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Introduction by the Organizers

The workshop Deep Learning for Inverse Problems, organized by Simon Arridge
(London), Peter Maaß (Bremen) and Carola-Bibiane Schönlieb (Cambridge) was
well attended with 28 participants and aimed at bringing together experts from
different scientific directions to contribute mathematically proven results in the
theory of deep neural networks for inverse problems. Most participants attended
the workshop online, which required a special schedule in order to allow a maximal
attendance from our participants from Peru, USA or Korea. We also organized
several online meetings in the evening for a panel discussion or for reviving the
Oberwolfach spirit in terms of a casual exchange of ideas. Five participants at-
tended in person, which created a particular relaxed yet intense atmosphere for
them. This resulted in long blackboard discussions and planning for future re-
search and publications.
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The scientific focus of the workshop was on inverse problems, which classically
start with an analytical description F : X → Y of the forward operator in some
function spaces X and Y . The main target in inverse problems is to reconstruct
an unknown x∗ from given noisy data yδ ∼ F (x∗), where the generalized inverse
F−1 is unbounded. However, these purely analytic models are typically just an
approximation to the real application and their extension are often restricted due
to the high degree of complexity or an only partial understanding of the underlying
physical processes. Furthermore, the input space of many applications will be
just a subspace of the whole function space X and obey an unknown stochastic
distribution.

The huge field of machine learning provides several data-driven approaches to
tackle these problems by using training datasets to either construct a problem-
adapted forward operator and use an established inversion method or to solve
the inverse problem directly. In particular deep learning approaches using neural
networks with multiple internal layers have become popular over the last decade.
However, no consistent mathematical theory on deep neural networks for inverse
problems has been developed yet besides the stunning experimental results, which
have been published so far for many different types of applications to inverse
problems.

The talks focussed on different aspects of deep learning for inverse problems.
The opening talk by Jin Keun Seo highlighted several stunning deep learning so-
lutions for applications in medical imaging. This set the stage in terms of open
challenges, the need for appropriate mathematical concepts and the specific in-
tricacies of inverse problems. Further survey talks highlighted general concepts
for data driven regularization of inverse problems, imaging learning problems or
statistical learning theory (Schönlieb, Rosasco, De los Reyes).

New mathematical concepts based on microlocal analysis or reduced order mod-
els were introduced for achieving or explaining particular properties of neural net-
works (Öktem, Hauptmann, de Hoop). Similarly, turning analytic results into deep
learning concepts is a major source of inspiration for the design and construction of
deep learning schemes, which was addressed in talks on learning penalty terms, in-
corporating structure preserving architectures or general regularization properties
of networks (Etmann, Dittmer, Betcke, Haltmeier).

Complementary to that is the development of a mathematical foundation for
existing learning concepts such as explaining the success of U-Net architectures
or generalized perceptron learning (Liu, Benning). And, naturally, there were
several talks presenting deep learning solution for particularly challenging inverse
problems (Siltanen, Boiger, Duff).

Finally we want to highlight the panel discussion chaired jointly by Barbara
Kaltenbacher and Simon Arridge, which produces a wealth of ideas for future
research for supporting regularization theory to data driven concepts.
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Abstracts

Deep Learning for ill-posed inverse problems in medical imaging

Jin Keun Seo

(joint work with Chang Min Hyun)

1. Abstract

Recently, with the significant developments in deep learning (DL) techniques, solv-
ing underdetermined inverse problems has become one of the major concerns in
the medical imaging domain, where underdetermined problems are motivated by
the willingness to provide high resolution medical images with as little data as
possible, by optimizing data collection in terms of minimal acquisition time, cost-
effectiveness, and low invasiveness. DL methods appear to have a strong capa-
bility to explore the prior information of the expected images via training data,
which allows to deal with the uncertainty of solutions to ill-posed inverse problems.
However, there is a tremendous lack of a rigorous mathematical foundation which
would allow us to understand the reasons why deep learning methods perform
that well. In this talk, we will try to discuss mathematical interpretations of DL-
based low-dimensional nonlinear representations of expected solutions to ill-posed
inverse problems.

2. Deep learning techniques for Inverse Problems

Inverse problems are to find physical quantities (e.g., electrical impedance in EIT,
attenuation in CT, nuclear spin density in MRI) that are observable or measur-
able and their values change with position and time to form signals. Whether or
not an inverse problem is well-posed may be dependent on how the solution is
expressed. Many problems are ill-posed because we are overly ambitious or lack-
ing in expressiveness. There are mainly two types of inverse problems. Type 1
is characterized by having data that is much smaller in dimension compared to
the input (i.e., undersampled models that violate the Nyquist criteria in the sense
that the number of equations is much smaller than the number of unknowns)[4];
Type 2 refers to inaccurate forward models with data contaminated by various
noise and artifacts (e.g., inverse problems with forward modeling errors associated
with various uncertain factors and with the measured data being insensitive to
local perturbation of the input)[3].

The talk starts with the example of lung electrical impedance tomography
(EIT), which is known to be a nonlinear and ill-posed inverse problem. As an
example of a 16-channel EIT system for respiratory monitoring of sleep apnea, we
have to deal with the uncertainty of a number of free parameters (pixel dimension-
data dimension = 16384-208) [5]. Deep learning framework may provide a non-
linear regression on training data which acts as learning complex prior knowledge
on the output. The first network is a variational autoencoder (VAE) network that
allows to achieve compact representation (or low dimensional manifold learning)



750 Oberwolfach Report 13/2021

for prior information of lung EIT images. For the second step, only the decoder
part of this network is used. This decoder part takes only very few latent variables
and transforms them back to produce an image on the learned manifold of mean-
ingful reconstructions. The second network now takes a data vector and maps it
onto the latent variables, which are then input to the decoder. This approach ex-
ploits the potential of neural networks for constructing low dimensional nonlinear
representations of approximate solution maps.

For a theoretical analysis, we introduce the M-RIP condition for deep learning-
based solvability of ill-posed inverse problems (Type 1) in medicine[1]. Assuming
that medical data are on or near a low-dimensional manifold embedded in high-
dimensional ambient space, we need to fit a nonlinear solution manifold to training
data. We have not yet succeeded in fitting low-dimensional manifolds to real high-
dimensional image data using various DL techniques, including autoencoders and
GANs. Only in a relatively low-dimensional ambient space, VAEs have achieved
somewhat successful manifold learning. Manifold learning as a low-dimensional
representation of high-resolution medical images would be an important future
research topic. We close with some general remarks for further research directions.

3. Discussion and Challenging Issues

AI algorithms should be explainable and transparent in order that doctors can
backtrack AI diagnosis. AI algorithms should be properly configured to reduce
black box prediction as much as possible.

Many experiments have shown that well-trained neural networks work only
in the immediate vicinity of the regression manifold generated from the training
data. Even if two images are almost the same from the viewpoint of radiologists,
deep neural networks may produce different results, because they are vulnerable
to various noise-like perturbations. Hence, normalizing data is an important part
of improving a network’s generalization ability (by enhancing out-of-distribution
robustness), but it can be very challenging. Data normalization and standardiza-
tion can reduce diversity in images caused by variation among scanners or imaging
protocols [1].

DL techniques have expanded our ability by sophisticated ?disentangled repre-
sentation learning? though training data, and appear to overcome limitations of
existing mathematical methods in handling various ill-posed problems. The DL
approach is a completely different paradigm from the classical regularized data-
fitting approaches that use a ?single? data-fidelity with regularization, and has
excellent ability to learn complex prior knowledge of the output by effectively
utilizing prior and additional information as a ?group? data fidelity.

For example, until 2015, achieving automatic segmentation of amniotic fluid
from ultrasound images was almost impossible due to the limitations of classical
segmentation techniques (e.g. energy-based segmentation methods using active
contour or level set). However, this is now achieved by DL technology.
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Figure 1. Metal artifact reduction in low dose dental cone beam
computed tomography.

As another example, metal artifact reduction (MAR) in CT has been a very
challenging problem for the last 40 years. In dental cone beam computed tomogra-
phy (CBCT), metal-induced artifacts are becoming an increasingly common prob-
lem, as the number of aged people with artificial prostheses and metallic implants
is rapidly increasing with the speedily aging population. Because dental CBCT is
designed to use a much lower radiation dose than the conventional multi-detector
CT, it tends to produce more artifacts. The field of view size in dental CBCT
is usually small as compared to the size of a patient?s head, because a small de-
tector is employed to reduce system costs down [6]. In these reasons, achieving
MAR in CBCT is very difficult. Currently, commercially available MAR algo-
rithms include SEMAR (Toshiba Medical Systems), O-MAR (Philips Healthcare),
iMAR (Siemens Healthineers), and Smart MAR (GE Healthcare). However, the
existing MAR methods do not reduce metal artifacts effectively in low-dose CBCT
environments and may introduce new streaking artifacts that did not previously
exist. However, by the virtue of the DL technology, this problem can be solved by
leveraging information from oral scans that contain accurate 3D images of tooth
surface and gingiva in high resolution.
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Microlocal analysis and deep learning for tomographic reconstruction

Ozan Öktem

(joint work with Gitta Kutyniok, Hector Andrade-Loarca, Philip Petersen)

In many applications, the singular part of a function representing a signal carries
important information. An example is edges of an image in imaging applications.
Understanding how this singular part is transformed by an operator is therefore
important in both mathematics and applications. Microlocal analysis is a powerful
mathematical theory that offers means for such an analysis. It turns out that the
location of singularities (which is already described by the singular support of the
function) is not enough for describing how singularities propagate as the function
is transformed. For each point in the singular support one also needs to keep track
of the directions in frequency space that causes the singularity. Formalising this
leads to the definition of the wavefront set of the function.

