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Abstract. Concepts and methods from the mathematical theory of optimal
transportation have reached significant importance in various fields of the
natural sciences. The view on classical problems from a “transport perspec-
tive” has lead to the development of powerful problem-adapted mathematical
tools, and sometimes to a novel geometric understanding of the matter. The
natural sciences, in turn, are the most important source of ideas for the fur-
ther development of the optimal transport theory, and are a driving force
for the design of efficient and reliable numerical methods to approximate
Wasserstein distances and the like.

The presentations and discussions in this workshop have been centered
around recent analytical results and numerical methods in the field of optimal
transportation that have been motivated by specific applications in statistical
physics, quantum mechanics, and chemistry.
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Introduction by the Organizers

This workshop has been devoted to the recent developments in the mathematical
theory of optimal transport (OT for short) that have been motivated by specific
applications in the naural sciences. This has been a purely virtual event, with more
than fifty registered participants mostly from Germany, France and the United
States; about half of them have been given a presentation, among them five young
researchers in the narrow sense.
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The broad mixture of topics in the presentations underlined that the range of
OT applications has become extremely diverse. The presented applications ranged
from density functional theory in quantum chemistry to full waveform inversion
in geophysics, from vortex dynamics in fluid mechanics to fast reaction limits in
chemistry, etc. Numerical methods for fluid simulations, statistical evaluation and
machine learning played a significant role as well. The focus of this workshop was
thus complementary to the majority of the numerous OT-related mathematical
events that have taken place in the past years, since most of these conferences
and meetings were concerned either with the very topical applications of OT in
all variants of data sciences (and have a strong emphasis on fast numerical algo-
rithms), or with the progress in pure theory, primarily in differential geometry.
Specific recent developments in the theory, like multi-marginal transport with con-
cave costs or unbalanced mass transport, that are rather exotic at the majority of
OT events, have been central in this workshop.

In comparison to the workshop with a similar topic by the same organizers
in 2017, a stronger connection in the mathematical theory behind the diverse
applications could be noticed. Specifically the topic of entropic regularization was
a recurrent theme, clearly in connection with mean field games or the Sinkhorn
algorithm, but also for instance for the transport on networks. For the numerical
methods, an impressive development — also in the analysis of the methods —
could be observed in comparision to four years ago, particularly for the efficient
computation of optimal transport maps and multi-marginal plans, but also for the
simulation of Wasserstein gradient flows.

Gradient flows in the Wasserstein distance have since long been a topic of central
interest in OT, and this was also reflected in this workshop. The geometry and
stability of crystal-like steady states in a gradient flow modeling biological aggre-
gation was the topic of Robert McCann’s presentation. In a similar spirit, Andre
Schlichting performed a bifurcation analysis in the McKean-Vlasov equation and
also developed tools to study metastability in gradient flows. Another aspect,
namely the micro-macro passage, in same general class of gradient flows was con-
sidered by Maria Bruna. On the more general level, Giuseppe Savare presented
ideas to extend elements from the AGS theory to dissipative evolutions that are
not of gradient type, while Mark Peletier demonstrated a structural instability
of variational flows. In his, as usual, extremely vivid presentation, Filippo San-
tambrogio discussed possibilities to define a gradient flow for a very non-convex
functional that is minimized by segregated states. Flows were also used by Jean
Dolbeault, who proved functional inequalities of GNS-type with their aid. Last but
not least, Andrea Natale presented a provably convergent Lagrangian discretiza-
tion for numerical solution not only of Wasserstein gradient flows, but also of the
Euler equations.

Transport distances have been used recently to attack the problem of full seismic
waveform inversion. This is a well-known nonlinear inverse problem where one
tries to recover the underground parameters of a ‘forward’ wave propagation model
mapping a wave source to a ‘seismogram’ (time × surface signal recordings at fixed
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receivers). Yang and Métivier explained how the classical least-squares misfit is
known to lead to an ill-posed minimization problem with many local minima. This
pathology is called ‘cycle skipping’ and linked to phase shifts in the oscillatory
signals. At least for simple models transport distances convexify the problem.
This is an important paradigm shift for the geophysical community which has
been considering mostly the least squares misfit for more than 50 years. I Time
signals are, however, not probability measures and some data transformation is
needed. There is little understanding of the interpretation of time oscillatory
signals in terms of mass or probability measures and this question remains largely
open. Métivier suggests for instance to interpret “lines” of receivers recording as
shapes in the time × signal amplitude ‘graph space’. After a discretization in time,
they give empirical measures living in Rtime × Ramplitude space.

Symmetric multimarginal optimal transport problems arise naturally in quantum
chemistry applications as the semi-classical limit of the so-called Lévy-Lieb func-
tional. This quantity plays a central role in Density Functional Theory for the
calculation of the electronic structure of molecules, in particular for the compu-
tation of the ground states (states of lower energy) of the electrons within the
molecule. Understanding and computing these states is of vital importance in
order to accurately predict optical, electrical and chemical properties of these sys-
tems.

Gero Friesecke gave a nice introduction to this emerging topic and presented
recent results in a new numerical method for the resolution of symmetric multi-
marginal optimal transport problem with a large number of marginals (which is
equal to the number of electrons in the molecule) which successfully enables to by-
pass the curse of dimensionality. Maria Colombo presented new theoretical results
about the semi-classical limit of electronic ground states and the link with the
solutions of the multimarginal optimal transport problem. Codina Cotar showed
that the Jellium and Uniform Electron Gas next-order asymptotic terms (in the
semi-classical limit) are equal for Coulomb and Riesz potentials and related their
expressions to solutions of optimal transport problems.
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A cross-diffusion equation obtained by convexification . . . . . . . . . . . . . . . . 528
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Abstracts

Scaling Optimal Transport for High Dimensional Learning

Gabriel Peyré

Optimal transport (OT) has recently gained lot of interest in machine learning
(ML). It is a natural tool to compare in a geometrically faithful way probability dis-
tributions. It finds applications in both supervised learning (using geometric loss
functions) and unsupervised learning (to perform generative model fitting). We
refer to [1] for an overview of this rapidly growing field. OT is however plagued by
the curse of dimensionality, since it might require a number of samples which grows
exponentially with the dimension. A workaround, which is now the workhorse of
many approaches to OT in ML, is to introduce entropic regularization. Given two
probability distributions α, β on Rd (some of these results extend to more general
spaces and distances), its entropic cost is

OTε(α, β)
p ∆
= inf

π∈M+(Rd×Rd)

∫

Rd×Rd

(
‖x− y‖2 + ε log

(
dπ

dαdβ
(x, y)

))
dπ(x, y)

where the minimization is performed over all joint probability distributions having
marginals α and β. When ε = 0, one recovers the usual (un-regularized) OT, which
suffers severely from the curse of dimensionality. Indeed, if one has only access
to n samples (xi, yi)

n
i=1 drawn independently from the distributions α and β, one

can consider the empirical distributions α̂ = 1
n

∑
i δxi

, β̂ = 1
n

∑
i δyi

and one has
the following approximation result for the plugin estimator

E(|OT0(α, β) −OT0(α̂, β̂)|) = O(1/n1/d),

where the expectation is computed with respect to the samples, see [2] for more
details. This shows that the rate is exponentially bad with the dimension d, and
furthermore this upper-bound is tight and cannot be improved (as long as for
instance α or β have density with respect to the Lebesgue measure). It has been
recently shown in [3] that if α 6= β, then the rate is actually better

(1) α 6= β =⇒ E(|OT0(α, β) −OT0(α̂, β̂)|) = O(1/n2/d),

but this is not true anymore if α = β. In sharp contrast, it is shown in [5, 6] that
the entropic cost enjoys a rate which is independent of the dimension

(2) E(|OTε(α, β)−OTε(α̂, β̂)|) = O(ε−d/2/n1/2),

the main issue being that the constant ε−d/2 blows as ε→ 0, making questionnable
its use to improve the estimation of OT distances.

Another issue is that for ε > 0, OTε is not a distance, and in particular
OTε(α, α) > 0. This is due to the presence of the entropy, which causes a “bias”
which is problematic when using OTε as a loss function for machine learning pur-
poses. This “bias” is studied in detailed in [8] and [7] who show the following
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Taylor expansion (under strong regularity conditions on the measures and the
Monge map to ensure a second order expansion)

(3) OTε(α, β)
2 = OT0(α, β)

2 + dε log
√
2πε+ ε(H(α) +H(β)) + ε2I(α, β) + o(ε2)

where H(α) =
∫
log(dαdx )dα is the differential entropy and

I(α, β)
∆
=

∫ 1

0

∫

Rd

‖∇ log(ρt(x)‖2ρt(x)dxdt

is the Fisher information of the OT geodesic ρt (so-called McCann interpolation)
between the densities of α and β.

In order to remove as much as possible of this bias, [5] introduced the Sinkhorn
divergence

(4) OTε(α, β)
p ∆
= OTε(α, β)

p − 1

2
OTε(α, α)

p − 1

2
OTε(β, β)

p.

From the above Taylor expansion (3) of OTε, one sees that for regular enough
distributions, one has second order accuracy in the sense that

OTε(α, β) −OT0(α, β) = O(ε2)

where the constants are controlled by the relative Fisher information of α and β.
Combinining this second order accuracy with the sample complexity (2) of the
entropic cost ensures if α 6= β

E(|OTε(α̂, β̂)−OTε(α̂, β̂)|) = O(1/n2/d),

as long as one selects ε ∼ 1/n1/d. One thus retrieves the rate (1) of the plugin
estimator, but using entropic regularization. While this might seem deceiving at

first, a chief advantage is that OTε(α̂, β̂) can be computed very efficiently using the
highly parallizable Sinkhorn algorithm (see [1] for an overview), with a complexity
of O(n2/ε2) to reach ε accuracy [9].

An important open question is to be able to lift the curse of dimensionality
by leveraging strong smoothness hypotheses on the distributions. If these distri-
butions have very smooth densities (with of order d derivatives), this could be
achieved by using more powerful “debiasing” formula than (4) in order to reach
an accuracy of order εd instead of ε2. A computational approach to achieve this
using Richardson extrapolation is explained in [3], but this approach is unsta-
ble and thus induces constants which explode with d. A more straightforward a
way to achieve this is to consider a smoothing of the empirical measures using a
convolution against a smooth kernel kε(x) = k(x/ε)

kε ⋆ α̂ =
1

n

∑

i

k((x− xi)/ε),

since then one has for ε ∼ 1/n1/d

E(|OT0(kε ⋆ α̂, kε ⋆ β̂)− OTε(α̂, β̂)|) = O(1/n1/2).

This approach has been developed, generalized and studied in [10]. Unfortunately

there is no efficient algorithm to estimate OT0(kε ⋆ α̂, kε ⋆ β̂) in high dimension,
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since approximating this quantity typically requires re-sampling kε ⋆ α̂ using ∼ nd

points. Another approach has been proposed in [11], which bypass this direct
spacial smoothing by imposing instead the smoothness of the dual variable (so-
called Kantorovitch potential), which can itself be enforced numerically using a
sum-of-square method and semi-definite programming.
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Domain decomposition for entropic optimal transport

Bernhard Schmitzer

(joint work with Mauro Bonafini, Ismael Medina)

Optimal transport has become a highly relevant numerical tool in data analysis
applications. Consequently the development of increasingly efficient computational
methods is of great importance. In recent years entropic regularization and the
Sinkhorn algorithm have become a standard method. Despite its tremendous
success, solving large problems with low regularization remains challenging due to
memory limitations, numerical instabilities and slow convergence. Combining this
method with a domain decomposition algorithm due to Benamou [1] will require
only the solution of smaller partial problems at each iteration. This could remedy
issues with memory and stability while also allowing for large-scale parallelization.

Let X , Y be compact, convex subsets of Rd, let c : X×Y → R+ be a continuous
cost function and let µ, ν be two probability measures on X and Y respectively.
Further, denote by Π(µ, ν) the set of transport plans, i.e. the probability measures
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π(0) π(1) π(2) π(3) π(4) π(5)
0

1

0 1

Y

X1 X2 X3

Figure 1. Illustration of the domain decomposition algorithm for
X = Y = [0, 1] with some entropic regularization. The ‘diagonal’
plan is optimal, we start with a sub-optimal ‘anti-diagonal’ plan.

on X × Y with marginals µ and ν, and by KL denote the Kullback–Leibler diver-
gence. For some regularization parameter ε ≥ 0 the (entropy regularized) optimal
transport problem is then given by

inf

{∫

X×Y

c dπ + ε ·KL(π|µ⊗ ν)

∣∣∣∣π ∈ Π(µ, ν)

}
.(1)

For ε > 0, this can be solved by the Sinkhorn algorithm.
In its basic form, Benamou’s algorithm works as follows: Let (X1, X2, X3) be

a partition of X into three sets and let X12 := X1 ∪ X2, X23 := X2 ∪ X3. Let
π(0) ∈ Π(µ, ν) be an initial feasible transport plan. The first step is then to
optimize π(0) on X12 × Y , while keeping it fixed on X3 × Y , denote the result by
π(1). The second step is to optimize π(1) on X23 × Y while keeping it fixed on
X1×Y , obtaining the next iterate π(2). Subsequently, these two steps are repeated
until convergence. This is illustrated in Figure 1 for X = Y = [0, 1].

For ε = 0, c(x, y) = ‖x−y‖2 and µ having a Lebesgue density, Benamou showed
that this converges to the globally optimal solution if the partition satisfies a convex
overlap principle, which essentially implies that a function X → R that is convex
on separately X12 and X23 must be convex on X . The proof hinges on Brenier’s
polar factorization which provides (in this setting) that optimal plans are unique
and supported on the graph of the gradient of a convex map.

The algorithm can be generalized to finer partitions, such that at each iteration,
many partial sub-problems could be solved in parallel. Unfortunately, convergence
to the global minimizer fails for discretized problems and can only be recovered
asymptotically as the discretization becomes increasingly finer. This makes adap-
tation as a distributed numerical method delicate.

The key observation of [2] is that for ε > 0 the algorithm converges to the global
minimizer under very mild assumptions, even in the discretized setting. For the
above ‘three cell’ example, the convergence rate is bounded by

∆(π(ℓ)) ≤
(
1 + exp

(
−2‖c‖

ε

)
µ(X2)

µ(X1 ∪X3)

)−1

·∆(π(ℓ−1))(2)

where ∆(π) denotes the sub-optimality of a plan with respect to the minimal value
of (1) and ‖c‖ := max{c(x, y)|(x, y) ∈ X × Y }. In [2] the bound is also extended
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to finer partitions. The contraction ratio in (2) tends to 1 exponentially as ε→ 0.
This is reminiscent of the contraction ratio for the Sinkhorn algorithm in Hilbert’s
projective metric given in [4].

Exponentially slow convergence can be realized on malicious worst-case exam-
ples where convergence is entirely driven by the entropic smoothing. Conversely,
on more geometric problems (such as those considered by Benamou) empirically
much faster convergence is observed. Intuitively, this fast convergence is driven
by the monotonicity properties of the cost function. On such problems [2] reports
essentially log-linear scaling of the run-time with the number of pixels per image
and inverse proportionality in the number of worker threads for a suitable efficient
numerical implementation.

In d = 1 this ‘geometric’ convergence mechanism is related to the odd-even
transposition sort algorithm which can be shown to converge in n parallelized
iterations (where n is the number of partition cells). Unfortunately, an analogous
analysis in higher dimensions is still lacking. As a first step in this direction we
currently study [3] the convergence behaviour of the algorithm in the limit n→ ∞
where we find that the required number of iterations is proportional to n and
asymptotically the iterates π(ℓ) describe a smooth trajectory in the space Π(µ, ν)
which (under suitable assumptions on c) eventually concentrates on the graph of a
map. However, this limit need not be globally optimal in general and identifying
corresponding sufficient conditions remains an intriguing open question.
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Breaking the curse of dimensionality in statistical estimation of
smooth optimal transport.

François-Xavier Vialard

(joint work with A. Vacher, B. Muzellec, A. Rudi, and F. Bach)

It is well-known that plug-in statistical estimation of optimal transport suffers
from the curse of dimension. Despite recent efforts to improve the rate of esti-
mation with the smoothness of the problem, the computational complexities of
these recently proposed methods still degrade exponentially with the dimension.
In this talk, thanks to a representation theorem, we derive a statistical estimator
of smooth optimal transport which achieves in average a precision ǫ for a compu-
tational cost of Õ(ǫ−4) when the smoothness increases, hence yielding a dimension
free rate. Even though our result is theoretical in nature due to the large constants
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involved in our estimations, it settles the question of whether the smoothness of
optimal solutions can be taken advantage of from a computational and statistical
point of view.

Optimal transport is formulated as a constrained optimization problem on a
space of functions. It is a linear optimization problem under an inequality con-
straint on a space of functions. Therefore, it can be interpreted as learning a func-
tion which has a particular structure, namely non-negativity. A particular case of
optimizing on non-negative functions can be found in polynomial optimization [7].
A typical problem of interest is the optimization of a polynomial function on a set
constrained by polynomial inequalities. Leveraging, when available, a representa-
tion theorem such as Putinar’s Positivestellensatz, the optimization problem can
be reduced to a hierarchy of SDP problems, see [3]. Using this approach for op-
timal transport was actually already proposed by Lasserre. Recent works address
the problem of learning positive functions in more general spaces such as Repro-
ducing Kernel Hilbert Space (RKHS). In [2], it is proposed to represent a positive
function in a RKHS as a sum-of-squares. These ideas were further developed in
[4] and exploited for non-convex optimization in [1] where the authors recast, as
is standard, the problem of minimization of a function f : D ⊂ Rd → R defined
on a domain D as a convex optimization problem, max c under the inequality
constraint c ≤ f(x) for every x ∈ D. Obviously, this problem is computationally
intractable in general and they propose to solve it under structural assumptions
on f(x)− c = 1

2 〈φ(x), Aφ(x)〉 for a positive self-adjoint operator A : H 7→ H where
H is a RKHS. The value of this new optimization problem is a priori less than the
minimum value of f but it does coincide under the assumption that

(1) f = cste+
1

2
〈φ(x), A∗φ(x)〉 ,

for some A∗. The key point here is a representation result stating that a fairly large
space of smooth functions (to be considered for optimization) can be represented
by a sum of squares in RKHS, as in Equation (1). Indeed, they show that it is
the case if the function f has at least one global minimizer and there is a finite
number of global minimizers which all have a non-singular Hessian.

Optimal transport in its dual formulation for the quadratic cost also optimizes
on a subset of non-negative functions. Under smoothness assumption of the op-
timizer, one is tempted to formulate a result on the computational-statistical ef-
ficiency of the problem. However, while leveraging regularity can be done using
sampling inequalities for a given smooth function, see [6], it is not possible in
general for functions for which only inequality constraints are available. As shown
in [1], it is possible though when more structure on the minimizers is available.
Therefore, the key issue is the representation formula of the minimizers with the
additional sum-of-squares structure. In the dual formulation of OT, the minimiz-
ers do not define a finite number of saturation points for the inequality constraint,
on the contrary to the hypothesis in [1]. Rather the saturation set of the constraint
defined by the optimizers is a continuous set of points, the graph of the optimal
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transport map. Based on a second order Taylor expansion, we prove a representa-
tion result of the optimizer for smooth OT, which is actually a special case of the
Morse lemma with parameter. This allows to formulate an (infinite dimensional)
SDP-SOCP formulation for OT which is tight. By a standard “kernel trick”, this
problem admits a finite dimensional representation which can be solved by convex
optimization algorithms, leading to polynomial computational bounds which are
independent of the dimension of the ambient space.

For further details, we refer to [5]. Among future works, we mention the de-
velopment of efficient numerical methods to solve the SDP problem, taking into
account the particular structure of the transport problem and second the study
of the convergence of the optimal potentials for which we expect almost optimal
statistical rates to be obtain by our method.
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Lagrangian discretizations of compressible fluids and porous media
flow with semi-discrete optimal transport

Andrea Natale

(joint work with Thomas O. Gallouët, Quentin Mérigot)

The Euler equations describing the evolution of a barotropic fluid in a compact
domain M ⊂ Rd and on a time interval [0, T ] are given by the following system of
equations:

(1)

{
∂tu+ (u · ∇)u+∇U ′(ρ) = 0 ,
∂tρ+ div(ρu) = 0 ,

where ρ(t, x) ≥ 0 is the fluid density, u(t, x) ∈ Rd is the Eulerian velocity and
U : [0,∞) → R defines the internal energy as a function of the density. The system
is supplemented by the initial conditions ρ(0, ·) = ρ0, u(0, ·) = u0, and boundary
conditions u ·n∂M = 0. Let S0 ⊆M be the support of ρ0 and X : [0, T ]×S0 →M

be the flow associated to the (smooth) vector field u, i.e. satisfying Ẋt = u(t,Xt).
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Then, ρ(t, ·) = (Xt)#ρ0, and at least formally, the flow evolution is described by
Newton’s second law on the space X := L2

ρ0
(M ;Rd) :

(2) Ẍt = −∇XF(Xt) , F(X) := U(X#ρ0) ,

where U(ρ) :=
∫
M U(ρ)dx is the internal energy functional, which we set to +∞

whenever ρ is not a.c. with respect to dx|M .
The dissipative counterpart to the Euler system (1) is given by the equation

(3) ∂tρ− div(ρ∇U ′(ρ)) = 0 ,

with the initial conditions ρ(0, ·) = ρ0, and boundary conditions ∇U ′(ρ) ·n∂M = 0.
In this case, given a solution ρ to (3), the flow X associated with the vector field
−∇U ′(ρ) solves the following gradient flow equation:

(4) Ẋt = −∇XF(Xt) ,

which the Lagrangian version of the Wasserstein gradient flow interpretation of
system (3). Note that for the classical choice U(r) = rm/(m − 1) with m > 1,
systems (1) and (3) yield the isentropic Euler and the porous media equations,
respectively.

