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Konstantina Trivisa, College Park

28 February – 6 March 2021

Abstract. This workshop brought together leading experts, as well as the
most promising young researchers, working on nonlinear hyperbolic balance
laws. The meeting focused on addressing new cutting-edge research in mod-
eling, analysis, and numerics. Particular topics included ill-/well-posedness,
randomness and multiscale modeling, flows in a moving domain, free bound-
ary problems, games and control.

Mathematics Subject Classification (2010): 35L65, 35L40, 35L60, 35R60, 65M08, 60H15.

Introduction by the Organizers

What are suitable admissibility criteria for a physically reasonable solution of mul-
tidimensional hyperbolic balance laws and the Euler system in particular? How
this question affects complex models for multiphase flows, random systems or
structure-preserving numerical schemes? Can we use hyperbolic balance laws to
predict the evolution of a pandemic? These and many other challenging questions
were discussed during the hybrid workshop Hyperbolic Balance Laws: modeling,
analysis, and numerics that was organized by Rémi Abgrall (Zürich), Mauro Gar-
avello (Milano), Mária Lukáčová (Mainz) and Konstantina Trivisa (College Park).

Due to the pandemic restrictions only a limited number of participants could
attend the workshop at the institute. Altogether 54 participants attended, 45
of them virtually. The participants were from Europe, USA, Saudi Arabia and
China. Due to time differences and in order to allow the participants to listen
to all talks, the talks were recorded. This procedure was positively acknowledged
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by the participants. Excellent video conference equipment at the MFO as well as
the support of the IT staff in addition to the video conference assistants make the
workshop realization very efficient and less affected by its hybrid form.

The program consisted of 23 lectures, supplemented by 6 shorter contributions
by young scientists. It covered diverse areas of nonlinear hyperbolic equations:
the Euler and shallow water equations, ill-posedness and turbulence, collective dy-
namics, stochastic hyperbolic problems and uncertainty quantification, structure-
preserving numerical methods, active flux finite volume and residual distribution
methods, multiphase, multiscale and plasticity problems. This report contains
extended abstracts of all speakers illustrating variety of themes and exciting new
developments in analysis and numerics. Stimulating discussions during the coffee
breaks led to new collaborations.

The organizers wish to thank the MFO staff for comfortable, creative atmo-
sphere and opportunity to realize hybrid workshop in this difficult time for collab-
orative research.
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DeC and ADER: arbitrarily high order methods for hyperbolic PDEs (and
ODEs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

Maria Teresa Chiri (joint with Alberto Bressan, Wen Shen)
A posteriori Error Estimates for Numerical Solutions to Hyperbolic
Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616



592 Oberwolfach Report 11/2021

Jan Giesselmann (joint with Sam G. Krupa)
A posteriori error analysis of finite volume approximations to scalar
conservation laws using only one entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 619

Gabriella Puppo (joint with Isabella Cravero, Matteo Semplice, Giuseppe
Visconti)
Measuring distorsive effects of finite volume schemes for
conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Franziska Weber (joint with Ricardo H. Nochetto, Konstantina Trivisa)
On the Dynamics of Ferrofluids: Weak Solutions and Relaxation Limit
for the Rosensweig Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Alexander Kurganov (joint with Alina Chertock, Shaoshuai Chu, Wai Sun
Don, Naveen Kumar Garg, Yongle Liu, Bao-Shan Wang)
Fifth-order A-WENO finite-difference schemes based on central-upwind
numerical fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Bruno Després
On using Neural Networks to discretize transport equations with Lipschitz
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

Michael Herty (joint with S. Gerster and E. Iacomini)
On the generalized polynomial chaos expansion for hyperbolic systems . 628

Nils Henrik Risebro
Mathematical models of traffic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Pierre Degond (joint with Antoine Diez, Mingye Na)
Topological states in collective dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Michael Dumbser (joint with I. Peshkov, E. Romenski, W. Boscheri, M.
Ioriatti)
A structure-preserving staggered semi-implicit scheme for
continuum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Elio Marconi
Rectifiability of entropy defect measures for Burgers equation and
applications to a variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Mario Ricchiuto
Well balancedness and error balance: observations and ideas related to
the approximation of (hyperbolic) balance laws . . . . . . . . . . . . . . . . . . . . . . 639

Dmitri Kuzmin (joint with Manuel Quezada de Luna and Hennes Hajduk)
Convex limiting and entropy fixes for finite element discretizations of
hyperbolic conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

Jiequan Li (joint with Matania Ben-Artzi)
Consistency and Convergence of Finite Volume Methods for Hyperbolic
Balance Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644



Hyperbolic Balance Laws 593

Athanasios E. Tzavaras (joint with Konstantinos Koumatos, Corrado
Lattanzio, Stefano Spirito)
Existence and uniqueness in viscoelasticity of Kelvin-Voigt type with
nonconvex stored energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

Stefano Bianchini (joint with Sara Daneri)
On the sticky particle solutions to the multi-dimensional pressureless
Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

Christiane Helzel (joint with Erik Chudzik, David Kerkmann)
The Active Flux Method for Hyperbolic Problems: A review of the method
and recent results of our group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Christian Rohde
Hyperbolic Transport across Fluidic Interfaces . . . . . . . . . . . . . . . . . . . . . . . 654





Hyperbolic Balance Laws 595

Abstracts

Well Posedness and Control in Models Based on Conservation Laws

Rinaldo M. Colombo

(joint work with M. Garavello, F. Marcellini, V. Perrollaz and E. Rossi)

Conservation/Balance Laws are at the heart of a variety of models ranging, for in-
stance, from fluid dynamics (that provided their original motivation), to vehicular
traffic, to crowd dynamics and to a multitude of biological situations. The result-
ing fruitful interplay between general well posedness results and models’ specific
requests has been driving research in this area since several years. More recently,
also control theory started developing along these two lines.

Below, we briefly present recent results, quite different in nature, but all rooted
in questions concerning well posedness and control problems centered in conserva-
tion/balance laws.

Backward Integration. Consider the Cauchy Problem for a scalar convex flow:

(1)

{
∂tu+ ∂xf(u) = 0
u(0, x) = uo(x) .

Fix a positive time T and a function w ∈ L∞(R;R). Define the set IT (w) of initial
data uo whose corresponding solution to (1) attains the profile w at time T , i.e.,

(2) IT (w) = {uo ∈ L∞(R;R) : u solves (1) and u(T ) = w} .

The results in [5] provide a characterization of those w such that IT (w) is not
empty, characterize the elements of IT (w) in terms of integral inequalities and
prove geometrical/topological properties of IT (w). Instrumental in the proofs is
the relation between (1) and the Hamilton–Jacobi Cauchy Problem (see also [8]),
while the key tools are Dafermos theory of characteristics [7], Oleinik estimate [12]
and Lax Formula [10]. Refer, for instance, to [1] for applications of these results.

Biological Pest Control. Some sort of “pests” infest a given cultivated region.
A technique to reduce the damages caused by these pests relies on the careful
introduction of specific predators feeding on them. We are thus lead to consider the
following system where predators (u) feed on prey (w) and the former are inserted
in the environment through a time and space dependent control q = q(t, x):

(3)

{
∂tu+ div(v(t, x, w)u) = f(t, x, w)u+ q(t, x)
∂tw − µ∆w = g(t, x, u, w)w

The vector v describes the hunting strategy of the predators and typically is a non
local function of the prey distribution w. f and g describe the effects of predation,
mortality, natality, etc. The movement of prey is essentially diffusive. As stated
in [6], one can prove the well posedness of the Cauchy Problem for (3) and the
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stability of solutions w.r.t. the control q, under assumptions that comprise, for
instance, the following speed v and with f and g as in the Lotka-Volterra system:

(4) v(t, x, w) = κ(t, x)
∇(w ∗ η)(x)√

1 + ‖∇(w ∗ η)(x)‖2
f(t, x, w) =αw − β

g(t, x, u, w) = γ w − δ uw .

Numerical integrations show that different choices of q, while keeping the contribu-

tion
∫
R2

∫ T

0
q(t, x) dx dt fixed, provoke significant differences in pests’ proliferation.

Vaccination Strategies. Since the famous paper [9], see also [11, 13], SIR type
models have provided a standard framework to model the propagation of various
diseases. Within this framework, vaccinations can be introduced and different
vaccination strategies can be compared and tested. An attempt in this direction
is described in [2], which presents the age structured SIR model

(5)




∂tS + ∂aS = − dS(t, a)S −

∫ +∞

0 λ(a, a′) I(t, a′) da′ S

∂tI + ∂aI = − dI(t, a) I +
∫ +∞

0 λ(a, a′) I(t, a′) da′ S − r(t, a) I
∂tR + ∂aR = − dR(t, a)R + r(t, a) I .

Here, dS , dI , dR are the mortalities, λ describes infection propagation and r is the
recovery rate. A vaccination campaign where at times t1, t2, . . . , tN individual of
all ages are dosed and immediately immunized introduces in (4) the conditions

(6)




S(t̄j+, a)= (1− ν(t)) S(t̄j−, a)
I(t̄j+, a)= I(t̄j−, a)
R(t̄j+, a)=R(t̄j−, a) + ν(t)S(t̄j−, a)

j = 1, . . . , N .

We refer to [2] for further models and for sample numerical integrations.
In the case of the Covid-19 pandemic, the above model needs to be modified.

The introduction of quarantine is accomplished in [3], while a model considering
where an age dependent time between the first dose and immunization is in [4].
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Obstacle problem, Euler system and turbulence

Eduard Feireisl

(joint work with Martina Hofmanová)

Our aim is to clarify the commonly used statement in the physics literature: “The
effect of the boundary in the turbulence regime can be modeled in a statistically
equivalent way by fluid equations driven by stochastic forcing”, see e.g. Yakhot
and Orszag [2]. We consider the problem of the compressible Navier–Stokes flow
around a convex obstacle:

∂tρ+∇ · (ρ~u) = 0

∂t(ρ~u) +∇ · (ρ~u⊗ ~u) +∇p(ρ) = ∇ · S(∇~u)

p(ρ) ≈ aργ , γ > 1, S = µ

(
∇~u+∇t~u− 2

d
∇ · ~uI

)
+ λ∇ · ~uI, µ > 0, λ ≥ 0

in (0, T )×Q, where Q = Rd \B, d = 2, 3, B compact, convex, with the following
boundary and far field conditions

~u|∂Q = 0, ρ → ρ∞, ~u → ~u∞ as |x| → ∞.

We consider the high Reynolds number limit,

ǫn ց 0, µn = ǫnµ, µ > 0, λn = ǫnλ, λ ≥ 0.

Introducing the (relative) energy

E
(
ρ, ~u

∣∣∣ρ∞, ~u∞

)
=

1

2
ρ|~u− ~u∞|2 + P (ρ)− P ′(ρ∞)(ρ− ρ∞)− P (ρ∞),

P ′(ρ)ρ− P (ρ) = p(ρ),

we have a statistical sample of solutions satisfying

1

N

N∑

n=1

[
sup

0≤τ≤T

∫

Q

E
(
ρn, ~mn

∣∣∣ρ∞, ~u∞

)
(τ, ·)dx + ǫn

∫ T

0

∫

Q

S(∇~un) : ∇~un dx dt

]
≤ E ,

~mn = ρn~un,

uniformly for N → ∞.
The limit is shown to be a statistical dissipative solution of the compressible

Euler system,

∂tρ+∇ · ~m = 0

∂t ~m+∇ ·
(
~m⊗ ~m

ρ

)
+∇p(ρ) = −∇ ·R,
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where

R ∈ L∞
weak−(∗)(0, T ;M+(Q;Rd×d

sym )).

On the other hand, we introduce the Euler system driven by stochastic forcing,

dρ+∇ · ~m dt = 0, d~m+∇ ·
(
~m⊗ ~m

ρ

)
dt+∇p(ρ)dt = FdW,

where

W = (Wk)k≥1 is cylindrical Wiener process

F = (Fk)k≥1 − are diffusion coefficients.

We introduce the following concept of statistical equivalence:

(ρ, ~m) statistically equivalent to (ρ̃, ~̃m)

iff

•
E

[∫

D

ρ

]
= E

[∫

D

ρ̃

]
, E

[∫

D

~m

]
= E

[∫

D

~̃m

]

•

E

[∫

D

|~m|2
ρ

]
= E

[∫

D

| ~̃m|2
ρ̃

]
, E

[∫

D

p(ρ)

]
= E

[∫

D

p(ρ̃)

]

•
E

[∫

D

1

ρ
(Jx0

· ~m) · ~m
]
= E

[∫

D

1

ρ
(Jx0

· ~̃m) · ~̃m
]

D ⊂ (0, T )×Q, x0 ∈ Rd, Jx0
(x) ≡ |x− x0|2I− (x− x0)⊗ (x− x0)

Conclusion, see [1]:
If the statistical limit is equivalent to a solution of the stochastic Euler system
then:

• Noise inactive
R = 0, (ρ, ~m) is a statistical solution to a deterministic Euler system

• S-convergence (up to a subsequence) to the limit system

1

N

N∑

n=1

b(ρn, ~mn) → E[b(ρ, ~m)] strongly in L1
loc((0, T )×Q)

for any b ∈ Cc(R
d+1), ϕ ∈ C∞

c ((0, T )×Q)
• Conditional statistical convergence

barycenter (ρ, ~m) ≡ E[(ρ, ~m)] solves the Euler system

⇒
1

N
#

{
n ≤ N

∣∣∣‖ρn − ρ‖Lγ(K) + ‖~mn − ~m‖
L

2γ
γ+1 (K;Rd)

> ǫ

}
→ 0 as N → ∞

for any ǫ > 0, and any compact K ⊂ [0, T ]×Q
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Magnetohydrodynamic Turbulence: weak solutions and
conserved quantities

László Székelyhidi Jr.

(joint work with Daniel Faraco and Sauli Lindberg)

In this talk we present recent work on the construction of weak solutions to the
ideal MHD system in three space dimensions, which consists of the incompressible
Euler equations coupled to the Maxwell system via Ohm’s law. This system has
a wealth of interesting structure, including three conserved quantities: the total
energy, cross-helicity and magnetic helicity. Whilst the former two are analogous
(and analytically comparable) to the total kinetic energy for the Euler system,
magnetic helicity is known to be more robust and of a different nature. In particu-
lar, when studying weak solutions, Onsager-type conditions for all three quantities
are known, and are basically on the same level of 1/3-differentiability as the kinetic
energy in the ideal hydrodynamic case for the former two. In contrast, magnetic
helicity does not require any differentiability, only L3 integrability. From the phys-
ical point of view this difference lies at the heart of the Taylor-Woltjer relaxation
theory. From the mathematical point of view it turns out to be closely related
to the div-curl structure of the Maxwell system. In the talk we present and com-
pare two recent constructions of weak solutions: one with solutions in the energy
space L2 which is supercritical with respect to magnetic helicity [1] and one with
bounded solutions, i.e. subcritical with respect to magnetic helicity [2]. Along the
way we highlight some of the hidden structures in the ideal MHD system.
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Hydrodynamics of Multi-Species

Eitan Tadmor

We study the hydrodynamics of multi-species driven by environmental averaging.
What distinguishes one species from another is the way they interact with the
environment: let φαβ ≥ 0 be the communication kernel between species α and β,
then the is captured by the hydrodynamic description1,

(1)





∂tρα +∇ · (uαρα) = 0;

∂t(ραuα) +∇ · (ραuα ⊗ uα + Pα) =
∑

β∈I

∫
φαβ(|x− y|)

(
uβ(y) − uα(x)

)
ρα(x)ρβ(y)dy.

