example algo iter nfval ngrad nhess subiter

elliptic 1d
pdrisk 7 23 23 90 16

epireg 8 33 29 99 25

elliptic 2d
pdrisk 9 35 30 138 26

epireg 10 80 45 296 70

burgers
pdrisk 8 46 44 128 38

epireg 8 72 63 182 64

Table 2. Numerical comparison of the primal-dual risk mini-
mization algorithm with epi-regularization.

Acknowledgements: Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering Solutions of San-
dia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract
DE-NA0003525. This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed in the paper do not
necessarily represent the views of the U.S. Department of Energy or the United
States Government.

References

[1] H. Attouch, Viscosity solutions of minimization problems, SIAM Journal on Optimization,
6 (1996), pp. 769–806.

[2] H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV
spaces, vol. 6 of MPS/SIAM Series on Optimization, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2006.

[3] D. P. Kouri and T. M. Surowiec, Epi-regularization of risk measures, Mathematics of
Operations Research, 45 (2018), pp. 774–795.

[4] , A primal-dual algorithm for risk minimization, Mathematical Programming, 2021.
[5] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal

on Control and Optimization, 14 (1976), pp. 877–898.
[6] H. Schramm and J. Zowe, A version of the bundle idea for minimizing nondifferentiable

functions: Conceptual idea, convergence analysis, numerical results, SIAM Journal on Op-
timization, 2 (1992), pp. 121–152.

Optimal Control of a Semilinear Critical Wave Equation

Hannes Meinlschmidt

(joint work with Karl Kunisch)

This talk is based on [1]. We consider the optimal control problem

(OCP)

min
y,u

ℓ(y, u)

s.t.

{
u ∈ Uad,

y is the solution to (CWE),
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where the underlying partial differential equation is the H1-critical defocusing wave
equation on a bounded domain Ω ⊂ R3 with smooth boundary over a finite interval
(0,T), complemented with homogeneous Dirichlet boundary conditions and with
distributed control, in the prototype form

(CWE)





∂2t y −∆y + y5 = u in (0,T)× Ω,

y = 0 on (0,T)× ∂Ω,
(
y(0), ∂ty(0)

)
= (y0, y1) in Ω.

We suppose that (y0, y1) ∈ E := H1
0(Ω) × L2(Ω) which is the natural energy

space, and that u ∈ L1(0,T; L2(Ω)). The particular feature of this critical wave
equation is that, as the nomenclature suggests, its power nonlinearity is exactly
the extreme case for which one has unconditional well-posedness and eventually
globally-in-time existence. The performance index ℓ for (CWE) is chosen to be

ℓ(y, u) := 1
2‖y(T)− yd‖2L2(Ω) +

ν
2‖∂ty(T)‖2H−1(Ω) +

γ
4‖y‖4L4(0,T;L12(Ω))

+ β1‖u‖L1(0,T;L2(Ω)) +
β2

2 ‖u‖2L2(0,T;L2(Ω))

for yd ∈ L2(Ω). The objective in (OCP) is thus to find a control u ∈ Uad such that
the associated solution to (CWE) y(T) at time T matches a given profile yd as well
as possible in the L2-sense while simultaneously minimizing the (scaled) velocity
∂ty(T) at time T. While the L2(0,T; L2(Ω)) term in ℓ describes a quadratic control
cost, the L1(0,T; L2(Ω)) term is known to be sparsity enhancing. We also consider
an L4(0,T; L12(Ω)) regularization for the state y which is used in the proof of
existence of a globally optimal solution for (OCP). The constraint set Uad is of
the form

Uad :=
{
v : (0,T) → L2(Ω): ‖v(t)‖L2(Ω) ≤ ω(t) f.a.a. t ∈ (0,T)

}

for a measurable function ω which is nonnegative almost everywhere on (0,T),
so spatially integrated pointwise-in-time constraints of Trust-Region type. To the
best of our knowledge, this kind of constraint has not been investigated yet in an
evolution equation setting.

Basing on recent papers by wave equation experts ([2, 3]), we show that for
every control u ∈ L1(0,T; L2(Ω)), there exists a unique (mild) solution y for which
(y, ∂ty) ∈ C([0,T]; E) and y ∈ L5(0,T; L10(Ω)). The additional integrability for y
is exactly such that y5 ∈ L1(0,T; L2(Ω)). Together with Strichartz estimates as
in [3], this regularity is an important ingredient in local wellposedness for (CWE).
Global-in-time existence is proven by localizing the wave equation to backwards
light cones; then a nontrivial L6-nonconcentration property for y allows to boot-
strap boundedness in L5(0,T; L10(Ω)) on these light cones, from which a contin-
uation argument yields global-in-time existence. We consider this the first main
result of our work.

We moreover obtain existence of globally optimal solutions to (OCP). Since
mild solutions are also weak ones, the proof follows the standard reasoning from
the calculus of variations; however, as mentioned above, due to the critical power
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nonlinearity, we can only show that the limit state is unique if we admit the state
regularization in the objective, i.e., if γ > 0 in ℓ.

Finally, we also consider optimality conditions. For first order necessary ones,
we combine smoothness of the control-to-state mapping u 7→ y with the theory
established in [4] for j(u) := ‖u‖L1(0,T;L2(Ω))—which is nonsmooth—to obtain a
bounded Lagrange multiplier µ̄ associated to the constraint given by Uad for every
locally optimal control ū ∈ Uad.

The second main result(s) are then second-order optimality conditions of both
necessary and sufficient type. Here, we deal with both nonsmoothness of j and
with the nonzero curvature of the Trust-Region type constraint given by Uad.
For the second-order necessary conditions, this necessitates to carefully combine
Taylor expansion for j (away from nonsmoothness points) with a nonlinear path
of controls Uad ∋ uρ → ū. From there, we obtain sufficient conditions in the sense
that if ℓ′′r (ū)(v, v) > 0 for all v 6= 0 from the critical cone, then the strong quadratic
growth property

ℓ(ȳ, ū) +
η

2
‖u− ū‖2L2(0,T;L2(Ω)) ≤ ℓ(y, u) for all u ∈ Uad, ‖u− ū‖L2(0,T;L2(Ω)) < ε

holds true for appropriate η, ε > 0. We point out that we need the fully quadratic
control regularization, i.e., β2 > 0 in ℓ here; the case β2 = 0 is an open problem.
The strong form of the quadratic growth property then allows to derive stability
estimates for (OCP) for controls satisfying the second-order sufficient condition.

Possible extensions of this work would concern the case of homogeneous Neu-
mann boundary conditions instead of Dirichlet ones, based on [5], and moreover,
much more involved, the case of boundary control instead of distributed one.
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Shape Optimization with Phase Fields and a W 1,∞
−Descent Approach

Michael Hinze

(joint work with Harald Garcke, Christian Kahle, and Andrew Lam (with
phasefield approach), Klaus Deckelnick and Philip Herbert

(with W 1,∞−descent))

We sketch two approaches for PDE constrained shape optimization of domains.
In the first approach we consider a phasefield method for fluid mechanic shape
optimization, where the shape of the sought domain is approximated by the zero
level set of a phasefield function. This turns the shape optimization problem into
a PDE constrained optimization problem where the phasefield enters as control
in the coefficients of the PDE. The second approach uses the method of map-
pings, where we propose a new minimization approach using steepest descent in
the W 1,∞− topology. The numerical example indicates that minimization in the
W 1,∞− topology seems to be superior over the classical minimization in Hilbert
spaces, in particular when the optimal shape has sharp corners.

Diffuse interface approach. Let Ω ⊂ Rn denote an open bounded hold-all do-
main with Lipschitz-boundary. We assume an incompressible fluid inside E ⊂ Ω
and a non-permeable obstacle B = Ω \ E. The velocity field u together with the
pressure field p satisfy the Navier–Stokes equations in E with prescribed boundary
data g ∈ H1/2(∂Ω) and volume force f ∈ L2(Ω). Moreover, u = 0 on ∂B. We iden-
tify E ⊂ Ω with ϕ := 2χE − 1 ∈ BV (Ω, {±1}). Then for any ϕ ∈ BV (Ω, {±1})
the set Eϕ := {ϕ = 1} is the corresponding Caccioppoli set describing the fluid
region. The shape optimization problem for those vector fields u and controls ϕ
then reads

(P ) min
{u,ϕ}

J(u, p, ϕ) =

∫

Ω

hb(u, p, ϕ)dx+

∫

Ω

hΓ(u, p, νϕ)d|Dϕ|+
γ

2
|Dϕ|(Ω).

Here, νϕ is the outer normal on Γ := Ω ∩ ∂Eϕ, and γ
2 |Dϕ|(Ω) = γ

∫
Γ ds is the

perimeter regularization, where Dϕ denotes the distributional derivative of ϕ and
represents a finite Radon measure concentrated on Γ with |Dϕ| its total variation.
The functions hb(u, p, ϕ) and hΓ(u, p, νϕ) contain mathematical expressions of the
physical quantities to be minimized, like drag, lift, hydrodynamic force, and/or
total potential power of the flow. The minimization problem (P ) also may be
accompanied by further integral constraints on the state variables.

BV−approach (left) and phasefield relaxation (right)

Since this minimization problem may lack well-posedness and is formulated within
a complicated mathematical framework, we relax the sharp interface formulation
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through introducing a phasefield approximation ϕǫ of ϕ combined with a Darcy-
flow relaxation of the fluid flow and substitute all quantities related to ϕ in (P )
by according expressions with ϕǫ. This leads to a mathematical setting where
ϕǫ ∈ H1(Ω) ∩ L∞(Ω), |ϕǫ| ≤ 1 and Eǫ = {x ∈ Ω |ϕǫ(x) = 1}, Bǫ = {x ∈
Ω |ϕǫ(x) = −1}, and Γǫ = {x ∈ Ω | |ϕǫ(x)| < 1} (diffuse interface) denote the
relaxed counterparts of E,B and Γ, respectively. An important ingredient is the
relaxation of the perimeter regularization in (P ) by the Ginzburg–Landau energy
associated to ϕǫ, which is known to be Γ−convergent to a multiple of the perimeter
[5], i.e.

G(ϕǫ) :=

∫

Ω

ǫ

2
|∇ϕǫ|2 +

1

ǫ
W (ϕǫ) dx

ǫ→0−→ c0

∫

Γ

ds

holds with some c0 > 0 only depending on the free energy W . This free energy
could be chosen as logarithmic, double well, or double obstacle potential. The final
step consists in approximating the fluid equation by a porous medium approach
[2]. This is performed by introducing the interpolation function αǫ(ϕǫ) = αǫ

1−ϕǫ

2

with αǫ
ǫ→0−→ ∞. The final optimization problem then is of the form

(P)

min
(u,ϕǫ)

J(u, p, ϕǫ) :=

∫

Ω

hb(u, p, ϕǫ) dx+

∫

Ω

1

2
hΓ(u, p,∇ϕǫ) dx

+
γ

c0

∫

Ω

ǫ

2
|∇ϕǫ|2 +

1

ǫ
W (ϕǫ) dx+

∫

Ω

1

2
αǫ(ϕǫ)|u|2 dx

subject to

(NS)

αǫ(ϕǫ)u + (u∇)u− µ∆u+∇p = 0 in Ω,

−div u = 0 in Ω,

u = g on ∂Ω,

complemented with additional constraints on the state u and/or the control ϕǫ.
For ϕǫ = −1 the term αǫ(ϕǫ)u dominates in the momentum equation, which
corresponds to Darcy flow. The last term in the cost functional is added to further
enforce u = 0 on the obstacle for ǫ → 0. Problem (P ) is a constrained control-
in-the-coefficient problem, for which one can prove e.g. existence of solutions and
establish first order necessary optimality conditions, see [3], where also a couple
of numerical examples can be found.

Shape optimization with W1,∞ descent. Let Ω ⊂ Rn be a bounded and open
Lipschitz domain. Let

ΩV := Ω + V (Ω), where V ∈W 1,∞(Rn,Rn),

so that for ‖V ‖1,∞ < 1 the transformed domain ΩV is Lipschitz. Let J denote a
shape differentiable shape functional with DJ(Ω)[·] denoting its differential at Ω.
Our idea now consists in using W 1,∞− steepest descent directions V ∗ of J in a
shape optimization algorithm. Those directions are characterized as solutions to
the minimization problem

(∆∞) V ∗ = argmin
{V ∈W 1,∞(Rn,Rn),‖V ‖1,∞≤1}

DJ(Ω)[V ].
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Known practical approaches use Hilbert space methods, i.e. seek fields V ∗ deter-
mined by

a(V ∗,W ) = DJ(Ω)[W ] for all W ∈ H1(Rn)n,

where a(·, ·) denotes an appropriate inner product on H1(Rn), see [1] for an ex-
tensive discussion. A mathematical framework for the solution of minimization
problems of type (∆∞) is provided in e.g. [4].

Numerical example for a model problem: Set F (x1, x2) = 0 and z(x1, x2) =
|x1+x2|+ |x1−x2|. Let 0 < c0 < 1 denote a given constant. For f ∈W 1,∞(S1) let
Ωf denote the domain enclosed by the curve ∂Ωf :=

{
y ∈ R2 : y = xf(x), x ∈ S1

}
.

We consider the shape optimization problem of finding a function f∗ ∈W := {f̃ ∈
W 1,∞(S1) :

∫
S1
f̃2 = π, f̃ ≥ c0} which solves

f∗ = argmin
f∈W

J (f) :=
1

2

∫

Ωf

|uf − z|2dx,

and where uf ∈ H1
0 (Ωf ) is the solution to
∫

Ωf

∇u · ∇v = 〈F |Ωf
, v〉 ∀v ∈ H1

0 (Ωf ).

Since in the present example uf ≡ 0 for all f ∈ W and z is constant on the

boundary of the square Ωf∗ :=
(
−

√
π
2 ,

√
π
2

)2
with center 0 ∈ R2, it can be

shown that 〈J ′(f∗), g〉 = 0 for all g ∈ W 1,∞(S1) satisfying
∫
S1
f∗gdow = 0, so

that Ωf∗ is a minimizer. We solve this minimization problem with the steep-
est descent algorithm initialized with Ωf the unit circle corresponding to f = 1.
We employ the Armijo step size rule with slope factor 10−5 and use 10−8 as
lower bound for the Armijo step size. After 185 iterations, the Lipschitz method

Lipschitz (left) versus H1−descent

terminated, while the H1− method
was stopped after the maximum of 250
iterations. The picture on the right
shows a zoom on the right upper cor-
ners of the respective triangulated final
domains. As one can clearly see the
Lipschitz method yields significantly
better pronounced corners.
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First-Order Mean Field Games of Controls

Laurent Pfeiffer

(joint work with P. Jameson Graber and Alan Mullenix)

Introduction

Mean field game (MFG) theory aims at describing Nash equilibria involving a
large number of agents, all optimizing their own dynamical system. Mathemati-
cally, MFGs take the form of a coupled system of PDEs, the Fokker-Planck and
the Hamilton-Jacobi-Bellman equations. It has been known, since the early de-
velopments of the theory by P.L. Lions and J.M. Lasry in 2006, that the coupled
system coincides with the optimality system associated with two convex PDE-
optimization problems in duality (under appropriate assumptions). Later this
observation allowed P. Cardaliaguet and co-authors to obtain existence results for
MFGs with congestion when the diffusion is degenerate in [1]. We follow this
methodology in [2] in order to prove the existence of a solution of a mean field
game involving some interaction term via the controls of the agents.

The MFG system and its interpretation

We give in this extended abstract a very rough overview of that methodology. A
(slightly) simplified version of the mean field game that we have considered is the
following:

(1)





(i) −∂tu+H(Du(x, t) + P (t)) = f(m(x, t)), (x, t) ∈ Q,

(ii) ∂tm+∇ · (vm) = 0 (x, t) ∈ Q,

(iii) P (t) = Ψ
( ∫

Td v(x, t)m(x, t)dx
)

t ∈ [0, T ],

(iv) v(x, t) = −DH(Du(x, t) + P (t)) (x, t) ∈ Q,

(v) m(x, 0) = m0(x), u(x, T ) = uT (x), x ∈ Td.

Here Q := Td × [0, T ]. The maps H : Rd → R, f : R+ → R, Ψ: Rd → Rd,
m0 : T

d → R, and uT : Td → R are given. The unknown variables are u : Q → R,
m : Q→ R, v : Q→ Rd, P : [0, T ] → Rd.

The heuristic interpretation of the above system is the following. Each agent
controls the following dynamical system in T

d:

dXt = αtdt.

The associated cost (to be minimized) is given by
∫ T

0

(
H∗(−αt) + 〈P (t), αt〉+ f(m(x, t))

)
dt+ uT (XT ).

At optimality, the control α is in feedback form, i.e.

αt = v(Xt, t) = −DH(Du(Xt, t) + P (t)),

where u denotes the associated value function. Its evolution is given by the
Hamilton-Jacobi-Bellman equation (equation (i)). The variable m denotes the
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distribution of all agents with respect to their state variable. Its evolution is given
by the Fokker-Planck equation (ii). On top of the interaction induced by the con-
gestion term, we have an interaction through the variable P , defined in equation
(iii) as the average value of the control variable. This interaction is classical in
Cournot equilibrium models.

The basic structural assumptions are the following:

• the Hamiltonian H is convex,
• the congestion function f is increasing,
• the price function Ψ is the gradient of some convex function Φ.

The analysis requires additional growth assumptions on f , H , Ψ and regularity
assumptions on m0 and uT which we do not detail, see [2, Section 1.2].

After performing the Benamou-Brenier change of variables w = mv, we obtain
the system:

(2)





(i) −∂tu+H(Du(x, t) + P (t)) = 0 (x, t) ∈ Q,

(ii) ∂tm+∇ · w = 0 (x, t) ∈ Q,

(iii) P (t) = Ψ
( ∫

Td w(x, t)dx
)

t ∈ [0, T ],

(iv) w(x, t) = −DH(Du(x, t) + P (t))m(x, t) (x, t) ∈ Q,

(v) m(x, 0) = m0(x), u(x, T ) = uT (x), x ∈ Td.