The Hamiltonian structure of system (2) and the gradient flow structure of
(4) can be exploited to construct stable Lagrangian numerical schemes. Here we
consider particle discretizations which correspond to constraining the flow X to
be piecewise constant on a given partition PN := (Pi)1≤i≤N of M , with N ∈ N∗.
In particular, introducing

XN := {XN ∈ X : XN (ω) = X i
N ∈ Rd for ρ0-a.e. ω ∈M},

a discrete flow is a curve XN : [0, T ] → XN , which is then characterized by the
trajectories of N particles t ∈ [0, T ] 7→ (X i

N (t))i ∈ RdN . In turn, the fluid density
is given by the empirical measure

ρN (t) := XN (t)#ρ0 =
N∑

i=1

ρ0[Pi]δXi
N
(t) .

This setting is common to most Lagrangian approaches for the discretization
of the systems above. However, since the energy is not well-defined on singular
measures, one must define a discrete version of it, which is where the various
existing methods differ. Convolution procedures are the most common approaches
for both systems (see, e.g., Smoothed Particle Hydrodynamics methods for the
Euler system, or the review article [2] for gradient flows). We consider instead a
discretization based on the Moreau-Yosida regularization, proposed in [1, 5, 3], i.e.
we define for any XN ∈ XN , with ρN := (XN )#ρ0,

(5) Fε(XN ) := inf
X∈X

‖XN −X‖2
X

2ε
+ F(X) = inf

ρ∈Pac(M)

W 2
2 (ρN , ρ)

2ε
+ U(ρ).

Note in particular that the L2 regularization in the definition of Fε corresponds to a
Wasserstein regularization at the Eulerian level, which can be computed efficiently
using semi-discrete optimal transport tools [4].



Applications of Optimal Transportation in the Natural Sciences 521

Let NT ∈ N∗, τ := T/NT be a fixed time step and tn := nτ for 0 ≤ n ≤ NT . On
each time interval [tn, tn+1) we define the discrete dynamics as the Hamiltonian
(resp. gradient flow) dynamics on XN associated with the energy

XN ∈ XN 7→ ‖XN −Xε
N (tn)‖2

2ε
+ F(Xε

N (tn)) ∈ R .

where

Xε
N (tn) ∈ argmin

X∈X

‖XN(tn)−X‖2
X

2ε
+ F(X)

More precisely, the discrete version of problem (2) consists in finding a C1 curve
XN : [0, T ] → XN which satisfies for all 0 ≤ n < NT ,

(6) ẌN (t) = −XN(t)− PXN
Xε

N (tn)

ε
, ∀t ∈ [tn, tn+1) ,

where PXN
is the L2 projection onto XN . Similarly, the discrete version of problem

(4) consists in finding a C0 curve satisfying for all 0 ≤ n < NT ,

(7) ẊN (t) = −XN(t)− PXN
Xε

N (tn)

ε
, ∀t ∈ [tn, tn+1) .

This time discretization is an adaptation of the one proposed by Brenier in [1], and
it has the remarkable feature of guaranteeing stability for the regularized energy
(5), despite being fully explicit.

Our main results give the convergence of the schemes described above towards
smooth solutions of the Euler system (1) and the gradient flow (3). The proof relies
on a classical modulated energy (or relative entropy) argument. Importantly, the
proof is fundamentally Eulerian, which is natural since the energy F is not convex
on X in general, and it requires the definition of a discrete modulated energy which
is to be interpreted a discretization of its continuous counterpart:

∫

M

U(ρ|ρ̄)dx , U(r|s) := U(r)− U(s)− U ′(s)(r − s) .

Moreover, we require that there exists A > 0 such that

(8) |P (r|s)| ≤ AU(r|s) ∀r, s > 0 ,

where P (r|s) := P (r)−P (s)−P ′(s)(r− s), and P (r) = rU ′(r)−U(r) defines the
pressure as a function of the density. We state here the precise result only for the
Euler system, but a similar statement holds in the gradient flow case.

Theorem 1. Suppose that (ρ, u) is a strong solution to (1) with U : [0,∞) →
R being a smooth strictly convex and superlinear function such that (8) holds.
Suppose that u and ρ are respectively of class C2,1 and C1,1 on [0, T ]×M ; and that
either ρ ≥ ρmin > 0 or that |U ′′

+(0)| <∞. Suppose in addition that XN : [0, T ] →
XN is a C1 curve which satisfies (6), with initial conditions XN (0) = PXN

Id and

ẊN(0) = u(0, PXN
Id(·)). Then, denoting by X the Lagrangian flow associated with

u satisfying X(0) = Id,

(9) max
t∈[0,T ]

‖ẊN(t)− u(t,XN (t))‖2
X
+ ‖XN(t)−X(t)‖2

X
≤ C(

h2N
ε

+ hN + ε+
τ

ε
) ,
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where hN = maxidiam(Pi), and C > 0 depends only on the Lipschitz norm (in
space) of u, ∂tu, ∇u, ∇div u, ∇U ′(ρ), P ′(ρ) and U ′(ρ(0)), on the L∞ norm of u
and P ′(ρ), on the initial energy U(ρ(0)), and on M and T .

We remark that differently from [5] we prove convergence of the discrete scheme
without assuming any a priori bounds on the discrete solution, but rather relying
on the smoothness of the exact one. It is an open question whether convergence
holds for less regular solutions and in particular in the case where the −∇U ′(ρ) is
non zero at the boundary of the support of ρ, which is the case for the Barenblatt
solution of the porous media equation. Nonetheless, numerically we generally
observe convergence with even better rates compared to (9). Finally, we observe
that due to ε, our estimates imply a CFL-type condition linking τ and hN , and it
is open whether this can be avoided by a different choice of regularization or time
discretization, while maintaining the main features of the scheme.
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Point vortex dynamics for the Euler equation

Christian Seis

(joint work with Stefano Ceci)

Coherent flow structures are widely observed in turbulent fluid motions. Typical
examples are isolated regions of concentrated vorticity, such as those observed,
for instance, as small eddies in rivers after bridge piers or as spectacular whether
phenomena such as tornados. In many situations, the fluid motion in the vortex
regions is approximately two-dimensional and the vortex centers can be idealized
as points.

The evolution of coherent vortex structures can thus, at least for small times and
heuristically, be modelled both on the level of an integrable vorticity distribution
and by a system of singular point vortices. The mathematical model from the first
point of view is, in the simplest case, the Euler equation

(1) ∂tω + u · ∇ω = 0,

which we consider on R2 in order to neglect the effect of boundaries. Here, ω =
ω(t, x) ∈ R is the vorticity of the fluid and u = u(t, x) ∈ R2 its velocity. At any
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instant of time, the velocity can be computed from the vorticity with the help of
the Biot–Savart law, u = K ∗ ω, where

K(z) =
1

2π

z⊥

|z|2

is the Biot–Savart kernel, and z⊥ represents the counter-clockwise rotation of a
vector z about the origin. A first formal derivation of a point vortex model goes
back to the pioneering work of Helmholtz [4], in which he predicted that a set of
idealized point vortices X1, . . . , XN in R2 evolves by a simple system of ordinary
differential equations,

(2)
d

dt
Xi =

∑

j 6=i

λjK(Xi −Xj).

Here, λi is the circulation or strength of the ith vortex, which is preserved during
the evolution.

The connection between Euler equations (1) and the point vortex system (2)
was made rigorous for the first time about fourty years ago by Marchioro and
Pulvirenti [5], and there have been many improvements since then. The results
hold true for initial data which separate into N regions of disjoint supports and
distinguished signs,

ω0 =

N∑

i=1

ω0
i ,

and the corresponding intensities and initial vortex centers are

λi =

∫
ωi dx, X0

i =
1

λi

∫
xω0

i (x) dx.

Marchioro and Pulvirenti (and also the later contributors) futhermore imposed
strong vorticity concentration in the sense that

(3) spt ω0
i ⊂ Bε(X

0
i ),

for some small ε > 0, and uniform scaling assumptions of the form

0 ≤ ω0
i

λi
. ε−γ ,

for some γ ≥ 2. The prototype vortex region is a constant patch, for instance,
ω0
i = λi

πε2χBε(X0
i )
. If ωi(t) denotes the vortex patch at later times, which is simply

advected by the flow of the velocity field u, it can be proved that the patches
remain sharply concentrated around solutions to the point vortex system (2). More
precisely, it holds that

(4) spt ωi(t) ⊂ BCεβ (Xi(t))

for some β ∈ (0, 1/2), see [5].
The key estimate in the derivation of (4) is a bound on the second moment

function ∫
|x−Xi(t)|2

ωi(t, x)

λi
dx . e

Ct

d2

∫
|x−X0

i |2
ω0
i (x)

λi
dx,
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where d is the minimal distance between the point vortices and C some universal
constant (dependent on the ciruclations). This estimate can be interpreted as a
bound on the 2-Wasserstein distance,

W2

(
ωi(t)

λi
, δXi(t)

)
. e

Ct

d2 W2

(
ω0
i

λi
, δX0

i

)
.

Under the strong concentration assumptions (3), the right-hand side is of the order
ε, and an application of the triangle inequality yields

(5) W1(ω(t),
∑

i

λiδXi(t)) . e
Ct

d2 ε.

We remark that choosing the W1 distance here is necessary because the latter can
be extended to unsigned densities thanks to the Kantorovich–Rubinstein theorem.
Moreover, because Wasserstein distances metrize weak convergence, the latter can
be understood as an estimate on the rate of weak convergence of Euler solutions
to the point vortex system,

ω = ωε −→
∑

i

λiδXi
weakly with rate ε.

In a recent work [2], we derived Marchioro and Pulvirenti’s result under a weaker
concentration hypothesis. Moreover, we managed to handle unbounded vorticity
fields.

Theorem 1. Suppose that ω0
i is such that

W2

(
ω0
i

λi
, δX0

i

)
. ε, ‖ω0

i ‖Lp . ε−γ with γ = 2(1− 2

p
).

Then (5) holds for any t ∈ (0, T ) for some T & 1.

The result can be easily extended to (multiply connected) domains (as consid-
ered in [2]) and to the viscous setting [3].

The theorem is remarkable because in the setting under consideration, there is
no uniqueness result known for the Euler equations. Nevertheless, since solutions
to the point vortex system can be formally considered as solutions to the Euler
equations, the result provides a stability estimate between a weak, possibly non-
unique, solution and a singular solution with more structure.

We finally remark that by combining the methods of this works with the tech-
niques developed in [1], the above result can be easily generalized to any γ, pro-
vided that the weak concentration assumption is traded for the strong concen-
tration assumption. A control of the Lp seems to be necessary, however, as is
guarantees that the velocity field is bounded.
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Convergence of a gradient flow to a non-gradient-flow

Mark A. Peletier

(joint work with Mikola Schlottke)

We study the limit ε→ 0 for the family of Fokker-Planck equations in one dimen-
sion defined by

(1) ∂tρε = ετε

[
∂xxρε + ∂x

(
ρε

1

ε
∂xV

)]
, on R+ × R.

Here we take an asymmetric double-well potential V : R → R as depicted in
Figure 1.

x

V (x)

xa x0

xb

xb− xb+

Figure 1. A typical asymmetric potential V (x).

A typical solution ρε(t, x) is displayed in Figure 2, showing mass flowing from
left to right: as time increases, the mass shifts from the left to the right well.

xa xb xa xb xa xb xa xb

t = t1 t = t2 t = T
ρε(0, x)

Figure 2. The time evolution of a solution ρε(t, x) to (1) whose
initial distribution is supported on the left. Time increases from
left to right. The smaller the value of ε, the sharper the equilib-
rium distribution concentrates around the global minimum xb.
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There are two parameters, ε > 0 and τε > 0. The parameter ε controls how
sharply the mass is concentrated around xa and xb, and how fast mass can move
between the potential wells. The second parameter τε sets the global time scale,
and is chosen such that transitions from the local minimum xa to the global
minimum xb happen at rate of order one as ε→ 0:

τε :=
2π√

V ′′(xa)|V ′′(x0)|
exp{ε−1(V (x0)− V (xa))}.

As ε→ 0, we expect the mass to be concentrated at xa and xb, and we expect
the limiting dynamics to be characterized by mass being transferred at rate one
from the local minimum xa to the global minimum xb, with no mass moving in
the opposite direction. In terms of the solution ρε, therefore, we expect

ρε ⇀ ρ0 = zδxa
+ (1 − z)δxb

,

where the limit density z = z(t) of particles at xa satisfies ∂tz = −z, corresponding
to left-to-right transitions happening at rate 1. This is illustrated in Figure 3.

xa xb xa xb xa xb xa xb

t = t1 t = t2 t = T
ρ0(0, x)

Figure 3. The time evolution of ρ0, defined as the ε → 0 limit
of the solution ρε(t, x) to (1).

Equation (1) is a Wasserstein gradient flow [AGS08] of the functional

Eε(ρ) := H(ρ|γε) where γε(dx) :=
1

Zε
e−V (x)/ε dx,

where H(µ|ν) is the relative entropy of µ with respect to ν. This structure was
used in [AMPSV12, LMPR17] to prove ‘EDP-convergence’ of this gradient system
to a limiting gradient system, in the case of a symmetric potential V .

For a non-symmetric potential V we show in [PS21] that no EDP-convergence is
possible. The main reason for this is that the gradient structure is ‘lost’ in the
limit. One indication of this is the singular behaviour of the energy Eε:

Eε
Γ−→ E0(ρ) := H(ρ|δxb

) =

{
0 if ρ = δxb

+∞ otherwise,

while

εEε
Γ−→

∫
ρV.

This shows that for any ρ 6= δxb
, Eε(ρ) diverges at rate 1/ε, and any gradient

system driven by the limit functional E0 only admits constant solutions ρ(t) = δxb

for all t.
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Instead, we follow the idea of variational convergence but for more general
formulations. The starting point is the following reformulation of equation (1).
For pairs (ρε, jε) satisfying the continuity equation ∂tρε + ∂xjε = 0, equation (1)
can formally be written as Iε(ρε, jε) ≤ 0, where

Iε(ρε, jε) :=
1

2

∫ T

0

∫

R

1

ε τε

1

ρ(t, x)

∣∣j(t, x)− Jρ
ε (t, x)

∣∣2 dxdt

and Jρ
ε := −τε [ε ∂xρε + ρε∂xV ] .

In the context of EDP-convergence, one would split this functional into energetic
and dissipation parts,

Iε(ρε, jε) = Eε(ρ)
∣∣∣
t=T

t=0
+

∫ T

0

[
Rε(ρ, j) +R∗

ε

(
ρ,−DEε

(
ρ)
)]

dt

︸ ︷︷ ︸
(∗)

and one would proceed to characterize the Γ-convergence of the terms separately.
Because of the singularity of Eε this fails, and both Eε(ρ)|t=T

t=0 and the term (∗)
diverge as 1/ε. Instead we keep the terms together, and study the Γ-convergence
of the combined functional Iε.
Theorem 1 (Main result). Let V satisfy a number of technical assumptions that
encode the ‘two-well’ nature. Then

(1) Sequences (ρε, jε) for which there exists a constant C such that

Iε(ρε, jε) ≤ C and Eε(ρε(0)) ≤
C

ε

are compact in a distributional sense;
(2) Along sequences (ρε, jε) satisfying

ρε(t = 0)⇀ ρ◦0(dx) := z◦δxa
(dx) + (1 − z◦)δxb

(dx) as ε→ 0,

the functional Iε Γ-converges to a limit I0.
The limit functional I0 is defined by

I0(ρ, j) := 2

∫ T

0

S(j(t)|z(t)) dt,

provided ρ(t, dx) = z(t)δxa
(dx) + (1 − z(t))δxb

(dx) with z(0) = z◦, and j(t, x) =
j(t)1(xa,xb)(x). Here the function S : R2 → [0,∞] is given by

S(a|b) :=





a log
a

b
− a+ b, a, b > 0,

b, a = 0, b > 0,

+∞, otherwise.

Lemma 2 (Characterization of minimizers of I0). If I0(ρ, j) = 0, then z satisfies
z′(t) = −z(t) for all t.

Details can be found in the forthcoming publication [PS21].
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[AGS08] L. Ambrosio, N. Gigli, and G. Savaré. Gradient Flows in Metric Spaces and in the
Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser,
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A cross-diffusion equation obtained by convexification

Filippo Santambrogio

(joint work with R. Ducasse, H. Yoldaş)

In a recent paper, [3], Barbaro, Rodriguez, Yoldaş, and Zamponi study a very
simple cross-diffusion system given by

{
∂tρ = ∆ρ+∇ · (ρ∇µ),
∂tµ = ∆µ+∇ · (µ∇ρ),

which is a system of Fokker-Planck equations where each density acts as a potential
for the other (in a given domain Ω ⊂ Rd with no-flux boundary conditions, or in
the d-dimensional torus). Local existence under the condition ρµ < 1 is proven
in [3]. Indeed, this condition is not surprising. One can see that this system is,
formally, the gradient flow in W2(Ω)×W2(Ω) of the functional F 0 given by

F 0(ρ, µ) :=

∫

Ω

f0(ρ(x), µ(x))dx, f0(a, b) := a log a+ b log b+ ab.

It can easily be seen that the Hessian D2f0 is positive semi-definite if and only if
ab ≤ 1, and that hence f0 is in general not convex. This has two consequences: on
the one hand from the point of view of the PDE system, if one had a soluton with
ρµ > 1, then it would be possible to locally find suitable combinations of ρ and
µ (for instance, take u = ρ − µ in the neighborhood of a point where ρ = µ > 1)
which approximtely solve a backward heat equation, which is a serious difficulty
for existence; on the other hand, the functional F 0 is not l.s.c. for the weak
convergence, and this prevents the JKO scheme

min
ρ,µ

F 0(ρ, µ) +
W 2

2 (ρ, ρk) +W 2
2 (µ, µk)

2τ

from having, in general, a solution. Actually, since the W2 terms are continuous
for the weak convergence, in the above minimization the functional F 0 is automat-
ically replaced with a new functional F , which is the l.s.c. envelope of F 0. This
l.s.c. envelope is easy to characterize, it is given by F (ρ, µ) :=

∫
Ω f(ρ(x), µ(x))dx

where f is the convex envelope of f0.
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The main goal of the talk and of the work-in-progress with R. Ducasse and
H. Yoldaş is to study the system of PDEs arising as a gradient flow for F . This
requires first to compute or characterize the function f . It is possible to prove
that f can be obtained in the following way: fix s = a + b. If s ≤ 2 then f0

is convex on {a + b = s} and we have f = f0. If s > 2 then f0 has a double
well on {a+ b = s} and f will coincide, on this segment, with the convexification
of f0 on the same segment, i.e. a function which joins the two equal-value wells
of f0 with a straight line. The position of the two wells can be characterized
through a system of equations but not given explicitly, and we find the existence
of a boundary ab = P (s) (with P (2) = 1 and P (s) < 1 for s > 2) such that f = f0

on {ab < P (a+ b)} (the below region B) and f = f̃(a+ b) on {ab ≥ P (a+ b)} (the
above region A).

The cross-diffusion system that we obtain recalls some studies which have been
done for diffusion depending on the sum of two densities, because of what happens
on the region A. These systems are gradient flows of a functional including a
term of the form

∫
f̃(ρ(x) + µ(x))dx; they are very difficult to study in case

two different potentials (+
∫
V dρ +

∫
Wdµ) are added, and the only available

result proving existence of a solution can be currently found in dimension 1 under
very stringent restrictions on the data ([7]). In the absence of exterior potentials
but with different reaction terms there are results in 1D ([4, 6], both based on
BV bounds which only apply in 1D) or in arbitrary dimension under restrictive
assumptions on the reaction terms ([5], whose result could also be obtained with
a similar technique to the one of our work). On the other hand, if neither reaction
nor potentials distinguish the two species, the situation is much simpler, since the
sum S = ρ+µ solves a porous-medium–type PDE. Here the situation is similar to
the “simple” case (no potential nor reaction), but mixes two different behaviors:
the sum-dependent diffusion on A and strict convexity in ρ and µ on B.

First, we need to be precise about the notion of solution. We define the admis-
sible class A as follows:

A = {(ρ, µ) ∈ P(Ω)×P(Ω) :
√
ρ+ µ ∈ H1(Ω) and ∀χ ∈ C1

c (B) χ(ρ, µ) ∈ H1(Ω)}.