Each of the different species is identified by a pair of density/velocity (ρα,uα),
subject to initial condition (ρα,uα)

∣∣
t=0

= (ρα0,uα0) ∈ L1
+(R

d)×W 1,∞(Rd), ∀α ∈
I. We report here on our results [1] for the mono-kinetic closure Pα ≡ 0; the
extension for general pressure laws, assuming uniformly bounded velocity fields
follows along the lines of [2].

There are two extreme cases: when φαβ ≡ φ the crowd consists of a single
species; when φαβ = φδαβ , the crowd of (1) splits into independent species driven
by the same communication kernel. We study all the intermediate cases which
involve a genuine multi-species dynamics, driven by symmetric communication
array of radial decreasing kernels, Φ = {φαβ},
(2) φαβ = φβα ≥ 0, φαβ are radial and decreasing.

0.1. Smooth solutions must flock. Let Φ(r) := {φαβ(r)}α,β∈I denote the array
of communication kernels associated with (1). The main feature here is that
flocking of multi-species dynamics does not require direct, global communication
among all species — we allow φαβ(r) to vanish, indicating lack of communication
between some species α and β. Instead, what matters is a minimal requirement
that the communication among species forms a connected network in the sense that
there is a connecting path which propagates the information of alignment between
every pair of species. To this end, we introduce the weighted graph Laplacian
associated with Φ(r),

(3) (∆MΦ(r))αβ :=





−φαβ(r)
√

MαMβ , α 6= β;

∑

γ 6=α

φαγ(r)Mγ , α = β,

where the weights, M := {Mα}α∈I , consist of the masses of the different species

which are constant in time, Mα :=

∫
ρα0(x)dx ≡

∫
ρα(t,x)dx > 0. The com-

munication array Φ(r) forms a connected graph as long as its second eigenvalue

1Unless otherwise stated, all integrals are taken over Rd.
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λ2

(
∆MΦ(r)

)
> 0. Our main result shows that inter-species connectivity implies

the flocking behavior of the whole crowd.

Theorem 1 (Strong solutions must flock).
Let (ρα(t, ·),uα(t, ·)) ∈ (L∞ ∩ L1

+(R
d)) × W 1,∞(Rd), α ∈ I be a strong solu-

tion of the multi-species dynamics (1), with zero pressure Pα ≡ 0 and subject to
compactly supported initial conditions (ρα0,uα0) with finite velocity fluctuations
δV 0 := max

α,β∈I
sup

x,y∈S0

|uα0(x) − uβ0(y)| < ∞, S0 := ∪αsupp{ρα0(·)}. Assume

that the communication array Φ(r) = {φαβ(r)}α,β∈I satisfies a Pareto-type ‘fat-
tail’ connectivity condition

λ2(∆MΦ(r)) &
1

(1 + r)θ
, θ < 1.(4)

Then the support, S(t) := ∪αsupp{ρα(t, ·)}, remains within a finite diameter
D∞ < ∞ (depending on 1 − θ,M, δV 0), and the different species flock towards
a limiting velocity u∞,

(5)
∑

α∈I

∫
|uα(t,x)− u∞|2ρα(t,x)dx ≤

∑

α∈I

∫
|uα0(x) − u∞|2ρα0(x)dx · e−2νt,

at exponential rate, ν =
ζ
M

(1 +D∞)θ
, dictated by the spatial scale D∞ and ζ

M
:=

1− maxα Mα∑
α Mα

> 0.

The proof of theorem in [1, Theorem 1.1] is achieved by showing the decay of
the energy fluctuations,

δE(t) =
∑

α,β∈I

∫∫
|uα(t,x)− uβ(t,y)|2ρα(t,x)ρβ(t,y)dxdy,

and the decay of uniform fluctuations,

δV (u(t)) = max
α,β∈I

sup
x,y∈S(t)

|uα(t,x) − uβ(t,y)|, S(t) = ∪αsupp{ρα(t, ·)},

imply that the whole crowd of different species remains within a uniformly bounded

finite diameter, D∞ ≤ D0 + Cθ · δV 0 < ∞ (with Cθ . (1 − θ)
θ

1−θ . It follows
that the fluctuations, δE(t), δV (t), decay at exponential rate and that all species

‘aggregate’ around an invariant limiting velocity u∞ :=
m0

M
.

Remark 1 (Why weighted Laplacian?). In case of equi-weighted species Mα ≡
1, the weighted Laplacian (3) amounts to the usual graph Laplacian ∆Φ(r).
Its Fiedler number, λ2(∆Φ(r)), quantifies the connectivity of the graph asso-
ciated with the adjacency matrix Φ(r). The advantage of using the weighted
λ2(∆MΦ(r)), however, is that it provides the right scaling for the decay rate
of multi-species dynamics (5), (i) independent of the condition number, κ :=
maxMα

minMα
, M =

∑

α∈I

Mα, and (ii) independent of the # of different species, |I|.
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Remark 2 (Game of alignment). The graph Laplacian of the communication
array Φ(r) is independent of the self-interacting kernels {φαα |α ∈ I}. Thus,
according to theorem 1, flocking can be viewed as the outcome of a ‘game’ in which
agents from one species interact with different species but are independent of the
interaction with their own kind. A main feature in our multi-species alignment
game (of two or more species) is that one can ignore interactions with its own
kind, i.e., set φαα = 0 in (1) and yet the information will eventually be reflected
through interactions with the other connected species leading to overall flocking.

Example 1. Consider the case of two species with 2×2 symmetric communication
array,

Φ =




0 φ12(r)

φ21(r) 0


 , φ12(r) = φ21(r) &

1

(1 + r)θ
, θ < 1.

In this case, agents in each of the two groups interact with the other group but not
with their own kind (φ11 = φ22 ≡ 0). The large-time behavior of such ‘game’ leads
to flocking.
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Operator splitting based central-upwind schemes for shallow water
equations with moving bottom topography

Alina Chertock

(joint work with A. Kurganov and T. Wu)

Shallow water models are widely used as a mathematical framework to study water
flows in rivers and coastal areas as well as to investigate a variety of phenomena in
atmospheric sciences and oceanography. One of the classical shallow water models
is the Saint-Venant (SV) system [5], which in the two-dimensional (2-D) case can
be written in the following form:

(1)





ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 +

g

2
h2
)
x
+ (huv)y = −ghBx,

(hv)t + (huv)x +
(
hv2 +

g

2
h2
)
y
= −ghBy.

Here, h(x, y, t) is the fluid depth above the bottom, u(x, y, t) and v(x, y, t) are the
x- and y-velocities, g is the constant gravitational acceleration. We consider the
case, which appears in many practical situations, when the bottom topography
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B = B(x, y, t) is time-dependent due to erosion, sediment transport, dam breaks,
floods and submarine landslides, and is modeled by ([7, 8]):

(2) Bt +A
[
u(u2 + v2)(m−1)/2

]
x
+A

[
v(u2 + v2)(m−1)/2

]
y
= 0,

where A is a constant, which accounts for the porosity of the sediment layer and
effects of sediment grain size and kinematic viscosity, and m ∈ [1, 4] is a constant.

The system (1), (2) is a system of hyperbolic balance laws, which admits non-
smooth solutions. Therefore, a numerical method for (1), (2) should be based on
a shock-capturing scheme. Moreover, a good numerical method should be well-
balanced, i.e., capable of accurately capturing both the steady states and their
small perturbations (quasi-steady flows). This property ensures that the scheme
suppresses the appearance of unphysical waves of magnitude proportional to the
grid size, which are normally present when computing quasi-steady states. An
additional difficulty difficulty in solving the coupled system (1), (2) numerically is
associated with the fact that the speed of water surface gravity waves are typically
much faster than the speed at which the changes in the bottom topography occur.
This imposes a severe stability restriction on the size of time steps, which, in turn,
leads to excessive numerical diffusion that affects the computed bottom structure;
see, e.g., [9, 10, 2, 1, 6].

We propose to overcome the latter difficulty by developing an operator splitting
method for the system (1), (2). To this end, we split the SV system (1) from
the Exner equation (2). The size of splitting time steps will be made inversely
proportional to the amplitude of a smaller eigenvalue of the Jacobians of the
extended system (1), (2). We will then follow the approach that was utilized
in the framework of the fast explicit operator splitting method [3, 4]: each SV
splitting substep will consist of several smaller time evolution steps. This way we
will ensure the stability of the SV substeps, while large Exner splitting substeps will
prevent excessive numerical dissipation, which may severely affect the resolution
of the bottom topography, especially in the case when B is discontinuous. Each
of the splitting substeps will be carried out using a second-order well- balanced
central-upwind (CU) scheme proposed in [11]. Since this scheme uses a continuous
piecewise linear (or bilinear) reconstruction of the bottom topography, the Exner
equation will be solved on a staggered grid so that the point values of B will be
evolved in time at every finite-volume cell interface, while the cell averages of h,
hu and hv will be evolved inside each cell.

A number of one- and two-dimensional numerical examples are presented to
demonstrate the performance of the proposed method.
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Different Reformulations & IMEX Strategies for
Asymptotic-Preserving IMEX-DG Methods: numerical stability and

computational complexity

Fengyan Li

(joint work with Y. Cheng, J. Jang, Z. Peng, J.-M. Qiu, T. Xiong)

We consider a linear kinetic transport equation under a diffusive scaling,

(1) ε∂tf + v∂xf =
σs(x)

ε
(〈f〉 − f)− εσa(x)f + εS(x),

where f = f(x, v, t) is the density distribution function of particles, depending
on position x ∈ Ωx ⊂ R, velocity v ∈ Ωv ⊂ [−vm, vm], and time t. The equation
models particles propagating in, and interacting with, a background medium, with
the operator on the left for free streaming, and the terms on the right for scattering,
absorption, and external source, respectively. And σs(x) > 0, σa(x) ≥ 0, 〈f〉 =∫
Ωv

fdµ. As the Knudsen number ε goes to 0, the model (1) becomes a diffusive
type of equation,

(2) ∂tρ = 〈v2〉∂x(∂xρ/σs)− σaρ+ S, with ρ = 〈f〉,
at least away from the boundary of the spacetime domain. Though being simple,
this 1D linear kinetic transport equation can serve as a prototype model to study
many physical systems, including neutron transport and radiation transfer.

Our interest is to design and analyze accurate and efficient numerical methods
that work well for the model (1) when ε ranges from O(1) to 0. We focus on AP
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methods [5] that, as ε → 0, give consistent and stable numerical methods for the
limiting equation (2). Moreover, we hope to design AP methods that have provable
uniform stability in ε, a property deemed important for the (potential) uniform
convergence and accuracy, as well as for rigorous analysis of the AP property.
Such effort will be pursued within the framework of discontinuous Galerkin (DG)
methods, due to their flexibility in accuracy, adaptivity, parallel efficiency, as well
as their applicability for various types of PDEs. Unlike the exploration in [8, 2]
for the standard upwind DG method and its AP property for stationary linear
kinetic transport models, we here follow a different route, that leads to different
opportunities to achieve AP methods with uniform stability, and call for different
linear solvers with different computational complexities for implementation.

Three AP methods are presented here, which were developed, analyzed and
numerically tested in [3, 4, 9, 10, 11]. The three ingredients common in these
methods are the following: (i) reformulation(s) of the model (1); (ii) globally stiffly
accurate implicit-explicit (IMEX) Runge-Kutta (RK) methods in time [1]; (iii) DG
methods in space. The differences lie in the reformulation, the IMEX strategy (i.e.
which terms are treated implicitly/explicitly), and subsequently, the type of DG
discretizations and the choice of numerical fluxes. The model reformulation is
inspired by the micro-macro decomposition [7, 6], with one method also using the
idea of adding & subtracting a weighted diffusive term [1]; the IMEX strategies
ensure the numerical solutions, regardless from inner stages or after a full RK
step, stay close to the local equilibrium in the diffusive regime, while dealing with
the stiffness and rendering computational complexities reasonable with respect to
the kind of numerical stability attained; DG methods contribute to high order
accuracy in space for different regimes.

For each AP method, stabilization mechanisms are identified due to the scat-
tering operator, the temporal & spatial discretizations, and uniform stability is
proved with a judicially chosen discrete energy when the temporal accuracy is first
order. It is no surprise that the discrete energy is scale dependent. All methods
require hyperbolic-type time step condition, ∆t = O(∆x), in the kinetic regime
(ε = O(1)), with two being unconditionally stable in the diffusive regime (ε ≪ 1).
Once energy-based uniform stability is available, error estimates follow naturally
by using approximation theory and regularity of the solution. For the methods of
second and third order accurate in time, similar uniform stability is confirmed by
Fourier analysis, and it is yet to be proved following energy approaches. Other
theoretical advancement includes mathematical understanding of the weight func-
tion and rigorous analysis for AP property. Special treatment is proposed to keep
the AP property and the designed accuracy for non well-prepared initial data.
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On the modeling of non-mixing, compressible two-phase flow

Marco Petrella

(joint work with R. Abgrall, S. Mishra)

Compressible multiphase flow occur in many practical situations where two phases
are separated by an interface. The modeling of such phenomena involve a strong
coupling between physics and fluid-thermodynamics, making its accurate simula-
tion a challenging task for applied scientists. Even under the stringent simplifica-
tion of neglecting mass-transfer and heat conduction, no unique model is generally
accepted for the description of two compressible constituents. Stemming from the
seminal work of Stewart and Wendroff [7], many models have been proposed over
the years; a very incomplete list include [2, 5, 3, 6]. Probably the most known to
the community is the one put forward by Baer and Nunziato (BN) [2] for the de-
scription of the deflagration-to-detonation transition, for a mixture of a solid and
a gas. Following the guideline of physical principles fulfillment, Saurel and Ab-
grall proposed a new non-equilibrium model [6], which constitutes a generalization
of the classical BN model to general species. Such extension consists in the in-
troduction of stiff source terms to enforce thermodynamical interactions between
the various components. Indeed, this removes spurious mechanical phenomena
and enforce the Abgrall criterion: ”phases under uniform mechanical conditions
(unique velocity and unique pressure) should evolve preserving such conditions”.
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The newly introduced source terms force the non-equilibrium mixture to converge
to a single velocity and single pressure, as it was noticed during experiments [3].
Such mechanical interaction is typically referred as a relaxation term, and deter-
mines the rate at which velocities and pressures reach equilibrium.

Most of the known models to date can be reformulated into the following gen-
eralized Bear-Nunziato form: for each k ∈ {1, 2},
∂tαk + uI∂xαk = µ(pk − pl)

∂t(αkρk) + ∂x(αkρkuk) = 0

∂t(αkρkuk) + ∂x

(
αk(ρku

2
k + pk)

)
= pI∂xαk − λ(uk − ul)

∂t(αkρkEk) + ∂x

(
αkuk(ρkEk + pk)

)
= pIuI∂xαk − µp

′

I(pk − pl)− λu
′

I(uk − ul)

The notation is classical, α, ρ, u, p denote the volume fraction, density, velocity
and pressure of phase k, respectively. The total energy E depends on the internal
energy via E = 1

2u
2 + e, where e = e(ρ, p) is a specific equation of state for each

phase k. The interfacial quantities uI , pI , u
′

I , p
′

I are the distinctive parameters that
lead to different models as the parameter λ, µ → ∞. Indeed, a major difficulty
in the field of two-phase flow modeling is to capture the lost information at the
microscopic scale, and to inject it in the expression of such interfacial quantities.

A novel approach to capture such lost information at the numerical level was
put forward in [1]. This strategy aims at computing the statistical averages of the
quantities of interest, by considering any possible topology of the flow. Inspired
by the ensemble averaging of [4], the scheme has been widely used for applica-
tions leading to incredible results. Unfortunately, we proved that the algorithm
is ill-posed: there exists infinitely many schemes reproducible following the same
algorithmic procedure. In particular, the underlying non-uniqueness is related to
the probabilities Pi+ 1

2
[Σk,Σl] of finding phase k and phase l on the two sides

of cell boundary i + 1
2 . We showed that such probability coefficients are indeed

convex, namely there exists two extreme points and a unique parameter r ∈ [0, 1]
spanning all the possible probabilities.

