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Introduction by the Organizers

Geometric Numerical Integration is an area that has developed vividly over the last
decades, starting from the seminal work on symplectic integrators for Hamiltonian
ordinary differential equations by Feng Kang and the characterisation of symplec-
tic Runge–Kutta methods simultaneously and independently by Sanz-Serna, Suris,
and Lasagni in the late 1980s. Since then, it has been realised that geometric as-
pects play a fundamental role in the design and analysis of structure-preserving
numerical methods for a wide variety of classes of ordinary or partial, determin-
istic or stochastic differential equations. This has led, on the one hand, to new
algorithms that are successfully applied in various fields of science, such as particle
physics, celestial mechanics, classical and quantum molecular dynamics, fluid me-
chanics, to name but a few. On the other hand, rigorous mathematical insight has
been obtained into the working mechanisms of structure-preserving numerical in-
tegrators, which explains, for example, why preserving geometric properties, such
as symplecticity, leads to improved dynamics, such as near-preservation of energy
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over long times. The interplay of rigorous mathematical theory, which draws from
different fields of mathematics, and the construction of practical algorithms for
concrete applications outside mathematics, has fruitfully gone back and forth in
the area of Geometric Numerical Integration.

There have been previous Oberwolfach workshops on Geometric Numerical In-
tegration in the years 2006, 2011, and 2016. The field has continued to be very
active, gaining substantial new theoretical insight as well as opening up new appli-
cation areas adapting techniques developed here previously in different contexts.

Directions followed since 2016 and represented in this workshop include

• interactions between geometric integration and several areas of numerical
partial differential equations;
• continuing growth of interest in geometric aspects of stochastic ordinary
and partial differential equations;
• interaction with optimisation and machine learning;
• new applications of geometric integration in physics;
• problems of discrete geometry, integrability, algebraic aspects.

Some of the items belong to the core area of Geometric Numerical Integration,
others use and export techniques developed in this field to other scientific fields
outside mathematics and within.

Due to the covid pandemic, the workshop took place as a hybrid workshop, with
only seven participants (including two organizers) present at Oberwolfach, all from
Germany, and with 50 online participants from Europe, the USA, China, Japan,
Australia and New Zealand. To cope with the online format, there were 20 half-
hour talks during the workshop spread between 9 am and 11 pm to accommodate
participants from different time zones, and there was a junior researcher session
with eight contributions. In addition, there were six discussion groups on special
topics, with short reports to the general audience on the last day of the workshop,
and there were virtual coffee rooms for informal exchange among the participants.
From the scientific perspective, the workshop was very useful, as it highlighted
current developments in the field and brought together participants with different
perspectives in lively interaction.

It must be said, however, that despite the excellent technical support from the
MFO, despite the strong efforts by organizers and participants to put up a varied
and interesting scientific programme and despite the very active participation, the
hybrid workshop could not match a real in-person in-situ Oberwolfach workshop.
Aside from irreplaceable personal encounters, it makes a tremendous difference
of whether a participant is in Oberwolfach, secluded from everyday life, concen-
trating in leisure (the Latin otium) on the workshop, on mathematical problems
and interaction with participants, or follows just some talks in yet another online
workshop amidst a heap of everyday duties.

Only four invitations have been canceled, all four by women, and in addition
one female online participant did not show up. It appears that the strains of
the pandemic are not gender-neutral, at least not among researchers in this field.
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As a consequence, there was only a reduced female participation by seven female
researchers at the workshop.
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Abstracts

Methods to compute optimal reparametrizations in shape analysis.

Elena Celledoni

(joint work with Jørgen Riseth and Alexander Schmeding)

Finding the optimal reparametrization in shape analysis of curves or surfaces is a
computationally demanding task. The problem can be phrased as an optimisation
problem on the infinite dimensional group of orientation preserving diffeomor-
phisms Diff+(Ω), where Ω is the domain where the curves or surfaces are defined.
In the case of curves, one robust approach to compute optimal reparametrizations
is based on dynamic programming [3], but this method seems difficult to generalize
to surfaces.

We consider here a method inspired by a “Riemannian” gradient descent ap-
proach which we illustrate in the case of curves. Suppose Ω = [0, 1] and consider
the space Imm([0, 1],Rn) of C∞ curves on Ω with nonvanishing derivative, de-
fine the corresponding shapes to be equivalence classes under the right action of
Diff+(Ω). Let

Q : Imm(I,Rn)→ C∞(I,Rn), c(·)→
√
‖ċ(·)‖ c(·)

denote the Q-transform, [2]. The distance between two shapes [c0] and [c1] is
obtained by first considering the Q-transform of the curves q0 = Q(c0) and q1 =
Q(c1) and then solving of the optimization problem

inf
ϕ∈Diff+([0,1])

E(ϕ), E(ϕ) := ‖q0 −
√
ϕ̇ q1 ◦ ϕ‖L2

,

[2]. Here the subscript L2 denotes L2-norm. This is an optimisation problem on
an infinite dimensional group, which we approximate by replacing Diff+(Ω) with
a finite dimensional space.

A gradient descent approach is obtained by representing the gradient gradE
in terms of an othonormal basis of TidDiff+(Ω) and projecting gradE on a finite
dimensional subspace. This approach is equivalent to the algorithm proposed in
[2]. We compute the approximation of the optimal reparametrization ϕ iteratively
by the following update rule:

ϕ(n+1) = ϕ(n) ◦


id− η

M∑

j=1

λjvj


 , n = 0, 1, . . .

with ϕ0 = id, where vj ∈ TidDiff+(Ω), {λj}Mj=1 are coefficients determined at each
iteration n, η is a scalar parameter optimised so to guarantee the invertibility of

ϕ(n+1), and
∑M

j=1 λjvj is the approximation of the gradient.
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Figure 1. Top a curve c2 (left) and the same curve with a dif-
ferent parametrization c1 = c2 ◦ ψ (right), in this experiment we
aim at reconstructing ψ. Center reconstruction of ψ by the gradi-
ent descent approach: left approximation of ψ, right convergence
history of the gradient descent iteration. Bottom reconstruction
of ψ by a multi-layer approach: left approximation of ψ, right
convergence history of the gradient descent iteration optimising
simultaneously for M basis elements and for the composition of
L diffeomorphisms.

To improve the performance of the method, we approximate the optimal re-
parametrisation by composing L diffeomorphisms of the form

(1) id +
M∑

j=1

λℓjvj , ℓ = 1, . . . , L,

where M and L are fixed, and we optimise simultaneously on all the parameters
{λℓj} for j = 1, . . .M and ℓ = 1, . . . , L. The comparison of the two algorithms
is reported in figure 1 for a simple test example. The algorithm is similar to a
deep neural network and its implementation has been carried out using PyTorch.
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The method is conceptually the same in the case of surfaces and the details and
preliminary experiments are reported in [4].

This algorithm is motivated by results in [1], about the controllability of the
group of diffeomorphisms, via the composition of a finite number of elementary
diffeomorphisms, each of them here represented with (1). For a compact manifold
Ω, any bracket generating family of vector fields on Ω, which is invariant under
multiplication by smooth functions, generates the connected component of the
identity of the group of diffeomorphisms of Ω, [1].
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Towards Lie–Butcher series for geodesic flows

Hans Munthe-Kaas

(joint work with Kurusch Ebrahimi-Fard, Dominique Manchon)

Summary. The talk presented at this meeting outlined new results on series de-
velopments similar to Butcher’s B-series for geodesic flows on manifolds equipped
with a general affine connection. This includes the Levi–Civita connection on
Riemannian metric spaces as a special case. The novel theory paths new ways
for analysing numerical integration schemes based on geodesic flows. We also see
possible applications in the study of rough paths on affine geometries, problems
in control theory as well as open questions in information geometry.

Background. The development and analysis of numerical Lie group integrators
[8] has motivated generalisations of Butcher’s celebrated B-series [1]. Lie–Butcher
series, combining B-series with Lie series on manifolds, were introduced and de-
veloped in a series of papers [13, 14] in the second half of the 1990s. A geometric
understanding of such series is based on affine connections. On the space XM
of vector fields on a manifold M, we denote the connection as a binary product,
f ⊲ g := ∇fg. In previous works [6, 9, 10, 11, 15], we have investigated particular
algebras of invariant connections, defined as connections where the curvature and
torsion tensors are constant (parallel), so that their covariant derivatives vanish,
i.e., ∇R = ∇T = 0.

In the case where R = T = 0, the connection defines a pre-Lie algebra [12],
i.e., an algebra (XM, ⊲) such that the associator is left symmetric, a⊲(f, g, h) =
a⊲(g, f, h), where a⊲(f, g, h) := f ⊲ (g ⊲ h)− (f ⊲ g) ⊲ h. The free pre-Lie algebra is
the algebra of non-planar rooted trees with grafting [2], yielding classical B-series.
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We remark that the algebra of torsion free connections with constant curvature
(∇R = 0, T = 0), called a Lie admissible triple algebra, will not be discussed here.

Flat connections with constant torsion (R = 0, ∇T = 0) yield post-Lie algebras,
(XM, ⊲, [ , ]). Here, [f, g] = −T (f, g) is a Lie bracket and the connection satisfy

f ⊲ [g, h] = [f ⊲ g, h] + [g, f ⊲ h]

[f, g] ⊲ h = a⊲(f, g, h)− a⊲(g, f, h).

See [3] and references in there. The free post-Lie algebra PL in one generator
is given in terms of the free Lie algebra over planar rooted trees with left graft-
ing, and the corresponding series are Lie–Butcher series. The enveloping algebra
U(PL) is a D-algebra, having two associative products; the ’frozen’ product · and
the Grossman-Larson (GL) product ∗. The so-called frozen exponential exp·(tf)
defines flow along geodesics, such as the action of a Lie group on a homoge-
neous space. The GL exponential exp∗(tf) defines the exact flow corresponding
to ẏ = f(y). The basic problem of numerical integration, to express exp∗(tf) in
terms of exp·(tf) is achieved by Runge–Kutta methods in the pre-Lie case and Lie
group integrators in the post-Lie case.

The geometric understanding of invariant connections on the tangent bundle
was developed by Nomizu [16]. A manifold with a tangent bundle connection
being flat and torsion free, R = T = 0, is locally a Euclidean space (abelian Lie
group). If the tangent bundle admits a flat, constant torsion connection with
∇T = 0 and R = 0, the manifold is locally a Lie group. And, if the connection
is torsion free with constant curvature (T = 0, ∇R = 0), the space is a locally
symmetric space.

A major goal has been to understand algebras of general connections. This goal
has eluded a systematic study, since the central algebraic structures of pre- and
post-Lie algebras rely on an extension of the binary product ⊲ to the enveloping
algebra U(XM) such that f ⊲ (g ⊲ h) = (f ∗ g) ⊲ h. This is only possible if R = 0.

