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Abstract. The leading theme of the meeting was to understand nonposi-
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Introduction by the Organizers

The online workshop Nonpositively Curved Complexes, organised by Damian Os-
ajda (Wroc law), Piotr Przytycki (Montreal), and Petra Schwer (Magdeburg) was
attended with 17 participants from Australia, the United States, Canada, and 5
countries in Europe: France, Germany, Poland, Switzerland, United Kingdom.
The main area of the subjects of the talks and topics discussed were a broadly
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understood Geometric Group Theory, and the main fields of expertise of the par-
ticipants were mostly closely related to this. However, the workshop was a nice
blend of researchers with various backgrounds, including: Algebraic Geometry,
Metric and Algorithmic Graph Theory, K-theory, Convex and Discrete Geometry,
as well as Differential Geometry.

The spine of the workshop were 11 online talks, each lasting 30 minutes, usually
not disturbed by questions, and followed only by very few end remarks. Most of
the activity was concentrated in the follow-up discussion sessions. There were 7
of them, with topics related to preceding talks, but often extending to other talks
as well, or beyond. The lengths of the sessions varied from one hour to above
two hours, and were determined by the needs of participants and according to
their activity and suggestions. Similarly, forms of various sessions were different,
and shaped on the fly by participants. During such sessions, the speakers of the
preceding talks were asked to explain some details of proofs, or to broaden the
context. Particular emphasis was set on formulating open questions in the area
by both, the speaker and other experts. The list of such questions is a part of the
current report. There were vivid discussions on some questions, and few of hastily
formulated ones have been already answered, and do not appear on the list. The
discussions were held also outside the official schedule, via emails and other forms
of private communication. Additionally, there was a welcome session on Monday
evening, and a farewell session on Friday evening, both less formal, and more for
socializing purposes. Still, both of them included vivid mathematical discussions.
Because of the online format, and the attendance of persons from 3 continents in 3
different time zones the talks and other activities were organized, roughly, in three
time slots: one for Europe together with North America, one Europe-Australia
slot, and one slot available for everyone. There were four sessions, consisting of
talks and the following discussions within the Europe-North America slot; three
in the Europe-Australia one. The welcome session and the farewell session were
held in the slots available for everyone (Europe’s late evening).

The unifying theme of research of all the participants, and the main subject
of the workshop were nonpositively curved complexes and groups of their auto-
morphisms. Below, we describe briefly the content of the 11 scheduled 30 minutes
talks.

Urs Lang (Zurich) presented motivations and tools coming from metric and
convex geometry, focusing on the notion of spaces with geodesic bicombings as
examples of a weak notion of nonpositive curvature. He and collaborators have
recently developed a theory of such spaces and initiated studies of groups acting on
them. Jérémie Chalopin (Marseille) turned towards a combinatorial counterpart
of injective metric spaces, being examples of spaces with geodesic bicombings –
towards Helly graphs. This is a classical family of graphs but only recently it has
been realised that many groups appearing in the scope of geometric group theory
act nicely on such graphs, and that such actions provide a lot of useful informa-
tion on the groups. In particular, Thomas Haettel (Montpellier) presented new
examples of groups acting geometrically on injective metric spaces and on Helly
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graphs, within automorphism groups of buildings and symmetric spaces. On the
other side, Nima Hoda (Paris) presented his recent results showing that the crys-
tallographic groups are Helly if and only if they are cocompact cubical providing,
in particular, examples of CAT(0) biautomatic (in fact, Coxeter) groups that are
not Helly. Alexandre Martin (Edinburgh) talked about applying tools of nonpos-
itive curvature in the realm of Artin groups. It is believed that all Artin groups
are CAT(0), but there are currently other nonpositive curvature techniques being
used successfully to explore this notoriously resistant class of groups. Elia Fio-
ravanti (Bonn) worked with one such recent notion – coarse-median structure –
studying subgroups fixed by coarse-median preserving automorphisms. Motiejus
Valiunas (Wroc law) showed that groups hyperbolic relatively to Helly groups are
Helly. Anne Lonjou (Orsay) explained a recent construction of a CAT(0) cubical
complex on which the Cremona group of rank 2 acts. Anne Thomas (Sydney) pre-
sented a proof of the fact that locally elliptic actions of finitely generated groups on
some 2-dimensional buildings have global fixed points. Alexander Engel (Münster)
described a construction of boundaries of groups, generalising Gromov and visual
CAT(0) boundaries. Olga Varghese’s (Münster) talk concerned the question of
continuity of abstract homomorphisms from locally compact groups into groups of
isometries of CAT(0) spaces.

The subjects of the 7 discussion sessions were chosen to be related to the pre-
ceding talks. A session on spaces with geodesic bicombings and Helly graphs was
held on Monday. A session on Artin groups – but including a vivid discussion on
buildings and symmetric spaces – took place on Tuesday. On Wednesday there was
a morning Europe-Australia session on coarse median structures, relative hyper-
bolicity, and related topics, as well as an afternoon Europe-North America session
on the Cremona group. Thursday’s session concentrated around the question of
fixed point properties of group actions on CAT(0) spaces, with a bit of boundaries
topics. On Friday there was a morning session on locally compact groups and
their abstract actions, and an afternoon session on Helly groups. The discussion
sessions resulted in a number of open questions (and, already, some answers), that
are presented within this report.

Finally we would like to thank the staff at Oberwolfach, in particular the IT
group. They set up all the necessary technology and helped to make the workshop
and the recording of the talks a smooth process.

Overall it is to say that the workshop, despite difficulties with time zones and
general restrictions due to the online format, provided a very stimulating atmo-
sphere and sparked many new discussions among various subgroups of the par-
ticipants. The ongoing scientific exchange between the participants will certainly
lead to new developments in the field.

We collect below the open problems collected and raised during this workshop.

Discussion session on spaces with bicombings and Helly graphs:

(1) Does every metric space with a bicombing also admit a convex bicombing?
(2) Does every metric space with a convex bicombing also admit a consistent

bicombing?
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(3) The construction of a reversible and equivariant bicombing on an injective
metric space X uses the canonical embedding X = E(X) → ∆(X) and a
canonical retraction ∆(X) → E(X). Can one get more information from
this construction? Is the bicombing already convex, or consistent?

(4) A compact metric space may admit different convex bicombings. What
about consistent bicombings?

(5) Is every group acting geometrically on an injective space Helly?
(6) Is there a CAT(0) group not acting on a (poly-) simplicial complex?
(7) Are groups acting geometrically on injective spaces biautomatic?
(8) Is there a connection between modular lattices and Helly graphs?
(9) Is there a notion of a modular hull of a graph?

Discussion session on Artin groups, and symmetric spaces, and buildings:

(1) Are 2-dimensional Artin groups of hyperbolic type virtually Helly?
(2) Which Artin groups act properly on CAT(0) cube complexes?
(3) Are parabolic subgroups of Artin groups stable under intersection?
(4) Is the complex of all proper parabolic (two dimensional) Artin subgroups

NPC (in any sense)?
(5) Is AΓ Helly, for Γ being the complete graph on 3 vertices with all labels

equal to 3?
(6) Are all 2-dimensional Artin groups systolic?
(7) For Artin groups: is reducible equivalent to decomposition as a direct

product?
(8) Are Artin groups hierarchically hyperbolic? Are dihedral Artin groups

hierarchically hyperbolic?
(9) Are there non-Helly groups acting geometrically on coarse Helly graphs?

(10) Are uniform lattices in SLn(K) injective?
(11) Are uniform lattices in GLn(K) Helly?
(12) What is the injective hull of GLn(R)/O(n)?
(13) What is the injective hull of the hyperbolic plane?
(14) Which Coxeter groups can be realized as reflection groups in an injective

metric space?

Discussion session on “beyond hyperbolicity”.

(1) Does there exist a group acting geometrically on a coarse Helly graph that
is not Helly?

