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Introduction by the Organizers

The field of multi-scale problems is ubiquitous in contemporary applied science
and has already been well explored from the mathematical standpoint. The the-
oretical side of the field is homogenization theory. The story began with periodic
homogenization in the 1960s (see the celebrated monographs by Bensoussan-Lions-
Papanicolaou and Jikov-Kozlov-Oleinik) and proceeded with stochastic homoge-
nization in the 1980s, a field that has witnessed tremendous progress lately, with
contributions e.g. by Caffarelli and Souganidis, Otto, Armstrong and their respec-
tive collaborators. Further generality can be achieved, with general homogeniza-
tion theory, à la De Giorgi or à la Tartar. In the latter theory, not much is assumed
on the setting but the results provided, based on compactness arguments, are not
quantitatively informative: typically, existence of a homogenized limit, without
saying anything significant in terms of uniqueness, characterization of the limit,
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computability of this limit, rates of convergence to the limit and so on and so
forth.

Although well documented, periodicity is still too much an idealized assumption
for the many practically relevant media (or, in more specific contexts, materials),
while the stochastic setting, although theoretically attractive, may be prohibitively
expensive computationally. Not even bringing up the case of general homoge-
nization theory. The future of homogenization theory lies somewhere in the gap
looming between the periodic setting, the stochastic setting, and the fully general
setting. The objective of the workshop has been to review the latest developments
in homogenization theory for a large category of equations and settings.

Similar challenges emerge within the theory of boundary layers in fluid me-
chanics. After the seminal works of Achdou, Pironneau and Valentin in the 1990s,
several authors have investigated the behavior of a viscous fluid near a rough wall,
starting with the case when the roughness is periodic, and then investigating more
general, and possibly more physical cases: quasi-periodic or random roughness,
and even roughness profiles without any structural assumption. But the bound-
ary layer model that has attracted the most attention, both in the physical and the
mathematical community, is certainly the Prandtl boundary layer, which describes
the behavior of an incompressible fluid with small viscosity close to a flat wall.
The study of this model raises issues that are connected to, but slightly different
from the topics raised above, such as singularity formation and instabilities.

Additionally, under the impulsion of De Lellis and Székelyhidi, and pondering
on the works of Nash, Scheffer and Shnirelman, convex integration techniques have
had a considerable impact over the mathematical fluid dynamics community over
the past ten years. These techniques are closely related to homogenization theory:
the idea is to build a solution of an equation (say, the Euler system) in which
arbitrarily small scales exist. These small scales add up to create a macroscopic
behavior, such as the creation of a non-zero energy. Their effect also results in the
creation of singularities within the solution. As a consequence, one of the purposes
of the workshop was to highlight the links between homogenization theory, convex
integration, and singularity formation.

The participants of the workshop brought expertise in all areas of mathematics
that are necessary to address the aforementioned challenges. In particular, ana-
lysts and probabilists with the necessary expertise to make progress in these areas
attended the workshop. The comparison of approaches and settings generated
intense discussion among the participants.
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Abstracts

Homogenization of zero order convolution type operators. Periodic
and beyond

Andrey Piatnitski

(joint work with Andrea Braides, Elena Zhizhina)

In this presentation we deal with zero order convolution type non-local operator A
in L2(Rd), d ≥ 1, with periodic or random statistically homogeneous coefficients.
More precisely, we consider operators of the form

Au(x) =

∫

Rd

Λ(x, y)a(x− y)
(
u(y)− u(x)

)
dy, u ∈ L2(Rd)

where the convolution kernel a = a(z) is a deterministic non-negative integrable
function, a : Rd 7→ R

+, Λ(x, y) is a periodic or stationary random field that satis-
fies the uniform ellipticity conditions. This field represents the local characteristics
of the medium. Under the above assumptions A is a bounded operator in L2(Rd).

The corresponding evolution equation describes a jump Markov dynamics in a
periodic or random stationary environment.

When studying the large time behaviour of the said Markov evolution it is
natural to make the diffusive scaling of spatial and temporal variables: given a
small parameter ε > 0 we introduce new variables

x −→ εx, t −→ ε2t.

The generator of the scaled dynamics takes the form

(1) (Aεu)(x) =
1

εd+2

∫

Rd

a
(x− y

ε

)
Λ
(x
ε
,
y

ε

)(
u(y)− u(x)

)
dy.

The presentation focuses on the homogenization problem for this family of opera-
tors, as ε → 0. Our goal is to formulate the homogenization result and to describe
the properties of the limit problem.

The problems of this type appear in various ecological and population dynamics
models as well as in computer vision. Some upscaling problems in porous media
also lead to homogenization of non-local convolution type operators.

Previously, homogenization results for Levy type non-local operators have been
obtained in [1], [3], [2] and some other works. Further progress in this direction
was achieved in [4] and [5].

Here we consider zero order convolution type operators. Homogenization prob-
lems for these operators were studied in [6], [7] and [8] .

Assumptions. We assume that the following conditions are fulfilled:

(C1.) Integrability: a(z) ≥ 0; a(z) ∈ L2(Rd) ∩ L1(Rd).
(C2.) Symmetry:

a(z) = a(−z) for all z ∈ R
d,

Λ(ξ, η) = λ(η, ξ) for all ξ and η ∈ R
d.
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(C3.) Normalization and second moments:

∫

Rd

a(x)dx = 1,

∫

Rd

|x|2a(x)dx < ∞.

(C4.) Uniform ellipticity: 0 < Λ− ≤ Λ(ξ, η) ≤ Λ+.

In the periodic case we also suppose

(P1.) Periodicity. Λ(ξ, η) is a periodic function with period (0, 1]d in ξ and η.

In the stochastic case we suppose

(S1.) Stationarity. Λ(ξ, η) is a statistically homogeneous ergodic function of
(ξ, η) ∈ R

2d.

Homogenization. Given a function f ∈ L2(Rd) and λ > 0, consider a problem

(2) −Aεu(x) + λu(x) = f(x) in R
d.

Lemma. For each ε > 0 and for any λ > 0 and f ∈ L2(Rd) this problem has a
unique solution uε ∈ L2(Rd).

Definition. We say that the family Aε admits homogenization, as ε → 0, if there
exists an operator A0 in L2(Rd) such that the problem

(3) −A0u(x) + λu(x) = f(x) in R
d.

has a unique solution u0, and

uε −→ u0 in L2(Rd), as ε → 0.

A0 is called the effective operator.
In the periodic case the following homogenization result holds:

Theorem. Under assumption (C1.)–(C4.) and (P1.) problem (2) admits homog-
enization. The effective operator A0 is

A0v = div
(
a0∇v

)

with a positive definite symmetric constant matrix a0.
In the stochastic case we have

Theorem. Under assumption (C1.)–(C4.) and (S1.) problem (2) almost surely
admits homogenization. The effective operator A0 is given by

A0v = div
(
a0∇v

)

with a positive definite symmetric deyterministic constant matrix a0.
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Quantitative homogenization in nonlinear elasticity: periodic
composites and random laminates

Stefan Neukamm

(joint work with Mathias Schäffner, Mario Varga)

Homogenization of nonlinear composites. A standard model for a mi-
croheterogeneous, nonlinearly elastic material is given by the energy functional
Eε(u) :=

∫
O
W (xε ,∇u) dx. Here, O ⊆ R

d denotes the reference domain occupied

by the elastic material and u : O → R
d its deformation. The material properties

are encoded in the stored energy function W : Rd × R
d×d → R ∪ {+∞}, which

for a non-degenerate, single-well material satisfies (for all x ∈ R
d) the following

properties:

(A1) W (x, F ) = W (x,RF ) ∀F ∈ R
d×d, R ∈ SO(d) (frame indifference),

(A2) W (x, Id) = minW (x, ·) = 0 (stress-free reference configuration),

(A3) W (x, F ) ≥ dist2(F, SO(d)) ∀F ∈ R
d×d (non-degeneracy).

We are interested in the macroscopic behaviour of composites with a periodic
or random microstructure. Thus, we assume that for all F ∈ R

d×d the map
y 7→ W (y, F ) is either a periodic function or a random field with a stationary and
ergodic distribution and study the homogenization limit ε → 0 of the non-convex
functional Eε in the framework of Γ-convergence.

The first rigorous result on homogenization for hyperelastic materials have been
obtained in [13, 3] for (quasi)periodic materials: Under additional growth condi-
tions on W (in particular, standard p-growth with 1 < p < ∞), it is shown that
Eε Γ-converges to an energy functional of the form u 7→

∫
O
Whom(∇u) dx with a
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homogenized stored energy function given by the multi-cell formula

Whom(F ) := lim
L→∞

Whom,L(F ),

Whom,L(F ) := inf
ϕ∈W 1,p

per (✷L)
L−d

∫

✷L

W (x, F +∇ϕ) dx,
(1)

where ✷L := [−L
2 ,

L
2 )

d and W 1,p
per(✷L) denotes the space of L-periodic Sobolev

functions in W 1,p
loc (R

d). A similar homogenization result and formula (1) are also
valid in the random case, see [5, 4, 11].

Effective stress-strain relation. In mechanics one is especially interested in
the first Piola-Kirchhoff stress tensor and the tangent modulus, i.e., the Jacobian
DWhom(F ) and the Hessian D2Whom(F ) of Whom at a deformation F . Therefore,
it is natural to investigate the following questions:

(Q1) Is Whom twice continuously differentiable?
(Q2) If Whom is C2 at F , how can DWhom(F ) and D2Whom(F ) be computed

or approximated?

In the following we first briefly recall classical results regarding these questions
in the convex case. We then discuss recent results that apply to geometrically
nonlinear composites with periodic or random laminate microstructure. Finally,
we announce some new error estimates regarding representative volume element
(RVE) approximations for DWhom and D2Whom in the case of random laminates.

Convex versus non-convex. It turns out that problems (Q1) and (Q2) are only
well-understood in the case of convex integrands with quadratic growth. Indeed,
as shown in [13], if W (x, F ) is periodic in x and convex in F , the multi-cell
formula reduces to a one-cell formula that can be represented with help of a
corrector, i.e., Whom(F ) = Whom,1(F ) =

∫
✷
W (y, F +∇ϕF ) dy for all F ∈ R

d×d

and a corrector ϕF , which solves the minimization problem in the definition of
Whom,1(F ). Furthermore, if one additionally assumes that W (x, F ) is C2 in F
and satisfies a quadratic growth condition in F , then Whom is C2 as can be seen
by a soft argument that exploits the corrector representation of Whom, see [12,
Theorem 5.4] and note that the argument extends to the case of a random material.

These results are not applicable to nonlinear elasticity where the stored energy
function is necessarily non-convex. In fact, Müller [13, Theorem 4.3] provides a
counterexample in form of a laminate material that features a buckling instability
under compressive loading; in particular, one has Whom(F ) < Whom,L(F ) for
some F 6∈ SO(d) and all L ∈ N. This shows that one cannot expect a one-cell
formula nor a corrector representation to hold in general. However, for single-well
materials, close to the non-degenerate, natural state F ∈ SO(d) a better behaviour
can be expected. Indeed, in [14, 10] we showed (with help of the geometric rigidity
estimate from [1]) that Whom admits a quadratic expansion at F ∈ SO(d). More
precisely, we proved that Whom(Id+G) = Qhom(G) + o(|G|2), where Qhom(G) :=
infϕ∈H1

per(✷)

∫
✷
Q(x,G +∇ϕ) dx, and Q(x,G) := 1

2D
2W (x, Id)[G,G] denotes the

quadratic term in the expansion of W at identity. We established this result for
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periodic and random composites under the assumption that, next to (A1) – (A3),
the stored energy function W (x, ·) admits a quadratic expansion at identity.

Differentiability close to SO(d). To establish a similar expansion for F 6∈
SO(d) is nontrivial — and in view of Müller’s counterexample not always possible.
Therefore, in [15, 16, 17] we focus on the case of small-strains, i.e., when F is
close to the set of rotations. In particular, in [15, 16] we consider a periodic
composite material with a regular microstructure, say, a matrix material with
smooth, possibly touching inclusions. Next to (A1) – (A3) we assumed thatW (x, ·)
is C3 in a neighbourhood of SO(d) and we show that in this case, Whom is C2 in
a neighbourhood of rotations. More precisely, we prove that for some ρ > 0,

• Whom ∈ C2(Uρ) where Uρ :=
{
F ∈ R

d×d : dist(F, SO(d)) < ρ
}
.

• For all F ∈ Uρ, Whom(F ) and its derivatives can be represented by single-
cell formulas that invoke corrector functions. In particular, we obtain for
the tangent modulus at F ∈ Uρ the identity

D2Whom(F )H ·G =

∫

✷

D2W (x, F +∇ϕF )(H +∇ϕF,H) ·Gdx

where the corrector ϕF ∈ W 1,∞
per (✷) and the linearized corrector ϕF,H ∈

W 1,∞
per (✷) are solutions to the nonlinear corrector equation−∇·DW (x, F+

∇ϕF ) = 0 in R
d, and the linearized corrector equation −∇ ·D2W (x, F +

∇ϕF )
(
H +∇ϕF,H

)
= 0 in R

d, respectively.

The proof of this result is based on two major ingredients:
1. Inspired by [6] we construct in [15, Corollary 2.3] a matching convex lower bound
for W : There exists a strongly convex integrand V with quadratic growth such
that (for some µ > 0 only depending on W ),

W (x, F ) + µ detF ≥ V (x, F ) for all F ∈ R
d×d,

W (x, F ) + µ detF = V (x, F ) for all F ∈ Uρ.

With help of V , convex homogenization and the fact that F 7→ detF is a Null-
Lagrangian, we obtain the lower boundWhom(F )+µ detF ≥ Vhom(F ) =

∫
✷
V (x, F

+∇ϕF ) with a convex corrector ϕF given as the unique, periodic, mean-free solu-
tion to the corrector problem −∇·DV (x, F +∇ϕF ) = 0, which is by construction
of V a monotone, uniformly elliptic system.
2. By the regularity theory for uniformly elliptic, monotone systems with piecewise
constant, periodic coefficients, we establish a Lipschitz estimate for the convex
corrector of the form

(2) ‖dist(F +∇ϕF , SO(d))‖L∞(✷) ≤ Cdist(F, SO(d)),

where for d > 2 we require the right-hand side to satisfy a smallness condition,
see [16, Corollary 1]. Combined with the matching property of V , we obtain for
F sufficiently close to SO(d) the sought for corrector representation Whom(F ) =
Whom,1(F ) =

∫
✷
W (x, F +∇ϕF ) dx.

