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Introduction by the Organizers

The theory of linear algebraic groups originated in the work of E. Picard in the
mid-19th century. Picard assigned a “Galois group” to an ordinary differential
equation. This construction was developed into what is now known as “differential
Galois theory” by J. F. Ritt and E. R. Kolchin in the 1930s and 40s. Another
source of inspiration comes from Invariant theory and the representation theory
of classical groups.

Their work was a precursor to the modern theory of algebraic groups, founded
by A. Borel, C. Chevalley, J. P. Serre, T. A. Springer and J. Tits in the second half
of the 20th century. The Oberwolfach workshops on algebraic groups, originated by
Springer and Tits, played an important role in this effort as a forum for researchers,
meeting at regular intervals since the 1960’s.
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The present workshop continued this tradition despite of the pandemy. There
were 50 participants (2 in Oberwolfach, 48 online) from 13 countries: Australia,
Canada, China, France, Germany, Great Britain, India, Israel, Italy, the Nether-
lands, Russia, Switzerland and the United States. The scientific program consisted
of 21 lectures. The lectures covered a broad range of topics of current interest,
including

• Geometric invariant theory;
• Spherical varieties;
• Algebraic groups over imperfect fields;
• Algebraic groups and opers;
• Geometric Satake correspondence and its relation to Modular representa-
tion theory;

• Hessenberg varieties and character sheaves;
• Quantum groups and cluster algebras;
• Cluster varieties and potential functions;
• Modular representation theory;
• Bruhat-Tits group schemes.

Due to the special format, the organization of recreational activities like the tra-
ditional Wednesday afternoon hike and the Thursday night concert had to be
cancelled. But during the discussions, again and again, people regretted not to be
in Oberwolfach. They even missed the standard interchange train stop at Offen-
burg, not to speak about the cake. More seriously: despite the perfect organization
of the meeting and the excellent online talks, people missed the possibility for a
personal exchange. And this is a point, for which the meetings at the MFO are
usually well known for.
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Abstracts

Semisimplification for subgroups of reductive algebraic groups

Gerhard Röhrle

(joint work with Michael Bate and Benjamin Martin)

This is a report on the joint work [3]. There we present a construction of the
semisimplification of a subgroup H of a reductive linear algebraic group G over an
arbitrary field k. This unifies and generalizes many concepts already in the literat-
ure within a single framework. It is also an ingredient in recent work of Lawrence-
Sawin on the Shafarevich Conjecture for abelian varieties [8], which involves Galois
representations taking values in non-connected reductive p-adic groups. Our defin-
ition of a k-semisimplification is new and generalizes the one given by Serre in [9,
§3.2.4]. Our aim is a Jordan–Hölder Theorem: the k-semisimplification of a sub-
group H of G is unique up to G(k)-conjugacy, generalizing [9, Prop. 3.3(b)].

1. Cocharacter-closed orbits

Following [6], [5], and [1], we regard an affine variety over a field k as a variety

X over the algebraic closure k together with a choice of k-structure. We write
X(k) for the set of k-points of X and X(k) (or just X) for the set of k-points of
X . By a subvariety of X we mean a closed k-subvariety of X ; a k-subvariety is
a subvariety that is defined over k. We denote by Mn the associative algebra of
n×n matrices over k. Below G denotes a possibly non-connected reductive linear
algebraic group over k. By a subgroup of G we mean a closed k-subgroup and by
a k-subgroup we mean a subgroup that is defined over k. By G0 we denote the
identity component of G, and likewise for subgroups of G.

We define Yk(G) to be the set of k-defined cocharacters of G and Y (G) := Yk(G)
to be the set of all cocharacters of G. Let H be a subgroup of G. Even if H is
k-defined, the (set-theoretic) centralizer CG(H) need not be k-defined in general.
For instance, if k is perfect and H is k-defined then CG(H) is k-defined.

Next we recall some basic notation concerning parabolic subgroups in (non-
connected) reductive groups G from [2, §6] and [5]. Given λ ∈ Y (G), we define

Pλ = {g ∈ G | lim
a→0

λ(a)gλ(a)−1 exists}

and Lλ = CG(Im(λ)). We call Pλ an R-parabolic subgroup of G and Lλ an R-Levi
subgroup of Pλ. We have Pλ = Lλ = G if Im(λ) belongs to the centre of G.

We denote the canonical projection from P to L by cL; this is k-defined if P
and L are. If we are given λ ∈ Y (G) such that P = Pλ and L = Lλ then we often
write cλ instead of cL. We have cλ(g) = lima→0 λ(a)gλ(a)

−1 for g ∈ Pλ; the kernel
of cλ is the unipotent radical Ru(Pλ) and the set of fixed points of cλ is Lλ.

Let m ∈ N. Below we consider the action of G on Gm by simultaneous conjug-
ation: g · (g1, . . . , gm) = (gg1g

−1, . . . , ggmg
−1). Given λ ∈ Y (G), we have a map

Pm
λ → Lm

λ given by g 7→ lima→0 λ(a) · g; we abuse notation slightly and also call
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this map cλ. For any g ∈ Pm
λ , there exists an R-Levi k-subgroup L of Pλ with

g ∈ Ln if and only if cλ(g) = u · g for some u ∈ Ru(Pλ)(k).
Our main tool from GIT is the notion of cocharacter-closure from [5] and [1].

Definition 1. Let X be an affine G-variety and let x ∈ X (we do not require x to
be a k-point). We say that the orbit G(k) · x is cocharacter-closed over k if for all
λ ∈ Yk(G) such that x′ := lima→0 λ(a) · x exists, x′ belongs to G(k) · x. If k = k
then it follows from the Hilbert-Mumford Theorem that G(k) · x is cocharacter-
closed over k if and only if G(k) ·x is closed [7, Thm. 1.4]. If O is a G(k)-orbit in
X then we say that O is accessible from x over k if there exists λ ∈ Yk(G) such
that x′ := lima→0 λ(a) · x belongs to O.

Theorem 2 (Rational Hilbert-Mumford Theorem ([1, Thm. 1.3])). Let G, X, x
be as above. Then there is a unique G(k)-orbit O such that O is cocharacter-closed
over k and accessible from x over k.

2. G-complete reducibility

Definition 3. Let H be a subgroup of G. We say that H is G-completely reducible
over k (G-cr over k) if for any R-parabolic k-subgroup P of G such that P contains
H, there is an R-Levi k-subgroup L of P such that L contains H. We say that H is
G-irreducible over k (G-ir over k) if H is not contained in any proper R-parabolic

k-subgroup of G at all. We say that H is G-cr if H is G-cr over k.

For more on G-complete reducibility, see [9] and [2]. Note that the definition
make sense even if H is not k-defined. It is immediate that G-irreducibility over
k implies G-complete reducibility over k. We have Pg·λ = gPλg

−1 and Lg·λ =
gLλg

−1 for any λ ∈ Y (G) and any g ∈ G (cf. [2, §6]). It follows that if H is G-cr
over k (resp., G-ir over k) then so is any G(k)-conjugate of H .

Fix a k-embedding G → GLn for some n ∈ N. Let H be a subgroup of G.
Let m ∈ N and let h = (h1, . . . , hm) ∈ Hm. We call h a generic tuple for H if
h1, . . . , hm generates the subalgebra ofMn generated by H [5, Def. 5.4]. Note that
we don’t insist that h is a k-point.

Theorem 4 ([1, Thm. 9.3]). Let H be a subgroup of G and let h ∈ Hm be a generic
tuple for H. Then H is G-completely reducible over k if and only if G(k) · h is
cocharacter-closed over k.

Using this result one can derive many results on G-complete reducibility: for
instance, see [2] for the algebraically closed case and [5], [1] for arbitrary k.

3. k-semisimplification

Definition 5. Let H be a subgroup of G. We say that a subgroup H ′ of G is a
k-semisimplification of H if there exist an R-parabolic k-subgroup P of G and an
R-Levi k-subgroup L of P such that H ⊆ P , H ′ = cL(H) and H ′ is G-completely
reducible (or equivalently, L-completely reducible, by [3, Prop. 3.6(b)]) over k. We
say the pair (P,L) yields H ′.
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Remark 6. (a). Let H be a subgroup of G. If H is G-cr over k then clearly H
is a k-semisimplification of itself, yielded by the pair (G,G).

(b). Suppose (P,L) yields a k-semisimplification H ′ of H. Let L1 be another
R-Levi k-subgroup of P . Then L1 = uLu−1 for some u ∈ Ru(P )(k), so cL1(H) =
ucL(H)u−1. Hence (P,L1) also yields a k-semisimplification of H. We say that
P yields a k-semisimplification of H.

(c). For G connected and H a subgroup of G(k), Definition 5 generalizes Serre’s
“G-analogue” of a semisimplification from [9, §3.2.4].

Remark 7. Let h = (h1, . . . , hm) ∈ Hm be a generic tuple for H. It is easy
to see that cλ(h) = (cλ(h1), . . . , cλ(hm)) is a generic tuple for cλ(H). Hence
by Theorem 4, cλ(H) is a k-semisimplification of H if and only if G(k) · cλ(h)
is cocharacter-closed over k. It follows from Theorem 2 that H admits at least
one k-semisimplification: for we can choose λ ∈ Yk(G) such that G(k) · cλ(h)
is cocharacter-closed over k, so cλ(H) is a k-semisimplification of H, yielded by
(Pλ, Lλ).

Here is our main result, which was proved in the special case k = k in [5,
Prop. 5.14(i)], cf. [9, Prop. 3.3(b)]. The uniqueness statement is akin to the the-
orem of Jordan–Hölder.

Theorem 8 ([3, Thm. 4.5]). Let H be a subgroup of G. Then any two k-
semisimplifications of H are G(k)-conjugate.

Remark 9. Given a reductive k-group G and a subgroup H of G, we may regard
G as a k-group by forgetting the k-structure, so it makes sense to consider the
k-semisimplification of H. It can happen that H is G-cr over k but not G-cr, or
vice versa: see [2, Ex. 5.11] and [4, Ex. 7.22]. So there is no direct relation between
the notions of k-semisimplification and k-semisimplification in general.
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Overgroups of regular unipotent elements in simple algebraic groups

Donna M. Testerman

(joint work with Gunter Malle)

Let G be a simple linear algebraic group defined over an algebraically closed field.
The regular unipotent elements of G are those whose centraliser has minimal
possible dimension (the rank of G) and these form a single conjugacy class which
is dense in the variety of unipotent elements of G. In [3], we make a contribution
to the study of positive-dimensional subgroups of G which meet the class of regular
unipotent elements. Since any parabolic subgroup must contain representatives
from every unipotent conjugacy class, the question is tractable only for reductive,
not necessarily connected, subgroups. Our main result is:

Theorem 1. Let G be a simple linear algebraic group over an algebraically closed
field, X ≤ G a closed reductive subgroup containing a regular unipotent element
of G. If [X◦, X◦] 6= 1, then X lies in no proper parabolic subgroup of G.

On the other hand, we show that for many simple groups G, there exists a
closed positive-dimensional reductive subgroup X ≤ G with X◦ a torus, such
that X meets the class of regular unipotent elements of G and lies in a proper
parabolic subgroup of G. Note that a direct corollary of the theorem concerns
representations of positive-dimensional reductive groups:

Corollary 2. Let X < SL(V ) be a closed reductive subgroup containing a uni-
potent element acting as one Jordan block on V . If [X◦, X◦] 6= 1, then X acts
irreducibly on V .

The investigation of the possible overgroups of regular unipotent elements in
simple linear algebraic groups has a long history. The maximal closed positive-
dimensional reductive subgroups of G which meet the class of regular unipotent
elements were classified by Saxl and Seitz in 1997; see [4]. In earlier work, see
[5, Thm 1.9], Suprunenko obtained a particular case of their result. In order
to inductively derive from the Saxl–Seitz classification a description of all closed
positive-dimensional reductive subgroups X ≤ G containing regular unipotent
elements, one needs to exclude that any of these can lie in proper parabolic sub-
groups. For connectedX this was shown by Testerman and Zalesski in [6, Thm 1.2]
in 2013. They then went on to determine all connected reductive subgroups of
simple algebraic groups which meet the class of regular unipotent elements. Our
result generalises [6, Thm 1.2] to the disconnected case and thus makes the in-
ductive approach possible. It is worth pointing out that the analogous result is no
longer true even for simple subgroups once one relaxes the condition of positive-
dimensionality. For example, there exist reducible indecomposable representations
of the group PSL2(p) whose image in the corresponding SL(V ) contains a matrix
with a single Jordan block, i.e., the image meets the class of regular unipotent
elements in SL(V ).

Our proof of the main theorem relies on the result of Testerman–Zalesski [6] in
the connected case, which actually implies our theorem in characteristic 0, as
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well as on results of Saxl–Seitz [4] classifying almost simple irreducible and tensor
indecomposable subgroups of classical groups containing regular unipotent ele-
ments and maximal reductive subgroups in exceptional groups with this property.
For the exceptional groups we also use information on centralisers of unipotent
elements and detailed knowledge of Jordan block sizes of unipotent elements act-
ing on small modules, as found in Lawther [2]. For establishing the existence of
positive-dimensional reductive subgroups X ≤ G, with X◦ a torus, and X meet-
ing the class of regular unipotent elements, we produce subgroups which centralise
a non-trivial unipotent element and hence necessarily lie in a proper parabolic
subgroup of G.