Interesting enough, specific choices of such parameter rn
i+ 1

2

lead to many well-

known models in the limit of stiff mechanical relaxation.
This motivated us to refine the scale of description as to capture the underlying

microstructure. By means of the Front-Tracking method and the Monte-Carlo
approach we perform the first ab-initio simulation of two-phase flow models. Nu-
merical experiments have been shown to define a convergent sequence under both
physical mesh refinement and dispersed particle size refinement.

As a consequence we obtained the following generalization: for a given initial
condition,

(1) If the macroscopic models do not depend of the choice of the parameter
rn
i+ 1

2

, then the ab-initio framework is capturing the same (unique) solution.

In particular, macroscopic models converge to the ab-initio framework
under physical mesh refinement.
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(2) If the macroscopic models show discrepancies depending on the choice of
rn
i+ 1

2

, then there are test cases for which the ab-initio framework is yielding

a solution outside of the capturing capabilities of the r-dependent models.

This suggests that the ab-initio framework constitutes a generalization of classical
two-phase flow models, and that the inclusion is proper.
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Application and experimental results of the stochastic Galerkin
method for cloud simulation

Bettina Wiebe

(joint work with Mária Lukáčová, Alina Chertock, Alexander Kurganov,
Peter Spichtinger)

Clouds are one of the most uncertain components in numerical weather prediction
models, since, unlike the atmospheric flows, they cannot be modeled using first
principles of physics. Our goal is to quantify the uncertainties arising in cloud
modeling and investigate the propagation of uncertainties, since clouds are one of
the most important components in the Earth-atmosphere system. They influence
the hydrological cycle and by interacting with radiation they control the energy
budget of the system.

We introduce a stochastic Galerkin method for a random coupled Navier-Stokes-
cloud system consisting of the weakly compressible Navier-Stokes equations and
cloud evolution equations for water vapor, cloud water and rain that models dy-
namics of warm clouds, see [3]. In this model the Navier-Stokes equations de-
scribe weakly compressible flows with viscous and heat conductivity effects, while
microscale cloud physics is modeled by a system of advection-diffusion-reaction
equations. Our goal is to explicitly describe the evolution of uncertainties that
arise due to unknown input data, such as model parameters and initial or bound-
ary conditions and investigate the influence on atmospheric flows. The developed



Hyperbolic Balance Laws 609

stochastic Galerkin method combines the space-time approximation obtained by
a suitable finite volume method with a spectral-type approximation based on the
generalized polynomial chaos expansion in the stochastic space, see [1].

In [1] we restricted our consideration to the case in which the uncertainties
are only in the cloud physics representation and the Navier-Stokes system is still
deterministic. Here, we present an approach to extend our proposed method to
the fully stochastic Navier-Stokes-cloud system and focus on the application of the
stochastic Galerkin method to the Navier-Stokes equations. The Galerkin projec-
tion will yield to a system for the generalized polynomial chaos (gPC) expansion
coefficients of each variable. The projection of the linear terms can be obtained in
a straightforward way by using the orthogonal property of the stochastic expansion
polynomials and for the nonlinear terms we additionally use discrete and inverse
discrete transforms. The then used method for the space and time discretization
of the deterministic system for the gPC coefficients is an extension of the approach
proposed in [2]. This method is based on the operator splitting approach, in which
the system is split into the macroscopic Navier-Stokes equations and microscopic
cloud model. The Navier-Stokes equations are then solved by an asymptotic pre-
serving implicit-explicit finite-volume method and the cloud equations are solved
by a finite-volume method combined with an explicit Runge-Kutta method with
an enlarged stability region. The resulting numerical scheme yields a second-order
accurate approximation in both space and time and spectral convergence in the
stochastic space with an experimentally determined exponential decay.

Figure 1. Cloud drops concentration qc and rain drops concen-
tration qr using 0% (left column) and 20% (right column) pertur-
bation of the initial data in qv.
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We compare the stochastic Galerkin method to a standard Monte Carlo ap-
proach and show that both methods converge experimentally against the same
solution, whereby the stochastic Galerkin method converges faster and exhibits
lower errors. We also use the proposed method to study the behavior of clouds in
certain perturbed scenarios, for example, the moist Rayleigh-Bénard convection
and show that already small perturbations can lead to qualitatively very different
results and even to changes in macroscopic patterns, see Figure 1.
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Space-times resonances and weakly dissipative hyperbolic systems

Roberta Bianchini

(joint work with Roberto Natalini)

We consider the framework of general hyperbolic multidimensional systems, to
which many physical models belong [5]. Their common feature is the loss of regu-
larity: solutions can develop shocks in finite time, no matter how much the initial
data are small [5]. Nevertheless, there are some specific classes of hyperbolic sys-
tems whose solutions stay smooth for all times, at least for small initial data. The
simplest physical mechanism preventing the formation of singularities is dissipa-
tion, one of the more relevant hyperbolic dissipative models with global smooth
solutions being the compressible Euler system with damping. In [4, 10, 8], a rigor-
ous framework was proposed to characterize a general class of partially dissipative
hyperbolic systems whose smooth solutions are global in time. The simplest pre-
liminary condition to intruduce is entropy dissipation [4]. However, it is very
easy to see that entropy dissipation alone is not enough to prevent singularities in
finite time. Hence, besides entropy dissipation, one requires the so-called Shizuta-
Kawashima condition, which has been originally introduced in [8]. This condition
can be stated in many different ways, see for instance [4]. In terms of stability, it
provides the necessary coupling between conserved/non conserved quantities of a
weakly dissipative system in such a way that each state variable is dissipated. En-
tropy dissipation together with [SK] is thus sufficient to ensure that the solutions
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stay smooth for all times [4, 10]. However, there are many physical systems, espe-
cially in multiD, which are entropy dissipative but violate [SK]. A nice example is
the model for gas dynamics in rotational and vibrational non-equilibrium,

(1)





∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇P (ρ, e) = 0,

∂t
(
ρ(12 |u|2 + e+ q)

)
+∇ ·

(
(12 |u|2 + e+ q + P (ρ, e))u

)
= 0,

∂t(ρq) +∇ · (ρqu) = 1
τ (ρ(Q(e)− q)) ,

where ρ, u, e, and q are respectively the density, the velocity, the internal energy
and the internal vibrational energy of the gas, see [9]. This system does not satisfy
[SK], see [4]. Nevertheless, Y. Zeng proved in [11] the global existence in 1D. There
are many other physically interesting dissipative systems which violate [SK], see
[2] for further examples. However, at the present time there is no general theory
which allows to weaken [SK] and enlarge the class of systems with global in time
smooth solutions for small data. We mention the attempt of [1], where a (linear)
analysis of systems for which [SK] fails in small sets (of zero measure) is carried
out. We want to investigate a more general setting, where some of the variables
are not dissipated at all and this holds in any point of the frequency space. The
strategy is to bypass the failure of the [SK] condition on the linearized part of
the system, by taking advantage of some special features of the nonlinear terms.
A first attempt to implement this approach in a very specific case is contained
in [6], where, for a simple class of one-dimensional hyperbolic systems, linear
degeneracy counterbalances the lack of dissipation in preventing shocks. Here we
try to make a step forward in this sense. We consider a partially dissipative
hyperbolic system violating [SK] in some directions, where the equations for the
non-dissipative variables have a (nonlinear) source term with a special structure,
i.e. a suitable generalization of linear degeneracy. That is, in the directions where
[SK] fails, we consider the nonresonant bilinear forms introduced in [7] in the
context of the space-time resonance method [3], as a natural generalization of
Klainerman’s null forms. The system reads





∂tu+ iΛv = Q1(u, v),

∂tv + iΛu+ v = Q2(u, v),

∂tw + iΛw = Bnonres(w,w) + vw,

where u, v, w : R+ × R3 → R are the unknowns, λ = Op(|ξ|), ξ ∈ R3, Qi are
quadratic terms and Bnonres is a quadratic nonresonant source. The result is a
global in time existence of smooth solutions for small data, in a properly weighted
functional space, which combines Green function estimates with the space-time
resonance method. Our system contains most of the main features of the proposed
framework, but it is a toy model. It shows that the cooperation of very weak
dissipation violating Shizuta-Kawashima with linearly degenerate nonlinearities is
successful for handling systems with quadratic terms for long times in a particular
case. As a special structure of the nonlinearity is a common feature of many
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physically relevant models violating [SK], our method should be applied to specific
cases as the out-of-equilibrium gas-dynamics.
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Extension of Entropy Correction Terms for Residual Distribution
Schemes: Application to Structure Preserving Discretization

Philipp Öffner

(joint work with Rémi Abgrall, Hendrik Ranocha)

Numerical schemes should been constructed to preserve the structural proper-
ties of the underlying physical model. In the context of hyperbolic conservation
laws (balance laws), one of such properties is that the solution fulfills an entropy
(in)equality. By translating this into the discrete framework, one speaks about
entropy conservative (dissipative) schemes meaning that also the numeri-
cal solutions fulfills such entropy (in)equality. Recently, a lot of attentions has
been given in the development of entropy conservative (dissipative) schemes in the
context of finite difference and discontinuous Galerkin schemes using summation-
by-parts operators, cf. [3] and references therein. However, a slightly different
approach was recently introduced by Abgrall [1]. The main idea is to add suitable
entropy correction terms to the scheme not violating the conservation relation but
to ensure the entropy condition. For the explanation of the correction approach,
we shortly repeat the idea in the context of residual distributions (RD) schemes.
Constructed in the FV framework, RD is nowadays interpreted in the FE con-
text. The selection of the subresiduals ΦK

σ and the approximation space specify
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Figure 1. SOD, 4th-ord. Galerkin with entropy correction r
and MOOD

the method and RD unifies several high-order methods like CG, DG and FR in a
common framework, cf. [1] for more details.

First, we focus on the steady-state equation div f(u) = 0 in Ω. In this context,

an entropy conservative scheme fulfills
∑
σ∈K

<vσ, Φ̃
K
σ >=

∮
∂K gnum

(
vh|K , vh|K−

)
n d γ,

where vσ denotes the approximation of the entropy variable and gnum the numer-
ical entropy flux. However, our selected residual ΦK

σ introduced an entropy error

E =
∮
∂K gnum

(
vh|K , vh|K−

)
· n d γ − ∑

σ∈K

< vσ,Φ
K
σ > . To obtain an entropy con-

servative scheme, we add a suitable correction term rKσ to our residual. It is

Φ̃K
σ = ΦK

σ + rKσ , where rKσ = E∑

σ∈K

(vσ−v)2
(vσ − v), where v is the arithmetic mean

in K. The correction term is constructed to ensure the entropy property not
violating the conservation property of the scheme in the steady-state case.

For unsteady problems, one should avoid using the method of lines to keep the
high-order of the RD scheme. Therefore, we apply the DeC approach resulting in
a fully explicit FE-based scheme [2].

The correction term can also be applied to ensure fully discrete entropy conser-
vation. Here, the update procedure is summarized as follows:

(1) Compute the entropy difference η(U (k))− η(U0) at every DOF.
(2) Calculate the entropy flux using U (k) at every degree of freedom.
(3) Calculate the differences in the entropy in every element K using the

space-time entropy residual ΦK,e
t,x .

(4) Use the correction term with the calculated entropy differences to correct
the space-time residual. With this, we obtain a fully discrete conservative
scheme.

However, switching back to the semidiscrete setting. We can apply the correction
term in a classical DG framework which yields to a slightly different entropy cor-
rection term r. Actually, as proven in [2], we have re-formulated both correction
terms as solutions of certain optimization problem.

Theorem 1. If the constraints do not contradict each other, the correction term
r is the unique optimal correction, measured in the discrete norm induced by M ,
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such that conservation and entropy conservation are satisfied, i.e.

min
r

1

2
||r||2M 1TMr = 0, vTMr = E ,

where ||r||2M = rTMr. The classical correction term ri is the unique optimal
correction, measured in the discrete norm induced by I, i.e. ||r||2

I
= rT Ir.

Using this reinterpretation, we can further extend this application of the cor-
rection terms to other constraints like the kinetic energy preservation for the Euler
equations. A combination of both terms yields schemes which are kinetic energy
preserving and entropy conservative. Therefore, the correction terms can be seen
as a universal tool. It can be applied to most of the used numerical methods to
ensure the desired properties. However, it comes also with some drawback. For
example for the Euler equations, the switching to the entropy variables has to
be possible. Hence, it has to be ensured that density and pressure have to re-
main positive during the calculation. A detailed discussion can be found in our
corresponding article [2].
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DeC and ADER: arbitrarily high order methods for hyperbolic PDEs
(and ODEs)

Davide Torlo

(joint work with Maria Han Veiga, Philipp Öffner)

In the field of numerical methods for hyperbolic partial differential equations
(PDEs), more and more high order accurate schemes have become very popu-
lar and used for a huge variety of simulations. These methods allow to achieve
sharper solutions that shows more structures with smaller computational costs
with respect to low order methods. The high order methods for hyperbolic PDEs
have to take into account a high order spatial discretization, e.g. finite element,
discontinuous Galerkin, and, on the other side, a high order time marching proce-
dure, typically Runge Kutta, with the use of the method of lines.

Lately, more methods which combine space and time discretization in a unique
process are used, without the need of using the method of lines directly. Examples
are the deferred correction (DeC) method defined as ODE solver in [3], but used in
combination with different spatial discretizations in [2] for hyperbolic PDEs, and
the arbitrary derivative (ADER) method, originally presented as an exploitation
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of the Cauchy–Kovaleskaya theorem [4] and recently presented as a high order
accurate space–time discretization, inter alia [5].

In [1] we try to decouple the spatial discretization and the time discretization
of these two methods (explicit DeC and explicit ADER), in order to acquire more
insights on the properties and the similarities of these schemes.

The DeC is based on a subdivision of each timestep into M subtimesteps, then
a reconstruction in time, based on Lagrangian polynomials is performed. The
Picard–Lindelöf theorem applied to the ODE leads to the integral form, that,
written for each subtimestep, leads to a nonlinear system of M unknowns, which is
a high order approximation of the ODE. The DeC introduces a first order operator
that simplifies such formulation into an explicit method and combines the two
formulation in an explicit iterative procedure that after K iterations converges to
the high order accurate solution with an error of order K. This result is given by
a convergence theorem which requires the existence of a solution of the high order
operator, the coercivity of the low order operator and the Lipschitz continuity of
the difference of the two operators. Usually these properties are easily verified.

The ADER method has lately been presented as a time–space discontinuous
Galerkin, where this formulation leads to a local (in space and time) nonlinear
system that can be solve with the fixed point iteration method. The solution of
such problem is a high order accurate approximation of the problem. A final recon-
struction step which allows also communication between cells through numerical
fluxes is also performed. If we focus on the time integration part, we notice that
the formulation is given by a Galerkin projection on the time basis functions space.

We observed that, introducing a low order approximation of the high order
formulation, we can rewrite the ADER fixed point iteration exactly with the same
formalism that the DeC introduces. This leads to an interesting result. We can
prove the convergence of the fixed point iteration method and we know the number
of iterations needed in order to obtain the required accuracy (number of iterations
must be equal to the aimed order).

On the other side, the DeC high order discretization can be rewritten as a
finite element method in time, if one introduces as test functions the characteristic
functions on the subtimesteps. This can be seen as an ADER approximation,
where we use a Petrov-Galerkin projection instead of a Galerkin one, maintaining
the spirit of the high order finite element discretization in time.

Numerical results show that the two methods behaves very similarly in terms
of accuracy, stability, see Figure 1, and simulations. The differences between the
two methods are more remarkable in the implicit context or when the spatial dis-
cretization plays a role in the definition of the high and low order approximation
operator as well. For instance, the first order approximation can be further sim-
plified with the lumping of the mass matrix (in a finite element context), without
decreasing the order of accuracy [2].