Since its introduction in the early 1970’s by Sato [13] and Hörmander [9], the
wavefront set has proven itself useful in both pure and applied mathematical re-
search. One can through the microlocal canonical relation relate the wavefront set
of a function to the wavefront set of its transformation for certain operators. In
particular, applying a pseudodifferential operator does not introduce new singu-
larities and elliptic operators completely preserve singularities, see [12, section 3.3]
for precise formulations. Similar results can be formulated for more general class
of Fourier integral operators and many integral operators that are frequently en-
countered in analysis, scientific computing, and physical sciences [9, 8].

Microlocal analysis in tomography. In applications it is common to have data
that represents noisy realisation of a function that has undergone a known trans-
formation (forward operator). A natural task is therefore to recover the function
of interest, or a feature thereof, from such data. Such inverse problems frequently
arise in applications, like those that involve imaging/sensing technologies where
the forward operator is a pseudodifferential or Fourier integral operator. The typi-
cal example is tomographic imaging in medicine, which can be phrased as the task
of recovering a real-valued function on the plane/space from its ray transform
sampled on a known manifold of lines.

In many applications it is sufficient to recover the wavefront set of the signal,
like recovering edges of an image from tomographic data. Microlocal analysis has
been successfully used to determine when this is possible and it also provides the
foundations for reconstruction methods for recovering the wavefront set from noisy
indirect observations. As an example, one can show that a point (=singularity) in
the wavefront set of a function is recoverable from ray transform data if and only
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if the ray transform is sampled on a line that goes through the point and has a
co-normal that is in the wavefront set. The recovery is moreover mildly ill-posed
in the sense that singularities in data are weaker than those of the function by 1/2
Sobolev order (strong enough to allow stable detection in practice). The reader
may consult the surveys [10, 12] for further details.

In contrast to its theoretical successes, microlocal analysis has had more limited
impact in computational signal processing. A key reason has been the difficulty
in computationally extracting and manipulating the wavefront set of a digitised
signal. Certain transforms from applied harmonic analysis, like the curvelet and
shearlet transform, offer an alternative possibility to identify the wavefront set.
In particular, the connection between the behaviour of these transforms, and the
wavefront set has been analysed in [7, 11]. These approaches characterise the
wavefront set through the rate of decay of the respective transforms, which in turn
becomes computationally unfeasible in large-scale signal processing applications.

Deep learning and microlocal analysis. As shown in [4], a successful wave-
front set extractor needs to be tailored to the function class of interest. The
relevant function classes in applications are, however, difficult to characterise an-
alytically. In fact, it is shown in [4] that one cannot extract a ‘digital’ wavefront
set of L2-functions in a consistent manner. An alternative is to formulate wave-
front set extraction as a statistical estimation problem and then learn a wavefront
set extraction operator from supervised data by deep learning. This led to the
approach in [4] of training a deep neural network classifier, DeNSE, to predict the
wavefront set from the shearlet coefficients of surpervised training data. DeNSE
was successfully used for edge extraction [4] and later in [5] it was also used for
tomographic image reconstruction.

Microlocally consistent deep neural networks for reconstruction. Em-
pirical experience shows that performance of deep learning approaches for recon-
struction significantly improves if one accounts for how data is generated (forward
model), e.g., as in [1, 3] for tomographic image reconstruction. Such domain
adapted deep neural networks can be assembled by unrolling a suitable iterative
scheme [3, Sec. 4.9.1].

A natural next step is to aim for further domain adaptation, like encoding a pri-
ori knowledge of the singularities that are recoverable (microlocal characterisation
is visible singularities) and how these relate to singularities in data (microlocal
canonical relation). This ensures the reconstruction is microlocally consistent.

Our approach for ensuring microlocal consistency in tomographic reconstruction
builds on the learned-primal dual (LPD) approach in [1]. We use the framework
in [2] to encode the above knowledge about singularities into the LPD approach.
This results in a microlocally consistent version of LPD (microlocal LPD) that
has the following four components: (1) The DeNSE neural network is used to
extract a digital wavefront set of data. (2) The canonical relation for the non-
linear reconstruction operator given by LPD can be derived and this allows us to
map the digital wavefront set in data, which was provided by DeNSE, to a visible
digital wavefront set in the image domain. (3) The microlocal characterisation
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of visible singularities can then be used to split a wavefront set in the image
domain into visible and invisible parts. (4) The task of mapping the visible part
of a (digital) wavefront set into the full wavefront set is phrased as a statistical
estimation problem (wavefront set in-painting) that is solved by a trained a deep
neural network. The framework in [2] is then used to combine this network with
the one in the LPD method.

The resulting microlocal LPD is a deep neural network for reconstruction that
transforms singularities in a microlocally consistent manner. This has major ad-
vantages in limited data problems, like limited angle tomography in the plane as
shown in figures 1 and 2.

(a) Ground truth (b) FBP (c) Total variation (d) Shearlet-L2

(e) Shearlet-L1 (f) PhantomNet [6] (g) LPD [1] (h) Microlocal LPD

Figure 1. Limited angle tomography (40◦ missing wedge). Re-
construction in (b) is by filtered backprojection (FBP) whereas
the total variation (c) and shearlet compressed sensing approaches
(d)-(e) are based on sparsity promoting regularisation. Recon-
structions in (f)–(h) are obtained by deep learning approaches
that are trained against limited angle tomography data. The one
in (h) obtained by the microlocal LPD method is clearly the best.
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(a) Ground truth (b) LPD (c) Microlocal LPD

Figure 2. Same set-up as in Figure 1, but this time with a more
complex ground true image (a). The images shows the benefit of
enforcing microlocal consistency by comparing LPD (b) against
its microlocal consistent variant (c).
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Globally injective ReLU networks, injective flows and
uncertainty quantification

Maarten de Hoop

(joint work with Ivan Dokmanić, AmirEhsan Khorashadizadeh, Konik Kothari,
Matti Lassas, Michael Puthawala)

Injectivity plays an important role in generative models where it enables inference;
in inverse problems and compressed sensing with generative priors it is a precursor
to well posedness. We establish sharp characterizations of injectivity of fully-
connected and convolutional ReLU layers and networks. First, through a layerwise
analysis, we show that an expansivity factor of two is necessary and sufficient for
injectivity by constructing appropriate weight matrices. We show that global
injectivity with iid Gaussian matrices, a commonly used tractable model, requires
larger expansivity between 3.4 and 10.5. We also characterize the stability of
inverting an injective network via worst-case Lipschitz constants of the inverse.
We then use arguments from differential topology to study injectivity of deep
networks and prove that any Lipschitz map can be approximated by an injective
ReLU network. Finally, using an argument based on random projections, we show
that an end-to-end – rather than layerwise – doubling of the dimension suffices
for injectivity. We then use these result to generalize invertible normalizing flows
to obtain injective flows. Our results establish a theoretical basis for the study of
nonlinear inverse and inference problems using neural networks.

Reduced models in learned image reconstruction

Andreas Hauptmann

(joint work with Simon Arridge, Sebastian Lunz, Carola-Bibiane Schönlieb,
Tanja Tarvainen)

1. Model-corrections in inverse problems

In applications where the forward model is given by the solution of a partial
differential equation, model reduction techniques are often used to reduce compu-
tational cost, which leads to known approximation errors. Here, we will discuss
how such model errors can be corrected with data-driven methods and used for
image reconstruction. In what follows, we restrict ourselves to linear inverse prob-
lems. Let x ∈ X be the unknown quantity of interest we aim to reconstruct from
measurements y ∈ Y , where X , Y are Hilbert spaces and x and y fulfil the relation

(1) Ax = y,

where A : X → Y is the accurate forward operator. We assume that the evaluation
of the accurate operator A is computationally expensive and we rather want to use

an approximate model Ã : X → Y , which introduces an inherent approximation

(2) Ãx = ỹ.
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leading to a systematic model error δy = y− ỹ. In the following we will discuss two
principled approaches how we can use an approximate model in the framework
of learned image reconstruction and the possibility to establish reconstruction
guarantees.

2. Implicit model correction

The most straight-forward approach is to directly use the approximate model in the
framework of learned iterative reconstructions [1, 2]. That is, we aim to formulate
a network ΛΘ, that is designed to mimic a gradient descent scheme. In particular,
we train the networks to perform an iterative update, such that

(3) xk+1 = ΛΘ

(
∇x

1

2
‖Axk − y‖2Y , xk

)
,

where ∇x
1
2‖Axk − y‖2Y = A∗(Axk − y). Now, one could use an approximate

model instead of the accurate model and compute an approximate gradient given

by Ã∗(Ãxk − y) for the update in (3), as proposed in [3]. The network ΛΘ then
implicitly corrects the model error to produce the new iterate. That means, the
correction and regularisation are hence trained simultaneously with the update in
(3). Such approaches are typically trained by using a loss function, like the L2-
loss, to measure the distance between reconstruction and a ground truth phantom.
This way a substantial speed-up, compared to classical variational approaches,
can be achieved with improved reconstruction quality. Nevertheless, such implicit
corrections offer limited insights into how approximate models are corrected for
and hence we consider in the following an explicit correction that can then be
subsequently used in a variational framework.