For (ρ, µ) ∈ A we can define the gradient of the two partial derivatives fa(ρ, µ)
and fb(ρ, µ) in the following way: on each point x s.t. (ρ(x), µ(x)) ∈ B we can use
the condition η(ρ, µ) ∈ H1 for arbitrary η ∈ C1

c (B) to define ∇ρ(x) and ∇µ(x)
and hence ∇(fa(ρ, µ)) and ∇(fb(ρ, µ)); on each point x s.t. (ρ(x), µ(x)) ∈ A we

can use the condition
√
S ∈ H1 (with S = ρ + µ) to define ∇S(x) and then

∇(fa(ρ, µ)) = ∇(fb(ρ, µ)) = f̃ ′′(S)∇S.
We then look for a pair of curves (ρt, µt) with their velocity fields (vt, wt) solving

∂tρ+∇ · (ρv) = 0, ∂tµ+∇ · (µw) = 0

such that (ρt, µt) ∈ A for a.e. t and v = −∇fa(ρ, µ) and w = −∇fb(ρ, µ).
From the formal computation

(1)
d

dt
F (ρt, µt) =

∫

Ω

∇fa(ρ, µ) · vdρ+
∫

Ω

∇fb(ρ, µ) · wdµ,
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and a classical application of the Young inequality coming from the so-called En-
ergy Dissipation Inequality (see [1, 2]) it is enough to find a curve satisfying

F (ρT , µT ) +
1

2

∫ T

0

∫

Ω

|∇fa(ρ, µ)|2dρ+
1

2

∫ T

0

∫

Ω

|v|2dρ(2)

+
1

2

∫ T

0

∫

Ω

|∇fb(ρ, µ)|2dµ+
1

2

∫ T

0

∫

Ω

|w|2dµ ≤ F (ρ0, µ0).

We then prove the following results

• The quantity SlopeF defined via

SlopeF (ρ, µ) :=

∫

Ω

|∇fa(ρ, µ)|2dρ+
∫

Ω

|∇fb(ρ, µ)|2dµ

is l.s.c. for the weak convergence of probability measures on the class A
(this requires a fine discussion of the behavior in A and B separately);

• Using a flow-interchange technique (see [8]) any limit as τ → 0 of any
suitable interpolation of the sequence (ρk, µk) obtained through the JKO
scheme for F satisties (ρt, µt) ∈ A for a.e. t;

• Using De Giorgi’s variational interpolation and the above semi-continuity,
any limit as τ → 0 of any suitable interpolation of the sequence (ρk, µk)
obtained through the JKO scheme for F satisties (2).

The only remaining difficulty is to rigorously prove (1) for curves which only satisfy
(ρt, µt) ∈ A for a.e. t with some integrability conditions on the H1 norms. This
can be done by regularizing by convolution but we only have a complete proof in
the case d = 1. Indeed, the regularization strategy passes through a statement of
the form “if u ∈ L1 is such that u+ ∈ H1 ∩ L∞ and ηε is a sequence of standard
mollifiers (with possible assumptions on the shape of the mollifier) then for every
α > 0 the sequence (ηε ∗ u − α)+ is bounded in H1 by C(||u+||L∞ , α)||u+||H1”,
which can be obtained in dimension 1 but not in higher dimension.

References

[1] L. Ambrosio Minimizing movements Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.(5) 19

(1995), 191–246
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[7] I. Kim, A. R. Mészáros On nonlinear cross-diffusion systems: an optimal transport ap-

proach Calculus of Variations and Partial Differential Equations 57-3 (2018) 1–40



Applications of Optimal Transportation in the Natural Sciences 531
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Dissipative evolution of measures

Giuseppe Savaré

(joint work with G. Cavagnari, G. Sodini)

A dissipative (multivalued) operator in a separable Hilbert space H (endowed with
the scalar product 〈·, ·〉 and the norm | · |) is a subset B ⊂ H× H satisfying

(1) 〈w − v, y − x〉 ≤ 0 for every (x, v), (y, w) ∈ B.

Using the identity

(2)
1

2τ

(
|y + τw − (x+ τv)|2 − |x− y|2

)
= 〈w − v, y − x〉+ 1

2
τ |w − v|2,

a dissipative operator can be equivalently characterized by the properties

(3) lim
τ↓0

|y + τw − (x+ τv)|2 − |x− y|2
2τ

≤ 0 for every (x, v), (y, w) ∈ B

or

(4) |y + τw − (x+ τv)|2 ≥ |x− y|2 for every τ < 0, (x, v), (y, w) ∈ B.

B is m- (or maximal) dissipative if for every x ∈ H and τ > 0 there exists a
(unique, by (4)) xτ = Jτ (x) ∈ H such that

(5) xτ − τvτ = x, (xτ , vτ ) ∈ B.

(5) can be interpreted as one step of the Implicit Euler Method associated to the
evolution equation driven by B, whose strong solutions x : [0,∞) → H satisfy

(6) (x(t), ẋ(t)) ∈ B for a.e. t > 0, x(0) = x0 given in D(B);

here D(B) is the proper domain {x ∈ H : (x, v) ∈ B for some v ∈ H} of B. The

celebrated Crandall-Liggett Theorem [3] shows that for every x0 ∈ D(B) the limit

limn→∞

(
Jt/n

)n
(x0) exists for every t > 0 and defines a continuous curve x which

is the unique integral solution to (7) according to Bénilan [2]

(7)
1

2

d

dt
|x(t)− y|2 ≤ −〈w, x(t) − y〉 in D

′(0,∞) for every (y, w) ∈ B.

Moreover, whenever (x0, v0) ∈ B, x is Lipschitz continuous, it solves (6), and
|x(t) − (Jt/n)

n(x0)| ≤ 2
√
tτ |v0|. The family of maps S(t) : x0 7→ x(t), t ≥ 0, is a

contraction semigroup in D(B).
It is natural to investigate if the above results can be at least partially extended

to the generation of contraction semigroups in P2(H), the Wasserstein space of
Borel probability measures in H with finite quadratic moment. P2(H) can be
endowed with the Kantorovich-Rubinstein-Wasserstein distance W2 induced by
the norm of H and ii is a complete and separable metric space. A good indication of
the feasibility of this approach relies in the case of the (opposite) subdifferential of



532 Oberwolfach Report 10/2021

a proper, lower semicontinuous and (geodesically) convex functional Φ : P2(H) →
(−∞,+∞], see [1].

A (multivalued) probability vector field (MPVF) can be defined as a subset F

of P2(H× H) (see also [5]). If x, v : H× H → H denote the projections of a point
(x, v) ∈ H × H on its first and second component, every F ∈ F gives raise to a
curve

F (τ) := (x+ τv)♯F , τ ∈ R.

As in (2), starting from F ,G ∈ F we can consider the squared distance map

D(τ ;F ,G) :=
1

2
W 2

2 (F (τ),G(τ)),

which however is not quadratic nor convex w.r.t. τ . Due to the particular structure
of the Wasserstein distance, τ 7→ D(τ ;F ,G) is in fact a semi-concave map, i.e.

τ 7→ D(τ ;F ,G)− Cτ is concave for a constant C ≥ 0 depending on F ,G,

so that (3) and (4) are not equivalent in the Wasserstein setting. In order to define
dissipativity, we rely on (3) and we first introduce the partial right derivatives of
D at τ = 0: if µ = x♯F = F (0) and ν = x♯G = G(0) we set

(8)

[F , ν]r := lim
τ↓0

W 2
2 (F (τ), ν) −W 2

2 (µ, ν)

2τ
,

[G, µ]r := lim
τ↓0

W 2
2 (µ,G(τ)) −W 2

2 (µ, ν).

2τ

Definition 1. We say that a MPVF F is metrically dissipative if

(9) [F , ν]r + [G, µ]r ≤ 0 for every F ,G ∈ F, µ = x♯F , ν = x♯G.

(8) admits an equivalent representation in terms of plans: denoting by (x, v, y)
a generic point in H3 and by (x, v, y) the corresponding projections, we set

Γ(F , ν) :=
{
γ ∈ P2(H

3) : (x, v)♯γ = F , y♯γ = ν,

(x, y)♯γ is an optimal coupling between x♯F and ν
}
.

We have

(10) [F , ν]r = min
{∫

〈v, x− y〉dγ(x, v, y) : γ ∈ Γ(F , ν)
}
.

Using (10), the dissipativity inequality (9) can be interpreted as a suitable version
of (1) at the level of probability measures. It is worth noticing that if Φ : P2(H) →
(−∞,+∞] is a geodesically convex functional, then its Wasserstein subdifferential
[1] satisfies (9). However, differently from the subdifferential case where the JKO-
Minimizing Movement method is available [4, 1], for a general dissipative MPVF
it is not clear how to define the resolvent and to apply the Implicit Euler method.

We can then consider the Explicit Euler method, assuming that F is semi-
bounded.
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Definition 2. We say that a MPVF F is semi-bounded if x♯(F) = P2(H) and for
every R > 0 there exists a constant S = S(R) > 0 such that

F ∈ F,

∫
|x|2 dF (x, v) ≤ R ⇒

∫
|v|2 dF (x, v) ≤ S.

If F is a semi-bounded MPVF, for every initial measure µ0 ∈ P2(H) and every
time step τ > 0 we can define recursively the sequence (µk

τ )k∈N by

µ0
τ := µ0, µk+1

τ := F k(τ) for some F k ∈ F, x♯F
k = µk

τ .

We can then consider the piecewise constant interpolant µτ : [0,∞) → P2(H) of
the sequence (µk

τ )k∈N, defined by

µτ (t) := µk
τ if t ∈ [kτ, (k + 1)τ).

The next Theorem collects our main generation result.

Theorem 3. Let F be a semi-bounded dissipative MPVF. For every µ0 ∈ P2(H)
and every t ≥ 0 there exists the limit µ(t) := limτ↓0 µτ (t). µ : [0,∞) → P2(H) is a
Lipschitz curve and it is the unique solution of the dissipative Evolution Variational
Inequality

d

dt

1

2
W 2

2 (µ(t), ν) ≤ −[F , µ(t)]r a.e. in (0,∞), for every F ∈ F, ν = x♯F .

The family of maps S(t) : µ0 7→ µ(t) defines a contraction semigroup in P2(H)
and for every T > 0 there exists a constant C > 0 such that

sup
t∈[0,T ]

W 2
2 (µτ (t), µ(t)) ≤ Cτ.
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[2] P. Bénilan, Solutions intégrales d’équations d’évolution dans un espace de Banach, C. R.
Acad. Sci. Paris Sér. A-B 274 (1972), A47–A50.

[3] M.G. Crandall, T.M. Liggett, Generation of semi-groups of nonlinear transformations on
general Banach spaces, Amer. J. Math. 93 (1971), 265–298.

[4] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck
equation, SIAM J. Math. Anal. 29 (1998), 1–17.

[5] B. Piccoli, Measure differential equations, Arch. Ration. Mech. Anal. 233 (2019), 1289–1317.



534 Oberwolfach Report 10/2021

Coarse graining of a Fokker-Planck equation with excluded volume
effects preserving the gradient flow structure

Maria Bruna

(joint work with Martin Burger, José Antonio Carrillo)

We consider the topic of propagation of gradient flow structures from microscopic
to macroscopic models. An interesting feature of many partial differential equa-
tions (PDEs) describing dissipative mechanisms in particle systems is that they can
be seen as gradient flows (or steepest descents) of an associated free-energy func-
tional. This is the case of the linear Fokker–Planck equation [6], and many other
nonlinear Fokker–Planck equations including nonlinear diffusions and McKean–
Vlasov like equations. For example, the set of N Brownian particles moving under
an external potential V (x),

(1) dXi(t) =
√
2 dWi(t)−∇Vx(Xi(t))dt, 1 ≤ i ≤ N,

where Wi(t) are independent Brownian motions, can be described by a Fokker–
Planck equation for its joint probability density P (~x, t), where ~x = (x1, . . . ,xN ):

∂P

∂t
(~x, t) = ∇~x · [∇~xP +∇~xVN (~x)P ] .(2)

Here∇~x and∇~x · respectively stand for the gradient and divergence operators with

respect to the N -particle position vector ~x and VN (~x) =
∑N

i=1 V (xi). Equation
(2) can be seen as a gradient flow

∂P

∂t
(~x, t) = ∇~x ·

(
P∇~x

δEN
δP

)
,

with respect to the 2-Wasserstein metric and the free energy

(3) EN(P ) =

∫
[P (~x, t) logP (~x, t) + VN (~x)P ] d~x.

The connections between (1), (2) and (3) are well understood in the case of
noninteracting particles, where essentially the macroscopic limit of a set of N
particles coincides with the case of a single Brownian particle [6], leading to the
linear Fokker–Planck equation for the one-particle probability density p(x, t)

∂p

∂t
(x, t) = ∇x · [∇xp+∇xV (x)p] ,(4)

which is again 2-Wasserstein gradient flow with respect to the low-dimensional
version of the energy (3), that is, E(p) =

∫
[p log p+ V (x)p]dx.

Interactions between particles can make the passage from microscopic to macro-
scopic challenging. In particular, the Fokker–Planck equation for the one-particle
marginal density p(x, t) =

∫
P (~x, t)δ(x − x1)d~x becomes in general coupled to

higher-order marginals, leading to a BBGKY-type hierarchy, and its relation to
the N -particle probability density becomes much more complicated due to correla-
tions between particles. From a physical perspective, a desirable or even required
condition on the macroscopic model might be that, if the microscopic model has
an underlying gradient flow structure, this is preserved by the coarse-graining.
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However, in general this is not guaranteed unless the coarse-graining procedure
is such that it respects the structure. In particular, it is common to obtain the
macroscopic model independently of the underlying gradient flow structure, and
to establish a suitable energy and metric at the macroscopic level. This may lead
to difficulties in identifying a suitable macroscopic energy and/or non-physical
energies and mobilities [4]. Some strategies to obtain the macroscopic model are:

• truncating the BBGKY hierarchy using a closure approximation (e.g. mean
field or Kirkwood superposition),

• proving a mean-field limit as N → ∞ to obtain a closed equation for the
one-particle marginal [5],

• Dynamical Density Functional Theory (DDFT), which by construction
provides a macroscopic gradient-flow structure but relies on a good ap-
proximation of the excess free energy (steaming from particle interactions),

• using a large deviation principle and Γ-convergence to associate the sto-
chastic process with its macroscopic gradient-flow structure [1].

To address these issues, in [3] we consider a coarse-graining approach starting
from the time-discrete microscopic gradient flow (JKO scheme). We apply it to the
problem of Brownian particles with short-range repulsive interactions, which are
used to model excluded-volume effects between individuals (e.g. cells, animals).
Consider a set of N pairwise interacting particles in a bounded domain Ω ⊂ Rd

with |Ω| = 1:

(5) dXi(t) =
√
2 dWi(t)−∇xV (Xi(t))dt− χ

∑

j 6=i

∇xu((Xi(t)−Xj(t))/ℓ)dt,

for 1 ≤ i ≤ N , where χ and ℓ represent the strength and the range of the potential
u, respectively. Unlike the mean-field scaling (χ = 1/N, ℓ = 1, N → ∞), here
we consider strong short-range repulsive interactions, χ = 1, ℓ = ǫ ≪ 1 with N
such that δ := (N − 1)ǫd is a small parameter (this corresponds to a low density
regime). In particular, in what follows we describe the coarse-graining when u
is a hard-core potential, u(r) = +∞, r < 1, and 0 otherwise. In this case, the
microscopic model coincides with (1), (2) and (3) except that the domain of ~x is
not ΩN as for noninteracting particles but the perforated domain

ΩN
ǫ = ΩN \ Bǫ, Bǫ =

{
~x ∈ ΩN : ∃i 6= j s.t. ‖xi − xj‖ ≤ ǫ

}
.

No-flux boundary conditions on the internal boundaries of this domain correspond
to the hard-core interactions present between particles. The more general case of
a repulsive short-range potential is described in [3].

The starting point is to write down the time-discrete variational formulation
of the N -particle Fokker-Planck equation (2), which using the Benamou–Brenier
formulation [2] leads to

(6) inf
Pk

inf
(P,~U)

{
1

2

∫ ∆t

0

∫

ΩN
ǫ

P‖~U‖2d~xds+ EN (Pk)

}
,
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where (P, ~U ) ∈ CE∆t(Pk−1, P ) if it solves

(CE)

∂P

∂s
+∇~x · (P ~U) = 0, in ΩN

ǫ × (0,∆t),

~U · ~n = 0, on ∂ΩN
ǫ × (0,∆t),

P = Pk−1(~x), in ΩN
ǫ × {0},

Pk(~x) = P, in ΩN
ǫ × {∆t}.

The scheme is initialised with P0(~x) invariant to permutations of particle labels.
Starting from the N -particle problem (6), we derive an analogous problem for

the one-particle density and the associated flow using the method of matched
asymptotic expansions in the limit of the volume fraction δ small. In general there
might be a uniqueness issue in the determination of the flow, which is related to
the problem of tilting gradient flows [7]. However, we have a natural convention in
our case, since we can enforce consistency with the non-interacting particles case
(δ = 0). We obtain the following result from the optimality conditions of (6): the
macroscopic density p and associated flow φ satisfy the following equations up to
order δ:

∂p

∂s
+∇x · (p∇xφ) = 0, in Ω× (0,∆t),

∂φ

∂s
+

1

2
‖∇xφ‖2 = 0, in Ω× (0,∆t),

∇xφ · n = 0, on ∂Ω× (0,∆t),

p = pk−1(x), in Ω× {0},
φ = − (log p+ V + αδp) , in Ω× {∆t}.

with α = Vd(1) the volume of the unit ball in Rd. The final-time condition allows
us indentify the macroscopic entropy as

Eδ(p) =

∫

Ω

[
p log p+ pV (x) + 1

2αδp
2
]
dx,

leading to the nonlinear Fokker–Planck equation

∂p

∂t
(x, t) = ∇x · [(1 + δp)∇xp+∇xV (x)p] .(7)

This result is consistent with the macroscopic model obtained via matched asymp-
totic expansions as the level of the Fokker–Planck equation.
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Remarks on MFG and Initial Value Problems

Yann Brenier

A typical example of MFG (à la Lasry-Lions) is

∂tρ+∇ · (ρ∇θ) = ν∆ρ, ∂tθ +
1

2
|∇θ|2 + ν∆θ = f(ρ),

ρ = ρ(t, x) ≥ 0, θ = θ(t, x) ∈ R being respectively prescribed at t = 0 and t = T ,
and x ∈ D with, say, D = Td. Here T > 0 and f : R+ → R are given. As long as
f ′ ≥ 0, these equations are “well-posed” with respect to the “backward-forward”
time-boundary conditions. Indeed, they are just the optimality equations for the
concave maximization problem

sup
θ(T,·)=θT

−
∫ T

0

∫

D

G(∂tθ + ν∆θ,∇θ) −
∫

D

ρ0 θ(0, ·),

G(σ,w) = sup
ρ≥0,q∈Rd

σρ+ w · q − |q|2
2ρ

−
∫ ρ

0

f(s)ds.

The same equations also correspond to the Euler equations of a gas (without
vorticity) and pressure equal to

p(ρ) = −
∫ ρ

0

sf ′(s)ds

with speed of sound
√
p′(ρ). Then, the initial value problem (IVP) is well-posed

precisely in the opposite situation when f ′ ≤ 0. This indicates how MFG and
IVP may differ! So it seems useless to use the MFG approach to solve IVP.
Nevertheless, following [1], we may use a generalized version of MFGs to solve
some IVPs, typically for “entropic system of conservation laws”

∂tU +∇ · (F (U)) = 0, U = U(t, x) ∈ Rm, x ∈ Td,

admitting a strictly convex ”entropy” function E : Rm → R. We may as well
consider their viscous version ∂tU +∇ · (F (U)) = ν∆U, with viscosity ν > 0. It
turns out that, at least for smooth solutions and sufficiently short time intervals
[0, T ], we may reduce the IVP to the concave maximization problem

sup
A(T,·)=0

−
∫ T

0

∫

D

G(∂tA+ ν∆A,∇A) −
∫

D

A(0, ·) · U0
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involving a vector-potential A = A(t, x) ∈ Rm, where G is the convex function
defined by

G(E,B) = sup
V ∈Rm

E · V +B · F (V )− E(V ).

Furthermore, when ν = 0, the optimal vector-potential A is directly related to the
solution U of the IVP through the very simple formula A(t, x) = (t−T )E ′(U(t, x)).
The similarity of this concave problem with the MFG we started with is striking.

Just to quote a concrete example, let us consider the (viscous) “template match-
ing equation”, for use in data sciences and image processing,

∂tv +∇ · (v ⊗ v) +∇(
|v|2
2

) = ν∆v, v(0, ·) = v0,

for which we obtain the “generalized” MFG

sup
M,q

∫

[0,T ]×D

(−1

2
M−1 : (q − ν∇ ·M)⊗2 + q · v0)dxdt

where the matrix-valued field M = MT = M(t, x) ≥ 0 and the vector field
q = q(t, x) are subject to

∂tM +∇q +∇qT = (∇ · q) Id, M(T, ·) = Id.

This problem may also be seen as a kind of Schrödinger/MFG variant of a matrix-
valued optimal transport problem, in the sense of [2].