In the future, we aim to study more in details these schemes, in particular in
their implicit versions, where stability has not been issued yet, entropy/energy
stable versions and with more combination of spatial discretizations.
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Figure 1. A-Stability regions for ADER and DeC methods (left)
and different basis functions (right): order 2 to 6
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A posteriori Error Estimates for Numerical Solutions to Hyperbolic
Conservation Laws

Maria Teresa Chiri

(joint work with Alberto Bressan, Wen Shen)

Consider the Cauchy problem for a strictly hyperbolic system of conservation laws
in one space dimension

(1) ut + f(u)x = 0, u(0, x) = ū(x).

Assuming small total variation, it is well known that there exists a unique entropy-
weak solution, depending Lipschitz continuously on the initial data ū in the L1

norm [9].
A related question is the stability and convergence of various types of approx-

imate solutions. Estimates on the convergence rate for a deterministic version of
the Glimm scheme [17, 18] were derived in [14], and more recently in [2, 8] for a
wider class of flux functions. For vanishing viscosity approximations, uniform BV
bounds, stability and convergence as ε → 0 were proved in [6], while convergence
rates were later established in [13, 15]. Further convergence results were proved
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by Bianchini for approximate solutions constructed by the semidiscrete (upwind)
Godunov scheme [4], and by the Jin-Xin relaxation model [5].

A major remaining open problem is the convergence of fully discrete approxima-
tions, such as the Lax-Friedrichs or the Godunov scheme. Indeed, the convergence
results known for these numerical algorithms rely on compensated compactness [16]
and do not yield information about uniqueness or convergence rates.

Without an a priori bound on the total variation, it is not possible to compare
an approximate solution with trajectories of the semigroup of exact solutions, and
all the uniqueness arguments developed in [10, 11, 12] break down.

For general hyperbolic systems, however, it is known that the Godunov scheme
is unstable w.r.t. the BV norm. Indeed in [3] an example was constructed, showing
that the total variation of a numerical solution can become arbitrarily large as
t → +∞.

For this reason, we here focus on a posteriori error estimates. Based on some
additional information about the approximate solution, we give an estimate on the
difference

(2) ‖uapprox(T, ·)− uexact(T, ·)‖L1(R) .

For any sufficiently small BV initial data ū, the unique entropy-admissible BV
solution of (1) has two key properties [9]:

(i) The total variation of u(t, ·) remains uniformly small, for all t ≥ 0.
(ii) Given a threshold ρ > 0, one can identify a finite number of curves in

the t-x plane (shocks or contact discontinuities) such that, outside these
curves, the solution has local oscillation < ρ.

However, for an approximation constructed by the Godunov scheme, the property
(i) sometimes can fail as proved by the counterexample in [3].

The result we show is in brief the following. Let uapprox be an approximate
solution produced by a conservative scheme which dissipates entropy, and assume
that

(i) the total variation of uapprox(t, ·) is uniformly bounded,
(ii) outside a finite number of narrow strips in the domain [0, T ]×R, the local

oscillation of uapprox remains small;

then the distance (2) is small. The error bound is derived by using a technique
introduced in [7] which relies on two types of estimates:

- on regions where the oscillation is small, uapprox is compared with the
solution to a linear hyperbolic problem with constant coefficients,

- near a point where a large jump occurs, uapprox is compared with the
solution to a Riemann problem.

No regularity is required for the exact solution, apart from BV bounds.
For a numerically computed approximation, we also introduce a post-processing

algorithm, which accomplishes three main tasks: check that the total variation
remains bounded, trace the location of a finite number of large shocks, check
that the oscillation of the solution remains small on a finite number of polygonal
domains away from the large shocks.
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The error estimate which we obtain can be applied to a wide class of approxima-
tion schemes, such as Godunov, Lax-Friedrichs, backward Euler approximations,
and approximate solutions obtained by periodic mollifications.
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A posteriori error analysis of finite volume approximations to scalar
conservation laws using only one entropy

Jan Giesselmann

(joint work with Sam G. Krupa)

We are interested in the convergence analysis of numerical methods for systems
of hyperbolic conservation laws in one spatial dimension. We focus on numerical
schemes that combine Runge-Kutta discretisation in time with finite volume or
discontinuous Galerkin schemes in space. Our goal is to derive a posteriori error
estimates, i.e. computable upper bounds for the error (in some suitable norm) that
can be computed from the numerical solution. A standard approach for deriving a
posteriori error estimates is to insert the numerical solution into the PDE at hand,
which it only satisfies up to some residual, and to use an appropriate stability
theory to bound the difference between exact and numerical solution in terms of
the residual. This asserts a tight relation between available stability theories for
some PDE and a posteriori error estimates for corresponding numerical schemes,
see e.g. [7, 6].

Existing a posteriori error estimates for schemes approximationg hyperbolic
conservation laws can be classified into several groups accoring to the stability
theory that has been used (for each group only one ‘representative’ reference will
be provided): There are estimates based on Kruzkov’s entropy solutions and the
doubling of variables methods [4], these estimates are, by construction, limited
to (multi-dimensional) scalar problems; estimates based on stability in the Lip+
norm of solutions to scalar conservation laws in one space dimension can be found
in e.g. [8]. Estimates that can be extended to systems either use the theory of
L1 entropy semigroups, going back to Bressan and coworkers, [6, 1] or the relative
entropy method [3].

Compared to the other methods, estimates based on the relative entropy method
have some strength and weaknesses: The main weakness of the relative entropy
method is that it can only be used if one of the solutions under consideration
is Lipschitz continuous and its residual is in L2. Hence, a Lipschitz continuous
reconstruction of the numerical solution needs to be computed in order to evaluate
the error estimator and, more importantly, the error estimator from [3] blows up
under mesh refinement if the exact solution is discontinuous. An advantage of the
error estimator in [3] is that (for Lipschitz continuous exact solutions) it decays
with the same rate as the exact error for h ց 0. This is in contrast to the error
estimators based on other stability theories.

Our aim is to extend the a posteriori error estimator from [3] in such a way
that it converges (for reasonable schemes) for discontinuous exact solutions. Our
strategy is based on the stability theory for scalar hyperbolic conservation laws [5]
that uses only one entropy inequality and is, thus, expected to be extendable to
systems of conservation laws. Indeed, an extension to 2× 2 systems is available in
[2].
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For the time being, we restrict ourselves to scalar problems and numerical
schemes that use piecewise constants in space and forward Euler in time. We
believe that these restrictions can be removed in future work (at the expense of
an increase in technical difficulty). The stability theory from [5] can handle (ap-
proximate) solutions that are piecewise Lipschitz continuous and increasing with
downward jumps in between. Thus, we cannot apply the reconstructions from [3]
directly but we need to modify the numerical scheme. We need to approximate
the initial data by some function that is piecewise Lipschitz continuous and in-
creasing. All the Lipschitz continuous and increasing pieces need to be extended
to the whole computational domain. Then, the entropy solutions emanating from
all these initial data can be approximated by some suitable numerical scheme. In
addition, we need to keep track of the positions of discontinuities, i.e. the intervals
where each of the pieces might be visible. Approximate positions of discontinuities
can be computed using the Rankine-Hugoniot conditions and bounds for the posi-
tion error can be obtained from the residuals of the different parts of the solution.
Note that [5] provides control on the error in velocity of discontinuities.

All in all, we obtain computable error bounds for the error (at any given time)
in the L1 and L2 norms in space and preliminary numerical experiments show that

they scale with the same order as the exact error (O(h) for L1 and O(h
1
2 ) for L2).
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Measuring distorsive effects of finite volume schemes for
conservation laws

Gabriella Puppo

(joint work with Isabella Cravero, Matteo Semplice, Giuseppe Visconti)

It is well known that to prevent the onset of spurious oscillations, numerical
schemes for hyperbolic systems must be non linear, even on linear equations. This
is due to the need of introducing non linear limiters in the reconstruction opera-
tors which are an essential part of these algorithms. Spurious effects induced by
the reconstruction as artificial diffusion and artificial dispersion have been widely
studied, as in [1]. But naturally, the non linearities in the schemes introduce also
non linear distorting effects in the signals transported by the numerical solution,
and these have drawn very little attention, except for [2], where we propose a
quantitative notion of distortion and we introduce the notion of temperature of
a numerical scheme, to measure the spread of spurious modes around the main
mode.

We consider the effect of the numerical derivative on a single Fourier mode of
the form ûk = eikx. If Dx denotes the discrete derivative, and the scheme is linear,
we can write

Dx

(
eikx

)
= (ik + ωk)e

ikx,

where ωk is the error in the propagation of the k-th mode. In other words, for
linear schemes, eikx is an eigenfunction not only of the exact derivative, but also
of the discrete derivative. If ωk has a non-zero negative real part, than the scheme
provides an artificial damping of the solution (artificial diffusion). If ωk has a non-
zero imaginary part, the scheme alters the propagation speed of the single mode,
and one sees dispersive effects, which are responsible for the onset of spurious
oscillations. Typically, |ωk| grows fast with k, so that the spurious effects are
much more noticeable on the high wave numbers.

If the scheme is non linear, the output of Dx(e
ikx) is no longer proportional

to eikx. To study its effect, we compute the discrete Fourier transform of the
output of the numerical derivative on each Fourier mode written in real form. If
we consider a grid on [−1, 1] with 2N + 1 equidistant nodes, for k = 1, . . . , N , we
find

(1) Dx

[
sin(2πkx)
cos(2πkx)

]
=

N∑

ℓ=1

[
ω2ℓ,2k ω2ℓ,2k+1

ω2ℓ+1,2k ω2ℓ+1,2k+1

] [
sin(2πlx)
cos(2πlx)

]
.

Let Ω be the matrix with elements ωij . The exact derivative is the 2N by 2N
block diagonal matrix

D = diag (Ek) = diag

(
2πk

[
0 1

−1 0

])
, k = 1, . . . , N,

where we do not consider the row and the column corresponding to the constant
mode k = 0. For a linear scheme only the 2 by 2 blocks along the diagonal
of Ω would be non zero. Thus, all terms in Ω off the two main diagonals are
spurious distorting effects due to the non linearities of the reconstruction. The
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Figure 1. Error matrices for non linear reconstructions. From
left to right third and seventh order CWENO reconstruction

error obtained on all modes can be represented with the matrix Ω−D. We define
the relative error due to the non linear derivative as

(2) E = |Ω− D| diag
(

1
2πk

[
1 0
0 1

])
.

In this way, the error on each mode is normalized with its frequency, so that the
elements of E represent the relative errors on each mode.

Here, we show results obtained with the CWENO reconstruction of [3] in Fig
1. The figure contains the magnitude of the elements of the error matrix. Along
the abscissas we have the wave number of the input mode, while the ordinate
shows the magnitude of each of the modes produced by the numerical derivative.
One can see that the error along the diagonal, which corresponds to the already
known notions of artificial diffusion and dispersion, is clearly distinguishable, even
at relatively low wave numbers.

It is interesting to see that the spurious distorting error of the high order scheme
is way smaller than the error induced by the third order scheme, especially con-
sidering that the right half of each figure corresponds to modes which cannot be
properly resolved on the given grid. For this reason this work motivates even more
the adoption of high order schemes.

Future research on this topic could include a study of distortion for other families
of high order schemes, and techniques to control distortion, while preserving non
oscillatory properties. More details can be found in [2].
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On the Dynamics of Ferrofluids: Weak Solutions and Relaxation Limit
for the Rosensweig Model

Franziska Weber

(joint work with Ricardo H. Nochetto, Konstantina Trivisa)

Ferrofluids are suspensions of nanometer-sized iron or other ferromagnetic par-
ticles. When subjected to a magnetic field, they become strongly magnetized,
which has been useful for various applications in daily life, medicine and engi-
neering. Mathematically, the dynamics of ferrofluids can be modeled using the
system of partial differential equations derived by Rosensweig [4], which describes
the flow of an incompressible ferrofluid subjected to an external magnetic field.
In this model, the dynamics of the linear velocity u, the pressure p, the angular
momentum w and the magnetization m on a bounded simply connected domain
Ω ⊂ Rd, d = 2, 3, are governed by the conservation of linear momentum, the in-
compressibility condition, the conservation of angular momentum, the transport
of the magnetization and the magnetostatics equations for the magnetic field h:

ut + (u · ∇)u− (ν + νr)∆u+∇p = 2νrcurlw + µ0(m · ∇)h,(1a)

divu = 0,(1b)

wt + (u · ∇)w − c1∆w − c2∇divw + 4νr = 2νrcurlu+ µ0m× h,(1c)

mt + (u · ∇)m = w ×m− 1

τ
(m − κ0h),(1d)

curlh = 0,(1e)

div(h+m) = 0,(1f)

Here, the magnetic field h is given by

h = ha + hd,

where ha is the so-called applied magnetic field and hd is the demagnetizing field.
We assume that the former is smooth and rotation and divergence free in R3.
The latter is rotation free in R3. Equation (1f) is the Maxwell equation divb = 0
in R3 for the magnetic induction given by b = µ0(h + m) in Ω and b = µ0h
outside Ω where the magnetization m vanishes. Invoking the customary, although
somewhat arbitrary, assumption that hd = 0 outside Ω along with the continuity
of the normal components of b and ha across the boundary ∂Ω, we deduce

hd · n = −m · n on ∂Ω,

where n is the unit outer normal on ∂Ω. We also assume u = w = 0 on the
boundary.

Whenever the magnetization m is small relative to ha, the demagnetizing field
hd is negligible and the effective magnetic field satisfies h ≈ ha. If h is a given
field rather than the solution of the magnetostatics equations (1e)–(1f)), then the
analysis of the reduced system (1a)–(1d) simplifies considerably. However, recent
numerical simulations for a related two-phase flow model [1] indicate that the re-
duced system may not be able to capture the whole physical behavior of ferrofluids.
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The famous Rosensweig instability, for example, can only be reproduced when hd

is present or equivalently when h solves the magnetostatics equation (1e)–(1f)
(see [1, Figures 6 and 7]). We therefore analyze the full system (1). In particular,
we prove that the system (1) has weak solutions. Letting U = (u,w,m,h), these
weak solutions satisfy the following energy inequality:
∫

Ω

E(U)(t)dx +

∫ t

0

∫

Ω

D(U)(s) dxds ≤
∫

Ω

E(U)(0)dx + µ0

∫ t

0

∫

Ω

∂tha · h dxds,

where the energy E is defined by

E(U) = 1

2

(
|u|2 + |w|2 + µ0

κ0
|m|2 + µ0|h|2

)
,

and the dissipation functional D is defined by

D(U) =
(
ν|∇u|2 + c1|∇w|2 + c2|divw|2 + νr|curlu− 2w|2 + µ0

τκ0
|m− κ0h|2

)
.

In practical applications, the parameter τ > 0, the relaxation time, is usually
very small [3, 5]. We therefore also rigorously show that as τ → 0, weak solutions of
the Rosensweig system converge in a suitable sense (see [2] for details) to solutions
of the quasi-static equilibrium system

Ut + (U · ∇)U − (ν + νr)∆U +∇P = 2νrcurlW +
µ0κ0

2
∇|H|2,(2a)

divU = 0,(2b)

Wt + (U · ∇)W + 4νrW = c1∆W + c2∇divW + 2νrcurlU,(2c)

∆Φ = 0, H = ∇Φ.(2d)

When solutions of this limiting system are smooth, one can show the convergence
rate in τ (we use the subscript τ to denote the dependence of the solution of (1)
on τ):

‖uτ −U‖L2(Ω) (t) + ‖wτ −W‖L2(Ω) (t) + ‖mτ − κ0H‖L2(Ω) (t)

+ ‖hτ −H‖L2(Ω) (t) ≤ C
√
τ (1 + exp(Ct)).