The Testerman–Zalesski classification can be seen as being a “recognition” result:
identify a reductive subgroup of the simple algebraic group G simply by knowing
that the subgroup meets a certain conjugacy class. In this vein, and in the case of
disconnected subgroups, the following natural questions remain open:

1. Determine (up to conjugacy) all positive-dimensional disconnected reductive
subgroups X < G, where X◦ is not a torus and X contains a regular unipotent
element of G.

2. Determine all disconnected reductive subgroups of G containing a regular uni-
potent element of G and lying in a proper parabolic subgroup of G.

Finally, it is also natural to ask to whether one can extend the main theorem to
reductive subgroups of G meeting a conjugacy class of non-regular distinguished
unipotent elements. (A unipotent element is distinguished if its connected cent-
ralizer contains no nontrivial semisimple elements.) In [1], Korhonen considers
this question and gives examples of connected reductive subgroups X of simple
classical algebraic groups such that X meets a class of distinguished unipotent
elements of G and lies in a proper parabolic subgroup of G; see for example [1,
7.1].
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Langlands duality, shifted quantum groups and cluster algebras

David Hernandez

In the framework of the study of K-theoretical Coulomb branches, Finkelberg-
Tsymbaliuk introduced remarkable new algebras, the shifted quantum affine algeb-
ras and their truncations. We establish that the Grothendieck ring of the category
of their finite-dimensional representations has a natural cluster algebra structure.
We propose a conjectural parameterization of simple modules of a non simply-laced
truncation in terms of the Langlands dual quantum affine Lie algebra. We have
several evidences, including a general result for finite-dimensional representations.

Shifted quantum affine algebras and their truncations arose [FT] in the study of
quantized K-theoretic Coulomb branches of 3d N = 4 SUSY quiver gauge theories
in the sense of Braverman-Finkelberg-Nakajima which are at the center of current
important developments. A presentation of (truncated) shifted quantum affine
algebras by generators and relations was given by Finkelberg-Tsymbaliuk. Their
rational analogs, the shifted Yangians, and their truncations, appeared in type
A in the context of the representation theory of finite W -algebras by Brundan-
Kleshchev, then in the study of quantized affine Grassmannian slices [KTWWY]
for general types and in the study of quantized Coulomb branches of 3d N = 4
SUSY quiver gauge theories by Braverman-Finkelberg-Nakajima for simply-laced
types and [NW] for non simply-laced types.

Let g be a simple complex finite-dimensional Lie algebra, and ĝ the corresponding
untwisted affine Kac-Moody algebra, central extension of the loop algebra Lg =
g⊗C[t±1]. Drinfeld and Jimbo associated to each complex number q ∈ C∗ a Hopf
algebra Uq(ĝ) called a quantum affine algebra. Shifted quantum affine algebras
Uµ+,µ−
q (ĝ) can be seen as variations of Uq(ĝ), but depending on two coweights µ+,
µ− of the underlying simple Lie algebra g. These coweights corresponding to shifts
of formal power series in the Cartan-Drinfeld elements (that is quantum analogs of
the trh ∈ Lg, with r ∈ Z and h ∈ h in the Cartan subalgebra of g). In particular
U0,0
q (ĝ) is a central extension of the ordinary quantum affine algebra Uq(ĝ). Up to

isomorphism, Uµ+,µ−
q (ĝ) only depends on µ = µ++µ− and will be denoted simply

by Uµ
q (ĝ).

The truncations are quotients of Uµ
q (ĝ) and depend on additional parameters,

including a dominant coweight λ. In this context, these parameters λ and µ can

be interpreted as parameters for generalized slices of the affine Grassmannian Wλ

µ

(usual slices when µ is dominant).
For simply-laced types, representations of shifted Yangians and related Coulomb

branches have been intensively studied, see [KTWWY] and references therein. For
non simply-laced types, representations of quantizations of Coulomb branches have
been studied by Nakajima and Weekes [NW].

In [H], we develop the representation theory of shifted quantum affine algebras.
We establish several analogies with the representation theory of ordinary quantum
affine algebras. But our approach is also based on several techniques, which are
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new for ordinary as well as for shifted quantum affine algebras : induction and
restriction functors to the category O of representations of the Borel subalgebra

Uq(b̂) of the quantum affine algebra Uq(ĝ), relations of truncations with Baxter
polynomiality in quantum integrable models, and parametrization of simple mod-
ules via Langlands dual interpolating (q, t)-characters.

We first we relate these representations to the quantum affine Borel algebra
Uq(b̂). For general untwisted types, the category O of representations of the

quantum affine Borel algebra Uq(b̂) was introduced and studied in [HJ]. Some
representations in this category extend to a representation of the whole quantum
affine algebra Uq(ĝ), but many do not, including the prefundamental representa-
tions constructed in [HJ] and whose transfer-matrices have remarkable properties
for the corresponding quantum integrable systems [FH2].

Consider a category Oµ of representations of Uµ
q (ĝ) which is an analog of the

ordinary category O. We obtain induction/restriction functors to the category O
of Uq(b̂)-modules and we establish the following. Let us denote by αi the simple
roots of g and let n be the rank of g.

Theorem 1 ([H]). The simple representations in Oµ are parametrized by n-tuples
(Ψi(z)) of rational fractions regular at 0 with deg(Ψi(z)) = αi(µ).

We define a ring structure on the sum of Grothendieck groups K0(Oµ) from
fusion products. It contains the Grothendieck ring K0(Csh) of finite-dimensional
representations as a subring. Recall that the cluster algebra A(Q) attached to
a quiver Q is a commutative ring with a distinguished set of generators called
cluster variables and obtained inductively by a procedure called mutation. Using
induction/restriction functors, as well as results in [HL], we obtain the following
(the last part of the Theorem relies on recent results in [KKOP]).

Theorem 2 ([H]). The Grothendieck ring K0(Csh) has a structure of a cluster
algebra with an initial cluster variables which are classes of prefundamental rep-
resentations. Moreover, all cluster monomials are classes simple objects.

Let us now discuss truncated shifted quantum affine algebras, quotients of
Uµ
q (ĝ). For simply-laced types, simple representations of truncated shifted Yangi-

ans have been parametrized in terms of Nakajima monomial crystals [KTWWY].
See the Introduction of [H] for comments on related results in [NW].

We will use Baxter polynomiality in quantum integrable systems. Let us recall
that to each representation V of Uq(b̂) in the category O, is attached a transfer-
matrix tV (z) which is a formal power series in a formal parameter z with coeffi-
cients in Uq(ĝ). Given another simple finite-dimensional representationW of Uq(ĝ),
we get a family of commuting operators on W [[z]]. This is a quantum integrable
model generalizing the XXZ-model. It is established in [FH2], the spectrum
of this system, that is the eigenvalues of the transfer-matrices, can be described
in terms of certain polynomials, generalizing Baxter’s polynomials associated to
the XXZ-model. These Baxter’s polynomials are obtained from the eigenval-

ues of transfer-matrices associated to prefundamental representations of Uq(b̂).
Moreover, this Baxter polynomiality implies the polynomiality of certain series of
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Cartan-Drinfeld elements acting on finite-dimensional representations [FH2]. We
relate this result to the structures of representations of truncated shifted quantum
affine algebras. In particular, we give in [H] a uniform proof of the finiteness of
the number of simple isomorphism classes for truncations.

In non-simply-laced types, we propose a parametrization of these simple repres-
entations. We use a limit obtained from interpolating (q, t)-characters. The latter
were defined by Frenkel and the author as an incarnation of Frenkel-Reshetikhin
deformed W -algebras interpolating between q-characters of a non simply-laced
quantum affine algebra and its Langlands dual. They lead to the definition of an
interpolation between the Grothendieck ring Rep(Uq(ĝ)) of finite-dimensional rep-
resentations of Uq(ĝ) and the Grothendieck ring Rep(Ut(ĝ

L)) of finite-dimensional
representations of the Langlands dual algebra quantum affine algebra Ut(ĝ

L). We
found it is relevant for our purposes to introduce a different specialization of in-
terpolating (q, t)-characters that we call Langlands dual q-characters.

Conjecture 3 ([H]). The simple modules of a truncation are explicitly paramet-
rized by monomials in the Langlands dual q-character of a finite-dimensional rep-
resentation of the Langlands dual quantum affine algebra.

Recall that the deformed W -algebras were introduced by Frenkel-Reshetikhin
in the context of the geometric Langlands program. The parametrization in
[KTWWY] for simply-laced types can be understood in the context of symplectic
duality. Hence the statement of our conjecture can be seen as motivated by sym-
plectic and Langlands duality. Our main evidence for the Conjecture is the fol-
lowing, obtained as a consequence of the Baxter polynomiality.

Theorem 4 ([H]). A finite-dimensional simple representation in Oµ descends to
a certain explicit truncation as predicted by Conjecture 3.

References

[FH2] E. Frenkel and D. Hernandez, Baxter’s Relations and Spectra of Quantum Integrable
Models, Duke Math. J. 164 (2015), no. 12, 2407–2460.

[FT] M. Finkelberg and A. Tsymbaliuk, Multiplicative slices, relativistic Toda and shifted
quantum affine algebras, in Progr. Math. 330 (2019), 133–304.

[H] D. Hernandez, Representations of shifted quantum affine algebras, Preprint
arXiv:2010.06996.

[HJ] D. Hernandez and M. Jimbo, Asymptotic representations and Drinfeld rational frac-
tions, Compos. Math. 148 (2012), 1593–1623.

[HL] D. Hernandez and B. Leclerc, Cluster algebras and category O for representations
of Borel subalgebras of quantum affine algebras, Algebra and Number Theory 10
(2016), 2015–2052.

[KKOP] M. Kashiwara, M. Kim, S-J. Oh and E. Park, Monoidal categorification and quantum
affine algebras II, Preprint arXiv:2103.10067.

[KTWWY] J. Kamnitzer, P. Tingley, B. Webster, A. Weekes, and O. Yacobi, On category O

for affine Grassmannian slices and categorified tensor products, Proc. Lond. Math.
Soc. 119 (2019), no. 5, 1179–1233.

[NW] H. Nakajima and A. Weekes, Coulomb branches of quiver gauge theories with sym-
metrizers, to appear in J. Eur. Math. Soc. (preprint arXiv:1907.06552).



Algebraic Groups 1099

Fixed points on toroidal compactifications and essential dimension of
congruence covers

Patrick Brosnan

(joint work with Najmuddin Fakhruddin)

1. Introduction. Let f : X → Y be a generically finite morphism of quasi-
projective varieties over C. (We work over C in this extended abstract mostly for
simplicity.) The pullback dimension of f : X → Y is the minimum dimension
pbd f of a quasi-projective variety Z such that f : X → Y is isomorphic to
the projection on the second factor W ×Z Y → Y from a fiber product, where
g : Y → Z and h : W → Z are morphisms of quasi-projective complex schemes.
The essential dimension edf of f is the minimum of the pullback dimensions of the
morphisms X ×Y U → U obtained from f via pullback from an open immersion
U → Y . Similarly, if p is a prime number, then the essential dimension ed(f ; p) of
f at p is the minimum of the pullback dimensions of the morphisms X×Y V → V ,
where V → Y ranges over all generically finite morphisms of degree prime to p.
We say that f is incompressible (resp. p-incompressible) if ed f = dimY (resp.
ed(f ; p) = dimY ).

If G is a finite group (viewed as a constant group scheme), then the essential di-
mension edG of G (resp. the essential dimension ed(G; p) of G at p) can be defined
as the essential dimension ed(GLn → GLn/G) (resp. ed(GLn → GLn/G; p))
where G → GLn is any faithful representation of G. It turns out that the essen-
tial dimension of G is the maximum of the essential dimensions of all G-torsors
E → B (and similarly for the essential dimension at p).

2. Work of Farb, Kisin and Wolfson. Essential dimension was invented by
J. Buhler and Z. Reichstein in the paper [4]. Since then, there has been a large
amount of work done on computing the essential dimension of groups. Moreover,
the notion of essential dimension was very quickly generalized to algebraic groups
[8] (and later to stacks in [3]). However, there has been less work on computing
the essential dimension of morphisms in general. One notable recent exception
can be found in a preprint by B. Farb, M. Kisin and J. Wolfson [5].

Theorem 1 (Farb-Kisin-Wolfson). Let g and N be integers greater than 2, and
let p be a prime not dividing N . Let Ag[N ] denote the moduli space of principally
polarized abelian varieties of dimension g equipped with a full level N structure.
Then the congruence cover Ag[pN ] → Ag[N ] (obtained by the forgetful functor) is
p-incompressible.