Let us finally mention that, as d = 1, we may recover, for arbitrarily large
T > 0, the exact smooth solution v(t, x) of the IVP for all t ∈ [0, T ], as ν > 0,
and, in the limit case ν = 0, the exact “entropy” solution v(t, x) (à la Kružkov)
but only at the final time t = T !
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Convergence of some Mean Field Games systems to aggregation and
flocking models

Pierre Cardaliaguet

(joint work with Martino Bardi)

The aim of this research project is to show a rigorous connection between two
different mathematical theories modeling the dynamics of large populations of
individuals: Mean Field Games (MFG) (in which the individual control a system
and have a high degree of rationality), and agent-based models (in which they are
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myopic). Following ideas of Degond and al.1 and of Bertucci and al.2, we show
how some MFG systems degenerate into kinetic models as individuals become
more and more impatients and as their control become cheaper. Our first result
says that solutions (uλ,mλ) of the MFG system





−∂tuλ − νλ∆uλ + λuλ +
λ

2
|Duλ|2 = F (x,mλ(t)) in Rd × (0,+∞)

∂tmλ − νλ∆mλ − div(mλλDuλ) = 0 in Rd × (0,+∞)

mλ(0) = m0, in Rd, uλ bounded,

converges to the solution of the aggregation model
{
∂tm− div(mDxF (x,m)) = 0 in Rd × (0,+∞)

m(0) = m0, in Rd.

as λ→ +∞ and νλ → 0. In this result we assume that the coupling F = F (x,m)
is uniformly continuous with respect to the first variable, uniformly with respect
to the measurem. The result relies on careful semiconcavity estimates of the value
function uλ, which allows to bound the L∞ norm of the density mλ and to pass
to the limit in the equation.

For second order MFG models, we establish the convergence of the system




−∂tuλ + λuλ − v ·Dxuλ +
λ

2
|Dvuλ|2 = F (x, v,mλ(t)) in R2d × (0, T )

∂tmλ + v ·Dxmλ − divv(mλλDvuλ) = 0 in R2d × (0, T )

mλ(0) = m0, uλ(x, v, T ) = 0 in R2d,

to the solution of the kinetic equation
{
∂tm+ v ·Dxm− divv(mDvF (x, v,m)) = 0 in R2d × (0, T ),

m(0) = m0, in R2d,

as λ→ +∞. For this second result, and to fix the ideas, we work in the case where
the coupling term F corresponds to the Cucker-Smale model

F (x, v,m(t)) = k ∗m(x, v, t), k(x, v) =
|v|2

(α+ |x|2)β , α > 0, β ≥ 0.

The second result is based on variational techniques and shows surprising connex-
ions with “Weighted Energy-Dissipation” techniques, recently revisited by Rossi
and al.3, the main difference being that our system is not a gradient flow.

There remains several natural questions on the topic: The simplest one is the
convergence rate, which is probably relatively simple to establish in the case of the
first convergence result but much more challenging for the second one. Perhaps
the most intriguing open question is to understand the link (if any) between the

1P. Degond, M. Herty, J.G. Liu: Mean field games and model predictive control. Commun.
Math. Sci. 15 (2017), no. 5, 1403–1422.

2C. Bertucci, P.-L. Lions, J.-M. Lasry: Some remarks on Mean Field Games, Comm. Partial
Differential Equations 44 (2019), no. 3, 205–227

3R. Rossi, G. Savaré, A. Segatti, U. Stefanelli: Weighted Energy-Dissipation principle for
gradient flows in metric spaces. J. Math. Pures Appl. 127 (2019), 1-66.



540 Oberwolfach Report 10/2021

long time behavior of the MFG systems and the one for the aggregation/kinetic
equation.
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Homogenisation of discrete dynamical optimal transport

Jan Maas

(joint work with Eva Kopfer, Peter Gladbach, Lorenzo Portinale)

In the past decades there has been intense research activity in the area of optimal
transport. In continuous settings, a central result in the field is the Benamou–
Brenier formula [1], which provides a dynamical formulation of the classical Monge–
Kantorovich problem. In discrete settings, the equivalence between static and
dynamical optimal transport breaks down, and it turns out that the dynamical
formulation (introduced in [5, 6]) is essential in applications to evolution equations,
discrete Ricci curvature, and functional inequalities.

The limit passage from discrete dynamical transport to continuous optimal
transport turns out to be nontrivial. In fact, seemingly natural discretizations
of the Benamou–Brenier formula do not necessarily converge to the Kantorovich
distance W2, even in one-dimensional settings [3]. The main result in [2] asserts
that, for a sequence of meshes on a bounded convex domain in Rd, an isotropy
condition on the meshes is required to obtain the convergence of the discrete
dynamical transport distances to W2.

In this talk we present recent work in which we identify the limiting behaviour
of the discrete metrics on Zd-periodic graphs where the isotropy condition fails to
hold.

For an (undirected) graph (X , E) and probability measure m0,m1 ∈ P(X ), we
consider the dynamical transport cost given by

C(m0,m1) = inf
(m,J)∈CE(m0,m1)

{∫ 1

0

∑

(x,y)∈E

cxy
(
mt(x),mt(y), Jt(x, y)

)
dt

}
,

where CE(m0,m1) denotes the class of all solutions to the discrete continuity
equation connectingm0 andm1, i.e., all curves of probability measuresm : [0, 1] →
P(X ) and all time-dependent discrete vector fields (i.e., anti-symmetric functions)
J : [0, 1] → RE satisfying the discrete continuity equation

d

dt
mt(x) +

∑

y:y∼x

Jt(x, y) = 0, m0 = m0, m1 = m1.
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The cost functions cxy : R+×R+×R → R+ are assumed to be lower-semicontinuous
and convex.

In [3, 4] we fix a Zd-periodic graph (X , E) embedded in Rd. For any ε > 0 with
1/ε ∈ N, we consider the rescaled graphs (Xε, Eε) defined by

Xε = εX/Zd and Eε = εE/{(z, z) : z ∈ Zd}.
The rescaled transport cost is given by

Cε(m0,m1) = inf
(m,J)∈CE(m0,m1)

{∫ 1

0

∑

(x,y)∈Eε

εdcxy

(
mt(x)

εd
,
mt(y)

εd
,
Jt(x, y)

εd−1

)
dt

}
.

Loosely speaking, our main result asserts that these discrete transport problems
converge to a continuous transport problem with a homogenized cost function,
as ε → 0. Namely, for any weakly converging sequences of probability measures
m0

ε⇀µ0 and m1
ε⇀µ1, we have convergence Cε(m0

ε,m
1
ε) → C(µ0, µ1), where the

limiting transport problem is given by

C(µ0, µ1) = inf
µ,j

{∫ 1

0

∫

Td

chom

(
dµt

dLd
,
djt
dLd

)
dxdt : ∂tµ+∇ · j = 0, µ0,1 = µ0,1

}
.

The homogenized cost chom : R+ × Rd → R is given by the cell formula

chom(ρ, u) = inf
m,J

{ ∑

x∈X∩[0,1)d

∑

y∼x

cxy
(
m(x),m(y), J(x, y)

)}
,

where the infimum runs over all Zd-periodic functions m : X → R+ and all Zd-
periodic discrete vector fields (i.e., all anti-symmetric functions J : E → R with∑

y:y∼x J(x, y) = 0 for all x ∈ X ) satisfying

∑

x∈X∩[0,1)d

m(x) = ρ and
1

2

∑

x∈X∩[0,1)d

∑

y∼x

J(x, y)(y − x) = u

for (ρ, u) ∈ R+ × Rd. This cell formula describes how the limiting transport cost
is affected by the geometry of the periodic graph. The rigorous formulation of our
main result is given in terms of Γ-convergence for curves in the space of probability
measures.

In the special case where the discrete transport cost is associated to a Riemann-
ian gradient flow structure for a Markov chain (as in [5, 6]), our result implies that
the limiting metric is a 2-Wasserstein metric associated to a (not necessarily Rie-
mannian) Finsler metric.
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Stability of optimal transport maps: the compact and
non-compact cases

Quentin Mérigot

(joint work with Alex Delalande)

In this presentation, we establish quantitative stability of the quadratic optimal
transport map between a fixed probability density ρ and a probability measure µ
on Rd. We assume that ρ is absolutely continuous with respect to the Lebesgue
measure, supported over a compact convex set X , and that it is is bounded from
above and below by positive constants on X . Given µ ∈ P2(R

d), we call Brenier
map the unique quadratic optimal transport map Tµ between ρ and µ and we call
Brenier potential the unique convex function φµ ∈ L2(X) such that Tµ = ∇φµ
and which satisfies

∫
X φµdρ = 0.

The map µ 7→ Tµ has been used to embed the metric space (P2(R
d),W2) into

the Hilbert space L2(ρ,Rd). This approach is often referred to as the Linearized
Optimal Transport framework [1] and has shown great results in applications. A
practical benefit of the embedding is to enable the use of the classical Hilbertian
statistical toolbox on families of probability measures while keeping some features
of the Wasserstein geometry. Working with this embedding is equivalent to re-
placing the Wasserstein distance by the distance

W2,ρ(µ, ν) = ‖Tµ − Tν‖L2(ρ,Rd).

We note that the geodesic curves with respect to the distance W2,ρ are called the
generalized geodesics in the book of Ambrosio, Gigli, Savaré [2]. The choice of the
Brenier map between a reference measure ρ and a measure µ as an embedding
of µ may also be motivated by the Riemannian interpretation of the Wasserstein
geometry, the map µ 7→ Tµ being the inverse of the exponential map based at ρ.

It is quite natural to expect that the embedding µ 7→ Tµ retains some of the
geometry of the underlying space, or equivalently that the metric W2,ρ is com-
parable, in some coarse sense, to the Wasserstein distance. The main difficulty,
which we study in this article, is to establish quantitative (e.g. Hölder) continuity
properties for the mappings µ 7→ Tµ and µ 7→ φµ. We note that such stability
estimates are also important in numerical analysis and in statistics.

Existing results. We first note that explicit examples show that the mapping
µ 7→ Tµ is in general not better than 1

2 -Hölder. A much stronger negative result
comes from Andoni, Naor and Neiman [3, Theorem 7] showing that one cannot
construct a bi-Hölder embedding of (P2(R

d),W2), d ≥ 3, into a Hilbert space.
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Theorem 1 (Andoni, Naor, Neiman). (P2(R
3),W2) does not admit a uniform,

coarse or quasisymmetric embedding into any Banach space of nontrivial type.

This theorem implies in particular that one cannot hope to prove that µ 7→ Tµ
is bi-Hölder on the whole set P2(R

d) of probability measures with finite second
moment.

The existing quantitative stability results can be summarized under the two
following statements. A first result due to Ambrosio and reported in [4], shows
a local 1/2-Hölder behaviour near probability densities µ whose associated Bre-
nier map Tµ is Lipschitz continuous, a strong hypothesis. A second result, due
to Berman [5], proves quantitative stability of the map µ 7→ Tµ under milder as-
sumptions on the target probability measures. Berman assumes that the source
measure ρ is the restriction of the Lebesgue measure on a compact convex set
X with unit volume. Under this assumption, he proves a stability result on the
inverse transport maps when the target measure remains in a fixed compact set.
This result implies quantitative stability of the Brenier maps:

Theorem 2 (Berman). Let X be a compact convex subset with unit volume, let
ρ be the restriction of the Lebesgue measure to X, and let Y ⊂ Rd be another
compact set. Then there exists a constant C depending only on X and Y such that
for any µ, ν ∈ P(Y ),

‖Tµ − Tν‖L2(ρ) ≤ CW1(µ, ν)
1

2(d−1)(d+2) .

The Hölder behavior does not depend on the regularity of the transport map
Tµ, but the Hölder exponent depends exponentially on the ambient dimension d.

Contributions. In this talk, we present a quantitative stability results for qua-
dratic optimal transport maps between a probability density ρ and target mea-
sure µ. We do not assume that µ is compactly supported. Introducing Mp(µ) =∫
Rd ‖x‖pdµ(x) the p-th moment of µ, we prove in particular the following theorem.

Theorem 3. Let X be a compact convex subset of Rd and let ρ be a proba-
bility density on X, bounded from above and below by positive constants. Let
p > d and p ≥ 4. Assume that µ, ν ∈ P2(R

d) have bounded p-th moment, i.e.
max(Mp(µ),Mp(ν)) ≤Mp < +∞. Then

‖Tµ − Tν‖L2(ρ) ≤ Cd,p,X,ρ,Mp
W1(µ, ν)

p
6p+16d ,

‖φµ − φν‖L2(ρ) ≤ Cd,p,X,ρ,Mp
W1(µ, ν)

1/2,

where Ca1,...,an
depends a non-negative constant which depends only on a1, . . . , an.

If µ, ν are supported on a compact set Y , we have an improved Hölder exponent
for the Brenier map:

‖Tµ − Tν‖L2(ρ) ≤ Cd,p,X,Y,ρW1(µ, ν)
1
6 .

A large class of probability measures verifies the moment assumption, such as
sub-Gaussian or sub-exponential measures.

To prove these stability estimates, we use the fact that the dual potentials solve
a convex minimization problem involving Kantorovich’s functional K(ψ) =

∫
ψ∗dρ.
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We first prove a strong convexity estimate for K, relying on the Brascamp-Lieb
inequality, and which holds under the assumption that the Brenier potentials are
bounded. This strong convexity estimate is then translated into a stability estimate
concerning the dual and Brenier potentials. The stability of Brenier maps is then
deduced using a Gagliardo-Nirenberg type inequality for the difference of convex
functions.
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Entropic spatially inhomogeneous evolutionary games: fast reaction
limit and learnability

Mauro Bonafini

(joint work with M. Fornasier and B. Schmitzer)

In the course of the past two decades there has been an explosion of research on
models of multi-agent interactions to describe phenomena beyond physics, e.g.,
in biology, such as cell aggregation and motility, coordinated animal motion, co-
ordinated human and synthetic agent behaviour and interactions. Most of these
models start from particle-like systems by including fundamental “social interac-
tion” forces within classical systems of first or second order equations. Others
build on a game theoretic setting or move within the realm of mean-field games.

Recently, new forms of spatially inhomogeneous evolutionary games have been
proposed by Ambrosio et al. in [1]. These models couple an evolutionary game
selection of mixed strategies via replicator dynamics alongside the choice of a
transport field for the agent population. Differently from mean-field games, evolu-
tionary games of this kind are not based on an underlying optimal control problem,
but they realize an evolutionary, nearly instantaneous adaptation of the agents’
strategies of motion.

We move our steps from these general models and modify them for the descrip-
tion of more realistic behaviours, including the possibility of fast adaptation of
the strategies of each agent. Hence, we introduce a novel multi-agent interaction
model which describes an (entropic) undisclosed fast reaction limit of the general
framework. In particular, for a given set of pure strategies U , 0 < η ∈ P (U) a
reference probability measure on U , an “entropic” parameter ε > 0, and maps
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e : Rd × U → R and J : Rd × U × Rd → R, we introduce the N -agents system
described by

(UFR-N)

∂txi(t) = vJi (x1(t), . . . , xN (t)) for i = 1, . . . , N

vJi (x1, . . . , xN ) =

∫

U

e(xi, u)σ
J
i (x1, . . . , xN )(u) dη(u)

σJ
i (x1, . . . , xN ) =

exp
(

1
εN

∑N
j=1 J(xi, ·, xj)

)

∫
U exp

(
1
εN

∑N
j=1 J(xi, v, xj)

)
dη(v)

Here, each σJ
i represents a probability density with respect to η and corresponds to

the optimal mixed strategy which is obtained under the fast reaction assumption.
The main parameter governing the evolution is the payoff function J : J(x, u, x′)
is the payoff a player located at x obtains when playing strategy u against another
player located at x′. First order Newtonian models can be viewed as a subclass of
undisclosed fast reaction dynamics, taking ε→ 0 for a specific selection of J .

Under suitable regularity assumptions on e and J , one proves that the system
admits well defined solutions for any initial conditions and in particular, as the
number of players increases, a corresponding mean field analysis can be performed,
with the mean field equation being a standard continuity equation describing the
evolution of the continuous distribution of agents.

The idea is now to “reverse” the process: we are given observations (xN1 (t), . . . ,
xNN (t)) and (vN1 (t), . . . , vNN (t)), t ∈ [0, T ], for trajectories and velocities of a system
of N evolving agents. The aim is to use an undisclosed fast reaction model to
fit the data, under the assumption that every parameter is known except from J .
Then, how is it possible to learn J from data? The general strategy, following [3],
is to penalize some loss function measuring the mismatch between observations
and predictions by the parametrized system. A possible choice is to penalize the
mismatch between velocities, i.e., to consider the (non convex) energy

EN
v (J) =

1

T

∫ T

0

[
1

N

N∑

i=1

∥∥vNi (t)− vJi (x
N
1 (t), . . . , xNN (t))

∥∥2

]
dt.

This energy is directly linked to the discrepancy in trajectories, in the sense that
for (x̂N1 (t), . . . , x̂NN (t)) the solution of (UFR-N) induced by Ĵ for the same initial
condition (xN1 (0), . . . , xNN (0)) ∈ [Rd]N , one has

1

N

N∑

i=1

‖xNi (t)− x̂Ni (t)‖ ≤ C

√
EN
v (Ĵ)

for all t ∈ [0, T ], with C = C(T, Ĵ , e, ε). Hence, payoff functions attaining small
discrepancy in velocities are able to reproduce trajectories that are provably close
to the observed ones. At this point, one can even use a minimal J (with respect
to EN

v ) to perform further data-driven simulations.
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The whole learning process is stable in the limit: as N → ∞, under the assump-
tion that observations have a well defined mean field behaviour, suitable minimiz-
ers of the mismatch EN

v at level N will converge to a minimizer of a limiting loss
defined upon the mean field limit of the observations.

The abstract framework is fully constructive and numerically implementable.
This is illustrated in [2] on computational examples where a ground truth payoff
function is known and on examples where this is not the case, including a model
for pedestrian movement, providing encouraging results for going in the direction
of real-life data.

References

[1] L. Ambrosio, M. Fornasier, M. Morandotti, and G. Savaré. Spatially inhomogeneous evolu-
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Breaking the curse of dimension in multi-marginal optimal transport
with Coulomb cost

Gero Friesecke

The multi-marginal OT problem with Coulomb cost is the following: Minimize
∫

Rd×...×Rd

∑
1≤i<j≤N

1

|xi − xj |
dγ(x1, ..., xN )

︸ ︷︷ ︸
=:C[γ]

subj.to γ ∈ P(Rd×...×Rd), γ 7→ µ, ..., µ.

Here µ ∈ P(Rd) is a given, typically absolutely continuous, marginal. All N
marginals are equal, but the cost is repulsive, nonconvex, and (for N ≥ 3) not
twisted. Usually one is interested in symmetric minimizers (any nonsymmetric
minimizer gives rise to a symmetric one, by symmetrization).

Motivation. In N -electron quantum mechanics, the following problem intro-
duced from 1964 to 1983 by P.Hohenberg, W.Kohn, M.Levy, and E.Lieb plays
an important role which contains an additional Fisher-information-type term: For
bosons or fermions,

min
γ 7→µ,...,µ

∫

RdN

1

2
|∇√

γ|2+C[γ] respectively min

∫

RdN

∑

spins

1

2
|∇Ψ|2+C

[∑

spins

|Ψ|2
]
.

In the latter case, the square root of γ has to be introduced explicitly and has
to be taken in C; the minimization is over Ψ’s in H1((Rd × Z2)

N ;C) which are
antisymmetric and satisfy

∑
spins |Ψ|2 7→ µ, ..., µ. The minimand is the kinetic

plus interaction energy of the quantum state Ψ and the constraint means that Ψ



Applications of Optimal Transportation in the Natural Sciences 547

has single-particle density µ. MMOT with Coulomb cost is the low-density limit
of both the above problems: replacing µ by µα(x) = αdµ(αx) yields

min α

∫

RdN

∑

spins

1

2
|∇ψ|2 + C

[ ∑

spins

|Ψ|2
]

which Gamma-converges as α→ 0 to MMOT with Coulomb cost. The limit prob-
lem was introduced in the physics literature by Seidl (1999). Its interpretation
as OT is due to Cotar, Friesecke, Klüppelberg (CFK) (arXiv 2011, CPAM 2013)
and Buttazzo, DePascale, Gori-Giorgi (Phys.Rev.A 2012). Note N = #particles=
#marginals, motivating the interest in large N . For the proof of Gamma conver-
gence see CFK 2011/2013 (N = 2), Bindini and DePascale J. de l’Ecole Polyt.
2017 (simpler proof, extension to N = 3) and CFK ARMA 2018 (general case).

Sparsity of optimal plans. The beautiful theorems by Brenier and Gangbo-
McCann showed us that for nice costs, optimal plans of two-marginal problems
with absolutely continuous marginals µ1, µ2 are of Monge form,

γ = (id, T )♯µ1.

For multi-marginal problems, the corresponding Monge ansatz

γ = (id, T2, ..., TN)♯µ1

was justified by Gangbo-Swiech and Agueh-Carlier for, respectively, the maximum
correlation problem

min

∫ ∑

i<j

|xi − xj |2 subject to γ 7→ µ1, ..., µN

and the Wasserstein barycenter problem

min

∫
1

N

N∑

i=1

|xi −B(x)|2 subject to γ 7→ µ1, ..., µN , with B(x) =
1

N

N∑

i=1

xi;

in the latter case, B♯γ is the Wasserstein barycenter of the marginal measures.
The story for the Coulomb cost turned out to be more complicated than originally
expected. The Monge ansatz is known to be justified for N = 2 or d = 1 (work by,
respectively, CFK 2011/2013 and Colombo, Di Marino, De Pascale (Canadian J.
Math. 2015)). Pass (Nonlinearity 2012) has constructed an example forN = d = 3
with a nonunique minimizer of non-Monge form. Whether Monge-type minimizers
always exist for the Coulomb cost is an open problem.