The corrector representation for Whom for deformations F close to SO(d) is
the starting point to analyze properties of Whom and minimizers of Eε; next to
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regularity of Whom, in [15, 16], we prove error estimates for the nonlinear two-scale
expansion and we establish Lipschitz estimates that are uniform in 0 < ε ≪ 1 for
minimizers of Eε (subject to periodic boundary conditions).

Periodic versus random. Although the construction of the matching convex
lower bound V verbatimly extends to the random case, the analysis in [15, 16] is re-
stricted to the periodic case, since for the regularity estimate periodicity is critical:
In [16] we obtain the Lipschitz estimate for the convex corrector by combining a
small-scale Lipschitz estimate (cf. [16, Theorem 4]) of the form ‖∇ϕF ‖L∞(✷1/2) ≤
C‖∇ϕF ‖L2(✷) with the energy estimate ‖∇ϕF ‖L2(✷) ≤ Cdist(F, SO(d)). While
the latter is standard in the periodic case, in the random case such an estimate

only holds in the modified form of a large scale L2-estimate: L−d
2 ‖∇ϕF ‖L2(✷L) ≤

Cdist(F, SO(d)) for all L larger than a random minimal radius; we refer to [2]
where such an estimate has been established for monotone systems. In conclusion,
in the random case we obtain the following estimate for the random homogeniza-
tion corrector,

‖dist(F +∇ϕF , SO(d))‖L∞(B1(x)) ≤ C(x)dist(F, SO(d)),

with a constant C(x) that is a stationary random field with stretched exponential
moments. This Lipschitz estimate is not global, which prevents us to follow the
strategy of [16] to establish a corrector representation for Whom(F ). In fact, as in
the linear case, we do not expect a global Lipschitz estimate to hold for general
random materials.

Random laminates and quantitative RVE-approximation. For random
laminates, as considered in [17], the situation is better, since then the corrector
problems for ϕF and the linearized corrector ϕF,G, simplify to ordinary differential
equations. This allows us to retrieve global Lipschitz estimates by appealing to
ODE-arguments. In [17] we consider the following model of a (parametrized)
random laminate material: Let Ω := {ω : R → R

N} denote a probability space
of parametrizations equipped with a probability measure P that is stationary and
ergodic w.r.t. shifts ω 7→ ω(·+t), t ∈ R. We assume that W (x, F ) = W0(ω(xd), F ),
where xd denotes the dth coordinate of x ∈ R

d, and W0 : RN ×R
d×d → R∪{+∞}

denotes a stored energy function satisfying (A1) – (A3). As a first result we prove
a corrector representation of the form

(3) Whom(F ) = E

[ ∫

✷

W (x, F +∇ϕF ) dx
]
,

for F sufficiently close to SO(d), and establish similar representations for the stress
tensor DWhom and the tangent modulus D2Whom. In (3) the corrector is defined
by a corrector problem on an infinite domain and thus requires approximation in
practice. The representative volume element (RVE) method is a well-established
procedure for this purpose. In this method, the corrector problem is considered on
a finite domain ✷L (with L ≫ 1) together with suitable boundary conditions. It is
an ongoing discussion in the computational mechanics community how to choose
the size of the RVE, e.g. see [19, 18]. The first convergence results with optimal
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scaling in L for the RVE-approximation have been obtained in [8, 9, 7] for linear
elliptic equations and systems. In particular, in [7] periodic-RVEs are introduced
and analyzed. In a periodic-RVE approximation the original distribution P is ap-
proximated by a distribution PL that is supported on L-periodic parametrizations
ω, see [2, Section 2.3]. Together with J. Fischer we recently obtained the first op-
timal result for periodic-RVEs in the case of monotone, uniformly elliptic systems
with quadratic growth, see [2].

In the following we discuss the result in [17], where we establish the first optimal
periodic-RVE estimate in the case of nonlinearly elastic, random laminates. We
addditionally make the following assumption:

• Existence of a L-periodic approximation: There exists a shift-invariant
probability measure PL that concentrates on L-periodic fields in Ω and
that recovers the distribution of P in ✷L/2. With the latter we mean
the following: If ω and ωL are random fields with distribution P and PL,
respectively, then ω|✷L/2

= ωL|✷L/2
in distribution.

• Fast decorrelations : (Ω,P) and (Ω,PL) feature spectral gap estimates (sim-
ilar to [2, Definition 16]) that encode fast decorrelations on scales ≥ 1.

Moreover, we require W0(ω, F ) to be sufficiently regular in ω and F , and consider
deformations F that are sufficiently close to SO(d). Our main result then yields
estimates on the error of the RVE-approximation of Whom(F ), the stress tensor
DWhom and the tangent modulus D2Whom. In particular, for Whom,L we get the
following estimates on the random fluctuations and on the systematic error :

|Whom,L(F )− EL[Whom,L(F )]| ≤ C dist2(F, SO(d))L− 1
2 ,

∣∣∣EL

[
Whom,L(·, F )

]
−Whom(F )

∣∣∣ ≤ C dist2(F, SO(d))
lnL

L
.

Above, C denotes a random constant with EL

[
exp( 1

C C)
]
≤ 2, and C denotes

a deterministic constant. These estimates are optimal w.r.t. scaling in L and
w.r.t. the integrability of C.
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Homogenization of ferromagnetic energies on Poisson random sets in
the plane

Andrea Braides

(joint work with Andrey Piatnitski)

A Poisson random set N with intensity λ is a subset of R2 defined on a probability
space (Ω,F ,P) equipped with a dynamical system Tx : Ω 7→ Ω, x ∈ R

2, such that
for any bounded Borel set B and any x ∈ R

2, we have #
(
(B + x) ∩ N

)
(ω) =

#
(
B∩N

)
(Txω). We suppose that Tx is a group of measurable measure-preserving

transformations in Ω and is ergodic. A Poisson random set is characterized by the
properties:

• for any bounded Borel set B ⊂ R
2, the number of points in B ∩ N has a

Poisson law with parameter λ|B|

P({#(B ∩N ) = n}) = e−λ|B| (λ|B|)n
n!

;
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• for any collection of bounded disjoint Borel subsets in R
2 the random vari-

ables defined as the number of points of N in these subsets are independent.

Contrary to stochastic lattices considered e.g. in [3, 1, 2],
• N is not “regular”: we have pairs of points of N arbitrarily close, and we
have squares of arbitrary size not containing points of N ;

• N is isotropic since the properties of Poisson random sets are invariant
under (translations and) rotations.

We define the energy in terms of nearest neighbours in N , which are pairs
(denoted by 〈i, j〉) such that the related Voronoi cells

Ci = {x ∈ R
2 : ‖x− i‖ ≤ ‖x− j‖ for all j ∈ N}

have a common edge. The (nearest-neighbour) ferromagnetic energy on the Pois-
son random set is defined for u : N → {0, 1} as

E(u) =
∑

〈i,j〉

|ui − uj|.

We introduce a small scaling parameter ε > 0 and define the scaled energies

Eε(u) =
∑

〈i,j〉

ε|ui − uj|

for u : εN → {0, 1}, where ui = u(εi). The overall properties of N will be
described by computing a suitable Γ-limit of Eε.

If u : εN → {0, 1}, we define Vε(u) as the union of the scaled Voronoi cells εCi

where ui = 1. Note that, contrary to ferromagnetic energies on stochastic lattices,
we cannot estimate Per Vε(u) in terms of Eε(u). However, we may estimate the
perimeter of sets Vε(u) containing ‘many’ cells as follows, thanks to a Percolation
lemma by Pimentel [8].

Lemma. Let uε be such that supε Eε(u
ε) < +∞. Then we can write

Vε(u
ε) = (Aε ∪B′

ε) \B′′
ε ,

where |B′
ε| + |B′′

ε | → 0, and the sets Aε have equibounded perimeter. Hence, the
family Vε(u

ε) is precompact with respect to local L1-convergence of the correspond-
ing characteristic functions, and each each cluster point A of the family Vε(u

ε) is
a set of finite perimeter.

The lemma above justifies the definition of a discrete-to-continuum conver-
gence uε → A as the convergence Vε(u

ε) → A locally in L1. In order to prove
a Γ-convergence result with respect to this convergence, it is necessary to better
describe the geometry of “regular” Voronoi cells as follows.

Given α > 0, we define the set of α-regular points of N as
{
i ∈ N : Ci contains a ball of radius α, diamCi ≤

1

α
,#edges ≤ 1

α

}
.

Using Bernoulli percolation results as in [4], it can be proved that the subset of the
Delaunay triangulation D (the network joining nearest neighbours) of N with α-
regular endpoints contains an infinite connected component Dα whose complement
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is composed of isolated bounded sets. Furthermore Dα is ‘regular’, in the sense
that there exists τα such that each two points x, y ∈ Dα are connected by a path
with length not more than τα‖x− y‖. As a consequence, we immediately have the
finiteness of the Γ-limsup of Eε on sets of finite perimeter. Another consequence
(with more refined properties of ‘uniform regularity’ of Dα) is that we may use
paths in Dα in “discrete area-formula-type arguments” (in particular to match
boundary conditions). The possibility to match boundary conditions, and the
invariance by rotations, give a candidate formula for the surface tension:

τ = lim
t→+∞

1

t
min

{
#
(
segments of a path in D ‘almost’ joining (0, 0) and (t, 0)

)}
.

A subadditive argument allows to show that this limit exists a.s. and is determin-
istic. This formula allows to construct a matching upper bound. Finally, after
a scaling argument which shows that τ = τ0

√
λ, we have the following result,

which shows that ferromagnetic energies on N overall behaviour is almost surely
isotropic and characterized by a universal constant τ0.

Theorem. [5] Almost surely the functionals Eε Γ-converge to τ0
√
λH1(∂∗A) with

respect to the local L1 convergence of Vε(u
ε) to A.

It is worth noting that we can use the properties of Dα also to prove that for
R > 0 large enough (corresponding to α small enough) the energies

ER
ε (u) =

∑

‖i−j‖≤R

ε|ui − uj|

almost surely Γ-converge to an isotropic energy τR
√
λH1(∂∗A).

This result can be compared with results in variational approaches to Data
Science where R = Rε → +∞ [7]. Note that the energies ER

ε cannot be directly
compared with the nearest-neighbour energies Eε. Note moreover that in the
analog deterministic case the limit perimeter is not isotropic (more precisely, it is
crystalline) [6].
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High order periodic homogenization in presence of boundaries and
interfaces

Sonia Fliss

(joint work with Clément Beneteau, Xavier Claeys, Valentin Vinoles)

The first motivation of this work concerns the modelling of electromagnetic wave
propagation in presence of so-called metamaterials. Recent discoveries have shown
the possibility of producing weakly dissipative electromagnetic materials whose
effective dielectric and magnetic constants have negative real parts. These ”meta-
materials”, of complex multiscale structure, lead to extraordinary phenomena as
regards the propagation of electromagnetic waves (negative refraction, resonance
of ”wavelength” cavities, etc.) and thus arouse great interest in view of many
potential applications (super lenses, stealth coating, miniaturization of antennas,
...). The structure of these media presenting several scales of very different size, it
is very expensive or even impossible to simulate the wave propagation in these me-
dia taking into account all their complexity. An attractive alternative is to model
the metamaterial by a homogeneous material, with physical constants of negative
real part. This approach is now widely used by physicists and is the subject of
active mathematical research in the homogenization community. Thus, one can
find in the literature that for certain periodic media whose structure has resonance
mechanisms (being related to the geometry via Helmholtz resonators for example
or to the characteristics of the materials), the dielectric permittivity (see e.g. [1])
or magnetic permeability (see e.g. [2]) or even both [3] can become negative for
certain frequency ranges. Specific techniques of homogenization (reiterated ho-
mogenization techniques for instance) have to be introduced in order to take into
account the resonances phenomena and the multi-scale effects. Convergence (of
two-scale type) results have also been proved. However, it is well known that clas-
sical homogenization process poorly takes into account boundaries or interfaces.
This is particularly unfortunate when considering negative materials, because im-
portant phenomena arise precisely at their surface (plasmonic waves for instance).
Even worse than being imprecise, the effective model can be completely false.
Indeed, when we consider an interface between a dielectric and a metamaterial
and that the permittivity and/or permeability contrast is equal to -1, it appears
at the interface an accumulation of energy that is not compatible with the usual
mathematical/physical framework [4, 5]. It seems that these difficulties are due to
an insufficiently fine asymptotic description of the propagation phenomena in the
vicinity of the interfaces. This is why we want to revisit the asymptotic process in
order to propose a new homogenized model that is simple to implement and more
accurate near the boundaries or the interfaces.

The second motivation concerns the long time behaviour of the solution of the
time-dependent wave equation in periodic media in the homogenization regime. It
is well-known that the classical homogenized time-dependent wave equation is less
accurate for long times since it does not capture the long time dispersion of the
exact solution [7, 8]. In several works, high order homogenized models involving
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differential operators of high order (at least 4), are proposed to approximate the
exact solution for long times (see for instance [9, 10, 11]). For now, only infi-
nite domains were considered. Dealing with boundaries and proposing boundary
conditions for these models were open questions.

Of course, this subject is linked to the presence of boundary layers which appear
when considering asymptotic model near boundaries or interfaces. It has already
been pointed out for instance in [6] and studied and analyzed in [12, 13, 14, 15,
16, 18] for elliptic systems with Dirichlet and Neumann conditions and in a more
general setting in [19]. Concerning transmission problems, very few results are
available [12, 17].

In this work, we propose an enriched asymptotic expansion which enables to derive
high order effective models at any order. For now, we have treated and analyzed
the case of simple geometries : for instance the transmission problem between
two periodic half-spaces with the limitation that the whole medium has to be
periodic in the direction of the interface. We have derived a high order approximate
model which consists in replacing the PDE with periodic coefficients by high order
homogenized PDE with transmission conditions which are not classical. For the
model at order 1, the homogenized PDEs are the same than the classical ones,
but the transmission conditions are modified. These conditions are more precise
than the classical transmission conditions (corresponding to the continuity of the
solution and its normal derivative across the interface) but less standard since
they involve differential operators along the interface. More precisely, the obtained
conditions involve Laplace-Beltrami operators at the interface and require to solve
cell problems in periodicity cell (as in classical homogenization) and in infinite
strips (to take into account the phenomena near the interface). We establish well
posedness for the approximate model. An error analysis confirms this accuracy and
numerical results illustrate the efficiency and the accuracy of these new conditions.
The extension of such approach to more general geometries is under progress.