The above theorem was proved by arithmetic means involving the reduction
modulo p of the scheme of principally polarized abelian varieties with full level
N structure. Owing to the flexibility of their method, Farb, Kisin and Wolfson
were able to prove several generalizations involving varieties closely related to
Ag[N ]. For example, in [5] they prove generalizations where Ag[N ] is replaced with
the moduli space Mg[N ] of genus g curves with full level N structure, and they
also prove generalizations where Ag is replaced with certain (connected) Shimura
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varieties of Hodge type. (These are, roughly speaking, the Shimura varieties which
can be embedded in Ag.)

Note that the morphism Ag[pN ] → Ag[N ] can be viewed as an Sp2g(Z/p)-

torsor. So Theorem 1 proves that ed(Sp2g(Z/p); p) ≥ dimAg =
(
g+1
2

)
. On

the other hand, using the theorem of Karpenko and Merkurjev on essential di-
mension of p-groups [7], D. Benson has shown [2, Theorem 79] that, in fact,
ed(Sp2g(Z/p); p) = pg−1 when p is odd.

3. Summary of work with Fakhruddin. The work described here was mo-
tivated by a suggestion of Zinovy Reichstein to recover Theorem 1 using the
fixed-point method, a geometric method for proving lower bounds on essential
dimension. Using it we are able to recover not only Theorem 1 but also its gener-
alization to Mg. Moreover, our methods apply to some Shimura varieties, which
are not of Hodge type. For example, we can prove p-incompressibility for certain
congruence covers of (connected) Shimura varieties of type E7 [2, Corollary 76].
We also prove the p-incompressibility of certain “quantum” congruence covers of
the moduli space of curves, and we generalize Theorem 1 to fields k of finite char-
acteristic ℓ as long as ℓ ∤ pN . On the other hand, while the arithmetic methods
of Theorem 1 apply to many compact Shimura varieties, for reasons which will
hopefully become obvious below, our fixed point methods do not prove nontrivial
lower bounds on essential dimension for étale morphisms f : X → Y between
proper varieties.

4. Fixed point theorems. Our results are based on the following fixed point
theorem of Gille and Reichstein [6].

Theorem 2. Suppose G is a finite group and f : X → Y is a G-torsor with X
and Y quasi-projective varieties over C. Let p be a prime and suppose H ≤ G is a
subgroup isomorphic to (Z/p)r for some integer r. Suppose further that X admits
a G-equivariant partial compactification X̄ on which H has a smooth fixed point.
Then ed(f ; p) ≥ r.

This reduces the problem of proving lower bounds on essential dimension to the
problem of finding fixed points. For this we use the following new result, which is
[2, Proposition 16].

Theorem 3. Let S̄ be a toroidal singularity, that is, S̄ is the completion of the
local ring of a toric variety at a toric fixed point. Let S denote the complement of
the boundary divisors in S̄, and suppose that

S Y X

S̄ Ȳ X̄

g f

ḡ f̄

is a commutative diagram with X̄ and Ȳ quasi-projective complex varieties. As-
sume that all vertical arrows are open immersions and assume that f and f̄ are
proper. Suppose further that the left and right squares are both pullback diagrams
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and that the entire diagram is equivariant for the action of a finite group G which
acts trivially on all schemes except (possibly) on X and X̄, and with f : X → Y
a G-torsor.

Write H for the conjugacy class of the image of π1(S) in G arising from the
Galois correspondence, and suppose that H is a abelian. Then H has a fixed point
on X̄.

The proof of Theorem 3 is in some ways similar to the proof of the fixed point
theorem itself, especially to the proof given by Kollár and Szabó in [8]. If we pull
back the right square to the left, we get an H-torsor XS over S and an extension
of the map XS → S to S̄. Roughly speaking, the point is to show that H has a
fixed point on X̄S̄ . The main tool which allows us to prove this is Abhyankar’s
lemma.

In the applications of Theorem 3 to the Shimura variety case, we can take
X → Y to be a congruence cover, Ȳ to be the Baily-Borel compactification of
Y and X̄ to be any smooth G-equivariant compactification of X , where G is the
group of the congruence cover. We then take S̄ to be the formal neighborhood
of a point in one of the toroidal compactifications of Y constructed in [1]. The
image H of π1(S) in G depends on the neighborhood chosen, but, in the Shimura
variety case, the neighborhoods have a group theoretic interpretation as does the
Baily-Borel compactification Ȳ . Applying these ideas give us the following result,
which follows directly from [2, Lemma 47].

Theorem 4. Suppose Y = D/Γ is the quotient of a tube domain by a neat arith-
metic subgroup, and assume that D has a zero dimensional rational boundary
component. Then, for every prime p, there is a finite index normal subgroup Γ′ of
Γ such that the congruence cover D/Γ′ → D/Γ is p-incompressible.
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On a “Wonderful” Bruhat-Tits group scheme

Vikraman Balaji

(joint work with Y. Pandey)

Let G be an almost simple, simply-connected group over an algebraically closed
field k and let G

ad
:= G/Z(G). We construct certain universal group schemes on

• the De Concini-Procesi wonderful compactification [7] X of G
ad
,

• the Mumford embeddings Ḡ
ad,A

of the relative group scheme G
ad,A

[12],

• the loop “wonderful embedding” X
aff

of the adjoint affine Kac-Moody

group G
aff

ad
, constructed by Solis [15].

We term these group schemes “wonderful” Bruhat-Tits group schemes (see
http://arxiv.org/abs/2101.09212).

Group embeddings and buildings. Let us recall that Tits’ buildings are basically of
two types. The first one is the “absolute” Tits building or spherical building which
is attached to a semi-simple group over a general field. This simplicial complex is
built from simplices which correspond to parabolic subgroups. The apartments of
the building correspond to parabolic subgroups containing a fixed maximal torus.
This is built up out of Euclidean spaces decomposed by the usual Weyl chambers.
The second one is the Bruhat and Tits building which is the “relative” building
attached to a semi-simple group over a complete-valued field. This is based on its
parahoric subgroups and built up out of Euclidean spaces decomposed into affine
Weyl chambers.

The two types of Tits’ buildings can also be seen from an algebro-geometric
perspective. In the absolute case, we work with a semisimple group G

ad
of adjoint

type. In this setting one has the wonderful embedding

(1) G
ad
⊂ X

where G
ad
sits as an open dense subset of X. The complement X\G

ad
is stratified

by subsets Y and there is a bijection Y 7→ P
Y
from these strata to parabolic sub-

groups P
Y
⊂ G. Furthermore, this bijection extends to an isomorphism between

the Tits building and the canonical complex associated with the toroidal embed-
ding (see Mumford [12, Page 178]).

A second perspective is when the ground field is endowed with a complete non-
archimedean discrete valuation. Let A = k[[z]] be a complete discrete valuation
ring, K = k((z)) its quotient field. In this setting our basic model is the one
constructed by Mumford [12]. He constructs a toroidal embedding G

ad,A
⊂ Ḡ

ad,A

of the split group scheme G
ad,A

= G
ad

× SpecA. The strata of Ḡ
ad,A

\ G
ad,A

correspond bijectively to parahoric subgroups of G(K) in a way that naturally
extends to an isomorphism of the graph of the embedding G

ad,A
⊂ Ḡ

ad,A
with the

Bruhat-Tits building of G× SpecA over A.

Statement of main results. Classical Bruhat-Tits theory associates, to each
facet σ of the Bruhat-Tits building, a smooth group scheme G

σ
on Spec A with

connected fibres whose generic fibre is G×
Spec k

Spec K. We call G
σ
a Bruhat-Tits

http://arxiv.org/abs/2101.09212
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group scheme on SpecA. The A-valued points G
σ
(A) ⊂ G(K) are precisely the

parahoric subgroups of G(K). In this paper we construct universal analogues of
the Bruhat-Tits group scheme.

A new point of view which plays a central role in this paper is that the notion
of a parabolic vector bundle on logarithmic schemes can be used as a tool to make
geometric constructions. Parabolic bundles have been encountered hitherto in the
literature as objects in certain moduli spaces of bundles.

The case of Tits building. In the first setting, namely in the case of the Tits build-
ing, we construct an affine group scheme G

X
over X whose restriction along each

curve transversal to a strata of X \ G
ad

corresponds to the Bruhat-Tits group
scheme associated to the parabolic subgroup under the bijection Y 7→ P

Y
men-

tioned above.
To state our theorem, let us introduce some relevant notations and notions.

Let X := G
ad

be the wonderful compactification of G
ad
. We firstly construct a

“parahoric” Lie-algebra bundle R on X.
We fix data (T,B,G) of G. Let S denote the set of simple roots of G and

S = S ∪ {α0} denote the set of affine simple roots. For I ⊂ S let GI denote the

associated Bruhat-Tits group scheme on a dvr and for I ′ ⊂ S let Gst

I′ = GI where
I = I ′ ∪ {α0}. For I ′ ⊂ S, let ZI′ denote the corresponding strata of X.

Theorem 1. There exists an affine “wonderful” Bruhat-Tits group scheme G̟

X

on X together with a canonical isomorphism Lie(G̟

X
) ≃ R. It further satisfies the

following classifying property:
For any proper I ′ ⊂ S and any point z

I′ ∈ Z
I′ , let C

I′ ⊂ X be a smooth
curve with generic point in G

ad
and closed point z

I′ and let U
z
⊂ C

I′ be a formal

neighbourhood of the closed point z
I′ . Then, the restriction G̟

X
|
Uz

is isomorphic

to the standard Bruhat-Tits group scheme Gst

I′
on Spec (A).

The relative case. In the second setting we construct an affine group scheme over
Ḡ

ad,A
whose restriction along each curve transversal to a strata satisfies properties

similar to G
X
. We work in the setting of loop groups and construct an affine

group scheme over a “wonderful” embedding X
aff

constructed by Solis [15]. In the

relative case, we construct a a Lie-algebra bundle R on X
aff

and the group scheme
is obtained by integrating this bundle. Its construction is achieved by constructing
a Lie-algebra bundle J on a finite dimensional scheme Y which is the closure of a

torus-embedding and whose translates build up the ind-scheme X
aff

.
The ind-scheme Xaff has divisors Dα for α ∈ S such that the complement of

their union is Xaff \Gaff
ad . Our second theorem is the following:

Theorem 2. There exists an affine “wonderful” Bruhat-Tits group scheme G̟

Xaff

on Xaff together with a canonical isomorphism Lie(G̟

Xaff
) ≃ R. It further satisfies

the following classifying property:
For any non-empty subset I ⊂ S and any point h ∈ ∩α∈IDα, let C

I
⊂ Xaff

be a smooth curve with generic point in Gaff
ad

and closed point h. Let U
h
⊂ C

I
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be a formal neighbourhood of the closed point h. Then, the restriction G̟

Xaff
|
U
h
is

isomorphic to the Bruhat-Tits group scheme G
I
on Spec (A).
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Complexity of actions over perfect fields

Friedrich Knop

(joint work with Vladimir S. Zhgoon)

Let G be a connected reductive group defined over a ground field K. Let P ⊆ G
be a minimal parabolic K-subgroup.

Definition 1. A G-variety X is K-spherical if it is normal and there is a K-
rational point x0 ∈ X(K) such that the orbit Px0 is open in X.

Consider first the case that K is algebraically closed. Then P = B be a Borel
subgroup of G and K-spherical is spherical in the usual sense. It is a basic the-
orem of Brion [3] and, independently, Vinberg [8] that the number of B-orbits
in a spherical variety is finite. The method of both proofs is the same namely a
deformation argument to horospherical varieties.

Later Matsuki [7] gave a simpler proof by using reduction to rkG = 1. In the
same paper he discussed the possibility of generalizations to non-closed ground
fields K. He observed in particular that näıvely replacing the Borel subgroup B
by a minimal parabolic P does not work. On the other hand, he conjectured in the
caseK = R that for an R-sphericalX , the number of G(R)-orbits in X(R) is finite.
This conjecture was proved by Bien [1] and, independently by Krötz-Schlichtkrull
[6].

In the talk we presented the following generalization of the Brion-Vinberg the-
orem.

Theorem 2. Let K be a perfect field, let G be a connected reductive K-group and
let P ⊆ G be a minimal parabolic K-subgroup. Let X be a K-spherical G-variety.
Then the number of P -orbits Px ⊆ X with x ∈ X(K) is finite. Equivalently, the
image of

X(K)/P (K) → X/P

is finite.

By a theorem of Borel-Serre [2] we get

Corollary 3. Let K be a local field of characteristic zero and X a K-spherical
G-variety. Then X(K)/P (K) is finite.

In the proof, we first reduce (using [5]) to the case that X is homogeneous. Then
we use the idea of Matsuki, i.e., it suffices to consider only groups with rkK G = 1.
But even then, a classification of allK-sphericalX does not seem feasible. Instead,
we have to resort to some general arguments when X = G/H with H semisimple.
Here, a crucial ingredient is Kempf’s instability theorem, whence the restriction
to perfect fields.