The two problems in duality

We define

F (m) =

∫ m

0

f(θ)dθ

if m ≥ 0 and F (m) = +∞ otherwise. Note that F is convex.
Formally, the coupled system (2) is the optimality system associated with two

problems in duality. The first one is an optimal control problem of the Hamilton-
Jacobi-Bellman equation:

inf
(u,P,γ)

−
∫

Td

u(x, 0)m0(x)dx+

∫ T

0

Φ∗(P (t))dt+

∫∫

Q

F ∗(γ(x, t))dxdt,(3)

subject to:

{
−∂tu+H(Du(x, t) + P (t)) = γ,

u(x, T ) = uT (x).

The second one is an optimal control problem of the Fokker-Planck equation:

inf
(m,w)

∫∫

Q

(
H∗
(
− w(x, t)

m(x, t)

)
m(x, t) + F (m(x, t))

)
dxdt(4)

+

∫ T

0

Φ
(∫

Td

w(x, t)
)
dxdt+

∫

Td

uT (x)m(x, T )dx,

subject to:

{
∂tm+∇ · w = 0,

m(x, 0) = m0(x).



446 Oberwolfach Report 9/2021

The main steps of analysis are the following.

• We formulate Problem (3) in spaces of (sufficiently) smooth functions, so
that the HJB equation can be understood in the classical sense.

• We prove that Problem (4) is the dual problem to (3). By the Fenchel-
Rockafellar duality theorem, it possesses a solution, which is shown in
Lemma 2.1 to lie in some Lp-space, thanks to the growth assumption on
H and F . The Fokker-Planck equation is understood in the weak sense.

• It is unclear whether Problem (3) has a solution. One can instead prove
the existence of a solution to a relaxed variant in some Lp space, see
Proposition 3.10. The relaxed problem is obtained by requiring that u is
(only) a weak subsolution to the HJB equation. The existence is obtained
with the direct method of the calculus of variations. Again, the growth
assumptions on the data functions play an important role to bound the
minimizing sequence.

• Using the solution to problem (4) and the solution to the relaxed variant of
(3), we construct a quadruplet (u,m, P, v) which is shown to be a solution
in a relaxed sense to the MFG system (1). See Theorem 4.3.

Some open issues

Some classical issues from MFG theory are still open for problems of the form (1).
They concern in particular: (i) the asymptotic behavior when T → ∞, (ii) the
numerical resolution in the second-order case, (iii) the convergence of the fictitious
play method, which would indicate that such equilibria are likely to arise.
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On Pre-Shape Calculus

Volker Schulz

(joint work with Daniel Luft)

Studies in shape optimization are motivated by a wide variety of applications in
practice. Current examples of application projects involving the author are the
determination of shapes for gas turbine blades aiming at robustness with respect
to low cycle fatigue (BMBF project GIVEN with partners Trier University, Uni-
versity of Wuppertal, DLR, Siemens AG, 2018-2021) or shape optimization for
mitigating coastal erosion (DFG-SPP 1962 project with partners Trier Univer-
sity and University Cheikh Anta Diop of Dakar, 2019-2022). The handling of the
computational mesh is of special importance in all applications. During geometry
changes, this mesh has to be carried along, which often leads to problems in the
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solution of partial differential equations on the changed meshes. In the publication
[2] it was shown, how by mesh deformations, which are based on the solution of the
elasticity equation, a shape-Hessian approximation of Steklov-Poincaré type and
an efficient and practicable mesh fitting in normal direction can be accomplished
at the same time.

However, almost all shape optimization studies, like [2], focus on geometry
changes in normal directions, which is quite natural since according to [3] shape
optimization can be interpreted as optimization on the manifold of shapes, where
shapes are considered as equivalence classes of embeddings that are invariant un-
der (tangential) reparametrizations. Nevertheless, all mesh deformations have
tangential effects on the surface mesh, which are thus systematically overlooked
and not controlled. Often, deformations form regions on the shape where tangen-
tial stretching or compression occurs. In these regions, one would actually like to
move surface mesh points during optimization in such a way that the mesh quality
of the deformed mesh does not suffer. So far, no methods are available for this
purpose. The publication [1], which treats this problem for the first time and is
the basis of this talk, goes one step behind [3] and opens the notion of a shape for
the explicit consideration of the parameterization of the shape and thus implicitly
also for the control of the surface mesh. The notion of pre-shape, which goes back
to [4], is used here as a shape concept motivating a pre-shape calculus based on
it, which includes the classical shape calculus as a special case. On the one hand,
this leads to an exciting new mathematical calculus with sophisticated theoretical
results. On the other hand, from a numerical point of view, degradation of the
tangential mesh quality, which is otherwise observed during shape optimization, is
prevented. This effect is supported by preliminary numerical examples. Further
research may involve the choice of proper shape cost functionals taking into ac-
count meshes, detailed analysis of the interplay between a pure shape functional
and a mesh oriented functional and details on the numerical implementation in a
practical environment.
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Optimality Conditions and Regularization for Convex Stochastic
Optimization with Almost Sure State Constraints

Caroline Geiersbach

(joint work with Michael Hintermüller and Winnifried Wollner)

Let (Ω,F ,P) be a probability space. Consider a risk-neutral stochastic optimiza-
tion problem of the form
(P′)

minimize
(x1,x2)∈L2(D)×L∞(Ω,X2)

∫

Ω

∫

D

(x2(s, ω)− yD(s))2 ds dP(ω) + α

∫

D

x1(s) ds

s.t.





−∇ · (a(s, ω)∇x2(s, ω)) = x1(s) + g(s, ω) on D × Ω a.e. a.s.,

x2(s, ω) = 0 on ∂D × Ω a.e. a.s.,

x2(s, ω) ≤ ψ(s, ω) on D × Ω a.e. a.s.,

where yD ∈ L2(D), α > 0, and ψ ∈ L∞(Ω, X2). This PDE-constrained problem
with uncertainty and “almost sure”-type constraints on the state is new. One
can, however, understand this problem in the setting of two-stage stochastic op-
timization, where x1 is the first stage and x2 is the second stage. Such prob-
lems are well-understood, thanks to a series of papers by Rockafellar and Wets
[2, 3, 4, 5]. In these works, they consider second-stage variables belonging to the
space L∞(Ω,Rn). In [1], we revisit these papers to handle problems like (P′). It
turns out that in spite of the analytical difficulties, one can develop rich dual-
ity theory if the problem is convex. We work with the state space L∞(Ω, X2),
where X2 is a real, reflexive, and separable Banach space with enough regularity
to satisfy a constraint qualification; for example, if D ⊂ R2 is a bounded Lipschitz
domain, one needs X2 =W 1,p

0 (D), p > 2 for problem (P′).
Let X1, W , R be real, reflexive, and separable Banach spaces. Our results

concern optimality theory for the general class of problems

(P)

minimize
x:=(x1,x2)∈X:=X1×L∞(Ω,X2)

{j(x) := J1(x1) + E[J2(x1, x2(·), ·)]}

s.t.





x1 ∈ C,

e(x1, x2(ω), ω) = 0 a.s.,

i(x1, x2(ω), ω) ≤K 0 a.s.,

where e : X1 ×X2 × Ω → W and i : X1 ×X2 × Ω → R. Given a cone K ⊂ R,
the partial order ≤K is defined by r ≤K 0 ⇔ −r ∈ K. Technical assumptions
providing measurability, integrability, and convexity can be found in [1].

The central tool in our analysis is the decomposition of elements from L∞(Ω,W )
and L∞(Ω, R) into absolutely continuous and singular terms. This motivates the
definition of a Lagrangian with paired spaces U := L∞(Ω,W ) × L∞(Ω, R) and
Λ := L1(Ω,W ∗)× L1(Ω, R∗):

(1) L(x, λ) = j(x) + E[〈λe, e(x1, x2, ω)〉W∗,W + 〈λi, i(x1, x2, ω)〉R∗,R].

With X0 = {x = (x1, x2) ∈ X : x1 ∈ C} and Λ0 := {λ = (λe, λi) ∈ Λ :
λi(ω) ∈ K⊕ a.s.}, where K⊕ denotes the dual cone to K, we seek saddle points
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to Lagrangian L, i.e., those (x̄, λ̄) ∈ X0 × Λ0 satisfying

L(x̄, λ) ≤ L(x̄, λ̄) ≤ L(x, λ̄) ∀(x, λ) ∈ X0 × Λ0.

Saddle points are shown to exist under the following conditions (in addition to the
technical assumptions mentioned above):

(C1) Fad,u is bounded for all u in a neighborhood of zero or j is radially un-
bounded, meaning j(x) → ∞ as ‖x‖X → ∞.

(C2) Strict feasibility: 0 ∈ int dom v, where v(u) := infx∈X j(x) if x ∈ Fad,u :=
{x∈X : x1∈C, e(x1, x2(ω), ω) = ue(ω) a.s., i(x1, x2(ω), ω) ≤K ui(ω) a.s.}
and v(u) = ∞ otherwise, where u = (ue, ui) ∈ U .

(C3) Relatively complete recourse: C ⊂ C̃ := {x1 ∈ X1 : ∃x2 ∈ L∞(Ω, X2) s.t.
e(x1, x2(ω), ω) = 0 a.s., i(x1, x2(ω), ω) ≤K 0 a.s.}

Additionally, we prove that saddle points are equivalent to (necessary and suf-
ficient) Karush–Kuhn–Tucker (KKT) conditions for optimality. Notably, these
conditions include an additional multiplier from the implicit nonanticipativity con-
straint x1(ω) ≡ x1; as a classical stochastic optimization problem, the first stage is
deterministic, i.e., not depending on ω. An advantage of obtaining Lagrange mul-
tipliers that are integrable is that one can obtain strong (almost sure) conditions
for optimality, which is useful for computations, for instance via sample average
approximation.

In current work, we focus on relaxing condition (C3) with the observation that
the original example problem (P′) does not satisfy it except for trivial choices of ψ.
Without this condition, we expect the presence of singular multipliers, motivating
the definition of an extended Lagrangian, where U paired with U∗:

(2)
L̄(x, λ, λ◦) = L(x, λ) + 〈λ◦e , e(x1, x2(·), ·))〉(L∞(Ω,W ))∗,L∞(Ω,W )

+ 〈λ◦i , i(x2, x2(·), ·)〉(L∞(Ω,R))∗,L∞(Ω,R).

We again rely on the decomposition on the spaces L∞(Ω, R) and L∞(Ω,W ), with
Se and Si denoting their respective subspaces of singular elements. With feasible
singular multipliers from the set

Λ◦
0 = {λ◦ = (λ◦e , λ

◦
i ) ∈ Se × Si : λ

◦
i (y) ≥ 0 ∀y ∈ L∞(Ω, R) : y ≥K 0 a.s.},

we show that conditions (C1) and (C2) are enough to show the existence of saddle
points to extended Lagrangian L̄. Additionally, saddle points can be shown to be
equivalent to strongly formulated KKT conditions. In view of computations, we
propose solving a Moreau–Yosida regularized problem

(Pγ)

minimize
x∈X

{jγ(x) := j(x) + E [βγ(−i(x1, x2(·), ·))]}

s.t.

{
x1 ∈ C,

e(x1, x2(ω), ω) = 0 a.s.,

where βγ(k) = infy∈H{δKH (y) +
γ
2‖k − y‖2H} and R →֒ H ∼= H∗ →֒ R∗, where

H is a Hilbert space where the projection onto KH := K ∩ H can be cheaply
computed. Current work involves analyzing the consistency of Problem (Pγ) as
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γ → ∞ to the original Problem (P). Additionally, we are currently working on
obtaining optimality conditions for risk-averse objective functions.

Future research

These investigations will provide the theoretical framework to design algorithms.
Additionally, we are interested in applications to stochastic generalized Nash equi-
librium problems, where our theory can be applied in the search for variational
equilibria.
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Real Time Estimation of 3D Advection Diffusion Equations

John Allen Burns

(joint work with James Cheung, Michael Demetriou, Nikolaos Gatsonis,
Weiwei Hu, and Xin Tian)

Consider the convection diffusion equation

(1)
∂z(t, x)

∂t
= ∇ · [K∇z(t, x))]−∇ · [Kz(t, x)] + g(x)η(t)

on a domain Ω ⊂ R3. We assume there are p ≥ 0 sensor platforms with locations
βj ∈ R3 that produces the sensed output

(2) yj(t) =

∫∫∫

Ω

cj(x, βj)z(t, x)dx + Eiv(t),

cj(x, y) is a kernel function. If (formally) cj(x, y) = δ(x−y) is the delta “ function”
then we are assuming point sensors. Let

(3) β = [β1 β2 ... βp]
T ∈ R

3p and y(t) = [y1(t) y2(t) ... yp(t)]
T ∈ R

p

Define A : L2(Ω) → L2(Ω) on D(A) = H2(Ω) ∩H2
0 (Ω) by

(4) Aϕ(·) = ∇ · [K∇ϕ(·))]−∇ · [Kϕ(·)] .



Challenges in Optimization with Complex PDE-Systems 451

Also, we define C(β) : L2(Ω) → Rp and G : Rm → L2(Ω) by

(5) [C(β)ϕ(·)]j =
∫∫∫

Ω

cj(x, βj)ϕ(x)dx and Gη = g(x)η,

respectively. The corresponding distributed parameter formulation of the system
id defined by

ż(t) = Az(t) + Gη(t)(6)

y(t) = C(β)z(t) + Ev(t)(7)

We seek a (Luenberger) observer of the form

(8) że = Aze(t) + Gη(t) + F (y(t)− C(β) ze(t)),
where F = F : Rp → L2(Ω) is a bounded linear operator. The goal is to find an
observer gain operator such that the error between the state z(t) and the estimated
state ze(t) given by error(t) = ||z(t)− ze(t)||2 is “asymptotically small” (see [4]).

Note that the Kalman filtering gain operator FKal(β) is a steady state Luen-
berger observe and given by

(9) FKal(β) = Σ(β)C(β)∗

where Σ(β) satisfies the Riccati equation

(10) AΣ(β) + Σ(β)A∗ − Σ(β)C(β)∗C(β)Σ(β) + GG∗ = 0.

In this case once seeks the optimal location βopt to minimize the expected value
of the mean square error

(11) J(β) = {E (||z(t)− ze(t,β)) ||2 : β ∈ Ω, 0 ≤ t < +∞}
and

(12) J(βopt) = min
β∈Ω

J(β) = min
β∈Ω

Trace[Σ(β)].

There are (at least) two challenges to achieving real-time estimation:

1. Determining (computing) the observer gain F(β), and
2. Solving the estimation equation (8) in real-time.

In addition, we considered the case where the p sensor platforms (e.g., typically
an unmanned air vehicles - UAVs) so that the flight vehicles dynamics have form

(13) β̈j(t) = f(βj(t), β̇j(t), uj(t)),

where uj is the control input for the jth UAV and βj(t) ∈ R
3 is the position of

the UAV at time t. Including the flight dynamics requires two additional issues
be resolved. Namely:

3. Determining a (feedback) guidance law for the controllers, and
4. Solving the combined flight dynamic equations (13) and estimation equa-

tion (8) in real-time.
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In this talk we presented some new results where we show that by applying
high order hp - finite element methods one can develop accurate numerical approx-
imations of the Riccati equation (10) with low order finite dimensional systems.
Preliminary results can be found in the paper [1, 2]. Finally, employing a compu-
tational scheme based on a simple guidance law with a CFD algorithm developed
at WPI which uses a heterogeneous non-overlapping domain decomposition ex-
plicit finite volume method (NODDE-FVM-TVD-RK) one can achieve real time
computation of the estimator equations using hyper-threading on a small laptop.
This was achieved for one moving sensor platform with flight dynamics included.
The idea is to use a Luenberger observer near the sensor location and a “naive” ob-
server in the spatial regions outside a neighborhood of the UAV location. Details
of these results will appear in the paper [3].

Open Issues and Future Work

The results described above do not use the “optimal” Kalman filter gains FKal(β).
Although this choice of observer gain allows for an easy parameterizations of the
optimal sensor location problem, it is not clear that in the problem with UAV
dynamics that the Kalman filter is the “best” choice to achieve good and practical
real time tracking. We are currently exploring other options that allow for joint
optimization of sensor locations and performance that is suitable for finite (short)
time intervals.

The domain decomposition method allows for the use of different observers on
different subdomians. This is critical in achieving real time estimation. One open
issue is whether or not one can combine adaptive hp - finite element methods to
obtain a sub-optimal Kalman filter near the moving sensor platform and a crude
but stabilizing Luenberger observer on the rest of the domain Ω.

Finally, we note that the same methods used in the tracking problem above
should be applicable to “plume” source location problems. Further work is needed
to determine if these ideas can be employed for real time source location problems.
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An Interior Point Approach for a Class of Risk-Averse
PDE-Constrained Optimization Problems with Coherent

Risk Measures

Thomas M. Surowiec

(joint work with Sebastian Garreis and Michael Ulbrich)

PDE-constrained stochastic optimization problems offer a natural, data-driven
modeling paradigm for a wide array of applications in engineering and the nat-
ural sciences. By taking cues from traditional stochastic programming and risk
management, there are many ways to obtain solutions that are resilient to out-
lier events. One popular technique is to model risk preferences by employing risk
measures in the objective functions or as part of the constraints. This leads to
so-called risk-averse optimization problems. However, due to the fact that many
PDE-constrained optimization problems are non-convex and a number of popular
risk measures non-smooth, this convenient modeling approach presents a number
of major theoretical, algorithmic, and numerical challenges.