Let us mention that the model of order 2 that we propose is particularly rel-
evant when one is interested in the long time behaviour of the solution of the
time-dependent wave equation. Our approach enables to propose appropriate and
accurate boundary conditions for the high order homogenized models involving dif-
ferential operators of order 4. The analysis of such model and its implementation
is under investigation.
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Large-scale regularity for fluids over rough boundaries

Christophe Prange

(joint work with Mitsuo Higaki, Carlos Kenig and Jinping Zhuge)

This talk is concerned with the study of the large-scale regularity of steady fluids
over rough boundaries. Roughness is ubiquitous in nature (seafloor, forests and
cities at the surface of the Earth, scales of sharks) and industry (fluids in engineered
microchannels). The analysis of the influence of roughness on physical phenomena
(Ekman pumping in the oceans, drag reduction in microfluidics) covers a wide
range of scales. In fluid mechanics, a widespread idea is that roughness favors slip.
However there seems to be no consensus about the effect of roughness on the onset
of turbulence, some studies suggesting that roughness lowers the critical Reynolds
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number for the transition from laminar to turbulent, others indicating in certain
regimes a stabilizing effect of inhomogeneities of the fluid domain.

From a mathematical perspective, a lot of effort has been devoted to deriving
wall laws for fluids over highly oscillating smooth boundaries. In a rather general
random stationary and ergodic setting, a no-slip boundary condition on the rough
boundary can be replaced by a Navier-slip condition on a fictitious flat boundary.
Moreover, it is possible to prove optimal quantitative error estimates under certain
structure assumptions on the roughness, such as periodicity [7], almost periodicity
with non-resonance [5], or random stationarity with decorrelation assumptions
that entail quantitative ergodicity [4].

In our work, we study the influence of roughness on solutions to elliptic or fluid
equations from the point of view of regularity theory. We have two leitmotive: (i)
identify building blocks that describe the local behavior of solutions, (ii) prove local
error estimates at mesoscopic scales. Our current work with Mitsuo Higaki and
Jinping Zhuge on the stationary Navier-Stokes equations builds upon earlier work
with Carlos Kenig on uniform regularity for elliptic equations in bumpy domains
[8, 9].

In our view, there are two related aspects of roughness: (i) bumpiness, i.e.
domains with a highly oscillating boundary, typically x3 = εη(x′/ε), (ii) lack of
regularity of the boundary, which is Lipschitz or fractal. Our main goal is to
decouple the large-scale regularity of the solutions from the small-scale properties
of the boundary, where singularities prevent the solutions from being regular.
Hence, we prove that on large scales solutions have improved Lipschitz or C1,µ

regularity. We develop tools that enable to handle singular domains. We prove
that large-scale Lipschitz regularity can be proved without relying on structure
assumptions on the microscopic oscillations, while higher-order regularity requires
certain structure assumptions that ensure quantitative ergodicity properties for
the boundary layers.

In a joint work with Mitsuo Higaki [6], we build up a compactness scheme
with boundary layers inspired from [9] and the seminal work [1]. This enables to
prove that solutions to the stationary Navier-Stokes equations in a bumpy domain
Bε

1,+(0) ⊂ R
3 with a Lipschitz and ε-periodic boundary are well approximated at

mesoscopic scales by Navier polynomials P ε
N :

(C1,µ) sup
r∈(ε, 1

2
)

r−3

∫

Bε
r,+(0)

|uε(x)− c(r)P ε
N (x)|2 ≤ C(M)(r2+2µ + ε3r−1).

This is a large-scale C1,µ estimate. It holds outside of the perturbative regime
because there is no restriction on the size M :=

∫
Bε

1,+(0) |uε|2 of the solutions. The

Navier polynomials are shear flow solutions to the Navier-Stokes equations in a
flat domain with a Navier boundary condition. Hence, estimate (C1,µ) also reads
as a local justification of the Navier wall law.

In an ongoing work with Mitsuo Higaki and Jinping Zhuge, we use a quantitative
scheme inspired from the Schauder theory and the works [3, 2], to prove a large-
scale Lipschitz estimate for solutions to the stationary Navier-Stokes equations in
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genuinely rough domains, namely John domains. This class of domains includes
for instance certain fractals. We are able to circumvent the use of boundary layers
thanks to the quantitative scheme.

References

[1] M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Com-
mun. Pure Appl. Math. 40(6) (1987), 803–847.

[2] S. N. Armstrong and C. K. Smart, Homogénéisation stochastique quantitative de fonction-
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A periodic homogenization problem with defects rare at infinity

Rémi Goudey

We consider a homogenization problem for a second order elliptic equation in
divergence form with a certain class of oscillating coefficients :

(1)

{
− div(a(x/ε)∇uε) = f in Ω,

uε(x) = 0 in ∂Ω,

where Ω is a bounded domain of Rd (d ≥ 1) sufficiently regular and f is a function
in L2(Ω). The class of (matrix-valued) coefficients a considered is that of the form

(2) aper + ã

which describes a periodic geometry encoded in the coefficient aper and perturbed
by a coefficient ã that represents a non-local perturbation (a ”defect”) that, al-
though it does not vanish at infinity, becomes rare at infinity. More specifically, we
consider coefficients ã that locally behave like L2(Rd) functions in the neighbor-
hood of a set of points localized at an exponentially increasing distance far from
the origin. Formally, the coefficient ã is an infinite sum of localized perturbations,
increasingly distant from one another. A prototypical one-dimensional example of

such a defect reads as
∑

k∈Z

φ(x − sign(k)2|k|) for some fixed φ ∈ D(R), where |k|

denotes the absolute value of k and sign(k) denotes its sign.
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Figure 1. Left: Prototype perturbation in dimension d = 1.
Right: Example of points localized at an exponentially increasing
distance in dimension d = 2.

The purpose here is to extend the well-known results of the periodic case (that
is when ã = 0) to the setting of the perturbed problem (1)-(2). The main difficulty
is that the corrector equation

− div ((aper + ã) (∇wp + p)) = 0,

(formally obtained by a two-scale expansion), defined on the whole space R
d,

cannot be reduced to an equation posed on a bounded domain, as is the case in
periodic context in particular, which prevents us from using classical techniques.

The present work follows up on some previous works [1, 2, 3, 4] where the
authors have developed an homogenization theory in the case where ã ∈ Lp(Rd)
for p ∈]1,∞[. The existence and uniqueness (again up to an additive constant) of
a corrector, the gradient of which shares the same structure ”periodic + Lp” as
the coefficient a, is established. Convergence rates are also made precise.

In our case, by introducing a suitable functional setting to describe the class
of defects we consider, we also establish the existence of a corrector (unique up
to the addition of a constant), and such that its gradient has the structure (2)
of the diffusion coefficient : it can be decomposed as a sum of the gradient of a
periodic corrector and a gradient that becomes rare at infinity. Using this adapted
corrector, we therefore identify the homogenized limit of uε and we also make
precise the convergence rates.
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Micro-to-Macro Transition: From Physics/Materials to Living Systems

Leonid Berlyand

In this talk we present a review of our work on PDE models of active matter with
the focus on micro-to-macro transition. We emphasize the differences between
studying this transition in living systems such as active matter and in the classical
physical systems. The key example here is a striking difference in the effective
viscosity which drastically decreases in active suspensions versus the well known
increase in passive suspensions [1].

The talk consists of the three parts.
In part one we present our results on cell motility and active gels. Here we

consider phenomenological macroscopic phase-field model that describes average
orientation of the actin filament network in the cytoskeleton [4]. We also discuss
a “macro-homogenization” model for the collective motion of many cells. Next
we introduce a free boundary Hele-Shaw-Keller-Segel PDE model of keratocyte
motility, where we study stability of traveling wave solutions that describe persis-
tent motion of such cells [6, 9, 10]. We explore similarities between the asymptotic
techniques in this analysis and classical two-scale homogenization techniques.

In part two we study bacteria swimming in Newtonian fluids. We introduce
a hierarchy of stochastic models and use homogenization techniques to obtain an
explicit formula for the effective viscosity which generalizes the famous Einstein’s
formula in dilute [1, 2] and semi-dilute suspensions [3].

In part three we study artificial microswimmers, e.g. biomimetic Janus particles
in a fluid flow [5]. We employ boundary layer techniques to analytically capture
the key features of active swimmers such as rheotaxis (traveling upstream) and
bordertaxis (swimming toward and along the walls) [7]. We briefly discuss the
most recent work on active swimmers in anisotropic fluids such as liquid crystals
and mucus.

We conclude with summarizing the key challenges due to activity such as the
multitude of models in living systems versus few well established models in clas-
sical physics/materials problems and the non applicability of classical techniques
(such as variational approaches) to active systems leading to the need in develop-
ment of the new techniques, particularly in the stochastic homogenization. Finally
we briefly mention open “micro-homogenization” problems such as the derivation
of phenomenological macroscopic models in living systems analogous to e.g., the
atomistic-to-continuum transition in solid state physics.



812 Oberwolfach Report 14/2021

References

[1] B. Haines, I. Aranson, L. Berlyand, D. Karpeev, Effective viscosity of dilute bacterial sus-
pensions: A two-dimensional model, Physical Biology 5(046003) (2008), 1–9.

[2] B. Haines, I. Aranson, L. Berlyand, D. Karpeev, Effective viscosity of bacterial suspensions:
A three-dimensional PDE model with stochastic torque, Communications on Pure & Applied
Analysis 11(1) (2012), 19–46.

[3] M. Potomkin, S. Ryan, L. Berlyand, Effective rheological properties in semidilute bacterial
suspensions, Bulletin of Mathematical Biology 78(3) (2016), 580–615.

[4] L. Berlyand, M. Potomkin, V. Rybalko, Sharp interface limit in a phase field model of cell
motility, Network and Heteregeneous Media 12(4) (2017), 551–590.

[5] M. Potomkin, A. Kaiser, L. Berlyand, I. Aronson, Focusing of active particles in a converging

flow, New Journal of Physics 19(115005) (2017), 1–15.
[6] L. Berlyand, J. Fuhrmann, V. Rybalko, Bifurcation of traveling waves in a Keller-Segel

type free boundary model of cell motility, Communications in Mathematical Sciences 16(3)
(2018), 735–762.

[7] L. Berlyand, P.-E. Jabin, M. Potomkin, E. Ratajczyk, A kinetic approach to active rod
dynamics in confined domains, SIAM Multiscale Modeling & Simulation 18(1) (2020), 1–
20.

[8] H. Chi, M. Potomkin, L. Zhang, L. Berlyand, I. Aronson, Surface anchoring controls ori-
entation of a microswimmer in nematic liquid crystal, Communication Physics 162 (2020),
1–9.

[9] V. Rybalko, L. Berlyand, Emergence of traveling waves and their stability in a free boundary
model of cell motility, arXiv preprint arXiv:2104.00491 [math.AP] (2021), 1–32.

[10] C. A. Safsten, V. Rybalko, L. Berlyand, Stability of Contraction-Driven Cell Motion, arXiv
preprint arXiv:2103.15988 [physics.bio-ph] (2021), 1–6.

Power exchange and onset of energy equipartition among surface and
body waves

Liliana Borcea

(joint work with Josselin Garnier, Knut Sølna)

Quantifying the exchange of energy among the modes (components) of a wave
field propagating in a heterogeneous (random) medium is of interest in seismol-
ogy, imaging and communications through the turbulent atmosphere, ocean acous-
tics, ultrasonic inspection of aging structures, manipulation of waves and so on.
Mathematically, the exchange is described by the radiative transfer equation that
was introduced in a phenomenological way in [1] for wave propagation in open
environments. This equation holds for a scaling regime with weak fluctuations of
the properties of the medium (e.g. the wave speed) on a length scale (correlation
length) that is comparable to the wavelength, and for propagation over many wave-
lengths. It describes the evolution of the mean wave mode powers and it has been
mathematically justified in open environments (see for example [2, 5, 6, 9, 10]).
Boundaries complicate the problem, although progress has been made in studying
wave propagation on rough surfaces [3], deriving effective boundary conditions for
reflection at rough surfaces [4] and quantifying the energy loss to radiation modes
[8]. What is not understood is the back and forth transfer of power among surface
and body waves. This question motivates our study presented in this talk.
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We propose a model of wave propagation that is simple enough to allow an
in-depth and explicit characterization of the power exchange between body and
surface waves and at the same time it is flexible to allow control of the number
of surface and body waves. The model consists of a two-dimensional acoustic
waveguide with perfectly reflecting boundaries, which contains a thin layer of
depth d filled with a random medium, adjacent to the top boundary. We call this
the “surface layer”. The remaining part of the domain, with depth D is filled with
a homogeneous medium. By taking a mean index of refraction n that is larger in
the surface layer than below it, where it equals 1, we ensure that there are Ns wave
modes that are trapped in the surface layer and thus mimic surface waves. This
Ns is directly proportional to kd and

√
n2 − 1, where k is the wavenumber. Thus,

by changing d and/or n we can vary the number of monochromatic surface waves
with wavelength 2π/k. The waveguide also supports Nb body waves, which are
propagating modes that are large throughout the cross-section of the waveguide.
This Nb is directly proportional to kD. Finally, there is an infinite number of
evanescent modes.

The medium in the surface layer is modeled by random fluctuations of the
squared index of refraction. Its role is to couple the wave modes and thus lead to
transfer of power. We take a mean zero random process that is mixing, with cor-
relation length ℓ satisfying kℓ = O(1), and has smooth covariance. The amplitude
of the fluctuations is small, as modeled by the asymptotic parameter ǫ ≪ 1. The
radiative transfer regime describes the energy exchange among the wave modes at
distance of propagation of order 1/(kǫ2).

We analyze the mode coupling in the asymptotic limit ǫ → 0, using the diffusion
approximation theorem, as in [7, Chapter 20]. Due to the assumed smoothness
of the covariance of the random fluctuation in the surface layer we prove that the
backward going waves can be neglected i.e., we can use the forward scattering
approximation. We also show that the coupling of the forward going modes and
the evanescent modes results in some anomalous phases but it does not affect
the forward going mode powers. The radiative transfer equation describes the
evolution of the mean powers of the N = Ns + Nb forward going modes. They
take a simple algebraic form, and the mean mode powers are given in terms of the
exponential of a transfer matrix Γ. The expression of this matrix is explicit and
depends on the covariance of the random fluctuations of the index of refraction.
We are interested in the case of a deep waveguide, in the sense kD ≫ 1, which
supports Nb ≫ 1 body waves. The depth d of the surface layer is chosen so that
there is a finite number Ns > 1 of surface waves.