As a matter of fact, Vinberg proved a more general theorem which is valid for
all normal G-varieties X . For this, define for a P -stable subvariety Y ⊆ X its
complexity as

c(Y/P ) := trdegK K(Y )P .
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We say that Y is K-dense if Y (K) is Zariski-dense in Y . Observe that X is K-
spherical iff X is K-dense with c(X/P ) = 0. Hence, the first theorem follows easily
from:

Theorem 4. Let K be a perfect field, let G be a connected reductive K-group
and let P ⊆ G be a minimal parabolic K-subgroup. Let X be a normal K-dense
G-variety. Then

c(Y/P ) ≤ c(X/P )

for all K-dense P -stable subvarieties Y ⊆ X.
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Rigidity and Unirational Groups

Zev Rosengarten

A basic result in the theory of abelian varieties is the rigidity lemma, whose state-
ment we recall.

Lemma 1. [4, §4, Rigidity Lemma (Form I)] Let X and Y be geometrically integral
schemes of finite type over a field k, and let Z be a separated k-scheme. Let
f : X × Y → Z be a k-morphism, and assume that X is proper and that, for some
y ∈ Y , the restriction fy : Xk(y) → Zk(y) is constant. Then f depends only on the
Y coordinate. That is, there is a map g : Y → Z such that f is the composition of
the projection X × Y → Y with g.

This is applied in particular when X = Y and Z are abelian varieties to show
that any k-morphism of abelian varieties as schemes which preserves identities is a
k-group homomorphism. The proof of the rigidity lemma above depends crucially
upon the properness of X . Indeed, it is easy to construct examples of morphisms
of affine group schemes that are not k-group homomorphisms. For example, the
endomorphism of Ga given by the polynomial f(X) = X6 is a k-scheme endo-
morphism preserving identities that is not a homomorphism. Nevertheless, the
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purpose of the talk discussed in this abstract is to observe that for maps from
open subschemes of P1 into wound unipotent groups (and, slightly more gener-
ally, into solvable groups not containing a copy of Ga, though the real meat lies
in the wound unipotent case), there is (or should be) a certain rigidity principle
that has several important applications.

We begin with the simplest interesting case, which was the subject of the talk
– namely, fields of degree of imperfection 1. The main result in that context is the
following.

Theorem 2. Let k be a field of degree of imperfection 1, and let G and H be
finite type k-group schemes with G unirational and H not containing a k-subgroup
scheme k-isomorphic to Ga. Then any k-scheme morphism f : G → H such that
f(1G) = 1H is a homomorphism.

Among the corollaries of this result, we obtain that, over fields of degree of
imperfection 1, every unirational wound unipotent k-group scheme is commutative.
Indeed, this follows by applying the above result to the inversion morphism of such
a group. Using this commutativity, we may also show that, again in the degree of
imperfection 1 context, unirationality of group schemes descends through separable
extensions. More precisely, we have the following result.

Theorem 3. Let k be a field of degree of imperfection 1, and let K/k be a (not
necessarily algebraic) separable field extension. Then, for a finite type k-group
scheme G, one has that G is unirational over k if and only if GK is over K.

We remark that the analogous statement for commutative group schemes over
arbitrary fields is a theorem of Achet [1, Thm. 2.3].

The above results are nice, and already sufficient for certain applications to
arithmetic (global function fields have degree of imperfection 1), but we would
like to understand the situation over fields of higher degree of imperfection as
well. Unfortunately, all of the above results fail over every field of degree of
imperfection > 1. Nevertheless, the degree of imperfection 1 case, as well as the
counterexamples given in the talk, point the way to suitable positive results over
general fields. One considers maps from open subschemes of P1, and the crucial
observation/conjcture is then the following.

Conjecture 4. Let U be a wound unipotent group over the field k, let x ∈ P1
k

be a closed point, and let X := P1\x. Finally, let y1, y2 ∈ X(k). Then the only
k-morphism f : X ×X → U such that f |{y1} ×X = f |X × {y2} = 1 is f = 1.

I have phrased the above statement as a conjecture, but in fact I have a proof
for p 6= 2 (where p := char(k)). This rigidity result, in conjunction with additional
arguments, already has important implications. One, which was the motivation
for these rigidity results in the first place, is that Theorem 3 holds over every
field k, not just those of degree of imperfection 1. Another application is a funda-
mental fact about the structure of unirational wound unipotent groups – namely,
that they are generated by their unirational commutative k-subgroups, and in
particular by their smooth connected commutative k-subgroups. This is false in
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general without the assumption of unirationality: Over every imperfect field k,
Gabber has produced examples of non-commutative two-dimensional wound uni-
potent k-groups [3, Example 2.10]. One may show that any smooth, connected,
non-commutative, two-dimensional unipotent k-group U admits as its only smooth
connected k-subgroups 1,DU , and U , so in particular it is not generated by its
smooth connected commutative k-subgroups.

But there is in fact an even stronger rigidity result than Conjecture 4 that
should hold. Stating it, however, requires introducing certain additional defini-
tions. Given a finite extension L/K of fields of characteristic p, we define the
degree of primitivity of the extension to be the quantity [L : KLp], where KLp

denotes the compositum inside L of the fields K and Lp. This quantity roughly
measures the minimum number of elements required to generate L from K. In
fact, this is literally true if L/K is purely inseparable, in the sense that the min-
imum number of generators is r, where [L : KLp] = pr [2, Thm. 6]. It turns out
that one may naturally extend this definition from the case of a finite extension
of fields to any finite reduced algebra over a field. The idea is that, for a finite
reduced K-algebra A =

∏n
i=1 Li, where each Li/K is a finite field extension, one

may choose K-embeddings ji : Li →֒ F of the Li into some fixed extension field
F/K. Then one defines the degree of imprimitivity of A over K to be that of
the compositum j1(L1)j2(L2) . . . jn(Ln) inside F . Of course, one must show that
this is independent of the choice of embeddings. Having done this, one may then
define, for any divisor D ⊂ P1

k, the degree of primitivity of D to be that of the
finite reduced k-algebra O(D)red. Then we hope that the following rigidity result,
which generalizes Conjecture 4 (because closed points have degree of primitivity
1), holds.

Conjecture 5. Let U be a wound unipotent group over the field k, and let X1, . . . ,
Xn ⊂ P1

k be nonempty open subschemes and choose xi ∈ Xi(k). For each i =
1, . . . , n, let Di := P1\Xi be the complementary divisor, and let D := ∪n

i=1Di.
Suppose that n > r, the degree of primitivity of D. Then the only k-scheme
morphism f :

∏n
i=1Xi → U such that f |X1 × . . . {xi} × . . . Xn = 1 for all i is the

constant map f = 1.

One may show that any finite reduced algebra over a field of degree of imper-
fection r has degree of primitivity ≤ r. Using this fact and the above conjecture,
one could then show that, for any unirational wound unipotent group over a field
of degree of imperfection r, the rth descending central subgroup is trivial. This
generalizes the statement that every unirational wound unipotent group over a
field of degree of imperfection 1 is commutative.

References
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Local-Global Principles for Homogeneous spaces and Berkovich
Analytic Curves

Vlerë Mehmeti

Let k be a complete ultrametric field. Let C/k be a normal irreducible projective
algebraic curve with function field F . We study local-global principles for certain
homogeneous spaces defined over F by using an analytic point of view. We work
in the setting of Berkovich’s theory, which is one of the several possible approaches
to non-archimedean analytic geometry. The results we obtain generalize those of
the literature and provide geometric insight into the strategy. We will use the
notations introduced in this paragraph throughout the text.

1. Berkovich analytic curves

Analytification. There are many positive aspects to working with Berkovich
spaces: geometric intuition, a good topology, an analogy with complex analytic
spaces, etc. There exists an analytification functor, associating to a f.t. scheme
X/k a k-analytic space Xan, and with respect to which we have GAGA-type the-
orems. For instance, as in the complex case, a proper k-analytic curve is algebraic.

Meromorphic functions (M ). We can construct over these spaces the sheaf of
meromorphic functions M in a natural way. This object plays a very important
role in the study of the local–global principle through analytic curves, in part due
to the fact that F = M (Can).

The sheaf M does not behave locally as in the complex case, but its stalks still
satisfy some nice properties: 1) Mx is naturally endowed with a valuation; we

denote by M̂x its completion; 2) Mx is Henselian with respect to this valuation.

Valuations. To conclude, we mention a fact that is quite useful when studying
more “classical” local–global principles: the points of Can are valuations of F.

Proposition 1. Let MF denote the set of non-trivial rank 1 valuations v over F
such that v|k is either trivial or induces the norm on k. Then, there is a bijection

Can ↔MF such that if x 7→ vx, M̂x = Fvx , where Fvx is the completion of F with
respect to vx.

2. History and a local–global principle

We call local–global principle the following kind of statement:

Statement 2. Let K be a field and (Ki)i a family of overfields, meaning K ( Ki

for all i. Let V/K be a variety. Then, V (K) 6= ∅ ⇐⇒ V (Ki) 6= ∅ ∀i.
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In the last few decades, a lot of focus has been put on studying geometric variants of
this statement, especially when K = F . In [1], Harbater, Hartmann and Krashen
proved such a local–global principle by constructing the overfields over a model of
the curve C. To do so, HHK used patching techniques, whose application to the
study of the local–global principle was a novelty.

I adapted the patching of HHK, which is quite algebraic, to the setting of
Berkovich analytic curves (see [3]). It yielded the following:

Theorem 3. If V is a projective homogeneous variety or a torsor over a rational
linear algebraic group G/F , then V (F ) 6= ∅ ⇐⇒ V (Mx) 6= ∅ ∀x ∈ Can.

The above result generalizes those of [1]. If char k 6= 2, then Theorem 3 can
be applied to quadratic forms. Thanks to the Henselianity of the fields Mx, as a
consequence we obtain a generalization of the following result, originally shown by
Parimala and Suresh in [6] and then by HHK in [1].

Corollary 4 (Parimala–Suresh ’09, HHK ’09, M. ’19). Any quadratic form over
Qp(T ), p 6= 2, of dimension > 9, has a non-trivial zero over Qp(T ).

3. Other local-global principles

3.1. All valuations. As the Mx are Henselian, they satisfy a classical approxim-
ation property. Then, by applying Proposition 1 and Theorem 3, we obtain:

Theorem 5. If V/F is a projective homogeneous space or a torsor over a rational
linear algebraic group G/F , then V (F ) 6= ∅ ⇐⇒ V (Fv) 6= ∅ ∀v ∈MF .

The above statement also applies to quadratic forms provided char k 6= 2.

3.2. Discrete valuations. Classically, we are interested in local–global principles
where the overfields are discrete completions of F .

Conjecture 6 (Colliot-Thélène, Parimala, Suresh). Suppose k is discretely valued.
If V/F is a projective homogeneous space over a connected linear algebraic group
G/F , then V (F ) 6= ∅ ⇐⇒ V (Fv) 6= ∅ for all discrete valuations v on F .

The conjecture above was shown to be true for quadratic forms by the same
authors (see [2]). Other advances include [7].

Let S ⊂ Can denote the set of points corresponding to the discrete valuations
of F . We remark that S is dense in Can. Then, thanks to Proposition 1, using
the same notation, Conjecture 6 can be paraphrased as follows:

Conjecture 7. V (F ) 6= ∅ ⇐⇒ V (Mx) 6= ∅ ∀x ∈ S.

In recent work in progress ([5]), by using Theorem 3, I have showed the following:

Theorem 8. Conjecture 7 is true for certain varieties V that satisfy a “strong
smoothness” condition.

Intuitively speaking, this “strong smoothness” condition aims to prevent a uni-
formizer of k from being an obstruction to the smoothness of V/F. As an applic-
ation, we find another proof of Conjecture 6 in the case of quadratic forms.
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3.3. Higher dimension. By using the geometric nature of patching over Berko-
vich spaces, we can devise a strategy to generalize the results above from curves
to higher dimensional analytic spaces. This strategy consists of starting from the
study of neighbourhoods of fibers in the case of relative analytic curves. In [4], I
show that this is true for certain fibers, thus generalizing the results of [3].
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Character Sheaves for graded Lie algebras

Kari Vilonen

(joint work with Ting Xue)

We consider character sheaves for graded Lie algebras. To that end let G be a
complex reductive group with a finite order automorphism θ. The automorphism
θ induces a grading on g. We write g1 for the first graded piece and set K = Gθ.
The character sheaves are irreducible K-equivariant perverse sheaves on g1 whose
singular support is nilpotent. The goal of our program is to classify all graded
characters sheaves or at least find all the cuspidals. This program is a significant
extension of Lusztig’s generalized Springer correspondence.

One way to construct character sheaves is to proceed analogously to the original
Springer correspondence making use of functoriality of the Fourier transform. This
results in a family π̌ : X → g1 whose generic fibers are smooth Hessenberg varieties.
By construction any direct summand in the push-forward Rπ̌∗C is a character
sheaf. This turns out to be a rather difficult way to construct character sheaves,
but it can be turned around to conversely compute cohomology of Hessenberg
varieties. These ideas are explored in papers [1, 2, 3] in the special case of a
symmetric pair (SL(n), SO(n)).