3. Explicit model correction and a convergence result

Let us now consider corrections for this approximation error via a parameterisable,

possibly nonlinear, mapping FΘ : Y → Y , applied as a correction to Ã. Typically,
this mapping would be given by a (convolutional) neural network. This leads to a
corrected operator AΘ of the form

(4) AΘ = FΘ ◦ Ã.
We aim to choose the correction FΘ such that ideally AΘ(x) ≈ Ax for some
x ∈ X of interest. The primary question that we aim to answer is, whether
such corrected models (4) can be subsequently used in variational regularisation
approaches. Thus, it is natural to require that the obtained solutions involving
the corrected operator AΘ and the accurate operator A, are close, that is

argmin
x∈X

1

2
‖AΘ(x) − y‖2Y + λR(x) ≈ argmin

x∈X

1

2
‖Ax− y‖2Y + λR(x),(5)

with regularisation functional R and associated hyper-parameter λ. Solutions are
then usually computed by an iterative algorithm. Here we consider first order
methods to draw connections to learned iterative schemes as in (3). In particular,



758 Oberwolfach Report 13/2021

we consider a classic gradient descent scheme, assuming differentiable R. Then,
given an initial guess x0, we can compute a solution by the iterative process

(6) xk+1 = xk − γk∇x

(
1

2
‖AΘxk − y‖2Y + λR(xk)

)
,

with appropriately chosen step size γk > 0. When using (6) for the corrected
operator it seems natural to ask for a gradient consistency of the approximate
gradient ∇x‖AΘ(x) − y‖2Y ≈ ∇x‖Ax − y‖2Y . We recall that the correction FΘ in
(4) is given by a nonlinear neural network and following the chain rule we obtain

(7)
1

2
∇x‖AΘ(x)− y‖22 = Ã∗

[
DFΘ(Ãx)

]∗ (
FΘ(Ãx)− y

)
.

Here, we denote by DFΘ(y) the Fréchet derivative of FΘ at y, which is a linear
operator Y → Y . That means, to satisfy the gradient consistency condition, we
would need

(8) Ã∗
[
DFΘ(Ãx)

]∗ (
FΘ(Ãx)− y

)
≈ A∗(Ax− y).

This solution comes with its own drawback: the range of the corrected fidelity

term’s gradient (7) is limited by the range of the approximate adjoint, rng(Ã∗).
Thus, we identify the key difficulty here in the differences of the range of the
accurate and the approximate adjoints rather than the differences in the forward
operators themselves. Indeed, a correction of the forward operator via composition
with a parametrised model FΘ in measurement space is not able to yield gradients

close to the gradients of the accurate data term if rng(Ã∗) and rng(A∗) are too
different, see also Theorem 3.1 in [4].

3.1. Obtaining a Forward-Adjoint Correction. To achieve a gradient con-
sistent model correction we propose to learn two networks instead. That is, we
learn a network FΘ that corrects the forward model and another network GΦ that
corrects the adjoint, such that we have

AΘ := FΘ ◦ Ã, A∗
Φ := GΦ ◦ Ã∗

These corrections can then be obtained as follows. Given a set of training samples
(xi, Axi), we train the forward correction FΘ acting in measurement space Y , for
the adjoint we train the network GΦ acting on image space X , that yields the two
losses

min
Θ

∑

i

‖FΘ(Ãxi)−Axi‖Y and min
φ

∑

i

‖GΦ(Ã
∗ri)−A∗ri‖X .(9)

Here, we can choose the direction ri = FΘ(Ãxi) − yi for the adjoint loss. This
ensures that the adjoint correction is in fact trained in directions relevant when
solving the variational problem. We can then use both corrections to compute
approximate gradients of the data fidelity term ‖Ax− y‖2Y as

A∗(Ax − y) ≈
(
GΦ ◦ Ã∗

)(
FΘ(Ãx)− y

)
.(10)
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To establish our convergence results, we can now consider the two functionals

L(x) := 1

2
‖Ax− y‖2Y + λR(x), LΘ(x) :=

1

2
‖AΘ(x) − y‖2Y + λR(x)

and using the forward-adjoint correction we obtain, under suitable conditions out-
lined in [4], the main theorem.

Theorem 3.1 (Convergence to a neighbourhood of the accurate solution x̂ [4]).
Let ǫ > 0 and suitable δ (controlling the subdifferential of LΘ). Assume both
adjoint and forward operator are fit up to a δ/4-margin, i.e.

‖A‖X→Y ‖(A−AΘ)(xn)‖Y < δ/4, ‖(A∗ −A∗
Φ)(AΘ(xn)− y)‖X < δ/4

for all y and xn obtained during gradient descent over LΘ. Then eventually the
gradient descent dynamics over LΘ will reach an ǫ neighbourhood of the accurate
solution x̂.
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Sparsity and NETT regularization for compressed sensing
photoacoustic tomography

Markus Haltmeier

Photoacoustic tomography (PAT) is an emerging imaging technique that com-
bines the high resolution of ultrasound imaging with the high contrast of optical
tomography [6]. In PAT, a semi-transparent sample is illuminated by short pulses
of optical energy, which induces an acoustic pressure wave p : R3 × [0,∞) → R

depending on spatial position x ∈ R
3 and time t ≥ 0. The initial pressure distri-

bution f : R3 → R is proportional to the internal light absorption characteristics
of the sample and provides valuable diagnostic information. Detectors located
on a measurement surface S that (partially) surrounds the sample measure the
acoustic pressure from which the initial pressure distribution is recovered. In
the case of complete data, several reconstruction methods for recovering the ini-
tial pressure have been developed including the variable and the constant sound
speed case. Here, we model the acoustic pressure by the standard wave equation
∂2
t p − ∆xp = 0 and write W f := p|S×[0,∞) for the restriction of the acoustic

pressure to the measurement surface.
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Data W fcorresponds to full continuously sampled data in PAT. In practi-
cal application, however, the pressure can only be measured at a finite number
of sampling points. This means we measure data p(zk, ·) with sensor locations
z1, z2, . . . , zn. As shown in [3], using classical Shannon sampling theory, the num-
ber of spatial measurements determines the resolution of the reconstructed PA
source. In practice, however, collecting a large number of spatial measurements
requires either a large number of parallel data acquisition channels or a large
number of sequential measurements. This either increases the cost and technical
complexity of the system or significantly increases measurement time. In order to
reduce the number of detectors while maintaining spatial resolution, CSPAT has
been investigated in several works [2, 4]. The basic idea is to use general linear
measurements of the form y = A W f , where A is a linear measurement operator
that, that only acts in the spatial variable. The term compressed sensing refers to
the fact that the number of measurements is to be chosen is much smaller than
the number of initial sampling points. In such a situation, y = A W f constitutes
a highly underdetermined linear system of equations and can only be solved with
additional information on the unknown to be recovered.

In this talk we presented two different classes of reconstruction methods for
compressed PAT that use different type of prior information accounting for the
non-uniqueness of the underlying reconstruction problem. The first class of meth-
ods is based on sparsity. In this class we considered a two-step approach where
the operators A and W are inverted consecutively. Another sparsity based method
that we presented and that has been introduced in [4] is based on an intertwining
relation for the solution operator of the wave equation with the Laplacian. Apply-
ing the second derivative to the modeling equation results in the linear equation
∂2
t y = A W(∆f). Assuming a sparsity prior on ∆f in [4] it is proposed to jointly

recover f and h = δf by minimizing

1

2
‖A W f − y‖22 +

1

2
‖A W h− ∂2

t y‖22 +
α

2
‖∆f − h‖22 + λ‖∆‖1 + IC(f) ,

where α is a tuning parameter and λ the regularization parameter. Moreover,
IC implements a positivity constraint, i.e. with C = [0,∞)n, the function IC is
defined by IC(f) = 0 if f ∈ C and IC(f) = ∞ otherwise. Another method that
we presented considers minimizers of the optimization problem

(1) Nθ(f) =
1

2
‖A W f − y‖22 +

λ

2
Rθ(f) ,

where Rθ is a trained regularizer and λ > 0 the regularization parameter. The
resulting reconstruction approach is called NETT (for network Tikhonov regu-
larization), as it is a generalized form of Tikhonov regularization using a NN as
trained regularizer. In [5] it has been shown that under reasonable conditions,
the NETT approach is well-posed and yields a convergent regularization method.
In particular, minimizers of (1) exist, are stable with respect to data perturba-
tions, and minimizers of (1) converge to Rθ-minimizing solutions of the equation
A W f = y as the noise level goes to zero. The regularizer includes prior given in
the form of training data f1, . . . , fN and is constructed such that is has a small
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value for fi and large values for reconstructions of fi with artifacts which may be
due to under-sampling or noise. For details we refer to [1].
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Learning and interpolation with Matérn kernels

Lorenzo Rosasco

(joint work with Nicolò Pagliana, Alessandro Rudi, Ernesto De Vito)

1. Learning & interpolation

Let (X × Y, ρ) be a probability space with X ⊆ R
d,Y ⊆ R. Supervised learning

with least squares problem amounts to estimating the minimizer of the expected
risk

fρ = argmin
f :X→Y

E(f) E(f) =
∫

X×Y

(f(x)− y)2 dρ(x, y) .

having access to ρ only through a finite number of data z = (x,y) = (xi, yi)
n
i=1.

A classic idea in statistical learning is that for ood estimation there should
be a trade off between fitting the examples z and controlling the complexity of
the solution. Just focusing on fitting the data may lead to over-fitting. This
classic point of view is contrasted by recent empirical observations suggesting that
with over-parameterized models it is often possible to fit the data arbitrary well
without degrading learning accuracy. This phenomenon has been observed in
neural networks, but also other models like kernel methods, and begs the question
of whether interpolation can be reconciled with classical learning theory [1, 2, 3].

Here, we consider the minimum norm interpolating estimator in the RKHS H
defined by a kernel k,

f̂ = argmin
f∈H

‖f‖2H such that f(xi) = yi ∀i ∈ {1, . . . , n}.
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Such an estimator can be explicitly computed as

f̂(x) = k(x,x)⊤K̂−1y where (k(x,x))i = k(x, xi) , K̂i,j = k(xi, xj)

This estimator can be seen as the limit of the ridge regression estimator where

K̂−1 is replaced by (K̂ + λn I)−1 for λ going to 0.