Sparsity after discretization; breaking the curse of dimension with re-
spect to storage. In [2], the following slight generalization of the Monge ansatz
was introduced. It is almost as sparse, yet – at least for discrete problems – suf-
ficiently general to ensure existence of optimizers for any number of marginals
and any cost. Let X = {a1, ..., aℓ} ⊂ Rd be any set of discretization points, or
’finite state space’, and let Πµ = {γ ∈ P(XN) : γ symmetric, γ 7→ µ, ..., µ} be
the Kantorovich polytope for marginal µ. Below, SNγ denotes the symmetrization
(SNγ)(A1 × ...×AN ) = N !−1

∑
permutationsσ γ(Aσ(1) × ...×Aσ(N)).
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Theorem 1. [2] For any µ ∈ P(X), all extreme points of Πµ are of ‘Quasi-Monge’
form:

γ = SN (T1, ..., TN)♯µ̃

for some µ̃ ∈ P(X) and some quasi-Monge maps T1, ..., TN satisfying, instead of

the classical Monge conditions Ti♯µ = µ, the average condition 1
N

∑N
i=1 Ti♯µ̃ = µ.

As a corollary, for any N , any cost function c : XN → R, and any marginal µ,
the discrete OT Problem ‘Minimize

∫
XN c dγ over γ ∈ Πµ’ possesses an optimizer

of quasi-Monge form. This breaks the curse of dimension with respect to storage,
because – unlike a general Kantorovich plan in P(XN) which needs ℓN coefficients
to store – a quasi-Monge state only requires ℓ ·(N+1) coefficients (ℓ coefficients for
each quasi-Monge map, of which there are N , and an extra ℓ for the measure µ̃).
Thus the storage cost goes down from exponential in N to linear in N . Sparsity
is even more striking for MMOT than for two-marginal OT!

When µ is uniform (this is the analogue of absolute continuity in the discrete
case), there is an important difference between two- and multi-marginal problems:
for N = 2 the quasi-Monge ansatz can be replaced by the Monge ansatz (this is
the content of the Birkhoff-Von Neumann theorem). When N ≥ 3, the Monge
ansatz is not enough and the extension to quasi-Monge states is really needed.
For a proof of this via a simple counterexample with N = ℓ = 3 see [1].

Alfonsi, Coyaud, Ehrlacher, and Lombardi (Math. Comp. 2021) established
existence of sparse optimizers even in the situation when the state space is kept
continuous and only the marginal constraints are discretized; moreover they pro-
posed a constrained Lagrangian particle method for simulating the ensuing prob-
lem. Khoo and Ying (SIAM J. Sci. Comp. 2019) introduced and studied a
semi-definite relaxation of a two-marginal formulation of MMOT from [2] and
presented an algorithm for the relaxed problem.

Algorithm for breaking the curse of dimension: Genetic column genera-
tion. Very recently, in joint work with Andreas Schulz (TUM) and Daniela Vögler
(TUM) [3] we finally figured out how to run an algorithm which finds such quasi-
Monge states for, say, up to N = 30 marginals/electrons discretized by ℓ = 100
gridpoints each, despite the ensuing Kantorovich polytope Πµ having dimension
about 1030. In benchmark examples where the exact solution is known, the algo-
rithm always found the exact optimizers, and was empirically observed to do this
in polynomial time with respect to the system size, despite the fact that we prove
rigorously that the key subproblem tackled by the algorithm is NP-complete. See
Figure 5 of [3]. Our algorithm, called GenCol, is based on three ideas:

– exploit sparsity (in the ’quasi-Monge’ version of [2]). For large N , one simply
cannot afford to throw away the beautiful sparsity of optimal plans, revealed by
many workers over may years (Brenier, Gangbo-McCann, Agueh-Carlier, ...).

– use the method of column generation (CG): replace the original LP by a small
subproblem; solve it; add a new ’column’ by solving a pricing problem; iterate.
This is a standard method in discrete optimization, not hitherto used in MMOT,
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which originated in integer programming (ℓ = 2, N large). Note that this is the
opposite regime to N = 2, ℓ large where Sinkhorn works best!

– the well known bottleneck in CG is that one needs to efficiently generate new
candidate columns for the pricing problem; this is overcome by a genetic learning
method tailormade for MMOT. In our context new columns represent intricately
correlated spatial many-body configurations of the system, which are not known
a priori; these are learned with the help of an “adversary” represented by the dual
state within CG, in loose similarity to Wasserstein GANs.

For a more detailed description and numerical results see [3] sections 5 and 7.

References

[1] Gero Friesecke. A simple counterexample to the Monge ansatz in multi-marginal optimal
transport, convex geometry of the set of Kantorovich plans, and the Frenkel-Kontorova
model, SIAM J. Math. Analysis, 51(6):4332–4355, 2019.
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Equality of the Jellium and Uniform Electron Gas next-order
asymptotic terms for Coulomb and Riesz potentialss

Codina Cotar

(joint work with Mircea Petrache)

Setting. We consider three minimization problems, and compare their asymp-
totics. In all three problems we will consider the energy of N -points configura-
tions, in which the pairwise interaction c(x−y) between points x, y ∈ Rd, depends
upon the power-law potentials

(1) c(x) :=
1

|x|s where s > 0.

The first minimization which we consider is the generalized Jellium minimization
problem, stated as follows. For a bounded domain ΩN ⊂ Rd with |ΩN | = N
(the most known case in the literature being that of ΩN = KR, a cube of radius
R = N1/d), let

(2) JelN,s(ΩN ) := inf

{ ∑

1≤i,j≤N
i6=j

c(xi − xj)− 2
∑

1≤i≤N

∫

ΩN

c(xi − y)dy

+

∫

ΩN

∫

ΩN

c(x− y)dxdy : x1, . . . , xN ∈ ΩN

}
.



550 Oberwolfach Report 10/2021

The second minimization which we consider is the closely-related Coulomb and
Riesz gases minimization of energy

(3) EN,s(V ) := inf





∑

1≤i6=j≤N

c(xi − xj) +N

N∑

i=1

V (xi) : x1, . . . , xN ∈ Rd



 ,

where the external “confining” potential V : Rd → R satisfies
(V1) V is assumed to be bounded below, lower semicontinuous, such that {x :

V (x) < ∞} has positive c-capacity, and such that V (x) → ∞ as |x| → ∞. (Note
that a set Ω has positive c-capacity if there exists a positive measure supported
on Ω such that

∫ ∫
c(x− y)dµ(x)dµ(y) <∞.)

The third problem which we consider is an N -marginal optimal transport (OT)
problem with cost similarly given by pairwise interactions as above. For given
µ ∈ P(Rd) we consider
(4)

FN,s(µ) = inf







∫

(Rd)N

N
∑

i,j=1,i6=j

c(xi − xj)dγN(x1, . . . , xN) : γN ∈ P
N
sym(Rd), γN 7→ µ







.

Here PN
sym(Rd) ⊂ P((Rd)N ) is the subset of probability measures which are in-

variant under the permutation of the N factors of the cartesian product (Rd)N and
the notation γN 7→ µ means that γN has one-body density µ (physics terminology)
or equivalently equal Rd-marginals µ (probability terminology), i.e.

γN (Rd × . . .× Rd

︸ ︷︷ ︸
i-1 times

×Ai × Rd × . . .× Rd

︸ ︷︷ ︸
N-i times

) =

∫

Ai

dµ(x) for all Borel Ai ⊆ Rd

and all i = 1, . . . , N.

(5)

The case s = 1, d = 3, of (2) is the classical Jellium problem studied by Lieb
and Narnhofer (1975), and it is of great interest in physics, where it has been
extensively studied.

The problem (3) has its origin in numerical approximation questions, where it
becomes important to study different measures of uniformity of large point con-
figurations. Other motivations come from the study of interactions of vortices in
supercondictivity. Important open problems closely linked to (3) are Smale’s 7th
problem, which in the case where the points are constrained to a submanifold in
Rd requires to understand how to construct in polynomial time N -point configura-
tions which are optimal to high accuracy and the mathematical understanding of
large-N Abrikosov crystallization phenomena, especially in 2 dimensions. Tackling
these long-open problems is the main motivation leading to the study of large-N
asymptotics of the form (3).

The motivation for studying the problem (4) comes from Density Functional
Theory (DFT). The functional FN,s(µ) appearing therein, in the particular case
s = 1, d = 3, turns out to be a natural semiclassical limit to the famous Hohenberg-
Kohn (HK) functional from quantum mechanics, originally introduced by Hohen-
berg-Kohn in the 1960s, and later rigorously proved by Levy and Lieb.
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Main results. Concerning the N → ∞ behavior of the problems (3) and (4),
we are going first to note that the leading order term is in both cases a “mean
field” term, and the only difference is that for the first problem we have imposed
an external potential in order to confine the minimizing configurations, whereas
in the second problem we did not (and the configurations are confined via the
marginal constraint γN 7→ µ).

It seems that in both the (3) and (4) minimzation problems, a next-order asymp-
totics is available only for powers with long-range interactions, i.e. in the regime
s < d, and therefore we restrict to this case. We also restrict here to the case
s > 0.

Our first main result is the following:

Theorem 1. Set d ≥ 1. Assume that c is as in (1) with 0 < s < d.

(a) (Asymptotics for the Jellium minimization problem (2))
Let µ ∈ P(Rd) have continuous density ρ and supp(ρ) := U compact.
Then

(6) lim
N→∞

JelN,s(µ)

N1+ s
d

= CJel(s, d)

∫

Rd

ρ1+
s
d (x)dx,

where CJel(s, d) < 0 depends only on s and d.
(b) (Next-order term for the Coulomb and Riesz gases minimization problem

(3))
Assume that V is continuous, lim|x|→∞ V (x) = ∞ and

∫
Rd exp(−V (x))dx

<∞. Then there exists a minimizer µV ∈ P(Rd) of the functional Is,V (µ)

(7) Is,V (µ) :=
∫

Rd

∫

Rd

1

|x− y|s dµ(x) dµ(y) +

∫

Rd

V (x)dµ(x),

where µV is compactly-supported and unique In particular, if µV has a
continuous density ρV , we have the expansion

(8) lim
N→∞

EN,s(V )−N2Is,V (µV )

N1+ s
d

= CGas(s, d)

∫

Rd

ρ
1+ s

d

V (x) dx,

where CGas(s, d) < 0 depends only on s and d.

The asymptotics for the problems (2) and (3) have not been studied up to now
in the cases 0 < s < d− 2. Theorem 1 (b) was previously proved by Petrache and
Serfaty (2015) for c as in (1), with either d ≥ 3 and d − 2 ≤ s < d, or d = 2 and
d− 2 < s < d, and with V satisfying (V1)

The main ingredient in the proof of Theorem 1 is the Fefferman-Gregg decom-
position, as detailed in [1], which allows to reduce the original Riesz long-range
interaction to a short-range interaction, greatly simplifying the problem.

Our second main result links the above three problems via the following result:

Main Theorem. Let d ≥ 1 and 0 < s < d. We have

CJel(s, d) = CUEG(s, d) = CGas(s, d).



552 Oberwolfach Report 10/2021

For s = 1, d = 3, our Main Theorem solves a controversy recently formulated
by M. Lewin. More precisely, unlike what is implied by only looking at the case of
crystals, we find that the Jellium and Uniform Electron Gas energies are the same,
even in the Coulomb case. By comparison with the periodic (or more generally,
homogeneous) case, we see that this must be due to important boundary effects,
peculiar to the Coulomb case.

For our final result, we find the property of CUEG(s, d) being continuous in s
across all the range of exponents 0 < s < d.

Proposition 2. Let d ≥ 1. Then the value of CUEG(s, d) is left- and right-
differentiable as a function of s, for s ∈ (0, d). Furthermore, we have

lim
s→0

CUEG(s, d) = −1.
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Regularized unbalanced optimal transport and the large deviations of
the branching Brownian motion

Aymeric Baradat

(joint work with Hugo Lavenant)

Let us give ourselves a dimension d ∈ N∗, two positive parameters ν, λ > 0 and
a sequence of nonnegative numbers (pk)k∈N ∈ RN

+ satisfying
∑

k pk = 1. Let us
define the nonnegative convex function Ψ : R → R+∪{+∞} through its Legendre
transform, as:

Ψ(r) := sup
s∈R

rs−Ψ∗(s), ∀r ∈ R,

Ψ∗(s) := νλ
∑

k

pk

(
e(k−1) s

ν − 1
)
, ∀s ∈ R.

The purpose of this work is to derive with probabilistic arguments the regularized
unbalanced optimal transport problem aiming at finding, given two nonnegative
finite Borel measures on the torus ρ0, ρ1 ∈ M+(T

d), the minimal value, denoted
by RUOT(ρ0, ρ1), of

(1)

∫ 1

0

∫ { |vt(x)|2
2

+ Ψ(rt(x))

}
dρt(x)dt
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among all triplets (ρ, v, r) satisfying in a weak sense



∂tρt + div(ρtvt) =

ν

2
∆ρt + rtρt,

ρt|t=0 = ρ0, ρt|t=1 = ρ1.

Here, ρ is a measurable curve in the set M+(T
d) of nonnegative finite Borel

measures on Td, and v = vt(x) (resp. r = rt(x)) is a measurable time-dependent
vector fields (resp. scalar fields) with enough integrability for (1) to be finite.

1. Motivation

This study was motivated by a series of works, among which we cite [6, 4], which
propose to interpolate between measurements coming from experiments in devel-
opmental biology using optimal transport methods.

These experiments focus on the mechanism of specialization of the cells of an
individual during its development. For a given species, they aim at finding the
typical evolution of the positions of the cells of individuals in the simplex of large
dimension

SN−1 := {(x1, . . . xN ) ∈ RN
+ : x1 + · · ·+ xN = 1},

N being the number of genes in the DNA of this species. A cell is represented at
position (x1, . . . xN ) ∈ SN−1 if the proportion of RNA corresponding to gene i =
1, . . . , N in this cell is xi. Nowadays, its is possible to measure these proportions
for a large number of cells of a large number of individuals at different stages of
the development. The question is to get the whole movie of the development out
of these measurements at discrete times.

The choice to use optimal transport is rather natural, and the need to consider
unbalanced effects comes from the fact that the number of cells increase during
the development of an individual. Our work suggests a specific cost for the growth
of the population of cells. This cost can be computed in terms of parameters that
can be at least approximately determined experimentally.

2. Entropic minimization w.r.t. the branching Brownian motion

Call R the law of of the branching Brownian motion of diffusivity ν, branching
rate λ, and law of descendants (pk)k∈N, that is, the process in which a population
of independent Brownian particles of diffusivity ν die at independent random ex-
ponential times of parameter λ, and are replaced at these times by k ∈ N particles
with probability pk.

The law R is seen as a probability measure on Ω := càdlàg([0, 1],M+(T
d)), the

set of measure valued càdlàg curves: one realization of the branching Brownian
motion is the time-dependent measure on the torus putting Dirac masses at the
positions of the particles. Otherwise interpreted, this is a moving point cloud.

To characterize entirely R, one also needs an initial law, that is, a probability
measure R0 on the set Ω0 := M+(T

d), which concentrates on the set of finite sums
of Dirac masses: R0 is the law of a random point cloud.
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For t ∈ [0, 1], we define Mt : Ω → M+(T
d) as the evaluation map at time t:

this is the random variable on Ω whose value is the point cloud at time t. Also,
we call M : Ω0 → M+(T

d) the identity map.
If P0 is a law on Ω0, its intensity is the measure ρ := EP0 [M ] ∈ M+(T

d).
Correspondingly, if P is a law on Ω and t ∈ [0, 1], its intensity at time t is EP [Mt].

Given ρ0, ρ1 ∈ M+(T
d), we call H(ρ0, ρ1) the optimal value of the relative

entropy

H(P |R) :=
{
ER[F logR], if P ≪ R and P = F · R,
+∞, otherwise,

among laws P on Ω whose intensity at times t = 0 and 1 are ρ0 and ρ1 respectively.
Due to Sanov’s theorem, solving this entropic problem is like studying the large
deviations of the space distribution of a large number of independent branching
Brownian particles.

Finally, we call L the Legendre transform of the log-Laplace transform of the
point cloud of law R0, i.e.

L(ρ) := sup
ϕ∈C0(Td)

∫
ϕ dρ− logER0

[
exp

(∫
ϕ dM

)]
.

Theorem 1. Under mild technical assumptions1 on R0 and (pk)k∈N, the map
(ρ0, ρ1) ∈ (M+(T

d))2 7→ νL(ρ0) + RUOT(ρ0, ρ1) is the lower semi-continuous
envelope of H for the topology of narrow convergence.

Roughly speaking, the theorem indicates that

• To each competitor of the entropic problem corresponds a competitor for
the regularized unbalanced optimal transport problem;

• To each competitor of the regularized unbalanced optimal transport prob-
lem corresponds a competitor of the entropic problem up to regularization.

We claim that this property is enough for both problems to be heuristically con-
sidered as the same one.

3. Open problems

3.1. Other reference laws and small noise limit. When R is the law of a
branching Brownian motion with p0 = p2 = 1/2, in the regime where ν → 0 and
λ ∼ 1

ν exp(−1/ν), we are able to show the Γ-convergence at the PDE level towards
optimal partial transport (see e.g. [3]), that is, when Ψ(r) = |r|. Is it possible to get
other unbalanced optimal transport models, especially the one where Ψ(r) = r2

(see e.g. [5]) by using other kinds of branching processes as a reference law?

1The theorem holds e.g. when pk = 0 for k large enough, and R0 (i) exhibits a bounded
number of points or (ii) is a Poisson point process of intensity proportional to Lebesgue.



Applications of Optimal Transportation in the Natural Sciences 555

3.2. Fast algorithm? The solutions of the regularized optimal transport are
known to be calculable efficiently using the Sinkhorn algorithm [2, 1]. This al-
gorithm relies heavily on the invariance of the Brownian motion through time
reversal. The branching Brownian motion doesn’t satisfy this property, so that
there is no easy way to generalize the Sinkhorn algorithm in this case. Is it nev-
ertheless possible to design a fast algorithm doing the job?
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On overrelaxation in the Sinkhorn algorithm

Max von Renesse

(joint work with Tobias Lehmann, Alexander Sambale, Andre Uschmajew)

Summary. We derive an a-priori parameter range for overrelaxation of the Sinkhorn
algorithm, which guarantees global convergence and a strictly faster asymptotic
local convergence. Guided by the spectral analysis of the linearized problem we
pursue a zero cost procedure to choose a near optimal relaxation parameter.

Background and statement of the problem. The Sinkhorn algorithm is the bench-
mark approach to fast computation of the entropic regularization of optimal trans-
portation [3]. Ultimately, one is faced with the following numerical problem: Given
two probability vectors a ∈ Rm

+ , b ∈ Rn
+ and a matrix K ∈ R

m×n
+ , the goal is to

find a pair of vectors (u, v) ∈ Rm
+ × Rn

+ such that

(1) u ◦Kv = a and v ◦KTu = b,

where x ◦ y denotes the component wise multiplication (Hadamard product) of
vectors of equal dimension. We assume min(m,n) ≥ 2.

In the standard Sinkhorn algorithm an approximating sequence (uℓ, vℓ) starting
from an initial vector v0 ∈ Rn

+ is constructed via the update rule

uℓ+1 =
a

Kvℓ
, vℓ+1 =

b

KTuℓ+1
,
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where x
y denotes the component wise division of vectors of equal dimension. It is

a classic result by Sinkhorn [13] that for any initial point v0 ∈ Rn
+ the algorithm

converges to a solution (u∗, v∗) of (1). Moreover, the solution is unique modulo
rescaling (tu∗, t−1v∗), t > 0. The rate of convergence, e.g. of suitably normal-
ized iterates uℓ/‖uℓ‖ and vℓ/‖vℓ‖, or using other distance measures, is at least
O(Λ(K)2), where Λ(K) < 1 is the Birkhoff contraction ratio defined in (3) below,
c.f. [6, 12].

In this note we discuss a modified version of the Sinkhorn algorithm employing
relaxation, which was recently proposed in [14] and [11]. It uses the update rule

(2) uℓ+1 = u1−ω
ℓ ◦

(
a

Kvℓ

)ω

, vℓ+1 = v1−ω
ℓ ◦

(
b

KTuℓ+1

)ω

,

where ω > 0 is are suitably chosen relaxation parameter, and exponentiation is un-
derstood component wise. In a log-domain formulation the relation to the classic
concept of relaxation in (nonlinear) fixed point iterations will become immediately
apparent. The iteration (2) still has the solution of (1) as its unique (modulo scal-
ing) fixed point. As illustrated in op. cit., choosing the parameter ω larger than
one can significantly accelerate the convergence speed compared to the standard
Sinkhorn method, which sometimes can be slow. For optimal transport, such an
improvement could be in particular relevant in the regime of small regularization,
or when a high target precision is needed, such as in applications in density func-
tional theory [2]. The main challenge of the approach, however, is a good choice
of the overrelaxation of the parameter which depends on the linearisation of the
spectral properties of the Sinkhorn iteration map at the fixed point, which is not
known at the outset of the procedure. To deal with this issue, in [14] an adaptive
approach is proposed. In our comment we address the question whether instead
an a-priori choice of ω is possible and beneficial.

Main result. To state our main result let us recall the Birkhoff contraction ratio
of a matrix with strictly positive entries which is defined as

(3) η(K) = max
i,j,k,ℓ

KikKjℓ

KjkKiℓ
and Λ(K) =

√
η(K)− 1√
η(K) + 1

.