On an abstract level, the problems of interest have the following structure:

inf
z∈Zad

R[J (S(z))] + ℘(z).

Here, U and Z are the deterministic state and decision spaces, S(z, ξ) ∈ U cor-
responds to the random field solution of the forward problem as a function of
the decision variable z ∈ Z and realization of the random variable ξ ∈ Ξ ⊂ Rd,
J (u)(ξ) = J(u(ξ), ξ) is the state-dependent part of objective function, ℘ : Z → R

is a cost or regularization term for decision z, Zad ⊂ Z is a nonempty, closed, and
convex set and R : L1(Ξ,F ,P) → R is a risk measure.

In the interest of finding a solution that performs well on average but also seeks
to minimize tail events, we take as R the following class of functionals

R[X ] = (1− λ)E[X ] + λCVaRβ [X ] λ ∈ (0, 1).

Here, E is the usual expectation, β ∈ (0, 1) is the “risk level”, and CVaRβ [X ]
is the well-known conditional value-at-risk (also known as average value-at-risk).
This is defined as the tail expectation of X beyond the β-quantile, i.e.,

CVaRβ [X ] :=
1

1− β

∫ 1

β

qα[X ]dα,

where qα[X ] is the upper α-quantile of the random variable X . In this case, it is
possible to show that

R[X ] = min E[t+W ] over (t, x,W ) ∈ R× R
n × L1(Ξ,F ,P)

s.t.

W ≥ ai(X − t), i = 1, 2, P-a.s.

for 0 ≤ a1 < 1 < a2 where λ = 1− a1 ∈ (0, 1] and β = a2−1
a2−a1

∈ (0, 1). This would
indicate that the nonsmoothness of R in the objective can be removed from the
original problem by introducing the scalar variable t, slack W , and two inequality
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constraints. However, the inequality constraints may be not only non-convex and
high dimensional (d≫ 1), but they need to hold almost surely. In order to remedy
this problem, yet still enforce the constraints, we suggest a log-barrier approach.

The log-barrier approach allows us to eliminate the slack W and subsequently
obtain a new class of risk measures, which we call the “log-barrier risk measure”
Rµ. This has the general form of an optimized certainty equivalent

Rµ[X ] = inf
t∈R

{t+ E[v̂µ(X − t)]},

where v̂µ satisfies v̂µ(0) = 0, v̂′µ(0) = 1, and is strictly convex. The exact form
can be seen in [1]. A number of important properties can be demonstrated. For
example, as a mapping from L1(Ξ,F ,P) to R, Rµ is finite-valued, closed, con-
vex, invariant on constants, risk-averse, translation equivariant, and monotonic.
As a mapping from Lp(Ξ,F ,P) to R, Rµ is Hadamard differentiable for p = 1,
continuously Fréchet differentiable for 1 < p ≤ ∞, and the differential has the
form

R′
µ[X ] = v′µ(X − tµ(X)),

where tµ(X) = argmint E[t+ v̂µ(X− t)]. In addition, using several techniques from
the theory of variational convergence, it is possible to show that Rµ Γ-converges
to R as µ ↓ 0.

These results can then be used to derive primal and primal-dual optimality
conditions for the abstract setting under additional smooth assumptions on the
objective J , control-to-state mapping S, and cost functionals ℘. These conditions
are strongly reminiscent of the relaxed optimality conditions used in traditional
interior-point methods. Using these optimality conditions, we can build primal and
primal-dual interior point algorithms for the numerical solution of these challeng-
ing risk-averse optimization problems. A further consequence of the log-barrier
approach is the ability to take advantage of recent computational advances for
parametric PDEs using tensor-based decomposition methods. After justifying the
application of Newton’s method in a fully continuous setting, we conclude with a
numerical example that demonstrates the viability of the tensor-based approach.

Several open questions remain. For example, a fully intertwined numerical
method that links inexact calculation of the Newton steps, adaptive sampling
(where necessary), and hierarchical methods or adaptive finite elements with the
interior-point parameter µ > 0 has yet to be developed.
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Optimal Feedback Law Recovery by Gradient-Augmented Sparse
Polynomial Regression

Behzad Azmi

(joint work with Dante Kalise and Karl Kunisch)

In this talk, we aim at approximating the solutions of Hamilton-Jacobi-Bellman
(HJB) equations associated with a class of optimal control problems based on
machine learning techniques. We are concerned with the optimal control problems
which consist of minimizing

(1) J(u; t0, x) :=

∫ T

t0

(
ℓ(y(t)) + β‖u(t)‖22

)
dt,

subject to

(2)

{
d
dty(t) = f(y(t)) + g(y(t))u(t) for t ∈ (t0, T ),

y(t0) = x,

where β > 0, 0 ≤ t0 < T , and the vectors y(t) ∈ Rn and u(t) ∈ Rm stand for
the state and the control, respectively. Further, we assume that the dynamics
f : Rn → R

n, g : Rn → R
n×m, and the running cost function ℓ : Rn → R are

continuously differentiable.
Here, our objective is to approximate the value function V and the optimal

feedback control u∗ associated to the optimal control problem (1)-(2). The value
function V : [0, T ]× Rn → R is defined by

(3) V (t, x) := min
u(·)

{J(u; t, x) subject to (2)}.

It is well-known [2] that the value function is the unique solution of the following
differential equation
(HJB){

∂tV (t, x)− 1
2β∇V (t, x)tg(x)gt(x)∇V (t, x) +∇V (t, x)tf(x) + ℓ(x) = 0,

V (T, x) = 0,

and the optimal feedback control u∗ can be obtained by

(4) u∗(t, x) = − 1

2β
gt(t, x)∇V (t, x).

Due to the so-called “curse of dimensionality”, finding the direct solutions to
(HJB) is numerically intractable for high-dimensional optimal control problems.
To overcome the curse of dimensionality, we present a data-driven approach [1], in
which the solution of (HJB) is approximated by using orthogonal polynomials and
sampling strategies. Then, by using the approximated solution of (HJB), we can
derive the optimal feedback control for the corresponding optimal control problem.
This approach exploits the control theoretical link between (HJB) and first-order
optimality conditions via Pontryagin’s Maximum Principle and it is based on the
following main elements:
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(1) Generating a random dataset consisting of different state-value pairs,
(2) Hyperbolic cross approximation of the value function with respect to or-

thogonal polynomials including Chebyshev and Legendre polynomials,
(3) Sparse recovery via a (weighted LASSO) ℓ1 minimization decoder.

Numerical experiments are also given which reveal that enriching the dataset with
gradient information reduces the number of training samples and that the sparse
polynomial regression consistently yields a feedback law of lower complexity.

Future Research:

• The extension of the presented results in the context of time-dependent,
and second-order stochastic control problems.

• The extension of the presented results for infinite-horizon optimal control
problems by employing the receding horizon framework.
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Characterization of Generalized Derivatives for the Solution Operator
of the Bilateral Obstacle Problem and a Posteriori Error Estimators

for FE-Approximations of the Subgradient

Stefan Ulbrich

(joint work with Anne-Therese Rauls)

We consider optimal control problems for bilateral obstacle problems where the
control appears in a possibly nonlinear source term. The non-differentiability of
the solution operator poses the main challenge for the application of efficient op-
timization methods and the characterization of Bouligand generalized derivatives
[2, 10] of the solution operator is essential for their theoretical foundation and nu-
merical realization. We derive specific elements of the Bouligand generalized dif-
ferential if the control operator satisfies natural monotonicity properties [6, 8]. We
construct monotone sequences of controls where the solution operator is Gâteaux
differentiable and characterize the corresponding limit element of the Bouligand
generalized differential as being the solution operator of a Dirichlet problem on a
quasi-open domain. In contrast to a similar recent result for the unilateral obstacle
problem [7], we have to deal with an opposite monotonic behavior of the active
and strictly active sets corresponding to the upper and lower obstacle. For the
reduced objective functional, we obtain two elements of the Clarke subdifferential
by using an adjoint formula. Note that in the unilateral case for the particular
case of the Laplace operator and distributed control in H−1(Ω) the full Bouligand
generalized differential has been characterized in [9].
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Moreover, for the unilateral case we derive an a posteriori error estimator for
Clarke subgradients of the reduced objective functional that are computed using a
finite element discretization [6]. We address the inexactness that arises due to the
lack of knowledge on the correct active and strictly active sets, which are, by the
previous analysis, the sets determining the domain on which generalized derivatives
can be computed. We focus on the generalized derivative that is obtained on the
complement of the strictly active set. Using a nondegeneracy condition [5] that
is well known in the literature concerning the analysis of free boundaries [1, 4],
we can show that the strictly active set and the weakly active set have a suitable
structure. Now, based on an L∞-error estimator for the discrete state, see for
example [5], we derive discrete approximations of the complement of the strictly
active set from the interior to use it as the domain for the discrete subgradient
and from the exterior to find an upper bound for the error. The error estimator
can be used to control the error in inexact bundle methods, see for example [3].
We illustrate our findings in a numerical example [6].
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Directional Differentiability and Optimal Control for Elliptic
Quasi-Variational Inequalities

Amal Alphonse

(joint work with Michael Hintermüller and Carlos N. Rautenberg)

We consider the issues of directional differentiability and optimal control for the
quasi-variational inequality (QVI)

(1)
y ∈ K(y) : 〈Ay − f, y − v〉 ≤ 0 ∀v ∈ K(y),

K(y) := {v ∈ V : v ≤ Φ(y)}.

Here, V is a Hilbert space that possesses an ordering (e.g., V = H1(Ω) with u ≤ v
if and only if u ≤ v a.e. in Ω) and Φ: V → V is a given map called the obstacle
map.

Denoting by Q the set-valued mapping taking the source term f into the set
of solutions y (so that (1) reads y ∈ Q(f)), the directional differentiability of Q
is not only an interesting problem by itself but is also of use for optimal control,
numerics and applications. Note that the corresponding theory for variational
inequalities (VIs) has been thoroughly investigated, eg. [4, 5]. Our paper [1] is,
to our knowledge, the first work addressing this issue in the infinite dimensional
setting. In [1], we proved that given a source term f ≥ 0, a direction d ≥ 0 and
a function y ∈ Q(f), under certain assumptions, there exists ys ∈ Q(f + sd) such
that

lim
s→0+

ys − y

s
= α

where the directional derivative α satisfies

α ∈ KK(y)(y, α) : 〈Aα− d, v − α〉 ≥ 0 ∀v ∈ KK(y)(y, α),

with the set KK(y)(y, α) being a critical cone (the precise definition is omitted).
In [2], we extend the above result to all directions and source terms (no sign

is necessary) under considerably weaker assumptions on Φ that are all local in
nature. We also provide results on the convergence of solutions to the PDE

(2) Ayρ +
1

ρ
(yρ − Φ(yρ))

+
ρ = f

where (·)+ρ is a regularisation of the positive part function; indeed we show that
it is possible to find a subsequence (relabelled) such that yρ → y where y ∈ Q(f)
is a solution. This provides a way to approximate solutions of QVIs. We write
yρ ∈ Pρ(f) to denote the solution map associated to (2).

Furthermore, we also study optimal control problems of the form

min
u∈Uad,
y∈Q(u)

1

2
‖y − yd‖2H +

ν

2
‖u‖2H ,
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in particular we prove the existence of B-stationarity, (E-almost) C-stationarity
and strong stationarity points under varying sets of assumptions. For the C-
stationarity, we consider the family of penalised problems

min
u∈Uad,
y∈Pρ(u)

1

2
‖y − yd‖2H +

ν

2
‖u‖2H ,

derive stationarity conditions (by checking constraint qualifications) and then per-
form a careful analysis to pass to the limit. In the end, we obtain the E-almost
C-stationarity system

y∗ + (I− Φ′(y∗)∗)λ∗ +A∗p∗ = yd,

Ay∗ − u∗ + ξ∗ = 0,

u ∈ Uad : (νu∗ − p∗, u∗ − v) ≤ 0 ∀v ∈ Uad,

ξ∗ ≥ 0 in V ∗, y∗ ≤ Φ(y∗), 〈ξ∗, y∗ − Φ(y∗)〉 = 0,

〈λ∗, p∗〉 ≥ 0, 〈λ∗, y∗ − Φ(y∗)〉 = 0,

〈ξ∗, (p∗)+〉 = 〈ξ∗, (p∗)−〉 = 0,

∀τ > 0, ∃Eτ ⊂ {y∗ < Φ(y∗)} with |{y∗ < Φ(y∗)} \ Eτ | ≤ τ such that

〈λ∗, v〉 = 0 ∀v ∈ V : v = 0 on Ω \ Eτ ,

which can also be strengthened to C-stationarity under additional conditions. If
further assumptions are available, strong stationarity conditions can also be ob-
tained making use of the differentiability theory. Full details can be found in
[2].

It is well known that — in a specific setting with certain assumptions — the
QVI (1) possesses minimal and maximal solutions (denoted respectively m(f) and
M(f)) on some interval [u, u]:

m(f) ≤ y ≤ M(f) ∀y ∈ Q(f) ∩ [u, u].

In [3], we address the issues of directional differentiability for these maps. We
indeed show that m : V ∗ → V is directionally differentiable in every direction
d ≥ 0:

lim
s→0+

m(f + sd)−m(f)

s
= m

′(f)(d).

Furthermore, m′(f)(d) satisfies the QVI

(3) α ∈ Km(α) : 〈Aα− d, α− v〉 ≤ 0 ∀v ∈ Km(α),

where we again omit the definition of the critical cone Km(α). A similar result
holds for M(f) for directions d ≤ 0. The proof for these results uses the above
theory but some additional argumentation is necessary to derive these results. The
full details are given in [3].
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Inexact Bundle Methods for Nonconvex Nonsmooth Optimization in
Hilbert Spaces

Michael Ulbrich

(joint work with Lukas Hertlein)

We summarize part of our results1 [1, 2, 3] on a class of bundle methods for non-
smooth nonconvex optimization problems in infinite-dimensional Hilbert spaces.
Our approach can deal with inexact function value and subgradient evaluations
and seems to be the first that provides a full analysis of bundle methods in an
infinite-dimensional, nonconvex setting. Consider the optimization problem

(1) min
u∈U

p(ιu) + w(u) s.t. u ∈ Uad,

where ι : U → V is linear, compact, and injective, U , V are Hilbert spaces,
p : V → R is Lipschitz continuous on bounded sets, Uad ⊂ U is closed and convex,
and w : U → R is convex, continuously differentiable, and bounded on bounded
sets. Further, either w is strongly convex or Uad is bounded (here, we only consider
the former case). Typically, w has a simple structure, like α

2 ‖ ·‖2U . We set f = p◦ ι
and J = f + w, and write ‖ · ‖ = ‖ · ‖V , 〈·, ·〉 = 〈·, ·〉V ∗,V .

This setting can be motivated by optimal control problems governed by varia-
tional inequalities (VI). For instance, if S : H−1(D) → H1

0 (D) denotes the Lips-
chitz continuous solution operator of an obstacle problem, mapping external forces
to the state, and the control enters via a linear operator ι : L2(Ω) → H1

0 (D),
then often ι is compact (e.g., ι(u) = 1Ωu, Ω ⊂ D). Considering a cost func-
tion F (y) + α

2 ‖u‖2L2(Ω), where, on bounded sets, F is Lipschitz continuous and

bounded, the optimal control problem can be transformed to (1) via U = L2(Ω),
V = H−1(D), p = F ◦ S, w = α

2 ‖ · ‖2L2(Ω).

Our bundle method, developed and analyzed in [1, 2, 3], extends an approach by
Noll [4] in several respects, in particular, from Rn to infinite-dimensional Hilbert

1This work was supported by the DFG within the SPP 1962 Non-smooth and Complemen-
tarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization
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spaces. In each iteration k, a bundle subproblems of the form

(2) min
z∈Uad

Ψk(z), Ψk(z) = φk(z)+w(z)+〈Qkι(z−uk), ι(z−uk)〉+ τk
2 ‖ι(z−uk)‖2

is approximately solved to obtain a trial iterate z̃k. Here, φk : U → R is a cutting
plane model of p, explained below, τk > 0 is a proximity parameter, and Qk ∈
L(V, V ∗) is a self-adjoint operator that can be used to model curvature information
for p in a neighborhood of uk (e.g., by BFGS-updates; Qk = 0 is admitted as
well). Further, uk ∈ Uad is the current serious iterate. Suitable choices of Qk

and τk ensure that ‖v‖Qk+τkRV := (〈Qkv, v〉 + τk
2 ‖v‖2)1/2, with RV ∈ L(V, V ∗)

denoting the Riesz map, defines a norm on V that is equivalent to ‖ · ‖ with an

equivalence constant of size O(max{1, τ1/2k }). The problem (2) is strongly convex
and thus possesses a unique solution zk. As mentioned, our method only requires
to compute an approximate solution z̃k. At z̃k, an approximation f̃k to f(z̃k) is
computed. Then, by checking the ratio ρk between computed cost reduction and
model reduction, it is decided if z̃k can be chosen as the new serious iterate. In
this case (successful iteration), we set uk+1 = z̃k, choose Qk+1, τk+1, and build
the new cutting plane model φk+1. Otherwise (iteration unsuccessful), we choose
τk+1 ≥ τk, build φk+1, and set uk+1 = uk, Qk+1 = Qk.