(2) Which Artin groups are coarse median?

Discussion session on Cremona group:

(1) Consider a finitely generated subgroup G of the Cremona group such that
each of its elements is regularizable. Does this imply that G is regulariz-
able?

(2) When do locally elliptic actions on infinite dimensional CAT(0) cube com-
plexes have global fixed points?
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Discussion session on group actions and fixed points, and on boundaries:

(1) Does every locally elliptic action of a finitely generated group on a finite
dimensional CAT(0) space have a global fixed point? In particular, does
it hold in the case of Euclidean buildings (of arbitrary dimension)?

(2) Does every locally elliptic action of a finitely generated group on a finite
dimensional Helly complex have a global fixed point?

(3) Do central extensions of hyperbolic groups admit coherent and expanding
combings?

(4) How to construct an automatic group which does not admit an expanding
combing?

(5) Are the automatic structures on: Artin groups of finite type, mapping
class groups, groups acting geometrically and in an order preserving way
on Euclidean buildings of type Ãn, B̃n or C̃n expanding?

Discussion session on actions of locally compact groups:

(1) Are irreducible lattices in products of (two) trees finitely generated?
(2) Are non-uniform lattices in (2-dimensional) right-angled-hyperbolic build-

ings finitely generated?
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Abstracts

Spaces with convex bicombings: a survey

Urs Lang

For the purpose of this survey, a bicombing σ on a metric space (X, d) is a map
σ : X × X × [0, 1] → X such that σxy := σ(x, y, ·) : [0, 1] → X is a (minimizing)
constant speed geodesic from x to y and

d(σxy(t), σx′y′(t)) ≤ (1 − t) d(x, x′) + t d(y, y′)

whenever (x, y), (x′, y′) ∈ X × X and t ∈ [0, 1]. (In [5], this is called a conical
geodesic bicombing.) A convex bicombing satisfies the stronger condition that the
functions t 7→ d(σxy(t), σx′y′(t)) are convex on [0, 1], and a bicombing σ is called
consistent if σpq is a (reparametrized) subsegment of σxy whenever p and q occur
in this order on σxy. Every consistent bicombing is convex. Thus, for a geodesic
metric space X , the following conditions satisfy (A) ⇒ (B) ⇒ (C) ⇒ (D) ⇒ (E):

(A) X is a CAT(0) space;
(B) X is a Busemann space;
(C) X admits a consistent bicombing;
(D) X admits a convex bicombing;
(E) X admits a bicombing.

If X is uniquely geodesic, then (E) ⇒ (B). If X is a normed real vector space,
then (A) holds if and only if the norm is induced by an inner product, (B) holds
if and only if the norm is strictly convex, and (C) is always satisfied, for σxy(t) :=
(1 − t)x + ty. Even if the underlying metric space is compact, an individual
bicombing may fail to be convex [5, Example 2.2], and a convex bicombing need
not be consistent [2, Theorem 1.1]. However, the implication (E) ⇒ (D) holds if
X is proper [5, Theorem 1.1], and (D) ⇒ (C) holds if X has finite combinatorial
dimension in the sense of Dress [7] (see below). In fact, in the latter case, any
convex bicombing σ on X is necessarily unique, consistent, satisfies the reversibility
condition σyx(t) = σxy(1 − t), and is equivariant with respect to any isometry
γ of X , thus γ ◦ σxy = σγ(x)γ(y) for all (x, y) ∈ X × X [5, Theorem 1.2]. It
is unkown whether (E) ⇒ (D) or (D) ⇒ (C) in general. The assumption of
finite combinatorial dimension is rather restrictive, but the result still covers, for
example, injective hulls of hyperbolic groups, as discussed below. Uniqueness of
convex bicombings may fail on compact (infinite dimensional) metric spaces [5,
Example 3.5]. On the other hand, if E is a dual or injective Banach space and
C ⊂ E is a closed convex subset with non-empty interior, then the only consistent
bicombing on C is the linear one [2, Theorem 1.5]. Every complete metric space
with a bicombing also admits a reversible bicombing [2, Proposition 1.3].

A source of bicombings is the fact that if X̄ is a metric space with a bicombing
σ̄ (for example, a Banach space), and if π : X̄ → X is a 1-Lipschitz retraction onto
some subset X , then σ := π ◦ σ̄|X×X×[0,1] is a bicombing on X [5, Lemma 2.1].
There is also a more intrinsic view. A metric space X is an absolute 1-Lipschitz
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retract if for every isometric embedding i : X → Y into another metric space
there is a 1-Lipschitz retraction π : Y → i(X). Equivalently, X is an injective
metric space, i.e., for every metric space B and every 1-Lipschitz map f : A → X
defined on a subset of B there exists a 1-Lipschitz extension f̄ : B → X of f
(in other words, X is an injective object in the metric category with 1-Lipschitz
maps as morphisms). Basic examples include R, all l∞ spaces, complete (R-)trees,
as well as l∞ products of injective metric spaces. However, this list is by far
not exhaustive. Isbell [9] showed that every metric space X has an essentially
unique injective hull (e, E(X)). This means that E(X) is an injective metric space,
e : X → E(X) is an isometric embedding, and every isometric embedding of X
into some injective metric space factors through e. Briefly, the construction starts
from the set ∆(X) of all functions f : X → R satisfying f(x)+f(y) ≥ d(x, y) for all
x, y ∈ X , and E(X) is the subset of all pointwise minimal (“extremal”) functions,
equipped with the supremum distance. The isometric embedding e takes x to the
distance function dx. Isbell’s construction was rediscovered and further explored
by Dress [7], who also exhibited a canonical retraction ∆(X) → E(X). This can
be used to equip E(X), and hence every injective metric space, with a reversible
and equivariant bicombing [10, Proposition 3.8]. For a finite metric space V ,
the injective hull E(V ) is a finite polyhedral complex of dimension at most 1

2#V
with l∞ metrics on the cells. The combinatorial dimension of a metric space
X is defined as the supremum of dim(E(V )) over all finite subsets V . If X is a
proper injective metric space of finite combinatorial dimension, then it follows from
the aforementioned results that X possesses a unique convex bicombing which is
furthermore consistent, reversible, and equivariant.

A remarkable property of the operator X 7→ E(X), observed in [8], is that it
preserves δ-hyperbolicity (δ ≥ 0), defined via the four point condition

d(w, x) + d(y, z) ≤ max{d(w, y) + d(x, z), d(x, y) + d(w, z)} + δ.

This provides a most efficient way to embed a general δ-hyperbolic space X into
a complete, geodesic, and contractible δ-hyperbolic space with a reversible and
equivariant bicombing. Furthermore, if X is itself geodesic or if X is the vertex
set of a connected graph with the canonical metric, then E(X) is within distance
at most δ or δ + 1

2 , respectively, of the image of e [10, Proposition 1.3]. For the
vertex set X of a connected δ-hyperbolic graph with uniformly bounded valence,
the injective hull E(X) is proper and has a polyhedral structure with only finitely
many isometry types of (l∞) cells; in particular E(X) has finite combinatorial
dimension [10, proof of Theorem 1.1]. It follows that every hyperbolic group acts
geometrically on a proper metric space with a consistent, reversible and equivariant
bicombing [10, Theorem 1.4].

There are also analogues of the flat plane and flat torus theorems for CAT(0)
spaces in the present context. Let X be a proper metric space with a consistent
and reversible bicombing σ. If the isometry group of X is cocompact, then X is
hyperbolic if and only if X does not contain an isometrically embedded normed
plane [6, Theorem 1.1]. If Γ is a group acting geometrically on X and σ is Γ-
equivariant, then every isometry in Γ has either a fixed point or a σ-axis (with all
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compact subsegments determined by σ), and if Γ has a free abelian subgroup A of
rank n ≥ 1, then X contains a normed n-plane on which A acts by translations [6,
Proposition 5.5 and Theorem 1.2]). These results were partly extended to general
bicombings in [4]: if a proper and cocompact metric space X with a bicombing
admits a quasi-isometric embedding of Rn, then X also contains a normed n-plane.
Much of this is based on an averaging process, discussed next.