2. Excess Risk for Interpolating Kernel Estimators

For the sake of simplicity, we assume a well specified model, that is fρ ∈ H.
Then, we derive the following high probability bound on the excess risk,

E(f̂)− E(fρ) ≤ σ2 τndeff(τn)

σmin(K̂)
+
∥∥∥(P̂ − I)fρ

∥∥∥
2

ρ
with τn ≈ logn

n

where σ is the variance of y − fρ(x), σmin(K̂) denotes the minimum eigenvalue

of the kernel matrix K̂, deff quantifies the dimension of the hypothesis space H
and is called effective dimension [4], P̂ is the orthonormal projection from H to

Ĥ = span (k(·, xi) : xi ∈ x) and ‖ ·‖ρ denotes the L2 norm induced by the measure
ρ over X .

Comments: the first term in the error bound quantify the variance of the es-
timator and strongly depend on the noise σ and on the stability of the method,

where the stability is encoded in the ratio deff(τn)

σmin(K̂)
which depend on the dimension

of the hypothesis space H and on the numerical stability of the empirical method

through σmin(K̂). The second term is the error of approximating a function in H
with its projection into a finite dimensional random subspace Ĥ. This term is also
know as interpolation error in approximation theory.

3. Learning with Matérn Kernels

We specialize the above bound to a family of kernel functions, the Matérn kernel
defined as

k(x, x′) = Q(x− x′) with Q(z) =
21−ν

Γ(ν)

(√
2ν

γ
‖z‖
)ν

Kν

(√
2ν

γ
‖z‖
)
.

where γ and ν are respectively the bandwidth and smoothness of the kernel. This
family of kernels allows to consider very smooth kernels for ν ≫ 1 as well as not
very smooth kernel for ν = 0.5 (corresponding to the Laplace kernel. Different
Sobolev spaces W ν+d/2 are associated to each kernel. With this choice of kernels
we can estimate the quantities in the bound to obtain

E(f̂)− E(fρ) . C1 σ2γ
4ν2

d+2ν n
4ν
d + C2

(
1

γd n

)1+ 2ν
d

‖fρ‖Wν+d/2
2 (X )

.

Comments: We observe that the stability term increases with a large number
of data and benefits from choosing a small bandwidth γ. The intuition behind
this is that the minimum eigenvalue of the kernel matrix depends on the distances
between the points and as soon the points start to be close (e.g. when n ∼ w2)
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then the method will be forced to find a function which has different values for
close points and this will lead to instability. This instability can be controlled by
the bandwidth γ which controls the area in which one points influence the others
and by the smoothness ν which allows to consider larger space of functions.

The interpolation error decrease with the number of points, the decrease is
faster for large ν and γ because in this case because in this case our target fρ is in
a smaller space and it is easier to reconstruct. We also observe that if decreasing
γ will improve the stability term then it will make worse the interpolation error
leading to a trade off. From the bound, we can see that even without explicit
regularization, the stability of the method can be determined by different factor
like the kernel itself, in particular its smoothness and bandwidth. While we cannot
expect the method to perform well as the number of point becomes exponential
in the input dimension [5, 6], we might still perform well with no need of extra
regularization terms.

4. Numerical Simulations

To illustrate the result and test the validity of the bounds, we consider simulated
data obtained by the model yi = fρ(xi) + ǫi for a fixed function fρ, ǫi ∼ N (0, σ2)
and xi uniform distributed over [0, 1]d. Here we plot the comparison of the variance
and interpolation error (blue dots) with our theoretical rate in n (orange) and
observe that our bound are tight in this cases.

Here we plot some 1-dimensional simulation of the comparison between the

model function fρ (black) and our estimator f̂ (orange). In the center we observe
unstable behavior of the estimator, while in the left and in the right we show how
the parameters γ and ν respectively stabilize the estimator. The numerical results
show that indeed the bounds can predict the qualitative behavior of the algorithm.
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On the structure of bilevel imaging learning problems

Juan C. De los Reyes

(joint work with D. Villaćıs)

In recent years, novel optimization ideas have been applied to image restoration
tasks in combination with machine learning approaches, to improve the reconstruc-
tion of images by optimally choosing different quantities/functions of interest. A
fruitful approach in this sense is bilevel optimization, where the imaging problems
are considered as lower-level constraints, while on the upper-level a loss function
based on a training set is used (see, e.g., [2, 3]).

Let us consider a training dataset of pairs (utrain
k , fk), for k = 1, . . . ,K, where

each utrain
k corresponds to ground-truth data and fk to the corresponding noisy

image. We consider the following class of bilevel optimization problems with vari-
ational imaging models as lower-level constraints:

minimize
(λ,σ,α,β)

K∑

k=i

ℓ(uk;u
train
k )(1a)

subject to uk = argmin
v∈Rn

E(v, λ, σ, α, β; fk),(1b)

P (λ), R(σ), Q(α), S(β) ≥ 0,(1c)

where the variational energy is given by

E(v, λ, σ, α, β; fk) :=
K∑

j=1

kj∑

i=1

Pj(λj)iDj(v; fk)i +
L∑

j=1

lj∑

i=1

Rj(σj)i|(Bjv)i|

+

M∑

j=1

mj∑

i=1

Qj(αj)i‖(Kjv)i‖2 +
N∑

j=1

nj∑

i=1

Sj(βj)i‖(Ejv)i‖F ,

with vector parameters λj , σj , αj , βj and operators Pj : R
|λj | 7→ R

kj , Rj : R
|σj | 7→

R
lj Qj : R

|αj | 7→ R
mj and Sj : R

|βj | 7→ R
nj , which are assumed to be at least twice

continuous differentiable, and encompass the scalar, the scale-dependent and the
patch-based regularization cases. The functions Dj(v; fk)i correspond to different
data fidelity models that may be considered at once. The notation | · |, ‖ · ‖2 and
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‖ · ‖F stands for the absolute value, the Euclidean norm and the Frobenius norm,
respectively.

The bilevel optimization problem structure (1) is involved to be analyzed, as
classical nonlinear or bilevel programming results cannot be directly utilized: Stan-
dard constraint qualification conditions fail for all nontrivial cases [4]. As a remedy,
tools from nonsmooth variational analysis (see, e.g., [5, 6]) have to be employed to
cope with the difficulties related with the lack of differentiability of the solution
mapping or the failure of standard constraint qualifications.

For instance, in the case of a single training pair (utrain, f) and a scale-dependent
gaussian total variation denoising model

u = arg min
v∈Rn

n∑

i=1

λi|vi − fi|2 +
n∑

i=1

|(Kv)i|2,

with K the discrete gradient operator, an M-stationay point may be characterized
through the existence of Lagrange multipliers (K⊤µ, p) that satisfy:

λ ◦ p+K
⊤µ = ∇uℓ(u;u

train),

(u− f) ◦ p+ ϑ = 0,

µj =
1

|(Ku)j |2
[(Kp)j − 〈(Kp)j , qj〉 qj ] , if (Ku)j 6= 0,

(Kp)j = 0, if (Ku)j = 0, |qj |2 < 1,

(Kp)j = 0 ∨
(Kp)j = cqj(c ∈ R), 〈µj , qj〉 = 0, ∨
(Kp)j = cqj(c ≥ 0), 〈µj , qj〉 ≥ 0,





if (Ku)j = 0, |qj |2 = 1,

0 ≤ λ ⊥ ϑ ≥ 0.

Moreover, a detailed study of the nonsmooth properties of the lower-level solu-
tion operator may lead to the design of novel solution algorithms or neural network
architectures for hyperparameter learning. In particular, in the case of variational
imaging models such as (1b) it can be proved that the solution operator is locally
Lipschitz continuous and directionally differentiable, which is already a valuable
property. In addition, a proper chracterization of the Bouligand subdifferential
may be obtained, which leads to a generalized adjoint system and convergence
properties of nonsmooth trust-region algorithms for the solution of the bilevel
instances [1].
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Generalised perceptron learning

Martin Benning

(joint work with Xiaoyu Wang)

We have demonstrated that Rosenblatt’s perceptron learning algorithm [1] can
be cast as an energy minimisation problem. A (generalised) perceptron can be
considered as an artificial neuron or one-layer feed forward neural network of the
form

y = σ (Wx+ b) .

Here σ denotes the (point-wise) activation function, W ∈ R
n×m is the weight-

matrix and b ∈ R
n is the bias-vector. The vector x ∈ R

m and the vector y ∈
R

n denote the input, respectively the output, of the perceptron. If we consider
activation functions σ that are proximal maps, i.e.

σ(z) := argmin
u∈Rn

{
1

2
‖u− z‖2 +Ψ(u)

}
,

for a proper, lower semi-continuous and convex function Ψ : R
n → R ∪ {∞},

then we can define a loss function for which the gradient does not require the
differentiation of the activation function. This loss function is defined as

L(y, σ(z)) :=
1

2
‖y − σ(z)‖2 +D

z−σ(z)
Ψ (y, σ(z)) ,(1)

for the (valid) subgradient z − σ(z) ∈ ∂Ψ(σ(z)). Here, the generalised Bregman
distance with respect to the function Ψ for the subgradient z − σ(z) ∈ ∂Ψ(σ(z))
is defined as

D
z−σ(z)
Ψ (y, σ(z)) := Ψ(y)−Ψ(σ(z))− 〈z − σ(z), y − σ(z)〉 .

In [2] it has been shown that the gradient of the loss function L as defined in (1)
with respect to the argument z is simply

∇zL(y, σ(z)) = σ(z)− y .

Hence, for proximal activation functions, the perceptron learning algorithm can
be interpreted as a stochastic or incremental gradient descent method applied
to the energy L(y, σ(Wx + b)) for L as defined in (1). A nice consequence of
this interpretation is that generalisations of Rosenblatt’s algorithm can easily be
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constructed. One example discussed in [2] is the Rosenblatt ISTA algorithm, which
is the Iterative Soft-Thresholding Algorithm (ISTA) [3] applied to the energy

L(y, σ(Wx+ b)) + α‖W‖1 .