The analysis of the mode power exchange amounts to carrying out an explicit
spectral decomposition of Γ, which is a symmetric, irreducible, negative semidefi-
nite matrix with rows summing to zero. The Perron-Frobenius theory guarantees
that the leading eigenvalue of Γ, which equals 0, is simple and corresponds to the
eigenvector 1N with all entries equal to 1. Therefore, as the distance of propaga-
tion grows, the vector of N mean mode powers becomes aligned to 1N and the
system is in equipartition. The main result is the description of the transition to
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equipartition. We show that due to the back and forth transfer of power among
the surface and body waves the onset of equipartition is multiscale. Specifically,
starting from the initial mode power distribution determined by the wave source
excitation, there is a quick exchange of power among the surface modes, which
results in a metastable distribution among these modes that evolves slowly due
to the interaction with the body waves. The power exchange among the body
waves occurs slowly and only after a very long distance, quantified precisely by
the analysis, it drives the whole system to equipartition.
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Mathematical Analysis of the Effective Viscosity of Suspensions

David Gerard-Varet

We review recent mathematical results on the correction to Einstein’s formula for
the effective viscosity of dilute suspensions. This correction implies to consider
pair interactions of particles, which yields interesting problems related to mean-
field limits and stochastic homogenization. Connection to recent mathematical
works on Coulomb gases is discussed as well. The talk is based on joint works
with M. Hillairet, A. Mecherbet, R. Höfer.
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Homogenization of a reaction-diffusion-advection problem in an
evolving micro-domain and including nonlinear boundary conditions.

Maria Neuss-Radu

(joint work with Markus Gahn, Iuliu Sorin Pop)

We consider a reaction-diffusion-advection equation in a heterogeneous medium
with evolving microstructure. We assume that the evolution of the micro-domain
Ωǫ(t) is known a priori and that there is a transformation between a fixed periodi-
cally perforated domain Ωǫ and the time-dependent domain Ωǫ(t). The parameter
ǫ describes the ratio between the size of the whole domain Ωǫ and the periodicity
of Ωǫ, see Figure 1.

Figure 1. The fixed domain Ωǫ and the time-dependent domain
Ωǫ(t) obtained through the mapping Sǫ(t, ·).

In the domain Ωǫ(t) we consider the following reaction-diffusion-advection problem

∂tũǫ −∇ ·
(
ǫ2D∇ũǫ − ǫq̃ǫũǫ

)
= f(ũǫ) in

⋃

t∈(0,T )

{t} × Ωǫ(t)

−ǫ2D∇ũǫ · ν = −ǫg(ũǫ) on
⋃

t∈(0,T )

{t} × Γǫ(t),

−ǫ2D∇ũǫ · ν = 0 on
⋃

t∈(0,T )

{t} × ∂Ωǫ(t) \ Γǫ(t),

ũǫ(0) = ũ0
ǫ in Ωǫ(0).

(1)

Here, ν denotes the outer unit normal with respect to Ωǫ(t), ǫ2D denotes the
diffusion-tensor, and ǫq̃ǫ : Ωǫ → R

n is a material velocity with the property that
at the moving surface ∂Ωǫ(t) it is equal to the evolution of the surface, i.e. we
have ǫq̃ǫ(t, ·) · ν = ∂tSǫ

(
t, Sǫ(t, ·)−1

)
· ν. The functions f respectively ǫg describe

reaction kinetics in the bulk domain Ωǫ(t) respectively at the surface Γǫ(t).
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The aim of our contribution is the derivation of a macroscopic model, the solu-
tion of which approximates the solution of the microscopic model. This is done by
using rigorous multi-scale techniques like the two-scale convergence and the un-
folding method. The main challenge is to pass to the limit in the nonlinear terms.
Therefore, we prove strong two-scale compactness results just based on estimates
for the solution of the micro-model.

We make the following assumptions on the mapping Sǫ:

(1) Sǫ ∈ C1([0, T ]× Ωǫ)
n with Jǫ := det

(
∇Sǫ

)
and

1

ǫ
‖∂tSǫ‖C0([0,T ]×Ωǫ)

+ ‖Sǫ‖C0([0,T ]×Ωǫ)
+ ‖∇Sǫ‖C0([0,T ]×Ωǫ)

≤ C.

(2) We have Jǫ ∈ C1([0, T ] × Ωǫ) and there exist constants c0, C0 > 0 inde-
pendently of ǫ, such that

c0 ≤ Jǫ ≤ C0,

‖∂tJǫ‖L2((0,T ),H′

ǫ)
+ ǫ‖∇Jǫ‖L∞((0,T )×Ωǫ) ≤ C.

(3) There exists S0 ∈ C0
(
Ω, C1

(
[0, T ] × Y ∗

))n
such that S0(t, x, ·y) is Y -

periodic and S0(t, x, ·) : Y ∗ → Y (t, x) := R(S0(t, x, ·)) (the range of
S0(t, x, ·y)) is a C1-diffeomorphism and

Sǫ(t, x) → x strongly in the two-scale sense,

∇Sǫ(t, x) → ∇yS0(t, x, y) strongly in the two-scale sense,

∇S−1
ǫ (t, x) → ∇yS

−1
0 (t, x, y) strongly in the two-scale sense,

ǫ−1∂tSǫ(t, x, y) → ∂tS0(t, x, y) strongly in the two-scale sense.

Especially, it holds that Jǫ → J0 := det∇yS0 strongly in the two-scale sense.
Furthermore, we assume that appropriate estimates for the differences between
the shifted function and the function itself, as well as for its gradient hold.

Using the mapping Sǫ, we transform the problem in (1) to the fixed domain
Ωǫ. Let us define uǫ : (0, T )× Ωǫ → R, uǫ(t, x) := ũǫ(t, Sǫ(t, x)) and for (t, x) ∈
(0, T )× Ωǫ

Dǫ(t, x) := ∇Sǫ(t, x)
−1D∇Sǫ(t, x)

−T ,

qǫ(t, x) := ∇Sǫ(t, x)
−1q̃ǫ(t, Sǫ(t, x)),

vǫ(t, x) := ∇Sǫ(t, x)
−1∂tSǫ(t, x).

Then, on the fixed domain Ωǫ we obtain the transformed problem for uǫ :

∂t
(
Jǫuǫ

)
−∇ ·

(
ǫ2JǫDǫ∇uǫ − ǫJǫqǫuǫ + Jǫvǫuǫ

)
= Jǫf(uǫ) in (0, T )× Ωǫ,

−ǫ2JǫDǫ∇uǫ · ν = −ǫJǫg(uǫ) on (0, T )× Γǫ,

−ǫ2JǫDǫ∇uǫ · ν = 0 on (0, T )× ∂Ω,

uǫ(0) = u0
ǫ in Ωǫ.

To derive convergence results for the the sequence of solutions uǫ, we start by
showing a priori estimates, especially estimates for the differences between the
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shifted solution and the solution itself. For this purpose, we introduce the space
Hǫ with the weighted Sobolev-norm

‖uǫ‖Hǫ = ‖uǫ‖L2(Ωǫ) + ǫ2‖∇uǫ‖L2(Ωǫ)

adapted to the slow diffusion scaling (of order ǫ2). This function space is the
basis for our weak and strong two-scale compactness results. Based on these
a priori estimates, we show a two-scale compactness result for the generalized
time-derivative and a general strong two-scale compactness result of Kolmogorov-
Simon-type. These compactness results allow us to pass to the limit ǫ → 0 in the
microscopic model and to obtain the following macroscopic problem in an evolving
macroscopic domain. With Y (t, x) := S0(t, x, Y

∗) and Γ(t, x) := ∂Y (t, x)\∂Y , we
have:

(2)

∂tũ0 −∇y · (D∇y ũ0 − q̃0ũ0) = f(ũ0) in
⋃

(t,x)∈(0,T )×Ω

{(t, x)} × Y (t, x),

−D∇yũ0 · ν = −g(ũ0) on
⋃

(t,x)∈(0,T )×Ω

{(t, x)} × Γ(t, x),

ũ0(0) = ũ0 in
⋃

x∈Ω

{x} × Y (0, x),

ũ0 is Y -periodic.

In the homogenized model (2), we obtain again a reaction-diffusion-advection equa-
tion, which depends on a macro-variable x ∈ Ω and a micro-variable y ∈ Y (t, x).
Here, for every time t ∈ [0, T ] and in every macroscopic point x ∈ Ω, Y (t, x)
denotes an evolving reference element. Hence, the macro-variable only acts as a
parameter and we have to solve a parabolic problem in every point x ∈ Ω on the
evolving cell Y (t, x). In applications, usually, the evolution of the micro-domain
depends on unknowns of the problem, leading to free boundary problems. Here,
we make the strong simplification that the evolution is a priori known. Hence, our
paper is a first step in the treatment of more complex applications.

While rigorous homogenization results for nonlinear problems with an a priori
known evolving microstructure seem to be missing, there are a variety of results
for linear problems, as can be seen e.g. in the references below.
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A fixed-point approach to Claussius-Mossotti’s formulas

Jules Pertinand

Consider the conductivity a(LP , ·) of a two phase material with compactly sup-
ported inclusions randomly distributed in an homogeneous background along a
point process P = {x}x∈P rescaled by a factor L. Typically,

a(LP , ·) : y 7→ αId +
∑

x∈P

β1B1(Lx)(y)Id .

If P is stationary and ergodic, homogenization theory yields an associated ho-
mogenized coefficient a(LP). This quantity depends on the full law of P making
it computationally expensive to evaluate. At leading order, the point process is
characterized by its intensity θ(P), the average number of point per unit of volume
and one can hope to accurately describe the homogenised coefficient using only
the intensity. Indeed, Clausius-Mossotti formula gives an approximation of a(LP)
as a power series in θ(LP) = L−dθ(P) ≪ 1 in the dilute regime L ≫ 1. Such
expansions for other models have been investigated, for instance in [1] or [2]. For
this model, what can we say about the map L−1 7→ a(LP) for L ≫ 1 ?

The following is established in [3].

Theorem 1. Let P be a hardcore stationary ergodic point process with arbitrarily
small α-mixing. The map L−1 7→ a(LP) admit a Taylor expansion at 0 up to any

order. More precisely, there exists (A(i))i∈N ∈
(
R

d×d
)N

such that for all n ≥ 0,
we have

(1) a(LP) = αId +

n∑

i=0

A(i)L−(i+d) +O
(
L−(n+1−)

)
.

Inspired by [4], the proof relies on a comparison between the standard corrector
∇ϕ(LP , ·) associated to a(LP , ·) and the single inclusion problem ∇ϕ◦ associated
to a◦ = αId+ β1B1

Id via −∇ · a◦(∇ϕ◦ + e) = 0 on R
d. Since LP is hard-core and

dilute, one expects for all x ∈ P and y ∈ B1(Lx) that ∇ϕ(LP , y) ≃ ∇ϕ◦(y−Lx).
This statement can be made quantitative noting that the difference ϕ− ϕ◦ solves
an elliptic equation with source terms located far from B1(Lx) but depending on
∇ϕ(LP , ·). It is then possible to rewrite this PDE as a fixed point for the corrector
∇ϕ+ e = (Id−KL)−1(∇ϕ◦+ e) with an explicit operator KL involving ∇2G (the
second gradient of the Green function for −∆ on the whole space). Thanks to
the homogeneity of G and using a Taylor expansion, it is possible to get a full
expansion in L−1 of KL and then deduce one for ∇ϕ.

A key object to define KL is the formal sum
∑

x∈P◦\{0} ∇2G(x) with P◦ a

random hardcore point process obtained by conditioning P to have an inclusion
at the origin. Since ∇2G is not summable, this object is not necessarily well
defined for a given realisation. To circumvent this issue, we introduce a massive
approximation adding 1

T to the operator −∇·a∇ in order to screen the sources at

scale >
√
T . As in (1), one can obtain a Taylor expansion of aT (LP) (the massive

approximation of a(LP)). Although, it is not possible to directly pass to the limit
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T → ∞ since the bounds on coefficients and on the remainder logarithmically blow
up in T . This is where mixing comes into play. Using [5], arbitrarily small algebraic
α-mixing yields a small algebraic rate of convergence of aT (LP) to a(LP). Using
a simple optimization procedure in L and T following a method used in [6], this
is enough to compensate the logarithmic divergence of our bounds and obtain the
Taylor expansion (1).

In particular, in this random case, the approach bypasses the need for an explicit
renormalisation of the sum. Note that for periodic P , one can indeed pass to
the limit in limT→∞

∑
x∈P◦\{0} ∇2GT (x). In the periodic case, we recover the

expected analyticity of the map L−1 7→ a(LP) at 0 as mentioned in [4] and [7].
The techniques presented here mostly rely on energy estimates and could be

extended in various directions to treat non constant background (periodic or, to
some extent, random) and other equations (cf [6] for Stokes equation and the
effective viscosity).
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The Batchelor power spectrum of passive scalar turbulence at fixed
Reynolds number

Jacob Bedrossian

(joint work with Alex Blumenthal, Sam Punshon-Smith)

The talk focuses on the sequence of works [10, 12, 11, 1], which studies (A) the
chaotic mixing of the Lagrangian flow map (defined below) associated to the
stochastically forced Navier-Stokes equations in T

d and (B) the passive scalar
turbulence problem at fixed Reynolds number.