Lie–Butcher series for general connections. A new insight in this work
bypasses the obstacle of extending the connection to the enveloping algebra in the
general case R 6= 0. Indeed, rather than lifting the connection to the enveloping
algebra, we extend it to the tensor algebra over XM. Let D = T (XM, ⊲), the
tensor algebra where the connection is extended to ⊲ : D ×D → D according to

f ⊲ (ω · ω̃) = (f ⊲ ω) · ω̃ + ω · (f ⊲ ω̃)
(f · ω) ⊲ ω̃ = f ⊲ (ω ⊲ ω̃)− (f ⊲ ω) ⊲ ω̃

for f ∈ XM and ω, ω̃ ∈ D. Here f · ω is the tensor product (concatenation),
which plays the role of the frozen product. D has a Hopf algebra structure with the
product · and the classical de-shuffle coproduct ∆

�

(α) =
∑
α(1)⊗α(2) (employing

Sweedler’s notation). The primitive elements of D

g = prim(D) = {α ∈ D | ∆
�

(α) = α⊗I+ I⊗α }
yield a post-Lie algebra such that U(g) = D. Hence, the algebraic machinery
developed in [4] can be employed also in this case. In particular we have the
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associative GL product ∗ : D×D→ D

α ∗ β =
∑

α(1) · (α(2) ⊲ β),

satisfying the desired identity

f ⊲ (g ⊲ h) = (f ∗ g) ⊲ h.
It should be noted that the products are defined on D, not on the enveloping
algebra U(XM). In particular the GL commutator [f, g]∗ = f ∗ g − g ∗ f on g

maps to the Jacobi bracket on XM only when R = 0.
Still, the basic properties of the exponential hold, exp·(tf) defines flow along

geodesics, and exp∗(tf) the exact flow, so we are able to employ the full machinery
of post-Lie algebras and Lie–Butcher series also for the study of geodesics of general
connections.

Interestingly, the geometry of the connection appears in the mapping down from
g ⊂ D to XM. Inspired from the series developments of the double exponential
in [7], we can prove a general result:

Theorem 0.1. [5] Any Lie polynomial in g maps down to a linear combination of
the torsion and curvature tensors, T respectively R, and their covariant derivatives
on the space XM of vector fields on a manifold M.

Thus Lie group integrators can be generalised to this setting, where commuta-
tors are computed in terms of the torsion and curvature tensors.
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Low regularity integrators for the Gross-Pitaevskii equation

Katharina Schratz

(joint work with Yvonne Bronsard Alama and Yvain Bruned)

A general low regularity framework for nonlinear evolution equations

(1) ∂tu− Lu = f(u, u) (t, x) ∈ R× Ω

was recently introduced in [5] given Ω ⊂ Rd and an initial condition

(2) u/t=0 = u0.

When ∂Ω 6= ∅ the problem shall be equipped with some appropriate homogeneous
boundary conditions. The main assumptions on (1) are the following. The linear
operator L is defined on a Hilbert space X of complex valued functions u ∈ C
with norm denoted by ‖ · ‖ and domain D(L). The complex conjugation u 7→ u is
assumed to be an isometry on X . When ∂Ω 6= ∅, the boundary conditions will be
encoded in the choice of the domain of the operator L. The operator L is defined
by Lu = Lu. In addition, it is assumed that the nonlinearity f is tensorized under
the form

f(v, w) = B (F (v) ·G(w)) , F, G : C→ CJ ,

where we use the notation X · Y =
∑

kXkYk, X, Y ∈ CJ , and B is a linear
operator. The main assumptions on L are the following

i) L generates a strongly continuous semigroup {etL}t≥0 of contractions on
X ;

ii) A = −L+ L generates a group {etA}t∈R of unitary operators on X;
iii) L and L commute: [L,L] = 0.

Under the above assumptions the first-order low regularity Duhamel integrator
for (1) takes the form

(3) uℓ+1 = eτL
(
uℓ + τB

(
F (uℓ) · ϕ1

(
τA
)
G(uℓ)

))
with ϕ1(z) =

ez − 1

z

and where we set u0 = u0. The new scheme (3) in general allows for convergence in
a more general setting (for rougher data) than classical methods, such as splitting
or exponential integrator methods.
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With the framework introduced in [5] we can deal in a unified framework with
parabolic, hyperbolic, dispersive as well as mixed equations. However, an impor-
tant class of equations is missing, namely equations with a potential (or noise).

We close this gap and propose a novel low regularity integrator for the Gross-
Pitaevskii (GP) equation

i∂tu(t, x) = −∆u(t, x) + V (x)u(t, x) + |u(t, x)|2u(t, x) (t, x) ∈ R× Ω

with non-smooth potential V (x). At first order our low regularity integrator for
GP will take the form

(4) un+1 = Φτ
GP(u

n) = eiτ∆
[
un − iτ

(
unϕ1(−iτ∆)V + (un)

2
ϕ1(−2iτ∆)un

) ]
.

In contrast to classical approximation techniques, such as splitting or exponential
integrator methods (see, e.g., [2, 3, 4]), the local error of the low regularity GP
integrator (4) will only require the boundedness of first instead of second order
spatial derivatives of the potential V and solution u.

Details on the construction and error analysis as well as higher order exten-
sions, following new techniques based on decorated trees series analysis inspired
by singular SPDEs (cf. [1]), will be given elsewhere.
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Learning effective models from multiscale data: filtering and
Bayesian inference

Assyr Abdulle

(joint work with Giacomo Garegnani, Grigorios A. Pavliotis, Andrew M. Stuart,
Andrea Zanoni)

1. Introduction

The problem of estimating a stochastic model from time series is important in
many disciplines (e.g., chemistry, atmosphere-ocean science [5], econometrics [3],
...). Classes of models used for such inference problems are often based on sto-
chastic differential equations (SDE) of the form

dXt = f(Xt) dt+ g(Xt) dWt.
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Inferring the drift f(x) vector and the diffusion tensor σ(x) = g(x)g(x)T from
time series is in general challenging. A major issue for such problems is that of
model misspecification, when the data is not consistent with the chosen class of
models. In this report we describe a new approach to learn coarse grained-models
(dynamics at slow time scales) from multiscale data, based on filtering techniques.
We show that robust parameter estimation can be derived and that for a class
of fast/slow SDEs the theory of homogenization enables a rigorous study of the
inference problem.

2. Fast slow SDEs and homogenization

We assume that the given data arise from the following class of overdamped mul-
tiscale Langevin SDEs

(1) dXε
t = −α · V ′(Xε

t ) dt−
1

ε
p′
(
Xε

t

ε

)
dt+

√
2σ dWt,

that model the motion of particles in a confining potential which has slow vari-
ations V (x) with rapid oscillations superimposed p(x/ε). Here ε > 0 represents
a characteristic size of the small scales in the problem and Wt is a standard one-
dimensional Brownian motion. For the rest of the paper we will assume that the
fast scale is periodic. We also will assume that σ > 0, α ∈ RN , V : R → RN ,
V (x) = (V1(x), V2(x), . . . , VN (x))⊤, p : R → R, L-periodic, with p, Vi ∈ C∞(R).
For the slow scale potential we further assume that its components Vi and V

′

i

are polynomially bounded, that V ′ is Lipschitz continuous and that there exist
a, b > 0 such that −a+ bx2 ≤ α · V ′(x)x.

Coarse-grained models. The class of models to be fitted to multiscale data are
the following “homogenized models”

(2) dXt = −A · V ′(Xt) dt+
√
2ΣdWt.

Under the assumptions above it is possible to show, via homogenization theory,
that Xε

t → Xt in law for ε→ 0 [4, Chapter 3]. As mentioned in the introduction,
the goal is then to infer the drift coefficient A and the diffusion coefficients Σ from
the multiscale data Xε = (Xε

t , 0 ≤ t ≤ T ).

3. Parameter inference, maximum likelihood estimator.

A classical way to approximate effective drift coefficients A from the coarse-grained
observations X (2) is via path-space likelihood expressing the probability of a

model X given a drift coefficient Ã

(3) L(X | Ã) = exp

(
−I(X | Ã)

2Σ

)
.
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Maximizing the functional L(X | Ã) with respect to Ã gives the maximum likeli-

hood estimator (MLE) Â(X,T ) of A defined by

(4) arg min
Ã∈RN

I(X | Ã) = −
(∫ T

0

V ′(Xt)⊗ V ′(Xt) dt

)−1 ∫ T

0

V ′(Xt) dXt.

The above procedure is well understood. Our goal is however different: estimate
A ∈ RN from the multiscale observations Xε = (Xε

t , 0 ≤ t ≤ T ). As Xε
t → Xt for

ε → 0 it seems reasonable to define Â(Xε, T ) for the MLE of A with multiscale
data. But this turn out to be a wrong approach, indeed, under the assumptions
of Section 2 this approach is shown to be biased [8, Thm. 3.4]

(5) lim
ε→0

lim
T→∞

Â(Xε, T ) = α.

Parameter inference based on subsampling. The following MLE is intro-
duced in [8] (written here for N = 1 for simplicity) based on subsampling the data
with step δ

(6) Âδ(X
ε, T ) = −

∑M−1
i=0 V ′(Xε

iδ)
(
Xε

(i+1)δ −Xε
iδ

)

δ
∑M−1

i=0 V ′(Xε
iδ)

2
, Mδ = T.

It is shown in [8], again under the assumptions of Section 2, that (6) is an asymp-
totically unbiased estimator of A in the limit for ε→ 0: if δ = εζ , 0 < ζ < 1 and
M = ⌈ε−γ⌉ with γ > ζ, then

(7) lim
ε→0

Âδ(X
ε, T ) = A, in probability.

One of the main drawbacks of this approach is its lack of robustness. Indeed for
a given T and ε the error depends on the choice of ζ, and it is unknown how to
quantify its optimal value (see Figure 1 and [1, Section 5.1.2]). We note that other
approaches based on martingale property [7], operator eigenpairs [6] have been
developed (we refer to [1] for a more comprehensive literature overview).

Parameter inference based on filtering. We note that subsampling data is
a “smoothing” process, so why not directly smoothing the data ? We therefore
introduce a filtered process

(8) Zε
t =

∫ t

0

k(t− s)Xε
s ds,

where the filter k(r) is given by

(9) k(r) = Cβδ
−1/βe−

rβ

δ , Cβ = β Γ(1/β)−1, δ, β > 0.

For the rest of the paper we assume δ > 0, β = 1. In this case the filter has the
simple expression k(r) = 1

δ e
− r

δ and we can derive a coupled system of SDEs

dXε
t = −α · V ′(Xε

t ) dt−
1

ε
p′
(
Xε

t

ε

)
dt+

√
2σ dWt,

dZε
t =

1

δ
(Xε

t − Zε
t ) dt.
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It can then be shown that (Xε
t , Z

ε
t )

⊤ is geometrically ergodic with smooth invariant
density µε(dx, dz) = ρε(x, z) dxdz that is the solution of an explicit Fokker Planck
equation. We then define the filtered MLE by

(10) Âk(X
ε, T ) = −

(∫ T

0

V ′(Zε
t )⊗ V ′(Xε

t ) dt

)−1 ∫ T

0

V ′(Zε
t ) dX

ε
t .

We note (see [1] for a comprehensive explanation)

• Âk(X
ε, T ) is well defined if det

(∫ T

0
V ′(Zε

t )⊗ V ′(Xε
t ) dt

)
6= 0;

• it is essential to keep dXε
t and V ′(Xε

t ) to prove unbiasedness;

• Âk(X
ε, T ) has to be thought as a perturbation of Â(Xε, T ) at the level of

the estimator (i.e., after the maximization process of MLE);

• Ãk(X
ε, T ) = −

(∫ T

0
V ′(Xε

t )⊗ V ′(Xε
t ) dt

)−1 ∫ T

0
V ′(Zε

t ) dX
ε
t is also a valid

estimator in the non-homogenized regime (when δ depends on ε).