Here ‖ · ‖1 denotes the matrix one-norm, and α > 0 is a regularisation parameter.
Another example discussed in the talk is a Bregman Alternating Direction Method
of Multipliers (BADMM) [4] for the minimisation of L(y, σ(Wx + b)). Based on
the augmented Lagrange function

Lδ(W, b, {zi}si=1; {µi}si=1) =
1

s

s∑

i=1

[
L(yi, σ(zi)) + 〈µi, zi −Wxi − b〉

+
δ

2
‖zi −Wxi − b‖2

]
,

and the BADMM variant

W k+1 = argmin
W

Lδ(W, bk, {zki }si=1; {µk
i }si=1) +

γ

2
‖W −W k‖2 ,

bk+1 = argmin
b

Lδ(W
k+1, b, {zki }si=1; {µk

i }si=1) ,

zk+1
i = argmin

z
Lδ(W

k+1, bk+1, {zi}si=1; {µk
i }si=1)) +D 1

2τ ‖·‖2−L(yi,σ(·))(z, z
k
i ) ,

µk+1
i = µk

i + δ∇µiLδ(W
k+1, bk+1, {zk+1

i }si=1; {µk
i }si=1)) ,

for all i ∈ {1, . . . , s}, we can derive the following iterative procedure to minimise
L(y, σ(Wx+ b)): for suitable initial values, we compute

W k+1 =

(
γW k + δ

s∑

i=1

(
zki − b+

1

δ
µk
i

)
x⊤
i

)(
γI + δ

s∑

i=1

xix
⊤
i

)−1

,

bk+1 =
1

s

s∑

i=1

[
zki +

1

δ
µk
i −W k+1xi

]

zk+1
i =

zki − τ
(
σ(zki )− yi + δ

(
W k+1xi + bk+1

))

1 + τδ
,

µk+1
i = µk

i + δ
(
zk+1
i −W k+1xi − bk+1

)
,

for k = 1, 2, . . . and i ∈ {1, . . . , s}. The interpretation of Rosenblatt’s perceptron
algorithm as an energy minimisation algorithm naturally paves the way for new
algorithms. The BADMM framework furthermore has the potential to be used
for the training of multi-layer perceptrons, respectively artificial neural networks,
without requiring a differential of the activation functions. Another advantage is
that BADMM can easily incorporate convex, non-smooth regularisations that act
on hidden layers of a network, which can be useful for the regularised training of
autoencoders.
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Structure Preserving Deep Learning

Christian Etmann

(joint work with Elena Celledoni, Matthias J Ehrhardt, Robert I McLachlan,
Brynjulf Owren, Carola-Bibiane Schönlieb, Ferdia Sherry)

Deep learning with mathematical guarantees has been a research focus of the last
few years. Here, we want to look at a subset of mathematical guarantees, which in
particular arise from the view of neural networks as discretised continuous systems.
A more extensive discussion of this topic is given in [1], where additional guarantees
(e.g. in the form of equivariant and invertible networks) are explored.

1. Introduction

At the heart of our analysis lies the realisation, that the widely-used residual
networks (ResNets) [2] can be viewed as such a discretisation of an ODE. ResNets
are given via the iteration

(1)
z0 = x

zk+1 = zk + hf(zk, θk), k = 0, . . . ,K − 1, ,

which defines a mapping x 7→ zK . Here, zk is from some (common) feature space X
and θk is from a (common) parameter space Θ for all k. Typically, f : X ×Θ → X
is some combination of classical neural network layers (such as convolutional or
fully-connected layers with nonlinearities).

As observed in [3], in this case, one can view the ResNet iteration (1) as an Euler
discretisation of the initial value problem

ż(t) = f(z(t), θ(t)), t ∈ [0, T ], z(0) = x,(2)

with zk = z(kh) and θk = θ(kh), if we consider the parameters respectively
activations as functions θ : [0, T ] → Θ and z : [0, T ] → X . With this, training
a neural network can be phrased as an optimal control problem [5]. Different
discretisation schemes then lead to different properties of the assumed underlying
ODE being preserved.
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2. A discussion on stability

A central consideration in both ODEs and neural networks is that of stability, so
the well-developed stability theory of ODEs and their discretisation offers valuable
insights into the stability of neural networks. However, it is important to qualify in
which sense one is talking about stability, and how the different notions of stability
of ODEs carry over to neural networks. A classical notion of stability of ODEs
considers the stability of equilibrium points, i.e., points z0 = z(0) with f(t, z0) = 0
for t ∈ [0,∞). This type of stability can be studied in terms of Lyapunov functions,
that is, functions V (z) that are non-increasing along solution trajectories. Func-
tions that are constant along solutions are called first integrals, and a particular
instance is the energy function of autonomous Hamiltonian systems.

In this view, trajectories for perturbations of the initial value are studied for all
t ∈ [0,∞). However, this notion of stability has limited applicability to neural
networks, as one typically only considers finite time horizons t ∈ [0, T ] (as in the
previous section). Furthermore, equilibria hold no particular significance in neural
networks.

Therefore, a more directly applicable view of stability is whether z(T ) does not
change ‘too much’ when the initial value x = z(0) is perturbed. That is, small
perturbations in the data should not lead to large deviations in the end result.
Such considerations lead to asking whether z(T ) is, e.g., Lipschitz continuous (or
more generally, uniformly continuous) in x = z(0). This means that for any two
solutions z1(t) and z2(t) to (2), we have

(3) ‖z2(T )− z1(T )‖ ≤ C‖z2(0)− z1(0)‖
for some C ≥ 0. It is well-known that this type of estimate can be obtained in
several different ways, depending on the properties of the underlying vector field in
(2). In particular, the Lipschitz constant C now depends on f as well as θ. Thus,
in order to guarantee that C is not too large, one may want to impose certain
restrictions on f or θ.

3. Structure preserving discretisations

Given certain properties of the ODE, such as (3), a neural network that is created
as a discretisation of this ODE does not necessarily have the same property. In
the following, we will provide an example, where non-expansiveness (meaning (3)
with C = 1) of the ODE is preserved even after discretisation. Considerations like
this lead to a similar analysis as in [4].

If the ODE

ż(t) = f(z(t), θ(t))

has the property that

(4)
〈f(z2(t), θ(t)) − f(z1(t), θ(t)), z2(t)− z1(t)〉

≤ν‖f(z2(t), θ(t)) − f(z1(t), θ(t))‖2
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for t ∈ [0, T ] for any two different solutions z1 and z2 if ν < 0, then any Runge-
Kutta scheme with strictly positive weights preserves the non-expansiveness, given
a certain additional restriction to the step size. This can be viewed as a specific
Lipschitz guarantee, as desired in the previous section.
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Learning a denoiser without ground truth

Sören Dittmer

(joint work with Carola-Bibiane Schönlieb, Peter Maass)

Learned solvers of inverse problems usually require some form of ground truth
data. However, while high-dose computed tomography (CT) provides good ground
truth approximations for low-dose CT, ground truth samples for other problems
are often hard to come by.

We present a reconstruction method that does not require any ground truth
data. More specifically, we train a denoising method flexible enough to be applied
to noisy measurements. We can therefore use the denoiser as a preprocessing step
for arbitrary reconstruction methods.

We denote the probability density function (pdf) of hypothetical clean mea-
surements as py, the pdf of noise as pη and assume the noise is additive and
independent. This yields a distribution of noisy measurements

(1) pyδ = py ∗ pη.
In this setting an assumed ideal denoiser

(2) G∗ : Y :∋ yδ 7→ y ∈ Y

would fulfill the following three push forward equations. First, we would have

(3) G∗
#pyδ = py,

i.e., the samples generated by the denoiser G∗, given noisy samples from pyδ ,
should follow the law given by py. In English, denoised measurements should look
like clean measurements.
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The second forward equation that G∗ is supposed to fulfil is

(4)
(
G∗

#pyδ

)
∗ pη = pyδ .

This follows directly from (1) and (4) and formalizes that if we “renoise” denoised
measurements, they should look like noisy measurements again.

The third and last push forward equation is

(5) (id−G∗)# pyδ = pη.

This can be interpreted as the requirement that the part of the noisy measurement
that the denoiser removes should look like noise.

We approximate such a denoiser via the optimization problem

argmin
G

D
(
pyδ

∥∥ (G#pyδ

)
∗ pη

)
+D

(
pη
∥∥ (id−G)# pyδ

)
.(6)

Here D is a distance measure between probability distributions. One can imple-
ment this optimization problem via a Generative Adversarial Network (GAN) [1]
setup with one generator and two critics/discriminators. One critic for each of the
summands in (6). Depending on the type of GAN loss one chooses, one can realize
different choices of D.

y yδ = y + η Gours(y
δ) Gsupervised(y

δ) GSURE(y
δ) [2]

PSNR stats:
mean: 6.1 mean: 25.3 mean: 31.0 mean: 23.4

median: 6.0 median: 25.5 median: 30.3 median: 23.4

SSIM stats:
mean: 0.03 mean: 0.79 mean: 0.90 mean: 0.78

median: 0.03 median: 0.81 median: 0.93 median: 0.80

Table 1. Reconstructions of sines. Here, we compare – from left
to right – the ground truth, the noisy measurement, our setup, a
supervised setup, and a SURE setup. The stats are over 10,000 samples.

The training of such a GAN setup only requires samples of noisy measurements,
i.e., samples from pyδ and samples of noise, i.e., samples from pη. Critically, these
samples do not need to come in pairs. We therefore avoid the need of any samples
from py during the training.