We use the following mathematical model for passive scalar turbulence at fixed
Reynolds number on T

2: stochastically forced Navier-Stokes and a stochastically
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forced scalar field

∂tut + ut · ∇ut −∇pt = ν∆ut + Ẇt(1)

∇ · ut = 0(2)

∂tgt + ut · ∇gt = κ∆gt + ξ̇t,(3)

where W, ξ are (mean-zero) white-in-time, sufficiently regular in space Gaussian
forcing. The field Wt also must satisfy a non-degeneracy condition: (A) Wt is
diagonalizable with respect to the basis for the Stokes eigenfunctions in the sense
that

Wt =
∑

k

qkek(x)W
(k)
t ,(4)

where {ek}k constitute a basis for the real-valued, divergence free vector fields and

the W
(k)
t are independent, 1d Brownian motions on a common stochastic basis and

(B) the coefficients must satisfy: ∃α > 5 such that

|qk| ≈ |k|−α
.(5)

Extensions to 3d exist for all of the results discussed provided one uses hyper-
viscosity ν∆ut 7→ −ν(∆)2ut. Regarding the passive scalar, the final result of our
analysis, carried out in [1], is that in the limit of κ → 0 (with ν fixed – hence fixed
Reynolds number), we show that Batchelor’s 1959 prediction for the cumulative
power spectrum holds:

Theorem 1 (JB/Blumenthal/Punshon-Smith ‘19 [1]). For all ν, {qk},..., there
exists an N0 and C0 (both independent of κ) such that the following holds for
every initial g0 ∈ L2 and P-a.e. ω, and all N0 < N < κ−1/2:

1

C0
logN < lim

T→∞

1

T

∑

|k|≤N

∫ T

0

|ĝ(t, k)|2 dt < C0 logN,(6)

where ĝ denotes the Fourier transform.

This theorem shows the creation of essentially all sufficiently small scales, as is
expected for any “turbulent” system.

The fundamental driver behind Theorem 1 turns out to be (uniform, almost-
sure) exponential mixing, proved in three steps carried out in [10, 12, 11]. Let ft
solve the following initial value problem for the passive scalar

∂tft + ut · ∇ft = κ∆ft(7)

f0 = f.(8)

We say a scalar is exponentially mixing if ∃c > 0 such that (assuming f is mean-
zero)

||ft||H−1 . e−ct ||f ||H1 .(9)

To understand this, if κ = 0, recall that ||ft||L2 = ||f ||L2 for all t, and hence by
the Fourier characterization of the H−1 space, exponential decay is only possible
if all of the ‘energy’ of the scalar is shifting to higher frequencies exponentially
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fast. Many mathematical works in the literature study mixing, for example see
[2, 13, 17, 6, 7, 5, 16, 14, 8, 3, 19, 4] and related references. The following theorem
(proved in [10, 12, 11]), shows that velocity fields arising from stochastically forced
Navier-Stokes and a variety of other fluid-like models, this happens almost-surely
and uniformly in κ.

Theorem 2 (JB/Blumenthal/Punshon-Smith ‘19 [10, 12, 11]). For 2D Navier-
Stokes (& 3D hyper-viscous NSE, and ‘toy models’...), ∀ν > 0, ∀p ≥ 1, there
exists a deterministic γ = γ(ν, p) > 0 (independent of κ) and ∀κ ∈ [0, 1] a
random constant D = D(κ, ω, u0, p) such that

||ft||H−1 ≤ D(ω, u0)e
−γt ||f ||H1 ,

and ∀η we have the κ-independent moment bound

EDp(·, u0) .η (1 + ||u0||H)pβ exp
(
η ||u0||2H1

)
.

Fundamentally, this theorem is about the chaotic mixing of the Lagrangian
flow map, that is, the diffeomorphism φt : Td → T

d given by the family of random
ODEs

∂tφ
t(x) = ut(φ

t(x))(10)

φ0(x) = x.(11)

If κ = 0, by the duality characterization of the H−1 space, we observe that ex-
ponential mixing is equivalent to the assertion that for all f, g mean zero, there
holds ∣∣∣∣

∫

Td

f(x)g(φt(x))dx

∣∣∣∣ . e−ct ||f ||H1 ||g||H1 ,(12)

and so we see the notion of mixing in fluid mechanics is a quantitative variation of
the notion of strong mixing in ergodic theory. Theorem 2 is qualitatively optimal
in various senses; see [12, 11] for details, but essentially, for t . |log κ| almost the
reverse inequality holds: i.e. there is a deterministic γ′ (independent of κ etc) and
a random constant D′ satisfying analogous moment estimates such that

||ft||H−1 > D′(ω, u0)e
−γ′t ||f ||H−1 .(13)

The fields studied in [11] are the first examples (stochastic or deterministic) of
uniform-in-κ exponentially mixing fields to our knowledge.

The main theme of the proof of Theorem 2 is the introduction of many ideas
from the field of random dynamical systems. In the first work, [10] we proved
Lagrangian chaos, which is the theorem

Theorem 3 (JB/Blumenthal/Punshon-Smith ‘18 [10] ). For 2D Navier-Stokes
(also 3D hyper-viscous NSE, Stokes, some other models...), ∀ν > 0, ∃ determin-

istic λ > 0 such that

lim
t→∞

1

t
log |Dxφt(x)| = λ > 0 almost surely

for all initial x ∈ T
d and all u0 ∈ H
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The quantity λ is called the Lyapunov exponent Proving the existence of such
quantity is not the part that is most challenging (though it is not so easy and to our
knowledge, it had not previously been shown rigorously). The much more difficult
and subtle aspect of the result however, is proving that Lyapunov exponent is
strictly positive. For this we adapt ideas of à la Furstenberg, building off of
ideas of classical works in the random dynamics literature, specifically [21, 20,
15], to show that if the Lyapunov exponent were zero (it cannot be negative by
incompressibility), then there must exist a certain set of almost-sure degeneracies
in the dynamics. A suitable approximate control argument is used to rule out these
degeneracies, i.e. that the fluid and the Lagrangian flow map can simultaneously
reach a wide enough range of configurations. The infinite dimensional setting
as well as the unboundedness of the velocity fields both produce difficulties that
require a number of new ideas to treat.

To upgrade Lagrangian chaos to exponential mixing at κ = 0 in [12], we use a
two-point process approach, building off of ideas for stochastic (Markov) diffeomor-
phisms on manifolds, namely [9, 18]. Essentially the idea is that by a Borel-Cantelli
argument, almost-sure exponential mixing can be deduced from the exponential
ergodicity of a suitable Markov process, that is if we consider the Markov process
(ut, xt, yt) with

xt = φt(x), yt = φt(y)(14)

then there is some positive function V such that for all average-zero observables ϕ
and all initial u, x, y with x 6= y there holds

|Eu,x,yϕ(ut, xt, yt)| . V(u, x, y)e−µt.(15)

In order to make this proof work, we need to construct a drift condition, which
is a way of saying that the two-point process is ejected exponentially fast from
degenerate parts of phase space whenever it happens to venture there. That is,
we need to show

Eu,x,yV(ut, xt, yt) ≤ V(u, x, y)e−ζt + C,(16)

where V → ∞ if u → ∞ or x → y. As it turns out, this is the difficult part of the
theorem. The proof is a bit technical, but it amounts to studying what is essentially
a large deviations principle on the Lyapunov exponent, basically showing (more
or less) that the asymptotic exponential growth rate is realized exponentially fast
with high probability (and exponential tails on the distribution). The proof uses
[10] as a black-box lemma. Again, due to the unbounded, infinite dimensional
setting, carrying out this procedure requires the development of a lot of new ideas.
To treat the κ > 0 case in [1], let it just suffice to say that it is not trivial, due
to the fact that the κ∆ is a singular perturbation. The key idea is to use the
stochastic Lagrangian trajectories

xt = φt(x) +
√
κdW̃

(1)
t , yt = φt(y) +

√
κdW̃

(2)
t(17)

and then carry out the proof of mixing in a κ-uniform way. This is problematic
because the perturbation is truly singular. However, the proof of [12] is based on
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spectral theory for certain Markov and Feynman-Kac semigroups, and it turns out
that we can pass to the κ → 0 limit in the dominant eigenvalue at least.
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[5] Y. Yao, A. Zlatoš, Mixing and un-mixing by incompressible flows, J. Euro. Math. Soc. 19(7)

(2017), 1911–1948.
[6] C. Seis, Maximal mixing by incompressible fluid flows, Nonlinearity 26(12), (2013), 3279.
[7] G. Iyer, A. Kiselev, X. Xu, Lower bounds on the mix norm of passive scalars advected by

incompressible enstrophy-constrained flows, Nonlinearity 27(5) (2014), 973.
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Homogenization of Interface Motions in the Parabolic Scaling

Peter S. Morfe

We consider the homogenization of interface motions in periodic media in the
parabolic scaling regime.

Phase transitions in periodic media. Given a Z
d-periodic uniformly elliptic

matrix field a and a double-well potential W , it is a natural question to ask what is
the behavior of the solutions (uǫ)ǫ>0, as ǫ → 0+, of the following phase transitions
problem in R

d:

(1)

{
uǫ
t − div(a(ǫ−1x)Duǫ) + ǫ−2W ′(uǫ) = 0 in R

d × (0,∞),
uǫ = u0 on R

d × {0}.
Here, for definiteness, assume that W has unique global minima at 1 and −1 and
the solutions (uǫ)ǫ>0 take values in [−1, 1].

In [7], I provide an answer in the setting of laminar media, that is, when a
depends on fewer than d of the variables. Roughly speaking, [7] shows that if a is
laminar and the zero level set {u0 = 0} is a graph that crosses the laminations,
then

uǫ(·, t) → 1 in Et, uǫ(·, t) → −1 in R
d \ Et,

where the family of open sets (Et)t≥0 moves with normal velocity

V∂Et = M̃(ν∂Et)
−1tr(D2ϕ̃(ν∂Et)A∂Et).

Above ν∂Et is the normal vector of ∂Et and A∂Et , its second fundamental form;

M̃ , the mobility, describes the average rate of energy dissipation; and ϕ̃ is the
surface tension as obtained in [1].

The proof of the theorem is an adaptation of the original approach of Barles and
Souganidis [3]. The difficulty here is the existence of so-called pulsating standing
waves used in the asymptotic expansion. The advantage of laminar media is
that, in directions that cross the laminations, it is always possible to find smooth
pulsating standing waves. Hence, when the initial interface is a graph, there is
some room to build sub- and supersolutions.

In the setting of anisotropic curvature flows, similar results have been obtained
by Barles, Cesaroni, and Novaga [2] and Novaga and Valdinoci [9].

Level set PDE in non-divergence form. Given a positive Zd-periodic function
m and a Z

d-periodic uniformly elliptic matrix field a, consider the problem

(2)

{
m(ǫ−1x, D̂uǫ)uǫ

t − tr
(
A(ǫ−1x, D̂uǫ)D2uǫ

)
= 0 in R

d × (0,∞),

uǫ = u0 on R
d × {0},

where A(y, e) = (Id− e⊗ e)a(y, e)(Id− e⊗ e).
The main result of [8] is that (2) homogenizes and the effective behavior is

described by a similar PDE with possibly discontinuous coefficients:

Theorem 1. [8, Theorem 2] There are functions m̄ : Sd−1 \ RZd → (0,∞) and
ā : Sd−1 \ RZd → Sym(d) such that, for each u0 ∈ UC(Rd),
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(i) There is a unique viscosity solution ū ∈ C(Rd × [0,∞)) of the effective
equation

(3)

{
m̄(D̂ū)ūt − tr

(
Ā(D̂ū)D2ū

)
= 0 in R

d × (0,∞),

ū = u0 on R
d × {0},

where Ā(e) = (Id− e⊗ e)ā(e)(Id − e⊗ e).
(ii) uǫ → ū locally uniformly in R

d × [0,∞).

It is shown in [8] that the discontinuity of m̄ and ā is generic. To overcome this,
the proof of Theorem 1 employs ideas originally developed by Feldman and Kim
[6] in the study of oscillating boundary value problems.

Other examples of interface motions or front propagation problems where the
homogenized coefficients exhibit discontinuities can be found in the work of Cesa-
roni, Novaga, and Valdinoci [5] and Cesaroni, Dirr, and Novaga [4].
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Optimal-order estimates in stochastic homogenization:
Beyond linear equations and smooth data

Julian Fischer

(joint work with Stefan Neukamm, Peter Bella, Marc Josien, Claudia Raithel)

For linear elliptic PDEs

−∇ · (aε∇uε) = f(1)

with a random coefficient field aε with short correlation length ε > 0 and suffi-
ciently smooth data, optimal rates of convergence to the solution of a homogenized
problem have been derived in the last decade [10, 11, 12, 3].
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The quantitative homogenization theory of nonlinear random PDEs, on the
other hand, had been limited to at most small algebraic rates of convergence like
ε1/8, ε1/90, or even merely εδ, depending on the PDE [8, 5, 7].

In the recent work [1], we establish optimal-order homogenization error esti-
mates for nonlinear elliptic PDEs with random material law in the case of mono-
tone nonlinearities: We consider the PDE

−∇ ·
(
Aε(x,∇uε)

)
= f(2)

and assume that at each point x ∈ R
d the material law Aε(x, ξ) is determined

by a random field ωε(x) according to Aε(x, ξ) := A(ωε(x), ξ). Here, the random
field ωε is assumed to be stationary (i. e. have spatially homogeneous statistics)
and feature fast decorrelation on scales larger than a microscale ε > 0, quantified
by a spectral gap inequality. Under natural 2-growth-type assumptions on the
monotone operatorsA – a case that in particular comprises linear elliptic PDEs as a
special case – , we prove that the solution to the problem (2) may be approximated
by a homogenized effective equation of the form

−∇ ·
(
Ahom(∇uhom)

)
= f,(3)

up to an error of the order

||uε − uhom||Lp ≤





Cε1/2 for d = 1,

Cε| log ε|1/2 for d = 2,

Cε for d ≥ 3.

Here, C is a random prefactor satisfying a stretched exponential moment bound
of the form E[Cδ/C(d, data)] ≤ 2 for some δ > 0. To obtain the same rates of
convergence in the case of nonlinear monotone systems, we additionally require a
small-scale regularity condition, satisfied for instance in d ≤ 2 or for systems with
Uhlenbeck structure.

This result in [1] may be seen as the optimal quantitative counterpart in the
case of 2-growth to the qualitative stochastic homogenization theory for convex
integral functionals developed by Dal Maso and Modica [9]. Note that we are
aware of an alternative approach to this problem, being currently in development
by Armstrong, Kuusi, and coworkers [4].