In the case of an unsuccessful iteration, τk+1 = τk is chosen if the ratio ρ̃k
between φk+1- and φk-reduction at z̃k is sufficiently small (i.e., the model changes
sufficiently much), otherwise τk+1 = 2τk is chosen. If the iteration was successful,
we set τk+1 = Pk(τk/2) if ρk is sufficently large, otherwise τk+1 = Pk(τk); here, Pk

performs some safeguarding.
The cutting planes are constructed from bundle entries (z̃k, f̃k, z

g
k, g̃k), where

f̃k approximates f(z̃k) and g̃k is an approximate subgradient, provided by an
oracle, that returns an element of G(ιzgk) ⊂ V ∗ at the subgradient base point
zgk ∈ U . Typically, zgk = z̃k is chosen, but for more generality, also zgk 6= z̃k is
allowed. Here, G : V ⇒ V ∗ is a set-valued mapping that approximates a suitable
generalized differential of p. A typical choice is G(u) = ∂p(u) + εB̄V ∗ , where ∂p
is Clarke’s subdifferential, ε ≥ 0, and B̄X = {x ∈ X ; ‖x‖X ≤ 1}. We require
that G has nonempty convex images, that it is strongly-weakly closed, and that
it maps bounded sets to bounded sets. The choice of G can model inexactness in
the subgradient computation, and G then replaces the subdifferential (e.g., ∂p) in
the optimality conditions that we can prove for weak accumulation points of (uk).

Given a bundle entry (z̃k, f̃k, z
g
k, g̃k) and a serious iterate uk with corresponding

approximate function value f̃u
k ≈ f(uk), the associated cutting plane is defined by

mk(z;uk) = f̃k + 〈g̃k, ι(z − z̃k)〉 − [f̃k + 〈g̃k, ι(z − z̃k)〉 − f̃u
k ]+ − c‖ι(zgk − uk)‖2.

The two subtracted terms form the downshift, which ensures that mk(uk;uk) ≤
f̃u
k − c‖ι(zgk − uk)‖2 ≤ f̃u

k . There is a special cutting plane, the exactness plane,

which corresponds to the bundle entry (uk, f̃
u
k , uk, g̃

u
k ), where g̃

u
k ∈ G(uk):

mu
k(z) = f̃u

k + 〈g̃uk , ι(z − uk)〉.
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The cutting plane model is always chosen such that φk ≥ mu
k on U . Also, if

iteration k was unsuccessful, then we require φk+1 ≥ mk(·;uk+1) and that φk+1

majorizes the aggregate cutting plane, which is a certain convex combination of
cutting planes contained in φk. The general form of our cutting plane model
is φk(z) = maxm∈Mk

m(z), where Mk contains finitely many linear functions
m : U → R, which all are convex combinations of cutting planes induced by the
bundle entries computed so far. The convergence theory, however, requires only
the majorization criteria stated above.

In, e.g, Noll [4], the ǫ-convexity of the cost function is assumed. We extend this
as follows:

For ε > 0, p is called ε-G-convex at v̄ ∈ V if there exists δ > 0 such that

p(v + s)− p(v) ≥ 〈g, s〉 − ε‖s‖
∀ g ∈ G(v), ∀ v, s ∈ V with ‖v − v̄‖ < δ, ‖v + s− v̄‖ < δ, ‖s‖ < δ.

The function p is called approximately convex at v̄ if p is ε-∂p-convex at v̄ ∈ V for
all ε > 0. These conditions are relatively weak. For instance, if p = p1+ p2, where
p1 is C1 and p2 is convex near v̄, then p is approximately convex at v̄.

In our convergence theory, we always assume

(3) |f̃k − f(z̃k)| ≤ ∆ and Ψk(z̃k)−Ψk(zk) → 0 (k → ∞).

Our first convergence result states that, if z̃gk = z̃k and if suitable, implementable

accuracy conditions for Ψk(z̃k) and f̃k, are satisfied, the latter involving a tolerance
ε1 ≥ 0, and if {u ∈ Uad ; J(u) ≤ J(u0) + 2∆} is bounded, then for any weak limit
point ū of (uk), there holds:

If there exists a subsequence (uk)K of unsuccessful iterations (i.e., ρk < γ) with
τk+1 = τk (i.e., ρ̃k ≥ γ̃ > γ) for all k ∈ K, uk ⇀K ū, and τk →K ∞, then, if p is
ε2-G-convex at ιū, the point ū is η-G-stationary for η = 2

γ̃−γ (ε1 + ε2):

(4) 0 ∈ w′(ū) +NUad
(ū) + ι∗(G(ιū) + ηB̄V ∗),

where NUad
is the normal cone map of Uad.

In all other cases, ū is 0-G-stationary.

This convergence theorem and other variants [1, 3] can be derived from the fol-
lowing general result [1]:

Define ek = (Qk + τkRV )ι(uk − zk) and, for ū ∈ U ,

Eū = {ǫ ∈ [0,∞] ;∃ subsequence K ⊂ N0 : ρk < γ, ρ̃k ≥ γ̃ (k ∈ K),

τk →K ∞, uk ⇀K ū in U, ‖ek‖V ∗ →K ǫ}.
Now, if (3) holds and if the set of all bundle entries used by the algorithm is
bounded, then every weak limit point ū of the sequence of serious iterates (uk) is
η-G-stationary in the sense of (4), where η = 0 if Eū = ∅ and η = inf Eū, otherwise.
For (e.g., FEM) discretizations, the accuracy requirements can be ensured using
error estimates. The subproblems can be solved via their duals and the accuracy
of Ψk(z̃k) can be controlled. The method has been applied to optimal control of
obstacle problems and shows encouraging results.
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For further results and details, we refer to [1, 2, 3].
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Nonlinear Observer Design Based on Minimum Energy Estimation

Tobias Breiten

(joint work with Karl Kunisch)

Estimating the state of a nonlinear perturbed dynamical system based on (output)
measurements is a well-known control theoretic problem. While in the linear case,
an optimal observer is given by the famous Kalman(-Bucy) filter, in the nonlinear
case, constructing observers is significantly more complex and many approaches
such as extended or unscented Kalman filters exist. The Mortensen observer relies
on the concept of minimum energy estimation and a value function framework
which is determined by a Hamilton-Jacobi-Bellman equation. In the following, an
introduction to these concepts as well as a neural network based approximation
technique for nonlinear observer design is provided.

State estimation, observer design and the Kalman-Bucy filter

Consider a nonlinear disturbed dynamical system of the form

(1)
ẋ(t) = f(x(t)) +Bv(t), x(0) = x0 + ζ,

y(t) = Cx(t) + w(t),

where f : Rn → Rn, B ∈Rn×m, C ∈ Rp×n and v ∈ L2(0,∞;Rm), w ∈ L2(0,∞;Rp),
ζ ∈ Rn are unknown disturbances. For given T > 0 and y ∈ L2(0, T ;Rp), the goal
of state estimation is to find an estimate x̂(T ) such that x̂(T ) ≈ x(T ). If, addi-
tionally, an approximation x̂ of the full trajectory x ∈ L2(0, T ;Rn) is sought, one
typically aims at the design of a dynamical observer :

(2)
˙̂x(t) = f̂(x̂(t), ŷ(t)− y(t)), x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t),

where the observer dynamics depend upon the current (output) prediction error
ŷ − y. In the case of linear dynamics, i.e., f(x(t)) = Ax(t) and Gaussian white
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noise v, w, the problem is well-known and has been solved by the Kalman-Bucy
filter, see [3].

Minimum energy estimation

For stochastic perturbations of the nonlinear problem (1), finding the conditional
posterior distribution p(x(t) | {y(τ) : 0 ≤ τ ≤ t}) is known to lead to the Kushner-
Stratanovich or Zakai equation, see, [6, 9, 10]. Since these are (nonlinear) stochas-
tic partial differential equations on the state space, a computational realization
of the corresponding observer/filter is infeasible. As a remedy, several alterna-
tives and approximations techniques have been proposed, one of them being the
so-called Mortensen observer. Initially suggested as a maximum likelihood esti-
mator ([8]), it is also known as minimum energy estimator, see, [4]. The typical
viewpoint ([2, 7]) is to assume the disturbances v, w to be deterministic solutions
to an appropriate optimal control problem. Proceeding this way, one can derive a
dynamical observer of the form

(3) ˙̂x(t) = f(x̂(t)) + (∇ξξV(t, x̂(t)))−1C⊤(y(t)− Cx̂(t)), x̂(0) = x0,

where the value function V (under regularity assumptions) satisfies a time-depen-
dent Hamilton-Jacobi-Bellman equation of the form

(4)
∂tV(t, ξ) = −∇ξV(t, ξ)⊤f(ξ)−

1

2
‖B⊤Vξ(t, ξ)‖2 +

1

2
‖y(t)− Cξ‖2,

V(0, ξ) = 1

2
‖ξ − x0‖2Q0

.

A learning formulation for observer design

Since naive discretizations of (4) suffer from the curse of dimensionality, a viable
alternative is to instead consider meshless approximation techniques. One such ap-
proach relies on neural network based approximations and utilizes the underlying
optimal control problems for training the network. In context of optimal feedback
control, this strategy has been investigated theoretically and numerically in [5].
Motivated by these promising results, we propose to construct approximations of
the form

˙̂xθ(t) = f(x̂θ(t)) + (Dxhθ(t, x̂θ(t)))
−1C⊤(y(t)− Cx̂θ(t)), x̂θ(0) = x0,

where ∇ξV(t, x) ≈ gθ(t, x) is determined by a neural network

gθ : R
n+1 → R

n, gθ(z) =
(
gθL ◦ gθL−1 ◦ · · · ◦ gθ1

)
(z),

gθi : R
ni−1 → R

ni , gθi(z) = σ(Wiz + bi) +Riz, i = 1, . . . , L− 1,

gθL : R
nL−1 → R

nL , gθL(z) =WLz,
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with parameters θ = (Wi, Ri, bi) and an activation function σ. For the computa-
tion of the parameters θ = (Wi, Ri, bi) we consider the following optimal control
problem:

min
θ∈R

N

1
d

d∑
j=1

(
1
2‖xθ,j(0)‖2Q0

+ 1
2

T∫
0

(‖B⊤hθ(t, xθ,j(t))‖2 + ‖y(t)− Cxθ,j(t)‖2) dt
)

s.t. ẋθ,j(t) = f(xθ,j(t)) +BB⊤hθ(t, xθ,j(t)), xθ,j(T ) = ξj , j = 1, . . . , d,

which relies on the theoretical foundation of the Mortensen observer. For typi-
cal (nonlinear) oscillators, we show numerical results of our approximations and
compare them with standard nonlinear observers such as the extended Kalman
filter.

Challenges and future work

Since the approach relies on the (inverse) Hessian of the value function along the
(unknown) optimal state estimate x̂, regularity properties of V have to be studied.
Here, recent techniques from optimal feedback control could be used. Further
study should rely on an efficient numerical computation of neural network based
observers for large-scale (discretized) partial differential equations.
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Control and Deep Learning: Some Connections

Enrique Zuazua

(joint work with Borjan Geshkovski)

It is superfluous to state the impact that deep learning has had on modern tech-
nology, as it powers many tools of modern society, ranging from web search to
content filtering on social networks ([1]). A key paradigm of deep learning is that
of supervised learning, which addresses the problem of predicting from labeled
data, consisting in approximating an unknown function f(·) : X → Y from N

known but possibly noisy data samples {~xi, ~yi}Ni=1 with ~xi ∈ X ⊂ Rd and ~yi ∈ Y.
We shall mostly concentrate on classification tasks, wherein Y = {1, . . . ,m}.

The workhorse behind the recent successes of deep learning are models called
deep neural networks for providing an approximation fapprox of the unknown func-
tion f ; these are parametrized computational architectures which propagate each
individual sample ~xi of the input data across a sequence of linear parametric
operators and simple nonlinearities. A canonical example of such models is the
perceptron, parametrized as

(1) fapprox(x) =

d∑

j=1

w1,jσ(w2,jx+ bj)

where w1 ∈ R
d, w2 ∈ R

d×d and b ∈ R
d are unknown parameters, with σ : R → R

being a globally Lipschitz continuous function, defined element-wise, the so-called
activation function.

A by-now classical result, Cybenko’s universal approximation theorem ([2]) en-
sures that the set of functions which can be represented by formula (1) is a dense
subset of C0([−1, 1]d). This theory has since flourished, and universal approxima-
tion results have been shown for more compound models than (1) (see [3]).

In practice however, one looks to use models wherein the compositions are
iterated over multiple layers. A staple of modern neural networks are the so-called
residual neural networks (ResNets, [4]) which may often be cast as schemes of the
mould

(2)

{
xk+1
i = xk

i + wk
1σ(w

k
2x

k
i + bk) for k ∈ {0, . . . , Nlayers − 1}

x0
i = ~xi

for all i ∈ [N ], where [N ] := {1, . . . , N}, wk
1 , w

k
2 ∈ Rd×d and Nlayers ≥ 1 designates

the number of layers referred to as the depth. Due to the inherent dynamical
nature of ResNets, several recent works have aimed at studying an associated
continuous-time formulation in some detail, a trend started with the work [5].
This is motivated by the simple observation that for any i ∈ [N ] and for T > 0,
(2) is roughly the forward Euler approximation of the neural ordinary differential
equation (neural ODE)

(3)

{
ẋi(t) = w1(t)σ(w2(t)xi(t) + b(t)) for t ∈ (0, T )

xi(0) = ~xi ∈ R
d.
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It should be noted that the origins of continuous-time supervised learning go back
to the 1980s – in [6] back-propagation algorithms are connected to the adjoint
method arising in optimal control (see also [7, 8]).

One readily sees that the parameters w2, w1, b in the neural ODE play the role
of controls, and thus, the supervised learning problem may be seen as a compound
and high-dimensional simultaneous control problem.

This is the viewpoint adopted by our group. And here we present some of our
main findings.

We first analyze neural ODEs from a control theoretical perspective to obtain
a fundamental understanding of the working mechanisms behind the processes of
classification (more precisely, how the neural ODE flow manages separation of the
different classes of data according to their labels).

These objectives are tackled and achieved from the perspective of the simul-
taneous control of systems of neural ODEs. Namely, in [9] we prove that both
separation and universal approximation (to arbitrary L∞

loc or L2
loc functions) are

valid properties for the controlled neural ODE flow by means of genuinely non-
linear and constructive proofs, allowing us to also estimate the complexity of the
developed control strategies. Indeed, the nonlinear nature of the activation func-
tion allows deforming half of the phase space while the other half remains invariant,
a property that classical models in mechanics do not fulfill. This very property al-
lows to build elementary controls inducing specific dynamics and transformations
whose concatenation, along with properly chosen hyperplanes, allows achieving
our goals in finitely many steps. We also present the counterparts in the context
of the control of neural transport equations, establishing a link between optimal
transport and deep neural networks.

In practical applications however, the time-dependent parameters/controls are
found by minimizing some cost functional rather than explicitly, via a process
commonly referred to as training. Due to the ODE reformulation of ResNets, the
training process is nothing else than an optimal control problem which consists in
finding optimal parameters steering all of the network outputs Pxi(T ) as close as
possible to the corresponding labels ~yi, where P : Rd → Rm is a given affine and
surjective map (e.g., a random matrix) which serves to match dimensions.

In [10, 11], we propose the training problem consisting in minimizing

(4)
1

N

N∑

i=1

loss (Pxi(T ), ~yi) +

∫ T

0

‖xi(t)− xi‖2dt+ ‖u‖2H1(0,T ;Rdu ),

where loss(·, ·) is a given continuous and nonnegative function which, in classifi-
cation tasks (for simplicity, say m = 2), is usually loss(x, y) := ‖σ(x) − y‖2 or
loss(x, y) = log(1 + exp(−yx)), and xi ∈ P−1({~yi}).

As each time-step of a discretization to (3) may be seen to represent a different
layer of the ResNet (2), the time horizon T > 0 in (3) may serve as an indicator of
the number of layersNlayers in the discrete-time context (2). A good understanding
of the dynamics of the learning problem over longer time horizons would lead
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to potential rules for choosing the number of layers, and enlighten the possible
generalization properties when the number of layers is large.

In [10, 12], under specific controllability assumptions on the neural ODE (which
are addressed in [9]), but without any smallness assumptions on the data, targets,
or smoothness assumptions on the dynamics (we only assume σ ∈ Lip(R)), we
conclude that the optimal controls uT = [w1,T , w2,T , bT ] and associated optimal
trajectories xT satisfy

(5)
1

N

N∑

i=1

loss (PxT,i(t), ~yi) + ‖xT,i(t)− xi‖ ≤ C e−µt

and, moreover

(6) ‖uT (t)‖ ≤ Ce−µt

for some constant C, µ > 0 independent of T and for all t ∈ [0, T ]. This is a
manifestation of the so-called turnpike property, well-known in optimal control
and economics ([13]).

Outlook. In the above presented works, we have studied a variety of supervised
learning tasks from the continuous-time control theoretical perspective, allowing
us to obtain fundamental understanding of the working mechanisms and properties
that deep learning. We have, however, focused solely on supervised learning tasks,
namely, wherein the dataset is labeled. A major challenge which ought to be
formulated and addressed in a more control theoretical framework is the topic of
unsupervised learning, wherein one only disposes of unlabeled data {~xi}.
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Well-Posedness and Optimal Control of a Complex PDE-System
Modelling Tumor Growth

Pierluigi Colli

(joint work with Andrea Signori and Jürgen Sprekels)

In this note we recall some results on the well-posedness and optimal control for a
complex PDE-system arising from an extended model of phase field type for tumor
growth. In the model, the key assumption is that the tumor cells are submerged
in a nutrient-rich environment which is the primary source of nourishment for the
tumorous cells: this is a reasonable assumption at least for young tumors (avascular
tumors). A four-species PDE system (tumor cells, healthy cells, nutrient-rich
concentration, nutrient-poor concentration - see [4]) is considered, which couples
a viscous Cahn–Hilliard equation with source term for the tumor with a reaction-
diffusion equation for the surrounding nutrient. The chemotaxis effects are taken
into account and the analysis for a singular potential is developed.