For this estimator, under the assumptions of Section 2, we can prove [1]

Theorem 3.1 (homogenization regime). If δ is independent of ε

lim
ε→0

lim
T→∞

Âk(X
ε, T ) = A, a.s.

Theorem 3.2 (multiscale regime). If δ = εζ , ζ ∈ (0, 2)

lim
ε→0

lim
T→∞

Âk(X
ε, T ) = A, in probability.

The value ζ = 2 is critical, indeed

Theorem 3.3 (switch to biasedness). If δ = εζ , ζ > 2

lim
ε→0

lim
T→∞

Âk(X
ε, T ) = α, in probability.

For the diffusion coefficient, the estimator Σ̂k(X
ε, T ) := 1

δT

∫ T

0 (Xε
t − Zε

t )
2
dt,

for Σ based on filtering can be employed and proved to be unbiased.

Discussion. MLE based on filtering are robust in practice with respect to the pa-
rameter of the filter in contrast to estimators based on subsampling (see e.g. Figure
1, where the subsampling size is not optimal, but hard to find for this example).
The MLE based on filtering has also been extended to the Bayesian setting to allow
for a probability distribution for the effective drift A and uncertainty quantifica-
tion. Finally, we note that in many applications only discrete measurements of the
diffusion process are available. Recently, using the filtering approach developed
in this paper and martingale estimating functions a new estimator for learning
homogenised SDEs from noisy discrete data has been introduced [2].
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Figure 1. Multi-dimensional problem N = 4, Vi(x) = Ti(x) i-th
Chebyshev polynomials, pǫ(x) = cos(x/ǫ), α = (−1,−1/2, 1, 1/2),
ε = 0.05, T = 103, subsampling δ = ε2/3, taken from [1].
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Constraint-based regularization of neural networks

Benedict Leimkuhler

(joint work with Timotheé Pouchon, Amos Storkey, Tiffany Vlaar)

View a neural network as defining a map x ∈ Rm, θ ∈ Rd 7→ Φ(θ, x) ∈ Rn and
suppose that the goal is to use this form to characterize an unknown abstract
functional relationship f : Rm → Rn. To this end, one selects a training data set
D–a set of input-output pairs (xα ∈ Rm, yα = f(xα) ∈ Rn)–and trains the model
to represent this data, i.e., so that yα ≈ Φ(θ, xα). Neural network training can be
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viewed as solving an optimization problem:

θ = argminθL(θ,D),

where L(θ,D) is a loss function which quantifies the defect in the neural network
input-output relationship for the given training data D. There are often so many
parameters compared to the data that it is possible to train the network (find
parameters) so that on the training data set yα ≡ Φ(θ, xα), i.e to zero loss. In
fact there are likely to be many choices of parameters for which this relationship is
exact or very accurate for all training data. The challenge is then to identify the
parameters so that the learned functional relationship generalizes to a large family
of unseen (“test”) data; this is precisely why the choice of training procedure is
important.

This formulation is ill-posed until we explain what we mean by “generalizes”
and describe carefully the training data set. If all our training data lies on a low-
dimensional submanifold, that is xα ∈ M where dimM < m. Then it should be
clear that we cannot hope to represent the functional relationship for data points
far fromM . One way to proceed is to assume that there exists an underlying data
distribution ̺ (for example, the distribution of all handwritten digits represented
by 28× 28 grayscale pixel arrays, as in the MNIST data set) and that the training
data is a representative sampling of ̺. Once this is assumed the goal becomes that
of representing other unseen samples drawn from ̺. Alternatively, one may avoid
issues of explicitly characterizing the dataset and adopt a “Bayesian perspective”
by describing the posterior parameter distribution as the product of a prior π0 and
a likelihood function π((x, y)|θ) (based on the neural network model); this is the
approach we have taken in our work. Bayes’ formula gives

π(θ|D) ∝ π0(θ)
|D|∏

α=1

π((xα, yα)|θ).

In typical practice the training is associated to maximizing π (i.e. finding its
modes), which can be seen to be equivalent to minimizing the loss function L
defined by L(θ,D) ≡ − lnπ(θ|D).

Neural networks have discontinuous derivatives, something which limits and
complicates analysis. Despite this, neural networks are typically trained using a
gradient descent procedure. Due to the large data sets involved, the full gradient
is replaced by an approximation. If G(θ) ≡ ∇θL(θ,D), then we replace this by

G̃ ≈ G, typically defined by restricting the gradient loss calculation via stochastic
subsampling of the training data, and take Euler steps on the flow

dθ

dt
= −G̃.

This method is surprisingly effective, due probably the restriction to certain func-
tional forms in defining the nodes of the network: neural networks are normally
Lipschitz continuous and have piecewise smooth derivatives. Since neural network
training is not just optimization, but optimization which “generalizes well”, one
may choose modified forms of the loss function (or perturbations thereof) in order
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to enhance the latter property. These modifications are often described broadly
as “regularization”. Good neural network training relies on finding both a good
neural network model and also a suitable regularization in order to drive the op-
timizer towards highly generalizable optima, that is ones that give an accurate
representation of the function f on unseen (but in some sense nearby) data to
that used in training. Examples of regularizations include: weight decay (adding
an L2 penalty term in the weights to the loss function), batch normalization and
other renormalization schemes (which rescale and/or shift the parameters in each
layer of a neural network), dropout and weight thinning (which introduce a sto-
chastic sparsification of the network), and early stopping (whereby the training is
automatically interrupted before the optimum is reached).

Since some neural network training procedures can be viewed as either intro-
ducing a normalizing step or penalty term it is natural to consider removing these
in favor of introducing constraints, for example changing the stochastic gradient
descent dynamics to

θ̇ = −G̃(θ)− h′(θ)T λ,(1)

0 = h(θ).(2)

Note that the form here masks some complexity since the stochastic gradient that
appears here does not have a trivial expression in terms of Gaussian noise pertur-
bation of the true gradient (the stochastic gradient noise is spatially anisotropic).
The constraints can be designed in such a way as to limit the Lipschitz bound for
the neural network model.

In our work we have been exploring alternative approaches to neural network
training which further replace the stochastic gradient descent method itself by a
discretized stochastic differential equation which incorporates small additive noise
in all directions (overdamped Langevin dynamics) as in the stochastic gradient
Langevin dynamics method of Welling and Teh [4], in all force components (un-
derdamped Langevin dynamics), or using a thermostat control like those popular
in molecular dynamics (e.g. Nosé-Hoover/Adaptive Langevin as in [5]). This can
be shown to have a regularizing effect on the model parameterization [1] (Figs. 1
and 2). It also helps to overcome barriers in the loss landscape that may limit ex-
ploration at early stages. (Although it is likely true that in the heavily overparame-
terized regime the barriers diminish and one gradually convexifies the problem–see
e.g. [2] for a theoretical discussion in a simplified setting—some problems can be
handled well short of this heavily overparameterized regime with consequent ben-
efits due to smaller weight spaces, tightly wound spiral data for example–see the
figures).

The framework of additive noise coupled with stochastic gradient descent re-
places the constrained system (1)-(2) by a system of constrained SDEs [3]. The
properties of these SDEs are a little difficult to study due to the stochastic gradient
terms, but we can study them in the limit of an accurate gradient to explore their
diffusive (hypocoercive/hypoelliptic) properties. In recent years, we have made
significant strides in the area of numerical methods for such SDEs which allow
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Figure 1. Illustrations. Left: (unpublished) tightly wound spi-
ral data treated using a single hidden layer perceptron with 500
hidden nodes (far below the overparameterized limit). Colored
domains represent classification regions generated by the neural
network. Training was performed to 97% test accuracy using a
constrained variant of the AdLaLa method of [1] with large inter-
val (circle) constraints on the output weights (radius = 80) and
much milder interval constraints on input weights (radius =1) and
biases (radius=2). Right: results for the “fashion MNIST” train-
ing dataset for classification consisting of labelled raster images
of clothing items shows clear signs of overfitting in an uncon-
strained SGD scheme (not mitigated by weight decay) whereas
our underdamped Langevin algorithm with constraints (c-CoLA-
ud) demonstrates monotonicity in the loss curve–details in [3].

the calculation of reliable long term (equilibrium) averages by looking at both un-
constrained and constrained SDEs and their discretization by splitting methods,
see e.g. [6, 7]. As an illustration of the potential benefits of using additive noise
in conjunction with constraints, see Fig 2 where we applied stochastic gradient
Langevin dynamics (SGLD) with constraints to spiral data classification with sig-
nificant improvement on SGD with constraints. We are currently exploring the use
of such SDEs and discretization schemes in connection with constraint manifolds
that are designed to provide relatively simple but effective control of the weights
during training. An elementary (but useful) example is interval constraints of
the form |θi| ≤ θ̄ which can be introduced elegantly by adding a slack variable
ξi and the constraint θ2i + ξ2i = θ̄2. We have also examined more complicated
constraints, for example orthogonality constraints WT

i Wi = I based on weight
matrices Wi which appear naturally at the ith layer of a deep network. In some
cases these constraints can dramatically improve the generalization performance of
neural networks. We are currently improving these algorithms and studying their
application in a wide range of settings, including for problems in image analysis
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Figure 2. The figure shows the test loss curve at left and the
test accuracy on the right for spiral data classification using sev-
eral different algorithms to train a two-layer perceptron, includ-
ing methods that incorporate additive noise (SGLD, see [4] and
its constrained variant C-SGLD). C-SGLD also significantly im-
proves on the use of “weight-decay” (WD). See [3] for more detail.

(fashion MNIST, CIFAR-10), discrete datasets (e.g. Chess endgames and poker
hand classification), molecular structure analysis and natural language processing.
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Recent advances in structure preserving dynamical
low-rank algorithms

Lukas Einkemmer

(joint work with Ilon Joseph, Jingwei Hu, Lexing Ying, Christian Lubich)

Kinetic equations are used extensively in a range of applications from plasma
physics to radiative heat transfer. However, because they are formulated in an up
to six-dimensional phase space their numerical solution is extremely challenging.
A direct discretization suffers from the fact that the required degrees of freedom
scale as O(n6), where n is the number of grid points in each direction. This is
called the curse of dimensionality. While many improvements, both in designing
better numerical methods and implementing them efficiently on modern computer
hardware (see, e.g., [17, 6, 4, 1, 12]) have been made, this remains a fundamental
limitation for the widespread use of kinetic simulations.

Complexity reduction techniques offer the possibility to significantly reduce
this computational burden. However, for kinetic equations many classic methods
(such as sparse grids) have only met with limited success [14]. Because of this,
particle/Monte Carlo methods are still widely used. However, this approach suffers
from numerical noise that only decreases slowly as the number of particles are
increased and are not able to resolve regions of phase space with low density.

Recently, dynamical low-rank algorithms based on a projector splitting ap-
proach have been identified as an extremely promising complexity reduction tech-
nique for kinetic problems. In the simplest case, this takes the form of a singular
value decomposition (SVD). The dynamical low-rank approach, which we consider
here, formulates the equations of motions in terms of the low-rank factors. The
low-rank factors are lower dimensional functions that only depend on a subset of
the phase space variables.