In stochastic homogenization, effective material laws like Ahom in (3) must usu-
ally be determined by the method of representative volumes: A small sample of
the random medium is chosen – say, a realization Aε|[−L

2
,L
2
]d on a box of side

length L, with typically ε ≪ L ≪ 1 – and the effective material law Ahom is ap-
proximated by “probing” the behavior of the material sample (the “representative
volume”). In [1] we derive an optimal-order error estimate for the approximation
of the effective material law Ahom by the method of representative volumes: We
prove that when using a suitably periodized representative volume Aε|[−L

2
,L
2
]d , the

approximation ARVE,L
ε of the effective material law Ahom is of accuracy

∣∣ARVE,L
ε (ξ)−Ahom(ξ)

∣∣ ≤ C|ξ|(1 + |ξ|C)
(
ε

L

)d/2
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Figure 1. Two examples of random fields. Left: Random non-
overlapping spherical inclusions. Right: A Gaussian random field
with short correlation length.

for dimensions d ≤ 7 (the random variable C again satisfying stretched exponential
stochastic moment bounds). In expectation, the approximation is of higher order
in the sense

∣∣E[ARVE,L
ε (ξ)]−Ahom(ξ)

∣∣ ≤ C|ξ|(1 + |ξ|C)
(
ε

L

)d(
log L

ε

)C
.

Both convergence rates basically coincide with the rate in the linear elliptic setting
[10, 11] and are therefore optimal (up to logarithmic factors).

Returning to the case of linear elliptic PDEs but going beyond the homogeniza-
tion problem for smooth data, in [2] we analyze the properties of the boundary

layer corrector θ
H

n
+

i for half-spaces Hn
+ := {x ∈ R

d : x · n > 0}, determined as the
solution to the fluctuating Dirichlet problem

−∇ ·
(
aε∇θ

H
n
+

i

)
= 0 in H

n
+,

θ
H

n
+

i = φi on ∂Hn
+.

Here, φi denotes the homogenization corrector on the whole space R
d. Note that

for d ≥ 3, φi typically takes values of the order ε and fluctuates rapidly on the scale
ε; hence, one may expect nontrivial nonlinear interactions between the fluctuating
coefficient field aε and the fluctuating boundary data φi. In [2], in the case of three
or more dimensions d ≥ 3 and under standard (fast decorrelation) assumptions on
the random coefficient field aε we prove the optimal-order decay estimate

∣∣∣∇θ
H

n
+

i (x)
∣∣∣ ≤ C(aε, x)

(
ε

ε+ dist(x, ∂Hn
+)

)d/2

(4)

where the random prefactor C is again subject to stretched exponential moment
bounds of the form E[exp(Cδ/C)] ≤ 2. For the stochastically averaged gradient

E
[
∇θ

H
n
+

i (x)
]
, we even establish the higher rate of decay

(
ε/ dist(x, ∂Hn

+)
)d/2+1

.
Our result has implications for the rate of convergence of the method of represen-
tative volumes with Dirichlet boundary conditions.
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Figure 2. An illustration of the homogenization problem on the
half-space H

n
+.
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A general deterministic approach to homogenization theory

Jean Louis Woukeng

The homogenization theory offers a rigorous mathematical framework permeat-
ing the modelling and analysis of composites in various environments. It is con-
cerned with the description of macroscopic properties of heterogeneous materials
immersed in various environments in terms of their microscopic properties. These
heterogeneous materials have microscopic features which are spatially oscillatory
with the frequencies of oscillations depending on the distribution of constituents
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of underlying materials. This renders the direct numerical treatment of models of
composites very difficult and in most cases impractical. Indeed, meshes in numer-
ical schemes for approximating computational domains occupied by a composite
must be very fine to capture microscopic behaviours. Homogenization seeks to
mitigate this problem by approximating the underlying composite by a homoge-
neous one readily amenable to numerical computations. One of the key challenges
is therefore to control the error made by approximating the original heterogeneous
phenomenon by the homogeneous one. This falls within the scope of quantitative
homogenization theory. Quantitative homogenization beyond the periodic setting
is still at its early stage. Its study poses new challenges among which, the reso-
lution of the corrector equation (in the sense of the distributions) in the locally
uniform spaces. This is the starting point for the quantitative theory of deter-
ministic homogenization beyond the periodic framework. As a result, we have
to design a numerical strategy to approximate the homogenized coefficients and
find a rate of convergence in order to implement, simulate and solve numerically
concrete non-periodic homogenization problems.

A typical homogenization problem for linear elliptic equations under divergence
form consists in replacing an equation with oscillatory coefficients Aε of scale

0 < ε << 1, − div(Aε∇uε) = f , by an equation with constant coefficients Â,

− div(Â∇u0) = f , where Â (the homogenized coefficient) depends only on Aε (not
on f) and has constant entries. Such a theory is well developed (both qualitatively
and quantitatively as well) for Aε = A( ·

ε ) when A is periodic. When A is no more
periodic but satisfies some structural assumptions that are deterministic (they
may vary from the periodicity, the almost periodicity to more complicated ones)
the qualitative theory has already been addressed. In that case, the homogenized

coefficient Â has the form Â = 〈A(I +∇χ)〉 where 〈v〉 = limR→∞ −
∫
(−R,R)d

v(y)dy

(with −
∫
(−R,R)d = (2R)−d

∫
(−R,R)d) denotes the mean value, I the square identity

d× d matrix, and χ = (χj)1≤j≤d is the solution of the so-called corrector problem

(1.1) −∇ · (A(ej +∇χj)) = 0 in R
d

in which ej is the j th vector of the canonical basis of Rd. In contrast with the
qualitative theory, the quantitative theory is in its early stage. Indeed with the
help of the function χ determined by (1.1), we may define the approximation
vε(x) = u0(x)+ εχ(xε )∇u0(x) of uε and show that uε− vε → 0 in a suitable sense.

Keeping also in mind that the homogenized coefficient Â is defined in a asymptotic
way, two questions readily come in mind: 1) How large should we choose the real

number R in order to get a more convenient approximation of Â in terms of an
average over (−R,R)d? 2) How small should we choose ε so that the approximation
of uε by vε is as accurate as possible? These challenging questions are at the heart
of the current work in deterministic homogenization theory beyond periodicity.
They are motivated by the numerical implementation and simulation of results in
multiscale analysis beyond periodicity. Currently, many authors are working on
how to address these questions in the general deterministic theory including the
almost periodic behaviour, the asymptotic periodic and the asymptotic almost
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periodic behaviours, and some others. Namely the current main challenges are
twofold:

A1 Study the approximation of homogenized coefficients and the rates of con-
vergence by establishing:
(i) regularity results at large scales under minimal assumptions on the

coefficients of the problem under consideration;
(ii) optimal bounds on the growth of the corrector function based on

assumptions on the coefficients.
A2 Design numerical method to approximate the solution of the homogenized

models in order to perform simulation to confirm and validate the analyt-
ical study.

It seems convenient to precise the motivation of A1 and A2. In [6, 9], we
have shown that the distributional solution of problem (1.1) belongs to a Sobolev-
Besicovitch type space that is needed for A1 and A2. However this remains a
very challenging issue. As an illustration, there are very important results dealing
only with the existence of solutions of PDE in locally uniform spaces; see, e.g.,
[10]. With this in mind, the next step consists in finding a suitable approximation

scheme for the homogenized matrix Â. This does not matter in the periodic
framework since under the periodicity assumption, the corrector problem is posed
on a bounded domain (namely the periodic cell Y = [0, 1)d) as in that case,
the solution χj is Y -periodic. A huge contrast between the periodic setting and
the general deterministic setting is that in the latter, the corrector problem is
posed on the whole space R

d, and cannot be reduced to a problem on a bounded
domain. As a result, the solution of the corrector problem (1.1) (and hence the
homogenized matrix which depends on this solution) can not be computed directly.
Therefore, as in the random setting [5], truncations of (1.1) must be considered,
particularly on large domains (−R,R)d with appropriate boundary conditions,
and the homogenized coefficients will therefore be captured in the asymptotic
regime. This falls within the scope of A1, and has been addressed in [9] for the
model problem above. After having considered this problem, the next natural
step is to evaluate the rate of convergence of the approximation in terms of the
truncation size, that is, to find a rate of convergence for the approximation of

both Â and uε. This problem has been firstly addressed in the periodic framework
by Avellaneda and Lin [1], and in the random setting (that is, for second order
linear elliptic equations with random coefficients) by Yurinskii [13], Bourgeat and
Piatnitski [5] (see also a recent series of works by Gloria and Otto [7, 8] for the
random discrete linear elliptic equations). Although the qualitative deterministic
homogenization theory can be seen as a special case of random homogenization
theory, we can not expect to use this random formulation to address the issues of
rate of convergence in the deterministic setting. Indeed, in the random framework,
the rate of convergence relies systematically on the uniform mixing property (see
e.g. [5, 13]) of the coefficients of the equation. Indeed, as proved in [4], the almost
periodic setting does not satisfy the uniform mixing property. As a result, we can
not use the random framework to address the issue in the general deterministic
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setting. We therefore need to elaborate a new framework for solving the problem
considered. The very first work that uses the general almost periodicity assumption
is a recent paper by Shen [11]; see also [12]. In [6, 9] we have addressed these
issues in some general way including the almost periodic setting, the asymptotic
periodic and asymptotic almost periodic settings.
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[13] V.V. Yurinskĭı, ”Averaging of symmetric diffusion in a random medium” (Russian), Sibirsk.
Mat. Zh. 27 (1986) 167–180.

Homogenization of Poisson equation and Stokes system in some
non-periodically perforated domains

Sylvain Wolf

(joint work with Xavier Blanc)

We study the homogenization of Poisson equation and Stokes system in a class of
non-periodically perforated domains. The size of the perforations is denoted by ε.
This microscale corresponds also to the distance between two neighbouring holes.
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We consider the PDEs

(1)

{−∆uε = f in Ωε

uε = 0 on ∂Ωε
and





−∆Uε +∇Pε = F in Ωε

div(Uε) = 0

Uε = 0 on ∂Ωε,

where Ωε is the perforated domain. The homogenization of the equations (1) has
been extensively studied when the holes are periodically distributed in space (see
e.g. [1, 6] for Poisson equation and [2, 7] for Stokes system, see also [5] for a
non-periodic extension). Our aim is to extend the results of the periodic case to
local perturbations of this setting.

We describe in this paragraph the non-periodic setting considered in the works [3,
4]. We fix d ≥ 2 and we denote by Q the unit cube of R

d. If k ∈ Z
d, we

write Qk := Q + k. We fix Oper
0 ⊂⊂ Q and we define Oper

k := Oper
0 + k. Let

Ω ⊂ R
d be a bounded domain. The periodic perforated domain is defined by

Ωper
ε := Ω \ ε

⋃
k∈Yε

Oper
k , where Yε := {k ∈ Z

d, εQk ⊂ Ω}. We fix a periodic

distribution of holes (Oper
k )k∈Zd and we define the non-periodic perforations by

the properties (A1)-(A2) below:

(A1) For all k ∈ Z
d, Ok ⊂⊂ Qk and Qk \ Ok is connected;

(A2) There exists a sequence (αk)k∈Zd ∈ ℓ1(Zd) such that

Oper,−
k (αk) ⊂ Ok ⊂ Oper,+

k (αk)

where for α > 0, Oper,+
k (α) := {x ∈ R

d s.t. d(x,Oper
k ) < α} and Oper,−

k (α) :=
{x ∈ Oper

k s.t. d(x, ∂Oper
k ) > α}.

ε

ε

Ωε

ε

ε

Figure 1. Example of domains Ωε for large ε (left) and small ε
(right).

Let O :=
⋃

k∈Zd Ok be the set of non-periodic perforations. We define Ωε :=
Ω \ ε⋃k∈Yε

Ok (see Figure 1) and we study (1) in Ωε. The two-scale expansions
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of uε and (Uε, Pε) as ε → 0 yield the following corrector problems

(2)

{−∆w = 1

w|∂O = 0
and





−∆Wj +∇Pj = ej

divWj = 0

Wj|∂O = 0,

j = 1, ..., d

which are posed in R
d \ O. We first prove that the PDEs (2) are solvable. For

Poisson equation, we then obtain convergence rates of uε to its two scale expansion
in W 1,p−norms for all 1 < p < ∞. For Stokes system, we obtain convergence rates
in H2−norms for the three dimensional case when we impose additional conditions
on the force field F . We finally discuss the optimality of these convergence rates.
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From adherence to slip in nanofluidics: a mathematical justification
based on a drop of viscosity

Matthieu Bonnivard

(joint work with Julien Olivier)

The no-slip boundary condition is the assumption that the layer of liquid next to
a solid surface moves with the same velocity as the surface. No-slip cannot be
proved based on hydrodynamic considerations, but has been observed in numer-
ous macroscopic experiments. Hence, no-slip is the most commonly used BC for
macroscopic flows. However, viscous flows in confined domains (such as carbon
nanotubes) exhibit slip [1, 2]. The origin of this slip is the subject of current
debate in the physics community [3, 4]. From a mathematical perspective, one
successful strategy initiated in the late 1990’s [5, 6, 7] to explain the occurrence
of adherence or partial slip on solid walls, consists in modeling micro-asperities on
the surface and analyzing their effect on the flow by an homogenisation process,
imposing only a mild non penetration boundary condition on the rugous wall, i.e.
that the normal component of the fluid velocity vanishes. This so-called ”rugosity
effect” has been studied quite extensively in the last decades, which has led to a
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rather complete description of the asymptotic effect of rough patterns on viscous
flow [8, 9, 10].

In this talk, we investigate a completely different interpretation of the appar-
ent slip length measured in nanoscopic devices, proposed by Myers in [11], where
the author postulates that the source of this slip arises from a “depletion layer
with reduced viscosity near the wall”. This hypothesis is supported by experimen-
tal evidence [12] and Molecular Dynamics simulations [13] bringing out that the
viscosity drops near the wall of the nanotube.

The problem we consider is strongly related to the so-called reinforcement prob-
lems introduced by Sanchez-Palencia in [14], where an elastic medium is reinforced
by the adjunction of a thin layer of very strong material. From a mathematical
point of view, such models give rise to singular perturbation problems, where the
modulus of ellipticity of the operator tends to zero in the thin layer of extra ma-
terial, as the layer shrinks. Brézis, Caffarelli and Friedman solved the interior and
boundary reinforcement problems for elliptic equations, in the case of Dirichlet
boundary conditions on a C2 boundary and using strong solutions in [15]. A few
years later, geometric measure theory and Gamma-convergence were successfully
applied to boundary reinforcement problems (see for instance Acerbi and But-
tazzo [16]). In a recent preprint [17], we have proposed a different approach based
on a rescaling of the solution in the depletion layer, in the spirit of the unfolding
method [18, 19], and on the construction of a relevant sequence of test functions
that are able to capture the asymptotic behaviour of the problem in the boundary
layer associated with the region of low viscosity.