Secondly, given the data of the problem in form of a triple (K, a, b) we introduce
the quantity

δ1 =
amin

bmax
· 1− bmax(

‖K‖∞

σmin(K)

)2

− amin

> 0, δ2 =
bmin

amax
· 1− amax(

‖KT‖∞

σmin(K)

)2

− bmin

> 0, where

σmin(K) is the smallest positive singular value of K, ‖K‖∞ = max‖v‖∞=1 ‖Kv‖∞,
and the subscripts min, max denote the smallest and largest entry of the corre-
sponding vector and

δK,a,b :=





δ1 if m > n,

δ2 if m < n,

max(δ1, δ2) if m = n.
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Then our results can be summarized as follows.

Theorem. Assume rank(K) = min(m,n) ≥ 2. Then for any 1 < ω <

min
(
1 + δK,a,b,

2
1+Λ(K)

)
the modified method is both globally convergent and

asymptotically faster than the standard method.

This result is based on a global convergence guarantee which is obtained in the
framework of so called compositional data space (c.f.[1]) and an a priori bound
for the second largest eigenvalue of the linearized Sinkhorn iteration at the fixed
point.

Numerical experiments and practical choice of ω In practice, the acceleration of
our theoretically based a-priori choice for ω turns out to be only marginal. As a
remedy we propose to estimate the critical spectral parameter only once after a
few steps and then choose ω > 1 once and for all based on this estimate. Below
we present the empirical results for two model problems.
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Small- and long-time asymptotics of Entropic Optimal Transport

Luca Tamanini

(joint work with Giovanni Conforti, Léonard Monsaingeon, Dmitry Vorotnikov)

Entropic Optimal Transport and Schrödinger problem represent two (equivalent, in
the Euclidean setting) ways to regularize the Monge-Kantorovich optimal trans-
port problem. Because of this fact, they have gained a lot of attention in the
recent years and have already shown to have far reaching consequences in var-
ious fields, ranging from machine learning to geometric analysis and functional
inequalities. However, despite the equivalence, Entropic Optimal Transport and
Schrödinger problem are very different in nature; the latter is more probabilistic
and has a much stronger physical interpretation, which is still valid far beyond the
Euclidean context. For this reason we shall adopt this second viewpoint and start
by defining the Schrödinger problem as

(1) inf
π∈Π(µ0,µ1)

H(π |Rε),

where Π(µ0, µ1) denotes the set of couplings between µ0 and µ1, H the Boltzmann-
Shannon relative entropy, and Rε some reference measure (usually, the joint law at
time 0 and ε of some diffusion process). The optimal value of (1) shall be denoted
henceforth by Cε(µ0, µ1) and called entropic cost. After [7, 8] the ‘static’ formu-
lation of the Schrödinger problem is in fact equivalent to the following dynamical
(à la Benamou-Brenier) one

(2) εCε =
ε

2

(
H(µ0 |m) +H(µ1 |m)

)
+ inf

∫∫ 1

0

( |vt|2
2

+
ε2

8
|∇ log ρt|2

)
ρtdtdm,

where the infimum runs over all distributional solutions (ρt, vt) of the continuity
equation.

In this talk we shall investigate the entropic cost on weighted manifolds, study-
ing its behaviour as ε ↓ 0 (thus recovering optimal transport and the Wasserstein
distance) and as ε→ ∞ (in this case, Cε is related to information theory and ap-
proximates MMD divergences). More precisely, our framework will be a weighted
smooth Riemannian manifold (M, g) with reference measure m := e−V vol, where
vol is the volume form and V is a smooth function such that Ricg +Hess(V ) ≥ κg
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for some κ ∈ R. As a first step, one has to observe that Cε regularly depends on
the ‘temperature’ parameter ε and its first derivative can be explicitly computed
as

d

dε
Cε(µ0, µ1) = −Eε(µ0, µ1) := −

∫ ( |vεt |2
2ε2

− 1

8
|∇ log ρεt |2

)
ρεtdm,

Eε(µ0, µ1) being the total energy of the system: indeed, it coincides with the Hamil-
tonian associated with (2) evaluated along the unique critical solution (ρεt , v

ε
t ).

Although this elegant (from a physical standpoint) identity is rather elementary,
since it is a consequence of (2) and of the envelope theorem, its consequences
are extremely important, both for the long- and small-time asymptotics of the
entropic cost. Indeed, as regards the former, once it is known that Cε(µ0, µ1) →
H(µ0 |m)+H(µ1 |m) as ε→ ∞ (and this can be seen by Γ-convergence arguments),
this information can be improved into a quantitative version by leveraging on an
‘energy-transport’ inequality [1, 3] of the form ‘|Eε(µ0, µ1)| ≤ C(κ, ε)Cε(µ0, µ1)’
and on an ‘entropic’ version of the celebrated Talagrand inequality (see [2]). In
this way, the first main result of [3] reads as follows.

Theorem 1. If κ > 0, then Cε(µ0, µ1) → H(µ0 |m) +H(µ1 |m) as ε→ ∞ with

|Cε(µ0, µ1)−H(µ0 |m)−H(µ1 |m)| ≤ 2

eκε/2 − 1

(
H(µ0 |m) +H(µ1 |m)

)

The rate e−κε/2 is sharp.

As for the short-time asymptotics, by the pioneering works of Mikami [10] and
Léonard [9] it is well known that the rescaled entropic cost εCε(µ0, µ1) converges
to the halved squared Wasserstein distance between µ0 and µ1, and another step
forward was made with the computation of the first derivative of the rescaled
entropic cost at ε = 0, see [6, 12]. The importance of continuing this research
line by determining the second derivative is evident and, in contrast to the ‘static’
approach used in the long-time regime, in this case our strategy heavily relies on
the dynamical representation (2). For technical reasons that will not be discussed

here, we restrict ourselves to weighted manifolds with Bakry-Émery Ricci tensor
satisfying the curvature-dimension condition CD(κ,N) for some N <∞.

Theorem 2. If M satisfies CD(κ,N) and
∫∫ 1

0 |∇ log ρ0t |2ρ0tdtdm < ∞, where

(ρ0tm)t∈[0,1] is the unique Wasserstein geodesic between µ0 and µ1, then

εCε(µ0, µ1) =
1

2
W2(µ0, µ1)

2 +
ε

2

(
H(µ0 |m) +H(µ1 |m)

)

+
ε2

8

∫∫ 1

0

|∇ log ρ0t |2ρ0tdtdm+ o(ε2)

After this discussion, the reader may wonder whether these properties are pe-
culiar to the structure of the Schrödinger problem, and thus of the choice of the
Boltzmann-Shannon entropy in (1) and of the Fisher information as penalization
term in (2), or if instead they are a particular case of a more general paradigm. In
[11] this problem is addressed and studied for the small-time asymptotics. Since
the proof of Theorem 2 relies on (2), the first step consists in generalizing the
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Benamou-Brenier-like representation formula both at the level of setting and pe-
nalization term. To this end, note that the kinetic part in (2) can be interpreted
as the metric speed with respect to the Wasserstein distance of the curve t 7→ ρtm,
whereas the Fisher information coincides with the slope of the relative entropy.
Therefore, (2) can be seen as a particular case of

(3) inf
γ : γ0=x,γ1=y

1

2

∫ 1

0

(
|γ̇t|2 + ε2|∂E|2(γt)

)
dt,

which can be formulated on any metric space (X, d) for any functional E : X →
R∪{+∞}. Under certain assumptions (the existence of a suitable ‘weak’ topology
σ on X and the existence of an EVIλ-gradient flow associated with E), the main
results of [11] can be summarized as follows.

Theorem 3. Problem (3) Γ-converges to the geodesic problem (i.e. (3) with ε = 0)
as ε ↓ 0 for the pointwise-in-time σ-convergence on C([0, 1], X).

If there exists ω∗ optimal for (3) with ε = 0 such that
∫ 1

0
|∂E|2(ω∗

t )dt <∞, then

C̃ε(x, y) = C̃0(x, y) + ε2 inf

∫ 1

0

|∂E|2(ωt)dt+ o(ε2),

where C̃ε(x, y) denotes the optimal value of (3) and the infimum runs over all
minimizers of (3) with ε = 0.

Although the hypotheses mentioned above may appear quite demanding, several
interesting and not yet explored examples are covered: for instance, the ‘mean field
Schrödinger problem [1], Rényi entropies on the Wasserstein space over CD(0, N)
manifolds and on the space of probability measures over convex Euclidean domains
endowed with transport distances induced by ‘non-linear mobilities’ (see [5]).

Open questions. It would be interesting to see if also Theorem 1 holds for
variational problems more general than (1). In this respect, generalizations of
‘static’ entropic optimal transport have recently appeared (in particular, it is worth
mentioning [4]). However, Theorem 1 can not be extended to them in an easy way,
since both ingredients mentioned above (the ‘energy-transport’ and the ‘entropic’
Talagrand inequalities) implicitly rely on dynamical aspects of (1).
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Mitigating non-convexity in full waveform inversion: optimal
transport approaches

Ludovic Métivier

(joint work with Romain Brossier, Andrzejt Górszczyk, Quentin Mérigot,
Edouard Oudet, Arnaud Pladys, Jean Virieux)

High resolution seismic imaging is crucial in various field of applications, at mul-
tiple scales. Understanding the Earth’s global structure, studying specific litho-
spheric targets such as subduction zones, volcanic areas, faults, prospecting the
crust for hydrocarbon resources, monitoring CO2 storage zones, imaging the near
surface at few meters depth for geotechnical engineering are instances of such
applications where detailed information about the mechanical properties of the
subsurface is required.

To access this information, geophysicists rely on the recording of mechanical waves
using sensors deployed at the surface. Depending on the target scale, these waves
are triggered either by earthquakes (global and regional scale imaging) or by con-
trolled sources (explorations and near-surface scale imaging). From these record-
ing, the mechanical properties of the subsurface are inferred in an inverse problem
fashion.

Modern high resolution seismic imaging is based upon Full Waveform Inversion
(FWI). This method has been introduced by [Lailly, 1983] and [Tarantola, 1984]
as a PDE-constrained optimization problem. The least-squares distance between
observed and calculated data is minimized iteratively starting from an initial guess
of the subsurface model. The calculated data is obtained through the solution
of a PDE system representing the propagation of mechanical wave within the
subsurface. This problem is solved through local optimization (ie quasi-Newton
l-BFGS [Nocedal, 1980]). At each iteration, the gradient of the misfit function
measuring the discrepancy between calculated and observed data is computed.
The adjoint-state strategy, [Lions, 1968] is used to compute this gradient. It is
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obtained by the time-correlation of an incident field emitted from the source and
an adjoint field backpropagated from the receivers position. The time-signature
of the source for this adjoint field is given by the derivative of the misfit function
measurement with respect to the calculated data [Plessix, 2006].

One main limitation of FWI remains the non-convexity of the least-squares dis-
tance with respect to model parameters, especially wave velocities, which are the
parameters of primary interest. To overcome this difficulty, a recent proposition
is to modify the misfit measurement function using an optimal transport (OT)
distance [Engquist and Froese, 2014]. The motivation is that such distances are
convex with respect to dilation and translation of the measures they compare.
Large-scale velocity changes mainly affect the kinematic of the mechanical waves
and as a result shift in time the recorded seismic events. Using a misfit measure-
ment function convex with respect to translation (time-shifts) thus is a good proxy
towards convexity with respect to wave velocities.

However, using an OT distance to compare seismic data is not straightforward as
seismic data is signed, while OT theory is developed in the frame of probability
measures. One possibility is to apply nonlinear transforms to the data to make
it positive and normalized, so as to satisfy the positivity and mass conservation
assumption required by OT [Yang et al., 2016, Yang and Engquist, 2018]. While
satisfactory results have been obtained on synthetic data using these techniques,
altering the signal shape might yield specific difficulties in the frame of field data
inversion.

A first alternative discussed is the use of a specific instance of OT distance, namely
the 1-Wasserstein distance [Métivier et al., 2016]. Its dual form can be extended
to signed data with mass conservation, a condition satisfied “naturally” by seismic
data, mass conservation being related to the zero frequency of the signal which
is equal to 0 in practice. A fast numerical method can be designed to solve this
dual problem. The specific choice of the ℓ1 ground distance reduces the number
of linear constraints from N2 to 2N where N is the size of the discrete data. The
proximal splitting algorithm ADMM is used to solve the corresponding problem
[Combettes and Pesquet, 2011]. Each iteration of the ADMM algorithm requires
to solve a linear system associated with the discretization of the constraints, equiv-
alent to the second-order finite-difference discretization of the Laplacian operator.
Fast Fourier transform based linear solvers can thus be used, yielding an overall
complexity in O(N logN) at each iteration of the ADMM algorithm.

The development of this fast solver makes it possible to apply this distance to
the comparison of 2D and 3D data: seismic gathers which collect the time-signal
depending on the spatial position of the receivers. The coherency of the data in
this representation space can thus be taken into account, a very interesting feature
compared to standard Lp distances which operate in a point-to-point comparison.
However, one main drawback of this method is that the convexity with respect to
time-shifts is lost. This loss is due to the direct application of the 1-Wasserstein
distance to signed data.
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To overcome this difficulty, a second alternative consist in a graph-space lift of
the data [Métivier et al., 2019]. Each seismic time-signal is associated with its
discrete graph, yielding a 2D point cloud in a time/amplitude 2D space. This en-
sures simultaneously mass conservation and positivity of the compared quantities,
without altering the signal shape. The comparison of point clouds through OT
amounts to the solution of a linear assignment problem [Birkhoff, 1946], which we
solve through the celebrated “auction” algorithm [Bertsekas and Castanon, 1989].

Computing the sensitivity of this graph-space based OT misfit measurement with
respect to the calculated data is more involved. A theorem shows that given one
input and one target point clouds, the optimal assignment is locally constant al-
most everywhere. The misfit measurement is thus differentiable almost everywhere.
Its derivative resembles the one which would be obtained with a classical Lp norm,
except that instead of a point-by-point comparison, the sampled which are com-
pared are the ones connected through the optimal assignment computed through
the solution of the OT problem.

In this graph-space comparison, the ground distance defining the distance between
two points of the cloud needs also to be defined with care. Especially, a normal-
ization between the time and amplitude axis needs to be applied. We show how,
based on an estimation of the maximum expected time shifts, we can design this
normalization.

The two proposed methods are applied on 2D and 3D synthetic and field data. The
convexity associated with the OT distance makes it possible to start the inversion
from crude initial models, while conventional least-squares norm converges towards
non-informative local minima starting from these models. The graph-space lift
strategy appears as more promising, however, due to its intrinsic computation cost,
it is limited to the comparison of the data receiver by receiver, without taking into
account the spatial coherency of the data in a 2D or 3D representation space. The
perspective of this work is thus the possible reconciliation between both methods,
to extend the graph space strategy to the comparison of whole 2D/3D seismic
data. This would require the comparison of point clouds containing millions of
points, in a repeatable thus stable manner. In addition the gradient computation
step requires not only the evaluation of the OT problem but also the computation
of its sensitivity with respect to the input data.
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Dimension reduction for measures in position velocity space

Benedikt Wirth

(joint work with Martin Holler, Alexander Schlüter)

In the field of inverse problems, both the reconstruction of measure-valued ob-
jects as well as the reconstruction of temporally changing quantities are gaining
importance. This has recently led to several approaches using some version of
optimal transport as a regularizer, often in a dynamic formulation: one recon-
structs a Radon measure at every time point at which one has an observation or
a measurement and penalizes the transport distance between the reconstructions
at consecutive time steps. The motivation is twofold: First, the optimal transport
plan yields information about the evolution or the motion of the reconstructed
quantity. Second, the temporal consistency ensured by optimal transport may
improve the reconstruction at each single time point.

The problem with optimal transport-based regularization approaches is the as-
sociated computational cost. If one just considers the standard Wasserstein-p
distance between consecutive time points, then the dynamic Benamou–Brenier
formulation alleviates this issue, leading to a feasible optimization of measures in
spacetime (where the time interval extends over all the observation time points).
However, if a stronger temporal regularization is desired which simultaneously
considers more than just two consecutive time points, then one is led to multi-
marginal transport problems which are typically numerically prohibitive. Since in
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this field the regularizing effect of optimal transport-type functionals is more im-
portant than the exact calculation of a transport plan, we suggest to remedy the
issue of computational intractability by a dimension reduction which only con-
siders certain projections of optimal transport couplings. We describe the idea
below for an existing model of dynamic particle reconstruction, showing that the
favourable regularization properties do not suffer under the dimension reduction.

To introduce the setting, let us first recapitulate a model for reconstructing sta-
tionary particles (without optimal transport-type regularization). Given a measure
u† =

∑n
i=1miδxi

∈ M+(Ω), describing n particles of masses mi > 0 at locations

xi ∈ Ω ⊂ Rd, d ∈ {2, 3}, one takes a measurement f † = Obu† of the configuration
via a linear observation operator Ob : M+(Ω) → Rm. An exemplary case is a
Fourier series expansion, truncated at some maximum frequency f ,

Obu =
(
〈u, x 7→ eiξ·x〉

)
ξ∈Zd,|ξ|<f

for Ω = (−π, π]d with periodic boundary.

This setting is closely related to superresolution microscopy (for which a Nobel
prize was awarded in 2014), where the particles represent fluorescent molecules
and the observation y is just the Fourier transform of a flourescence microscopy
image (it is truncated at some maximum frequency due to the limited microscope
resolution). The task now is to reconstruct u† from f †. Remarkably, for the above
measurement operator this is possible exactly.

Theorem 1 (Candès & Fernandez-Granda, 2013). There exists a constant C > 0
such that the following holds. If the minimum particle distance in u† is no smaller
than C

f , then u
† is the unique minimizer of

(1) min
u∈M+(Ω)

‖u‖M such that Obu = f †.

The result is proved by constructing dual certificates for u† and is in principle
not restricted to Ob being a truncated Fourier series. If the measurements are
corrupted by noise, the constraint Obu =f † can be replaced by a penalty term, and
one can derive some error estimate of the reconstruction (Candès and Fernandez-
Granda consider some type of maximum mean discrepancy norm of u− u†).

Next consider the dynamic setting, where the particles move over time. Denote

the particle configuration at time t by u†t and assume that we have observations

f †
j = Obu†tj , j = 1, . . . , k, from which we aim to reconstruct the dynamic particle
configuration. The latter could for instance be described by a multimarginal cou-
pling η† =

∑n
i=1miδx1

i ,...,x
k
i
, where mi represents the ith particle mass as before

and xji its position at time tj . Thus, projjη
† = u†tj , where projj denotes the jth

marginal. The natural extension of (1) to the dynamic problem now reads

min
η∈M+(Ω×...×Ω)

∫

Ω

. . .

∫

Ω

c(x1, . . . , xk) dη(x1, . . . , xk)

such that Ob(projjη) = f †
j for j = 1, . . . , k.
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The cost c can be chosen to achieve a desired temporal regularization. For instance,
one could require constant particle velocities by choosing

c(x1, . . . , xk) =

{
1 if there exist x, v ∈ Rd with xj = x+ tjv, j = 1, . . . , k,

∞ else.

This case of particles with linear trajectories was considered by Alberti, Ammari,
Romero and Wintz. Due to its enforced high temporal consistency, the coupling η†

can here actually be reduced to just a measure in Λ = {(x, v) ∈ Rd×Rd |x+ tjv ∈
Ω for j = 1, . . . , k} ⊂ Rd × Rd. Indeed, the dynamic particle configuration can
be represented as a measure λ† =

∑n
i=1miδ(xi,vi), where xi denotes the initial

position and vi the velocity of the ith particle. The configuration utj at time tj is

now obtained from λ† via a “move” operator (a simple pushforward),

utj = Mvdtjλ
† for Mvdtλ = [(x, v) 7→ x+ tv]#λ.

In analogy to theorem 1 one can reconstruct λ† exactly from the measurements.

Theorem 2 (Alberti, Ammari, Romero & Wintz, 2018). Let C be the constant
from theorem 1. If there exists a set of “good times” T ⊂ {t1, . . . , tk} such that

• the minimum particle distance in u†t is no smaller than C
f for all t ∈ T ,

• there are no ghost particles with respect to T ,

then λ† is the unique minimizer of

(2) min
λ∈M+(Λ)

‖λ‖M such that Ob(Mvdtjλ) = f †
j for j = 1, . . . , k.

Above, the notion of ghost particles refers to pairs (x, v) of initial position
and velocity that do not correspond to any real particle, but nevertheless satisfy

x+ tv ∈ support(u†t ) for all t ∈ T . Again, the result is not restricted to Ob being
a truncated Fourier series, but we stick to that case for simplicity of exposition.