For example, for the Vlasov equation, a typical kinetic problem,

∂tf(t, x, v) + v · ∇xf(t, x, v)− E(t, x) · ∇vf(t, x, v) = 0

a dynamical low-rank approximation employs Xi(t, x), which depend only on the
physical space variables x, and Vj(t, v), which depend only on velocity space vari-
ables v. A numerical solution is then sought in the following form

f(t, x, v) ≈
r∑

i=1

r∑

j=1

Xi(t, x)Sij(t)Vj(t, v),

where r is the rank of the approximation and we note that S(t) ∈ Rr×r does
neither depend on physical space nor on velocity space variables. A set of partial
differential equations is then derived that describe the dynamics of the low-rank
factors constrained to the approximation space (a manifold of low-rank functions
with rank r). That is, we obtain partial differential equations for the low-rank
factors Xi, Vi, and Sij . The main computational saving is due to the fact that
these functions are (at most) three dimensional. We also mention that robust
integrators for the resulting equations have been proposed [16, 15, 2].
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It has been demonstrated that such dynamical low-rank approximations can be
very effective for kinetic equations [9, 7, 19]. Both for problems in plasma physics
as well as for transport problems/radiative transfer. Recently, some advances have
been made to understand why and in which situations low-rank approximations
are particularly effective. In this context we mention that the solution of the
linearized Vlasov equation is low-rank [11] and that, in many case, diffusive and
fluid limits of collisional kinetic problems have a low-rank structure that can be
captured by well designed numerical methods [3, 5, 7].

Nevertheless, a well known property of the low-rank approach, particularly
relevant to the present workshop, is that it destroys the physical structure of
the underlying equation. In the context of kinetic equations this means, e.g.,
that mass, momentum, and energy are no longer conserved if a classic low-rank
approximation is applied. This situation is in stark contrast to direct solvers or
particle methods, where usually at least mass and momentum are conserved up to
machine precision.

While some proposed remedies, such as [10, 19, 18], can alleviate this issue
to some extend, until very recently there has not been a low-rank approximation
that for nonlinear problems naturally conserves the invariants of the solution. The
key insight to achieve this is to recognize that if certain fixed basis functions are
appended to the approximation space then conservation of mass, momentum, and
energy can be achieved. However, in the analytical formulation neither of these
functions belong to the usually used L2 space. This is remedied by using a suitably
modified function space. The approach requires the derivation of new evolution
equations for the low-rank factors. To be more precise, the test functions in the
variational problem have to be chosen in such a way as to be compatible with the
fixed basis functions and modified function spaces. This approach yields a mass,
momentum, and energy conservative dynamical low-rank scheme which can then
be combined with appropriate conservative time and space discretizations. It also
exactly satisfies the underlying conservation laws that give rise to these invariants.
In the PDE setting this is even more important for accurate and stable long time
integration than just conserving the invariants. For more information we refer the
reader to [8].

Another setting in which dynamical low-rank approximations play an important
role are kinetic systems that are close to either the diffusive or fluid limit [13]. For
many problems such as linear transport or the Boltzmann equation in the weakly
compressible regime, the corresponding limit is low-rank and, as has been shown
in the literature, asymptotic preserving schemes can be constructed that preserve
this structure numerically [3, 5, 7]. In this situation dynamical low-rank algorithms
are particularly effective because it is known that the solution can be represented
with a small rank.

However, until very recently the arguably most interesting case, namely the
Navier–Stokes limit of the Boltzmann equation, could not be treated in that way.
The reason for this is that the limit, given by a Maxwellian, is not low-rank. In
[8] this problem has been solved by performing the low-rank approximation in



966 Oberwolfach Report 17/2021

a very particular form. More specifically, a multiplicative deviation g from the
equilibrium M is introduced. The density function is then written as f = Mg,
where the low-rank approximation is only applied to g. The difficulty in that
approach is that certain integrals required for the dynamical low-rank algorithm
can not be easily separated into x and v dependent components. To avoid this
problem, the integrals are written as convolutions and FFT based techniques are
used to efficiently evaluate them. This results in a numerical scheme that is rank
1 in the limit of large collisionality and exactly captures the fluid limits described
by the Navier–Stokes/Euler equations.
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Geometric Integration of Degenerate Lagrangian Systems

Michael Kraus

The Geometric Numerical Integration literature describes numerous structure-
preserving algorithms for canonical Hamiltonian and regular Lagrangian systems.
Noncanonical Hamiltonian and degenerate Lagrangian systems, on the other hand,
are rarely discussed. Such systems play an important role in reduced charged
particle dynamics like the guiding centre model, population dynamics like the
Lotka–Volterra model, or nonlinear oscillators. The following is a short overview
of the issues that arise when discretising such systems and a discussion of possible
strategies for their structure-preserving integration.

The most general form of the dynamical equations of a Hamiltonian system,
also referred to as Poisson system, with state vector q ∈ Rm is

q̇ = P(q)∇H(q).(1)

Here, P(q) is an anti-symmetric matrix, possibly degenerate, satisfying

m∑

l=1

[
∂P ij(q)

∂ql
P lk(q) +

∂Pjk(q)

∂ql
P li(q) +

∂Pki(q)

∂ql
P lj(q)

]
= 0 for 1 ≤ i, j, k ≤ m.

In the following, we are concerned with a special case of such systems, namely
noncanonical symplectic systems. In that case P(q) is even-dimensional (m = 2d),
non-degenerate and thus invertible, so that we can write

P(q) = Ω−1(q),(2)

with Ω a noncanonical symplectic form whose components are in general nonlinear
functions of the state variables q. If Ω is constant and takes the values

Ωc =

(
0 −1
1 0

)
,

the system is said to be of canonical symplectic form.
Noncanonical symplectic systems are tightly linked to a special class of degen-

erate Lagrangian systems whose Lagrangian is linear in velocities and given by

L(q, q̇) = ϑ(q) · q̇ −H(q).(3)

The corresponding Euler–Lagrange equations,

∂L

∂q
(q, q̇)− d

dt

(
∂L

∂q̇
(q, q̇)

)
= 0,(4)

are equivalent to (1) in the case of (2). Here, the symplectic potential ϑ is a general,
possibly nonlinear function R2d → R2d, such that Ω = dϑ, with d denoting the
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exterior derivative. Note that by mild abuse of notation we do not distinguish
between differential forms ϑ and Ω and their components in some local basis.

This connection suggests that variational integrators [2] should provide suitable
means for the construction of structure-preserving integrators for noncanonical
symplectic systems. Let us denote the discrete trajectory by qd = {qn}Nn=0. A dis-
crete Lagrangian is constructed as a function of two consecutive points (qn, qn+1)
along that trajectory, by approximating the continuous Lagrangian L via finite dif-
ference, Runge–Kutta or other suitable methods. For example, a simple midpoint
approximation is given by

Ld(qn, qn+1) = hL

(
qn + qn+1

2
,
qn+1 − qn

h

)
.(5)

In a similar fashion as in the continuous case, Hamilton’s principle of stationary
action leads to the discrete Euler–Lagrange equations,

D2Ld(qn−1, qn) +D1Ld(qn, qn+1) = 0 for all n,(6)

where Di denotes thederivative w.r.t. the i-th argument. In the specific case
of degenerate Lagrangians, for which the continuous Euler–Lagrange equations
are first-order differential equations, the discrete Euler–Lagrange equations con-
stitute a multi-step method. This implies that these integrators are susceptible to
parasitic modes and require two sets of initial data even though the continuous
Euler–Lagrange equations are of first order.

A remedy for the initialisation issue can be found by using the discrete fibre
derivative to rewrite the discrete Euler–Lagrange equations (6) in the so-called
position-momentum (PM) form

(7)
pn = −D1Ld(qn, qn+1),

pn+1 = D2Ld(qn, qn+1).

Given (qn, pn), this system can be solved for (qn+1, pn+1) if the discrete Lagrangian
Ld is non-degenerate, i.e.,

det

∣∣∣∣∣
∂2Ld

∂qin ∂q
j
n+1

∣∣∣∣∣ 6= 0.

Interestingly, most discrete Lagrangians like (5) are non-degenerate even if the
corresponding continuous Lagrangian L is degenerate. With the PM-form (7), the
continuous fibre derivative can be used to obtain a second initial condition p0 as
function of q0,

p0 =
∂L

∂q̇
(q0) = ϑ(q0).

While this solves the initialisation problem, it does not solve the problem of par-
asitic modes. Nonetheless, the PM-formulation provides an interesting geometric
picture of the parasitic modes developing in solutions of the variational integra-
tor. Introducing the PM-form implicitly amounted to rewriting the equations of
motion as an index-two differential-algebraic system,

(8) ż = Ω−1
c

(
∇H(z) +∇φT (z) v

)
, 0 = φ(z) = p− ϑ(q), z = (q, p).
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The problem that arises, is that the variational integrator does not preserve the
constraint φ(z) = 0, so that the numerical solution drifts away from the constraint
submanifold, i.e., pn 6= ϑ(qn) for n ≥ 1, even though p0 = ϑ(q0).

This can be remedied by combining the PM-form (7) with projection meth-
ods [3]. In particular, symmetric projection methods [1] show very good long-
time stability and energy conservation properties, although the resulting projected
variational integrators are usually not symplectic. In a similar but more general
fashion, applying the SPARK methodology [6] to (8) leads to a large variety of
integrators, many of which exhibit good properties although not being symplectic.

For certain degenerate Lagrangians, it is also possible to construct symplectic
Runge–Kutta methods as well as one-step variational integrators. This applies to
Lagrangians (3) with q ∈ R2d and ϑ such that d of its components vanish,

ϑµ = 0 for µ = d+ 1, ... , 2d.

It was already pointed out that, although the continuous Lagrangian is degen-
erate, the corresponding discrete Lagrangians typically are not. Thus a decisive
structural property of the continuous system is lost in discretisation: it’s degen-
eracy. When the degeneracy is retained in the discrete Lagrangian, the discrete
Euler–Lagrange equations (6) constitute one-step methods referred to as Degener-
ate Variational Integrators (DVIs) [4, 5]. For simplicity, consider the Lagrangian

L(q1, q2, q̇1, q̇2) = ϑ1(q
1, q2) · q̇1 −H(q1, q2),

which is discretised as

Ld(q
1
n, q

2
n, q

1
n+1, q

2
n+1) = h

[
ϑ1(q

1
n, q

2
n) ·

q1n+1 − q1n
h

−H(q1n, q
2
n)

]
.

The discrete Euler–Lagrange equations (6) can be written as

ϑ1(q
1
n, q

2
n) = ϑ1(q

1
n−1, q

2
n−1) + h∇1ϑ1(q

1
n, q

2
n) · v1n

− h∇1H(q1n, q
2
n), for n = 1, ..., N − 1,

v1n =
(
∇2ϑ1(q

1
n, q

2
n)
)−1∇2H(q1n, q

2
n), for n = 0, ..., N − 1,

q1n+1 = q1n + hv1n, for n = 0, ..., N − 1.