In the continuummodel, the sharp interfaces are replaced by a narrow transition
layer modelling the adhesive forces among the cell species: a diffuse interface
separates tumor and healthy cell regions. Indeed, the proliferating tumor cells are
surrounded by (healthy) host cells and by a nutrient. The variable ϕ is used for
the difference in volume fraction, so that ϕ = 1 represents the tumor phase and
ϕ = −1 is for the healthy tissue phase, while σ stands for the concentration of the
nutrient. Based on the Cahn–Hilliard approach, an additional variable µ plays the
role of the chemical potential.

The system we address in a bounded domain Ω ⊂ R3 and a time interval (0, T )
is (cf. [2])

α∂tµ+ ∂tϕ−∆µ = (Pσ −A− u)h(ϕ) in Q,(1)

µ = β∂tϕ−∆ϕ+ F ′(ϕ) − χσ in Q,(2)

∂tσ −∆σ = ∆(−χϕ) +B(σs − σ)−Dσh(ϕ) + w in Q,(3)

∂nµ = ∂nϕ = ∂nσ = 0 on Σ,(4)

µ(0) = µ0, ϕ(0) = ϕ0, σ(0) = σ0 in Ω,(5)

where Γ = ∂Ω, Q = Ω × (0, T ), Σ := Γ × (0, T ) and ∂n indicates the outward
normal derivative to Γ.

Here, α and β denote two relaxation positive coefficients (that can go to zero
with consequences on the limit system – see [1] and its references); A,B,D, P
denote positive rate values standing for apoptosis, nutrient supply, nutrient con-
sumption, and proliferation, respectively; u and w are source terms acting as
control variables in the system; h(·) denotes an interpolation function between −1
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and 1 such that h(−1) = 0 and h(1) = 1, so that the mechanisms ruled by the
terms (Pσ −A− u)h(ϕ) and Dσh(ϕ) are switched off in the healthy case ϕ = −1,
and fully active in the tumorous case ϕ = 1.

The constant coefficient χ is referred to chemotaxis; indeed, the contributions
−χσ in (2) and ∆(−χϕ) in (3) give account of pure chemotaxis and active trans-
port, both related to the movement of cells towards regions of increasing or de-
creasing concentration. The term σs is nonnegative and models concentration in
a pre-existing vasculature.

Finally, the term F ′ is the derivative of a double-well nonlinearity. Typical
examples for this nonlinearity are the regular potential

Freg(r) =
1

4
(r2 − 1)2 for r ∈ R,(6)

and, more relevant for applications, the logarithmic potential

Flog(r) = (1 + r) ln(1 + r) + (1− r) ln(1− r)− kr2 for r ∈ (−1, 1),(7)

where k > 1 so that Flog is nonconvex. About F we set the general assumptions

(F1) F = F1 + F2, where F1 : R → [0,+∞] is convex and l.s.c. with F1(0) = 0.
(F2) There exist r−, r+, with −∞ ≤ r− < 0 < r+ ≤ +∞, such that the

restriction of F1 to (r−, r+) is differentiable with derivative F ′
1.

(F3) F2 ∈ C3(R) and F ′
2 is Lipschitz continuous.

(F4) F|(r−,r+)
∈ C3(r−, r+) and lim

r→r±
F ′(r) = ±∞.

Existence and uniqueness of a strong solution of (1)–(5) are ensured by this
result, which is proved in [2].

Theorem 1. Assume (F1)− (F4), h ∈ C2(R) ∩W 2,∞(R) positive on (r−, r+),
σs given, u,w ∈ L∞(Q),

ϕ0 ∈ H2
n(Ω), ϕ0 ∈ domain (F1) a.e. in Ω, µ0, σ0 ∈ H1(Ω) ∩ L∞(Ω).

Then the problem (1)–(5) admits a solution such that

ϕ ∈W 1,∞(0, T ;L2(Ω)) ∩H1(0, T ;H1(Ω)) ∩ L∞(0, T ;H2(Ω)),

µ, σ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L∞(Q),

where H2
n(Ω) := {f ∈ H2(Ω) : ∂nf = 0 on Σ}. In addition, if r− < inf ϕ0 ≤

supϕ0 < r+, there exist some constants r∗ and r∗, r− < r∗ ≤ r∗ < r+, such that
r∗ ≤ ϕ ≤ r∗ a.e. in Q and consequently

‖ϕ‖L∞(Q) + max
i=1,2,3

‖F (i)(ϕ)‖L∞(Q) ≤ K

for some positive constant K. Moreover, let (µi, ϕi, σi), i = 1, 2, be two solutions to
(1)–(5) obtained as above, with initial data (µi

0, ϕ
i
0, σ

i
0) and control terms (ui, wi),
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i = 1, 2. Then, we have that

‖µ1 − µ2‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))

+‖ϕ1 − ϕ2‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))

+‖σ1 − σ2‖H1(0,T ;L2(Ω))∩L∞(0,T ;H1(Ω))∩L2(0,T ;H2(Ω))

≤ K
(
‖µ1

0 − µ2
0‖H1(Ω) + ‖ϕ1

0 − ϕ2
0‖H1(Ω) + ‖σ1

0 − σ2
0‖H1(Ω)

+ ‖u1 − u2‖L2(Q) + ‖w1 − w2‖L2(Q)

)

for another constant K depending only on data and structural assumptions.

About the optimal control problem, let us consider the tracking-type cost func-
tional

J (ϕ, u, w) :=
γ1
2

∫

Ω

|ϕ(T )− ϕΩ|2 +
γ2
2

∫

Q

|ϕ− ϕQ|2 +
γ3
2

∫

Q

|u|2 + γ4
2

∫

Q

|w|2,

with ϕ being the first component of the solution to the state system (1)–(5), and
with the control box

U := {(u,w) ∈ (L∞(Q))2 : u∗ ≤ u ≤ u∗, w∗ ≤ w ≤ w∗},
where u∗, u∗, w∗, w∗ ∈ L∞(Q), ϕΩ ∈ L2(Ω), ϕQ ∈ L2(Q). In fact, the control prob-
lem is motivated by the search for a strategy how to apply the controls u,w (nu-
trients, therapy, drug, ...) to the system in order that L2-amount of substances
supplied (which is restricted by the L∞-constraints in U) does not inflict any harm
on the patient; on the other hand, the final distribution and desired evolution of
the tumor cells (expressed by the target functions ϕΩ and ϕQ) have to be realized
in the best possible way. The values of the coefficients γi, i = 1, 2, 3, 4, have to
be chosen in order to set precisely the targets, which could range from avoiding
unnecessary harm to the patient to qualifying the approximation of ϕΩ and ϕQ.
Notice that the setting (F1)–(F4) for the potential F turns out to be quite gen-
eral and allows us to study the optimal control problem also in the case of the
logarithmic potential (7).

In [2] we proved a variety of results, in particular we could discuss the existence
of optimal controls, show the Fréchet differentiability of the control-to-state op-
erator in a suitable framework, and derive the first-order necessary conditions of
optimality in terms of a variational inequality involving the adjoint problem.

Finally, let us mention the contribution [5], devoted to the study of directional
sparsity effects, by including a non-differentiable (but convex) term like some L1-
penalization in the cost functional, and the recent paper [3], which deals with the
second-order sufficient conditions for optimality and it investigates them in depth.
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Optimal Control of Perfect Plasticity

Christian Meyer

(joint work with Stephan Walther)

We consider two optimal control problems governed by the system of perfect plas-
ticity. The first problem is a stress tracking problem and reads as follows:

(Pσ)





min 1
2 ‖σ(T )− σd‖2L2(Ω) +

α
2 ‖∂tℓ‖2L2(0,T ;Xc)

s.t. Equilibrium condition:

σ(t) ∈ E := {τ ∈ L
2(Ω) : 〈τ,∇sϕ〉L2 = 0 ∀ϕ ∈ H1

D(Ω)}
Yield condition:

σ(t) ∈ K := {τ ∈ L
2(Ω) : τ(x) ∈ K f.a.a. x ∈ Ω}

Flow rule:

〈C−1∂tσ(t)−∇s∂tuD(t), τ − σ(t)〉L2 ≥ 0 ∀ τ ∈ E ∩ K
Initial condition: σ(0) = σ0

and uD = G(ℓ) + a with ℓ(0) = ℓ(T ) = 0.

Herein, Ω ⊂ R
d, d = 2, 3, is a bounded Lipschitz domain that, together with its

boundary ΓD ∪ ΓN is regular in the sense of Gröger [2], and T > 0 is a given final
time. Moreover, L2(Ω) := L2(Ω;Rd×d

sym) and

H1
D(Ω) := {ψ|Ω : ψ ∈ C∞

0 (Rn), supp(ψ) ∩ ΓD = ∅}H
1(Ω;Rn)

.

The variable σ : [0, T ]× Ω → Rd×d
sym denotes the stress field of the body occupying

the domain Ω and represents the state variable of the problem. The Dirichlet
displacement uD serves as control variable and is itself controlled by a pseudo force
ℓ through a given linear and bounded operator G that maps the control space Xc

compactly to H1(Ω). A possible example for such an operator is the solution
operator of linear elasticity. The set K ⊂ Rd×d

sym is the set of feasible stresses and

is assumed to be closed and convex, and the elasticity tensor C : Rd×d
sym → R

d×d
sym is

a linear and coercive mapping. Furthermore, σ0 ∈ Lp(Ω), p > d, is a fixed initial
stress distribution. Finally, α > 0, a ∈ H1(0, T ;H1(Ω)), and σd ∈ L2(Ω) are
given data. The motivation for the above optimization problem is to deform the
Dirichlet part of a workpiece in a prescribed manner (given by a) and at the same
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time to minimize the deviation of the stress field at end time to a given desired
stress field σd.

Based on results of [4], the existence and uniqueness of solutions to the state
equation in (Pσ) can be shown. The associated solution operator is Lipschitz
continuous, which allows to establish the existence of globally optimal solutions to
(Pσ) by the standard direct method of the calculus of variations. Due to the flow
rule inequality however, the solution operator is not Gâteaux-differentiable and
therefore, the application of gradient-based optimization algorithms off the shelf
is not possible. Following a well-established approach, cf. e.g. [9], we employ the
Yosida regularization (resp. viscous approximation) of the flow rule accompanied
by a further smoothing in order to obtain a differentiable mapping. At this point,
the higher integrability results from [3] are decisive. Standard arguments show that
sequences of global minimizers of the regularized optimal control problems admit
(weak = strong) accumulation points for regularization and smoothing parameter
tending to zero and every such accumulation point is a global solution of (Pσ).
Numerical examples illustrate the feasibility of this approach, see [5].

The second problem is the following displacement tracking problem:

(Pu)





min J(u, uD) :=

∫ T

0

‖∇s∂tu(t)− µ(t)‖2
M(Ω;Rd×d

sym )

+ ‖∂tu(t)− v(t)‖2L1(Ω) dt+
α

2
‖uD‖2H1(0,T ;H2(Ω))

s.t. Equilibrium and yield condition: σ(t) ∈ E ∩ K,
Flow rule: ∀ τ ∈ Σ ∩K :
∫

Ω

C
−1∂tσ(t) :

(
τ − σ(t)

)
dx+

∫

Ω

∂tu(t) · div
(
τ − σ(t)

)
dx

≥
∫

Ω

∇s∂tuD(t) :
(
τ − σ(t)

)
+ ∂tuD(t) · div

(
τ − σ(t)

)
dx,

Initial condition: u(0) = u0, σ(0) = σ0,

and uD(0) = u0 on ΓD.

Here we assume that we can directly control the Dirichlet data uD. The state
now consists of two variables, the stress (as before) and the displacement u ∈
H1

w(0, T ;BD(Ω)), where BD(Ω) is the space of bounded deformation, see e.g. [8],
which lacks the Radon-Nikodým property such that the displacement is only
weakly measurable in time. Now the aim of the optimization is to control the
Dirichlet displacement in order to reach a desired strain rate µ and a desired dis-
placement rate v. Existence of solutions to the state equation has been established
in [7, 1], but classical counterexamples show that the displacement is in general
not unique (in contrast to the stress). We underline that the safe-load condition,
which is needed to guarantee the existence of solutions, is automatically fulfilled in
case of (Pu), since we have no external loads, but use the Dirichlet data as control
variable. Due to the non-uniqueness of solutions to the state equation, (Pu) is
strictly speaking no optimal control problem, but rather an optimization problem
in function space. Nevertheless, based on continuity properties of the solution set
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of the state equation, one again establishes the existence of optimal solutions by
means of the direct method. The approximation of optimal solutions via Yosida
regularization of the flow rule is however by far more complicated compared to the
stress tracking problem. In particular, the so-called reverse approximation prop-
erty, i.e., the construction of a recovery sequence for an optimal solution of (Pu),
which is feasible for the regularized problems, is challenging. The construction
of such a sequence requires an additional control variable in terms of distributed
loads that are forced to vanish in the regularization limit by means of a tailored
penalty term within the objective. Unfortunately, this is still not sufficient for the
construction of a recovery sequence and we were only able to establish the exis-
tence of such a sequence under additional fairly restrictive regularity assumptions
that have to be fulfilled by at least one optimal solution to (Pu), see [6] for details.
The weakening of these assumptions is subject to future research.
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Appliqués, 55 (1976), 431–444.

[5] C. Meyer and S. Walther, Optimal control of perfect plasticity, Part I: Stress tracking.
arXiv:2001.02969, 2020, to appear in MCRF .

[6] C. Meyer and S. Walther, Optimal control of perfect plasticity, Part II: Displacement track-
ing. arXiv:2003.09619 , 2020.
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Semiglobal Oblique Projection Exponential Dynamical Observers for
Nonautonomous Semilinear Parabolic-like Equations

Sérgio S. Rodrigues

Let us be given a scalar parabolic equation as

(1) ∂
∂ty + (−∆+ 1)y + ay + b · ∇y − y3 = f, Gy|∂Ω = g,

evolving in a bounded, convex polygon (polyhedron) Ω ⊂ R3. The functions
a = a(t, x) ∈ R, b = b(t, x) ∈ R3, f = f(t, x) ∈ R, and g = g(t, x) ∈ R are given
and known, for (t, x) ∈ [0,+∞)×Ω. By 1 we denote the identity operator, and G
stands for either Dirichlet or Neumann boundary conditions, G ∈ {1, ∂

∂n}.
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The state y = y(t, x), and in particular the initial state y(0, x), is unknown.

The main goal is to obtain an estimate ŷ = ŷ(t, x) for the state y = y(t, x).

Motivation. Obtaining an estimate ŷ for the state y is of interest for applications,
for example, in the implementation of feedback controls, where the control u is a
function of the state u = K(y). Since y is usually unknown, the approximated
feedback û = K(ŷ) is used instead.

The sensors. For the construction of such state estimate we can use a Luenberger-
type observer based on a finite number of sensor measurements.

Let us consider, as sensors, the indicator functions in the set

(2) WS := {1ωS,i | 1 ≤ i ≤ S} ⊂ L2(Ω), WS = spanWS , dimWS = S,

where ωS,i ⊆ Ω, and we take average-like measurements as

wS,i(t) := (1ωS,i , y(t, ·))L2 =

∫

ωS,i

y(t, x) dx.

The vector w(t) ∈ RS×1, w(t) =




wS,1(t)
wS,2(t)

...
wS,S(t)


 =: ZSy is called the output.

The result. For an arbitrary pair (µ,R) of positive constants. the estimate ŷ(t)
given by the Luenberger observer/estimator

∂
∂t ŷ + (−ν∆+ 1)ŷ + aŷ + b · ∇ŷ − ŷ3 = f + I(ZS ŷ −ZSy), Gŷ|∂Ω = g,(3a)

with an output injection operator I in the explicit form

I := −λA−1P
W̃⊥

S

WS
A2P

W⊥
S

W̃S
ZS ,(3b)

converges exponentially to the state y(t) as time increases, as

(4) |ŷ(t, ·)− y(t, ·)|H1(Ω) ≤ e−µt |ŷ(0, ·)− y(0, ·)|H1(Ω) , t ≥ 0,

provided that |ŷ(0, ·)− y(0, ·)|H1(Ω) ≤ R and that λ > 0 and S ∈ N+ are both

large enough. Here ŷ(0, ·) can be chosen/set as an initial guess we might have

for y(0, ·), S is the number of “appropriately” placed sensors as (2), and W̃S is an
“appropriate” auxiliary space. Namely, it is required that

(5) L2(Ω) = WS ⊕ W̃⊥
S , and lim

S→+∞
min

Q∈D(A)
⋂W⊥

S

|AQ|L2(Ω)

|Q|H1(Ω)
= +∞,

where A = −ν∆ + 1 is the shifted Laplacian operator under the respective
(Neumann or Dirichlet) boundary conditions. The operator ZS is defined by

P
W⊥

S

WS
z = ZZSz. Finally for X and Y closed subspaces of L2(Ω) = X ⊕ Y , P Y

X

denotes the oblique projection in L2(Ω) onto X along Y , defined as follows: we
write h ∈ L2(Ω) as h = hX + hY with (hX , hY ) ∈ X × Y and set PY

X h := hX .
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Remarks. The auxiliary space W̃S is needed due to a regularity detail. If the

sensors satisfy WS ⊂ D(A), then we can take W̃S = WS .

The direct sum in (5) is satisfied if W̃S = span{ψS,i | 1 ≤ i ≤ S} ⊂ D(A)
where ψS,i is close enough to 1ωS,i in L

2(Ω) norm.
The divergent limit condition in (5) is satisfiable for convex polygonal domains.
The result also holds for more general nonlinearities.
For more details we refer to [1]. See also [2] for the linear case.

Simulations. We consider the case of 4, 9, and 16 sensors as indicator functions of

the subrectangles as in Figure 1. As auxiliary set W̃S we take bump-like functions
“approximating” such indicator functions.

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Figure 1. Locations of sensors in cases Sσ ∈ {4, 9, 16}.