In his thesis Misha Grinberg replaced the Springer resolution with a nearby
cycle construction in the context of polar representations. He then showed that
the Fourier transform of the nearby cycle sheaf is an intersection cohomology sheaf
of a local system on the generic locus of g1. It is a priori a representation of the
braid group, but one can show that it factors through a Hecke algebra with unequal

https://arxiv.org/pdf/1911.00146.pdf
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parameters. These ideas are worked out in the joint papers [5, 6] where we show
how to reduce the calculation of the Hecke algebra to rank one. This work forms
a basis of the papers [4, 7, 8]. In [4] we work out the classification of character
sheaves for the symmetric pair (SL(n), SO(n)) and in [7] we classify character
sheaves for arbitrary classical symmetric pairs.

In [8] we, conjecturally, produce all cuspidal character sheaves in the case of
arbitrary stable gradings. This work relies on [6]. The cuspidal character sheaves
for unstable gradings are more difficult to analyze. A new ingredient is to introduce
a third way of constructing cuspidal character sheaves by explicitly writing down a
D-module with nilpotent characteristic variety in analogy with the Harish-Chandra
system in the non-graded case. From this point of view the Hecke relations are
given by b-functions.

Finally, to show that we have constructed sufficiently many cuspidal character
sheaves we propose to fit our construction in the following conjectural diagram
containing other interesting nodes and arrows where all the arrows are supposed
to be bijections.

{
Cuspidal character

sheaves on g1

}
Nearby cycle

construction
//

Fourier transform

��





Simple modules of Hecke
algebras at roots of unity

associated to
complex reflection groups





oo

KZ functor

��

{
Cuspidal sheaves

on N ∩ g−1

}

OO

Lusztig-Yun

��





Full support simple modules
of rational DAHAs

associated to complex
reflection groups





OO

��



Finite dimensional simple
modules of trignometric
DAHAs associated to

Coxeter groups





Etingof //

OO





Finite dimensional simple
modules of rational
DAHAs associated to

Coxeter groups





Koszul duality

OO
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Perverse sheaves on affine flag varieties and geometry of the
Langlands dual group

Simon Riche

(joint work with R. Bezrukavnikov and L. Rider)

This abstract reports on a joint project with Roman Bezrukavnikov (and initially
Laura Rider) aiming at constructing a version for positive characteristic coefficients
of Bezrukavnikov’s equivalence relating the two geometric incarnations of the affine
Hecke algebra attached to a reductive group [Be2].

1. The affine Hecke algebra and its geometric incarnations

Let us start by recalling what the affine Hecke algebra is, and where it comes from.
Let F be a nonarchimedian local field, O its ring of integers, and k the residue
field. Let also G be a split reductive group scheme over O with connected center,
and B ⊂ G a Borel subgroup. Then we can consider the groups

G(F) ⊃ G(O) ։ G(k),

and also the Iwahori subgroup I ⊂ G(O) consisting of the elements whose image
in G(k) belongs to B(k) (a compact open subgroup in G(F)). To these data
one can attach an affine Hecke algebra Cc(I\G(F)/I), consisting of compactly
supported locally constant functions from G(F) to C which are I-biinvariant (for
an appropriate convolution product). A classical result of Borel [Bo] provides
an equivalence of categories between the category of admissible representations of
G(F) (on complex vector spaces) spanned by their I-fixed vectors and the category
of finite-dimensional modules for Cc(I\G(F)/I).

To proceed further one needs to understand the algebra Cc(I\G(F)/I) better.
This is exactly what is provided by results of Iwahori–Matsumoto [IM], with later
contributions of Bernstein and Lusztig. To explain this one chooses a maximal
torus T ⊂ B, and denotes by X the associated cocharacter lattice and by W the
Weyl group of (G, T ). The choice of B determines a subset S ⊂ W of Coxeter
generators, and for s 6= t in S we will denote byms,t the order of st inW . One then
considers the algebra H over Z[v±1] generated by {Ts : s ∈ S} ∪ {θλ : λ ∈ X},
and with relations given by

• (Ts + 1)(Ts − v−2) = 0 for s ∈ S;
• TsTt · · · = TtTs · · · (with ms,t terms) for s 6= t ∈ S;
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• θλθµ = θλ+µ for λ, µ ∈ X, θ0 = 1 ;

• Tsθλ − θs(λ)Ts = (1 − v−2)
θs(λ)−θλ
1−θ−αs

for s ∈ S and λ ∈ X.

It is known that this algebra is free over Z[v±1], and that we have isomorphisms

H ⊗Z[v±1] Zv=1
∼= Z[W ⋉X], H ⊗Z[v±1] Cv= 1√

q

∼= Cc(I\G(F)/I).

The algebra H has another geometric incarnation thanks to work of Kazhdan–
Lusztig [KL] and Ginzburg. For this one considers an algebraically closed field k,
the Langlands dual group G∨

k over k and a Borel subgroup B∨
k , denotes by U

∨
k the

unipotent radical of B∨
k , and considers the Springer variety

Ñ = {(x, gB∨
k ) ∈ Lie(G∨

k )×G∨
k /B

∨
k | x ∈ g · Lie(U∨

k )}
(a vector bundle over the flag variety G∨

k /B
∨
k ) with the natural action of G∨

k ×k×.

The Steinberg variety is the fiber product St := Ñ ×Lie(G∨
k
) Ñ , and the results of

Kazhdan–Lusztig and Ginzburg provide an algebra isomorphism

KG∨
k
×k×(St) ∼= H

where the left-hand side is the equivariant K-theory of St. This isomorphism allows
to classify the simple finite-dimensional Cc(I\G(F)/I)-modules, and therefore the
simple admissible G(F)-modules with nonzero I-fixed vectors, and hence prove
the so-called Deligne–Langlands conjecture.

2. Geometric Satake equivalence and Gaitsgory’s central functor

For various reasons (coming from the Geometric Langlands Program but also
from Representation Theory) it is desirable to obtain a “categorical upgrade” of

the relation between KG∨
k
×k×(St) and Cc(I\G(F)/I). For this one fixes an al-

gebraically closed field F of characteristic p, and assumes that k is an algebraic
closure either of Qℓ or of Fℓ, for some prime ℓ 6= p. One also replaces F by the
field K := F((z)), and O by O := F[[z]]. One chooses a connected reductive group
over F (still denoted by G), and associate to it the loop group LG and the arc
group L+G. The affine Grassmannian Gr is the ind-projective ind-scheme of ind-
finite type over F defined as the fppf quotient LG/L+G; the celebrated Geometric
Satake Equivalence provides an equivalence of monoidal categories between the
category PervL+G(Gr, k) of L+G-equivariant perverse sheaves on Gr (for an ap-
propriate convolution product) and the category Rep(G∨

k ) of representations of the
Langlands dual group over k. (This equivalence is due to Mirković–Vilonen [MV],
after earlier contributions of Lusztig and Ginzburg.) This can be thought of as
a categorical enhancement of the Satake isomorphism [Sa] describing the spher-
ical affine Hecke algebra, i.e. the algebra defined as for Cc(I\G(F)/I), but for I
replaced by G(O).

A result of Bernstein provides an isomorphism between the spherical affine
Hecke algebra and the center of Cc(I\G(F)/I). At the categorical level, this
relation is provided by Gaitsgory’s central functor

Z : PervL+G(Gr, k) → Db
Iw(Fl, k),
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where Iw ⊂ L+G is an Iwahori subgroup (determined by a choice of Borel sub-
group in G) and Fl is the affine flag variety, i.e. the fppf quotient LG/Iw, see [Ga].
One can therefore expect an equivalence of categories relating appropriate vari-
ants of the equivariant derived category Db

Iw(Fl, k) and the derived category of
equivariant coherent sheaves on St, and which sends the object Z(F ) (with F

in PervL+G(Gr, k)) to V ⊗ O∆Ñ , where V is the G∨
k -module corresponding to F

under the geometric Satake equivalence. In the case when k is an algebraic closure
of Qℓ this is exactly what is provided by [Be2]; the case when k is an algebraic
closure of Fℓ is the subject of the project presented here.

3. Regular quotients

As a first step towards this goal, in [BRR] we describe (under mild assumptions
on ℓ) the category P0

Iw obtained as the Serre quotient of the category PIw of Iw-
equivariant perverse sheaves on Fl by the subcategory generated by simple objects
with positive-dimensional support. More precisely we show that this category is
equivalent (as a monoidal category, for the monoidal structure naturally induced
by the convolution product on Db

Iw(Fl, k)) to the category of representations of the
centralizer ZG∨

k
(u) of a regular unipotent element u ∈ G∨

k (or in other words of

G∨
k -equivariant coherent sheaves on the regular part of St), in such a way that the

functor from PervL+G(Gr, k) induced by Z corresponds to the restriction functor
Rep(G∨

k ) → Rep(ZG∨
k
(u)). One crucial ingredient in our approach is a general

lemma on central functors due to Bezrukavnikov in [Be1].
In a paper in preparation [BR] we construct a version of this equivalence for

a similar quotient of the category of perverse sheaves on the natural T -torsor F̃l
over Fl generated by objects obtained by pullback from PIw. On the dual side one
obtains in this case the category of representations of the pullback of the universal
centralizer group scheme (of G∨

k ) to T
∨
k ×T∨

k
/W T∨

k supported set-theoretically on
the base point. In later work we will show that one can reconstruct appropriate

derived categories of constructible sheaves on F̃l and coherent sheaves on (a variant
of) St from the categories considered in [BR], and therefore obtain an equivalence
of categories as alluded to in Section 2.
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R-equivalence on reductive group schemes

Anastasia Stavrova

(joint work with Philippe Gille)

The following definition of R-equivalence goes back to Yu. Manin [7].

Definition 1. Let X be an algebraic variety over a field k. Denote by k[t](t),(t−1)

the semilocal ring of the affine line A1
k over k at the points 0 and 1. Two points

x0, x1 ∈ X(k) are called directly R-equivalent, if there is x(t) ∈ X(k[x](x),(x−1))
such that x(0) = x0 and x(1) = x1. The R-equivalence relation on X(k) is
the equivalence relation generated by direct R-equivalence. The R-equivalence
class group G(k)/R of an algebraic k-group G is the quotient of G(k) by the
R-equivalence class of the neutral element 1 ∈ G(k).

It is easy to see that the R-equivalence class of the neutral element 1 ∈ G(k)
is a normal subgroup of G(k), so G(k)/R is indeed a group. If k is infinite and G
is reductive, then G(k)/R is a birational invariant of G [1]. If G = T is a k-torus
and

1 → F → P → T → 1

is a flasque resilution of T , then T (k)/R ∼= H1(k, F ) and T is a retract rational
variety if and only if T (K)/R = 1 for any field extensionK of k [2]. If G is a simply
connected absolutely almost simple isotropic k-group, then G(k)/R coincides with
the Whitehead group of G, which is the subject of the Kneser–Tits problem [5].

We propose the following more general definition of R-equivalence that allows
to extend to group schemes over rings the above-mentioned and other properties
of R-equivalence of algebraic groups.

Definition 2. Let B be a unital commutative ring. We denote by Σ the multi-
plicative subset of polynomials P ∈ B[T ] satisfying P (0), P (1) ∈ B×. Let F be a
B-functor in sets. We say that two points x0, x1 ∈ F (B) are directly R–equivalent
if there exists x ∈ F

(
B[t]Σ

)
such that x0 = x(0) and x1 = x(1). The R-equivalence

relation on F (B) is the equivalence relation generated by this elementary relation.

The following properties of the generalized R-equivalence are immediate.

• X(B)/R is functorial in B;
• (X ×B Y )(B)/R ∼= X(B)/R× Y (B)/R;
• X(B[t])/R ∼= X(B)/R;
• If U is an open subscheme of a finitely generated B-vector bundle, and B
is semilocal or U is principal, then U(B)/R = ∗;
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• If G is a B-group scheme, then G(B)/R is the group G(B)/RG(B), where
RG(B) is the R-equivalence class of 1 ∈ G(B).

The following properties are specific for reductive B-group schemes. They are
proved in [6].

Proposition 3. Assume that B be a regular domain, and let 1 → S → E
π−→

T → 1 be a flasque resolution of a B-torus T . Then

T (B)/R ∼= ker
(
H1(B,S) → H1(B,E)

)
.

Proof. We have Since E is a quasi-trivial B-torus, we have E(B)/R = 1. Hence
the inclusion π(E(B)) ⊆ RT (B). For the converse, it is enough to show that
a point x ∈ T (B) which is directly R–equivalent to 1 belongs to π(E(R)). By
definition, there exists a polynomial P ∈ B[t] such that P (0), P (1) ∈ B× and
x(t) ∈ T

(
B[t, 1/P ]

)
satisfying x(0) = 1 and x(1) = x. We consider δ(x(t)) ∈

H1(B[t, 1/P ], S). Since S is flasque, the map

H1(B,S) → H1(B[t, 1/P ], S)

is onto [2, cor. 2.6]. It follows that δ(x(t)) = δ(x)(0) = δ(x(0)) = 1 so that
x(t) belongs to the image of π : E

(
B[t, 1/P ]

)
→ T

(
B[t, 1/P ]

)
. Then x = x(1) ∈

π
(
E(R)

)
. �

Definition 4. A reductive B-scheme G is called strictly isotropic, if G contains a
non-trivial parabolic B-subgroup scheme that intersects properly every semisimple
normal B-subgroup of G.