Note that this system is underdetermined, as it lacks equations that determine x2N .
Motivated by the discrete symplecticity condition following from the boundary
values in the action principle [2], the system is closed by adding the equations

ϑ1(q
1
N , q

2
N ) = ϑ1(q

1
N−1, q

2
N−1) + h∇1ϑ1(q

1
N , q

2
N ) · v1N − h∇1H(q1N , q

2
N ),

v1N =
(
∇2ϑ1(q

1
N , q

2
N )
)−1∇2H(q1N , q

2
N ).

With this closure, the full set of discrete Euler–Lagrange equations preserves the
discrete symplectic form Ωd = dϑd with potential

ϑd(q
1, q2) =

[
ϑ1(q

1, q2)− h∇1ϑ1(q
1, q2) · v1 + h∇1H(q1, q2)

]
dq1.

The DVI thus obtained is of first-order [4]. While second-order generalisations also
exist [5], higher-order DVIs are currently not known. Moreover this approach is
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limited to the aforementioned special form of the degenerate Lagrangian and thus
not always applicable. This and the previous discussion raise several questions:

(1) Can DVIs be generalised to arbitrary order, using e.g. Galerkin or Runge–
Kutta discretisations of the Lagrangian?

(2) Can DVIs [4, 5] and symplectic Runge–Kutta methods [7] be obtained for
general degenerate Lagrangians of the form (3), without assuming that
any of the components of the symplectic potential ϑ vanish?

(3) Do symplectic Runge–Kutta methods [7] follow from a discrete variational
principle?

Addressing these questions is of great practical relevance as geometric integrators
for degenerate Lagrangian systems and in particular for the guiding centre model
are much-needed in application fields such as astro and fusion plasma physics.
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Majorants series for the N-body problem

Philippe Chartier

(joint work with M. Antoñana and A. Murua)

This talk is concerned with the solution of the N -body problem: considering N
masses mi, i = 1, . . . , N , moving in a three-dimensional space under the influence
of gravitational forces, Newton’s law describe the evolution of their positions qi
and velocities vi for i = 1, . . . , N through the equations

(1) mi
d2qi
dt2

=
∑

j 6=i

Gmimj

‖qj − qi‖3
(qj − qi),

where G is the gravitational constant and ‖qj − qi‖ is the distance between qi and
qj in the euclidean norm of R3.

The N -body equations are of great importance in physics and celestial mechan-
ics in particular and the question of representing its solution in the form of a
convergent series has been a long-standing problem. For an introduction on the
historical and practical aspects of the subject, we refer to [1]. To make a long
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story short, let us just recall that the problem was solved for N = 3 by Karl
Fritiof Sundman [2] and Qiu-Dong Wang for the N ≥ 3-case [6] in the 1990s.

As an intermediate step to obtain a representation of each solution of (1) in
terms of a series expansion convergent for all t in its maximal interval of existence,
both authors rewrite the N -body equations (1) in terms of a new independent
variable τ related to the physical time t by

dτ

dt
= s(q(t))−1, τ(0) = 0,

for an appropriate time-renormalization function s(q) depending on the positions
q = (q1, . . . , qN ). In [1], we proposed new time-renormalization functions for the
purpose of simulating the N -body problem with constant stepsizes without degrad-
ing the accuracy of the computed trajectories. In contrast with previously known
functions [2, 6], ours depend not only on positions but also on velocities (up to
our knowledge, for the first time). Noticeably, these global time-renormalizations
were shown to be uniform in the sense that the solution of the time-renormalized
equations in the fictitious time τ can be extended analytically to the strip

{τ ∈ C : |Im(τ)| ≤ β}

for some β > 0 independent of the initial conditions (q0, v0) ∈ R6N (provided that
q0i 6= q0j for all i 6= j) and the masses mi, 1 ≤ i ≤ N .

Our main contribution is to explicitly construct majorants for the expansions
of the solution of the N -body problem as a series in powers of either t or τ . We
furthermore construct majorants for the expansion of discrete solutions of the
time-renormalized equations in series of powers of the step-size τ .

Generally speaking, a power series f =
∑

k≥0 fk t
k ∈ Rn[[t]] is said to bemajored

by f̄ =
∑

k≥0 f̄k t
k ∈ R+[[t]] if, for all k ∈ N,

‖fk‖ ≤ f̄k

where ‖ · ‖ is the euclidean norm in Rn and we then write

f ✂ f̄ .

The application of the technique of majorant equations goes back to the proof of
Cauchy-Kovalevskaya theorem [5] (see also [4] for a specific application to ordinary
differential equations) and has several advantages in our context:

• it allows for an easy estimate of the radius of convergence of the series f ;
• simple rules on majorant series apply to the usual operations on power
series, such as addition, multiplication, derivation and integration;
• when used for the time-renormalized N -body equations, it leads to im-
proved estimates of the value of β;
• it can be used to analyze numerical discretizations of the time-renormalized
equations, and in particular, to obtain bounds for their local errors.
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Fractalization and quantization in linear and nonlinear dispersive
partial differential equations and Fermi-Pasta-Ulam-Tsingou lattices

Peter J. Olver

The evolution, through spatially periodic linear dispersion, of rough initial data
produces fractal, non-differentiable profiles at irrational times and, for asymptot-
ically polynomial large wave dispersion relations, quantized structures at rational
times. Such phenomena have been observed in models that arise in fluid mechan-
ics, optics, and quantum mechanics, including integrable equations such as the
Korteweg–deVries, nonlinear Schrödinger equation, and Benjamin–Ono equations,
and their non-integrable counterparts with higher degree nonlinearities. Rami-
fications and recent progress on the analysis and numerics of these remarkable
phenomena were presented.

The second part of the talk concentrated on new results on the dispersive
fractalization and quantization of solutions to periodic linear Fermi–Pasta–Ulam–
Tsingou systems, which produce integrable partial differential equation models in
the continuum limit. For nonlinear periodic FPUT systems, our numerical results
suggest a somewhat similar behavior in the presence of small nonlinearities, which
disappears as the nonlinear force increases in magnitude. However, even with the
high-order splitting methods we employed, these numerical investigations are so
far limited to nonlinear FPUT chains with a smaller number of masses than would
be needed to resolve the issue unambiguously.
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Variational Structures in Cochain Projection Based Variational
Discretizations of Lagrangian PDEs

Melvin Leok

(joint work with Brian Tran)

Compatible discretizations, such as finite element exterior calculus, provide a dis-
cretization framework that respect the cohomological structure of the de Rham
complex, which can be used to systematically construct stable mixed finite el-
ement methods. Multisymplectic variational integrators are a class of geometric
numerical integrators for Lagrangian and Hamiltonian field theories, and they yield
methods that preserve the multisymplectic structure and momentum-conservation
properties of the continuous system. We investigate the synthesis of these two ap-
proaches, by constructing discretization of the variational principle for Lagrangian
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field theories utilizing structure-preserving finite element projections. In our in-
vestigation, compatible discretization by cochain projections plays a pivotal role
in the preservation of the variational structure at the discrete level, allowing the
discrete variational structure to essentially be the restriction of the continuum
variational structure to a finite-dimensional subspace. The preservation of the
variational structure at the discrete level will allow us to construct a discrete Car-
tan form, which encodes the variational structure of the discrete theory, and sub-
sequently, we utilize the discrete Cartan form to naturally state discrete analogues
of Noether’s theorem and multisymplecticity, which generalize those introduced
in the discrete Lagrangian variational framework by Marsden et al. [6]. We study
both covariant spacetime discretization and canonical spatial semi-discretization,
and subsequently relate the two in the case of spacetime tensor product finite
element spaces.

The problem of structure-preservation in numerical discretizations of partial
differential equations has primarily been studied in two disjoint stages, the first
involving the semidiscretization of the spatial degrees of freedom, and the second
having to do with the time-integration of the resulting coupled system of ordinary
differential equations. Implicit in such an approach is the use of tensor prod-
uct meshes in spacetime. In the context of spatial semidiscretization, the notion
of structure-preservation is focused on compatible discretizations, that preserve
in some manner the functional and geometric relationships between the different
function spaces that arise in the partial differential equation, and in the context
of time-integration, geometric numerical integrators aim to preserve geometric
invariants like the symplectic or Poisson structure, energy, momentum, and the
nonlinear manifold structure of the configuration spaces, like its Lie group, homo-
geneous space, or Riemannian structure.

Lagrangian partial differential equations are an important class of partial differ-
ential equations that exhibit geometric structure that can benefit from numerical
discretizations that preserve such structure. This can either be viewed as an
infinite-dimensional Lagrangian system with time as the independent variable, or
a finite-dimensional Lagrangian multisymplectic field theory with space and time
as independent variables. Lagrangian variational integrators are a popular method
for systematically constructing symplectic integrators of arbitrarily high-order, and
satisfy a discrete Noether’s theorem that relates group-invariance with momentum
conservation. A group-invariant (and hence momentum-preserving) variational in-
tegrator can be constructed from group-equivariant interpolation spaces.

We study the variational finite element discretization of Lagrangian field the-
ories from two perspectives; we begin by investigating directly discretizing the
full variational principle over the full spacetime domain, which we refer to as the
“covariant” approach, and subsequently study semi-discretization of the instan-
taneous variational principle on a globally hyperbolic spacetime, which we refer
to as the “canonical” approach. This paper can be considered a discrete ana-
logue to the program initiated in Gotay et al. [2, 3], which lays the foundation
for relating the covariant and canonical formulations of Lagrangian field theories
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through their (multi)symplectic structures and momentum maps. One of the goals
of understanding the relation between these two different formulations is to sys-
tematically relate the covariant gauge symmetries of a gauge field theory to its
initial value constraints. This is seen, for example, in general relativity, where
the diffeomorphism gauge invariance gives rise to the Einstein constraint equa-
tions over the initial data hypersurface (see, for example, Gourgoulhon [4]). When
one semi-discretizes such gauge field theories, the discrete initial data must satisfy
an associated discrete constraint. We aim to make sense of the discrete geometric
structures in the covariant and canonical discretization approaches as a foundation
for understanding the discretization of gauge field theories.

We begin by formulating a discrete variational principle in the covariant ap-
proach, utilizing the finite element construction to appropriately restrict the vari-
ational principle. We show that a cochain projection from the underlying de
Rham complex onto the finite element spaces yields a natural discrete variational
principle that is compatible with the holonomic jet structure of a Lagrangian field
theory. We then show that discretizing by cochain projections leads to a naturality
relation between the continuous variational problem and the discrete variational
problem; this naturality then implies that discretization and the variational prin-
ciple commute and also, that discretizing at the level of the configuration bundle
or at the level of the jet bundle are equivalent. Subsequently, by decomposing the
finite element spaces into boundary and interior components, we define a discrete
Cartan form in analogy with the continuum Cartan form which will, in a sense,
encode the discrete variational structure. With particular choices of finite ele-
ment spaces, this discrete Cartan form recovers the notion of the discrete Cartan
form introduced by Marsden et al. [6]; however, we note that our notion of a dis-
crete Cartan form is more general and furthermore, since our discrete variational
problem is naturally related to the continuum variational problem, we are able to
explicitly discuss in what sense the discrete Cartan form converges to the contin-
uum Cartan form. Using this discrete Cartan form, we state and prove discrete
analogues of the multisymplectic form formula and Noether’s theorem. Finally,
we reinterpret and concisely summarize the preceding sections by interpreting the
discrete variational structures as elements of a discrete variational complex.