Every complete metric space X with a bicombing admits a 1-Lipschitz bary-
center map β : P1(X) → X taking each Dirac mass δx to the corresponding point
x ∈ X , where P1(X) is the space of Borel probability measures µ on X with
∫

X
d(x0, x) dµ(x) < ∞ for some x0 ∈ X , equipped with the L1 Wasserstein or

Kantorovich–Rubinstein metric. The construction of β goes back to Es-Sahib and
Heinich for Busemann spaces and was further developed by Navas, Descombes, and
Basso (see [1]). Conversely, any contracting barycenter map β on a metric space X
provides a reversible bicombing, defined by σxy(t) := β((1−t)δx+tδy). Barycenters
are intimately related to fixed point properties. Unlike for CAT(0) spaces or
injective metric spaces (compare [10, Proposition 1.2]), a group of isometries with
bounded orbits on a Busemann space may fail to have a global fixed point [1,
Section 2]. However, if X is a complete metric space with a semigroup Γ of
isometries leaving a non-empty compact subset K invariant, and if X possesses a
Γ-equivariant reversible bicombing σ, then Γ has a global fixed point in the closed
σ-convex hull of K [1, Theorem 1.1]. More recently, Creutz [3] used the barycenter
method to establish a sharp isoperimetric inequality: in a complete metric space
X with a bicombing, every closed curve of length L possesses a disk filling with
2-dimensional Hausdorff measure at most 1

2πL
2.
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Helly Graphs

Jérémie Chalopin

(joint work with Victor Chepoi, Anthony Genevois, Hiroshi Hirai,
Damian Osajda)

A geodesic metric space is injective if any family of pairwise intersecting balls
has a non-empty intersection [1]. Injective metric spaces appear independently
in various fields of mathematics and computer science: in topology and metric
geometry – also known as hyperconvex spaces or absolute retracts (in the category
of metric spaces with 1-Lipschitz maps); in combinatorics – also known as fully
spread spaces ; in functional analysis and fixed point theory – also known as spaces
with binary intersection property; in theory of algorithms – known as convex hulls,
and elsewhere. They form a very natural and important class of spaces and have
been studied thoroughly. The distinguishing feature of injective spaces is that
any metric space admits an injective hull, i.e., the smallest injective space into
which the input space isometrically embeds; this important result was rediscovered
several times in the past [9, 7, 6].

A discrete counterpart of injective metric spaces are Helly graphs – graphs in
which any family of pairwise intersecting (combinatorial) balls has a non-empty in-
tersection. Again, there are many equivalent definitions of such graphs, hence they
are also known as e.g. absolute retracts (in the category of graphs with nonexpan-
sive maps) [2, 3, 10, 13, 11, 12]. We are interested in the nonpositive-curvature-like
properties of Helly graphs and of the associated Helly complexes (given a Helly
graph, its clique complex is the corresponding Helly complex).

1. Helly graphs

The following result is well known, see [10, 11, 12], and is the discrete counterpart
of Isbell’s Theorem about injective metric spaces [9]:

Theorem 1. For any graph G, there exists a smallest Helly graph into which G
is isometrically embedded. This graph is the Hellyfication of G, and is contained
as an isometric subgraph in any Helly graph G′ containing G as an isometric
subgraph.

From this theorem, one can see that any graph can appear as an isometric
subgraph in a Helly graph. Consequently, one cannot define Helly graphs by local
conditions, such as forbidden subgraphs for example.

However, assuming that the clique complex X(G) of G is simply connected, we
established that Helly graphs can be characterized by local conditions, establishing
a local-to-global characterization of Helly graphs.

A family of subsets F of a set V satisfies the Helly property if for anysubfamily
F ′ of F , the intersection

⋂
F ′ =

⋂
{F : F ∈ F ′} is non-empty if and only if

F ∩F ′ 6= ∅ for any pair F, F ′ ∈ F ′. Hence a Helly graph G is a graph in which its
family of balls B(G) = {Bk(v) : v ∈ V (G), k ∈ N} satisfies the Helly property. A
graph G is a 1–Helly graph if its family of ball of radius 1 B1(G) = {B1(v) : v ∈
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V (G)} satisfies the Helly property. A clique-Helly graph is a graph G in which
its family of maximal cliques satisfies the Helly property. Observe that 1-Helly
and clique-Helly graphs are defined by local conditions and that a Helly graph is
1-Helly and that a 1-Helly graph is a clique-Helly graph.

A graph is weakly modular if it satisfies the following two distance conditions
(for every k > 0):

• Triangle condition (TC): For any vertex u and any two adjacent vertices
v, w at distance k to u, there exists a common neighbor x of v, w at distance
k − 1 to u.

• Quadrangle condition (QC): For any vertices u, z at distance k and any
two neighbors v, w of z at distance k − 1 to u, there exists a common
neighbor x of v, w at distance k − 2 from u.

Observe that Helly graphs are weakly modular (by considering appropriate balls
centered at u, v, w).

A vertex x of a graph G is dominated by another vertex y if the unit ball B1(y)
includes B1(x). A graph G is dismantlable if its vertices can be well-ordered ≺ so
that, for each v there is a neighbor w of v with w ≺ v which dominates v in the
subgraph of G induced by the vertices u � v.

Here is the local-to-global characterization we established for Helly graphs:

Theorem 2 ([5]). For a graph G, the following conditions are equivalent:

(i) G is Helly;
(ii) G is a weakly modular 1–Helly graph;

(iii) G is a dismantlable clique-Helly graph;
(iv) G is clique-Helly with a simply connected clique complex.

Moreover, if the clique complex X(G) of G is finite-dimensional, then the condi-
tions (i)-(iv) are equivalent to

(v) G is clique-Helly with a contractible clique complex.

For finite graphs, the equivalences (i) ⇐⇒ (ii) and (i) ⇐⇒ (iii) were
establised respectively in [2] and [3]. The implication (iii) =⇒ (iv) is trivial. We
established the implication (iv) =⇒ (ii) by constructing the universal cover of
the clique complex X(G) a clique-Helly graph G and establishing its properties
inductively during the construction.

2. Helly Groups

A group is Helly if it acts geometrically on a Helly graph (necessarily, locally
finite). Examples of Helly groups include (Gromov) hyperbolic groups, CAT(0)
cubical groups, finitely presented C(4)-T(4) small cancellation groups. It was also
shown recently in [8] that FC-type Artin groups and weak Garside groups of finite
type are Helly.

We established several properties satisfied by Helly groups as shown in the
following theorem.
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Theorem 3 ([4]). Let Γ be a group acting geometrically on a Helly graph G, that
is, Γ is a Helly group. Then:

(1) Γ is biautomatic.
(2) Γ has finitely many conjugacy classes of finite subgroups.
(3) Γ is (Gromov) hyperbolic if and only if G does not contain an isometrically

embedded infinite ℓ∞–grid.
(4) The clique complex X(G) of G is a finite-dimensional cocompact model

for the classifying space EΓ for proper actions. As a particular case, Γ is
always of type F∞; and of type F when it is torsion-free.

(5) Γ acts geometrically on a proper injective metric space, and hence on a
metric space with a convex geodesic bicombing.

(6) Γ admits an EZ-boundary ∂G.
(7) Γ satisfies the Farrell-Jones conjecture with finite wreath products.
(8) Γ satisfies the coarse Baum-Connes conjecture.
(9) The asymptotic cones of Γ are contractible.
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Injective metrics, symmetric spaces and buildings

Thomas Haettel

We are interested in group actions on Helly graphs and injective metric spaces. Re-
call that a geodesic metric space is called injective if the family of closed balls sat-
isfies the Helly property: any family of pairwise intersecting balls has a non-empty
global intersection, see for instance [Lan13]. A graph is called Helly if the family
of combinatorial balls satisfies the Helly property, see for instance [CCG+20].