In the figures, the number of sensors is denoted by Sσ. The simulations corre-
spond to an academic dynamical system inspired be the error z = ŷ− y dynamics,

∂
∂tz + (−ν∆+ 1)z + az + b · ∇z − |z|3Rz + ( ∂

∂x1
z − 2 ∂

∂x2
z)z = IZSz

z(0, x) = 2−x1x2

|2−x1x2|H1(Ω)
, ∂z

∂n

∣∣
∂Ω

= 0.

As parameters we take,

ν = 0.1, a = −2 + x1 − | sin(t+ x1)|R, b =

[
x1 + x2

cos(t)x1x2

]
.

In Figure 2 we see that without output injection, λ = 0, the norm of the “error”
blows up in finite time. With 4 measurements we can delay but not avoid the blow
up of the norm (the simulations with Sσ = 4 have been run up to time T = 15,
the fact that the figure does not show the plot up to t = 15, means that the norm
blew up, around time t ≈ 10). On the other hand, Figure 3 shows that, with 9
and 16 measurements we obtain the stability of the norm.

Open problems. It would be interesting to:
• construct an analogous explicit output injection for boundary sensors,

• investigate optimal sensors positions maximizing min
Q∈D(A)

⋂W⊥
S

|AQ|L2(Ω)

|Q|H1(Ω)
, in (5).
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Figure 2. The free dynamics and the case of 4 sensors.
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Figure 3. The case of 9 and 16 sensors.
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Numerical Analysis of Sparse Initial Data Identification for
Parabolic Problems

Boris Vexler

(joint work with Dmitriy Leykekhman and Daniel Walter)

In this talk we discuss the problem of identification of initial data for a homo-
geneous heat equation from an observation of the terminal state. This problem
is known to be exponentially ill-conditioned. Under the assumption that the un-
known initial state is sparse, we formulate the problem as a PDE-constrained
optimal control problem on a measure space for the control variable as follows:
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minimize
1

2
‖u(T )− ud‖2L2(Ω) + α‖q‖M(Ω),

for q ∈ M(Ω), subject to

∂tu−∆u = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = q in Ω.

Here, Ω ⊂ Rd (d = 2, 3) is a convex polygonal / polyhedral domain, M(Ω) is
the space of regular Borel measures, which can be identified with the dual space
of continuous functions, i.e M(Ω) = C0(Ω)

∗, ud ∈ L2(Ω) is the desired terminal
state. The terminal time is denoted by T > 0 and the cost parameter by α > 0.

A similar problem, which is equivalent to the problem described above, is ana-
lyzed in [1]. There, optimality conditions and structural properties of the optimal
control are derived, and finite element discretization is considered. However, only
plain convergence result (without rates) is shown. The goal of my talk is to
present numerical analysis with convergence rates for a space-time finite element
discretization.

The optimal control problem under consideration possesses a unique solution
consisting of the optimal control q̄ ∈ M(Ω) and the corresponding optimal state
ū ∈ Lr(0, T ;W 1,p(Ω)) with ū(T ) ∈ H2(Ω) ∩ H1

0 (Ω). It is characterized by the
following optimality system involving the adjoint state z̄ ∈ W (0, T ) with z̄(0) ∈
H2(Ω) ∩H1

0 (Ω) →֒ C0(Ω),

(1a)

∂tū−∆ū = 0 in (0, T )× Ω,

ū = 0 on (0, T )× ∂Ω,

ū(0) = q̄ in Ω,

(1b)

−∂tz̄ −∆z̄ = 0 in (0, T )× Ω,

z̄ = 0 on (0, T )× ∂Ω,

z̄(T ) = ū(T )− ud in Ω,

(1c) −〈q − q̄, z̄(0)〉 ≤ α
(
‖q‖M(Ω) − ‖q̄‖M(Ω)

)
for all q ∈ M(Ω).

This optimality system implies that ‖z(0)‖C0(Ω) ≤ α and the following support

condition for the optimal control q̄ = q̄+ − q̄− holds:

supp q̄+ ⊂ Ω+ = { x ∈ Ω | z̄(0, x) = −α } , supp q̄− ⊂ Ω− = { x ∈ Ω | z̄(0, x) = α } ,
see [1] and [2] for the elliptic case. This condition leads to sparsity of q̄ since the
sets Ω± are the sets of measure zero. This is due to the fact that Ω± lie in the
interior of Ω and z(0) is analytic there.

We discretize the problem using discontinuous Galerkin method dG(r) of order
r in time and usual conforming cG(1) finite elements in space. The corresponding
discrete space is called Xkh with k being the maximal time step and h the max-
imal mesh size, see, e.g., [5] for details of this notation in the context of optimal



Challenges in Optimization with Complex PDE-Systems 479

control problems. The control variable is discretized using the space Mh ⊂ M(Ω)
being the span of Dirac functionals δxi corresponding to all interior nodes of the
underlying finite element mesh. This results in the discrete problem

minimize
1

2
‖ukh(T )− ud‖2L2(Ω) + α‖qkh‖M(Ω),

for qkh ∈Mh, subject to ukh ∈ Xkh and

B(ukh, ϕkh) = 〈qkh, ϕkh(0)〉 for all ϕkh ∈ Xkh,

where B is the standard bilinear form used for formulation of dG(r) discretization
in time. For the error in the optimal state we first prove the following suboptimal
error estimate

(2) ‖ū(T )− ūkh(T )‖L2(Ω) ≤ c(T )|lnh| 12 |ln k| 12
(
kr+

1
2 + h

)
.

For the optimal control no convergence of ‖q̄ − q̄kh‖M(Ω) can be expected. We
show (cf. also [1]) that

q̄kh
∗
⇀ q̄ in M(Ω) and ‖q̄kh‖M(Ω) → ‖q̄‖M(Ω), (k, h) → 0.

Under the following additional structural assumption we can provide further
information on the convergence of support points and improve the estimate (2).

Assumption. We assume that

(1) supp q̄ = { x ∈ Ω | |z̄(0, x)| = α } = {x1, x2, . . . , xN},
(2) For xi with z̄(0, xi) = −α the Hessian matrix∇2

xz̄(0, xi) is positive definite,
(3) For xi with z̄(0, xi) = α the Hessian matrix ∇2

xz̄(0, xi) is negative definite.

This assumption states that the minima and maxima of z̄(0) fulfill standard
second order sufficient optimality conditions. A similar assumption can be found
in the literature in the context of optimal control problems with state constraints,
see, e. g., [6]. Under this assumption we know that the optimal control q̄ is a linear
combination of Dirac delta functions, i.e.

q̄ =

N∑

i=1

βiδxi

with

βi > 0 for z̄(0, xi) = −α and βi < 0 for z̄(0, xi) = α.

For the discrete control q̄kh we can prove the following: There are ε > 0,
k0, h0 > 0 such that for all k < k0 and h < h0

(1) supp q̄kh ∩Bε(xi) 6= ∅, i = 1, 2, . . . , N,
(2) supp q̄kh ⊂ ∪iBε(xi). Moreover, we can estimate the distance between any

support point xij,kh ∈ Bε(xi) of supp q̄kh and xi by

|xi − xij,kh| ≤ c(T )|lnh||ln k| 12
(
k2r+1 + h

)
.
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Moreover, the corresponding coefficients converges to βi with the same rate and
the estimate (2) is improved to

‖ū(T )− ūkh(T )‖L2(Ω) ≤ c(T )|lnh||ln k| 12
(
k2r+1 + h

)
,

see [4] for details.
The main tool used in the proof are sharp smoothing type pointwise finite

element error estimates for homogeneous parabolic equations [4], which are based
on smoothing estimates and discrete maximal parabolic regularity from [3].

Currently we are working on the extension of these results in several direc-
tion. We investigate higher order spacial discretization allowing for more precise
identification of the positions xi of the unknown Diracs. Moreover, we consider
a problem with only finitely many pointwise measurements of the final state, i.e.
replacing the original problem by

minimize
1

2

K∑

k=1

(
u(T, ξk)− ukd

)2
+ α‖q‖M(Ω),

for q ∈ M(Ω), subject to

∂tu−∆u = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = q in Ω

with some measurement points ξk and the data vector ud ∈ RK .
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Optimal Control of Quasilinear Partial Differential Equations

Ira Neitzel

(joint work with Fabian Hoppe)

In this talk, we discuss results on second-order sufficient optimality conditions for
control problems with quasilinear parabolic state equation, eventually, presenting
recent results for certain state-constrained problems obtained by Hoppe and the
speaker in [7].

The first part of the talk reviews earlier results for purely control constrained
problems by Bonifacius and the speaker [1], and provides a brief comparison with
a similar setting that has been analyzed by Casas and Chrysafinos in [3]. The
main differences between the two settings include certain aspects regarding the
quasilinear operators, the types of controls discussed, and smoothness assumptions
on the domain. In the second part of the talk, we eventually present the challenges
appearing in the discussion and analysis of second order sufficient conditions in
the presence of certain additional types of state constraints, see [7]. We make use
of both settings from [1] and [3] and show how they allow for different types of
constraints.

More precisley, a motivating model problem with both control and state con-
straints is given by

Minimize J(u, q)

∂tu+A(u)u = Bq in I × Ω,

u|ΓD = 0, in I × ΓD,

u(0) = u0, in Ω

qa ≤ q ≤ qb, u ∈ Uad,

where J is a typical tracking type objective function for the state u and control
q. the latter is allowed to act in the whole domain or on a Neumann part of the
boundary, either depending on space and time or purely on time. This is encoded
in the control-operator B. In either case, L∞-bounds qa and qb are prescribed.
A(u) is a uniformly elliptic operator of the form

A(u) = −∇ · ξ(u)µ∇.
For the precise conditions we refer to [1, 7].

Since the meanwhile classical work of Casas [2], it is well known that pointwise
state constraints introduce specific challenges in the analysis, numerical analysis,
and numerical solution of such control problems. In essence, classical techniques
to prove necessary optimality conditions often rely on existence of a so called
(linearized) Slater point, and the space of continuous functions is then usually
used. This leads to the appearance of measures in the optimality conditions,
influencing the regularity of the adjoint state. In some cases, see [4] for some
control problems with linear and semilinear partial differentical equations, the
regularity of the Lagrange multipliers and thus the adjoint state can be improved.
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For quasilinear problems, the regularity of the adjoint state proved to be a
challenge even with regular right-hand-sides. An intuitive explanation for this
challenge is the following formal calculation. For A(u) defined as above, a formal
derivation of the adjoint equation for the adjoint state z leads to the following
expression

−∂tz +A(u)∗z +A′(u)∗z = Ju(u, q),

combined with terminal and boundary conditions, where

A′(u)v = −∇ · ξ′(u)vµ∇u.
Thus, in contrast to linear and semilinear equations, the state and the gradient
of the state appear in the differential operator itself. A careful regularity analysis
of e.g. the linear equation and the adjoint equation has been carried out in [1],
starting with and based on results from e.g. [8, 6]. For further details, we refer to
[1].

While these results allowed to obtain first order necessary optimality conditions
also for problems with pointwise state constraints, the presence of the latter still
leads to several challenges and difficulties when it comes to discussing second order
sufficient conditions. First, an abstract result without two-norm discrepancy is
obtained in [7], extending techniques and ideas from [5]. When applying this to
the model problem with additional state constraints, we build upon both results
and settings in [1] and [3].

While the motivation is a setting of pointwise in space and time constraints,
i.e.

Uad = {u ∈ C(Ī × Ω̄) : ua(t, x) ≤ u(t, x) ≤ ub(t, x) ∀ (t, x) ∈ Ī × Ω̄},
these can only be handled in the regularity setting of [3] for certain types of control.
If for instance the domains are less smooth and the regularity setting from [1] is
used, it is possible to consider averaged-in-time state constraints given by

Uad = {u ∈ L1(I, C(Ω̄)) : ua(x) ≤
T∫

0

u(t, x) dt ≤ ub(x) ∀x ∈ Ω̄}.

Interestingly, averaged-in-space but pointwise-in-time state constraints cannot be
handled in the same setting.

The talk aims at pointing out the challenges and difficulties in the derivation of
second order sufficient conditions that lead to an interplay of regularity assump-
tions vs. type of state constraints vs. type of controls that can be covered by the
theory.
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Nonconvex Regularization in Spaces of Measures for Minimal Width
Neural Networks

Konstantin Pieper

(joint work with Armenak Petrosyan)

Classical training procedures for neural networks based on gradient descent applied
to (regularized) loss functions can be interpreted through the lens of function-space
and PDE-constrained optimization. This is accomplished by viewing the neural
networkN : Rd → R as an unknown function parametrized by an unknown number
of weights Θ and interpreting the regularization term as a function-space penalty
on the underlying network. In this talk we consider the construction of shallow
ReLU networks

NΘ(x) =
∑

n=1,...,N

cn σ(an · x+ bn), where σ(z) = max{ z, 0 },

through the minimization of a loss function with standard weight-decay regular-
ization,

min
Θ={ (an,bn,cn) |n=1,...,N }⊂Rd+2

l(NΘ) + α‖Θ‖2
RN×(d+2),

where l is a loss term that measures the discrepancy of the output of the network
to the data in the training set. This turns out to correspond to an optimization
problem on a space of measures [1, 2], given as

min
µ∈M(Sd)

l(Nµ) + α‖µ‖M(Sd),

where M(Sd) is the set of regular Borel measures on the unit sphere Sd ⊂ Rd+1

and ‖ · ‖M(Sd) the associated total variation (TV) norm. Moreover, the network is
given by

Nµ =

∫

Sd

σ(a · x+ b) dµ(a, b),

and the equivalence is realized through the atomic measures µ =
∑N

n=1 cnδ(an,bn).
The sparsity-promoting regularization term on the measure representing the net-
work can be additionally interpreted as a derivatives based regularizer on the
network itself [3, 4], which helps interpret the structure of optimal networks and
sheds light on questions connected to how well different classes of functions can
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be approximated. We also point out the close connection of this problem to a
PDE-constrained problem that arises by introducing the function represented by
the network u = Nµ as an additional optimization variable:

min
µ∈M(Sd), u : Rd→R

l(u) + α‖µ‖M(Sd)

subject to ∆u = R∗{‖a‖ dµ} on R
d,

where R∗ is the adjoint Radon transform.
However, a closer analysis of the optimality conditions and numerical experi-

ments reveal that the optimal solutions tend to correspond to networks that are
wider than necessary and can even lead to infinite width networks. This is caused
by a clustering of similar neurons in the presence of many data points that can
even lead to a non-atomic optimal solution of the measures space problem in the
infinite data case. To remedy this, we study a different class of nonconvex regu-
larizers that preserve many of the functional-analytic properties of the TV-norm,
but lead to much sparser optimal solutions [5]. The new formulation is given as

min
µ∈M(Sd)

l(Nµ) + αΦ(µ),

where the regularization functional Φ is the weak-* lower-semicontinuous extension
of

Φ

(
N∑

n=1

cnδ(an,bn)

)
=

N∑

n=1

φ(|cn|),

and φ is a suitably regular concave function with φ(0) = 0, φ′(0) = 1; e.g.,
φ(z) = log(1+z). The nonconvex formulation provides smaller networks of compa-
rable accuracy and structure. We rely on a concept of local minimizers/stationary
solutions and we show that such solutions are free of clustering and always finite,
even in the presence of infinite data, and fulfill the same approximation guaran-
tees as the global solutions of the convex (TV) problem. Moreover, we describe
how such optimal networks can be obtained in practice by extending generalized
conditional gradient methods to the nonconvex case: Here, we combine proximal-
gradient based optimization of finite-dimensional loss functions (corresponding to
finite atomic measures) together with adaptive pruning and greedy insertion of
new neurons to the network. With this, we are able to construct smaller networks
of similar approximation quality in shorter time than for the (TV) based approach.

We also point out several open problems and questions for further research,
such as a more detailed study of the structure of local minimizers of the noncon-
vex problem (e.g., second order optimality conditions and quantitative bounds on
the number of atoms) and the potential influence of different notions of locality
in the space of measures on the minimizers. Moreover, we motivate the desire
to extend the concepts mentioned above to deeper networks due to their better
approximation properties with fewer neurons for certain classes of functions.
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Sequential Action Control for Stabilization
of PDE-Dynamical Systems

Falk M. Hante

(joint work with Yan Brodskyi and Arno Seidel)

1. Motivation and recent contributions

Data is playing an increasingly important role in modeling, simulation and opti-
mization of systems governed by partial differential equations (PDEs). A nontrivial
and relevant example are energy distribution systems, where an information layer
based on a wide installation of sensors is being added to the physical network
for data collection and analysis of flows governed by a coupling of balance laws
on graphs [6, 12]. Feedback control based on optimality principles such as model
predictive control (MPC) provides the flexibility to incorporate measurements and
state estimation techniques for typical control tasks such as stabilization e.g. at
steady states [5] or state-tracking e.g. towards a turnpike [4]. However, at least
for large scale energy networks, MPC in its original form repeatedly solving stage
problems

min J1(u) =

∫ t0+T

t0

l1(y(s)) ds+m(y(t0 + T ))

ẏ(t) = Ay(t) + f(t, y(t))u(t), u(t) ∈ U, t ∈ (t0, t0 + T )

y(t0) = y0,

for states y and controls u in Hilbert spaces H and U on a prediction horizon
[t0, t0 + T ] as in [9] is computationally challenging. For control and stabilization
of PDEs, we therefore propose and analyse in [3] a variant of a moving horizon
scheme called sequential action control (SAC) going back to [2]. Given a reference
control u1, this real-time iteration scheme consists of (i) predicting the nominal
dynamics of the state and adjoint state for u1 on [t0, t0+T ], (ii) computing control
actions u∗(t) on [t0, t0+T ] using adjoint information, (iii) selecting an application
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Figure 1. Illustration of sequential action control.

time τ and an action’s duration λ̄, before applying u ≡ u∗(τ) on [τ − λ̄
2 , τ + λ̄

2 ]
with u = u1 elsewhere and updating t0, cf. Figure 1. The control values u

∗(τ) are
chosen as

(1) u∗(τ) := argminu∈U l2(u; τ) :=
1

2

[
dJ1
dλ+

(τ, u)− αd

]2
+

1

2
〈u,Ru〉U ,

for any τ ∈ (t0, t0 + T ), where

dJ1
dλ+

(τ, v) = lim
λ↓0

J1(uλ,τ,v)− J1(u1)

λ

is the variation of J1 corresponding to Pontryagin’s needle variation [10]

uλ,τ,v =

{
u1(t), t /∈ [τ − λ

2 , τ +
λ
2 ]

v, t ∈ [τ − λ
2 , τ +

λ
2 ]
,

αd < 0 is a parameter in order to obtain a reduction for the cost of the current
prediction and R is a regularization parameter. From results in [11], we get that

dJ1
dλ+

(τ, v) = 〈p(τ), f(τ, y(τ))(v − u1(τ))〉H∗ ,H ,

where p satisfies the adjoint PDE

ṗ(t) = −A∗p(t)− ((f(t, y(t))u1(t))y)
∗p(t)− (l1)y(y(t))

p(t0 + T ) = my(y(t0 + T )),

so that u∗(τ) can be explicitly obtained using first order conditions on l2 for
any fixed τ . Hence, the scheme qualifies for late lumping approaches and thus
discretization grid independent qualitative analysis.