The numerical results presented in Table 1 are based on a Wasserstein GAN [4]
setup of the Gradient-Penalty type [3, 5]. The noise used is Gaussian and sine
waves of varying frequencies give py.
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Learned Stochastic Primal-Dual Reconstruction

Marta M. Betcke

(joint work with Andreas Hauptmann, Won Tek Hong, Francesc Rul·lan)

1. From variational to learned reconstruction methods

Limited data problems are ubiquitous in real word applications. Be it the geo-
metrical constraints on the scanner design such as one sided access only (limited
angle/view problems) or the requirement to limit the dose delivered to the patient
or data acquisition time (sparse sampling), such situations result in incomplete
data which precludes good quality reconstruction using analytical inversion for-
mulas derived for the complete data scenario.

A common way to approach such incomplete data problems is via variational
formulation where the data-model fit is balanced with a prior knowledge about
the image properties

(1) min
u∈U

‖P (u)− h‖22 + λR(u),

where P : U → H is possibly nonlinear forward operator and R : U → R ∪ {+∞}
an appropriate regularisation functional, and λ ∈ R+ strikes the balance between
the data fidelity and prior.

The variational formulation using non-strictly convex regularisation functionals
enabled edge preserving reconstructions which revolutionised imaging applications.
Many highly sophisticated regularisation functionals (convex or non-convex) espe-
cially tailored to imaging applications have been since developed including total
variation and its higher order and directional variants, sparsity in a frame like
Wavelets and their directional variants, composite regularisers via infimal convo-
lution, joint regularisers e.g. total nuclear variation, to name a few. While these
regularisers perform great in many applications, they have one common limita-
tion: they are an analytical description of the image constructed with a particular
property in mind e.g. total variation favours piecewise constant images, directional
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Wavelet sparsity favours images with discontinuities along smooth curves. Real
application images not only contain a mixture of such traits, which can be to cer-
tain extent addressed via composite regularisers, frequently their inherent qualities
are hard to encode via analytical models.

The deep learning revolution of the last decade has seen a surge of interest in
machine learning methods, in particular deep neural networks, in many fields in-
cluding inverse problems and image reconstruction. A consensus quickly emerged
that hybrid model-data based approaches hold most promise in image reconstruc-
tion applications, where generally the non-trivial forward operator admits ana-
lytical description with well understood properties and high dimensionally of the
images implies that training data is not abundant. The unrolling proposed in [1]
has been applied to a number of image reconstruction applications across modal-
ities. We particularly mention the learned primal dual (LPD) method [2] which
applies the unrolling concept to the popular primal dual hybrid gradient (PDHG)
method [3].

2. Learned satochastic primal-dual method (SLPD)

Our proposed stochastic learned primal dual (SLPD) method builds on LPD [2]
and stochastic primal-dual hybrid gradient (SPDHG) variant of PDHG proposed
in [4].

We consider a general setting

min
u∈U

F (P (u)) +G(u),

where P : U → H is a bounded operator which admits split into partial operators
Pi : Pi(x) = hi and hi, i ∈ 1, . . . , n is the ith component of h ∈ H. If P is
linear, its adjoint can be written as P ∗h =

∑n
i=1 P

∗
i hi. For nonlinear P we can

use similar formulation on Fréchet derivative ∂P . The data fidelity F : H →
R ∪ {+∞} is assumed separable i.e. F (h) =

∑n
i Fi(hi), and the regularisation

G : U → R ∪ {+∞} is convex.
For proper, convex, lower semicontinuous F the problem can be reformulated

as a saddle point

min
u∈U

max
h∈H

〈P (u), h〉 − F ∗(h) +G(u),

where F ∗ is the Fenchel conjugate of F , which under the split becomes

min
u∈U

max
h∈H

n∑

i=1

〈Pi(u), hi〉 − F ∗
i (hi) +G(u).

SPDHG [4] capitalises on the partial operator structure and updates in each iter-
ation only a random subset Sk of dual variables which only requires application of
the partial forward PSk

and partial adjoint P ∗
Sk

operators. This has an advantage
whenever such partial operators can be computed at a fraction of cost of the full
operator, which is frequently the case in tomography e.g. Radon/X-ray transform
(projection angles), US tomography (sources), Photoacoustic tomography (when
using ray based acoustic solvers [5, 7]).



774 Oberwolfach Report 13/2021

We propose a following modifications to the SPDHG method (note that prac-
tical implementations will make further assumptions). We highlight with colour
the influences from LPD and SPDHG and refer the reader to [9, 8] for details.
Learnt Stochastic Primal Dual (SLPD)

Initialisation:
u0 = 0 ∈ U

Np

, h0 = 0 ∈ H
Nd

for k = 0, . . . ,K do
Select Sk+1 ⊂ {1, . . . , n}
hk+1 = Γθd

k
(hk, PSk+1

(uk,(2)), gSk+1
)

uk+1 = Γθp
k
(uk, [∂PSk+1

(uk,(1))]∗(hk+1,(1))),
end for
return uK,(1)

We would like to mention two important advantages of the proposed LSPD
method: i) it can be potentially used as a one pass method which allows a recon-
struction from an unrecorded stream of data (all 1 angle epoch reconstructions),
ii) it can be trained using subsampling Sk not fixed but randomly drawn from a
chosen distribution for each training pair. The resulting learned method is then
independent of a particular subsampling draw (pattern), and only depends on the
underlying subsampling distribution (Fig 2. random sampling example).

Fig 1. LSPD reconstructions from

uniformly subsampled fixed 60 angles

(over 180 degrees), grey level [0,1]

Fig 2. LSPD reconstruction from ran-

domly drawn (for each training pair) 60

angles (over 180 degrees), grey level [0,1]
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Solving Inverse Imaging Problems with Generative Machine
Learning Models

Margaret Duff

(joint work with Neill D.F. Campbell, Matthias J. Ehrhardt)

Solving an inverse problem is the task of computing an unknown physical quantity
from indirect measurements found via a forward model. Let A : X → Y be a
forward process that takes an image x ∈ X to data y ∈ Y . The inverse problem
takes data, y, often corrupted by noise, and finds image, x, such that y = A(x).

Generative models learn, from observations, approximations to high-dimensional
data distributions. Consider some set of ‘feasible’ solutions to the inverse prob-
lem, for example in an MRI image reconstruction problem where the data is of
a knee, example feasible images could be given by a dataset of other knee MRI
images. Assume that due to the similarities between the images, such as repeating
patterns, textures and backgrounds, that this set of feasible images lie on some
lower dimensional manifold in the space, X . A trained generator G : Z → X ,
takes values in a known lower dimensional latent space, Z, and outputs images on
this manifold. If, in addition, a prior probability distribution, pz, is given on the
latent space, Z, we further ask that the generator maps high probability points in
the latent space to high probability points in the image space. Mathematically we
ask that the pushforward of the prior by the function, G, is close to the unknown
distribution of feasible images.

We approach the inverse problem using variational regularisation of the form

x∗ ∈ argmin
x∈X

‖Ax− y‖22 + λRG(x),(1)

where RG : X → R ∪ {∞} is a regularisation functional that penalises values of
x ∈ X that are far from the range of the trained generator, G, and the constant
λ is a regularisation parameter. The idea is that learned priors could provide
more specific information than a hand-crafted regulariser and thus a better recon-
struction. Any learning would also not require paired training data and would be
done independently of the forward model. This makes the method very flexible in
real-world scenarios where noise levels and forward model parameters may change.
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We discuss three different choice of RG.

• Taking RG(x) = minz∈Z ι{0}(G(z)−x)+‖z‖22, where ιC(t) =
{
0 t ∈ C
∞ t /∈ C .

This was introduced by [1] and restricts images x to be in the range of the
generator. The additional regularisation on z is chosen to match the prior
on the latent space, usually taken to be a standard normal distribution.
This gives the solution x∗ = G(z∗) where

z∗ ∈ argmin
z∈Z

‖AG(z)− y‖22 + λ‖z‖22.(2)

• Taking RG(x) = minz∈Z ‖G(z)− x‖22 + µ‖z‖22 encourages x to lie close to
the range of the generator, leading to the solution of the inverse problem

x∗, z∗ ∈ argmin
x∈X,z∈Z

‖Ax− y‖22 + λ‖G(z)− x‖22 + λµ‖z‖22.(3)

• Taking RG(x) = minz∈Z,u∈X ι{0}(G(z)+u−x)+ ‖u‖1+µ‖z‖22 we restrict
x to be within a sparse deviation from the range of the generator. This
was originally introduced by [2]. The deviation, u, in the image space,
is restricted to be sparse using the 1-norm. This gives the solution x∗ =
G(z∗) + u∗ where

z∗, u∗ ∈ argmin
z∈Z,u∈X

‖A(G(z) + u)− y‖22 + λ‖u‖1 + λµ‖z‖22.(4)

Including a generator in a variational framework has been considered by a
variety of authors. From the initial applications in compressed sensing [1, 3] there
have been applications in blind inverse problems [4], seismic imaging [5], inpainting
[6] and photo up-sampling [7].

The approach raises a wide range of questions. Assuming that solutions of (1)
can be found, some theoretical results exist. For example papers such as [8, 9],
consider convergence of solutions of variational approaches with learned regularis-
ers as the error in the data goes to zero. However, the addition of a generator
in (1) makes the minimisation problem potentially non-linear and non-convex and
any theoretical results on the optimisation of (1) very difficult. Careful initialisa-
tion of optimisation schemes for (1) is needed, for example with an approximate
reconstruction.

The choice of training of the generator is also very important. We also require
that the ground truth image lies in, or close to, the range of the generator. Com-
mon generative models include variational autoencoders (VAEs) [10] and genera-
tive adversarial networks (GANs) [11]. Although both have provided good image
generation results, VAEs often suffer from blurred images, generating images that
may not be feasible. GANs can also suffer from mode collapse, where the genera-
tor just outputs a subset of the feasible images. This subset could just be a few
images or large enough that the mode collapse is difficult to detect [12].