An open question remains whether there exists a stable numerical scheme whose
approximations converge to solutions of the Rosensweig system (1).
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Fifth-order A-WENO finite-difference schemes based on
central-upwind numerical fluxes

Alexander Kurganov

(joint work with Alina Chertock, Shaoshuai Chu, Wai Sun Don, Naveen Kumar
Garg, Yongle Liu, Bao-Shan Wang)

This talk consists of several parts. First, we briefly review the central-upwind
schemes for hyperbolic systems of conservation laws. These schemes belong to the
class of Riemann-problem-solver-free Godunov-type central schemes, but utilize a
certain upwinding information in order to reduce the amount of excessive numer-
ical dissipation typically present in non-oscillatory central schemes. The goal is
achieved by evolving the solution in time using the space-time control volumes,
whose spatial size is proportional to the local speeds of propagation, which, in
turn, can be estimated using the smallest and largest eigenvalues of the flux Ja-
cobian. For the detailed derivation of central-upwind schemes, we refer the reader
to [6].

We then present a recent work [4], where we have introduced a new version of the
central-upwind schemes—central-upwind Rankine-Hugoniot schemes—which con-
tain a smaller amount of numerical dissipation, but at the same time are as robust
as the original central-upwind schemes. The numerical dissipation is reduced us-
ing the following two mechanisms. First, we utilize the discrete Rankine-Hugoniot
conditions in order to more accurately estimate the local propagation speeds. The
second mechanism, which can be applied only in the multidimensional case, is re-
lated to the numerical dissipation switch recently proposed in [7]. The main idea of
the switch is to reduce the local propagation speeds in the areas where the solution
is near/at contact waves and shear layers. Such areas are detected by measuring
of the relative contribution of the parts of the fluxes, which are supposed to be
continuous at contact waves and shear layers, into the total flux jumps across each
cell interface.

Equipped with the central-upwind Rankine-Hugoniot numerical fluxes, we in-
corporate them into the A-WENO finite-difference framework; see [8]. The devel-
oped A-WENO finite-difference schemes are very simple as they utilize the finite-
volume central-upwind Rankine-Hugoniot numerical fluxes per se. A higher-order
accuracy is achieved by:

• Computing the left and right point values at each cell interface using the
fifth-order WENO-Z interpolant;

• Using these highly accurate point values for the evaluation of central-
upwind Rankine-Hugoniot numerical fluxes;

• Including the finite-difference approximations of the partial derivatives of
the fluxes required to be added to the second-order finite-volume numerical
fluxes according to the sixth-order accurate Taylor expansion of the fluxes
about the cell interface points.

Finally, we present the implementation of the fifth-order A-WENO schemes
for designing a new hybrid multifluid algorithms based on the path-conservative
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central-upwind scheme. In this work [2], we study compressible multifluids, which
are supposed to be immiscible with the sharp interface separating different fluid
components. The material interface is tracked using the level-set method and
the pressure/velocity oscillations, which typically appear at the interfaces and
then evolve in time and destroy the computed solutions if conservative numerical
methods are used, are avoided using the hybrid approach originally proposed in [5]:
we replace the total energy equation with the nonconservative pressure equation in
the immediate vicinity of the material interfaces. Outside the interface, we solve
the compressible Euler equations using either the finite-volume central-upwind or
the finite-difference A-WENO scheme, while the nonconservative system, obtained
after replacing the total energy equation with the pressure one, must be solved
using an appropriate numerical method for nonconservative hyperbolic systems.
We use the path-conservative central-upwind scheme from [1], which is designed
to properly handle the contribution of the nonconservative product terms at each
cell interface. The fifth-order accuracy of the path-conservative central-upwind
scheme is obtained using the finite-difference A-WENO framework as proposed in
[3].
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On using Neural Networks to discretize transport equations with
Lipschitz data

Bruno Després

On the one hand Neural Networks or Machine Learning (ML) [1] appear as a
promising set of methods for interpolation of data and fitting of non linear func-
tions. On the other hand finite volume (FV) schemes used in hyperbolic solvers
are becoming more and more complex and non linear. So following [3, 4, 5], it is
natural to ask if Neural Networks can help to make some progress on the design
of efficient non linear FV solvers.
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Figure 1. A convincing example from [7]. The value of volume
fraction a1 at time t = 1 is represented after one round advec-
tion. Top left, initial and final data. Top right, SLIC/Downwind
scheme: the notched circle is transformed in a polygonal line as
shown by the contour lines. Bottom left, blocks are 5× 5, but the
ML dataset does not have acute angles. Bottom right, blocks are
5× 5, now the ML dataset has acute angles.
The new VoF-ML flux (bottom right) with optimal training and
dataset is superior to any kind of traditional FV technique for
this problem.

In [7] we evaluated this idea for a problem which is badly solved with traditional
finite volume schemes. It is the design of solvers for indicatrix functions with
corners which can be used to transport datas with Lipschitz regularity. This is
deeply related to VoF methods [8, 9]. A model PDE is

{
∂tα+ a · ∇α = 0, x ∈ R2, t > 0,
α(0, x) = α0(x), x ∈ R2,

where α0 ∈ Lip is the indicatrix function of a domain ω ⊂ R2 where the perimeter
of ω is bounded. If ω is a disk or a sphere, it models the transport of bubbles. If
ω is a square, it models corners and triple points which may arise in some three-
phases problems. A classical example is the steam+water+structure triple point
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in nuclear engineering, or air+water+structure triple point for the modeling of
boats.

The design of the FV+ML follows the classical avenue of learning methods,
that is one assembles a dataset from a collection of numerical profiles as in [3].
Then the learning is performed with a standard software (Tensorflow in our case).
What is remarkable is the accuracy of the result reported in [7] when everything
runs correctly with the FV numerical simulation, see the Figure.

An open problem. It appears that it is relatively easy to enforce the VOF-
ML (Volume-of-Fluid-Machine-Learning) scheme to satisfy the natural L∞ bounds
associated to the PDE. On the contrary, it seems difficult to impose a rigorous
control of oscillations (only strategy so far is try-or-fail). The situation can be
reformulated purely in terms of convergence theory for non standard FV schemes:
how a finite volume flux which does not respect the usual continuity condition [6]
(nor any kind of TVD condition [2]) can be convergent? A positive answer to this
open problem would be a strong impetus for the development of these FV solvers
designed with ML techniques.
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On the generalized polynomial chaos expansion for hyperbolic systems

Michael Herty

(joint work with S. Gerster and E. Iacomini)

We analyze properties of stochastic 2 × 2 hyperbolic systems using a Galerkin
formulation, which reformulates the stochastic system as a deterministic one that
describes the evolution of polynomial chaos (PC) modes. We investigate conditions
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such that the resulting systems are hyperbolic in the case of the p−system as well as
the second-order traffic flow model of Aw-Rascle and Zhang and here we elaborate
in particular on this model. We are interested in uncertainty quantification in
the sense of propagation of input uncertainty through traffic models. Several
approaches are presented in the literature and can be classified in non-intrusive and
intrusive methods. The main idea underlying the former approach is to solve the
model for fixed number of samples using deterministic numerical algorithms. Then,
the statistics of the quantities of interest are determined by numerical quadrature.
Typical examples are Monte-Carlo and stochastic collocation methods [8]. In
contrast, we consider the intrusive stochastic Galerkin method. Here, stochastic
processes are represented as piecewise orthogonal functions, for instance Legendre
polynomials or multiwavelets. These representations are known as generalized
polynomial chaos (gPC) expansions [5, 2, 6, 7]. Expansions of the stochastic
input are substituted into the governing equations and a Galerkin projection is
used to obtain deterministic evolution equations for the coefficients of the series
expansions.

Second-order models describe the velocity by an additional differential equation.
In particular, we consider the inhomogeneous Aw-Rascle-Zhang model [1]
with relaxation

(1)





∂tρ+ ∂x(ρv) = 0,

∂t
(
v + h(ρ)

)
+ v∂x

(
v + h(ρ)

)
=

1

τ + ξ

(
V (ρ)− v

)
.

Here, h(ρ) : R+ → R+ is called hesitation or traffic pressure and we may con-
sider e.g. h(ρ) = ρ. Also, V is a given, desired velocity distribution. We already
include the parametric uncertainty ξ in the relaxation rate as a random vari-
able ξ, defined on a probability space

(
Ω,F(Ω),P

)
. Then, the random solution

U(t, x, ξ) = (ρ(t, x, ξ), w(t, x, ξ)) where w = v + h(ρ) is expanded in terms of a
truncated generalized polynomial chaos (gPC) series with base functions φk that
is orthogonal to the probability density p of the random variable ξ.

GK [Û ](t, x, ξ) :=

K∑

k=0

Ûk(t, x)φk(ξ) with gPC modes Û :=

(
ρ̂
ŵ

)
∈ R2(K+1),

It remains to derive the equations for the evolution of the gPC models Û by
Galerking projection of the flux onto the space Sk = {φi : i = 0, . . . ,K}. It turns
out that in the formulation of ρ̂ and ŵ and for h(ρ) = ρ this requires only to define
the Galerkin product[3, 4]

ρ̂ ∗ α̂ := P (ρ̂)α̂ = ẑ ∈ RK+1 for P (ρ̂) :=

K∑

k=0

ρ̂kMk

where Mk := 〈φk, φiφj〉i,j=0,...,K . Several properties of the matrix P (ρ̂) are known
and can be exploited in particular for wavelet-based gPC expansions, see e.g. [4,
Section 3.3]. Using the previously defined Galerkin product hyperbolicity prop-
erties as well as positivity properties of the car or gas density can be obtained.



630 Oberwolfach Report 11/2021

The expansion in (ρ, w) also allows to obtain also in particular cases the eigende-
composition of the gPC expanded system in closed form. Further, the expanded
system can be studied in the small relaxation limit τ → 0 when the uncertainty is
only in the initial data. Here, a stabilization result is obtained, when the system
is relaxed to a first-order model.

An extension of the previous results towards general gPC expansions is still open
as well as the corresponding properties. The question of suitable entropies in the
case of second-order traffic flow model for the gPC expanded system is still open.
Since the considered traffic flow model is an example of a Temple class system,
one might also expect additional results for general Temple systems. Those points
are still open.

Support by DFG HE5386/19-1 is acknowledged.
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Mathematical models of traffic flow

Nils Henrik Risebro

The early mathematical modeling of traffic flow dates back to at least the early
fifties. Two distinct classes of models prevail — one where one tracks individual
vehicles (Follow-the-Leader models) and one where traffic is sufficiently dense to
justify a continuum approach where the density of vehicles is the fundamental
quantity (traffic hydrodynamics). With the increased importance of traffic in
modern society, the development of unprecedented computer power and tracking
devices, as well as the advances in mathematical research, mathematical traffic
modeling has become important. As with all mathematical modeling, it is essential
to identify simple models that capture some important aspect of the phenomena
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yet allow for a mathematical analysis. We will here describe a novel mathematical
model that allows for the analysis of multilane traffic. However, before we come to
that, let us start with the basics. Consider dense unidirectional traffic on a single
lane where ρ = ρ(x, t) describes the vehicular density. Let v describe the velocity,
and consider traffic on an interval [x1, x2]. The rate of change of the number of
vehicles on this interval of the road, can be described by

d

dt

∫ x2

x1

ρ(x, t) dx = −
∣∣∣
x2

x1

ρv = −
∫ x2

x1

∂

∂x
ρv dx.

Re-ordering the expressions, taking the limit x2 − x1 → 0, and assuming smooth-
ness of all quantities, we obtain

ρt + (ρv)x = 0,

where subscripts denote partial derivatives. This is the celebrated Lighthill–
Whitham–Richards (LWR) model, see [10, 11, 9]. In the simplest case we assume
that the velocity depends on the density only, and mathematically we obtain a hy-
perbolic conservation law. If we scale the maximum density to unity, and assume
a linear dependence in the velocity, that is, v = 1− ρ we obtain the (equivalent of
the) inviscid Burgers equation

ρt + (ρ(1 − ρ))x = 0.

While innocent looking, solutions of the Burgers equation experience singularities,
and in general are far from being smooth. Thus we need to develop the machin-
ery of weak solutions and what is called entropy conditions to single out unique
solutions. Entropy solutions are limits of solutions to the singularly perturbed
equation

ρεt + (ρε (1− ρε))x = ερεxx
as ε → 0, see [3].

There is actually a simple relation between the above macroscopic model and a
simple microscopic follow-the-leader model. we assume that the speed of a vehicle
v, is a function of the distance to the car in front. If zi is the position of the ith
car on a single lane road, the model reads

(1)
d

dt
zi = v

( ℓ

zi+1 − zi

)
,

where ℓ is the length of a vehicle and v is a decreasing function. For obvious
reasons zi+1 − zi ≥ ℓ. This simply says that the speed of each car is depending
only on the distance to the car in front. That v is decreasing means that the closer
you are to the car in front of you, the slower you drive.

We define ρi = ℓ/(zi+1 − zi), a straightforward calculation yields

(2)
d

dt

( 1

ρi

)
− 1

ℓ

(
v(ρi+1)− v(ρi)

)
= 0.

Now we can let ℓ → 0 with z = iℓ fixed and obtain ρi(t) → ρ(t, z), where ρ satisfies

(3)
∂

∂t

(1
ρ

)
− ∂

∂z
v(ρ) = 0
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since (2) is a first order (in ℓ) semi-discrete scheme for (3). To argue that the limit
is the entropy solution we observe that (2) is actually a second order accurate
scheme for the equation

∂ξ

∂t
− ∂

∂z
V (ξ) =

ℓ

2

∂2

∂z2
(V (ξ)) ,

where

ξ =
1

ρ
and V (ξ) = v

(1
ξ

)
.

We can introduce a new coordinate x = x(t, z) by

xz =
1

ρ
and xt = v (ρ) ,

to find that

ρt + (ρv(ρ))x = 0.

The above reasoning was formal and assumed differentiability of everything, but
one can establish rigorously that the limit ρ exists and is an entropy solution,
[5, 6, 8].

Studying more general velocity functions, allowing these to depend on time and
position, we see that the “hydrodynamic” approach to traffic on a single lane road
is a rich source of interesting mathematical problems even in this very simple case.

Two lanes. Two lanes are modelled as two individual roads, where vehicles move
according to the follow-the-leader model (1), and in addition cars are allowed to
change lane. Our basic assumption is that the likelihood of a driver changing lane
is zero if changing lanes would lead to a decrease in speed and is proportional to
the potential gain in speed otherwise. This is a simple idea, but a bit awkward to
describe mathematically.

Let the positions of the vehicles on the two lanes, lane z and lane y, be denoted
by {zi} and {yj} respectively, we assume that the drivers continuously monitor the
speed (and thereby the position) they would have if they were in the other lane.
Concretely, let ∆t be some small positive number, and let z̃i denote the position
of an imaginary vehicle in lane y in the interval [t, t+∆t], and assume that yj is
the position of the car in front of z̃i in the y lane. Then z̃i satisfies

z̃′i(τ) = v
( ℓ

yj(τ)− z̃i(τ)

)
, τ ∈ (t, t+∆t], z̃i(t) = zi(t).