A group is called:

• Helly if it acts properly and cocompactly by automorphisms on a Helly
graph.

• injective if it acts properly and cocompactly by isometries on an injective
metric space.

• coarsely Helly if it acts properly and coboundedly on an injective metric
space.

Note that Helly implies injective, which in turn implies coarsely Helly.

Such groups enjoy various nice properties reminiscent of nonpositive curvature,
such as the following.

If a finitely generated group G is coarsely Helly then

• G is semihyperbolic in the sense of Alonso-Bridson (see [BH99]).
• G has finitely many conjugacy classes of finite subgroups (see [Lan13]).

If G is injective then

• G satisfies the Farrell-Jones conjecture (see [KR17]).

If G is Helly then

• G is biautomatic (see [CCG+20]).

Most of the recent examples of such groups are actually Helly groups, such as
the following:

• Cocompactly cubulated groups are Helly.
• Hyperbolic groups are Helly (see [Lan13]).
• Artin groups of type FC are Helly (see [HO19]).

• Lattices in Euclidean buildings of type C̃n are Helly (see [CCG+20]).

One recent example of coarsely Helly groups come from the following.

https://doi.org/10.1090/conm/057/856237
https://doi.org/10.1002/jgt.3190110416
https://doi.org/10.1016/0097-3165(85)90061-5
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Theorem 4 (H - Hoda - Petyt 2020 [HHP20]). Every hierarchically hyperbolic
group, and in particular every mapping class group, is coarsely Helly.

In this report, we will describe a recent work giving numerous other examples
of Helly groups and injective groups among higher rank lattices, see [Ha21] for
details. The core of the argument is based on the following.

Proposition 5. Let K denote a valued field, V a finite-dimensional vector space
over K, and let H denote either R or a cyclic subgroup of R. Let X denote a
non-empty set of norms on V such that:

• ∀a ∈ H, ∀η ∈ X, eaη ∈ X.
• ∀η, η′ ∈ X, ∃a ∈ H, e−aη ≤ η′ ≤ eaη.
• for every non-empty F ⊂ X bounded above, the set {η ∈ X |F ≤ η} has a
minimum.

For any η, η′ ∈ X, let us define

d(η, η′) = sup
v∈V \{0}

∣
∣
∣
∣
log

η(v)

η′(v)

∣
∣
∣
∣
.

Then closed balls in (X, d) satisfy the Helly property.

We can then apply this proposition to two different settings.

Application 1
Let p denote a prime number, and n ≥ 2. Let X denote the set of all norms on
Qnp , it is the extended Bruhat-Tits building of GL(n,Qp), also called the Goldman-

Iwahori space (see [GI63]). Its vertex set identifies with the subsetX(0) of all norms
with values in pZ∪{0}. The metric d from Proposition 5 coincides with the natural
ℓ∞ metric on apartments in X , which naturally identify with Rn. We prove the
following.

Theorem 6 (H 2021). The extended Bruhat-Tits buildings (X, d) is injective.
Its vertex set (X(0), d) is a Helly graph. As a consequence, uniform lattices in
GL(n,Qp) are Helly, and also biautomatic.

Note that we obtain in [Ha21] a similar result for all classical semisimple groups
over non-Archimedean local fields. Note that in the particular case of GL(n),
the Helly property is a consequence of work of Hirai (see [Hir20]), and biauto-

maticity for lattices in Euclidean buildings is a result of Swiatkowski (see [Ś06,
Theorem 6.1]).

Application 2
Fix n ≥ 2, and let X denote the set of all Euclidean norms on Rn, it is the
symmetric space of GL(n,R). The metric d from Proposition 5 coincides with the
natural ℓ∞ metric on apartments in X , which naturally identify with Rn. Also

denote by X̂ the set of all norms on Rn. We prove the following.

Theorem 7 (H 2021). The space (X̂, d) is injective, and GL(n,R) acts prop-
erly and cocompactly on it by isometries. As a consequence, uniform lattices in
GL(n,R) are injective.
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Similar results hold for other classical real semisimple groups, see [Ha21]. How-
ever, inspired by work of Hoda (see [Hod20]), the situation for SL(n) is quite
different.

Theorem 8. Let K denote a local field and n ≥ 3. Then SL(n,K) is not coarsely
Helly.
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Non-positively curved features of Artin groups

Alexandre Martin

(joint work with Mark Hagen, Alessandro Sisto)

Artin groups form a large class of groups encompassing braid groups and right-
angled Artin groups. Given a finite simplicial graph Γ such that every edge of Γ
between vertices a, b is labelled by an integer mab ≥ 2, the corresponding Artin
group as follows:

AΓ = 〈V (Γ) | aba · · ·
︸ ︷︷ ︸

mab

= bab · · ·
︸ ︷︷ ︸

mab

for a, b connected by an edge of Γ〉.

Note that by adding the relation a2 = 1 for every vertex a ∈ V (Γ), one obtains
the corresponding Coxeter group WΓ. Unlike their Coxeter relatives however, the
structure and geometry of Artin groups are still mysterious in general. Substantial
progress has been made in recent years for several classes of Artin groups (two-
dimensional, FC type, etc.) In particular, the results obtained so far confirm the
general belief that Artin groups enjoy many of the algebraic, algorithmic, and
geometric properties that Coxeter groups possess.
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The talk started with a survey of various results on the geometry of Artin
groups, focusing in particular on the hyperbolic features of these groups. It is
conjectured that for an irreducible Artin group AΓ, its central quotient AΓ/Z(AΓ)
is acylindrically hyperbolic, and this has indeed been verified for most standard
classes of Artin groups (see for instance [3, 4, 11]). However, acylindrical hyperbol-
icity is a notion that does not offer control over the coarse geometry of the whole
group. A much finer notion, with striking consequences, is the notion of hierarchi-
cally hyperbolic group introduced by Behrstock-Hagen-Sisto to provide a unified
framework generalising the geometry of mapping class groups and of most CAT(0)
cubical groups [2]. Right-angled Artin groups and braid groups are known to be
hierarchically hyperbolic, and Calvez-Wiest have asked whether all Artin groups
are hierarchically hyperbolic [5].

In this talk, I presented recent work on this question, in collaboration with
Hagen and Sisto [7]. Recall that an Artin group AΓ is said to be two-dimensional
if for every triangle a, b, c contained in Γ, we have 1

mab

+ 1
mbc

+ 1
mac

≤ 1, and is

said to be of hyperbolic type if the associated Coxeter group WΓ is hyperbolic.
These groups contain in particular all Artin groups of extra-large type, and they
were shown to be acylindrically hyperbolic by Martin–Przytycki [9]. We proved
the following:

Theorem 9 ([7]). Two-dimensional Artin groups of hyperbolic type are hierar-
chically hyperbolic. In particular, they have finite asymptotic dimension, have
uniform exponential growth, and are semi-hyperbolic.