We study the semi-discretization of the canonical formulation of a Lagrangian
field theory on a globally hyperbolic spacetime. We discretize the instantaneous
variational principle utilizing cochain projections onto finite element spaces over
a Cauchy surface, which gives rise to a semi-discrete Euler–Lagrange equation.
We relate this semi-discrete Euler–Lagrange equation to a Hamiltonian flow on a
symplectic semi-discrete phase space. We will discuss in what sense the symplectic
structure on the semi-discrete phase space arises from a symplectic structure on the
continuum phase space. Subsequently, we will investigate the energy-momentum
map structure associated to the semi-discrete phase space and discuss how, under
appropriate equivariance conditions on the projection, the energy-momentum map
structure on the semi-discrete phase space arises as the pullback of the energy-
momentum map structure on the continuum phase space. This lays a foundation
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for understanding initial value constraints when discretizing field theories with
gauge symmetries. Finally, we relate the covariant and canonical discretization
approaches in the case of tensor product finite element spaces.

The underlying theme of this work is that, when one discretizes the variational
principle utilizing compatible discretization techniques, the associated (covariant
or canonical) discretization inherits discrete variational structures which can be
viewed as pullbacks or projections of the associated continuum variational struc-
tures. These discrete variational structures allow one to investigate structure-
preservation under discretization of important physical properties, such as mo-
mentum conservation, symplecticity, and (gauge) symmetries.
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Geometric variational finite element discretization in fluid dynamics

François Gay-Balmaz

(joint work with Evan S. Gawlik)

1. Introduction

We present a class of finite element variational integrators for fluid models. These
integrators are derived by discretizing, in a structure preserving way, the Lie group
formulation of fluid dynamics on diffeomorphism groups and the associated varia-
tional principles. A main step in the approach is the identification of a subspace of
the discrete Lie algebra with a Raviart-Thomas finite element space. The resulting
scheme has remarkable conservative properties.
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2. Variational formulation for fluids

The regular solutions of Euler type fluid flows in a bounded domain Ω ⊂ Rn with
smooth boundary can be formally regarded as curves ϕ : [0, T ]→ Diff(Ω) that are
critical for the Hamilton principle

(1) δ

∫ T

0

L(ϕ, ∂tϕ)dt = 0

with respect to variations δϕ vanishing at the endpoints. Here Diff(Ω) is the group
of diffeomorphisms of Ω and ϕ(t) : Ω → Ω is the map sending the position X of
a fluid particle at time 0 to its position x = ϕ(t,X) at time t. The function
L : T Diff(Ω)→ R in (1) is the Lagrangian of the fluid. For incompressible fluids,
one uses the subgroup Diffvol(Ω) of volume preserving diffeomorphisms of Ω.

The Hamilton principle (1) induces a variational formulation in the Eulerian
frame, called the Euler-Poincaré principle, which, for barotropic fluids, reads

(2) δ

∫ T

0

ℓ(u, ρ) dt = 0,

with respect to variations δu and δρ of the form

(3) δu = ∂tv +£uv, δρ = − div(ρv),

with v : [0, T ] → X(Ω) and v(0) = v(T ) = 0. Here X(Ω) denotes the Lie algebra
of Diff(Ω), which consists of vector fields on Ω, tangent to ∂Ω.

3. Discrete variational formulation for fluids

Discrete diffeomorphisms. The method is based on the use of a finite dimensional
Lie group approximation of Diff(Ω), given by

(4) Gr
h = {q ∈ GL(V r

h ) | q1 = 1},
where V r

h = {f ∈ L2(Ω) | f |K ∈ Pr(K), ∀K ∈ Th} is the discontinuous Galerkin
space of order r associated to a triangulation Th of Ω, and where 1 is a discrete
representative of the constant function 1. The condition q1 = 1 encodes the fact
that constant functions are preserved by the action of a diffeomorphism. Elements
in the Lie algebra

(5) grh = {A ∈ L(V r
h , V

r
h ) | A1 = 0}

are potential candidates to be discrete vector fields. As linear maps in grh these
discrete vector fields act as discrete derivations on V r

h . It is thus natural to choose
them as distributional directional derivatives.

Space of distributional derivatives. It is shown in [1] that the subspace Sr
h ⊂ grh of

distributional derivatives is isomorphic to a Raviart-Thomas space:

(6) Sr
h ←→ RT2r(Th)={u ∈ H0(div,Ω) | u|K∈ (P2r(K))n + xP2r(K), ∀K ∈ Th} .

This result relates the discrete Lie group formulation for fluids to finite element
methods.
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Discrete Lagrangians. In order to define the semidiscrete Lagrangian on the Lie
algebra grh, we introduce the Lie algebra-to-vector field map ̂ : grh ⊂ L(V r

h , V
r
h )→

[V r
h ]

n given by

(7) Â :=

n∑

k=1

A(Irh(x
k))ek,

where Irh : L2(Ω) → V r
h is the L2-orthogonal projector. Given a continuous La-

grangian, for instance an expression ℓ = ℓ(u, ρ) for barotropic fluids, the discrete

Lagrangian ℓd : grh×V r
h → R is defined by ℓd(Ah, ρh) = ℓ(Âh, ρh). Given a discrete

Lagrangian, one needs to restrict its domain of definition to a subspace ∆R
h ⊂ Sr

h

on which the discrete Lagrangian is nondegenerate. The diagram below illustrates
the situation that we consider and the relation between the various spaces, [1].

RT2r(Th) oo
(6)

// Sr
h
1
2
� �

// grh
̂

// [V r
h ]

n

Rh
1
2

?�

OO

oo // ∆R
h

1
2

?�

OO

Semidiscrete Euler-Poincaré principle. In this setting, given ℓd : grh×V r
h → R and

∆h
R ⊂ Sr

h on which ℓd is nondegenerate, the semidiscrete version of (2)–(3) reads

δ

∫ T

0

ℓd(Ah, ρh)dt = 0,

with respect to variations of the form

δAh = ∂tBh + [Bh, Ah] and δρh = −ρh ·Bh,

for all Bh(t) ∈ ∆R
h with Bh(0) = Bh(T ) = 0. The critical conditions for this

principle yields the finite element semidiscrete fluid equations, [1, 2].

Temporal discretization. The variational character of the fluid equations can be
exploited also at the temporal level, by deriving the temporal scheme via a time
discretization of the Euler-Poincaré variational principle. Alternatively, it also
admits a time discretization that exactly preserves the total energy, [1, 2, 3].

4. Conservative properties and illustration

When applied to the incompressible fluid with variable density, our finite element
scheme preserves the following quantities at the full discrete level: total mass, total
squared density, total energy, and the incompressibility constraint, [2].

When applied to incompressible MHD with variable density, our scheme can be
adapted to additionally preserve the magnetic helicity, the cross-helicity, and the
solenoidal constraint, [3].

The figure below illustrates the Rayleigh-Taylor instability test for a compress-
ible fluid with Lagrangian

(8) ℓ(u, ρ, s) =

∫

Ω

[1
2
ρ|u|2 − ρe(ρ, η)− ρΦ

]
dx,
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with s the entropy density, η = s
ρ , e(ρ, η) = eη/Cvργ−1, γ = 5/3, Cv = 1, and

Φ = −y. We take ∆t = 0.01, Rh = RT0(Th) and V 1
h on a uniform triangulation Th

of Ω = (0, 1/4)× (0, 1) with h = 2−8, [1]. We incorporate upwinding by using the
strategy detailed in [1], which retains the scheme’s energy-preserving property.

Figure 1. Contours of the mass density at t =
1.0, 1.2, 1.4, 1.6, 1.8, 2.0.
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Energy-stable parametric finite element methods (ES-PFEM) for
geometric PDEs and applications

Weizhu Bao

In this talk, I begin with a review of different geometric flows (PDEs) including
mean curvature (curve shortening) flow, surface diffusion flow, Willmore flow,
etc., which arise from materials science, interface dynamics in multi-phase flows,
biology membrane, computer graphics, geometry, etc. Different mathematical
formulations and numerical methods for mean curvature flow are then discussed
[1, 5, 6], including marker-particle method, θ-L method, finite element method
(FEM), and parametric finite element method (PFEM), etc. In particular, a semi-
implicit energy-stable parametric finite element method (ES-PFEM) is presented
in details [4, 8]. The ES-PFEM enjoys a few advantages for discretizing geometric
flows: (i) it is semi-implicit and only a linear system is to be solved at each
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time step, (ii) it preserves energy dissipation and thus it is unconditionally energy
stable, and (iii) it guarantees asymptotic mesh equal-distribution and thus no
re-meshing is needed during time evolution. Then the ES-PFEM is extended to
surface diffusion flow and anistropic surface diffusion flow [7, 3]. Finally, sharp
interface models and their PFEM and ES-PFEM approximations are presented
for solid-state dewetting in materials science [2, 8, 9]. This talk is based on joint
works with Wei Jiang, Yifei Li, Yan Wang and Quan Zhao.
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Structure preserving deep learning

Carola-Bibiane Schönlieb

(joint work with Elena Celledoni, Matthias J. Ehrhardt, Christian Etmann,
Robert I McLachlan, Brynjulf Owren, Ferdia Sherry)

Over the past few years, deep learning has risen to the foreground as a topic of
massive interest, mainly as a result of successes obtained in solving large-scale
image processing tasks. There are multiple challenging mathematical problems
involved in applying deep learning: most deep learning methods require the so-
lution of hard optimisation problems, and a good understanding of the tradeoff
between computational effort, amount of data and model complexity is required to
successfully design a deep learning approach for a given problem. A large amount
of progress made in deep learning has been based on heuristic explorations, but
there is a growing effort to mathematically understand the structure in existing



Geometric Numerical Integration 981

deep learning methods and to systematically design new deep learning methods
to preserve certain types of structure in deep learning.

In a recent article [1], we review a number of these directions: some deep
neural networks can be understood as discretisations of dynamical systems, neural
networks can be designed to have desirable properties such as invertibility or group
equivariance, and new algorithmic frameworks based on conformal Hamiltonian
systems and Riemannian manifolds to solve the optimisation problems have been
proposed.