Evaluating a generative model’s ability to reconstruct an entire distribution, in
the context of inverse problems, is an area of future work. In addition, it may be
important to have a generator that is smooth with respect to the latent space, Z,
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in order to use gradient descent based methods to minimise (1). We could also
ask that the generator is somewhat stable with respect to the latent space, so that
points close together in the latent space map to similar points in the image space.
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Interpreting U-Nets via Task-Driven Multiscale Dictionary Learning

Tianlin Liu

(joint work with Anadi Chaman, David Belius, Ivan Dokmanić)

1. Introduction

U-Nets [1] have been tremendously successful in many imaging inverse problems.
In an effort to understand the source of this success, we show that one can reduce
a U-Net to a tractable, well-understood sparsity-driven dictionary model while
retaining its strong empirical performance. We achieve this by extracting a certain
multiscale convolutional dictionary from the standard U-Net. This dictionary
imitates the structure of the U-Net in its convolution, scale-separation, and skip
connection aspects, while doing away with the nonlinear parts. We show that this
model can be trained in a task-driven dictionary learning framework and yield
comparable results to standard U-Nets on a number of relevant tasks, including
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CT and MRI reconstruction. These results suggest that the success of the U-Net
may be explained mainly by its multiscale architecture and the induced sparse
representation.

2. Multiscale convolutional dictionaries

Figure 1. The U-Net and the multiscale convolutional
dictionary considered in this work. (a): The U-Net pro-
cesses input images using convolution, scale-separation, and skip
connections operations in conjunction with ReLU non-linearlities
and batch-normalization modules indicated by colored arrows.
(b): The dictionary considered in this work constitutes the main
ingredients of U-Net, but with removed non-linearlities, batch-
normalization, and additive biases.

Based on the U-Net architecture (Figure 1a), we construct a simple linear model
by keeping the U-Net’s essential ingredients – convolution and scale separation –
but removing non-linearities, batch normalization, and additive biases (Figure 1b).
The resulting model is thus an overcomplete dictionary written as Dγ ∈ R

d×N

with atoms γ; we refer it to as the synthesis dictionary.
With a given synthesis dictionary Dγ that describes the image generation pro-

cess, we next consider how to infer the sparse code α, so that the linear transfor-
mation Dγα well approximates the image y we wish to model, that is, Dγα ≈ y.
To that end, we make use of paired input-target data of the form (x,y) ∈ R

d×R
d

as in the context of supervised learning. The input x here could be a noisy image
associated to the clean image y. Since x and y are associated, we interpret α as a
latent representation of both x and y. Specifically, we posit that each input-target
data pair (x,y) ∈ R

d×R
d admits a shared underlying sparse code α with respect

to two dictionaries Dθ and Dγ :

(1) Dθα ≈ x and Dγα ≈ y for α sparse.

Here, the analysis dictionary Dθ ∈ R
d×N has the same structure of the synthesis

dictionary Dγ , albeit with a different set of atoms θ.
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3. Bi-level optimization

In light of the formulation of (1), to turn an input x to approximate the target y,
we consider the following bi-level minimization problem over a training dataset of
M input-target pairs {xi,yi}Mi=1:

(2)

minimize
{θ,γ},λ>0

1

2M

M∑

i=1

‖Dγαxi,θ − yi‖22

where αxi,θ = argmin
α≥0

1

2
‖Dθα− xi‖22 + ‖λ⊙α‖1,

for ⊙ being the Hadamard product. In plain words, the objective of Equation (2)
aims to minimize the discrepancy between the ground-truth signal y and the model
prediction Dγαx,θ, where the latter is a signal synthesized from a sparse code
αx,θ via the synthesis dictionary Dγ ; the code αx,θ, defined through the argmin
function in Equation (2) is a sparse representation of the input image x with
respect to the analysis dictionary Dθ under a Lasso-like objective. Here, the
sparsity-controlling parameter λ is a vector, weighting codes component-wise. We
have required the code α to be non-negative to enhance interpretability.

4. Approximately solve bi-level optimization through unrolling

To solve the bi-level optimization task (2), we use a two-step procedure: (i) infer
the underlying sparse code α using an unrolled sparse coding algorithm S respect
to the analysis dictionary Dθ; and (ii) linearly transform the inferred sparse code
using the synthesis dictionary Dγ :

(3) x
Sparse coding7−−−−−−−−−→ α := S(x,Dθ)

Linear synthesis7−−−−−−−−−−→ ŷ := Dγα.

Here, we choose S to be a learned variant of the ISTA sparse coding algorithm. The
computational graph (3), dubbed ISTA U-Net, can be trained under the standard
supervised learning paradigm.

5. Numerical experiments

We use the LoDoPaB-CT dataset [2], which contains more than 40000 pairs of
human chest CT images and their simulated low photon count measurements. To
train U-Nets and ISTA U-Nets, we first transformed the sinogram measurements
to the image space using filtered back projection (FBP), which was the only pre-
processing we performed. Table 2 and Figure 2 show the reconstruction results
on the test set. The U-Net variants achieved superior results. Importantly, ISTA
U-Net replicated U-Net’s strong performance in this task. Additional numerical
results can be seen in our full paper [3].
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Figure 2. Reconstructions of a test sample from the
LoDoPaB-CT dataset.

PSNR (dB) SSIM

FBP 30.37 0.74
Small U-Net 35.48 0.84
Classic U-Net 35.71 0.84
ISTA U-Net 35.83 0.84

Table 2. Performance on the LoDoPaB-CT test data.
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Inverse Models for Particle Accelerators

Romana Boiger

(joint work with Adelmann Andreas, Bellotti Renato)

Forward and especially inverse modeling of particle accelerators is of great interest,
not only for the initial machine design but also during operation. Particularly
for the latter, inverse models could potentially be used to help optimizing the
requested beam conditions for accelerators with frequent re-tuning of settings or
even offer the means for online beam-optimization. With OPAL, Adelmann et al.
[1] provide a parallel open source tool for forward simulating particle accelerators,
based on high fidelity nonlinear physical models. OPAL predicts beam parameters
for given accelerator settings with generally high accuracy and reliability. This
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simulation is computationally very expensive, due to the high model complexity.
Hence, determining particle accelerator settings from given beam parameters, i.e.
solving the inverse problem, is not yet efficiently possible.

The main focus of this work is the direct solution of the inverse problem, using
deep learning algorithms. Therewith the use of the forward model and costly opti-
mization methods or the hand tuning of the accelerator settings could be avoided.
In references [2, 3] different deep learning algorithms for solving inverse problems
are suggested, such as invertible neural networks, autoencoders, invertible residual
networks, or autoregressive flows. Especially the invertible architectures have the
advantage, that not only the inverse problem, but also the forward problem can
be solved, without any additional effort. For the forward simulation and further
optimization it was shown e.g. in [4] that surrogate models based on neural net-
works can speed up calculation by orders of magnitude. Hence it is worth taking
a look at the solution of the inverse problem using neural networks as well. In
a first step we use invertible neural networks as suggested by [2]. They have the
following specific structure: the main building blocks are affince coupling blocks,
followed by permutation layers. The affine coupling blocks, are designed such that
the input u is split into two parts u1 and u2, and also the output consists of two
parts v1 and v2. Input and output are connected via functions s and t that are
neural networks themselves. The forward pass is given by:

v1 = u1 ⊙ exp (s2(u2)) + t2(u2)

v2 = u2 ⊙ exp (s1(v1)) + t1(v1)

Hence the inverse pass is:

u2 = (v2 − t1(v1)) ⊙ exp (−s1(v1))

u1 = (v1 − t2(u2))⊙ exp (−s2(u2))

Additionally, a latent variable following a predefined distribution is added to the
output that accounts for the information loss from input to output. The above
structure can only be used, if input and output have the same dimension. In order
to fulfill this condition on both, the input and output layer, zero or low noise
padding can be used. With that, applying the forward after the inverse prediction
and vice-versa should give the identity, which holds up to some numerical errors.
Due to the invertible structure of the affine coupling blocks and together with a
specific loss function, mentioned in [2] it is possible to train forward and inverse
prediction simultaneously.

We used this method for a first proof of concept to solve the forward and inverse
problem for specific accelerators, modelled with OPAL to get a reliable dataset.
First numerical results were quite promising and showed the general applicability of
surrogate models to solve the inverse problem. Furthermore, a significant speed-up
in the forward simulation was obtained. The usage of the inverse surrogate model
for optimization purposes can, depending on the problem of course, speed-up the
time-to-solution and reduction of computational cost more than 98 %, compared
to using exclusively OPAL for the same task.
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In summary, deep learning methods and especially invertible neural networks
can solve the forward and inverse problem for particle accelerators in principle and
can reduce both prediction time and computational cost tremendously.
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Learning from electric X-ray images: the new EIT

Samuli Siltanen

(joint work with Juan Pablo Agnelli, Aynur Cöl, Matti Lassas, Rashmi Murthy,
Matteo Santacesaria)

A fundamental connection between Electrical Impedance Tomography (EIT) and
classical X-ray tomography was found in [Greenleaf et al 2018]. There it was
shown that a one-dimensional Fourier transform applied to the spectral parameter
of Complex Geometric Optics (CGO) solutions produces generalised projections,
enabling a novel filtered back-projection type nonlinear reconstruction algorithm
for EIT. This approach is called Virtual Hybrid Edge Detection (VHED).