Theorem 5. Let B be a semilocal regular domain containing an infinite field,
and let K be the fraction field of B. Let G be a reductive B-scheme that is either
a torus or simply connected and strictly isotropic. Then G is retract rational over
B if and only if GK is retract rational over K if and only if G(C)/R = 1 for each
semilocal B-ring C.

Definition 6. Assume that G is strictly isotropic, and let P be a strictly proper

parabolic B-subgroup of G. The non-stable K1-functor KG,P
1 is the functor

KG,P
1 (A) = G(A)/ 〈Ru(P )(A), Ru(P

−)(A)〉 on the category of B-algebras A,
where P− is any opposite parabolic B-subgroup and Ru(P ), Ru(P

−) are the

unipotent radicals of P and P−. (We omit P− in the notation since KG,P
1 is

independent of P− by [3, Exp. XXVI Cor. 1.8].) There are canonical surjections

G(B) → KG,P
1 (B) → G(B)/R.

Proposition 7. Let G be a simply connected strictly isotropic semisimple group
scheme over a semilocal ring B. If B is henselian local or if B is an equicharacter-

istic regular ring and G has isotropic rank ≥ 2, then G(B)/R ∼= KG,P
1 (B).

Let A be a henselian local domain with residue field k and fraction field K. Let
G be a reductive group scheme over A. One may ask if there exists a specializaion
homomorphism G(K)/R → G(k)/R and what are the conditions for it to be an
isomorphism. It is productive to address this question by comparing these R-
equivalence class groups with G(A)/R.
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Proposition 8. Let G be a reductive A-group scheme. If G is a torus or simply
connected semisimple and strictly isotropic, then G(A)/R ∼= G(k)/R.

Corollary 9. If T is an A-torus and A is regular, then T (k)/R ∼= T (A)/R ∼=
T (K)/R.

It has been previously known that G(k)/R ∼= G
(
k((t))

)
/R for any field k and

any reductive k-group G [4]. The following result is a generalization to the case
of several variables.

Theorem 10. Let A be a complete equicharacteristic regular local ring. Then for
any reductive A-group scheme G one has G(k)/R ∼= G(A)/R ∼= G(K)/R.

The speaker was supported by the Russian Science Foundation grant 19-71-30002.
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Soc. 35 (2004), 4465-4474.

[5] P. Gille, Le problème de Kneser-Tits, exposé Bourbaki n0 983, Astérisque 326 (2009),
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Reduction for branching multiplicities

Nicolas Ressayre

(joint work with Pierre-Emmanuel Chaput)

Fix an n-dimensional vector space V . Let Λ+
n = {(λ1 ≥ · · · ≥ λn ≥ 0 : λi ∈ N}

denote the set of partitions. For λ ∈ Λ+
n , let S

λV be the corresponding Schur
module, that is the irreducible GL(V )-module of highest weight

∑
λiǫi (notation

as in Bourbaki). The Littlewood-Richardson coefficients (or LR-coefficients for
short) cνλ,µ are defined by

(1) SλV ⊗ SµV ≃
⊕

ν∈Λ+
n

Ccνλ,µ ⊗ SνV

(here Ccνλ,µ is a multiplicity space).
Let 1 ≤ r ≤ n and Gr(r, n) be the Grassmannian of r-dimensional linear

subspaces of V . Recall that the Schubert basis (σI) of the cohomology ring
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H∗(Gr(r, n),Z) is parametrized by the subsets I of {1, . . . , n} with r elements.
The Schubert constants cKI,J are defined by

(2) σIσJ =
∑

K

cKI,Jσ
K .

Actually, cKI,J is also a LR-coefficient.
Given a partition λ and a subset I, let λI be the partition whose parts are λi

with i ∈ I. Let also I denote the complementary subset {1, · · · , n} \ I. By [4, 2],
we have:

Theorem 1. (1) Let r and I, J,K ⊂ {1, . . . , n} be subsets with r elements
such that cKI,J 6= 0. For any (λ, µ, ν) ∈ (Λ+

n )
3, if cνλ,µ 6= 0 then

(3) |λI |+ |µJ | ≥ |νK | .

(2) Assume that cKI,J = 1. Let λ, µ, ν be partitions such that

(4) |λI |+ |µJ | = |νK | .

Then

(5) cνλ,µ = cνKλI ,µJ
· cνKλI ,µJ

.

Formula (5) is a multiplicativity property. Let us report on a similar property
for Belkale-Kumar [1] coefficients (BK-coefficients for short). These numbers are
all intersection numbers of Schubert classes or zero. Consider an inclusion P ⊂ Q
of parabolic subgroups of a reductive algebraic group G, and the corresponding
fibration G/P → G/Q. Richmond [5] proves that any BK-coefficient d of G/P
is the product of two BK-coefficients in G/Q and Q/P . In type A, this implies
that a non zero BK-coefficient of any two steps flag manifold is a product of two
LR-coefficients: d = c1c2.

If moreover c1 = 1, Theorem 1 implies that c2 itself is the product of two LR-
coefficients: c2 = c′2c

′′
2 . Thus d = c1c

′
2c

′′
2 is the product of three LR-coefficients.

This is the content of [3, Theorem 3], which even more generally states that on

a k-step flag variety, a BK-coefficient can be factorized as a product of k(k−1)
2

LR-coefficients. Unfortunately, this assertion needs c1 = 1 and is not correct
in general. Our original motivation was to correct this result. We get such a
correction if c1 = 2.

Fix now r and I, J,K ⊂ {1, . . . , n} of cardinal r such that cKI,J = 2, and consider

the multiplicities associated to the triples of partitions satisfying equation (4). We
prove that the set of triples (λ, µ, ν) ∈ (Λ+

n )
3 such that

|λI |+ |µJ | = |νK | and 0 6= cνλ,µ < cνKλI ,µJ
· cνKλI ,µJ

contains a unique minimal element (α, β, γ). Observe that in the paper, we obtain
an explicit expression for this triple.
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Theorem 2. Assume cKI,J = 2. Let λ, µ, ν be partitions such that |λI | + |µJ | =
|νK |. Then,

(6) cνλ,µ =
∑

k≥0

(−1)kcνK−kγK

λI−kαI ,µJ−kβJ
· cνK−kγK

λI−kαI ,µJ−kβJ
.

We also compute the LR coefficients corresponding to (α, β, γ):

Theorem 3. For all k ≥ 0, we have

ckγkα,kβ =
(k + 1)(k + 2)

2
,

and
ckγK

kαI ,kβJ
= c

kγK

kαI ,kβJ
= k + 1.

For example, Theorem 2 with (λ, µ, ν) = (kα, kβ, kγ) is true since (k+1)(k+2)
2 +

k(k+1)
2 = (k + 1)2.

We also explained why the assumption cKI,J = 2. Indeed, it implies that some
morphism from an incidence variety is of degree 2. A crucial point in our proof is
that such a finite morphism is cyclic.

Finally, note that Theorem 2 admits a general extension to any branching prob-
lem (the case of LR-coefficients corresponding to the tensor product decomposition
for the linear groups). At the opposite, Theorem 3 is specific to the type A.
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Homomorphisms of algebraic groups: representability and rigidity

Michel Brion

This talk is based on the preprint [1] with the same title. A motivation comes from
the problem of classifying algebraic group actions on (say) projective varieties, that
we briefly present.

We work over a field k of characteristic p ≥ 0. Given a projective variety X ,
there exists a group scheme AutX such that AutX(R) = AutR−sch(XR) for any
algebra R, where XR denotes the R-scheme obtained from X by base change.
Moreover, the automorphism group scheme AutX is locally of finite type. As a
consequence, the connected component of the identity in AutX is an algebraic
group (i.e., a group scheme of finite type) that we denote by Aut0X .
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An action of an algebraic group G on X is given by a homomorphism (i.e., a
morphism of group schemes) f : G → AutX . Two actions are equivalent if
the corresponding homomorphisms are conjugate by an element of Aut(X) =
AutX(k). So classifying G-actions on X amounts to describing the orbit space
Homgp(G,AutX)/Aut(X) for the conjugation action. If G is connected, then we

may replace AutX with Aut0X .
This motivates the following:

Questions 1. Let G and H be algebraic groups.
(i) Is there a scheme M such that HomR−gp(GR, HR) =M(R) for any algebra R?
(ii) If so, H acts on M via its action on itself by conjugation. How to describe
the orbits?

(In fact, one should allow H to be locally of finite type for applications to
G-actions as above. We refer to [1] for this technically more complicated setting).

Question (i) is equivalent to the representability of the functor of homomorph-
isms Homgp(G,H). For example, Homgp(Gm,Gm) is represented by the con-
stant scheme Zk by rigidity of tori. In particular, the scheme M is not necessar-
ily affine, nor of finite type (if it exists). But M is locally of finite type, since
R 7→ HomR−gp(GR, HR) commutes with direct limits.

Also,M has an action of Endgp(G)×Endgp(H) by composition. We will mostly
use the action of H by inner automorphisms. If H is commutative, then M is a
group scheme via pointwise multiplication.

A related parameter space exists when p = 0 and G, H are linear: then the set
Homgp(G,H)(k̄) has the structure of an affine finite-dimensional ind-variety, see
[5, Part 8]. Yet the functor Homgp(G,H) contains more information than its sets
of K-points for all field extensions K/k, and is not necessarily representable. For
example, every homomorphism Ga,K → Gm,K is trivial, but Homgp(Ga,Gm) is
not representable (see e.g. [8, Ex. 1.1]). More generally, given a connected linear
algebraic group H , one can show that Homgp(Ga, H) is representable if and only
if H is unipotent (when p = 0), resp. trivial (when p > 0).

Next, we introduce a class of algebraic groups for which Questions (i) and (ii)
have positive answers. We say that an algebraic group G (possibly non-affine) is
linearly reductive if every finite-dimensional representation of G is semi-simple.

Examples of such groups include tori, abelian varieties (since their representa-
tions are trivial), and reductive groups in characteristic 0. The affine linearly re-
ductive groups have a well-known structure, due to Nagata and Demazure-Gabriel
(see [2, IV.3.3]); the general case is analyzed in [1].

We may now state our main result:

Theorem 2. Let G be a linearly reductive group, and H a smooth algebraic group.
Then Homgp(G,H) is represented by a smooth scheme M . Moreover, every H-
orbit in M is open and the stabilizer is smooth.

The openness of orbits is a rigidity result: the only way to deform a homo-
morphism is via conjugation on the target.



1122 Oberwolfach Report 20/2021

The above theorem is due to Grothendieck when G is of multiplicative type and H
is affine over an arbitrary base scheme. See [3, Exp. XI] and a recent generalization
by Romagny in [9]. Grothendieck’s proof is based on “local” methods (from what is
now known as deformation theory) together with the restriction of homomorphisms
to n-torsion subgroups of G for all positive integers n. By contrast, our proof
uses many structure results for algebraic groups over a field, together with some
“global” arguments such as a rigidity lemma adapted from the theory of abelian
varieties.

Here is a first application of the main result:

Proposition 3. Assume k algebraically closed. Let G be a linearly reductive group,
and H a smooth algebraic group. Then the natural map

Homgp(G,H)/H(k) −→ HomK−gp(GK , HK)/H(K)

is a bijection for any algebraically closed field extension K/k.

This is due to Vinberg (see [10]) and Margaux (see [7]) for G affine.

Proof sketch. The scheme M representing Homgp(G,H) is a disjoint union of
open orbits of k-rational points. So the connected components ofM are the orbits
of the neutral component H0. Thus, we obtain

Homgp(G,H)/H(k) =M(k)/H(k) = (M/H0)/(H/H0) = π0(M)/π0(H),

where π0(M) denotes the set of connected components of M .

A further application is the following:

Proposition 4. Assume k algebraically closed. Let G be a finite group of order
prime to p, and H an algebraic group. Then Homgp(G,H)/H(k) is finite.

Proof sketch. Given a finite schemeX , the functor R 7→ HomR−sch(XR, HR) is rep-
resented by an algebraic group: the Weil restriction RX/k(H). As a consequence,
the functor Homgp(G,H) is represented by a closed subscheme M ⊂ RG/k(H).
In particular, M is of finite type. As G is linearly reductive, we conclude by the
main result.

In particular, for any finite group G of order prime to p, there are finitely many
equivalence classes of G-actions on a projective variety X , if AutX is algebraic.
But this fails in general, since there exist smooth projective complex varieties X
such that AutX is discrete and has infinitely many conjugacy classes of involutions.
Examples of such varieties were first constructed by Lesieutre in dimension 6 (see
[6]) and then by Dinh and Oguiso in any dimension ≥ 2 (see [4]).

The main result is close to optimal, as shown by the following:

Proposition 5. Let G be an algebraic group. Assume that the main result holds
for any smooth affine algebraic group H. Then G is linearly reductive.