The probability that the vehicle changes lane in the interval [t, t+∆t] is then given
by

φ (z̃i(t+∆t)− zi(t+∆t)) ,

where φ is an increasing Lipschitz continuous function with φ(s) = 0 for s ≤ 0,
lims→∞ φ(s) = 1. Observe that in this model, drivers behave rather selfishly in
that they do not care about the consequences for others (in particular for vehicle
yj−1!) of their lane changing. Nevertheless, we see others behaving like this all
the time.
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Taking the formal limit as ∆t → 0 and ℓ → 0, we get (as in the single lane case)
that

ℓ

zi+1 − zi
→ ρ1(x, t),

ℓ

yj+1 − yj
→ ρ2(x, t),

so that ρ1 is the density of vehicles in lane z and ρ2 the density of vehicles in lane
y. The lane changing leads to a flux from lane z to lane y given by

S (ρ1, ρ2) = K
[
(v(ρ2)− v(ρ1))

+
ρ1 − (v(ρ2)− v(ρ1))

−
ρ2

]
,

where a± = (|a| ± a)/2, and K is a constant. Therefore conservation of cars reads

(4)

∂ρ1
∂t

+
∂

∂x
(ρ1v(ρ1)) = −S(ρ1, ρ2),

∂ρ2
∂t

+
∂

∂x
(ρ2v(ρ2)) = S(ρ1, ρ2).

This is a weakly coupled system of conservation laws, such systems are well posed
in the sense of Hadamard. Furthermore, its special structure allows for the sharp
estimate of the difference between (ρ1, ρ2) and another solution (ρ̂1, ρ̂2), see [7],

2∑

k=1

‖ρk(·, t)− ρ̂k(·, t)‖L1(R) ≤
2∑

k=1

‖ρk(·, 0)− ρ̂k(·, 0)|L1(R) .

We emphasise that in contrast to the single lane case, the limits leading to (4)
are (for the moment) not rigorously established. An analogous estimate holds for
models describing N lanes. Mathematically, and probably outside the realm of
traffic models, we can let N → ∞. Then the “lane” is determined by a continuous
coordinate y ∈ (0, 1) and it turns out that ρ(x, t, y) ≈ ρNy(t, x) is an entropy
solution to a degenerate convection diffusion equation





ρt + (ρv(ρ))x = − (ρv(ρ)y)y t > 0, (x, y) ∈ R× (0, 1),

v(ρ)y = 0 x ∈ R, y = 0, y = 1,

ρ(0, x, y) = ρ0(x, y) (x, y) ∈ R× (0, 1).

For precise results, see [1].
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Topological states in collective dynamics

Pierre Degond

(joint work with Antoine Diez, Mingye Na)

The present abstract summarizes the submitted article [1]. This work lies at
the intersection of two topics: topological states of matter on the one hand and
collective dynamics on the other hand.

States of matter (such as solid, liquid, etc) are characterized by different types
of order associated with local invariances under different transformation groups.
Recently, a new notion of topological order, popularized by the 2016 physics nobel
prize awarded to Haldane, Kosterlitz and Thouless, has emerged. It refers to
the global rigidity of the system arising in some circumstances from topological
constraints. Topologically ordered states are extremely robust i.e. “topologically
protected” against localized perturbations.

Collective dynamics occurs when a system of self-propelled particles organizes
itself into a coherent motion, such as a flock, a vortex, etc. Collective dynamics
generate large-scale structures, much bigger than the typical interaction range be-
tween two agents. Lately, the mathematical understanding and numerical simula-
tion of collective dynamics models has stimulated a large literature. In particular,
understanding collective dynamics requires the joint use of microscopic agent-
based (aka particle) models and macroscopic fluid-like models whose links must
be rigorously justified. The present work relies on such earlier studies concerning a
system of self-propelled solid bodies interacting through local full body alignment
up to some noise developed in collaboration with A. Frouvelle (Paris-Dauphine),
S. Merino-Aceituno (Vienna) and A. Trescases (Toulouse) [2, 3, 4].

Recently, the question of realizing topologically protected collective states has
received increasing attention. In this work, we show that the above-mentioned
body-orientation model gives rise to a system of hydrodynamic type equations in
the large-scale limit. This macroscopic model exhibits topologically non-trivial
explicit solutions characterized by non-vanishing appropriately defined winding
numbers. These solutions have counterparts at the particle level. However, such
particle solutions persist for a certain time but eventually decay towards a uni-
form flocking state, due to the stochastic nature of the particle system. We show
numerically that the persistence time of these topologically non-trivial solutions



Hyperbolic Balance Laws 635

is far longer than for topologically trivial ones, showing a new kind of “topolog-
ical protection” of a collective state. To our knowledge, it is the first time that
a hydrodynamic model guides the design of topologically non-trivial states of a
particle system and allows for their quantitative analysis and understanding.

References

[1] P. Degond, A. Diez, M. Na, Bulk topological states in a new collective dynamics model,
submitted. arXiv manuscript 2101.10864 (2021).

[2] P. Degond, A. Frouvelle, and S. Merino-Aceituno, A new flocking model through body attitude
coordination, Math. Models Methods Appl. Sci., 27 (2017) 1005–1049.

[3] P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases, Quaternions in collective
dynamics, Multiscale Model. Simul. 16 (2018), 28–77.

[4] P. Degond, A. Frouvelle, S. Merino-Aceituno, and A. Trescases, Alignment of self-propelled
rigid bodies: from particle systems to macroscopic equations, in G. Giacomin, S. Olla,
E. Saada, H. Spohn, and G. Stoltz, editors, Stochastic Dynamics Out of Equilibrium, volume
282 of “Springer Proceedings in Mathematics and Statistics”, pages 28–66. Institut Henri
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A structure-preserving staggered semi-implicit scheme for
continuum mechanics

Michael Dumbser

(joint work with I. Peshkov, E. Romenski, W. Boscheri, M. Ioriatti)

In this talk, we present a new class of structure-preserving semi-implicit schemes
for the unified first order hyperbolic model of Newtonian continuum mechanics
proposed by Godunov, Peshkov and Romenski (GPR), see [1, 2, 3, 4, 5, 6]. The
GPR model is a geometric approach to continuum mechanics, which is able to
describe the behavior of moving elasto-plastic solids as well as inviscid and viscous
Newtonian and non-Newtonian fluids within one and the same hyperbolic govern-
ing PDE system. This is achieved via appropriate relaxation source terms in the
evolution equations for the distortion field and the thermal impulse. In previous
work it has already been shown that the GPR model reduces to the compress-
ible Navier-Stokes equations in the stiff relaxation limit when the relaxation times
tend to zero, see [6]. The governing PDE system belongs to the class of symmetric
hyperbolic and thermodynamically compatible systems (SHTC), which have been
studied for the first time by Godunov in 1961 and later in a series of papers by
Godunov & Romenski. An important feature of the proposed model is that the
propagation speeds of all physical processes, including dissipative processes, are
finite. In the absence of source terms, the homogeneous part of the GPR model
is endowed with some natural involutions, namely the distortion field A and the
thermal impulse J need to remain curl-free.

In this talk we present a new structure-preserving scheme that is able to preserve
the curl-free property of both fields exactly also on the discrete level. This is
achieved via the definition of appropriate and compatible discrete gradient and curl
operators on a judiciously chosen staggered grid, see [9]. Furthermore, the pressure
terms are discretized implicitly in order to capture the low Mach number limit of
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the equations properly, while all other terms are discretized explicitly [7, 8]. In this
manner, the resulting pressure system is symmetric and positive definite and can
be solved with efficient iterative solvers like the conjugate gradient method. Last
but not least, the new staggered semi-implicit scheme is also able to reproduce
the stiff relaxation limit of the governing PDE system properly, recovering an
appropriate discretization of the compressible Navier-Stokes equations. To the best
of our knowledge, this is the first pressure-based semi-implicit scheme for nonlinear
continuum mechanics that is able to preserve all involutions and asymptotic limits
of the original governing PDE system also on the discrete level [9].

Computational results for several test cases are presented in order to illustrate
the performance of the new scheme.
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Rectifiability of entropy defect measures for Burgers equation and
applications to a variational problem

Elio Marconi

We consider bounded weak solutions to the inviscid Burgers equation

(1) ∂tu+ ∂x
(
u2/2

)
= 0.

A pioneering result in the theory of conservation laws establishes the well-posedness
of the associated Cauchy problem in the class of bounded entropy solutions, namely
bounded functions u satisfying

(2) µη := ∂tη(u) + ∂xq(u) ≤ 0 in D′
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for every convex entropy η : R → R and corresponding flux q : R → R defined up
to constants by q′(v) = η′(v)v. We are interested in the more general class of weak
solutions with finite entropy production, where the distribution µη in (2) is only
required to be a finite Radon measure (without constraints on its sign). Although
weak solutions with finite entropy production are not locally of bounded variation,
they share with BV functions most of their fine properties:

Theorem 1 ([6]). Let u be a bounded weak solution to (1) with finite entropy
production. Then there exists an H1-rectifiable set J for which

(1) for H1-a.e. x ∈ J there exist strong L1-traces on both sides;
(2) every x ∈ Jc is a vanishing mean oscillation point of u.

The analogy with the structure of solutions with bounded variation is still not
complete; the main result of this presentation is a contribution in this direction:

Theorem 2. Let u be a bounded weak solution to (1) with finite entropy production
and J as in Theorem 1. Then

(1) the set of non-Lebesgue points of u has Hausdorff dimension at most 1
[7, 8];

(2) for every smooth entropy η the measure µη is concentrated on J [9].

The interest towards solutions with finite entropy production is motivated by
the study of the asymptotic behavior as ε → 0+ of the following functionals intro-
duced by Aviles and Giga [2]:

Fε(u,Ω) :=

∫

Ω

(
ε|∇2u|+ 1

ε

∣∣1− |∇u|2
∣∣2
)
dx, where Ω ⊂ R2.

They conjectured that limits as ε → 0 of minimizers of Fε are solutions u of the
eikonal equation |∇u| = 1 which minimize

F0(u,Ω) :=
1

3

∫

J∇u

|∇u+ −∇u−|3dH1,

where J∇u denotes the jump set of ∇u and ∇u± the corresponding traces. A first
difficulty is that we do not know if sequences of minimizers converge to solutions
u for which ∇u ∈ BV(Ω), hence it is already not trivial to give a meaning to the
definition of F0. If u solves the eikonal equation, then m := ∇⊥u =: (cos θ, sin θ)
is divergence free, namely it solves the conservation law

(3) ∂x1
cos θ + ∂x2

sin θ = 0.

The asymptotic domain of the functionals Fε is contained in the class of solutions
to (3) with finite entropy production [5] and a result analogous to Theorem 1 holds
also in this setting [3]. Moreover a functional G, coinciding with F0 for solutions
u to the eikonal equation with ∇u ∈ BV(Ω), was proposed in [1] as candidate
Γ-limit of Fε and the Γ-lim inf inequality was proved.
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In order to complete the proof of the conjecture it would be sufficient to prove:

(1) G(u,Ω) = F0(u,Ω) for all u such that ∇⊥u is a weak solution to (3) with
finite entropy production;

(2) G(·,Ω) ≥ Γ− lim supε→0 Fε(·,Ω).
Both questions are still open and the missing part for proving (1) is the analogous
of Property (2) in Theorem 2 for solutions to (3). This result is still not available,
but it can be proven in some special cases of interest, in particular for minimizers
of G(·,Ω) when Ω is an ellipse. This allows to prove that u = dist(·,Ω) is the only
minimizer of G(·,Ω) with respect to its boundary conditions and it leads to

Theorem 3 ([10]). Let Ω ⊂ R2 be an ellipse and for every ε > 0 let uε be a
minimizer of Fε(·,Ω) in the space

Λ(Ω) :=

{
u ∈ W 2,2

0 (Ω) :
∂u

∂ν
= −1 on ∂Ω

}
,

where ν denotes the outer normal to Ω. Then

lim
ε→0

uε = dist(·,Ω) in W 1,1(Ω).
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Well balancedness and error balance: observations and ideas related
to the approximation of (hyperbolic) balance laws

Mario Ricchiuto

Consider the solution of nonlinear hyperbolic balance laws written in 1D as

(1) ∂tu+ ∂xf(u) + S(u; d(x)) = 0

with some initial and appropriate boundary conditions, and with S a very general
source depending on some data d, and not only of u but also on its derivatives:
S = S(u, ∂tu, ∂xu, ∂xxu, etc; d). When approximating discretely solutions of (1)
the usual notion of consistency wrt constant u does not apply, as this is not a
relevant solution of the problem. The concept of well balanced schemes is nothing
else that an answer to this question. Relevant notions can be obtained by focusing
on particular steady (and unsteady) states. For example, defining a global flux

(2) g(u;x) = f(u) +

x∫

x0

S(u(s); d(s))ds

we can use the notion of consistency wrt constant g, which is appropriate for (1).
This notion does not necessary tells us something on the structure of u, but for
special cases if can be expressed in terms of some set of steady state physical
invariants. Very well known examples exist e.g. for the shallow water equations
(cf [2, 3] and references therein). Another issue is that the mapping g 7→ u (and
reverse) may be quite complex. Nevertheless, the explicit and consistent use of
the global flux for the definition of the numerical fluxes and of the approximation
has been shown to be very effective [2]. Note that we can go even further and set

(3) G(u;x, t) = f(u) +

x∫

x0

(S(u(s); d(s)) + ∂tu(s))ds

This will give a genuine notion of spatial consistency which encompasses all terms
in the PDE, and has potential for including propagating solutions in the picture.

This talk elaborates on several ideas to exploit and extend the above ideas. The
starting point is a well known result concerning finite volume schemes dating back
to [4]: for piecewise linear data (solution) and piecewise constant sources, assuming
that the slopes are associated to cell equilibira, and integrating the balance law
along the charactersitics provides schemes of the form

(4) ∆x
dui

dt
+φ

i+1/2
i +φ

i−1/2
i = 0 with φ

i+1/2
i +φ

i+1/2
i+1 = φi+1/2 :=

xi+1∫

xi

(∂xf+S)

The scheme of [4]corresponds to the upwind splitting φ
i+1/2
i+1 ={max(f ′,0)/|f ′|}φi+1/2.
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The scheme above is naturally consistent with a global flux formulation as
trivially

(5) φ
i+1/2
i + φ

i+1/2
i+1 = φi+1/2 :=

xi+1∫

xi

(∂xf + S) =

xi+1∫

xi

∂xg = gi+1 − gi

Defining pointwise global fluxes gi+1 = gi +
∫ xi+1

xi
S, we can recast (4) in finite

volume form

(6) ∆x
dui

dt
+ ĝi+1/2− ĝi−1/2= 0 , ĝi+1/2 = gi + φ

i+1/2
i = gi+1 − φ

i+1/2
i+1

with the second equality in the definition of the global numerical flux ĝi+1/2 a
direct consequence of the consistency condition (5).

The talk further elaborates on this analogy in two directions. The first is related
to the high order extensions of scheme (6) in space and time. Instead of introducing
a polynomial reconstruction of the global flux as in [2], we investigate the use of a
generalized notion of consistency based on (3). The definition of a numerical flux
that includes the time derivative leads to a more general prototype

(7) Ĝi+1/2− Ĝi−1/2= ∆x
d̂ui

dt
+ ĝi+1/2− ĝi−1/2= 0

which expresses a global balance of all the terms involved in the PDE, and in which
a consistent numerical time derivative appears which can be in general written as

(8) ∆x
d̂ui

dt
= ∆x

dui

dt
+
∑

j

Γj
d̂uj

dt
,
∑

j

Γj = 0

and where the Γj coefficient (or matrices depending on the numerical flux) are
error balancing terms, which improve the consistency of the scheme wrt a give
numerical flux. Starting from the upwind flux, a second and third order examples
obtained in this way are shown. The issue of marching in time (8) efficiently is
resolved either by resorting to implicit time stepping, or by a predictor corrector
iteration (see [1] and references therein)

∆x(un+1
i − un

i ) +

∫ tn+1

tn
(ĝi+1/2 − ĝi−1/2) = ∆x(u∗

i − un
i ) +

∫ tn+1

tn
(ĝi+1/2 − ĝi−1/2)

−
∫ tn+1

tn
(Ĝi+1/2 − Ĝi−1/2)

(9)

with u∗ a first order predictor obtained using a standard first order explicit Euler
time discretization of (4), and where the time integral of the spatial flux is ap-
proximated to second order as ∆t(ĝ∗ + ĝ

n)/2. Despite its apparent complexity,
when combining all the elements the corrector can be coded as

(10) un+1
i =

1

2
u∗
i +

1

2
un
i − ∆t

2∆x
(ĝi+1/2 − ĝi−1/2)

∗ −∆x ̂(u∗
i − un

i )
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which is not more expensive than a standard high order RK2 explicit method.
High order defect correction techniques can be used to go beyond second order.
Several results involving complex source terms show the capability of retaining
well balancing for very general steady as well as time dependnent problems, and
no a-priori knowledge of any invariants.