One of the medically most promising applications of EIT is stroke imaging.
There are two main types of stroke: (1) brain haemorrhage and (2) ischemic
stroke caused by a blood clot. The symptoms for those two conditions are the
same, but the treatments are completely the opposite. There are two main uses
for EIT here: (a) classifying the type of stroke already in the ambulance with a
cost-effective portable device, and (b) monitoring the state of recovering stroke
patients in the intensive care unit.

The main difficulty in using EIT for head imaging is the resistive skull. Because
of that, the relevant signal from the brain is weak and almost buried in noise.
Given the extreme ill-posedness of the inverse conductivity problem, it is quite a
challenge to design a robust EIT algorithm for either (a) or (b).

VHED offers a way to divide the information in EIT measurements into geo-
metrically understood pieces. One could wish that those pieces are less sensitive to
noise than a full reconstructed image of the conductivity. This presentation shows
how machine learning can be used for classifying stroke (problem (a)) above based
on VHED profiles. Examined are fully connected neural networks (FCNN), con-
volutional neural networks (CNN) and recurrent neural networks (RNN). Perhaps



Deep Learning for Inverse Problems 783

surprisingly, CNNs offer the worst performance, while RNNs are slightly better
than FCNNs.

Data-Driven Regularization for Inverse Problems

Subhadip Mukherjee and Carola-Bibiane Schönlieb

(joint work with Sebastian Lunz, Sören Dittmer, Zakhar Shumaylov,

Ozan Öktem)

1. Introduction

Inverse problems arise in virtually every modern medical imaging modality such
as computed tomography (CT), magnetic resonance imaging (MRI), etc., wherein
the key objective is to reconstruct some parameter of interest x∗ ∈ X based on an
indirect and possibly noisy measurement (data):

(1) yδ = A(x∗) + e ∈ Y.

Here, X and Y are appropriately defined Hilbert spaces, and the measurement
noise e satisfies ‖e‖2 ≤ δ. An inverse problem is said to be ill-posed if it has
no or multiple solutions, or if its solution does not vary continuously in the data.
Classical variational approaches attempt to alleviate the issue of ill-posedness by
involving hand-crafted prior information on possible reconstructions:

(2) x̂λ(y
δ) ∈ argmin

x∈X

‖yδ −A(x)‖2Y + λR(x).

Here, the regularization functional R : X → R is chosen such that it penalizes
undesirable solutions. The penalty parameter λ > 0 trades-off between data con-
sistency and regularization and should be selected based on the noise-level δ. Sev-
eral decades of research has gone into hand-crafting appropriate regularizers with
provable properties [11], but they fall short in terms of data-adaptability.

With the recent surge of research in deep learning, attempts have been made
to learn the regularizer in a data-driven manner. The line of research that this
report focuses on directly uses a neural network to parametrize the regularization
functional, allowing to reconstruct from the observed data by solving a variational
optimization problem [7, 5, 12, 4]. The idea of using a trained neural network as
a regularizer was considered in [5] (referred to as network Tikhonov (NETT)) and
more recently in [4] (referred to as total deep variation (TDV)). The regularization
by denoising (RED) approach [9, 10, 6] also belongs to this class, wherein one
constructs an explicit regularizer from an image denoiser by penalizing the inner
product of the image with its denoising residual. This report specifically considers
the adversarial regularizer (AR) framework introduced in [7] and its convex variant
(adversarial convex regularizer (ACR)) proposed in [8].
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2. Adversarial regularization

The principle idea in AR is to replace a hand-crafted regularizer with a data-
adaptive one, parametrized by a deep neural network. The parametric regularizer
{Rθ}θ∈Θ is first trained to discern ground-truth images from images containing
artifacts. One does not need paired images to approximate the training objective
in AR, which makes the framework unsupervised in theory. Subsequently, the
trained AR is deployed in a variational scheme for solving an ill-posed inverse
problem.

Given a training dataset containing an ensemble of ground-truth images {xi}N1

i=1

and unregularized reconstructions {A† yj}N2

j=1, sampled i.i.d. from the respective

marginal distributions πx and A†
# πy (the push-forward of the data distribution

πY by the pseudo-inverse of A), respectively, the training objective reads

(3) min
θ∈Θ


 1

N1

N1∑

i=1

[Rθ (xi)]−
1

N2

N2∑

j=1

[
Rθ(A† yj)

]

 s.t.Rθ ∈ 1− Lipschitz.

The 1-Lipschitz condition in (3) encourages the output ofRθ to transition smoothly
with respect to the input, thus making the corresponding variational loss stable.
The 1-Lipschitz constraint is enforced by adding a gradient-penalty term [3] to the
training loss in (3). AR enjoys the following important theoretical properties:

• As a consequence of the Kantorovich-Rubinstein duality [2], a perfectly trained
regularizer (which is a 1-Lipschitz functional and achieves the minima in (3),

with parameter θ∗) approximates the Wasserstein distance: W(πx,A†
# πy) =

EA†

#
πy

[Rθ∗(x)]− Eπx
[Rθ∗(x)].

• Let u ∼ πnoisy := A†
# πy, and gη(u) = u− η∇uRθ∗(u) be the gradient-descent

update at u with step-size η > 0 in the negative gradient direction of Rθ∗ .
Then, we have W(πx, (gη)# πnoisy) ≤ W(πx, πnoisy), where (gη)# πnoisy is the

distribution of gη(u). That is, the regularizer seeks to align the distribution of
the reconstruction to that of the ground-truth images.

• Assume that πx is supported on the weakly compact set M such that M
c has

zero measure and (PM)# πnoisy = πx, where PM(x) := argmin
u∈M

‖x− u‖ is the

projection of x on to the image manifold M. Then, the regularizer approximates
the distance from M: Rθ∗(x) := min

u∈M

‖x− u‖. Therefore, the corresponding

variational problem finds a solution that is consistent with the data and is close
to the true image manifold.

• Let lim
n→∞

∥∥yn − yδ
∥∥
Y
= 0, |Rθ∗(x)| → ∞ as ‖x‖ → ∞ (coercive), and

xn ∈ argmin
x∈X

‖yn −A(x)‖22 + λRθ∗(x).

Then, xn has a weakly convergent sub-sequence and the limit is a minimizer of

the variational loss
∥∥yδ −A(x)

∥∥2
2
+ λRθ∗(x).
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One can derive precise stability estimates and stronger convergence guarantees
when Rθ is convex, as we will show next.

3. Adversarial convex regularization

In [8], we proposed to parametrize Rθ using an input-convex neural network
(ICNN) [1]. For simplicity, we explain the construction in the finite-dimensional
setting X = R

n.

(a) ground-truth (b) FBP: 21.63, 0.24 (c) TV: 29.25, 0.79 (d) AR: 31.83, 0.84 (e) ACR: 30.00, 0.82

(f) ground-truth (g) FBP: 21.61, 0.17 (h) TV: 25.74, 0.80 (i) AR: 26.83, 0.71 (j) ACR: 27.98, 0.84

Figure 1. Comparison of different reconstruction methods for
sparse-view (first-row) and limited-angle (second-row) CT (in
terms of PSNR (dB) and SSIM). For sparse-view CT, ACR out-
performs TV, but AR turns out to be better than ACR. However,
for limited-angle CT, ACR outperforms both TV and AR in terms
of reconstruction quality.

It is straight-forward to show thatRθ(x) := Havg(zL+1(x))+ρ0‖x‖22 is strongly-
convex in x, where Havg is an averaging operator and the entries of zL+1(x) are
convex in x. zL+1(x) is computed as zi+1(x) = ϕ (Bi (zi(x)) +Wi(x) + bi),
i = 0, · · · , L, where Bi’s are point-wise non-negative and linear, and the (element-
wise) nonlinear activation ϕ is convex and monotonically non-decreasing (e.g.,
ReLU/leaky-ReLU). This construction of a convex regularizer uses the facts that a
non-negative combination of convex functions is convex and the composition f1◦f2
is convex when both f1 and f2 are convex and f1 is monotone non-decreasing. We
showed in [8] that the ACR so constructed has the following properties:

• Stability:
∥∥x̂λ

(
yδ
)
− x̂λ(y

0)
∥∥
2
≤ β1δ

λρ0
, where β1 := sup

x∈X

‖A(x)‖
Y

‖x‖
X

< ∞ is the

spectral-norm of (linear) A and y0 denotes clean data.
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• Well-posedness: For δ → 0, λ(δ) → 0, and δ
λ(δ) → 0, the solution x̂λ

(
yδ
)

converges to the R-minimizing solution below with respect to the norm on X:

x† := argmin
x

R(x) subject to A(x) = y0.

• Convergence of sub-gradient-descent: There exist step-sizes η∗k = 2λρ0
‖xk−x̂‖2

X

‖zk‖
2
X

such that the updates xk+1 = xk − η∗kzk, where zk ∈ ∂ (λRθ∗(xk)), converge
to true minimizer x̂ with respect to the norm topology.

Some sample reconstructions on the Mayo-clinic low-dose CT data are shown in
Figure 1.
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Learned convex regularizers for inverse problem, arXiv preprint arXiv:2008.02839v2,
(Mar. 2021).

[9] E. T. Reehorst, and P. Schniter, Regularization by denoising: clarifications and new
interpretations, IEEE Transactions on Computational Imaging, 5 (2019), pp. 52–67.

[10] Y. Romano, M. Elad, and P. Milanfar, The little engine that could: Regularization by
denoising (RED), SIAM Journal on Imaging Sciences, 10 (2017), pp. 1804–1844.

[11] O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen, Variational
methods in imaging, Springer, 2009.

[12] D. Ulyanov, A. Vedaldi, and V. Lempitsky, Deep image prior, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9446–9454.

Reporter: Matthias Beckmann



Deep Learning for Inverse Problems 787

Participants

Dr. Jonas Adler

Department of Mathematics
Royal Institute of Technology
Lindstedtsvägen 25
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