This leaves open the following question:

Characterize the algebraic groups G such that Homgp(G,H) is representable for
any algebraic group H.
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One can show that this holds if G is an iterated extension of finite groups,
reductive groups and anti-affine groups. If p > 0, this is a weaker condition than
G being linearly reductive. A further natural question asks when the representing
scheme M is of finite type. This is very useful for applications, and holds e.g. if
G is an extension of a finite group by a semi-simple one.
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Optimality of string cone inequalities and potential functions

Bea Schumann

(joint work with Gleb Koshevoy)

Let G be a simple, simply connected, simply-laced algebraic group over C and U
be the unipotent radical of a Borel subgroup B ⊂ G. Let W be the Weyl group
of G with longest element w0 of length N .

For every reduced expression w0 = si1si2 . . . siN there exists a polyhedral para-
metrization of Lusztig’s canonical basis of C[U ] by the integer points of a rational
polyhedral cone Si ⊂ RN . Here i = (i1, i2, . . . iN) is the word of the reduced
expression si1si2 . . . siN .

Let for example G = SL3, then W ∼= S3 and s1s2s1 = w0 is a reduced expres-
sions i = (1, 2, 1) of w0. We have

Si = {(x1, x2, x3) ∈ R3 | x3 ≥ 0, x1 ≥ 0, x2 − x3 ≥ 0}.

If we consider two reduced words i1 and i2, then there is a piecewise linear bijection
Ψi1

i2
: RN → RN such that Ψ(Si1) = Si2 . In our example:
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Ψ1,2,1
2,1,2 : S(1,2,1) → S(2,1,2)

(x1, x2, x3) 7→ (max(x3, x2 − x1), x1 + x2,min(x1, x2 − x3)).(1)

The piecewise linear bijection Ψ : Si1 → Si2 can be used to compute the in-
equalities of all string cones. However, in general many recursive steps are needed
to compute the inequalities and the number of inequalities grows in general expo-
nentially with the rank of G. The questions we want to study in this talk are:

For an arbitrary reduced word i how far are the inequalities from being optimal?
How many redundancies appear and can we classify them?

Let us specify what we mean by redundancies. We call an inequality
∑N

k=1 akxk
≥ 0 redundant if omitting this inequality gives the same cone. This is equivalent to
the fact that this inequality is a positive sum of the others. The reader might guess
that this problem is hard if we compute inequalities recursively using compositions
of piecewise linear maps as in (1). We hence use another approach to study the
string cone inequalities.

Since U is a so-called partial compactification of a cluster variety, we can apply
the machinery of Gross-Hacking-Keel-Kontsevich [1] to U (up to some technical
conditions) giving a basis for C[U ] together with many parametrizations of this
basis by rational polyhedral cones CΣ (Σ a possibly infinite index set).

The string cones appear as a subset of these polyhedral cones, as the next
theorem shows.

Theorem 1 ([2]). The string cones appear as a subset of the parametrizations
CΣ, i.e. for any reduced expression i there exists an index Σi and a unimodular
bijection

CΣi
→ Si

(and the technical conditions are satisfied here).

Let us look as the G = SL3 example again, with reduced expression s1s2s1 = w0

(i.e. i = (1, 2, 1)). In this example we have

CΣi
= {(x1, x2, x3) ∈ R3 | −x2 ≥ 0, −x3 ≥ 0, −x1 − x3 ≥ 0}.

The inequalities are grouped into disjoint sets of inequalities, one for every simple

root of G, i.e. CΣi
=

⋂

αj simple

CΣi,j
Here CΣi,2

is determined by the inequalities

−x3 ≥ 0, −x1 − x3 ≥ 0 and CΣi,1
is determined by the inequality −x2 ≥ 0. This

reduces our problem as follows:

Proposition 2 ([3]). If a redundancy occurs it involves only inequalities of CΣi,j

for a fixed j.

Let us look closer at the definition of the cones CΣ. To each index Σ is associated
an open torus T∨

Σ = (C∗)N in the dual cluster variety to U , denoted by X . There
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exists a regular function W : X → C (called potential) such that Gross-Hacking-
Keel-Kontsevich’s basis for C[U ] is parametrized by the integer points of

CΣ = {x ∈ RN | [W |T∨
Σ
]trop(x) ≥ 0 for a Σ ( ⇐⇒ for any Σ)}.

Here W |T∨
Σ

∈ C[T∨
Σ ], hence W |T∨

Σ
∈ C[x±1

k | 1 ≤ k ≤ N ] is a Laurent polyno-

mial. The function [W |T∨
Σ
]trop : RN → R is the piecewise linear map we get when

we replace multiplication by addition and addition by taking the minimum.
This function gives us a necessary condition for the appearance of redundancies,

as the following theorem shows.

Theorem 3 ([3]). If the absolute value of the exponent of any variable in W |T∨
i
is

less or equal to 1, then the inequalities of CΣi
(and hence Si) are non-redundant.

The theorem is applicable in many situations:

• The inequalities of CΣi,j are non-redundant if ωj is minuscule. In particular
this holds for CΣi

and G = SLn.
• The inequalities of CΣi

if i is a reduced word adapted to a Dynkin quiver
of the same type as G which has only sinks at vertices j such that ωj is
minuscule.

• The inequalities of CΣi
if i is a “nice” word in the sense of Littelmann ([4]).

We conjecture that Theorem 3 is indeed an equivalence, i.e. the inequalities
of the string cone Si are non-redundant if and only if the absolute value of the
exponent of any variable in W |T∨

i
is less or equal to 1.
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Non-normality of Schubert varieties

Timo Richarz

(joint work with Thomas J. Haines, João N. P. Lourenço)

Schubert varieties in finite dimensional flag varieties are normal with mild singu-
larities regardless of the characteristic of the ground field. More generally, similar
results hold true in the Kac–Moody setting by the works of Kumar [3], Mathieu [6]
and Littelmann [4]. The ambient affine flag varieties were later reinterpreted via
the theory of affine Grassmannians as parametrizing torsors under parahoric group
schemes over the formal disk equipped with a trivialization over the punctured
one. In this setting, Faltings [2] and Pappas–Rapoport [7] proved the normality
of Schubert varieties whenever the characteristic of the ground field is either zero
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or big enough. In my talk, I reported on joint work [5] with Haines and Lourenço
where we show that such normality fails in small positive characteristic.

Main result. Let F = k((t)) be the Laurent series field in the formal variable t
over an algebraically closed field k of characteristic p > 0. Let G be an absolutely
almost simple, semi-simple, tamely ramified, reductive F -group, f a facet of its
Bruhat-Tits building and a an alcove containing f in its closure. For each class
w ∈ Waff in the affine Weyl group, let Sw = Sw(a, f) be the associated Schubert
variety in the neutral component Fl◦G,f of the partial affine flag variety. Note that
FlG,f is possibly non-connected, but that every Schubert variety is isomorphic to
one of the Sw after translation to the neutral component.

Theorem 1. If p divides |π1(G)|, then only finitely many Schubert varieties
Sw, w ∈ Waff are normal. The non-normal Schubert varieties are geometrically
unibranch and regular in codimension 1 (=R1), but not S2 (hence, not Cohen-
Macaulay), not weakly normal and not Frobenius-split.

Schubert varieties in Kac–Moody flag varieties of affine type are isomorphic
to Schubert varieties attached to suitable simply connected groups G so that
|π1(G)| = 1 in these cases. Hence, the above result is consistent with the nor-
mality results in the Kac–Moody setting.

Example. Assume Sw is the quasi-minuscule Schubert variety inside the affine
Grassmannian for G = PGL2 in characteristic p = 2. Then the completed local
ring ÔSw,e at the base point is isomorphic to the k-algebra

k[[x, y, v, w]]/(vw + x2y2, v2 + x3y, w2 + xy3, xw + yv).

This is a surface singularity which is not weakly normal. Its (weak) normalization
morphism identifies with the inclusion map of the subalgebra of k[[x, y, z]]/(z2+xy)
generated by x, y, v = xz, w = yz.

Heuristic. The reason why non-normal Schubert varieties must exist can be sum-
marized in a few lines: One has a map

Ssc,w = Ssc,w(a, f) −→ Sw(a, f) = Sw

where Ssc,w is the Schubert variety for w inside FlGsc,f and Gsc → G is the simply
connected cover. The Schubert variety Ssc,w is normal [7, Thm. 8.4], and the
map Ssc,w → Sw is a birational homeomorphism by using Demazure resolutions.
In other words, Ssc,w → Sw is the (weak) normalization morphism of Sw, just
as in the example above. On the other hand, the affine flag variety FlGsc,f is
reduced [7, Thm. 6.1], that is, equals the union of its Schubert varieties. If all
Schubert varieties in FlG,f were normal, then these two facts would imply the map
FlGsc,f → FlG,f is a monomorphism. By looking at tangent spaces, this fails as
soon as the kernel of Gsc → G is non-étale, or equivalently, as soon as p divides
|π1(G)|. Exploiting tangent spaces a bit further, we show that the normality of
Sw is equivalent to the injectivity of the induced map TeSsc,w → TeSw on tangent
spaces at base points. This yields the following observation:
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Key Lemma 2. Let w ∈Waff.

(1) If Sw is normal, then Sv is normal for all v ≤ w.
(2) If Sw is not normal, then Sv is not normal for all v ≥ w.

The above reasoning only shows that there are infinitely many non-normal
Schubert varieties in FlG,f. In order to give an effective normality criterion, we are
led to a deeper study of tangent spaces of Schubert varieties, see [5] for details.

Classification. Assume that G is absolutely simple. Examining the tables in [1,
Ch. VI, Planche IX], here is the list of all pairs (G, p) such that p | |π1(G)|. Split
groups:

• type An for p |n+ 1;
• types Bn, Cn, Dn, E7 for p = 2;
• type E6 for p = 3.

The split groups E8, F4 and G2 have connection index 1, and hence are excluded
from the list. For the list of twisted groups, the reader is referred to [5, §6].

Problem 3. Classify all finitely many Schubert varieties inside the full affine flag
variety Fl◦G,a for the pairs (G, p) as above.

Fix a maximally split torus S ⊂ G such that the base alcove a is contained in
the apartment A = A(G,S). Using the bijections

{Schubert varieties in Fl◦G,a} ↔Waff ↔ {alcoves in A},

one can visualize the normal Schubert varieties.

Case G = PGL2, p = 2. The picture shows the alcoves corresponding to normal,
respectively non-normal Schubert varieties:

There are exactly 5 normal Schubert varieties. Further, a Schubert variety Sw

is normal if and only if dim(Sw) ≤ 2 if and only if Sw is smooth.

Case G = PGL3, p = 3. Our calculations indicate that there are 22 normal
Schubert varieties:
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If dim(Sw) ≤ 3, then Sw is normal. If dim(Sw) ≥ 5, then Sw is non-normal. In
dimension 4, some Sw are normal and others are non-normal.
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Infinite dimensional geometric invariant theory and the moduli of
gauged maps

Daniel Halpern-Leistner

(joint work with Andres Ferrero Hernandez, Eduardo Gonzalez)

Let C be a smooth curve over a field. The moduli stack of principal G-bundles
BunG(C) plays a central role in geometric representation theory, mathematical
physics, and arithmetic. BunG(C) also poses an interesting challenge from a
foundational perspective: it is unbounded, i.e., there is no finite type scheme
parameterizing all G-bundles, and it is highly non-separated, which is related to
the fact that points have large automorphism groups.

One thing that makes BunG(C) manageable is a special stratification by locally
closed substacks due to Harder-Narasimhan and Shatz [6, 9]. For simplicity, let us

https://arxiv.org/abs/1806.11001
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consider the moduli of vector bundles, i.e., G = GLr, of a fixed degree. There is
an open substack BunG(C)

ss that parameterizes “semistable” G-bundles, and this
stack admits a projective good moduli space, which can be constructed using geo-
metric invariant theory (GIT). The other strata parameterize “unstable” bundles
along with a canonical filtration whose associated graded pieces are semistable.

It is natural to search for this structure on other moduli problems. Recently,
a general theory has developed for describing this structure, which is now called
a Θ-stratification, and giving necessary and sufficient criteria for constructing Θ-
stratifications [4]. This report explains work in progress applying this theory to a
particular class of moduli problems.

1. The moduli problem

Viewing BunG(C) as the moduli stack of maps C → BG, one natural generaliz-
ation is the stack of maps to the quotient stack Map(C,X/G). In order to get
a Θ-stratification, we must first enlarge the moduli problem. We consider the
moduli stack of gauged maps from C to X (with marked points):

MG
C,n(X) :=





G-bundle P over C

u : C̃ → P ×G X

∣∣∣∣∣∣

C̃ is nodal with n marked points,
u is Kontsevich stable, and

the composition C̃ → C has degree 1



 .

Note that Map(C,X/G) ⊂ MG
C(X) is the open substack of points for which C̃ → C

is an isomorphism, and when X is affine the two stacks agree.
This is not merely a toy problem. MG

C,n(X) has been studied in the context

of gauged Gromov-Witten (GW) theory (see [2] for a survey), and is part of a
program to use BunG(C) to study the Gromov-Witten invariants of varieties and
orbifolds arising as GIT quotients. For technical reasons, it is easier to work
with K-theoretic invariants than cohomological ones. Our interpretation of this
program is as follows:

(1) For any δ > 0 there is an open substack of δ-semistable pointsMG
C,n(X)δ−ss

⊂ MG
C,n(X) that is a projective DM stack [7, 8].1 One can define gauged

GW invariants as the holomorphic Euler characteristic χ(MG
C,n(X)δ−ss,P •)

of certain tautological K-theory classes [P •] ∈ K0(MG
C,n(X)).