Our proof uses a recent combinatorial approach to hierarchical hyperbolicity
due to Behrstock-Hagen-Martin-Sisto [1], which proves the hierarchical hyperbol-
icity of a group by means of its action on a suitable hyperbolic complex with a
fine control of its local geometry. We construct such a complex out of the com-
mutation graph of AΓ, which encodes the patterns of intersections of the maximal
subgroups of AΓ that are virtual direct products. This commutation graph turns
out to be a natural object that generalises to all Artin groups the extension graph
of Kim–Koberda of right-angled Artin groups [8]. This graph is also (equivariantly)
quasi-isometric to the coned-off Deligne complex introduced by Przytycki–Martin
[9] and is (equivariantly) isomorphic to the graph of proper irreducible parabolic
subgroups of finite type of AΓ. The latter was introduced by Cumplido–Gebhardt–
González-Meneses–Wiest in the finite type case [6], and by Morris-Wright in the
FC-type case [10]. In both cases, these graphs are conjectured to be an ana-
logue of the curve complex. We generalise and confirm this conjecture in the
two-dimensional case by showing the following:

Corollary 10 ([7]). Every two-dimensional Artin group of hyperbolic type AΓ on
at least three generators admits a hierarchically hyperbolic group structure such that
its maximal hyperbolic space is the graph of proper irreducible parabolic subgroups
of finite type of AΓ.
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Coarse-median preserving automorphisms

Elia Fioravanti

If Γ is a finite simplicial graph, the right-angled Artin group AΓ is defined by the
presentation where generators are vertices of Γ and each edge of Γ imposes that
the corresponding generators commute. In the extremal cases where Γ is discrete
or complete, AΓ becomes, respectively, a free group Fn or a free abelian group Zn.

The groups Out(Fn) and Out(Zn) ≃ GLnZ have attracted a tremendous amount
of research over the last century: the former first in the context of combinatorial
group theory and later for its analogies with mapping class groups of compact sur-
faces; the latter as a special instance of an arithmetic group. Despite this, much
is still unknown about them.

Comparatively, automorphisms of general right-angled Artin groups (RAAGs)
have long been overlooked. Only in recent years have they started drawing a
significant amount of attention, as they can be viewed as an interpolation between
the extremal cases of Out(Fn) and Out(Zn).

There are still many basic gaps in our understanding of automorphisms of
RAAGs. In this work, we address those relating to the following question:

Question 11. Given ϕ ∈ Aut(AΓ), what can be said on the subgroup Fix ϕ ≤ AΓ?

This problem received a lot of attention from the late 70s to early 90s of the last
century in the special case of AΓ = Fn. First, Dyer and Scott showed that Fix ϕ
is always a free factor if ϕ has finite order [8]. Then Gersten proved that Fix ϕ is
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finitely generated for arbitrary ϕ ∈ Aut(Fn) [10]; several alternative proofs soon
followed, e.g. [7, 11]. Finally, extending to maps between graphs various classical
ideas from Nielsen–Thurston theory, Bestvina and Handel provided a complete
description [2], thus solving the so known Scott Conjecture:

“for every ϕ ∈ Aut(Fn), the subgroup Fix ϕ is generated by at most n elements.”

Trying to extend these results to more general right-angled Artin groups may seem
hopeless. One is immediately faced with the fundamental difficulties brought on by
the lack of hyperbolicity. In addition, free groups are locally quasi-convex : every
finitely generated subgroup is undistorted and itself free.

By contrast, subgroups of general right-angled Artin groups are known to be a
receptacle for groups with all sorts of unpleasant behaviours, as demonstrated by
Bestvina-Brady groups [1]. These can indeed occur in relation to fixed subgroups
of automorphisms, as the next example shows.

Example 12. Let AΓ be the right-angled Artin group defined by an arbitrary
finite simplicial graph Γ. Let α : AΓ → Z be the homomorphism that maps all
standard generators v ∈ Γ(0) to the same generator of Z. Recall that kerα is the
Bestvina–Brady group BBΓ ≤ AΓ [1].

Consider the slightly larger right-angled Artin groupG = AΓ×Z. We can define
an automorphism ϕ0 ∈ Aut(G) as follows. Let Z = 〈z〉 and represent elements of
G as pairs (g, zn) with g ∈ AΓ. Then set:

ϕ0(g, zn) := (g, zn+α(g)).

Observing that Fix ϕ0 = BBΓ × Z, we deduce that:

(1) Fix ϕ0 is finitely generated if and only if Γ is connected. In particular,
Fix ϕ0 is not finitely generated for G = F2 × Z.

(2) If Γ is connected and not a join, then Fix ϕ0 is distorted in G [13].
(3) If the flag complex LΓ associated to Γ is not contractible, then Fix ϕ0 does

not admit a classifying space with finitely many cells [1]. In particular,
Fix ϕ0 is not cocompactly cubulated.

Remark 13. In the previous example, the fact that the ambient group G splits as
a product is not really relevant to the construction. Indeed, we can always embed
G as a parabolic subgroup of a larger, irreducible right-angled Artin group G′ so
that ϕ0 ∈ Aut(G) extends to an automorphism ϕ′

0 ∈ Aut(G′) with ϕ′
0(G) = G

and Fix ϕ′
0 = Fix ϕ0.

One might find unpleasant that the resulting automorphism ϕ′
0 ∈ Aut(G′) is

not “irreducible”: it leaves invariant the parabolic subgroup G ≤ G′. However,
when AΓ is neither free nor free abelian, “irreducible” automorphisms of AΓ do
not actually exist: there always exists a full subgraph ∆ ⊆ Γ such that, for every
ϕ ∈ Aut(AΓ), some power of ϕ takes A∆ ≤ AΓ to a conjugate [4, Proposition 3.2].

As it turns out, many automorphisms of right-angled Artin groups are much
better behaved and exhibit properties closer to those of automorphisms of Fn.
These are the titular coarse-median preserving automorphisms.
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Recall that every right-angled Artin group AΓ is equipped with a coarse-median
operator µ : A3

Γ → AΓ. This is true more generally of every cocompactly cubulated
group: given a proper cocompact action on a CAT(0) cube complex G y X , the
classical median operator m : X3 → X [6] can be pulled back to a map µ : G3 → G
via any G–equivariant quasi-isometry G→ X .

Coarse median operators can actually be defined more generally, even in the
absence of an action on a cube complex. This was done by Bowditch [3], who
showed that all Gromov-hyperbolic groups and mapping class groups of compact
surfaces can be endowed with a coarse median operator. Such pairs (G,µ) are
known as coarse median groups.

Definition 14. Let (G,µ) be a coarse median group. An automorphism ϕ ∈
Aut(G) is coarse-median preserving if there exists a constant C ≥ 0 such that:

ϕ(µ(x, y, z)) ≈C µ(ϕ(x), ϕ(y), ϕ(z)), ∀x, y, z ∈ G,

with respect to some fixed word metric on G. Coarse-median preserving automor-
phisms form a subgroup Autcmp(G) ≤ Aut(G).

For many classical groups, coarse-median preserving automorphisms are plen-
tiful. In particular, every automorphism of Fn is coarse-median preserving.

Proposition 15 ([9]).
(1) If G is hyperbolic, then Autcmp(G) = Aut(G) (this follows from [12]).
(2) If G is a right-angled Coxeter group, then Autcmp(G) = Aut(G)
(3) If G is a right-angled Artin group, then Autcmp(G) = U(G), where U(G) ≤

Aut(G) is the subgroup of “untwisted” automorphisms introduced in [5].

For coarse-median preserving automorphisms of cocompactly cubulated groups,
we show that all the bad behaviours described in Example 12 do not actually occur.

Theorem 16 ([9]). Let G be a cocompactly cubulated group, equipped with the
induced coarse median operator. If ϕ ∈ Autcmp(G), then:

(1) Fix ϕ is finitely generated and undistorted in G;
(2) Fix ϕ admits a cocompact cubulation.

In general, the cubulation of Fix ϕ only arises from a median subalgebra of the
cubulation of G, and it cannot be realised as a convex subcomplex thereof. This
can be observed for the automorphism of Z2 that swaps the standard generators.