Finally, let us introduce our dimension reduction. For θ ∈ Sd−1 we define the
Radon transform and the “joint Radon transform” as the pushforwards

Rdθu = [x 7→ θ · x]#u, Rjθλ = [(x, v) 7→ (θ · x, θ · v)]#λ.
The essential intuition is that the move operator and the joint Radon transform
yield quite complementary projections of spacetime, so γ† = (Rjθλ

†)θ∈Θ and u† =

(Mvdtλ
†)t∈Σ contain complementary information (where we shall fix Θ = Sd−1 and

Σ = [−1, 1], but other choices are possible as well). Hence it may be reasonable
to use new variables γ and u instead of λ. Since γ can be viewed as a measure on
R×R× Sd−1 and u as a measure on Rd ×R, the dimensions of the new variables
are indeed lower than those of λ. In particular, for three-dimensional particle
configurations (d = 3), γ and u live in a four-dimensional space, which can still
be discretized. (Note that one may actually reduce the dimension even further by
taking finite Θ and Σ.) Of course, γ and u are not completely independent due

to the compatibility relation Rdθu
†
t = RdθMvdtλ

† = Mv1tRjθλ
† = Mv1tγ

†
θ for all

θ ∈ Θ, t ∈ Σ. We prove that the favourable reconstruction properties persist after
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this dimension reduction, and we even obtain error estimates in the unbalanced
transport dissimilarity measure (in which W2 denotes the Wasserstein-2 distance)

W 2
2,r(ρ, ν) = inf

η
W 2

2 (ρ, η) + r2‖η − ν‖M.

Theorem 3. Under the same conditions as in theorem 2, (γ†, u†) is the unique
minimizer of

min
γ∈M+(R×R)Θ

u∈M+(Ω)Σ

sup
θ∈Θ

‖µθ‖M such that

{
Rdθut = Mv1tγθ for all θ ∈ Θ, t ∈ Σ,

Obutj = f †
j for j = 1, . . . , k.

Now let ∆ be the largest distance by which particle locations in λ† can be shifted

without producing a collision or ghost particle in the projected configurations {Rdθu†t
| t ∈ T }. If f δ

1 , . . . , f
δ
k are noisy measurements with

∑k
j=1 |f δ

j − f †
j |2 ≤ δ2, then

there exist c, r > 0 (depending on λ†) such that the minimizer (γδ, uδ) of

min
γ∈M+(R×R)Θ

u∈M+(Ω)Σ

sup
θ∈Θ

‖µθ‖M +
1

δ

k∑

j=1

|Obutj − f δ
j |2 s. t. Rdθut = Mv1tγθ ∀θ ∈ Θ, t ∈ Σ

satisfies, for almost all θ ∈ Θ and all t ∈ Σ,

W 2

2,min{r,∆/(3
√

1+maxt∈T t2)}
(γδθ , γ

†
θ) ≤ cδ, W 2

2,r(u
δ
t , u

†
t) ≤ cδ.

The proof again is essentially a careful construction of dual certificates: first

for all u†t with t ∈ T in the set of good times, then based on that for all µ†
θ, and

finally (with the help of those new dual certificates) for all u†t .

The implicit regularization of the quadratic Wasserstein metric in
data-fitting problems and Bayesian inference

Yunan Yang

(joint work with Björn Engquist, Matt Dunlop, Kui Ren)

In recent years, the quadratic Wasserstein metric (W2) is proposed as an alterna-
tive for the L2 metric in solving such inverse data matching problems. Numerical
experiments suggest that the W2 metric has attractive properties for some inverse
data matching problems that the classical L2 metric does not have, such as nonlin-
ear full-waveform inversion [3, 7, 8, 12] and parameter identification for nonlinear
dynamical systems [6]. Here, we summarize the mathematical properties of the
W2 metric in inverse data matching problems into the following three aspects.

1. Convexity with respect to data translation and dilation. Optimal
transport-related techniques are nonlinear as they explore the model through both
signal intensities and their locations. The geometry of optimal transport has
been instrumental in tackling applied problems, such as capturing the essential
continuous dependence between the model parameter m and the data f(m). The
W2 distance is ideal for dealing with this type of problem as it has perfect convexity
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with respect to translation and dilation, which was the original motivation for us
to introduce W2 as the misfit function in seismic inversion [2]. We improve our
result in [3] with a stronger convexity proof in the following Theorem 1, which
states a joint convexity in multiple variables with respect to both translation and
dilation changes in the data. Assume that sk ∈ R, k = 1, . . . , d is a set of
translation parameters and {ek}dk=1 is the standard basis of the Euclidean space
Rd. A = diag(1/λ1, . . . , 1/λd) is a dilation matrix where λk ∈ R+, k = 1, . . . , d.
We define fΘ as jointly the translation and dilation transformation of function g

(1) fΘ(x) = det(A)g(A(x −
d∑

k=1

skek)).

Theorem 1 [5] [Convexity of W2 in translation and dilation]
Let g = dν be a probability density function with finite second moment and fΘ
is defined by (1). If, in addition, g is compactly supported on convex domain
Y ⊆ Rd, the optimal transport map between fΘ(x) and g(y) is y = TΘ(x) where
〈TΘ(x), ek〉 = 1

λk
(〈x, ek〉 − sk), k = 1, . . . , d. Moreover, I(Θ) = W 2

2 (fΘ(x), g) is a
strictly convex function of the multivariable Θ.

2. Robustness to high-frequency perturbations. It is well-known that the

W2 metric between f and g is connected to a weighted ˙H−1 distance between
them. If µ is the probability measure and dπ is an infinitesimal perturbation that
has zero total mass, then [11, Section 7.6]

(2) W2(µ, µ+ dπ) = ‖dπ‖Ḣ−1
(dµ)

+ o(dπ).

For two positive probability measures µ and ν with densities f and g that are
sufficiently regular, we have the following non-asymptotic equivalence [10]:

(3) c1‖µ− ν‖Ḣ−1
(dµ)

≤W2(µ, ν) ≤ c2‖µ− ν‖Ḣ−1
(dµ)

, for some c1, c2 > 0.

We seek the solution of the inverse problem as the minimizer of theHs functional

(4) ΦHs(m) ≡ 1

2
‖f(m)− g‖2Hs :=

1

2

∫

Rd

〈ξ〉2s|f̂(m)(ξ)− ĝ(ξ)|2dξ,

with 〈ξ〉 :=
√
1 + |ξ|2, f(m) = Am and g replaced with the noisy datum gδ. Here,

we use a linear inverse problem as an example. Please refer to [4] for the analysis
of nonlinear inverse problems. The solution at frequency ξ is therefore

m̂(ξ) =
(
Â∗(ξ)

(
〈ξ〉2sÂ

))−1

Â∗(ξ)
(
〈ξ〉2sĝδ(ξ)

)
.

Performing an inverse Fourier transform gives the solution in the physical space

(5) m =
(
A∗PA

)−1

A∗Pgδ, P := (I −∆)s/2,

where the operator (I − ∆)s/2 is defined through the relation (I − ∆)s/2m :=
F−1(〈ξ〉sm̂), with F−1 being the inverse Fourier transform.
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When s < 0, P is a (smoothing) integral operator. Applying P to gδ suppresses
its high-frequency components. The implicit regularization property regarding
s = −1 naturally applies to the W2 metric as a result of (2) and (3).

3. The W2 metric as the likelihood function in Bayesian inference. The
shape and curvature of the likelihood surface represent information about the
estimates’ stability, whose analogy in the deterministic approach of solving inverse
problems is the objective function in PDE-constrained optimization. In [9], theW2

metric was first used in Bayesian seismic inversion as the likelihood function, which
motivates us to further analyze the W2 metric under the framework of Bayesian
seismic inversion. We first study its underlying noise model, which is compared
with other common choices of likelihood functions in the table below.

φ Likelihood function Noise model assumption

ΦL2 ‖G(u)(x, ·) − y(x, ·)‖2L2 y = G(u) + η, η ∼ N(0, I)

ΦH−1 ‖G(u)(x, ·)− y(x, ·)‖2
Ḣ−1

y = G(u) + η, η ∼ N(0,−∆)

ΦW2 W 2
2

(
G̃(u)(x, ·), ỹ(x, ·)

)
ỹ = η · G̃(u), η|u ∼ N(1,L(u))

ΦM

∥∥∥G(u)(x,·)−y(x,·)
y(x,·)

∥∥∥
2

L2
y = η · G(u), 1/η ∼ N(1, I)

Here, u is the state parameter, G is the forward operator, G(u) is the synthetic
output, and y is the observed data. The ỹ denotes the normalized function, which
is then a probability density. The operator L(u) is defined by

L(u)φ = − 1

G̃(u)
∇ ·

(
G̃(u)∇φ

)
,

Thus, the W2 metric as a likelihood function can be regarded as asymptotically
coming from the state-dependent multiplicative noise data model.

We also state an informal version of [1, Theorem 6] demonstrating the better ro-
bustness of the W2 metric as the likelihood function compared to the conventional
choice of L2-type likelihood function.

Theorem 2 [Well-posedness] For Φ ∈ {ΦL2,ΦW2}, under mild assumptions, there

exists CΦ(r) > 0 such that for any ‖y‖L∞, ‖y′‖L∞ < r, with πy
Φ and πy′

Φ denoting
the corresponding posterior distributions, we have

dH(π
y
ΦW2

, πy′

ΦW2
) ≤ CW2 (r)‖y − y′‖H−1 , dH(π

y
ΦL2

, πy′

ΦL2
) ≤ CL2(r)‖y − y′‖L2 .

dH represents the Hellinger distance.

We remark that If y−y′ ≈ sin(kx),‖y−y′‖H−1 ≈ O( 1k ), while ‖y−y′‖L2 ≈ O(1).
Thus, Theorem 2 is another result demonstrating the noise insensitivity of the
W2 metric in a Bayesian inference framework in the context of solving Bayesian
inverse problems. The result is well-aligned with the analysis for the deterministic
approach of solving the same inverse problem.
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Stability in Gagliardo-Nirenberg-Sobolev inequalities

Jean Dolbeault

(joint work with Matteo Bonforte, Bruno Nazaret, Nikita Simonov)

Optimal constants and optimal functions are known in some functional inequal-
ities. The next question is the stability issue: is the difference of the two terms
controlling a distance to the set of optimal functions ? A famous example is pro-
vided by Sobolev’s inequalities: in 1991, G. Bianchi and H. Egnell proved that the
difference of the two terms is bounded from below by a distance to the manifold
of the Aubin-Talenti functions. They argued by contradiction and gave a very ele-
gant although not constructive proof. Since then, estimating the stability constant
and giving a constructive proof has always been a challenge.

This contribution focuses on Gagliardo-Nirenberg-Sobolev inequalities. The
main tool is based on entropy methods and nonlinear flows. In our method, proving
stability amounts to establish, under some constraints, a version of the entropy –
entropy production inequality with an improved constant. In simple cases, for
instance on the sphere, rather explicit results have been obtained by the carré du
champ method introduced by D. Bakry and M. Emery. In the Euclidean space,
results based on constructive regularity estimates for the solutions of the nonlinear
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flow have been obtained in a joint research project with Matteo Bonforte, Bruno
Nazaret, and Nikita Simonov.

According to [1], on Rd, d ≥ 3, there is a positive constant α such that

(1) Sd ‖∇f‖2L2(Rd) − ‖f‖2L2∗(Rd) ≥ α inf
ϕ∈M

‖∇f −∇ϕ‖2L2(Rd) ,

where the left-hand side is the difference of the two terms in Sobolev’s inequality,
with optimal constant Sd, and M denotes the manifold of the optimal Aubin-
Talenti functions. Various improvements as, e.g., in [4, 7] have been obtained but
the question of constructive estimates is still widely open: α is obtained by com-
pactness estimates and contradiction arguments, and no good stability estimate
is known so far at least with a strong notion of distance as in the right-hand side
of (1). See [6] for a result with a weaker norm.

We consider the family of Gagliardo-Nirenberg-Sobolev inequalities

(2) ‖∇f‖θ2 ‖f‖1−θ
p+1 ≥ CGNS(p) ‖f‖2 p

with θ = d (p−1)
(d+2−p (d−2)) p , p ∈ (1,+∞) if d = 1 or 2, p ∈ (1, p∗] if d ≥ 3, p∗ = d

d−2 .

It is known from [5] that equality is achieved if and only if, up to a multiplication
by a constant, a translation and a scaling, f = g where g(x) :=

(
1 + |x|2

)
−1/(p−1).

We shall denote the corresponding manifold by M as when p = p∗. Sobolev’s
inequality when d ≥ 3, p = p∗, the Euclidean Onofri inequality obtained for d = 2
by taking the limit as p→ +∞ with f(x) = g(x)

(
1 + 1

2 p (h(x)− h)
)
,

log

(∫

R2

eh−h dx
π (1+|x|2)2

)
≤ 1

16 π

∫

R2

|∇h|2 dx with h =

∫

R2

h(x)dx

π (1+|x|2)2

and, as p→ 1+, the (scale invariant) Euclidean logarithmic Sobolev inequality

d

2
log

(
2

π d e

∫

Rd

|∇f |2 dx
)

≥
∫

Rd

|f |2 log |f |2 dx

are all limit cases of (2). Let us define the deficit functional

δ[f ] := (p− 1)2 ‖∇f‖22 + 4
d− p (d− 2)

p+ 1
‖f‖p+1

p+1 −KGNS ‖f‖2 p γ
2 p

with KGNS = C(p, d) C2 p γ
GNS, γ = d+2−p (d−2)

d−p (d−4) for some explicit positive constant

C(p, d). A scale optimization shows that (2) is equivalent to the inequality δ[f ] ≥ 0.
Stability results for (2) with non-constructive estimates are known from [3, 10].

With d ≥ 1, m ∈ (1− 1/d, 1), the fast diffusion equation in Rd

(3)
∂u

∂t
= ∆um

with initial datum u(t = 0, x) = u0(x) ≥ 0, u0 ∈ L1
(
Rd, (1 + |x|2) dx

)
, can be

interpreted as the gradient flow of the entropy E :=
∫
Rd u

m dx with respect to
Wasserstein’s distance, as it is known from [8]. By the carré du champ method
(adapted from the work of D. Bakry and M. Emery), we can relate (2) and (3),
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and obtain a proof of (2). The key property, inspired by the Rényi entropy powers
of [9] is based on the one hand on the fact that

E′ = (1−m) I

where I :=
∫
Rd u |∇P|2 dx is the Fisher information and P = m

m−1 u
m−1 is the

pressure variable, and on the other hand on the identity

− d
dt log

(
I
1
2 E

1−θ
θ(p+1)

)
=
∫
Rd u

m
∥∥D2P− 1

d ∆P Id
∥∥2 dx+(m−m1)

∫
Rd u

m
∣∣∆P+ I

E

∣∣2 dx .

Hence I
1
2 E

1−θ
θ(p+1) is monotone with a limit given by self-similar Barenblatt functions

or, equivalently by g2p. With the relations f = um−1/2, p = 1/(2m− 1), so that∫
Rd u dx =

∫
Rd f

2p dx, E =
∫
Rd f

p+1 dx and I = (p+1)2
∫
Rd |∇f |2 dx, the role of (2)

is easily recovered. A rigorous proof goes through the time-dependent rescaling

u(t, x) =
1

κdRd
v
(
τ,

x

κR

)
where

dR

dt
= R1−µ , τ(t) := 1

2 logR(t)

so that (3) is changed, with same initial datum u0 and the choice R(0) = 1, into
the Fokker-Planck type equation

(4)
∂v

∂τ
+∇ ·

[
v
(
∇vm−1 − 2 x

) ]
= 0 .

With now f = vm−1/2 such that
∫
Rd f

2p dx =
∫
Rd g

2p dx and again p = 1
2m−1 ,

with Q[v] := I[v]/F [v], δ[f ] ≥ 0 is equivalent to Q[v] ≥ 4, where B := g2p and

F [v] :=

∫

Rd

(
Bm−1 (v − B)− 1

m (vm − Bm)
)
dx , I[v] :=

∫

Rd

v
∣∣∇vm−1 + 2 x

∣∣2 dx .

For any m ∈ (1 − 1/d, 1), the main result in [2] is the fact that

(5) Q[v(τ, ·)] > 4 + η ∀ τ > 0 ,

for some η > 0, under the conditions that
∫
Rd v0 (1, x) dx =

∫
Rd B (1, x) dx and

A[v0] := sup
r>0

r
d−p (d−4)

p−1

∫

|x|>r

v0 dx

is finite, with an explicit dependence of η on A[v0] and F [v0]. The method involves:

(i) An initial time layer property: if Q[v(T, ·)] ≥ 4 + η for some η > 0 and
T > 0, then Q[v(τ, ·)] ≥ 4 + 4 η e−4T /(4 + η − η e−4T ) for any τ ∈ [0, T ].

(ii) A threshold time. Based on a global Harnack Principle, there exists some
T > 0 such that (1− ε)B ≤ v(τ, ·) ≤ (1 + ε)B for any τ > T .

(iii) An asympotic time layer property: as a consequence of an improvedHardy-
Poincaré (spectral gap) inequality, (5) holds for η = η(ε), for any τ ≥ T .

Rewritten in terms of f , the improved entropy – entropy production inequality
Q[v] > 4 + η is a stability result.

Theorem 1. Let d ≥ 1 and p ∈ (1, p∗). There is an explicit C = C[f ] such that,
for any f ∈ L2p

(
Rd, (1 + |x|2) dx

)
such that ∇f ∈ L2(Rd) and A

[
f2p

]
<∞,

δ[f ] ≥ C[f ] inf
ϕ∈M

∫

Rd

∣∣(p− 1)∇f + fp ∇ϕ1−p
∣∣2 dx .
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The main point is that the dependence of C[f ] on A
[
f2p

]
and F

[
f2p

]
is explicit

and does not degenerate if f ∈ M. The critical case p = p∗ can also be covered up
to an additional scaling. A major open issue is of course to remove the condition
A
[
f2p

]
<∞, which requires a new approach.
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Dynamic optimal transport on networks

Martin Burger, Jan-F. Pietschmann

Since the seminal paper by Benamou and Brenier, it is well known that the problem
of optimal transport allows for a dynamic formulation.

The goal of this work is to extend this to a two-dimensional, planar network
where edges can be identified with one-dimensional domains, for details see [1].
We denote the network by G = (V , E) with V = {V 1, . . . , V n} being the set of
vertices for n ∈ N and E = {E1, . . . , Em} the set of edges for m ∈ N. Every vertex
is defined via its coordinates in the two-dimensional space R2, i.e. V i ∈ R2 for
every i ∈ {1, . . . , n} and every edge is homeomorphic to a one-dimensional, open
interval. To each edge we assign a starting and an end point and we define two
functions α, ω : E → V that assign to every edge its starting or its end point thus
determining an orientation. Furthermore ᾱ, ω̄ : {1, . . . ,m} → {1, . . . , n} assigns
to the index of a given edge the indices of the vertices attached at the starting and
end point, respectively. By Z(V i) we denote the indices of all edges originating or

https://hal.archives-ouvertes.fr/hal-02887010
https://arxiv.org/abs/2007.03674
https://arxiv.org/abs/2003.04037
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ending at V i for i ∈ {1, . . . , n}, i.e.
Z(V i) =

{
j ∈ {1, . . . ,m} : α(Ej) = V i ∨ ω(Ej) = V i

}
.

Finally, we denote by νj the outward normal at the j-th edge and for all (i, j) ∈
{(i, j) : i ∈ {1, . . . , n} and j ∈ Z(V i)} by νi,j the outward normal vector of edge
j at the point where it is connected to vertex i. With this notation, νᾱ(j),j gives
the normal at the starting point of Ej . Moreover, we denote by M+(X) the set
of non-negative bounded measures on a given space X and more precisely the set
of non-negative measures on the set of edges (vertices) by

M+(E) = M+(E
1)× . . .×M+(E

m),

M+(V) = M+(V
1)× . . .×M+(V

n).

To formulate the dynamic optimal transport problem on the network let ρ0ρ0ρ0 =
(ρ10, . . . , ρ

m
0 ) ∈ M+(E

j), ρ1ρ1ρ1 = (ρ11, . . . , ρ
m
1 ) ∈ M+(E

j) be given vectors containing
the concentrations on edges at times t = 0, t = 1 and by γ0γ0γ0 = (γ10 , . . . , γ

n
0 )M+(V

n),
γ1γ1γ1 = (γ11 , . . . , γ

n
1 )M+(V

n) the respective vectors of concentrations on the vertices.
Next, on the closed set ΩG =

⋃n
i=1 V

i ∪ ⋃m
j=1 E

j we define the measure that
translates to the total density on the network by

ςl =

m∑

j=1

ρjl +

n∑

i=1

γil , l ∈ {0, 1},(1)

and make the assumption that our initial and final data (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) are such
that ς0, ς1 ∈ P(ΩG) holds.

On every edge and every vertex, i.e. for every j ∈ {1, . . . ,m} and i ∈ {1, . . . , n},
we consider the following continuity equation on the network G

∂tρ
j
t + ∂xF

j
t = 0 in Ej , ∂tγ

i
t = f i

t on V i with f i
t =

∑

j∈Z(V i)

F j
t (Vi) · νi,j ,(2)

where F j
t : E

j × (0, T ] → R, f i
t ∈ R, the space derivative ∂xF

j
t is calculated with

respect to the orientation of the edge and νi,j denotes the normal outward of the
edge Ej at the boundary point that is connected with the vertex V i.