My talk picked out three topics from the above, namely: neural networks as dis-
cretisations of dynamical systems and possible notions of stability of deep learning
that can be drawn from the numerical analysis of ODEs; invertible neural networks
and their use for computing probability density functions from a finite number of
samples; and equivariant neural networks and their favourable performance for
image processing tasks. We discuss these topics and raise open problems that we
consider to be interesting directions for future research.
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Mixing Time Guarantees for Unadjusted Hamiltonian Monte Carlo

Nawaf Bou-Rabee

(joint work with Andreas Eberle)

In this talk, we present quantitative upper bounds on the total variation mixing
time of the Markov chain corresponding to the unadjusted Hamiltonian Monte
Carlo (uHMC) algorithm. For two general classes of models and fixed time dis-
cretization step size h, the mixing time is shown to depend only logarithmically
on the dimension. Moreover, we provide quantitative upper bounds on the total
variation distance between the invariant measure of the uHMC chain and the true
target measure. As a consequence, we show that an ε-accurate approximation of
the target distribution µ in total variation distance can be achieved by uHMC
for a broad class of models with O

(
d3/4ǫ−1/2 log(d/ε)

)
gradient evaluations, and

for mean field models with weak interactions with O
(
d1/2ǫ−1/2 log(d/ε)

)
gradient

evaluations. The proofs are based on the construction of successful couplings for
uHMC that realize the upper bounds.
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On superconvergence features of methods based on the
Crank-Nicolson scheme in the context of diffusion PDEs

(deterministic and stochastic)

Gilles Vilmart

(joint work with Assyr Abdulle, Ibrahim Almuslimani, Guillaume Bertoli,
Christophe Besse, and Charles-Edouard Bréhier)

In this talk,1 we present two situations where the Crank-Nicolson method is sur-
prisingly more accurate than one could expect:

• in the context of splitting methods for parabolic PDEs [3, 4]:
we show that the Strang splitting method applied to a diffusion-reaction
equation with inhomogeneous general oblique boundary conditions is of
order two when the diffusion equation is solved with the Crank-Nicolson
method, while order reduction occurs in general if using other Runge-
Kutta schemes or even the exact flow itself for the diffusion part. We
prove [4] these results when the source term only depends on the space
variable, an assumption which makes the splitting scheme equivalent to
the Crank-Nicolson method itself applied to the whole problem.
• in the context of ergodic parabolic stochastic PDEs [5, 1, 2]: Al-
though the Crank-Nicolson method can sample exactly the invariant mea-
sure of ergodic stochastic differential equations in the Gaussian case, it
is only A-stable and lacks the L-stability property which is desirable for
a fast convergence to equilibrium. Using the idea of post-processing, we
investigate how the L-stability property and the exactness for the invari-
ant measure in the Gaussian case can be achieved simultaneously. We
present such schemes applied to nonlinear ergodic problems in the con-
text of implicit Runge-Kutta methods [5] and in the context of explicit
stabilized Runge-Kutta methods [1], which can be shown to be strongly
convergent [2] for a class of quasilinear parabolic stochastic PDEs, includ-
ing the quasilinear stochastic heat equation with space-time white noise.

1The slides of the talk are available at: www.unige.ch/~vilmart/talks.html
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A convergent evolving finite element algorithm for Willmore flow of
closed surfaces

Balázs Kovács

(joint work with Buyang Li and Christian Lubich)

The elastic bending energy or Willmore energy (named after Thomas Willmore)
of a surface Γ := Γ[X(·, t)] = {X(p, t) : p ∈ Γ0}, described by a flow map
X : Γ0 × [0, T ]→ R3, is given as

W (Γ) =
1

2

∫

Γ

H2,

whereH is the mean curvature of the surface. Willmore flow is the L2 gradient flow
of surfaces for the elastic bending energy. It plays an important role in modelling
lipid bilayers, biomembranes, vesicles, regularization of phase-field systems, etc.

The negative L2 gradient of the Willmore energy W for a two-dimensional
surface Γ in R3 has no tangential contribution and reads

v =
(
∆ΓH +H(12H

2 − 2K)
)
ν on Γ,(1)

with outward normal vector field ν, mean curvature H = κ1 + κ2 (here taken
without a factor 1/2) and Gaussian curvature K = κ1κ2, where κ1 and κ2 are
the principal curvatures on Γ. Willmore gives a proof of this result and attributes
the formula (in the stationary case) to Thomsen (1924) (who mentions Schadow
(1922)) and Blaschke (1926). For curves the study of “Willmore energy” goes back
to D. Bernoulli, S. Germain and S.D. Poisson.

Numerical methods for Willmore flow based on evolving surface finite element
methods have been proposed by Rusu (2005), Dziuk (2008), and Barrett, Garcke
& Nürnberg (2007,2008) each based on different variational formulations of (1).
However, convergence of a surface finite element method for the Willmore flow of
closed surfaces has remained an open problem.
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The objective of [3] is to construct a convergent evolving surface finite element algo-
rithm for the Willmore flow of closed two-dimensional surfaces in three-dimension-
al space.

In this Oberwolfach report we focus on two main aspects of the approach taken in
[3], which lead to achieve the above goal:

(i) Our algorithm is based on a coupled system of fourth-order evolution
equations for the geometric quantities in (1), inspired by the approach
of Huisken (1984) and our previous work on mean curvature flow [2].

(ii) To present a novel stability analysis based on energy estimates, by (essen-
tially) compressing a 13 page proof to a single figure.

(i) The key idea is to use fourth-order parabolic evolution equations for the
mean curvature H and the normal vector ν along the Willmore flow:

∂•H = −
(
∆Γ + |A|2

)
(∆ΓH +Q),

∂•ν =
(
−∆Γ + (HA−A2)

)
(∆Γν + |A|2ν) + |∇ΓH |2ν

− 2
(
∇Γ · (A∇ΓH)

)
ν −A2∇ΓH −∇ΓQ,

where A = ∇Γν and Q denotes the non-linear term in (1). We derive an algorithm
based on the weak formulation of the system that couples these evolution equations
to the velocity law (1) and to the ordinary differential equation ∂tX = v for the
positions. Here, H and ν are considered to be independently evolving unknowns
that are not directly extracted from the surface at any given time. This is different
from the previously mentioned approaches.

(ii) Stability, which is here understood as bounding the errors in terms of con-
sistency defects and initial errors. For the velocity law, stability is shown using
a stability bound for the interpolation of products of surface finite element func-
tions. The main idea for the stability estimates for the second-order system for the
geometric variables is to exploit the anti-symmetric structure of the semi-discrete
error equations and combine it with multiple energy estimates, testing with both
the errors and their time derivative. The structure of the energy estimates is
sketched in Figure 1. The proof is performed in the matrix–vector formulation
of the numerical method, and it uses technical lemmas relating different finite el-
ement surfaces that were shown in [1] and [2] (these are vastly more important
than this short report, or the corresponding talk, could suggest). A key step in the
proof is to establish W 1,∞-norm error bounds for all variables, which are obtained
from the time-uniform H1-norm error bounds using an inverse estimate.

In Theorem 4.1 of [3] optimal-order H1-norm semi-discrete convergence estimates
are shown for all variables X, v, ν,H . Convergence is shown towards sufficiently
regular solutions of Willmore flow, which excludes the formation of singularities
(within the considered time interval).

For a perturbed torus the surface evolution (towards a Clifford torus) and Will-
more energy (W (Γ) ≥ 4π2) is shown in Figure 2.
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Mėu −Aew = r1

Mew +Aeu = r2
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∫
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∫
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Figure 1. Sketch of the structure of the energy estimates.
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Figure 2. Surface evolutions at different times and correspond-
ing Willmore energy for a perturbed torus.

References

[1] B. Kovács, B. Li, C. Lubich, and C.A. Power Guerra. Convergence of finite elements on an
evolving surface driven by diffusion on the surface. Numer. Math., 137(3):643–689, 2017.
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Functional equivariance of numerical integrators

Ari Stern

(joint work with Robert I. McLachlan)

In numerical ordinary differential equations, it is well known that all B-series
methods (including Runge–Kutta methods) preserve linear invariants, while only
certain ones preserve quadratic invariants. Linear invariants arising in physical
systems include mass, charge, and linear momentum; quadratic invariants include
angular momentum and other momentum maps, as well as the canonical symplectic
form for Hamiltonian systems. (See [1] and references therein.)

However, for partial differential equations describing time evolution, it is desir-
able for a numerical integrator to preserve not only global invariants but also local
conservation laws. For instance, the evolution may preserve total mass (a global
invariant), but the mass in a particular region may change by flowing through the
boundary of the region (a local conservation law). Another example is the canon-
ical multisymplectic conservation law for Hamiltonian PDEs, which is a quadratic
local conservation law for the variational equation.

In order to answer the question of which methods preserve local conservation
laws such as these, we investigate an even more general question: When does a
numerical integrator preserve the evolution of certain classes of observables (e.g.,
linear, quadratic), even when these observables are not invariant?

This talk presents forthcoming work [2] that answers this question by studying
the functional equivariance of numerical integrators. Given a dynamical system
ẏ = f(y), we say that a method is equivariant with respect to a functional F if
applying the method to the augmented system

ẏ = f(y), ż = F ′(y)f(y),

preserves the relation z = F (y). We prove that, when F is a class of functionals
including linear functionals, a method is functionally equivariant with respect to
F if and only if it preserves invariants in F . In particular, this implies that all
B-series methods preserve local conservation laws involving linear quantities (like
mass and charge), while those preserving quadratic invariants also preserve local
conservation laws involving quadratic quantities, including the multisymplectic
conservation law.
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Implicit symplectic methods for high precision numerical integration
of the Solar System

Ander Murua

(joint work with M. Antoñana, J. Makazaga, E. Alberdi)

High precision long-term dynamic simulation of planetary systems requires com-
putationally expensive numerical integrations. Efficient computation of long-term
ephemerides of the Solar System can be achieved by exploiting the near Keplerian
motion of the planets around the Sun. The main idea is to alternate Keplerian
motions with appropriate corrections accounting for the planetary interactions.
In this sense, symplectic splitting integrators for high precision integration of the
Solar System has been constructed and tested in [2, 3]. Further improvement of
the efficiency of numerical simulations demands the development of fast and accu-
rate algorithms that take advantage of parallel computer architectures. Although
some attempts have been made in this sense for symplectic splitting integrators
for Solar System simulations, the sequential nature of that kind of schemes makes
it difficult to get substantial improvements from parallelization strategies.

In this work, we present an optimized implementation of the 16th order sym-
plectic FCIRK method for Hamiltonian systems of the form

H(q, p) = HK(q, p) +HI(q, p),

HK(q, p) =

n∑

i=1

(‖pi‖2
2µi

− µi ki
‖qi‖

)
,

where q = (q1, . . . , qn), p = (p1, . . . , pn), qi, pi ∈ R3, i = 1, . . . , n. The interaction
Hamiltonian HI(q, p) is assumed to be of smaller magnitude than the Keplerian
Hamiltonian HK(q, p). In particular, the (n+1)-body problem corresponding to n
planets orbiting a central star can be rewritten in this form when written in appro-
priate variables (such as Jacobi coordinates or Poincaré’s canonical Heliocentric
coordinates). Of course, the Hamiltonian of models including natural satellites of
some of the planets also can be written in this form.

The propagation of roundoff errors is a key limiting factor for very long term
integrations of the Solar System, and sometimes the precision provided by the
standard double precision arithmetic is not good enough. A good option may
be to use instead the extended precision 80-bit floating point arithmetic (one bit
for the sign, 15 bits for the exponent, and 64 bits for the significand) available
for most intel processors. Compared to double precision arithmetic (with 53-bit
significands) 11 additional binary digits of precision are gained by making all the
computations in extended precision arithmetic. To further reduce roundoff errors,
one could resort to quadruple precision arithmetic, but doing all the computations
in that arithmetic is generally not an option, as it would require at least twenty
times more computing time. An intermediate solution is to use a mixed-precision
arithmetic: to use quadruple precision for the most critical computations and
perform the rest of the computation in a lower precision arithmetic. In the case
of explicit splitting methods, a natural mixed-precision strategy is to compute
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the Keplerian flows in quadruple precision, and the corrections corresponding to
the planetary interactions (which are typically of smaller magnitude) in 80-bit
arithmetic.