However, for automorphisms of right-angled Artin or Coxeter groups, a stronger
result holds up to replacing ϕ with a power:

Theorem 17 ([9]). If G is a right-angled Artin/Coxeter group, there exists a
finite-index subgroup Aut0cmp(G) ≤ Autcmp(G) such that, for every ϕ ∈ Aut0cmp(G):

(1) Fix ϕ is quasi-convex in G with respect to the standard word metric;
(2) Fix ϕ is a special group in the sense of Haglund–Wise.
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Helly groups and relative hyperbolicity

Motiejus Valiunas

(joint work with Damian Osajda)

Let Γ be a connected simplicial graph. We say Γ is Helly (respectively ξ-coarse
Helly, for some fixed constant ξ ≥ 0) if given any collection of pairwise inter-
secting metric balls {Bri(xi) | i ∈ I} we have

⋂

i∈I Bri(xi) 6= ∅ (respectively
⋂

i∈I Bri+ξ(xi) 6= ∅); we say Γ is coarse Helly if it is ξ-coarse Helly for some
ξ ≥ 0. Given two vertices x, y ∈ Γ, an interval [x, y] is the set of vertices u ∈ Γ
such that dΓ(x, y) = dΓ(x, u) + dΓ(u, y), and given β ≥ 1, we say Γ has β-stable
intervals if for any vertices x, y, z ∈ Γ with dΓ(y, z) = 1, the intervals [x, y] and
[x, z] are Hausdorff distance ≤ β apart.

A finitely generated group is said to be Helly (respectively coarse Helly) if it
acts geometrically on a Helly (respectively coarse Helly) graph. The study of
Helly groups was initiated in [1]. In there, it was shown that many classes of
‘non-positively curved’ groups, such as hyperbolic, cocompactly cubulated, and
graphical C(4)–T(4) small cancellation groups, are Helly. The classes of Helly and
coarse Helly groups has gathered substantial attention recently: see [3], [4].

It was also shown in [1] that the class of Helly groups is stable under many group-
theoretic constructions, such as amalgamated free products and HNN extensions
over finite subgroups, graph products, and quotients by finite normal subgroups. A
number of open questions on stability under other constructions have been posed;
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in particular, the question on whether a group hyperbolic relative to a collection
of Helly groups is itself Helly was asked. We answer this question in [5].

In order to discuss relative hyperbolicity, let G be a finitely generated group
(with a finite generating set X), let H1, . . . , Hm < G be subgroups, and set
H :=

⋃m

j=1Hj ⊆ G. We then say G is hyperbolic relative to H1, . . . , Hm if the

Cayley graph Cay(G,X ∪ H) is hyperbolic and satisfies the bounded coset pene-
tration property: the latter is a condition refining the geometric and combinato-
rial structure of Cay(G,X ∪ H) in terms of the locally finite graph Cay(G,X).
Relative hyperbolicity is a widely studied construction, and many properties of
hyperbolic groups pass via relative hyperbolicity: that is, if G is hyperbolic rela-
tive to H1, . . . , Hm and each Hj satisfies a certain property (that is satisfied by
all hyperbolic groups), then so does G.

For a group G is hyperbolic relative to H1, . . . , Hm, where each Hj acts on a
graph Γj geometrically, in [5] we construct a graph Γ(N) with a geometric G-
action. We show that geodesics in Γ(N) can be transformed into ‘nice’ paths in
Cay(G,X∪H). This allows us to deduce that if each Γj is coarse Helly (respectively
has β-stable intervals), then so is (respectively does) Γ(N). We then invoke a result
from [1], saying that a group is Helly if and only if it acts geometrically on a coarse
Helly graph with β-stable intervals. Consequently, we prove the following.

Theorem 18 ([5], Theorems 1.1 & 1.2). Let G be a finitely generated group that
is hyperbolic relative to a collection of subgroups H1, . . . , Hm ≤ G. If each Hj is
Helly (respectively, coarse Helly), then so is G.

In the other direction, we study ‘strongly quasiconvex’ subgroups of Helly and
coarse Helly groups. Given a finitely generated group G with a finite generating set
X , we say a subset A ⊆ G is strongly quasiconvex in G if for any λ ≥ 1 and c ≥ 0,
there exists K ≥ 0 such that any (λ, c)-quasigeodesic in Cay(G,X) with endpoints
in A belongs to the K-neighbourhood of A; this property does not depend on the
choice of a generating set X . In [5], we show the following.

Theorem 19 ([5], Theorem 1.4). Let H be a strongly quasiconvex subgroup of a
finitely generated group G. If G is Helly (respectively, coarse Helly), then so is H.

If G is hyperbolic relative to H1, . . . , Hm, then each Hj is strongly quasiconvex
in G [2], implying that if G is (coarse) Helly then so are H1, . . . , Hm.

Acknowledgements. Damian Osajda was partially supported by (Polish) Nar-
odowe Centrum Nauki, UMO-2017/25/B/ST1/01335.
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Action of the Cremona group on a CAT(0) cube complex

Anne Lonjou

(joint work with Christian Urech)

The Cremona group (of rank 2), denoted by Bir(P2), is the group of birational
transformations of the projective plane (isomorphisms between two open dense
subsets of the projective plane). This group has been introduced by L. Cremona
in 1863-1865 [1]. Even if this group comes from algebraic geometry, tools from
geometric group theory have been powerful to study it. For instance, its action on
a infinite dimensional hyperbolic space has been used to prove that this group is
not a simple group over any field ([2], [3]).

More precisely a Cremona transformation f has the following form:

f : P2
99K P2

[x : y : z] 799K [f0(x, y, z) : f1(x, y, z) : f2(x, y, z)]

where f0, f1, f2 ∈ k[x, y, z] are homogeneous polynomials of the same degree with-
out common factor. By a theorem of Zariski, any birational transformation f
between surfaces can be decomposed has the composition of blow-ups and then
blow-downs. If we consider a minimal one, the points blown-up in this compo-
sitions are called base-points of f . For instance, the base-points of the standard
quadratic involution

σ : P2
99K P2

[x : y : z] 799K [yz : xz : xy]

are the points [0 : 0 : 1], [1 : 0 : 0], [0 : 1 : 0]. Note, that base-points of a Cremona
transformation do not always lie in P2, but can also lie in surfaces obtained by
blowing-up P2.

In this talk, based on a joint work with Christian Urech [4], we explain our
constrution of a CAT(0) cube complex, called “blow-up complex” and the action
of the Cremona group on it. This construction gives a new interesting geometric
space for the Cremona group of rank 2. Moreover, it has been also a step towards
the construction of CAT(0) cube complexes for Cremona groups of higher rank.

The construction of the blow-up complex is the following.

• The vertices [(S, ϕ)] are equivalent classes of marked projective regular ra-
tional surfaces where two marked surfaces (S, ϕ) and (S′, ϕ′) are equivalent
if ϕ′−1ϕ is an isomorphism.

• Edges : There is an edge oriented from [(S, ϕ)] to [(T, ψ)] if and only if

ϕ−1ψ is the blow-up of a closed point of T .
• Cubes : There is a n-cube between the vertices [(S1, ϕ1)], . . . , [(S2n , ϕ2n)],

if there exists 1 ≤ r ≤ 2n such that for any 1 ≤ j ≤ 2n:

https://arxiv.org/abs/2010.07407
https://arxiv.org/abs/2012.03246
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– there exist n distinct closed points p1, . . . , pn in Sr,
– ϕ−1

r ϕj : Sj → Sr is the blow-up of E ⊂ {p1, . . . , pn}.

This cube complex is sadly not locally compact (when the field is infinite), of
infinite dimension but fortunately it is oriented.

Theorem 20 ([4]). The blow-up complex is a CAT(0) cube complex.

The Cremona group acts on this complex by acting on the marking of the
vertices: for any f ∈ Bir(P2) and any vertex [(S, ϕ)] of the blow-up complex:

f • [(S, ϕ)] = [(S, fϕ)].

This cube complex is really natural and gives a geometric interpretation of
several notions of the Cremona group. For instance, the number of base-points of
a Cremona transformation f is half of the distance between the vertices [(P2, id)]
and its image by f . The Cremona transformations which are conjugate to an
automorphism of a surface (called regularisable) are the elements which are elliptic
for this action.

An open question for the Cremona group is the following:

Question 21. Consider a finitely generated subgroup G of the Cremona group
such that each of its elements is regularizable. Does it imply that G is regular-
izable; meaning that it is a subgroup of the automorphism group of a surface?