For a given network concentration (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) ∈ M+(E)×M+(E)×M+(V)×
M+(V) with ς0, ς1 ∈ P(ΩG), we consider the minimisation-problem of an action
being the combination of Wasserstein and the Fisher-Rao terms

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1)

= inf
(ρtρtρt,FtFtFt,γtγtγt,ftftft)∈CE(ρ0ρ0ρ0,ρ1ρ1ρ1,γ0γ0γ0,γ1γ1γ1)





m∑

j=1

∫∫

Ej×[0,1]

|F j
t |2

2ρjt
dxdt+ κ2

n∑

i=1

∫

[0,1]

|f i
t |2

2γit
dt



 ,

(3)

where κ > 0 is a given constant and with

CE(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1)

=
{
(ρtρtρt,FtFtFt, γtγtγt, ftftft) that fulfil (2) and ρt=0ρt=0ρt=0 = ρ0ρ0ρ0, ρt=1ρt=1ρt=1 = ρ1ρ1ρ1, γt=0γt=0γt=0 = γ0γ0γ0, γt=1γt=1γt=1 = γ1γ1γ1

}
.
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Remark 1. It is important to note that in the case of a trivial graph consisting
only of one edge and two vertices, our model coincides with the one-dimensional
version of the model introduced by L. Monsaigneon in [2]. In this work, existence
of minimizers is shown via duality and we adopt this strategy to our situation.

Our main result is existence of minimizers using a duality argument. For
φjt ∈ C1(QEj ), ψ

i
t ∈ C1(QV i), φtφtφt = (φ1t , . . . , φ

m
t ),ψtψtψt = (ψ1

t , . . . , ψ
n
t ) we define

the primal functional

J κ(φtφtφt,ψtψtψt) :=

m∑

j=1

∫

Ej

(
φj1dρ

j
1 − φj0 dρ

j
0

)
+

n∑

i=1

(ψi
1γ

i
1 − ψi

0γ
i
0)

+

m∑

j=1

∫∫

Q
Ej

ιSE
(∂tφ

j
t , ∂xφ

j
t ) dxdt−

n∑

i=1

∫ 1

0

ιSκ

V i
(∂tψ

i
t, ψ

i
t, φt|V i) dt.

where the sets SE and Sκ
V i are defined as

SE :=
{
(α, β) ∈ R+ × R : α+

|β|2
2

≤ 0
}
,

Sκ
V i :=

{
(a, b, ccc) ∈ R+ × R× R|Z(V i)| : a+

|b− 1
|Z(V i)| |

∑
j∈Z(V i) cj |2

2κ2
≤ 0

}

(4)

These definitions enable us to prove the duality theorem:

Theorem 2. Given admissible (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) we have the duality

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) = sup

C
J κ(φtφtφt,ψtψtψt)(5)

where inf = min is attained in (3).

We also address the question of the behaviour of the model when the parameter
κ tends to either +∞ or zero. In the first case, the term in the action (3) that
is multiplied by κ accounts for the cost of transporting mass onto (or off) the
vertices. Thus as κ increases, this becomes more and more costly and in the limit
we expect f i

t to be zero. This is indeed the case and we have the following theorem:
In the case of incompatible edge masses, but compatible overall mass, i.e.

∑

j

‖ρj0‖ =
∑

j

‖ρj1‖

we can introduce a Wasserstein metric on the edges only which, at the nodes, are
connected via Kirchhoff’s law, i.e.

W2
E(ρ0, ρ1ρ0, ρ1ρ0, ρ1) = min

{
m∑

j=1

∫∫

Ej×[0,1]

|F j
t |2

2ρjt
dxdt s.t.

∂tρ
j
t + ∂xF

j
t = 0 in Ej ,∑

j∈Z(V i) F
j
t · νj = 0 in ∂Ej,

}

Proposition 3. For fixed (ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) we obtain

W2
κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1) →

κ → +∞

{
W2

E(ρ0ρ0ρ0, ρ1ρ1ρ1) if γ0γ0γ0 = γ1γ1γ1,

+∞ otherwise,
(6)
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Let moreover µtµtµt
κ = (ρtρtρt

κ,FtFtFt
κ;γtγtγt

κ, ftftft
κ) be any W2

κ(ρ0ρ0ρ0, ρ1ρ1ρ1, γ0γ0γ0, γ1γ1γ1)-geodesic. If the

node masses are compatible, i.e. γ0γ0γ0 = γ1γ1γ1, ‖ρj0‖ = ‖ρj1‖ for all j ∈ {1, . . . ,m} then
up to a subsequence

(ρtρtρt
κ,FtFtFt

κ) → (ρtρtρt,FtFtFt), and ‖fκ
t ‖ → 0

where (ρtρtρt,FtFtFt) is a K2-geodesic .

Let us mention finally that in a similar way we can also analyze the limit of
κ−2W2

κ as κ → 0. Here we obtain that the edge fluxes F j,κ converge to zero and
using the sandwich property

κ−2W2
κ ≤ FR2

1(γ0γ0γ0, γ1γ1γ1)

we finally obtain convergence to the Fisher-Rao metric FR2
1(γ0γ0γ0, γ1γ1γ1), i.e.,

FR2
κ(γ0, γ1γ0, γ1γ0, γ1) := minAFR = min

{
n∑

i=1

∫ 1

0

κ2
|f i

t |2
2γit

dt s.t. ∂tγ
i
t = f i

t in V i

}
,

under the condition that ρj0 = ρj1 for all j, while we have divergence otherwise.
The study of gradient flows with respect to these resulting metrics is an interesting
open problem.

References

[1] Martin Burger, Ina Humpert, and Jan-Frederik Pietschmann. Dynamic optimal transport
on networks. arXiv:2101.03415, 2021.
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Phase transitions and a mountain pass theorem in the space of
probability measures

André Schlichting

(joint work with José A. Carrillo, Rishabh Gvalani, Grigorios A. Pavliotis,
Christian Seis)

We present results concerning the qualitative and quantitative description of mean-
field interacting systems of McKean-Vlasov type

(1) dX i
t = − κ

N

N∑

i6=j

∇W (X i
t −Xj

t ) dt+
√
2σ dBi

t , for i = 1, . . . , N.

The particles X i
t have the d-dimensional torus Td

L ≃ [0, L)d of size L > 0 as state
space with Bi

t being independent Brownian motions on it. For many interaction
potentials W , the model possesses phase transition by varying the interaction
strength κ > 0 while keeping the diffusion constant σ > 0 fixed.

The mean-field limit N → ∞ of this system is a classical result and many
authors have shown for different classes of interaction potentials that the empirical
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measure ̺(N) := N−1
∑N

i=1 δXi
t
converges weakly to some measure ̺ which satisfies

the following nonlocal parabolic equation

(2) ∂t̺ = σ∆̺+ κ∇ · (̺∇W ⋆ ̺) .

The equation (2) comes with a free energy functional consisting of entropy and
interation energy

(3) Fκ(̺) = σ

∫

Td
L

̺ log ̺ dx+
κ

2

∫∫

Td
L×Td

L

W (x− y)̺(y)̺(x) dy dx ,

which is the driving functional for a gradient flow description in the Wasserstein
space.

Let us note that the uniform state ρ∞ ≡ L−d is always a stationary point,
which at the same time is the global minima of Fκ for κ > 0 sufficiently small.
Hence, we can consider the first transition point κc > 0 as the point where ρ∞
loses its global stability. The transition can happen continuously (local bifurca-
tion) or discontinuously for the L1 topology. One of the main results of [2] is
the classification of the kind of phase transitions in terms of the (real) Fourier

modes W̃ (k) := (2/L)1/2
∫
TL
W (x) cos

(
2πk
L x

)
for k ∈ N, here stated for the sake

of presentation for d = 1.

Theorem [2]. Let W : TL → R be smooth and coordinate-wise even and let
κc <∞ be the first transition point of the free energy Fκ:

(1) near resonant modes: If there exist non-zero ka, kb, kc ∈ N with W̃ (ka) ≈
W̃ (kb) ≈ W̃ (kc) ≈ mink W̃ (k) < 0 such that ka = kb + kc, then κc is a
discontinuous transition point.

(2) dominant mode: Let k♯ = argmink W̃ (k) be well-defined with W̃ (k♯) < 0.

Then, if for some α ∈ (0, 1] small enough holds αW̃ (k♯) ≤ W̃ (k) for all
k 6= k♯, then the transition point κc is continuous.

Mathematically, the continuous phase transitions are accessible by local bifur-
cation analysis. However, the investigation of the discontinuous phase transition
is more subtle. It exploits the free energy landscape by constructing appropriate
competitor states, leading to the above theorem’s resonance condition.

The identification of discontinuous phase transitions for the McKean–Vlasov
dynamic raises the question if the free energy Fκ(ρ) for κ = κc possesses, besides
the two global minima, a third critical point. Classically, a mountain-pass argu-
ment identifies the energy gap ∆ between a minimum and another saddle point.
Similar to the Arrhenius law for chemical reactions, the energy barrier ∆ deter-
mines the metastable time scale of the N -particle system. Indeed, the seminal
work [3] connects the free energy Fκ with the large deviation rate function for the
N weakly interacting diffusions in (1) as N → ∞.

A mountain-pass theorem in P(Td
L) equipped with the Wasserstein metric comes

with two difficulties: Firstly, P(Td
L) is only a metric space for which the the-

ory of mountain-pass theorems is not fully developed. Secondly, the free energy
functional (3) is just lower semicontinuous in the weak topology for probability
measures.



578 Oberwolfach Report 10/2021

These difficulties are overcome in [5] by using the notion of the weak metric
slope |dFκ| introduced in [7]. The notion is applicable to lower semicontinuous
functionals on P(Td

L) as long as they are λ-convex by working with the extension of
the functional to its epigraph based on ideas in [4]. In fact for λ-convex functionals,
the metric slope |∂Fκ| can be identified with the weak one |dFκ|.
Theorem [5]. If Fκc

has two distinct minimizers ̺∞ ≡ 1/Ld and ̺κc
∈ P(Td

L),
then there exists ̺∗ ∈ P(Td

L) distinct from ̺∞ and ̺κc
such that |∂Fκc

|(̺∗) = 0.
Moreover, the energy barrier satisfies

∆ = Fκc
(̺∗)−Fκc

(̺∞) = inf
γ∈Γ

max
t∈[0,T ]

Fκ(γ(t))−Fκc
(µ) > 0 ,

where Γ = {C([0, T ];P(Td
L)) : γ(0) = ̺∞, γ(T ) = ̺κc

}.
Thanks to the result in [3], this identifies the metastable time scale of the N
interacting diffusions as e−N∆ for N → ∞.

The numerical approximation of the above found critical points asks for a
structure-preserving numerical scheme for the gradient flow (2) to capture equilib-
ria and saddle points with high accuracy. In [9], a finite volume scheme is defined
on a family of Voronoi tesselations T h with supK diamK ≤ h by the discrete
continuity equation

(4) |K|ρ
n+1
K − ρnK

δt
+

∑

L∼K

|K |L|
dKL

fn+1
KL = 0

together with normal interface flux fn+1
KL following the Scharfetter–Gummel inter-

polation

(5) fn+1
KL = θσ

(
ρn+1
K , ρn+1

L , qn+1
KL

)
= qn+1

KL

ρn+1
K e

q
n+1
KL
2σ − ρn+1

L e−
q
n+1
KL
2σ

e
q
n+1
KL
2σ − e−

q
n+1
KL
2σ

and discrete potential gradient

(6) qn+1
KL =

∑

J∈T

|J | ρ
n+1
J + ρnJ

2

(
W (xK − xJ)−W (xL − xJ )

)
.

Let us note, that θσ(a, b, v) → a(v+)
2 + b(v−)

2 for σ → 0, which is exactly the
upwind interpolation. The following statement hightlights the structure-preserving
properties of the scheme and its convergence as δt, h→ 0.

Theorem [9]. Assume that h|∂K| ≤ Ciso|K| for all K ∈ T h, then ∃!{ρn}n∈N

solution of the scheme (4)–(6) and it holds

• Discrete free energy dissipation principle

Fh(ρn+1)−Fh(ρn)

δt
+ σ

H(ρn | ρn+1)

δt
= −Dh(ρn+1);

• Characterization of stationary states of scheme as critical point of Fh and
vanishing dissipation Dh = 0;
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• Longtime behavior of scheme to discrete stationary states;
• convergence of scheme as δt, h→ 0 to solutions of (2).

The scheme’s numerical implementation can resolve the dynamic in the presence
of a discontinuous phase transition and seems to be promising to approximate the
saddle point by a suitable string method. Finally, we expect that the flux interpo-
lation (5) can be brought into a generalized (non-symmetric, non-homogeneous)
gradient structure following ideas developed in the works [1, 6, 8].
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Optimal Transport “Distances” in Quantum Mechanics

François Golse

(joint work with E. Caglioti, C. Mouhot, T. Paul)

Quantum mechanics is known to be well approximated by classical mechanics
for particles with typical action ≫ ~ (Planck’s constant). This approximation
involves high frequencies in the wave functions, and is formulated in terms of weak
convergence. Wasserstein distances, on the other hand, are known to metrize the
weak convergence of probability measures. Can one extend Wasserstein distances
to compare quantum and classical densities (which are very different objects)?

The analogue of the set P(Rd×Rd) of Borel probability measures on Rd×Rd

is D(H) := {T ∈ L(H) s.t. T = T ∗ ≥ 0 and tr(T ) = 1}, denoting H = L2(Rd).
Let P2(R

d ×Rd) be the set of Borel probability measures on Rd ×Rd with finite
second moments, and D2(H) := {T ∈ D(H) s.t. tr(T 1/2(|x|2 − ∆x)T

1/2) < ∞},
which is its quantum analogue. We seek to extend the Wasserstein distance W2

with exponent 2 to D := P2(R
d ×Rd) ∪ D2(H).
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For µ, ν ∈ P(Rd×Rd), denote by C(µ, ν) the set of couplings (transport plans)
between µ and ν. Similarly, for R,S ∈ D(H), the set of couplings of R and S is
C(R,S) := {T ∈D(H⊗H) s.t. tr(T (A⊗ I+I ⊗B))=tr(RA+SB), A,B ∈ L(H)}.
Likewise, a coupling of a probability density f on R2d and of R ∈ D(H) is an
operator-valued map Q : R2d ∋ (x, ξ) 7→ Q(x, ξ) ∈ L(H) such that

Q(x, ξ) = Q(x, ξ)∗ ≥ 0 , trH(Q(x, ξ)) = f(x, ξ) a.e. and

∫

R2d

Q(x, ξ)dxdξ = R.

The set of couplings of f and R is denoted C(f,R).
Next we define the classical-to-quantum transport cost as the differential oper-

ator c~(x, ξ) in the variable y parametrized by (x, ξ)

c~(x, ξ) := |x− y|2 + |ξ + i~∇y|2 ≥ d~IH .

Likewise, we define the quantum-to-quantum transport cost as the differential
operator C~ in the variable x, y

C~ := |x− y|2 − ~2|∇x −∇y|2 ≥ 2d~IH⊗H .

(The lower bounds on the self-adjoint operators c~(x, ξ) and C~ are consequences
of the Heisenberg uncertainty inequality.)

With these notions we define an extension d of the Wasserstein distance W2

to D × D as follows: for µ, ν ∈ P2(R
d × Rd), set d(µ, ν) = W2(µ, ν). For all

R,S ∈ D2(H), set

d(R,S) = inf
T∈C(R,S)

trH⊗H(T
1/2CT 1/2)1/2 ≥

√
2d~ ,

and, for each probability density f on R2d with finite second moments, set

d(f,R) = inf
Q∈C(f,R)

(∫

R2d

trH(Q(x, ξ)1/2c~(x, ξ)Q(x, ξ)1/2)dxdξ

)1/2

≥
√
d~ .

(In particular d(R,R) > 0, so that d is not a bona fide metric on D.)
Next we explain how to compute or estimate d(R,S) or d(f,R) for some exam-

ples of density probabilities f on R2d, or of quantum densities R,S ∈ D(H). First
we recall the notion of Gaussian coherent state denoted

|q, p〉(x) := (π~)−d/4 exp(−|x− q|2/2~) exp(ip · x/~)

For µ ∈ P(R2d), the Töplitz transform of µ is the operator

T [µ] :=

∫

R2d

|q, p〉〈q, p|µ(dqdp)

(with Dirac’s notation |ψ〉〈ψ| designating the orthogonal projection on Cψ). For
R ∈ D(H), the Husimi transform of R is the probability density

H[R](q, p) := 1
(2π)d

〈q, p|R|q, p〉 = 1
(2π)d

tr(R|q, p〉〈q, p|) .



Applications of Optimal Transportation in the Natural Sciences 581

Theorem 1. [7, 8] For f probability density on R2d with finite second moments
and µ, ν ∈ P2(R

d ×Rd), one has

d(T [µ], T [ν])2 ≤ W2(µ, ν)
2 + 2d~ , d(T [µ], T [µ])2 = 2d~ ,

d(f, T [ν])2 ≤ W2(f, ν)
2 + d~ , d(f, T [f ])2 = d~ .

For R,S ∈ D2(H)

W2(H[R],H[S])2 ≤ d(R,S)2 + 2d~ ,

W2(f,H[R])2 ≤ d(f,R)2 + d~ .

Moreover, if rank(R) = 1, then

d(f,R) =

(∫

R2d

trH(R
1/2c~(x, ξ)R

1/2)f(x, ξ)dxdξ

)1/2

,

d(R,S) = trH⊗H((R ⊗ S)1/2C(R ⊗ S)1/2)1/2 .

It may happen that the first inequality in Theorem 1 is an equality: this is the
case for instance if µ and ν are Dirac measures (see [9]). Another example, for
d = 1 and 0 < a < b, is the case where

µ = 1
2 (δ(+a,0) + δ(−a,0)) , ν = 1

2 (δ(+b,0) + δ(−b,0)) ,

so that d(T [µ], T [ν])2 = W2(µ, ν)
2 + 2d~ .

The first inequality in Theorem 1 is an equality if and only if an optimal coupling
of T [µ] and T [ν] is T [Π], where Π is an optimal coupling of µ and ν. However, it
may happen that the first inequality in Theorem 1 is strict: for instance, setting

ρ = 1+ǫ
2 δ(+a,0) +

1−ǫ
2 δ(−a,0) implies that d(T [µ], T [ρ])2 <W2(µ, ρ)

2 + 2d~

for 0 < ǫ≪ 1. In this case, denoting |k, l〉 := |ka, 0〉⊗|la, 0〉, one finds that optimal
couplings of T [µ] and T [ρ] are of the form

T =
∑

k,l∈{±}

τklkl|k, l〉〈k, l|+
∑

k,l,m,n∈{±}
(k,l)6=(m,n)

τklmn|k, l〉〈m,n| =: T1 + T2

where T1 is a Töplitz coupling of T [µ] and T [ρ], while T2 is a purely quantum
correction which has no classical interpretation. See [2] for these examples.

Next we check whether d satisfies the triangle inequality.

Theorem 2. [10] For all ρ1, ρ2, ρ3 ∈ D, one has

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) +
√
d~ .

If ρ2 ∈ P2(R
d ×Rd), then

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) .

Theorem 2 allows defining d(µ,R) for all µ ∈ P2(R
d × Rd) and R ∈ D2(H)

by a density argument. With the material introduced above, one easily arrives
at the following picture: the set of phase space densities P2(R

d × Rd) with the
Wasserstein metric W2 is the classical (~ → 0+) limit in D of the set of quantum
density operators D2(H) equipped with the “pseudometric” d.
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Theorem 3. [11] Let R~, S~ ∈ D2(H) and µ, ν ∈ P2(R
d ×Rd); then

d(µ,R~) + d(ν, S~) → 0 =⇒ d(R~, S~) → W2(µ, ν) as ~ → 0+ .

Finally, we discuss some applications of the “pseudometric” d. The first one is
the simultaneous mean-field and classical limit for N -particle quantum dynamics.
Consider the N -particle quantum Hamiltonian

HN =

N∑

k=1

− 1
2~

2∆xk
+

1

N

∑

1≤k<l≤N

V (xk − xl) on H⊗N

and let f ∈ C(R+; (P2(R
d
x ×Rd

ξ),W2)) be a weak solution of the Vlasov equation

(∂t + ξ · ∇x)f = ∇x(V ⋆x,ξ f) · ∇ξf , f
∣∣∣
t=0

= f in .

Theorem 4 [7]. Let V ∈ C1,1(Rd) be even, and set L := 2+max(4Lip(∇V )2, 1).
Then, for all t ≥ 0, one has

d(f(t)⊗N , e−itHN/~T [(f in)⊗N ]e+itHN/~)2

N
≤ d~eLt +

4‖∇V ‖L∞

N − 1

eLt − 1

L
.

Other applications include the convergence of time splitting schemes for quan-
tum dynamics [6], the controllability of quantum dynamics [11]. . .

There have been other attempts at generalizing Wasserstein distances to the
quantum setting: [4], §7.7 of [1] and [3, 5].
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Université Paris Dauphine
Place du Marechal de Lattre de Tassigny
75775 Paris Cedex 16
FRANCE

Prof. Dr. Guillaume Carlier

CEREMADE
Université Paris Dauphine
Place du Marechal de Lattre de Tassigny
75775 Paris Cedex 16
FRANCE

Dr. Maria Colombo

Mathematics institute
EPFL Lausanne
Station 8
Lausanne 1015
SWITZERLAND



584 Oberwolfach Report 10/2021

Dr. Codina Cotar

Department of Mathematics
University College London
Gower Street
London WC1E 6BT
UNITED KINGDOM

Prof. Dr. Pierre Degond

Department of Mathematics
Imperial College London
Huxley Building
London SW7 2AZ
UNITED KINGDOM

Prof. Dr. Simone Di Marino

Università di Genova
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Laboratoire Mathématiques de Besancon
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Dept. de Mathématiques et Applications
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