In this talk, we treat the case of a three-dimensional Stokes system. Start-
ing from the natural energy bound associated with the problem, we obtain com-
pactness on the rescaled velocity and pressure fields in the low viscosity layer by
adapting arguments from [20], and derive the Reynolds equation for the rescaled
pressure. Then, we use a sequence of well-adapted test functions, whose behaviour
in the vicinity of the wall is also determined by a Reynolds equation. This proce-
dure allows us to determine the boundary condition satisfied by the limit velocity
field, which depends, as expected, on the ratio between the value of the viscosity
and the thickness of the depletion layer. In this presentation, we focus on the
critical case, where the previous ratio converges to a positive constant. In this
setting, the boundary condition satisfied by the effective velocity field is a Navier
condition that we are able to express as a function of the geometry of the deple-
tion layer. This result shows that introducing in a viscous flow model a drop of
viscosity in the vicinity of a solid wall, may provide a mathematical justification
of the emergence of slip.
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Global existence for the 2D Kuramoto-Sivashinsky equation by mixing

Anna L. Mazzucato

We consider the Kuramoto-Sivashinsky equation (KSE) on a two-dimensional
torus. We represent the torus by a periodic square with side lengths L1, L2 and
denote it by T

2 in what follows.
This equation is a model for long-wave instability in dissipative system and

has been used for flame-front propagation in combustion, for example. It is a



836 Oberwolfach Report 14/2021

hyperdiffusion non-linear equation for a scalar potential φ:

(1) ∂tφ+∆2φ+∆φ+ |∇φ|2 = 0.

While there is an extensive literature on the KSE in one space dimension, much
less is known in two and higher dimensions (we refer to [2, 3, 4] and references
therein for further discussion). In fact, the issue of global existence of solutions is
still essentially open, as there are no known a priori estimates available in this case.
The presence of a biharmonic operator precludes the use of the maximum principle,
while the form of the non-linearity does not lead to a global Grönwall’s estimate
in Lp. Furthermore, there are exponentially growing modes for the linearized
operator ∂t +∆2 +∆, when L1 or L2 ≥ 2π.

Recently, using a mild formulation and dynamical system arguments, David
Ambrose and the author have proved global existence of solutions to (1) with data
that have a gradient in the Wiener algebra with sufficiently small norm, first in
the absence of growing modes [1] and then in the presence of one growing mode
in each direction [2]. However, no results to date are available with an arbitrary
number of modes, even for small data. Since the instability arises at large scale, to
control it one seeks to incorporate a mechanism that leads to an efficient transfer
of energy from large to small scales, where hyperdiffusion dissipates it. Such a
mechanism should give a global control on the L2-norm of the solution, which
in turn would allow to continue the local solution to a global one. Under some
conditions, mechanism of this type is provided by adding advection to the KSE:

(2) ∂tφ+∆2φ+∆φ+ |∇φ|2 + v · ∇φ = 0,

where v is a given, divergence-free vector field, assumed Lipschitz continuous in
space uniformly in time. We will refer to this modification as the advective KSE
(AKSE), which has been used in the literature to model flame propagation in pre-
mixed combustion. In fact, the interplay between advection and (hyper)-diffusion
can lead to enhanced dissipation.

We will measure this enhancement by means of the concept of dissipation time
τ∗. We let Ss,t, 0 ≤ s ≤ t, be the evolution system associated to the advection-
hyperdiffusion equation:

∂tf +∆2 + v · ∇f = 0.

The number 0 < τ∗ < ∞ given by

(3) τ∗ = inf
{
t ≥ 0 | ‖Ss,s+t‖L2→L2 ≤ 1

2
, for all s ≥ 0

}
,

is called the dissipation time associated to the system Ss,t, 0 ≤ s ≤ t.
With slight abuse of notation, we will also refer to τ∗ as the dissipation time of
(the flow of) v, τ∗(v). Addition of a non-trivial advection term will not increase
the dissipation time and it may decrease it. We introduce a parameter A > 0,
which represents the amplitude of the flow, that is, we replace v by Av. A flow
will be called relaxation enhancing, if τ∗(AV ) → 0 for A → ∞. An example is
given by a (weekly) mixing, sufficiently regular (C2is enough) flow. Informally,
we will say that the flow Φ of v is mixing if g(Φ−1(·, t)) converges weakly to zero
in L2 as t → tmix for some 0 < tmix ≤ ∞ for g in a dense subset of L2(T2). For
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more examples of relaxation-enhancing flows and durther discussion of enhanced
dissipation, we refer to [4].

It was shown in [4] that, if the dissipation time v is small enough, then an a
priori uniform bound on the L2-norm of a weak solution holds. The smallness of
the dissipation time is determined by the size of the periodic square and by the
size of the initial data. As a consequence, one obtains a global existence result:

Let φ0 ∈ L2(T2). There exists τ∗0 > 0 such that, if the dissipation time τ∗ of v
satisfies 0 < τ∗ < τ∗0 , then there exists a unique weak solution to (2) with initial
data φ0 on any time interval [0, T ] for all 0 < T < ∞.

Enhanced dissipation holds even if the flow of v is not mixing. In particular, it
holds for steady shear flows, for which the advecting velocity v(x, y) = (u(y), 0),
under some conditions on u. In [3], a global existence result for AKSE with
advection by a shear flow was obtained, if u satisfies a certain condition that implies
suitable decay rates in time for Ss,t. Such condition is satisfied, for instance, by
u(y) = sin(y)m, m ≥ 1. Decay rates hold by hypocoercivity for shear flows with
finitely-many critical points. In [3], pseudo-spectral estimates were employed that
lead to optimal rates of decay. Fast decay rates for Ss,t replace here the smallness
of the dissipation time, but are valid only on the orthogonal complement to the
kernel of the advection operator v·∇. However, transfer of energy to high-frequency
modes still holds in this case, as all modes are coupled by the nonlinearity.
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Sedimentation of random suspensions in Stokes fluids

Mitia Duerinckx

(joint work with Antoine Gloria)

We consider a system of rigid particles settling under gravity g in a 3D Stokes
fluid, and we study the collective bulk sedimentation process. More precisely, we
focus for simplicity on a quasi-static statistical description: given a translation-
invariant statistical ensemble of particle positions {xn,L}n in a large tank of
size L, the Stokes equations allow to compute the corresponding velocities {Vn,L}n,
cf. (1)&(2) below, and we then investigate
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• the mean settling speed V̄L := g
|g| · E[V1,L],

• velocity fluctuations σ2
L := Var[V1,L],

in the large-volume limit L ↑ ∞ with fixed particle volume fraction. Particles
interact via the fluid flow that they generate, and the difficulty of the problem is
related to the very nature of hydrodynamic interactions.

(I) Interactions are long-range: the flow disturbance at x due to a particle
at y decays only as O(|x − y|−1) as |x − y| ↑ ∞. This leads to various
summability issues.

(II) Interactions are multi-body: the force on each particle cannot be decom-
posed as a sum of contributions of each other particle, but it depends on
all particles and their microstructure at once.

Previous rigorous contributions on the topic, e.g. [11, 13, 10], as well as most physi-
cists’ formal calculations, e.g. [9] and references therein, focus on the dilute regime:
particle interactions can then be replaced by long-range pairwise interactions in
form of a point-force approximation via the Stokeslet, so that difficulty (II) above
is fully lifted. In the present talk, in contrast, we focus on the rigorous treatment of
multi-body hydrodynamic interactions away from dilute regime, using tools from
homogenization theory.

We start by describing predictions from the physics literature. The mean set-
tling speed V̄L was first analyzed by Batchelor [2] and was formally shown to be
uniformly bounded in the large-volume limit, V̄L = O(1). As long-range particle
contributions are not summable, Batchelor had to use a suitable renormalization.
The analysis of velocity fluctuations is more subtle: a celebrated calculation by
Caflisch and Luke [4] showed that, for a Poisson ensemble of particle positions, ve-
locity fluctuations should diverge linearly in the size of the tank, σ2

L = O(L), which
contradicts intuition, and Koch and Shaqfeh [12] later showed that fluctuations
are bounded if and only if the ensemble of particle positions is hyperuniform. In
experiments, it is observed that, after initial mixing of the suspension, fluctuations
follow the Caflisch–Luke divergent prediction, but these large-scale fluctuations are
transient: fluctuations become bounded in a steady-state plateau regime before
the arrival of the upper sedimentation front. A consensus is still lacking on how
to explain this plateau regime: the arisal of hyperuniformity has been invalidated
by some experimentalists, and other screening mechanisms have been proposed
— taking into account other effects such as inertia, density stratification, or side
walls, see e.g. [3, 9].

Let us introduce the fluid equations describing the system. The large tank is chosen
for simplicity as the cube QL = [−L

2 ,
L
2 ]

3 with periodic boundary conditions. We
denote by {Bn,L}n the ensemble of particles centered at the points {xn,L}n, with
volume fraction λL = L−d

∑
n |Bn,L|, we denote by φL the velocity field of the

Stokes fluid, and we assume no-slip conditions at particle boundaries. The fluid
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equations then read as follows for φL ∈ H1(QL)
3/R3,

(1)





−△φL +∇ΠL = −αLg, in QL \ ∪nBn,L,
div(φL) = 0, in QL \ ∪nBn,L,
D(φL) = 0, in ∪nBn,L,
g|Bn,L|+

∫
∂Bn,L

σ(φL,ΠL)ν = 0, ∀n,∫
∂Bn,L

(x− xn,L)× σ(φL,ΠL)ν = 0, ∀n,

where αLg = λL(1−λL)
−1g is the constant backflow, where D(φL) stands for the

symmetric gradient, and where σ(φL,ΠL) = 2D(φL)−ΠL Id is the Cauchy stress
tensor. Note that the condition D(φL) = 0 in ∪nBn,L expresses the rigidity of
particles, and the last two conditions in (1) are the balance of forces and torques
at particle boundaries. Particle velocities are then computed as

(2) Vn,L = |Bn,L|−1
∫
Bn,L

φL.

In a non-perturbative non-dilute setting, λL = O(1), we establish the following
first rigorous version of physicists’ predictions [2, 4, 12].

Main Theorem (see [6, Theorems 1&2] for a precise statement).

(i) If {Bn,L}n has integrable correlations, then we have V̄L = O(1).
(ii) Under an additional mixing assumption, we have σ2

L = O(L).
(iii) Under an additional hyperuniformity assumption, we have σ2

L = O(1).

While the fluid equation (1) looks highly intricate, its structure is simplified by
the following observation [13]: we can write φL as φL = πLφ

◦
L where

• φ◦
L captures the linear response as if particles only had pairwise interac-

tions via the fluid: it is the solution of

−△φ◦
L +∇Π◦

L = (1 − λL)
−1(1∪nBn,L − λL)g, div(φ◦

L), in QL,

where gravity is viewed as simply creating internal forces in the fluid at
the location of the different particles.

• πL captures the multi-body character of hydrodynamic interactions: it is
the orthogonal projection of Ḣ1

div(QL) onto its subspace {φ ∈ Ḣ1
div(QL) :

D(φ) = 0 in ∪nBn,L}.
Noting that the energy identity for (1) reads E[|∇φL|2] = αL|g|V̄L, the projection
property gives αL|g|V̄L ≤ E[|∇φ◦

L|2]. The estimation of the mean settling speed is
therefore reduced to that for the linear response, for which stochastic cancellations
are explicit and easily yield the conclusion (i).

The proof of (ii)&(iii) for velocity fluctuations is more involved. We note that
σ2
L ∼ E[|φL|2], and by integration we can reduce to unraveling the fluctuation

scaling of large-scale averages of the gradient ∇φL. While the fluctuation scaling
is clear for the linear response ∇φ◦

L, it remains to study how it is transformed by
the projection πL. For that, we take inspiration from the recent quantitative theory
of homogenization developed for divergence-form elliptic problems, e.g. [1, 8]. The
relation with the present fluid problem with rigid inclusions is explained by the
following simple observation.
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Lemma. Consider a Stokes fluid in QL with droplets {Bn,L}n of another fluid
with shear viscosity κ,
{

− div
(
2(1 + (κ− 1)1∪nBn,L)D(φκ

L)
)
+∇Πκ

L = (1− λL)
−1(1∪nBn,L − λL)g,

div(φκ
L) = 0.

Then ∇φκ
L ⇀ ∇φL in L2(QL) as κ ↑ ∞.

Using this analogy, we manage to adapt the theory available for divergence-form
elliptic problems [1, 8] to our incompressible fluid setting with rigid inclusions. We
first show in [5] that the projection πL on large scales amounts to replacing the fluid
viscosity by an effective value. Making this homogenization result quantitative
then allows us to derive in [7] a large-scale regularity result for πL, which happens
to be the key technical ingredient for the proof of (ii)&(iii).
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Boundary layer behavior near rough coasts: a wind-driven ocean
circulation model

Gabriela Lopez-Ruiz

This talk is concerned with boundary layer formation near rough coasts in the case
of the homogeneous wind-driven circulation model, also know, as quasi-geostrophic
model. In numerous real-life phenomena not all physical processes are influential
at all scales of magnitude. Some are negligible at certain scales and important at
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others, and ocean circulation is not an exception. We are interested in the effect
of roughness for large-scale oceanic motion since it has been recognized that the
small irregularities of the solid surface can alter deeply various aspects of the fluid
dynamics.

The quasi-geostrophic system is a well-known model in meteorology, mainly in
the study of oceanic circulation. This model describes the external force applied
by the wind on the free surface of the ocean. In other to simplify as possible
the presentation, we focus our attention on a linear and stationary version of this
problem to describe the stream function’s behavior. In a simply connected domain
Ω ⊂ R

2, the system reads

(1)

{
ε−3∂xΨ−∆2Ψ = ε−3 curl τ in Ωε

Ψ|∂Ωε = ∂Ψ
∂n |∂Ωε = 0,

Here, τ denotes the stress tensor resulting from the action of the wind, ε is a
small parameter linked to the Rossby number and is proportionally inverse to the
beta-plane parameter in the linearization of the Coriolis force (β = ε−3).

When ε → 0, the behavior in the boundary layer is very singular. Mathemat-
ically, these problems are often tackled by a multi-scale approach in the limit of
small ε. The goal is to construct an approximate solution that is close to the
one of the original problem when ǫ → 0 with coefficients depending on the global
variables t, x, y, and the fast variables Y = Y (y, ε), X = X(x, y, ε)

(2) Ψε
app(t, x, y) ∼

∞∑

k=0

εk
(
Ψk

int(t, x, y) + Ψk
bl(t, y,X, Y )

)
,

where Ψk
int(t, x, y) correspond to the interior terms, while Ψk

bl refer to the corrector
terms in the boundary layer.