In [1], a new family of symplectic integration methods, flow-composed implicit
Runge-Kutta (FCIRK) methods, is introduced which is also appropriate for the
numerical integration of the Solar System, or other systems with near-Keplerian
motions. They are similar to symplectic splitting schemes in that Keplerian mo-
tions are alternated with corrections of smaller magnitude. But while in symplectic
splitting integrators the corrections are computed as the solution operator of the
interaction Hamiltonian, in FCIRK methods, such corrections correspond to the
application to a transformed ODE system of one step of an implicit Runge-Kutta
(IRK) method based on collocation with Gauss-Legendre nodes. As their under-
lying IRK methods, FCIRK methods are super-convergent: the method based on
s Gauss-Legendre nodes is of order 2s. After some preliminary numerical experi-
ments with high precision Solar System simulations, we have concluded that the
method with s = 8 nodes (hence, of order 2s = 16) is a good choice. We refer to
that method as FCIRK16.

Compared to symplectic splitting integrators, the implementation of FCIRK
methods is more involved as an implicit system of equations has to be solved at
each time-step. In return, such methods are better suited than symplectic splitting
integrators

• for exploiting parallel computer architectures (most of the computations
can be done in s processors in parallel), and
• for the mixed-precision approach mentioned above, as fewer Keplerian
motions in quadruple precision have to be computed for the same level of
precision and a given integration interval.

Our implicit symplectic integrators are based on the following factorization of
the h-flow ϕh of H = HK +HI

(1) ϕh = ϕK
h/2 ◦ ψh ◦ ϕK

h/2

where ϕK
h is the h-flow of HK and

ψh := ϕK
−h/2 ◦ ϕh ◦ ϕK

−h/2.

We show that for any solution U(t) of

(2)
d

dt
U = F (U, t− h/2), where F (U, t) := J−1∇UHI(ϕ

K
t (U)),

it holds that

ψh(U(0)) = U(h).

One step of a FCIRK method is obtained by replacing in (1) the symplectic map ψh

by a high order aproximation obtained by applying a symplectic implicit Runge-
Kutta method to (2).

In our preliminary implementation of FCIRK schemes [1], time-steps of con-
stant length were used. However, for long-term simulations of realistic models
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of the Solar System, the larger bodies of the asteroid belt (specially Ceres, Pal-
las, and Vesta) experience close encounters that have a significant impact in the
chaotic behavior of the Solar System [4]. Unfortunately, the precision of the nu-
merical integration performed with any integrator with constant time-steps (in
physical time) is degraded during close enough encounters, a degradation that
may be more pronounced for FCIRK scheme (and the Wisdom-Holman map and
its generalizations) due to the temporary loss of the hierarchy HI << HK during
extreme close encounters. On the other hand, it is known that the advantages of
symplectic integrators for the long-term integration of Hamiltonian systems are
lost if standard adaptive time-stepping strategies are used. Motivated by that,
and under the assumption that close encounters that seriously degrade the accu-
racy seldom occur, a mild form of time-stepping adaptivity is implemented in our
code: an automatic mechanism is used to identify steps with significantly larger
local errors (presumably, due to close encounters) which are then resolved with
higher precision time-steps; constant time-step length is used otherwise, so that
the integration enjoys the advantages of constant time-step symplectic integration
during long integration subintervals.

In our numerical experiments, we consider a Newtonian model of the Solar
System with 16 point masses: the Sun, the eight planets, Pluto, the Moon as a
separated body, and five of the main bodies in the Asteroid Belt: Ceres, Pallas,
Vesta, Iris, Bamberga. In our results for that particular model,we conclude that:

• FCIRK16 is very well suited for the mixed precision approach: In this
model, the above-mentioned mixed precision approach increases consider-
ably (by a factor of six) the CPU time of symplectic splitting integrators.
In contrast, in our FCIRK implementation, the mixed precision approach
comes essentially for free.
• The parallel version of FCIRK16 implemented with OpenMP with four
threads, a speedup of 2 is obtained. This results in a better efficiency than
the best symplectic splitting methods in [2] for precisions higher than
standard double precision arithmetic.

In addition, compared to symplectic splitting integrators, that only admit in-
teraction Hamiltonians of the form HI(p, q) = HC(p) + HD(q), FCIR16 admits
Hamiltonians of arbitrary form (in particular, those arising from relativistic cor-
rections).
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Deducing properties of ODEs from their discretization

Reinout Quispel

(joint work with David McLaren, Charalambos Evripidou)

1. Introduction

Consider a polynomial ordinary differential equation (ODE)

(1)
dx

dt
= f(x)

In this paper we address the question

Q1: What rational conserved integral(s) and (inverse) polynomial volume form (if

any) does the ODE possess?

Since finding rational integrals generally requires solving a nonlinear problem we
propose a three step program, that, using a certain ansatz, only requires the
solution of linear problems:

Step 1: Discretise the ODE using a “suitable” method. In this paper we will use
Kahan’s method (but much of the following also holds for certain other birational
integration methods given in the references). Compute the Jacobian determinant
J of the discretisation, and factorise J .

Step 2: Use the factors of J as candidate discrete cofactors for finding discrete
Darboux polynomials (DPs).

Step 3: Take the continuum limits of the discrete cofactors and DPs found in step 2.
If possible, use these DPs as building blocks for time-dependent/time-independent
first integrals and preserved measure of the ODE, If one is very lucky, it may even
be possible to use them to derive the exact solution to the initial value problem
fore the ODE.

2. Step 1

Our ongoing example in this paper will be the ODE

ẋ = 2− 2x+ xz

ẏ = −y + yz(2)

ż = −y − 3z + z2
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For any quadratic ODE:

(3)
dxi
dt

=
∑

j,k

aijkxjxk +
∑

j

bijxj + ci

Kahan’s “unconventional” method is defined by

(4)
x′i − xi
h

=
∑

j,k

aijk
x′jxk + xjx

′
k

2
+
∑

j

bij
xj + x′j

2
+ ci

here xi := xi(nh), x
′
i := xi((n+ 1)h), and h is the timestep.

It is not hard to show that eq(4) can be rearranged as follows:

(5)
x′ − x
h

=

(
I − h

2
f ′(x)

)−1

f(x),

This defines the Kahan map xn+1 = φ(xn) [1].

Next we compute the Jacobian determinant J of φ:

(6) J(x) =

∣∣∣∣
∂φi(x)

∂xj

∣∣∣∣ ,

and use an algebraic manipulation package to factorise J .

For our example

(7) J(x) =
K1K2K3K4

D1D4
2

,

where Ki, Dj(i = 1, . . . , 4; j = 1, 2) are given in the appendix.

3. Step 2

Given a map xn+1 = φ(xn), a polynomial P (x) is a (discrete) DP of φ if there
exists a (non-tautological) rational function C s.t.

(8) P (xn+1) = C(xn)P (xn),

where P (xn+1) = P (φ(xn)) and C is called the (discrete) cofactor of P [2, 3].
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i Ci Pi C̄i

1 K1

D2
z − y − 3 z

2 K2

D2
2z + y z − 3

3 K3

D2
y z − 1

4 K4

D1D2
x+ y + z − 1 z − 2

Table 1

Ansatz: Given a rational map φ with Jacobian determinant

(9) J(x) =

∏l
i=1K

bi
i (x)∏m

j=1D
mj

j (x)
,

we try all cofactors (up to a certain polynomial degree d) of the form

(10) C(x) = ±
∏l

i=1K
fi
i (x)∏m

j=1D
gj
j (x)

,

where fi, gj ∈ N0.

Note

(1) There is a finite number of these co-factors up to a certain degree. For each
of this finite number of co-factors, we only need to solve a linear problem
(up to a chosen degree)!

(2) If C(x) = J(x), the corresponding Darboux polynomials are inverse den-
sities of preserved measures.

The discrete cofactors Ci and corresponding DPs Pi for our example are given in
the first two columns of Table 1:

4. Step 3

The continuum limits P̄i, C̄i are given by limh→0Pi resp. limh→0
Ci−1

h , and satisfy
the ODEs

(11) ˙̄Pi = C̄iP̄i

A useful property of the cofactor C̄i is [4]

(12) ˙̄Pi = C̄iP̄i → Ṗ = CP
where

(13) P :=
∏

i

P̄αi

i , C :=
∑

i

αiC̄i
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This has the following implications:

(1) C(x) = 0→ Ṗ = 0→ P is a first integral

(2) C(x) = C → Ṗ = CP → P(x(t)) = P(x(0))eCt

(3) C(x) = divf(x)→ Ṗ = CP → f preserves the measure dx
P(x)

For our problem, the C̄i are given in the last column of Table 1. (For affine DPs,
P̄i = Pi. For two theorems regarding affine DPs, cf [2]).

Note that

(14) C̄1 − C̄2 = 3, C̄1 − C̄3 = 1, C̄1 − C̄4 = 2

Hence

P1

P2
=

z − y − 3

2z + y
= k2e

3t(15)

P1

P3
=

z − y − 3

y
= k3e

t(16)

P1

P4
=

z − y − 3

x+ y + z − 1
= k4e

2t(17)

and this yields 2 time-independent first integrals:

I1 =
P 2
3

P1P4
=

y2

(z − y − 3)(x+ y + z − 1)
(18)

I2 =
P3P4

P1P2
=

y(x+ y + z − 1)

(z − y − 3)(2z + y)
(19)

Hence f is integrable. Moreover J = C1C2C3C4 implies that f preserves the
measure

(20)
dxdydz

P1P2P3P4
=

dxdydz

y(2z + y)(z − y − 3)(x+ y + z − 1)

Equations (15), (16), & (17) can be combined to give the explicit solution of ODE
(2)

x =
6e2tk4k2 + 2

(
−3etk2 +

(
1 + k2e

3t
)
k4
)
k3

k4 (2e3tk2k3 + 3e2tk2 − k3)
(21)

y =
6k2e

2t

−2e3tk2k3 − 3e2tk2 + k3
(22)

z =
−3k3 + 3e2tk2

2e3tk2k3 + 3e2tk2 − k3
(23)

Acknowledgement: We are grateful to our collaborators E Celledoni, G Gubbiotti,
R McLachlan, B Owren and B Tapley for many illuminating discussions.
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Appendix

The explicit factors of J(x) in eq (7) are:

K1 = −1/4 h2x2 + 3/4 h2x3 − 3/4 h2 − 1/2 hx3 − h+ 1

K2 = −1/4 h2x2 − 1/4 h2x3 − 3/4 h2 − 1/2 hx3 + h+ 1

K3 = −1/4 h2x2 − 3/4 h2x3 + 3/4 h2 − 1/2 hx3 + 2 h+ 1

K4 = 1/8 h3x2x3 − 1/8 h3x3
2 − 1/4 h3x2 +

7 h3x3
8

+ 1/4 h2x3
2 − 3/4 h3

−1/4 h2x2 − 1/4 h2x3 − 5/4 h2 − hx3 + h+ 1

D1 = −1/2 hx3 + h+ 1

D2 = 1/2 h2x3
2 + 1/4 h2x2 − 5/4 h2x3 + 3/4 h2 − 3/2 hx3 + 2 h+ 1
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École Polytechnique Fédérale de
Lausanne
Station 8
1015 Lausanne
SWITZERLAND

Prof. Dr. Weizhu Bao

Department of Mathematics
National University of Singapore
Lower Kent Ridge Road
Singapore 119 076
SINGAPORE

Dr. Joackim Bernier
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