For linear-quadratic problems we show that the closed-loop feedback obtained
from SAC can be analyzed in first order as a linear feedback with the solution of
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a Lyapunov-equation. Prototypically, we consider the stabilization of an unstable
heat equation from [1]. Our results show that SAC stabilizes the problem at the
origin and outperforms the standard linear quadratic regulator both in the needed
computation time and in robustness with respect to uncertainty in parameters.
Details are available in [3].

Finally, we observe that the control principle can be extended with methods
from [7, 8, 11] to switched systems and mixed-integer control problems being
motivated, for example, by operation of valves in gas networks. The proposed
framework indeed provides a rigorous link between variational principles for PDEs
and mixed-integer programming for solving (1).

2. Open questions and topics for future research

We note that guarantees for SAC-type feedback in case of partial state observa-
tion, boundary control, nonlinear PDEs and other advanced topics are still to be
investigated. Beyond that, the motivating application of control and stabiliza-
tion for energy networks presents a number of further challenges in the context
of PDE-control such as methods for robustification, coupling with market leading
to multi-level optimization problems and advanced aspects of coupling discrete
and continuous control concerning, for example, methods to deal with changing
network topologies or combinatorial constraints.
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Constructive Exact Controls for some Semilinear PDEs

Arnaud Münch

Let Ω be a bounded domain of Rd, d ∈ {2, 3} with C1,1 boundary and ω ⊂⊂ Ω be
a non empty open set. Let T > 0 and denote QT := Ω × (0, T ), qT := ω × (0, T )
and ΣT := ∂Ω× (0, T ). We consider the semilinear wave equation

(1)





�y + g(y) = f1ω, in QT ,

y = 0, on ΣT ,

(y(·, 0), yt(·, 0)) = (u0, u1), in Ω,

where (u0, u1) ∈ V := H1
0 (Ω) × L2(Ω) is the initial state of y, f ∈ L2(qT ) is a

control function and �y := ∂tty−∆y. g : R → R is a function of class C1 such that
|g(r)| ≤ C(1 + |r|) ln(2 + |r|) for every r ∈ R and some C > 0. (1) has a unique
global weak solution in C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) (see [2]). The exact
controllability for (1) in time T is formulated as follows: for any (u0, u1), (z0, z1) ∈
V , find a control function f ∈ L2(qT ) such that the weak solution of (1) satisfies
(y(·, T ), ∂ty(·, T )) = (z0, z1). This problem has been solved by Fu,Yong and Zhang:

Theorem 1. [Fu, Yong, Zhang, 2007] For any x0 ∈ R
d\Ω, let Γ0 = {x ∈ ∂Ω, (x−

x0) · ν(x) > 0} and, for any ǫ > 0, let Oǫ(Γ0) = {y ∈ Rd | |y − x| ≤ ǫ for x ∈ Γ0}.
Assume

(H0) T > 2maxx∈Ω |x− x0| and ω = Oǫ(Γ0) ∩ Ω for some ǫ > 0,

(H1) lim sup|r|→∞
|g(r)|

|r| ln1/2 |r| = 0,

then (1) is exactly controllable in time T .

Γ0 is the star-shaped part of the whole boundary of Ω introduced in [11]. The-
orem 1 extends to the multi-dimensional case the result of [15] devoted to the
one dimensional case. The proof given in [5] is based on a fixed point argu-
ment introduced in [15]: it is shown that the operator K : L∞(0, T ;Ld(Ω)) →
L∞(0, T ;Ld(Ω)) where yξ := K(ξ) is a controlled solution through the control
function fξ (of minimal L2(qT )-norm) of the linear boundary value problem




�yξ + yξ ĝ(ξ) = −g(0) + fξ1ω, in QT ,

yξ = 0, on ΣT ,

(yξ(·, 0), ∂tyξ(·, 0)) = (u0, u1), in Ω,

ĝ(r) :=





g(r) − g(0)

r
r 6= 0,

g′(0) r = 0
,



Challenges in Optimization with Complex PDE-Systems 489

satisfying (yξ(·, T ), yξ,t(·, T )) = (z0, z1) has a fixed point. The existence of a fixed
point for the compact operatorK is obtained by using the Leray-Schauder’s degree
theorem: it is shown under the growth assumption (H1) that there exists a con-
stant M = M(‖u0, u1‖V , ‖z0, z1‖V ) such that K maps the ball BL∞(0,T ;Ld(Ω))(0,
M) into itself.

Our goal is to construct an explicit sequence (fk)k∈N that converges strongly to
an exact control for (1). The controllability of nonlinear partial differential equa-
tions has attracted a large number of works in the last decades (see [3]). However,
as far as we know, few are concerned with the approximation of exact controls for
nonlinear partial differential equations, and the construction of convergent control
approximations for nonlinear equations remains a challenge.

A first idea that comes to mind is to consider the Picard iterations (yk)k∈N

associated with the operator K defined by yk+1 = K(yk), k ≥ 0 initialized with
any element y0 ∈ L∞(0, T ;Ld(Ω)). Such a strategy usually fails since the operator
K is in general not contracting, even if g is globally Lipschitz.

Given any initial data (u0, u1) ∈ V , we design an algorithm providing a sequence
(yk, fk)k∈N converging to a controlled pair for (1), under assumptions on g that
are slightly stronger than (H1). Moreover, after a finite number of iterations, the
convergence is super-linear. This is done by introducing a least-squares functional
measuring how much a pair (y, f) ∈ A is close to a controlled solution for (1) and
then by determining a particular minimizing sequence enjoying the announced
property. We define the Hilbert space H

H =

{

(y, f) ∈ L
2(QT )× L

2(qT ) | �y ∈ L
2(QT ), (y(·, 0), ∂ty(·, 0)) ∈ V , y = 0onΣT

}

.

Then, for any (u0, u1), (z1, z1) ∈ V , we define the subspaces of H

A =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (u0, u1), (y(·, T ), ∂ty(·, T )) = (z0, z1)

}
,

A0 =

{
(y, f) ∈ H | (y(·, 0), ∂ty(·, 0)) = (0, 0), (y(·, T ), ∂ty(·, T )) = (0, 0)

}

and consider the following non convex extremal problem

(2) inf
(y,f)∈A

E(y, f), E(y, f) :=
1

2

∥∥�y + g(y)− f 1ω
∥∥2
2

observing that any zero (y, f) ∈ A of E is a solution of the controllability problem.
Our main result is

Theorem 2. [Lemoine, Münch, 2021] Assume for some s ∈ (0, 1]

(Hs) [g′]s := sup a,b∈R

a6=b

|g′(a)−g′(b)|
|a−b|s < +∞,

(H2) There exists α ≥ 0 and β ∈ [0,
√

s
2C(2s+1) ) such that |g′(r)| ≤ α +

β ln1/2(1 + |r|) for every r in R.
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Then, for any (y0, f0) ∈ A, the sequence (yk, fk)k∈N defined by

(3)





(y0, f0) ∈ A,
(yk+1, fk+1) = (yk, fk)− λk(Y

1
k , F

1
k ), k ∈ N,

λk = argminλ∈[0,1]E
(
(yk, fk)− λ(Y 1

k , F
1
k )
)
,

where (Y 1
k , F

1
k ) ∈ A0 is the solution of minimal control norm of

(4)





�Y 1
k + g′(yk)Y

1
k = F 1

k 1ω +�yk + g(yk)− fk1ω, in QT ,

Y 1
k = 0, on ΣT ,

(Y 1
k (·, 0), ∂tY 1

k (·, 0)) = (0, 0), in Ω

strongly converges to a pair (y, f) ∈ A satisfying (1). Moreover, the convergence
is at least linear and is at least of order 1 + s after a finite number of iterations.

As far as we know, the method described here is the first one providing an
explicit, algorithmic construction of exact controls for semilinear wave equations
with non Lipschitz nonlinearity and defined over multi-dimensional bounded do-
mains. It extends the one-dimensional study addressed in [14]. The parabolic
case can be addressed as well: for semilinear heat equation, we mention [6] for
d ∈ {2, 3} with Lipschitz nonlinearity and [10] for d = 1 and non Lipschitz nonlin-
earity. These works devoted to controllability problems takes their roots in [9, 7]
concerned with the direct problem for the Navier-Stokes equation: they refine the
analysis performed in [8, 12] inspired from the seminal contribution [1].
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Obstacle Problems in Electromagnetic Shielding

Irwin Yousept

Electromagnetic (EM) shielding is a physical process of canceling or redirecting
EM waves in a certain domain of interest by means of obstacles made of conduct-
ing or magnetic materials. It was first discovered by Michael Faraday in 1836, who
experimentally verified that a conductive enclosure (Faraday cage) is able to elim-
inate the effect of an external electric field by charge cancelation on the boundary
and leaving zero field inside the cage. On the other hand, a specific magnetic
material can realize shielding by diverting the external magnetic flux to another
direction. Typical materials used in Faraday shielding are conductive sheet metals
and metallic alloys, whereas ferromagnetic materials are widely used for magnetic
obstacles. Today, EM shielding is indispensable not only for high-technological ap-
plications but also for our daily used applications such as microwave ovens, mobile
phones, aircraft, shielded cable wires, circuits, and many other electronic devices.

From the mathematical point of view, EM shielding falls into the class of ob-
stacle problems (cf. Duvaut and Lions [1]). More precisely, in the free region,
the EM waves satisfy the fundamental Maxwell equations, whereas in the shielded
area obstacle constraints are applied to the fields. To formulate the corresponding
mathematical formulation, let us denote by Ω ⊂ R3 an open set (not necessarily
connected, Lipschitz, or bounded) representing the hold all domain and set

H(curl) :=
{
q ∈ L2(Ω)

∣∣ curl q ∈ L2(Ω)
}

H0(curl) := closure of C∞
0 (Ω) w.r.t. ‖ · ‖H(curl),

where L2(Ω) denotes the space of all (equivalence classes of) R3-valued Lebesgue
square-integrable functions. Furthermore, let (0, 0) ∈ K ⊂ L2(Ω) × L2(Ω) be
a convex and closed subset standing for the underlying feasible (constraint) set.
Then, given initial data (E0,H0) ∈ {H0(curl )×H(curl )} ∩K and an applied
current source f ∈ W 1,∞((0, T ),L2(Ω)), we look for (E,H) ∈ W 1,∞((0, T ),L2(Ω)
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×L2(Ω)) such that

(1)





∫ T

0

∫

Ω

ǫ∂tE · (v −E) + µ∂tH · (w −H)−H · curl v +E · curlw dx dt

≥
∫ T

0

∫

Ω

f · (v −E) dx dt

∀(v,w) ∈ L2((0, T ),H0(curl)×H(curl)), (v,w)(t)∈K a.e. t ∈ (0, T )

(E,H)(t) ∈ K for all t ∈ [0, T ]

(E,H)(0) = (E0,H0).

Here, the electric permittivity and the magnetic permeability ǫ, µ : Ω → R3×3 are
assumed to be of class L∞(Ω)3×3, symmetric, and uniformly positive definite in
the sense that there exist positive constants ǫ, µ > 0 such that

ξT ǫ(x)ξ ≥ ǫ|ξ|2 and ξTµ(x)ξ ≥ µ|ξ|2 for a.e. x ∈ Ω and all ξ ∈ R
3.

In [3, Theorem 1], the author proved an existence result for (1) built on [2, The-
orem 3.11]. The developed result yields only existence in W 1,∞((0, T ),L2(Ω) ×
L2(Ω)) without the global curl regularity, i.e., (E,H) ∈ L2((0, T ),H0(curl ) ×
H(curl )) is not guaranteed. Nonetheless, the solution is still physically reasonable
as it turns to obey the physical electromagnetic laws in the free regions. More pre-
cisely, if we denote the electric (resp. magnetic) free region by the open (possibly
empty) subset ΩE ⊂ Ω (resp. ΩH ⊂ Ω), i.e., if

(v,w) ∈ K ⇒ (ṽ, w̃) ∈ K ∀ṽ =

{
vE in ΩE

v elsewhere
w̃ =

{
wH in ΩH

w elsewhere

holds for any (vE ,wH) ∈ L2(ΩE)×L2(ΩH), then every solution (E,H) ∈
W 1,∞((0, T ),L2(Ω) × L2(Ω)) of (1) fulfils the Maxwell-Ampère equation in ΩE

and the Faraday law in ΩH :

(2)

{
ǫ∂tE − curlH = f a.e. in ΩE × (0, T )

µ∂tH + curlE = 0 a.e. in ΩH × (0, T ).

In particular, every solution to (1) enjoys the local regularity properties

curlE ∈ L∞((0, T ),L2(ΩH)) and curlH ∈ L∞((0, T ),L2(ΩE)),

and if ΩH = Ω then the electric boundary condition is fully recovered, i.e., E ∈
L∞((0, T ),H0(curl )). All these results were proven in [3, Theorem 1].

The uniqueness analysis of (1) turns out to be more challenging and requires
a careful treatment. We notice that energy arguments are not applicable due to
the poor regularity of the solution. Under a structural assumption on the feasible
set K (see [3, Assumption 1.1]), the author established a uniqueness result [3,
Theorem 2]. The proof is based on a localH(curl)-regularity analysis with respect
to the constraint set under Assumption 1.1, in particular under a separation ansatz
between the electric and magnetic obstacle sets. As shown there, the uniqueness
holds also true if ΩH = Ω (pure electric obstacle problem) or ΩE = Ω (pure
magnetic obstacle problem). As a consequence of Theorems 1 and 2 in [3], for any
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given closed and convex feasible electric set 0 ∈ KE ∈ L2(Ω), the pure electric
obstacle problem
(PE)



∫

Ω

ǫ∂tE(t) · (v −E(t)) −H(t) · curl (v −E(t)) dx ≥
∫

Ω

f(t) · (v −E(t)) dx

for all v ∈ H0(curl) ∩KE and a.e. t ∈ (0, T )

µ∂tH(t) + curlE(t) = 0 for a.e. t ∈ (0, T )

E(t) ∈ KE for all t ∈ [0, T ]

(E,H)(0) = (E0,H0)

admits a unique solution

(E,H) ∈ L∞((0, T ),H0(curl)×L2(Ω)) ∩W 1,∞((0, T ),L2(Ω)×L2(Ω)).

We note that (PE) preserves the Faraday law but modifies the Maxwell-Ampère
equation ǫ∂tE − curlH = f into a variational inequality of the first kind. Simi-
larly, for any given closed and convex feasible magnetic set 0 ∈ KH ∈ L2(Ω), the
pure magnetic obstacle problem

(PH)





∫

Ω

µ∂tH(t) · (w −H(t)) +E(t) · curl (w −H(t)) dx ≥ 0

for all w ∈ H(curl) ∩KH and a.e. t ∈ (0, T )

ǫ∂tE(t)− curlH(t) = f(t) for a.e. t ∈ (0, T )

H(t) ∈ KH for all t ∈ [0, T ]

(E,H)(0) = (E0,H0)

admits a unique solution

(E,H) ∈ L∞((0, T ),L2(Ω)×H(curl)) ∩W 1,∞((0, T ),L2(Ω)×L2(Ω)).

Differently from (PE), the magnetic shielding case (PH) preserves the Maxwell-
Ampère equation and modifies the Faraday law by a variational inequality of the
first kind.

The well-posedness results for (1), (PE), and (PH) serve as a basis for further
investigations, including

• finite element analysis
• shape optimal design
• ferromagnetic shielding

which have been the subject of our ongoing research.
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Constrained Exact Boundary Controllability for a System of
Semilinear Hyperbolic PDEs

Olivier Huber

(joint work with Martin Gugat, Jens Habermann, and Michael Hintermüller)

Motivated by the operation of a gas network, we investigate the exact boundary
controllability of a semilinear model of gas flow in 1D with pointwise constraints
on the pressure and Mach number. While there exists a large body of work in
the study of existence of solution and exact controllability for both semilinear and
quasilinear systems, see for instance [3] and [4], our focus is the case where the
solutions and controls are continuous and constrained.