A reformulation of this question in terms of the action of the Cremona group
on the blow-up complex is the following. Consider a finitely generated subgroup
G of the Cremona group which is locally elliptic for the action on the blow-up
complex. Does it implies that the action of G is (globally) elliptic ?

Locally elliptic actions of finitely generated groups on CAT(0) cube complex
of finite dimension are elliptic [6]. On the other hand, if the hypothesis on the
dimension of the cube complex is removed this statement is not true anymore
[5]. Nevertheless, as the cube complex has a height on the vertices and that we
understand reasonably well the action we expect to answer positively to it in the
case of the Cremona group.

Notice that the hypothesis that the subgroup is finitely generated is mandatory.
The subgroup of the Cremona group consisting of the elements {(x, y + xn) | n ∈
N∗} is locally elliptic but not globally elliptic.
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Fixed points for group actions on 2-dimensional buildings

Anne Thomas

(joint work with Jeroen Schillewaert, Koen Struyve)

This direction of research originates with Serre, who proved in his book on trees [7]
that if a finitely generated group G acts without inversions on a simplicial tree T ,
and every element of G fixes a point of T , then G has a global fixed point in T .
Morgan and Shalen [4] extended this result to R-trees.

Our main theorem says: if G is a finitely generated group of automorphisms of
a (possibly nondiscrete) affine building X of type Ã2 or C̃2, and every element of
G fixes a point of X , then G fixes a point of X . This theorem overlaps with a
recent result of Norin, Osajda and Przytycki [5], who considered CAT(0) triangular
complexes, and under certain conditions on the complex or the group action,
obtained the same conclusion. In particular, the work of [5] applies to discrete

buildings of types Ã2, C̃2 and G̃2, while our result holds for some non-discrete
buildings, and we believe that our method fails in type G̃2.

There are several interesting corollaries of our main result, including:

(1) Removing the hypothesis of finite generation, we can use a theorem of
Caprace and Lytchak [1] to prove that if a group G acts on a complete

affine building X of type Ã2 or C̃2, and every element of G fixes a point
of X , then G has a fixed point in the bordification X = X ∪ ∂X .

(2) As shown by Parreau [6], every automorphism of a complete affine building
is either elliptic (i.e. fixes a point) or hyperbolic (and hence has has
infinite order). It follows from this and our main theorem that if a finitely
generated group G acts without a global fixed point on a complete affine
building of type Ã2 or C̃2, the group G contains a hyperbolic element,
hence Z < G. This can be seen as a first small step towards proving a Tits
Alternative in this setting.

(3) Since finite order automorphisms of affine buildings are elliptic, we can
conclude that the action of any finitely generated infinite torsion group G
on a building of type Ã2 or C̃2 has a global fixed point.

To prove our main theorem, we first carry out several reductions, to show that
it suffices to consider X a complete R-building in which each point is a special
vertex, and G type-preserving. For completeness of X , we use the ultrapower
of X and theorems of Kleiner and Leeb [3] and Struyve [8]. A key lemma then
shows that the distance between certain fixed sets in X is actually realised by
points in X . The proof of this lemma combines a theorem for finite-dimensioanl
complete CAT(0) spaces from [1] with properties of 2-dimensional affine buildings,
and results of Culler and Morgan [2] for the panel tree (this is a tree sitting “at
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the boundary” of a 2-dimensional affine building). We then establish that if G
has two proper finitely generated subgroups whose fixed sets are disjoint, then G
contains a hyperbolic element (using induction on the number of generators, it is
now easy to prove the main theorem). We construct a hyperbolic element in G
by combining standard properties of complete CAT(0) spaces with very specific

arguments for affine buildings of types Ã2 and C̃2 and their vertex links, which
are spherical buildings.
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Boundaries-at-infinity from combings

Alexander Engel

(joint work with Christopher Wulff)

Many non-positively curved spaces admit ’nice’ compactifications. Examples of the
respective boundaries that one attaches to the original spaces to compactify them
are the Gromov boundary of a hyperbolic metric space and the visual boundary of
a CAT(0)-space. Further, if a group acts on these spaces, then the action extends
to these boundaries. In joint work with Christopher Wulff we developed a general
principle of constructing such compactifications.

Assume that we are given the following situation: We have a ’nice’ (technically,
an ANR) contractible metric space and a group G that acts freely1, cocompactly
and isometrically on it. Examples of the situation and to which our theory will be
applicable are the following:

1It is possible to generalize our construction to proper actions. But to keep the presentation
simple we restrict here to free actions.
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group space
CAT(0)-group CAT(0)-space on which it acts
systolic group systolic space on which it acts
injective group injective space on which it acts
hyperbolic group a large enough Rips complex of it

Our goal is to construct a compactification X̄ of X with the following properties:

• X̄ is contractible
• the group action extends continuously to X̄
• continuous functions on X̄ have vanishing variation on X2

• X̄ is an ANR
• ∂X := X̄ \X is a Z-boundary, i.e. can be instantly homotoped into X

If we can solve this problem, i.e. construct such a compactification for the given
space X with a given action by G, then the following holds (among many other):

• dim(∂X) = cd(G) − 1 [Bestvina–Mess]
• dim(∂X) ≤ as-dim(G) [E.–Wulff]
• assembly maps for G are split-injective [many people]

Note that the last point implies the (strong) Novikov conjecture for G.
Our construction principle is based on combings. A combing on X with base

point p ∈ X associates to every x ∈ X a discrete path σn(x) from p to x with:

• d(σn(x), σn+1(x)) ≤ C for all x ∈ X and n ∈ N

• d(σn(x), σn(y)) ≤ C · d(x, y) for all x, y ∈ X and n ∈ N

We introduce the following properties of a combing σ:

• σ is coherent if there exists C > 0 such that d(σm(σn(x)), σm(x)) < C for
all x ∈ X and m ≤ n ∈ N.

• σ is expanding if there exists C > 0 such that for all D > 0 and all n ∈ N

there is a compact subset KD,n ⊂ X with σn(BD(x)) ⊂ BC(σn(x)), where
B−(x) denotes the metric ball around x.

• σ is coarsely equivariant if for every g ∈ G there exists C(g) > 0 such that
d(g.σn(x), σn(g.x)) < C(g) for all x ∈ X and all n ∈ N.

The main result is as follows: Every combing on X which is coherent, expand-
ing and coarsely equivariant gives a compactification as described above, see [1].

Examples of groups to which the main result applies are: hyperbolic, CAT(0),
systolic, injective and hierarchically hyperbolic groups.

The main idea in the proof is to find a convenient definition of the compactifi-
cation. We define a commutative C∗-algebra Cσ(X) consisting of all the bounded,
continuous functions f : X → C with:

• f has vanishing variation

• σ∗
n(f)

n→∞
−−−−→ f in sup-norm

2A continuous function f : X̄ → C has vanishing variation on X, if for any R > 0 and ε > 0
there is a compact subset K ⊂ X such that |f(x)−f(y)| < ε for all x, y ∈ X \K with d(x, y) < R.
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The compactification X̄ is then the Gelfand dual of Cσ(X).
Interestingly, there seems to be a dichotomy between combings from automatic

structures and expanding combings. To my knowledge, hyperbolic groups are the
only ones admitting combings which are both automatic and expanding.
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Abstract group actions of locally compact groups on CAT(0) spaces

Olga Varghese

(joint work with Philip Möller)

Given two objects A and B and a map f : A → B between them, it is common
to ask whether some or all of the structure of the objects is respected by the
map f . When A and B are groups, then the question is whether f is a group
homomorphism and when A and B are topological spaces, one can ask whether
the map f is continuous. When the objects A and B possess more structure, for
instance if A and B are topological groups, one can ask whether preservation of
the group structure implies preservation of the topological structure.