The second issue issue explored in the talk is the multidimensional case. Scheme
(4) can be written in this context as a multidimensional residual distribution, using
an appropriate fully consistent treatment of the time derivative, and explicit pre-
dictor corrector time stepping as in (10). This has bee done in several references.
For example in [3] we have shown how such method allows a well balanced treat-
ment of moving water equilibria in shallow water flows with and without friction.
The question which is addressed here is the meaning of global flux consistency in
multiple dimensions. For a conservation law

(11) ∂tu+∇ · ~f(u) + S(u; d(~x)) = 0

The natural generalization of the global flux formulation is

∂tu+∇ · (~f(u)+~σ) = 0

∇ · ~σ =S
(12)

which now is a conservation law with a solenoidal involution ! The presenta-
tion explores this aspect further for residual distribution schemes. On Cartesian
meshes, we will show an embedded compatibility with the solenoidal involution
(12), based on the use of a rewriting of nodal residual distribution schemes in a
staggered formalism with nodal unknowns, edge fluxes and cell sources. Other
avenues to embed this type of constraints are also highlighted.
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Convex limiting and entropy fixes for finite element discretizations of
hyperbolic conservation laws

Dmitri Kuzmin

(joint work with Manuel Quezada de Luna and Hennes Hajduk)

Algebraic flux correction (AFC) is a general framework for enforcing inequality
constraints in numerical methods for conservation laws [6]. In this report, we
review recent advances in the field of AFC for hyperbolic problems of the form

(1)
∂u

∂t
+∇ · f(u) = 0 in Ω× R+.

Using continuous (P1 or Q1) finite elements for discretization in space, we obtain

(2)
∑

j∈Ni

mij
duj

dt
+

∑

j∈Ni\{i}

(f(uj)− f(ui)) · cij = 0,

where mij are entries of the consistent mass matrix, cij are entries of the discrete
gradient/divergence operator, and Ni is the stencil of node i. Note that many
other space discretizations can be written in this generic form.

Since the Galerkin space discretization (2) may violate maximum principles and
entropy conditions, we replace it by the modified semi-discrete scheme [5, 6]

(3) mi
dui

dt
=

∑

j∈Ni\{i}

[dij(uj − ui)− (f(uj)− f(ui)) · cij + f∗
ij ],

where mi =
∑

j∈Ni
mij > 0 and f∗

ij is a suitably constrained approximation to

fij = mij(u̇i − u̇j) + dij(ui − uj).

The coefficients dij = max{λmax
ij |cij |, λmax

ji |cji|} are defined using the maximum
wave speed λmax

ij of the Riemann problem with the initial states ui and uj [1]. The

nodal time derivatives u̇j =
duj

dt are defined by the solution of system (2).
By construction, our AFC scheme (3) reduces to (2) for f∗

ij = fij . The choice
f∗
ij = 0 corresponds to an algebraic Lax-Friedrichs (ALF) method. Guermond and

Popov [1] proved that this “first-order” approximation to (2) is invariant domain
preserving (IDP) in the sense that the nodal values ui stay in a convex set G if all
initial values belong to this set. Moreover, the validity of a fully discrete entropy
inequality can be shown for any convex entropy pair. The crux of the proofs
presented in [1] is representation of the ALF scheme in terms of the bar states

(4) ūij =
uj + ui

2
− (f(uj)− f(ui)) · cij

2dij

such that ūij ∈ G if G is an invariant set of (1) and ui, uj ∈ G. A “second-order”
IDP scheme for general hyperbolic problems was designed in [2] using convex
limiting based on a localized flux-corrected transport (FCT) algorithm.

The monolithic convex limiting strategy that we favor in the present report
differs from FCT-like predictor-corrector approaches in that the fluxes f∗

ij are used
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to correct the right-hand side of (3) rather than a low-order solution obtained with
the ALF method. The semi-discrete IDP limiting criterion is given by [5]

(5) ūij ∈ Gi ⇒ ū∗
ij := ūij +

f∗
ij

2dij
∈ Gi,

where Gi ⊆ G is a convex set of admissible values and ū∗
ij is a flux-corrected

counterpart of the ALF bar state ūij defined by (4). Additionally, we constrain
the fluxes f∗

ij to satisfy an entropy stability condition which implies the validity

of a semi-discrete entropy inequality; see [7, 8] for details. Integration in time is
performed using a strong stability preserving (SSP) Runge–Kutta method.

Figure 1 presents the results of numerical studies for the KPP problem [4].
Extensions of monolithic convex limiting (MCL) to hyperbolic systems, high-order
finite elements, and discontinuous Galerkin methods can be found in [3, 5, 8].

(a) low-order ALF
(f∗

ij = 0)
(b) no limiting, no

entropy fix
(c) MCL without

entropy fix
(d) MCL with
entropy fix

Figure 1. Numerical solutions of the KPP problem [4] at t = 1
obtained using a uniform mesh of 2× 1282 linear elements [8].
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Consistency and Convergence of Finite Volume Methods for
Hyperbolic Balance Laws

Jiequan Li

(joint work with Matania Ben-Artzi)

This talk reports my recent works [3, 4] jointly with Matania Ben-Artzi from
Hebrew University from Jerusalem.

I want to address fundamental issues of consistency and convergence on (par-
ticularly high order) finite volume methods for hyperbolic balance laws. The talk
focuses on one-dimensional conservation laws

(1) ut + f(u)x = 0,

where u is the conservative vector, and f(u) is the associated flux density function.
The conclusions also apply to multi-dimensional cases [4]. As it is well-known that
discontinuities may be present in solutions, (1) should be understood in the weak
(distributional) sense.

Definition 1 (weak solution). Let u(x, t) ∈ L1(ℜ) ∩ L∞(ℜ). For every rectangle
Ω = [x1, x2]× [t1, t2] ⊆ ℜ×ℜ+, if there holds

(2)

∫ t2

t1

∫ x2

x1

[u(x, t)φt + f(u)(x, t)φx]dxdt = 0

for every test function φ(x, t) ∈ C∞
0 (Ω), then u(x, t) is a weak solution to (1).

Formally we use the Gauss-Green formula for (1) to obtain the integral balance
law,

(3)

∫ x2

x1

u(x, t2)dx−
∫ x2

x1

u(x, t2)dx =

∫ t2

t1

f(u(x1, t))dt−
∫ t2

t1

f(u(x2, t))dt.

But it is not obvious [6, Section 1.3]. Our first result is about the regularity of
fluxes and the validation of integral balance law (3).

Theorem 1. Let u(x, t) ∈ L1(ℜ) ∩ L∞(ℜ) be a solution of (1) in the sense of
Definition 1. Also assume that u(x, t) satisfies the following properties.

(i) u(x, t) is locally bounded in ℜ × ℜ+.
(ii) For every fixed interval [x1, x2] ⊂ ℜ the mass

(4) m(x, t) =

∫ x2

x1

u(x, t)dx

is a well-defined and continuous function of t ∈ ℜ+.

Then we have:

(i) For every fixed time interval [t1, t2] ⊂ ℜ+, the flux
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(5) g(x) =

∫ t2

t1

f(u(x, t))dt

is locally Lipschitz continuous in x ∈ ℜ.
(ii) u(x, t) satisfies the integral balance law (3) in every rectangle Ω.

This theorem actually lays the foundation of finite volume methods that are
schematically stated in the following three steps.

Finite Volume Methods.

Step 1. With the data Qn(x) in a finite subspace of a persistence space ξ ∈ V
(e.g. piecewise polynomials by WENO), approximate the flux over time
level [tn, tn+1] by a high order flow solver, e.g., using Generalized Riemann
Problem (GRP) solvers,

(6) fn,n+1

j+ 1
2

≈ 1

kn

∫ tn+1

tn

f(u(xj+ 1
2
, t))dt,

where u(x, t) be the exact solution of (1), kn = tn+1 − tn is the time
increment, x = xj+ 1

2
is a cell boundary of Ij = (xj− 1

2
, xj+ 1

2
), and mesh

size hj = xj+ 1
2
− xj− 1

2
.

Step 2. Use a full discrete finite volume formula to advance the solution from a
time level t = tn to the next time level t = tn+1,

(7) ūn+1
j = ūn

j − kn
hj

(
fn,n+1

j+ 1
2

− fn,n+1

j− 1
2

)
, ūn

j =
1

hj

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx.

Step 3. Project the solution u(x, tn+1) of (1) to obtain a “new” data Qn+1(x) in
V at the next time level t = tn+1.

Symbolically, we can write the finite volume formula in an operator form

(8) Qn+1(x) = P ◦ E ◦ A[Qn(x)],

where Qn+1(x) is the approximation of u(x, tn+1), A is the operator of the flux
approximation in Step 1, E is the evolution operator in Step 2, and P is the
projection operator in Step 3. Note that the evolution operator is exact. So the
errors of finite volume approximation come from the flux approximation A and
the data projection P . Thanks to the conservation property, the data projection
of high order a does not affect the cell average

(9)
1

hj

∫ x
j+1

2

x
j− 1

2

Qn+1(x)dx =
1

hj

∫ x
j+1

2

x
j− 1

2

u(x, tn+1)dx.

Thus the flux consistency becomes crucial and is defined below.
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Flux consistency.

The finite volume approximation (8) is consistent of order q, q > 0, with the
integral balance law (3) if for every admissible set of initial data in V , there holds,
(10)∣∣∣∣kn

[
fn,n+1

j+ 1
2

− fn,n+1

j− 1
2

]
−
∫ tn+1

tn

[
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))
]
dt

∣∣∣∣ ≤ C(kn)
2+q,

where C > 0 depends only on the persistence space V .
This concept of flux consistency is different from the classical Lax consistency

of conservative schemes in [8] that is adequate just for first order finite difference
methods [7] but not, in particular, for high order finite volume approximation.
Besides, it is important to measure the error in terms of the time increment kn
(equivalently mesh size hj), rather than local solution oscillations ∆u because there
is no control of the oscillation of solutions to hyperbolic systems (e.g. compressible
Euler equations). Most approximations uses the (exact or approximate) Godunov
flux (e.g. in semi-discrete finite volume methods), which produces errors in terms
of ∆u.

This NEW concept brings us the following observations, which are verified
through numerical experiments [9].

(I) Godunov flux.
• As initial data is piecewise constant, the order is INFINITY q = ∞;
• As initial data consists of piecewise polynomials, the order is ZERO
q = 0 if the solution is discontinuous;
• As initial data consists of piecewise polynomials, the order is ONE q = 1
if the solution is smooth.

(II) GRP flux.
• As initial data consists of piecewise polynomials, the order is ONE q = 1
if the solution is discontinuous;
• As initial data consists of piecewise polynomials, the order is TWO q = 2
if the solution is smooth.

These observations stress the important of flux approximations. The order q > 0
is indeed the necessary condition for the convergence of approximate solutions. See
below.

Lax-Wendroff type convergence.

With the aid of this consistency we can prove the following Lax-Wendroff type
convergence theorem.

Theorem 2. Assume that the finite volume approximation is consistent of order
q > 0 and {kn ↓ 0} be a decreasing sequence of time steps. Let {Υkn(x, t)}∞n be
the corresponding solutions subject to the initial data in V. Suppose that

(i) The sequence {Υkn(x, t)}∞n is uniformly bounded in L∞([0, T ], L1(ℜ)).
(ii) The sequence {Υkn(x, t)}∞n converges in C([0, T ], L1

loc(ℜ)) to a function
v(x, t) (in particular it is uniformly bounded in this space).

Then v(x, t) is a solution to the balance law (3) in ℜ× [0, T ].
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A key estimate in the proof is about total error is O(kn), which benefits from the
consistency requirement (10). Otherwise the estimate would collapse for hyper-
bolic systems (although it is still true for one-dimensional scalar equations thanks
to the BV estimate).

Godunov compatibility.

The physical admissibility (entropy stability) of the weak solution v(x, t) is always
a crucial issue. For the Godunov scheme, the cell entropy inequality is always true,
thanks to the Jensen inequality and the consistency of infinite order,

(11)

η(ūn+1
j ) ≤ 1

hj

∫ x
j+1

2

x
j− 1

2

η(u(x, tn+1))dx

≤ η(ūn
j )−

kn
hj

[
Fn

j+ 1
2

− Fn
j− 1

2

]
,

where η is the convex entropy function and F is the associated entropy flux. For
high order finite volume methods, if we solve the corresponding generalized Rie-
mann problem precisely, then we have the integral entropy inequality

(12)

∫ x
j+1

2

x
j− 1

2

η(u(x, tn+1))dx ≤
∫ x

j+ 1
2

x
j− 1

2

η(Qn(x))dx

−
∫ tn+1

tn

[
F(u(xj+ 1

2
, t))− F(u(xj− 1

2
, t))
]
dt.

Once the GRP solver [1, 2] is applied with tolerant error in (10), the entropy
production from the flux evaluation is O(k3n) that is sufficient for the estimate.
The difficulty lies the data projection, which does NOT satisfy

(13)

∫ x
j+ 1

2

x
j− 1

2

η(Qn+1(x)) ≤
∫ x

j+ 1
2

x
j− 1

2

η(u(x, tn+1))dx,

in general. Hence we have to revisit the Godunov scheme and propose the Godunov
compatibility so that the Godunov scheme is taken as the reference. Indeed, it is
well-accepted as the foundation of modern CFD.

Assumption. LetBK be the ball of radiusK > 0 and let u0 ∈ BK . The Godunov

scheme Φk,G applied to θ0,G = uk,av
0 , the cell average of u0, converges to a unique

solution of the balance law. Furthermore, if v0 ∈ BK is another initial function

and ψ0,G = vk,av
0 , then

(14) ‖Φk,Gθ0,G − Φk,Gψ0,G‖1 ≤ (1 + Ck)‖θ0,G −ψ0,G‖1,

where C > 0 depends only on K.

Definition 2. [Godunov Compatibility] The finite volume approximation Φk

(consistent of order q > 0) is compatible with the Godunov scheme if the following
conditions hold.
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(i) The finite volume approximation Φk coincides with the Godunov scheme
on piecewise constant functions; if ξ ∈ V is piecewise constant then

(15) Φkξ = Φk,Gξ.

(ii) Let H be an admissible set. Then

(16)

∫

ℜ

|Φkξ(x)− Φk,Gξk,av(x)|dx = o(k), ξ ∈ H

where o(k) is uniform for all ξ ∈ H.

Then we have the following conclusion.

Theorem 3. Assume the validity of the Assumption above and that the finite
volume approximation Φk is consistent of order q > 0 and compatible with the

Godunov scheme. Let {θ̃n}Nn=0 (N = k−1T ) be the discrete set of finite volume
solutions. Then the limit function in Theorem 2 is unique, namely, under the
hypotheses of Theorem 2 is a unique limit function for all converging subsequences.