Desjardins and E. Grenier proved this model determined the behavior of a 2D
fluid [5] and then, performed a complete boundary layer analysis when

Ωε = {χw(y) ≤ x ≤ χe(y), y ∈ [ymin, ymax]} ,
where χw and χe are smooth functions. Their results were later generalized by D.
Bresch and D. Gérard-Varet [2] for the case when rough boundaries are added to
domain, i.e.,

Ωε =
{

(x, y) ∈ R
2 : χw(y)− εγw(ε

−1
y) < x < χe(y) + εγe(ε

−1
y), ymin ≤ y ≤ ymax

}

.

In this case, the functions describing the roughness γe and γw were considered
to be periodic and the irregularity of size ε. The periodicity hypotheses is quite
usual in mechanics since they simplify the physical phenomena while remaining
true for most relevant cases. The assumption on the size of the characteristic
roughness is purely mathematical. With the added roughness, the boundary layer
are described by elliptic partial differential equations: non-linear and quasi-linear,
in the western domain and linear, in the East. A natural extension of this work
is dropping the periodicity assumption and considering γe, γw to be regular ar-
bitrary functions. This makes more sense from a physics stand-point since the
geometry of the coast is not meant to follow a particular spatial pattern. As a
consequence, the boundary layer domains are now infinite, thus, we look for the
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solutions Kato spaces Hs
uloc. The analysis becomes more involved than the pe-

riodic case, as shown in [1, 6, 4, 3]. Moreover, the absence of compactness both
in the tangential and transverse variables and the presence of singularities at low
frequencies for the eastern boundary layer functions make proving convergence in
a deterministic setting extremely difficult. We therefore use the ergodic theorem
to specify the behavior of the solution of the eastern boundary layer far from the
boundary and later, to find the energy estimates in the analysis of the quality of
the approximation.

To simplify the presentation even further, we consider χw, χe to be constant
functions. For example, assume χw(y) = C1 and χe(y) = C2, for y ∈ [ymin, ymax].

The first approximation yields

Ψint(t, x, y) = −
∫ C2

x

curl τ(t, x′, y)dx′ in Ω

= 0 in Ωε \ Ω.
The singular nature of the equation driving the eastern boundary layer’s behavior
influence our choice of boundary condition for the interior profile and in turn,
determines the solution of the eastern boundary layer





−∂XΨ0
e −∆2

eΨ
0
e = 0, in ω+

e ∪ ω−
e[

∂k
XΨ0

e

] ∣∣
X=0

= 0, k = 0, . . . , 3,

Ψ0
e

∣∣
X=−γe(Y )

=
∂Ψ0

e

∂ne

∣∣
X=−γe(Y )

= 0,

Ψ0
e −→ 0 when X → ∞,

is equal to zero. The western boundary layer, on the other hand, satisfies

(3)





∂XΨ0
w −∆2

wΨ
0
w = 0, in ω+

w ∪ ω−
w

[
Ψ0

w

] ∣∣
X=0

= φ,[
∂k
XΨ0

w

] ∣∣
X=0

= 0, k = 1, . . . , 3,

Ψ0
w

∣∣
X=−γw(Y )

=
∂Ψ0

w

∂nw

∣∣
X=−γw(Y )

= 0,

Ψ0
w −→ 0 when X → ∞,

where the western boundary layer domain ωw = ω+
w ∪ σw ∪ ω−

w is defined by

ω+
w = {X > 0, Y ∈ R} , σw = {X = 0, Y ∈ R}

ω−
w = {−γw(Y ) < X < 0, Y ∈ R} .

The eastern boundary layer domain ωe can be described similarly.
Solving problem (3) involves the idea introduced by [6] which draws inspiration

from the works of Ladyženskaya and Solonnikov [7]. In particular, we impose a so-
called transparent boundary condition when the variable in the normal direction is
equal to a certain value M > 0. Then, use a priori estimates corresponding to the
solution of the problem in the half-space to define Poincaré-Steklov type operators
which are later used to solve an equivalent problem. This leads ultimately to
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showing (3) has a unique solution in H2
uloc decaying exponentially far from the

boundary.
The next profiles in (2) are built inductively. At order εn the interior profile

satisfies Ψn
int = Cn(t, y) −

∫ χe(y)

x Fn dx, where Fn depends on Ψj
int, j ≤ n − 1.

The value of Cn(t, y) will be specified later. We prove that higher profiles of the
western boundary layer meeting the conditions





∂XΨn
w −∆2

wΨ
n
w = 0, in ω−

w ∪ ω+
w ,

[
∂k
XΨn

w

] ∣∣
σw

= −
[
∂xΨ

n−k
int

] ∣∣
x=χw(y)

−
[
∂k
XΨn

e

] ∣∣
σw

, k = 0, . . . , 3,

Ψn
w

∣∣
X=−γw(Y )

= 0,
∂Ψn

w

∂nw

∣∣
X=−γw(Y )

= 0,

are well-posed and uniformly bounded using the same reasoning. Conversely, the
eastern boundary layer Ψn

e , n ≥ 1,

−∂XΨn
e −∆2

eΨ
n
e = 0, in ω−

e ∪ ω+
e

[Ψn
e ]
∣∣
σe

= Cn(t, y),
[
∂k
XΨn

e

] ∣∣
σe

= gk, k = 1, . . . , 3,

Ψn
e

∣∣
X=−γe(Y )

=
∂Ψn

e

∂ne

∣∣
X=−γe(Y )

= 0,

(4)

where gk ∈ W 2−k,∞(R), presents singularities at low frequencies far from the east-
ern boundary. Consequently, they impact the behavior of the western boundary
layer function mainly through the jump at the interface with the interior domain.
In this context we distinguish three components of Ψn

e with different asymptotic
behaviors far from the boundary: one, decaying exponentially; another, decaying
to zero in a slower manner with polynomial weight and the last element, converging
thanks to the addition of probabilistic information (ergodic properties).

The core of the talk is consecrated to showing:

Theorem (LR, 2021). Let ε > 0 and (P,Π, µ) be a probability space where µ
is a the probability measure preserved by the translation group (τY ) acting on P .
Assume that for m ∈ P : ωe(m) =

{
(X,Y ) ∈ R

2 : X < εγe(m,Y )
}

and γe an
ergodic stationary random process, K-Lipschitz almost surely, for some K > 0.
Then, there exist a unique measurable map Cn(t, y) such that problem (4) has a
unique solution Ψn

e = Ψn
exp +Ψn

alg +Ψn
erg where

(1)
∥∥Ψn

erg

∥∥
Lq(ω+

e )
−−−−−−→
X→+∞

0, locally uniformly in Y , almost surely and in

Lq(P ) for all finite q,
(2) there exist constants δ, C > 0 such that

‖eδXΨn
exp‖L∞(ω+

e ) ≤ C

(
3∑

k=1

‖gk‖W 1,∞ + ‖C‖W 2,∞

)
,
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(3) there exists a constant C > 0 such that

‖(1 +X)−1/4Ψn
alg‖L∞(ω+

e ) ≤ C

(
3∑

k=1

‖gk‖W 2,∞ + ‖C‖W 2,∞

)
.

Moreover, Ψe satisfies

‖Ψn
e ‖H2

uloc
(ωe) < +∞, almost surely.

This result is part of the speaker’s research paper that is currently in preparation.
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Upscaling reactive flow and transport in evolving porous media

Nadja Ray

(joint work with Peter Frolkovič, Stephan Gärttner, Peter Knabner, Jens
Oberlander, Raphael Schulz)

We consider a pore-scale model for reactive flow and transport in an evolving
porous medium. The transport of a concentration cε is given by

∂tcε −∇ · (−vεcε +Dm∇cε) = 0, x ∈ Ωε(t), t ∈ (0, T ),

(−vεcε +Dm∇cε) · νε − εαf(cε, ρ)(cε − ρ) = 0, x ∈ Γε(t), t ∈ (0, T )

with molecular diffusion Dm, (given) advective velocity vε, heterogeneous reac-
tion f(cε, ρ), mineral density ρ, and α = 1/ρ.

The advective velocity vε and pressure pε are determined by the Stokes equa-
tions

µ∆vε −∇pε = 0, x ∈ Ωε(t), t ∈ (0, T ),

∇ · vε = 0, x ∈ Ωε(t), t ∈ (0, T ),

vε = vn,ενε, x ∈ Γε(t), t ∈ (0, T )

with dynamic viscosity µ and interface normal velocity vn,ε ∼ f(cε, ρ).
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The evolution of the microstructure is described by the levelset equation for the
level-set Lε

∂tLε + vn,ε|∇Lε| = 0 x ∈ Ω

with normal velocity of the interface vn,ε ∼ f(cε, ρ).
Applying formal two-scale asymptotic expansion in a level-set framework, an

effective micro-macro model is derived [5] resulting in flow and transport equations
on the macroscopic scale. These include effective hydrodynamic parameters calcu-
lated from representative unit cells. The transport equation for the macroscopic
concentration c0 is given by

∂t(θc0) +∇x · (v̄0c0)−∇x · (D∇xc0) = −σf(c0, ρ) x ∈ Ω, t ∈ (0, T )

with time- and space-dependent porosity θ = |Yl,0(t, x)|/|Y |, specific surface σ =
|Γ0(t, x)|/|Y |, and diffusion tensor Dij :=

∫
Yl,0(t,x)

Dm (∂yiζj + δij) dy.

The velocity field v̄0 and pressure p0 are calculated from Darcy’s equation

v̄0 = −K

µ
∇p0, x ∈ Ω, t ∈ (0, T ),

∇ · v̄0 = ∂tθ x ∈ Ω, t ∈ (0, T )

with dynamic viscosity µ and time- and space-dependent permeability tensor
Ki,j :=

∫
Yl,0(t,x)

ωi
j dy.

The auxiliary cell problems are defined on evolving microscopic geometries. For
the diffusion tensor they read

−∇y · (∇yζj) = 0 y ∈ Yl,0(t, x),

∇yζj · ν0 = −ej · ν0 y ∈ Γ0(t, x),

ζj periodic in y,

∫

Yl,0(t,x)

ζj dy = 0

and for the permeability tensor

−∆yωj +∇yπj = ej y ∈ Yl,0(t, x),

∇y · ωj = 0 y ∈ Yl,0(t, x),

ωj = 0 y ∈ Γ0(t, x),

ωj, πj periodic in y,

∫

Yl,0(t,x)

πj dy = 0.

Finally, the macroscopic solutes’ concentrations alter the unit cells’ geometrical
structure by triggering dissolution or precipitation processes:

∂tL0 + vn,0|∇yL0| = 0 (y, x) ∈ Y × Ω, t ∈ (0, T )

with Yl,0(t, x) := {y : L0(t, x, y) < 0}, Γ0(t, x) := {y : L0(t, x, y) = 0}, and
vn,0 ∼ f(c0, ρ).

We emphasize the potential degeneration of the hydrodynamic parameters with
examples taken from [4]. Moreover, we numerically investigate the dissolution of an
array of dolomite grains and compare the results of the effective model with a pore
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scale model, cf. [3]. Following [2], we discuss the unique solvability of a regularized,
but degenerate subproblem adapting the ideas from [6]. To this end, we assume
that instead of the level-set equation the time- and space-dependent porosity field
is prescribed and all further hydrodynamic parameters are given functions in terms
of the porosity. Finally, we extend the modeling and numerics to the situation of
two competing dissolving/precipitating mineral phases as outlined in [1]. In doing
so, the applicability of machine learning techniques is evaluated.
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Wave Propagation in Random Media: Beyond Gaussian Statistics

Josselin Garnier

In this talk we consider wave propagation in random media. We consider both
random open media and random open waveguides. In both cases an asymptotic
analysis based on a separation of scales technique [3] makes it possible to compute
the statistics of the wave field.

In random open media the wave field can be characterized in the random parax-
ial regime. In this regime the wavelength is smaller than the correlation length of
the medium and the beam radius, which are themselves smaller than the typical
propagation distance [6]. The mean or coherent wave then decays exponentially
with the propagation distance and the mean Wigner transform (the partial Fourier
transform of the two-point covariance function of the wave field) satisfies a radia-
tive transfer equation. The fourth-order moment analysis [7] also reveals that the
statistics of the wave field behaves as a Gaussian process, in the sense that the
fourth-order moments satisfy the Isserlis formula and the scintillation index (the
relative variance of the intensity) goes to one for large propagation distances.

In random open waveguides the wave field can be expanded on the complete set
of the modes of the unperturbed, ideal waveguide. When random perturbations
affect the index of refraction within the core of the waveguide or the geometry
of the core boundary, the mean guided mode amplitudes decay exponentially and
the mean guided mode powers satisfy a coupled mode equation, which can be
interpreted as a discrete form of the radiative transfer equation [1, 5]. The coupling
between guided and radiating modes also induces effective losses for the mean
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guided mode powers through an irreversible transfer of power towards the radiating
modes [4]. The fourth-order moment analysis also reveals that the fluctuations of
the guided mode powers grow exponentially with the propagation distance [4].
This is, therefore, in contrast with the situation in open random medium.

The comparison of the two results makes it possible to discuss the physical
conjecture that claims that the wave field acquires Gaussian statistics when it
propagates over a large distance in a weakly randomly scattering medium. Under
certain circumstances, the conjecture turns out to be true, and then the picture
is clear and simple: the wave field has Gaussian statistics, it is fully characterized
by its mean that is zero and by its covariance function or equivalently by its
mean Wigner transform that satisfies a radiative transfer equation. Under other
circumstances, however, the conjecture may be wrong. This observation opens
new perspectives and new challenges as the situation requires a deeper analysis,
that could have impact in communication and imaging [2].
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Université Paris Dauphine
Place du Marechal de Lattre de Tassigny
75775 Paris Cedex 16
FRANCE

Prof. Dr. Marco Cicalese

Zentrum Mathematik - M 7
Technische Universität München
Boltzmannstraße 3
85748 Garching bei München
GERMANY

Prof. Dr. Anne-Laure Dalibard

LJLL - Sorbonne Université
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Université Pierre et Marie Curie
75252 Paris Cedex
FRANCE
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