Since the length L of a pipeline is much larger than its diameter D, only one
spatial dimension is considered. We assume that the isothermal Euler equations
(see for example [2]) govern the evolution of the flow through a pipe:

{
ρt + qx = 0,

qt +
(
p+ q2

ρ

)
x
= − 1

2θ
q |q|
ρ − ρ g slope,

where ρ > 0 denotes the gas density, p > 0 the pressure and q the mass flux. The
friction coefficient is denoted by λfric ≥ 0 and the slope by ϕ ∈ (−∞, ∞). Define

slope = sin(ϕ) and θ = λfric

D . Let g denote the gravitational constant. The gas is
supposed to be ideal, satisfying the state equation p = Rs Temp ρ where Rs is the
specific gas constant and Temp is the temperature. The velocity of the gas is given

by v = q
ρ and the sound speed c =

√
Rs Temp is taken to be constant. For the

Mach number M this yields M = v
c = c q

p . When |M | < 1 the flow is said to be

subsonic. From this quasilinear system, one can derive the semilinear model:

{
pt + c2qx = 0

qt + px = − 1
2θc

2 q |q|
p − g slope

p
c2 .

First, we recall how in the regime of high pressures and slow subsonic flows,
the semilinear system can be a valid approximation of the quasilinear one. This
regime of low Mach number is typical in the operation of gas networks to reduce
noise and internal corrosion.

The constraints we consider are as follows: given 0 < p < p̄ and 0 < λ < 1, the
following relations must hold in a pointwise sense:

p ≤ p ≤ p̄ and |M | ≤ λ.

Finally, we assume that we have Dirichlet boundary controls.
The subsequent analysis is performed on the semilinear system in diagonal form.

To this end, we introduce the Riemann invariants R+ and R−:

R± = ±p+M p = (±1 +M) p.
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The characteristic curves are straight lines. The physical variables can be expressed
in terms of the Riemann invariants as

p =
R+ −R−

2
, M =

R+ +R−
R+ −R−

, q =
1

2 c
(R+ +R−).

The system in diagonal form reads

(R±)t ± c(R±)x = −1

4
θ c F (R+, R−)− g slope

1

c

R+ −R−
2

,

where F (R+, R−) = (R+ + R−)
∣∣∣R++R−

R+−R−

∣∣∣. The pressure and Mach number con-

straints can be expressed in terms of the Riemann invariants as

2p ≤ R+ −R− ≤ 2p̄,

(1 + λ)R+ + (1− λ)R− ≥ 0,

(1− λ)R+ + (1 + λ)R− ≤ 0.

whenever p > 0. Note that in this case, it is easy to see that |M | < 1 implies that
R+ > 0 and R− < 0.

The existence of continuous solutions of the semilinear model fulfilling the point-
wise constraints over a certain time horizon is established. The conditions are all
numerically ascertainable and are of two types. On one hand, the Riemann invari-
ants on the initial state and the boundary must satisfy some inequalities similar
to the pressure and Mach number constraints. On the other hand, the following
inequality, involving the physical characteristics of the pipe and gas, must hold:

θλ
√
5

2
+
g|slope|
c2

≤ 1

L
.

Then, the question of exact constrained controllability is tackled. We proceed
with the following strategy. The rectangle [0, T ] × [0, L] is partitioned into 4
domains: the triangles DI, DII and the parallelograms RIII, RIV, as shown on the
diagram below.

0 T

L

DI DII

u+

u–

Imid

RIII

RIV

On the triangles DI and DII, the existence of bounded continuous solutions
follows from the previous result. For RIII (resp. RIV), we define the values of
R± on Imid using a convex combination of the values at the inner vertices of DI
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and DII. The role of time and space is inverted and the evolution of Riemann

invariants is governed by

(R±)x ∓ c−1(R±)t = −1

2
θF (R+, R−)− g slope

R+ −R−
2c2

.

An IVP is then solved to compute the solution on RIII and RIV. The existence of
a continuous solution satisfying the box constraints is investigated using similar
conditions and techniques as for the first result. Finally, the boundary controls
are obtained as u+ = R+(·, 0) and u− = R−(·, L).

Let us now turn our attention to the computation of the boundary control.
A triangular grid is built in the following fashion: consider three points (ti, xi),
(tj , xj), and (tk, xk), such that (tk, xk) is at the intersection of the two character-
istics lines starting from (ti, xi) and (tj , xj) and the resulting triangle is isosceles.
For each system, an integration along the characteristics with the midpoint rule is
performed. Let Rk

±, R
i
± and Rj

± be the values of the Riemann invariants at those

points. For the DI and DII triangles, R
k
± is the solution of the nonlinear system

Rk
+ −Ri

+ =
∆

2

[
1

4
θ c (F (Ri

+, R
i
−) + F (Rk

+, R
k
−))− g slope

Ri
+ −Ri

− +Rk
+ −Rk

−
2c

]

Rk
− −Rj

− =
∆

2

[
1

4
θ c (F (Rj

+, R
j
−) + F (Rk

+, R
k
−))− g slope

Rj
+ −Rj

− +Rk
+ −Rk

−
2c

]

where ∆ is the length of the integration interval. The computation of the solution
on RIII and RIV involves solving a similar nonlinear system. The solution of those
nonlinear systems is computed using Newton’s method. Note that the first (resp.
second) equation is symmetric in (Ri, Rk) (resp. (Rj , Rk)). This implies that the
numerical solution is reversible along the characteristics, and the values at the
boundaries can indeed be used as controls.

This work was supported by the DFG in the Collaborative Research Centre
CRC/Transregio 154, Mathematical Modelling, Simulation and Optimization Us-
ing the Example of Gas Networks, Projects B02, C03, C05, and C07.
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Optimal Control of Stochastic Phase-Field Models for Tumor Growth

Luca Scarpa

(joint work with Carlo Orrieri and Elisabetta Rocca)

We consider a version of a two-phase phase-field model for tumor growth recently
introduced in [2], where we have neglected the effects of chemotaxis and active
transport. The new feature of the work consists in adding possible stochastic
perturbations in both the PDEs ruling the tumor-dynamic and then studying a
related optimal control problem in the direction of therapy optimisation. The
evolution of the tumor is described by an order parameter ϕ which represents the
local concentration of tumor cells; the interface between the tumor and healthy
cells is supposed to be represented by a narrow transition layer separating the pure
regions where ϕ = ±1, with ϕ = 1 denoting the tumor phase and ϕ = −1 the
healthy phase. The second main variable is the concentration of nutrient σ ∈ [0, 1],
which is responsible for the growth and decay of the tumoral cells.

We consider here the case of an incipient tumor, i.e., before the development of
quiescent cells, when the equation ruling the evolution of the tumor growth process
is often given by a Cahn–Hilliard equation for ϕ coupled with a reaction-diffusion
equation for the nutrient σ. As far as the random perturbations are concerned,
we directly add an additive noise to the Cahn–Hilliard equation, taking thus into
account all the microscopical fluctuation affecting cell-aggregation and modelling
a possible background noise. Moreover, we introduce a multiplicative noise in the
reaction diffusion equation for the nutrient, with the aim of modelling the effects
of angiogenensis: a stochastic forcing of this type is related to the oxygen received
by cancerous cells, and may result in enhancing its effectiveness, and therefore its
contribution, to the total growth process of the tumor.

We study the following stochastic Cahn-Hilliard-reaction-diffusion model:

dϕ−∆µ dt = (Pσ − a− αu)h(ϕ) dt +GdW1 in (0, T )×D ,(1)

µ = −∆ϕ+ ψ′(ϕ) in (0, T )×D ,(2)

dσ −∆σ dt+ cσh(ϕ) dt + b(σ − w) dt = H(σ) dW2 in (0, T )×D ,(3)

∂nϕ = ∂nµ = ∂nσ = 0 in (0, T )× ∂D ,(4)

ϕ(0) = ϕ0 , σ(0) = σ0 in D .(5)

Here, D ⊂ R
3 is a smooth bounded domain with smooth boundary, T > 0

is a fixed final time, W1, W2 are independent cylindrical Wiener processes on
separable Hilbert spaces U1 and U2, respectively, defined on a stochastic basis
(Ω,F , (Ft)t∈[0,T ],P), G is a stochastically integrable operator with respect to W1

and H is a suitable Lipschitz-type operator.
The parameters P , a, α, c, b are assumed to be strictly positive constants, and

denote, respectively, the tumor proliferation rate, the apoptosis rate, the effective-
ness rate of the cytotoxic drugs, the nutrient consumption rate, and the nutrient
supply rate. The function h is assumed to be monotone increasing, nonnegative
in the “physical” interval [−1, 1], and normalized so that h(−1) = 0 and h(1) = 1.



498 Oberwolfach Report 9/2021

The term Pσh(ϕ) models the proliferation of tumor cells, which is proportional
to the concentration of the nutrient, the term ah(ϕ) describes the apoptosis (or
death) of tumor cells, and cσh(ϕ) represents the consumption of the nutrient by
the tumor cells, which is higher if more tumor cells are present. The control vari-
ables are u in (1) and w in (3), which can be interpreted as a therapy distribution
(chemotherapy and antiangiogenic therapy, respectively, for example) entering the
system, either via the mass balance equation or the nutrient Finally, ψ′ stands for
the derivative of a double-well potential ψ, with the typical choice being

ψ(r) =
1

4
(r2 − 1)2, r ∈ R.

We are interested in the study of the following optimal control problem:

(CP): Minimize the cost functional

J(ϕ, u, w) :=
β1
2

E

∫

Q

|ϕ− ϕQ|2 +
β2
2

E

∫

D

|ϕ(T )− ϕT |2 +
β3
2

E

∫

D

(ϕ(T ) + 1)

+
β4
2

E

∫

Q

|u|2 + β5
2

E

∫

Q

|w|2 ,

subject to the control constraint (u,w) ∈ U and the system (1)–(5), where

U :=
{
(u,w) ∈ L2(Ω;L2(0, T ;H))2 progressively measurable:

0 ≤ u,w ≤ 1 a.e. in Ω× (0, T )×D
}
.

The function ϕQ indicate some desired evolution for the tumor cells and ϕT stands
for a desired final distribution of tumor cells (for example suitable for surgery).
The first two terms of J are of standard tracking type, while the third term of J
measures the size of the tumor at the end of the treatment. The fourth and fifth
terms penalize large concentrations of the cytotoxic drugs through integral over
the full space-time domain of the squared nutrient and drug concentrations.

The first result that we obtain concerns existence–uniqueness of solutions to
the state system (1)–(5), and continuous dependence with respect to the controls.
This allows to properly define the control-to-state map S : (u,w) 7→ ϕ and to
rewrite the optimisation problem in a reduced form as

min
(u,w)∈U

J(S(u,w), u, w) .

The second issue that we analyse is existence of optimal controls: the idea is to
use the direct method of calculus of variations. However, the lack of compactness in
the probability space prevents from arguing straightforwardly as in the determinist
case: through stochastic compactness methods à la Gyöngy–Krylov, one is only
able to restore strong compactness on an enlarged probability space. Since optimal
controls are not generally unique, in the stochastic case one can only show existence
of so–called relaxed optimal controls, meaning that the optimality condition has
to be intended in distribution.

The third point that we investigate is the differentiability of the control-to-state
map S and the analysis of the linearised system, which is formally obtained by
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differentiating (1)–(5) with respect to the controls. We show that S is Gâteaux–
differentiable with respect to suitable weak topologies, and that a first version of
necessary conditions for optimality can be written in terms of a classical nonneg-
ativity condition on D(J ◦ S).

Eventually, we characterise the derivative of S through the analysis of the ad-
joint system, and refine the first order conditions for optimality by employing the
intrinsic adjoint variables only. The adjoint system is a backward-in-time system
of SPDEs, and requires then the introduction of two additional variables in the
spirit of martingale representation theorems: this reads

−dπ −∆π̃ dt+ ψ′′(ϕ)π̃ dt = h′(ϕ)(Pσ − a− αu)π dt

− ch′(ϕ)σρ dt + β1(ϕ− ϕQ) dt− ξ dW1 ,

−dρ−∆ρ dt+ ch(ϕ)ρ dt+ bρ dt = Ph(ϕ)π dt− θ dW2 ,

where π̃ = −∆π, complemented with homogeneous Neumann boundary conditions
for π, π̃ and ρ, and with final conditions

π(T ) = β2(ϕ(T )− ϕT ) +
β3
2
, ρ(T ) = 0 .

Due to the nonlinear nature of the problem and the backward setting, one is not
able to tackle the stochastic adjoint system directly. To overcome this difficulty,
we employ a duality argument: at a suitable approximate level, we show that a
generalised version of the linearised system satisfies a duality relation with the cor-
responding approximation of the adjoint system. Consequently, showing uniform
estimates on the linearised system with respect to arbitrary forcing terms allows
us to transfer such uniform estimates on the adjoint system. This idea is very
powerful and crucial in this situation, as it allows to prove uniform bounds on the
adjoint system exclusively by duality, without tackling it directly. Our main and
final result is then the well–posendess and the adjoint system in a suitable weak
sense, and the final version of first–order conditions for optimality.

Theorem 1. Let (ū, w̄) ∈ U be an optimal control. Then it holds that

E

∫

Q

(β4ū− αh(ϕ̄)π)(u − ū) + E

∫

Q

(β5w̄ + bρ)(w − w̄) ≥ 0 ∀ (u,w) ∈ U .

The presence of stochastic perturbations is widely recognised as an essential
feature of models for tumor growth. Further questions to be investigated concern,
for example, optimisation of treatment time - which amounts to studying a related
stochastic optimal stopping problem - and performing numerical simulations.
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A Variational Inequality for the Derivative of the Scalar Play Operator

Martin Brokate

(joint work with Pavel Krejč́ı)

This contribution is based on the results obtained in [2].
The scalar stop operator Sr arises as the solution operator (u, z0) 7→ z of the

rate-independent evolution variational inequality

(u̇(t)− ż(t))(z(t)− ζ) ≥ 0 ∀ ζ ∈ Z , for a.e. t ∈ (a, b) ,(1a)

z(t) ∈ Z ∀ t ∈ [a, b] , z(a) = z0 ,(1b)

with Z = [−r, r], r > 0, z0 ∈ [−r, r]. Its twin, the scalar play operator Pr, is given
by

Pr[u; z0] = u− Sr[u; z0] .

The operators Sr and Pr are well-defined on W 1,1(a, b) × Z with values in
W 1,1(a, b) and can be extended to Lipschitz continuous operators from C[a, b]×Z
to C[a, b]. They are not differentiable in the classical sense.

It has been shown in [1] that for (u, z0) ∈ C[a, b]× Z the pointwise directional
derivative

g(t) = lim
λ↓0

Pr[u+ λh; z0 + λy0](t)− Pr[u; z0](t)

λ
, t ∈ [a, b] ,

exists and belongs to BV [a, b] for all directions (h, y0) with h ∈ C[a, b]×BV [a, b]
and y0 ∈ R. Moreover, g is the directional derivative of Pr when the latter is
viewed as an operator from C[a, b]× Z to Lp(a, b) with p ∈ [1,∞).

Here we prove that g is the unique solution of a certain system of variational
inequalities. More precisely, g is the unique solution in BV [a, b] of the system

g(a) = h(a)− π′(z0; y0) ,(2a)

h(t)− g+(t) ∈ K(t) ∀ t ∈ [a, b] ,(2b)
∫ s

a

(h(t)− g+(t)− v(t)) dg(t) ≥ 0 ∀ s ∈ (a, b], v ∈ GK [a, s] .(2c)

Moreover, var(g) ≤ var(h) + |y0| and g(t) ∈ {g+(t), g−(t)} for all t ∈ [a, b].
We explain the variables and the notation used in (2).
The integral in (2c) is a Kurzweil-Stieltjes integral, see [3]. The expression

π′(z0; y0) stands for the directional derivative of the projection π : R → Z at z0 in
the direction y0. By g+ we denote the right limit of g defined by g+(b) = g(b) and

g+(t) = lim
τ→t,τ>t

g(τ) , a ≤ t < b .

The left limit g− is defined analogously. The set GK [a, s] consists of all regulated
functions v : [a, s] → R with v(t) ∈ K(t) for all t ∈ [a, s].

The sets K(t) ⊂ R, t ∈ [a, b], depend on u by means of the behaviour of the
trajectory {(w(t), z(t)) : t ∈ [a, b]} with w = Pr[u; z0] and z = Sr[u; z0]. They are
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defined by

K(t) =





R , t ∈ A1 ,

R− , t ∈ A+
2 ,

R+ , t ∈ A−
2 ,

{0} , t ∈ A3 ,

where R+ = [0,∞) and R− = (−∞, 0]. Here,

A1 = {t ∈ [a, b] : |z(t)| < r} ,
A+

2 = {t ∈ [a, b] : z(t) = r, ∃ ε > 0, w = w(t) on [t, t+ ε)} ,
A−

2 = {t ∈ [a, b] : z(t) = −r, ∃ ε > 0, w = w(t) on [t, t+ ε)} ,
A2 = A+

2 ∪ A−
2 ,

A3 = {t ∈ [a, b) : |z(t)| = r, ∃ ε > 0, w 6= w(t) on (t, t+ ε)} .
The definition of A±

2 is to be understood as b ∈ A±
2 if z(b) = ±r.

For the proofs, we refer to [2].
This result may be used in various contexts where scalar rate-independent evolu-

tions appear and where generalized derivatives with respect to the forcing function
are of interest. This includes in particular optimality conditions and stationarity
systems for associated optimal control problems. The result also serves as a step-
ping stone for the study of directional derivatives in more general situations like

• vector-valued (finite or infinite dimensional) rate-independent evolutions
(the interval [−r, r] is replaced by a more general closed convex set Z),

• quasivariational evolution inequalities,
• evolutions including the Preisach operator (which can be represented by
a one-parameter family of play operators).

These issues are currently under consideration.
Results of this type may also be of interest for the general class of rate-inde-

pendent evolutions studied in [4], as the scalar play and stop operators represent
one of the simplest cases of the evolutions discussed there.
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Università di Pavia
Via Ferrata, 5
27100 Pavia 27100
ITALY

Prof. Dr. Hélène Frankowska
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