We want to understand the ways in which topological groups can act on spaces
of non-positive curvature with the focus on automatic continuity. The main idea
of automatic continuity is to establish conditions on topological groups G and H
under which an abstract group homomorphism ϕ : G → H is necessarily continu-
ous. There are several results in this direction in the literature, see [1], [2], [4], [5],
[6], [7]. Here, the group G will be a locally compact Hausdorff group while H will
be the isometry group of a CAT(0) space equipped with the discrete topology.

One of the powerful theorems in this direction is due to Dudley [5]. He proved
that any abstract group homomorphism from a locally compact Hausdorff group
into a free group is continuous. By the Nielsen-Schreier-Serre Theorem, a group
is free if and only if it acts freely on a tree [8, I §3.3 Theorem 4]. Hence, the
automatic continuity result by Dudley translates into geometric group theory as
follows: Any abstract action of a locally compact Hausdorff group on a simplicial
tree that is via hyperbolic isometries is continuous.

Inspired by this result we started to investigate actions of locally compact Haus-
dorff groups on a higher dimensional generalization of simplicial trees and we prove
the following result.

Main Theorem 1. Let Φ: L→ Isom(X) be an abstract group action of a locally
compact Hausdorff group L on a complete CAT(0) space X of finite flat rank.

(1) If L is almost connected (i.e. L/L◦ is compact) and
(i) the action is semi-simple,
(ii) the infimum of the translation lengths of hyperbolic isometries is pos-

itive,
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(iii) any finitely generated subgroup of L which acts on X via elliptic
isometries has a global fixed point,

(iv) any subfamily of {Fix(Φ(l)) | l ∈ L} with the finite intersection prop-
erty has a non-empty intersection.

Then Φ has a global fixed point.
(2) If L is totally disconnected and

(v) the poset {Fix(Φ(K)) 6= ∅ | K ⊆ L compact open subgroup} is non-
empty and has a maximal element,

then Φ is continuous or Φ preserves a non-empty proper fixed point set
Fix(Φ(K ′)) of a compact open subgroup K ′ ⊆ L.

(3) In particular, if Φ satisfies properties (i)-(iv) and any subfamily of the
poset {Fix(Φ(H)) | H ⊆ L closed subgroup} has a maximal element, then
Φ is continuous or Φ preserves a non-empty proper fixed point set
Fix(Φ(H ′)) of a closed subgroup H ′ ⊆ L.

As an application we obtain the following result.

Corollary 22. Any abstract group homomorphism ϕ : L→ G from a locally com-
pact Hausdorff group L into a CAT(0) group G whose torsion groups are finite is
continuous unless the image ϕ(L) is contained in the normalizer of a finite non-
trivial subgroup of G. In particular, any abstract group homomorphism from a
locally compact group into a right-angled Artin group or a limit group is continu-
ous.

Structure of the proof: For the first part of the Main theorem we show that any
action of an abelian group without epimorphisms to Z on any CAT(0) space with
finite flat rank has to be via elliptic isometries. Applying CAT(0) geometry and
Iwasawa’s Structure Theorem of connected locally compact groups it follows that
any action of an almost connected locally compact group on a complete CAT(0)
space of finite flat rank has a global fixed point. The second statement follows
with an application of a theorem by van Dantzig. We obtain the third result of
the Main theorem by combining the first and second statement.
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Crystallographic Helly groups

Nima Hoda

We are concerned with virtually abelian groups, including crystallographic groups,
and Helly groups, i.e., those acting properly and cocompactly on Helly graphs [4].
Our goal is to give a characterization of those virtually abelian groups that are
Helly. Along the way we will give an overview of crystallographic groups and
discover properties of asymptotic cones of Helly graphs. Though our methods
will differ, our characterization of virtually abelian Helly groups will coincide with
Hagen’s characterization of cocompactly cubulated virtually abelian groups [6]
thus we will also see that these two classes are the same.

1. Helly graphs, hyperconvex spaces and groups

Recall that a graph is Helly if any pairwise intersecting family of metric balls of
its vertex set Γ0 has nonempty total intersection. In order to prove our main re-
sult we will also need to consider hyperconvex spaces. A geodesic metric space is
(countably) hyperconvex if every pairwise intersecting (countable) family of closed
metric balls has nonempty total intersection. Recall that a metric space is hyper-
convex if and only if it is injective. For introductions to Helly graphs and injective
metric spaces see, for example, Chalopin et al. [4] and Lang [8], respectively.

The proof of our main result relies on the following theorem of Nachbin.

Theorem 23 (Nachbin [9]). Let |·| be a norm on Rn. Then
(
Rn, |·|

)
is hyperconvex

iff | · | is an L∞-norm, i.e., some element of GLn(R) sends | · | to | · |∞.

2. Crystallographic groups

In order to give the statement of our characterization, we will need to recall some
of the theory of crystallographic groups. Recall that a crystallographic group is
a group acting faithfully, properly and cocompactly by isometries on Euclidean
space En of some dimension n and that there is a split short exact sequence

1 → Trans(n) → Isom(En) → O(n) → 1

where Trans(n) = Rn is the subgroup of translations and Isom(En) → O(n) is
the action of Isom(En) on the sphere at infinity. This splits so we can represent
Isom(En) as a semidirect product.

Isom(En) = Rn ⋊O(n)

The following theorem is essential to the study of crystallographic groups.

Theorem 24 ([1, 2]). Let G < Isom(En) be a crystallographic group. Then the
following statements hold.

• The image of G in O(n) is finite.
• The intersection G ∩ Trans(n) is a lattice in Trans(n) = Rn.
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Consequently, we have a short exact sequence

1 → Zn → G→ P → 1

with P finite.

More generally, if G is any finitely generated virtually abelian group then there
is a short exact sequence

1 → Zn → G→ P → 1

with P finite. We can show that there exists a canonical morphism of short exact
sequences

1 Zn G P 1

1 Rn GR P 1

1P

(specifically GR = Rn ⋊ G/{(z−1, z) : z ∈ Zn}). Since P is finite, we have
H2(P,Rn) = 0 so that GR = Rn ⋊ P . Thus we have

1 Rn GR P 1

1 Rn Isom(En) O(n) 1

ψ

where ψ ∈ GLn(R) conjugates P ′ = im
(
P → GLn(R)

)
into O(n). With this we

have essentially proven the following theorem of Zassenhaus.

Theorem 25 (Zassenhaus [10]). If G is a finitely generated virtually abelian group
then G acts properly and cocompactly on En by isometries. The action is faithful
(i.e. G is crystallographic) iff P → GLn(R) is injective.

The following definition is essential for the statement of our main result.

Definition 26. The group P ′ < GLn(R) is the point group of G. This is well-
defined for a finitely generated virtually abelian group up to conjugation by ele-
ments of GLn(R).

We can now state our main result characterizing virtually abelian Helly groups.

Theorem 27 (H. [7]). Let G be a virtually abelian group. If G is Helly then
its point group preserves an L∞-norm on Rn. Consequently, the group G acts
properly and cocompactly by isometries on

(
Rn, | · |∞

)
.

The following corollary gives the first example of a systolic group that is not
Helly, thus answering a question of Chalopin et al. [4].

Corollary 28. The 3-3-3 Coxeter group is not Helly.

The converse of the theorem also holds since any group acting properly and
cocompactly on

(
Rn, | · |∞

)
preserves a standard cubulation of Rn. This can be

seen directly but is also a consequence of Hagen’s work characterizing cocompactly
cubulated virtually abelian groups [6].
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Corollary 29. Let G be a virtually abelian group. Then G is Helly iff G is
cocompactly cubulated.

The proof of Theorem 27 relies on the following theorem about asymptotic
cones of Helly graphs that may be of independent interest.

Theorem 30 (H. [7]). Let Γ be a Helly graph and let v0 ∈ Γ0. Then AsCone(Γ, v0)
is countably hyperconvex.
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Bâtiment 307
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