Hence an open problem remains for the Godunov scheme: How to prove the
entropy convergence of the Godunov approximate solutions to the system of hyper-
bolic balance laws? In other words, all theoretical issues on finite volume methods
boil down to the analysis of the Godunov method [5] and the validation of the
Godunov compatibility that we address here.
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Existence and uniqueness in viscoelasticity of Kelvin-Voigt type with
nonconvex stored energy

Athanasios E. Tzavaras

(joint work with Konstantinos Koumatos, Corrado Lattanzio, Stefano Spirito)

We consider the Cauchy problem for viscoelastic materials of strain-rate type in
Lagrangean coordinates

(1) ∂tty − div(S(∇y))−∆∂ty = 0 ,

where y : (0, T ) × Td → Rd, Td is the d-dimensional torus, d = 2, 3, T > 0 is
arbitrary but finite, and with initial data

y|t=0 = y0, ∂ty|t=0 = v0 .

For this model the Piola-Kirchhoff stress tensor has the form

(2) TR = S(F ) + ∂tF , S(F ) =
∂W

∂F
(F ) .

The elastic part of the stress is given as the gradient of a strain-energy function,
S = DW , while the viscous part of the stress is linear, leading to (2). Such
constitutive relations fit under the general framework of viscoelasticity of strain-
rate type, and specifically into the class of Kelvin-Voigt type materials.

The system (1) is expressed as a hyperbolic-parabolic system,

(3)

∂tv − div(S(F ))−∆ v = 0

∂tF −∇ v = 0

curl F = 0 ,

with F = ∇y for the deformation gradient, and is supplemented with periodic
boundary conditions and initial data The constraint curl F = 0 is propagated
from the initial data F0 = ∇y0 by the kinematic compatibility equation Ft = ∇v.

The strain energy function W (F ) is in general allowed to be non-convex, and
it is assumed coercive with growth of polynomial type

(4) c(|F |p − 1) ≤ W (F ) ≤ C(1 + |F |p)

and growth conditions for its derivatives up to second order. Instead of convexity
we adopt the Andrews-Ball condition imposing monotonicity at infinity; namely,
W (F ) satisfies for R > 0

(5) (S(F1)− S(F2), F1 − F2) ≥ 0, ∀ |F1|, |F2| ≥ R ,

where (F,G) = trFGT denotes the inner product. On occasion a strengthened
version of (5) is employed, requesting that for C > 0, R > 0

(6) (S(F1)− S(F2), F1 −F2) ≥ C(|F1|p−2 + |F2|p−2)|F1 −F2|2, ∀ |F1|, |F2| ≥ R .
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The main results covered in this talk are the following:

Theorem 1. Let W satisfy (4)-(5) for p ≥ 2. For data (v0, F0) ∈ L2(Td)×Lp(Td)
with F0 = ∇ y0 a.e. in Td there exists a weak solution

(v, F ) ∈ L∞(0, T ;L2(Td)) ∩ L2(0, T ;H1(Td))× L∞(0, T ;Lp(Td))

satisfying the weak form of the equations (3) and the energy inequality

(7)

∫ |v|2
2

+W (F ) dx+

∫ t

0

∫
|∇ v|2 dxds ≤

∫ |v0|2
2

+W (F0) dx.

Moreover:
(i) If F0 ∈ H1(Td) then F ∈ L∞(0, T ;H1(Td)).
(ii) If F0 ∈ H1(Td) and Hypothesis (6) holds, then

(8) F ∈ L∞(0, T ;H1(Td)) ∇|F | p2 ∈ L2(0, T ;L2(Td)).

(iii) For weak solutions of class F ∈ L∞(0, T ;H1(Td)), if the dimension d = 2
and p ≥ 2 or d = 3 and 2 ≤ p ≤ 4, then (v, F ) verifies the energy identity

(9)

∫ |v|2
2

+W (F ) dx+

∫ t

0

∫
|∇ v|2 dxds =

∫ |v0|2
2

+W (F0) dx.

The proof is based on an a-priori estimate showing transfer of dissipation for
initial data F0 ∈ H1(Td) and for stored energies satisfying the hypotheses (5)
or (6) in conjunction with an idea developed in [1] that shows propagation of
compactness for the system (3), see [2].

By contrast, for (3) in one-space dimension with non-monotone stress, a se-
quence of exact solutions is constructed emanating from oscillating initial data
and such that the oscillations propagate and produce sustained oscillations.

On the issue of uniqueness in two-space dimensions we prove:

Theorem 2. Let p ≥ 2 and d = 2 and assume W satisfies (4), (6) and the
growth condition |D2W (F )| ≤ C(1 + |F |s) for some p − 2 ≤ s < p. Then, for
(v0, F0) ∈ L2(T2)×H1(T2) the weak solution in Theorem 1 is unique.
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On the sticky particle solutions to the multi-dimensional pressureless
Euler equations

Stefano Bianchini

(joint work with Sara Daneri)

We consider the pressureless Euler system in [0, T ]× Rd

(1)

{
∂tρ+ div(ρv) = 0

∂t(ρv) + div(ρv ⊗ v) = 0,

where ρ is the distribution of particles and v is their velocity.
Such a model has been proposed by Zeldovich [16] as a simplified model for the

early stages of the formation of galaxies, when a dust of particles moving without
pressure should start to collide and aggregate into bigger and bigger clusters.

Since then, several authors devoted attention to the search of sticky particle
solutions, namely solutions to (1) which satisfy the following adhesion principle:
if two particles of fluid do not interact, then they move freely keeping constant
velocity, otherwise they join with velocity given by the balance of momentum.

The great majority of the results in the literature (see e.g. [2, 3, 5, 7, 8, 9, 10,
11]) are concerned with the one-dimensional pressureless dynamics. In this case,
exploiting the density of finite particle solutions, one can obtain from quite general
initial data a global measure solution of (1) satisfying a suitable entropy condition
(see [7] and independently [8]).

In general dimension, much less is known. For initial data given by a finite
number of particle pointing each in a given direction, it is easy to show that a
global sticky particle solution always exists and is unique. However, in dimension
d ≥ 2, one sees immediately already from a finite number of particles that the
sticky particle solutions do not depend continuously on the initial data.

In [4] it is shown that, in general, both existence and uniqueness might fail: it
is indeed possible to build initial data of non-existence or non-uniqueness for the
sticky particle solutions, in contrast to what had been erroneously stated in [14].

In [6] measure valued solutions to (1) on a compactification of the state space
have been constructed for general initial data as limits of variational in time dis-
cretizations.

Thus the natural question of whether one can still find particle solutions for a
large class of data (hence excluding the counterexamples in [4]) remained unan-
swered. In this paper we give a positive answer to this question.

We consider the problem of existence and uniqueness in a larger class of solutions
which we call dissipative since in particular their kinetic energy is decreasing but
their trajectories might cross without joining at later times. By free flow we mean
a flow in which trajectories are disjoint straight lines which never intersect.

Our main result is the following:

Theorem 1. There is a set D0 ⊂ P2,1(R
d ×Rd) such that, for any ν0 ∈ D0 there

exists a unique dissipative solution η with initial data ν0 and it is given by a free
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flow. Such a set is a dense Gδ set (i.e. of second category) in the weak topology
on P2,1(R

d × Rd).

Since our notion of dissipative solution includes the classical sticky particle
solutions, the above theorem implies that, even though the sticky particle solutions
are not well-posed for every measure-type initial data, there exists a comeager set
of initial data in the weak topology giving rise to a unique sticky particle solution.
Moreover, for any of these initial data the sticky particle solution is unique also in
the larger class of dissipative solutions (where trajectories are allowed to cross) and
is given by a trivial free flow concentrated on trajectories which do not intersect.
In particular for such initial data there is only one dissipative solution and its
dissipation is equal to zero. Thus, for a comeager set of initial data the problem
of finding sticky particle solutions is well-posed, but the dynamics that one sees is
trivial.
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The Active Flux Method for Hyperbolic Problems: A review of the
method and recent results of our group

Christiane Helzel

(joint work with Erik Chudzik, David Kerkmann)

Recently, Eymann and Roe [4] proposed a new numerical method for hyperbolic
conservation laws, the so-called Active Flux method. While the Active Flux
method is a finite volume method, it is based on the use of cell average values
as well as point values of the conserved quantities. The point values are located
at the grid cell boundaries and are used both for the flux computation as well as
for the reconstruction. In it’s original form the method is third order accurate.
This is achieved by using a continuous, piecewise quadratic reconstruction and the
use of Simpson’s rule for the flux computation. The flux computation requires
point values of the conserved quantities at all the nodes of Simpson’s rule. The
computation of these point values plays a crucial role. Eymann and Roe suggested
to use exact evolution formulas which are available for advection and acoustics.
Other approximative approaches for the computation of point values, which can
also be used for nonlinear problems, have been discussed in [1] and [5].

An important property of the Active Flux method is it’s local stencil in space
and time. While a DG method for example also uses a local stencil in space, the
Runge-Kutta time discretisation increases the stencil. According to Roe [7], this
increased stencil might be responsable for the loss of stability typically observed
in higher order DG methods. The Active Flux method does not suffer from such a
severe loss of stability. We investigated the linear stability of the two-dimensional
Active Flux method, for details see [3]. For the advection equation we found that
stability for time steps corresponding to CFL ≤ 1 can only be obtained if the
numerical fluxes are computed exactly. If Simpson’s rule is used instead, then the
method requires slightly smaller time steps. For the acoustic equations we observed
stability for CFL ≤ 1/2. This is the optimal stability limit since the method was
constructed in such a way that acoustic waves are allowed to propagate at most
through half a grid cell.

Currently we investigate the use of the Active Flux methods on Cartesian grids
with cut cells and on adaptively refined Cartesian grids. In both situations we
benefit from the local stencil of the Active Flux method.

1. Large Time Step Stability and Construction of Cartesian Grid

Embedded Boundary Methods

Cartesian grid cut cell methods allow the approximation of hyperbolic problems
in complicated geometries. This approach cuts solid bodies out of a background
Cartesian mesh. Away from the boundary a regular Cartesian grid is used but
near the boundary cut cells might be orders of magnitude smaller than regular
cells. Existing cut cell approaches require some form of stabilisation in order to
allow time steps which are governed by a stability condition for the regular part of
the domain. For a one-dimensional test situation the continuous reconstruction of
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the Active Flux method and the use of an exact evolution formula for the update
of the point values lead to a third order accurate approximation which is stable
with regard to time steps determined by the regular part of the grid. If Simpson’s
rule is used instead then the accuracy near the cut cell is reduced to second order
while stability is maintained. The same stability is observed in two-dimensional
computations. However, for arbitrary cut cell constellations we observe a reduction
of the accuracy along the boundary to second order. Preliminary results can be
found in [6].

2. Adaptive Mesh Refinement in Cartesian Grid Active

Flux Methods

Together with Donna Calhoun from Boise State University, the main developer
of the ForestClaw software [2], we currently investigate the use of the Active
Flux method on a hierarchy of Cartesian grids with different refinement. The
local stencil of the Active Flux method simplifies the exchange of data between
neighbouring grid patches. Furthermore, the reconstruction used by the Active
Flux method can directly be used to carry out the transition from coarse to fine
grids. Our preliminary results confirm that the Active Flux method retains its
third order accuracy on such adaptively refined grids.
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Hyperbolic Transport across Fluidic Interfaces

Christian Rohde

The dynamics of compressible two-phase flow can be described by diffuse-interface
models as alternatives to classical sharp-interface approaches. Typically, these
systems are extensions of the Euler/Navier-Stokes equations but exhibit structural
changes that render standard numerical methods for these hyperbolic(-parabolic)
systems to be inadequate. In this short note we consider as particular instance
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the Navier-Stokes-Korteweg (NSK) equations for isothermal flow, and report on
approximations that can be accessed by hyperbolic techniques again. We focus on
the verification of a discrete energy inequality for a finite-volume (FV) method.

Let a fluid in d-dimensional domain D be given which can appear in a liquid
and a vapour phase. For fixed temperature and density ρ > 0 let p = p(ρ) be the
non-monotone (Van-der-Waals-like) pressure which is related to the Helmholtz free
energy W = W (ρ) by p(ρ) = −W (ρ)+ρW ′(ρ). The phases are identified with the
monotone-increasing branches of p. As approximations of the classical third-order
Navier-Stokes-Korteweg system (see e.g. [2]) relaxed versions have been suggested,
for a survey see [4]. Let a kernel K : Rd → [0,∞) be given and define the scaled
version

Kα(x) = α−d

2K
(√

αx
)

(α > 0).

With the unknowns density ρα = ρα(x, t) > 0, and velocity field vα = vα(x, t) ∈
Rd the relaxed approximations write as

(1)
ραt + ∇ · (ραvα) = 0,

(ραvα)t + ∇ · (ραvα ⊗ vα + pα(ρ
α)I) = ∇ · T [vα] + αρα∇(Kα ∗ ρα)

in (0, T )×D for T > 0. In (1), T denotes the viscous part of the stress tensor and
pα(ρ) = p(ρ) + ρ2/2.

The system (1) is thermodynamically consistent in the sense that smooth solu-
tions satisfy for e.g. v(t, ·) ≡ 0 on ∂D the energy inequality

(2)

d

dt

∫

D

(
W (ρα(t,x)) + α

∫

D

Kα(x− y)
(
ρα(t,x)− ρα(t,y)

)2
dy

+
1

2
ρα(t,x)|vα(t,x)|2

)
dx ≤ 0.

For appropriate kernel functions K, it can expected that one recovers the classical
NSK system in the limit α → ∞.

Numerical discretisations of (1) target at a discrete counterpart of (2). For hy-
perbolic systems that are equipped with a strictly-convex entropy, Tadmor has sug-
gested entropy-conservative schemes in [6] that base on numerical fluxes in terms
of the entropy variables. In fact, the lefthand-side operator in (1) corresponds to a
hyperbolic system with convex entropy if α > max{−W ′′(r) | r > 0} holds. We re-
strict ourselves to the case d = 1, D = R, and set T ≡ 0. Let g∗ = (g∗1 , g

∗
2)

T ∈ R2

denote some Tadmor (numerical) flux for the flux on the lefthand-side in (1).
For uniform mesh width ∆x > 0 and t > 0 let u∆x(t) : R → R2 denote the
FV approximation that is assembled from the cell averages {uj(t)}j∈Z

. With

g∗
j+ 1

2

(t) = g∗(wj(t),wj+1(t)) (w = (w1, w2)
T ∈ R2 being the tranformed entropy

variable of the conservative variable u = (ρ, ρv)T ), the FV method is then given
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by

(3)

u′
j(t) +

1

∆x

(
g∗
j+ 1

2

(t)− g∗
j− 1

2

(t)
)

= α




0

h∗
j+ 1

2

(t)
(Kα ∗ ρ)∆x(t,xj+1)− (Kα ∗ ρ)∆x(t,xj)

∆x


 .

In (3), the operator (·)∆x denotes a discrete convolution and h∗(t) : R2 → R is
supposed to be a consistent approximation of the density. We have set h∗

j+ 1
2

(t) =

h∗(wj(t),wj+1(t)). For regular kernels K, the discrete convolution and h∗ can be
chosen such that the FV method (3) is conservative and satisfies a discrete entropy
relation. Precisely, we have (see [4, 5] for special cases)

Theorem 1. There is a Tadmor flux g∗ with the property

h∗(w, w̃)w2 = g∗1(w, w̃) ∀w, w̃ ∈ R2,

which implies that the semi-discrete FV method (3) for (1) is entropy conservative,
i.e.,

d

dt

∑

j∈Z

∆x

(
W
(
ρj(t)

)
+
∑

k∈Z

∆x
(
Kα(xj − xk)

(
ρj(t) − ρk(t)

)2)
+

ρj(t)v
2
j (t)

2

)
= 0.

Using straightforward discretisations of T one obtains the discrete counterpart
of (2). The result can be generalised to arbitrary space dimensions and standard
meshes using FV discretisations. The generalisation to higher-order methods like
the ones used in e.g. [1, 3, 5] remains an open problem. However, numerical
experiments indicate that the use of the Tadmor fluxes leads to monotone decaying
discrete energies in relevant two-phase flow regimes.
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