(2) When δ ≫ 0, these invariants are related to the usual K-theoretic GW in-
variants of the GIT quotientX//G by certain wall-crossing formulas [3, 11].

(3) Forgetting the map u defines a morphism MG
C,n(X) → BunG(X) which

is proper – its fibers are certain moduli spaces of Kontsevich stable maps.
One can obtain explicit formulas for χ(MG

C,n(X), P •) by pushing forward

to BunG(C) and using the index formulas of [10].

1There is actually a stability condition for any G-ample line bundle L on X, and δ-stability is
δL stability for a fixed choice of G-ample bundle L that we have suppressed from the notation.
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(4) Compare χ(MG
C,n(X), P •) with χ(MG

C,n(X)δ−ss, P •) using the “non-abel-

ian” virtual localization formula [5].

Steps (1)-(3) are basically covered by previous work. The last step requires that
MG

C,n(X)δ−ss is the open piece of a Θ-stratification.

2. Construction of the Θ-stratification

For simplicity, we restrict our discussion to the stack M = MGLr

C,n (X) where X is
projective. The general case can be reduced to this one via a somewhat elaborate
argument.

The stack Θ := A1/Gm plays a central role in the general theory. For a field
k, we regard a map Θk → X as a “filtration” of the point f(1) ∈ X(k). It is
an interesting exercise to verify that a map Θk → BGLn is the same thing as a
Z-indexed filtered k-vector space. More generally a map Θk → BunGLr

(C) is a
diagram of inclusions of vector bundles on C,

· · · ⊂ Ew+1 ⊂ Ew ⊂ Ew−1 ⊂ · · ·
such that Ew = 0 for w ≫ 0, Ew = Ew−1 for w ≪ 0, and grw(E•) := Ew/Ew+1

is locally free. It turns out that because M → BunG(C) is proper, a filtration
in M is the same as a filtration in BunG(C). So the question is: does every δ-
unstable point of M come with a canonical filtration of the underlying
vector bundle?

In order to define canonical filtrations on a general stack X, the theory of Θ-
stability takes as input a numerical invariant µ, which can be used to define a
real-valued function on the set of all filtrations in X. In our example, for any
filtration f : Θk → MG

C(X), corresponding to a filtration · · ·Ew+1 ⊂ Ew ⊂ · · ·
of the underlying vector bundle on C, the numerical invariant corresponding to
δ-stability assigns µδ(f) = (ℓBunG

+ δℓX)/
√
b, where ℓX is the Hilbert-Mumford

weight in the stack X/G at the generic point of C, b =
∑

w∈Zw
2 rank(grw(E•)),

and

ℓBunG
=

∑

w∈Z

w

(
deg(grw(E•))−

deg(E−∞)

r
rank(grw(E•))

)
.

Theorem 1. For every unstable point p ∈ M(k), there is a unique maximizer of
the function µδ(f) among all filtrations f : Θk → M equipped with an isomorphism
f(1) ∼= p. This defines a Θ-stratification of M, i.e., a stratification by locally closed
substacks that parameterize points along with the filtration maximizing µδ.

2

As mentioned above, this is an application of a general criterion for a nu-
merical invariant on an algebraic stack to define a Θ-stratification [4, Thm. B].
The geometric insight behind Theorem 1 is that one of these conditions, called
“strict Θ-monotonicity,” can be verified using an “infinite dimensional” analogue
of GIT. It is an interesting and (perhaps) unexpected application of the theory of
Beilinson-Drinfeld Grassmannians [1]:

2Technically, the canonical filtration f is only unique up to composition with ramified covering
maps Θk → Θk, and this only gives a “weak” Θ-stratification in positive or mixed characteristic.
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In classical GIT, one considers a numerical invariant on a stack of the form X/G
where X is projective and G is a reductive group. Another way to think of this
is that GIT applies to an algebraic stack X equipped with a morphism X → BG
that is relatively representable by projective schemes, and the numerical invariant
is determined by a relatively ample line bundle. It turns out that it is easy to
verify monotonicity from this perspective.

In our setting, M is not a global quotient stack. Instead, one can consider
a stack (BGLr)rat parameterizing a vector bundle of rank r on an open subset
of C. This is not an algebraic stack, but it shares some key properties with the
stack BG for a reductive group G. The canonical morphism M → (BGLr)rat
is not representable, but its fibers are representable by colimits of ind-projective
ind-Deligne-Mumford stacks. This picture is close enough to the classical GIT set
up to carry over the argument for monotonicity.
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Sugawara operators and local opers with two singularities in the
case of sl(2)

Andrea Maffei

(joint work with Giorgia Fortuna, Davide Lombardo and Valerio Melani)

Proofs, and more complete definitions, of the results explained in the seminar are
contained in [2].

Let g be a complex simple Lie algebra, G be a complex algebraic group with
Lie algebra equal to g, and GL be the Langlands dual of G. Frenkel and Gaitsgory
have put forward a relationship between, on one side, the geometry of the “space”
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of GL-local systems on the formal disc with a possible singularity in the origin,
and on the other, certain categories of representations of the affine Lie algebra ĝ

equipped with an action of the loop group G(C((t))) [4, 6, 5, 9, 7, 10, 8]. The
starting point of this connection is the description of the center of the enveloping
algebra of an affine Lie algebra at the critical level proved by Feigin and Frenkel
[1, 3]. More recently, Dennis Gaitsgory pointed Giorgia Fortuna in the direction
of investigating the situation in which the relevant GL-local systems are allowed
to have more than one singular point. We begun to develop this suggestion for
the case of the Lie algebra sl(2).

Let us fix a coordinate t around the origin of the formal disc. We wish to
consider functions in the variable t, parametrised by a second variable a, having
poles only at t = 0 and t = a. Formally, we set A = C[[a]] and introduce the
A-algebra

K2 = C[[t, a]][
1

t(t− a)
],

whose elements are the functions we are interested in. The variables t and a are
of very different nature here: t is a local coordinate for the geometric object of
interest, namely the formal disc, while a should be considered as a parameter.

The ring K2 can be equipped with a ‘residue’ map, defined as the sum of the
residues around t = 0 and t = a. We can use this map to define a structure of
A-Lie algebra on the space

g⊗C K2 ⊕AC2

in a way that closely mimics the construction of the usual affine Lie algebra. We
can then proceed exactly as in the case of one singularity: we first construct a
suitable completion of the enveloping algebra, and then specialise C2 to −1/2

to obtain a certain ‘critical level’ enveloping algebra Û2. Just as in the case of
the usual affine Lie algebra, the center of Û2 turns out to be nontrivial, and we
show that it is generated by certain 2-variables analogues of the classical Sugawara
operators.

To introduce these generalised Sugawara elements, let Jα be a basis of g and
let Jα be the dual basis with respect to the Killing form of g. For every integer k
we can then define

S
(2)
k =

∑

n∈Z,α

: (Jαtnsn)(Jαt
k−nsk−n−1) : + : (Jαtnsn+1)(Jαt

k−n−1sk−n−1) :

S
(2)

k+ 1
2

=
∑

n∈Z,α

: (Jαtnsn)(Jαt
k−nsk−n) : + : (Jαtnsn+1)(Jαt

k−n−1sk−n) :

where s = t − a and the colons denote a suitable (two-variables) normal ordered
product.

In order to describe the geometric side of the correspondence, one should con-
sider GL-connections in the case of GL being an adjoint group. Hence, in our
case, we take G = SL(2) and GL = PSL(2). We consider GL-connections on the
formal disc, parametrised by a, with possible singularities at t = 0 and t = a. We
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define 2-opers in this context in complete analogy to local opers with one singular-
ity, in particular the space of 2-opers is represented by a smooth ind-scheme Op∗2
over SpecA. Concretely the A points of this ind-scheme can be seen as the set of
connections of the form:

d+

(
0 f
1 0

)
dt

with f ∈ K2. We prove the following result, which is a two-singularities analogue
of the Feigin-Frenkel theorem [1] for g = sl(2).

Theorem 1. The operators S
(2)
k are algebraically independent and topologically

generate the centre of the algebra Û2. Moreover, there is an isomorphism

F2 : Funct(Op∗2)
∼−→ Z(Û2).

In their study of the “spherical case” [10], Frenkel and Gaitsgory describe the
endomorphism ring of what they call a Weyl module Vλ of ĝ, where λ is an integral
dominant weight of g. The Weyl modules have been recognised as the fundamental
objects in the category of spherical modules, that is, those continuous representa-
tions of the affine Lie algebra ĝ at the critical level on which the action of g⊗CC[[t]]
integrates to an action of G(C[[t]]). An important step in understanding the cat-
egory of spherical modules is the determination of the endomorphism rings of the
Weyl modules. These rings have been shown [10] to admit a very nice description
in terms of the geometry of the space of opers. Indeed there exist disjoint subs-
chemes Opλ1 of the space of opers parametrised by the integral dominants weights
of g such that their union is the space of the unramified opers, that is, those that
are trivial as GL-connections. The connection between the Weyl modules Vλ and
the schemes Opλ1 is provided by [10], where the authors show that, for every λ,

the Feigin-Frenkel isomorphism induces an isomorphism Funct(Opλ1 ) ≃ End(Vλ
1 ).

This result generalises to our setting in the following way. Given two integral
dominant weights λ and µ of g, we construct, by analogy to the 1-singularity case,

a corresponding Weyl module Vλ,µ
2 . The idea to define a corresponding space of

opers Opλ,µ2 is to consider opers with two singularities such that around t = 0 are

connections in Opλ1 and around t = a are connections in Opµ1 . This idea can be

used to define a closed subscheme of Op2 |a 6=0 and we define Opλ,µ2 as its closure
in Op2. In the case of sl(2), we extend the main result of [10] to this context as
follows:

Theorem 2. The action of Z(Û2) on Vλ,µ
2 and the isomorphism F2 of the previous

theorem induce an isomorphism

G2 : Funct(Opλ,µ2 )
∼−→ End(Vλ,µ

2 ).

The main ingredient to prove this theorem is the description of the schemes

Opλ,µ2 |a=0. By definition, the scheme Op2 |a=0 is isomorphic to the usual space of

opers. Hence Opλ,µ2 |a=0 can be seen as a subscheme of the usual space of opers
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and we prove that

Opλ,µ2 |a=0 ≃
∐

|µ−λ|≤ν≤λ+µ
ν≡λ+µ mod 2

Opν1

While some of the ingredients in the proof of this isomorphism apply to general
Lie algebras g, we make use of the hypergeometric series to construct some specific

elements of Opλ,µ2 |a=0(C), which restricts some of our arguments to the case g =
sl2.
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Smith-Treumann theory and modular representation theory

Geordie Williamson

(joint work with Simon Riche)

Smith theory relates the mod p cohomology of the space to that of its fixed points
under the action of a cyclic p group. It is a precursor to equivariant localization
for torus action. The archetypal example of localization for a circle action is the
equality

χ(X) = χ(XS1

)
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where χ denotes Euler characteristic, and X is a reasonable topological space (e.g.
compact manifold or algebraic variety). The analogue for Smith theory is the
equality

χ(X) = χ(XZ/pZ) mod p

for the action of a Z/pZ on a reasonable topological space.
Smith-Treumann theory is a version for sheaves. Suppose that ̟ = Z/pZ

acts on a complex variety X , and consider sheaves with Fp-coefficients. We first
consider the Smith quotient category on the fixed points,

Sm(X̟) = Db
̟(X̟)/〈Perf〉

where Perf denotes the full subcategory of sheaves on the fixed points whose stalks
are free Fp[̟]-modules. A key lemma of Treumann asserts if i : X̟ →֒ X denotes
the inclusion of the fixed points, then the cone over the canonical arrow i! → i∗

belongs to 〈Perf〉 and hence one has a self-dual restriction functor

i!∗ : Db
̟(X) → Sm(X̟).

For more on these constructions, see Treumann’s paper [1]. In applications, an
equivariant version discussed at length in [3] is indispensible.

In this talk I explained a recent application of these ideas to modular represent-
ation theory [2]. The punchline is the following: if one considers the loop rotation
Gm-action on the affine Grassmannian, then its fixed points under the subgroup
̟ ⊂ Gm of pth-roots of unity have a beautiful description:

Gr̟ =
⊔

λ∈X/Wp

Grλ.

This decomposition closely resembles the decomposition of the category or ra-
tional representations into blocks governed by the affine Weyl group Wp. Our
main theorem asserts that Smith restriction provides an equivalence in a suitable
Iwahori-Whittaker version of geometric Satake. From this we recover a geometric
proof of the linkage principle, as well as a proof (for all p!) of conjectures on tilting
module characters that Simon and I made eight years ago.
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Equivariant multiplicities of Mirković–Vilonen cycles

Pierre Baumann

(joint work with Joel Kamnitzer, Allen Knutson)

Let G be a connected reductive group over C, equipped with a Borel subgroup B
and a maximal torus T ⊂ B. Let N− be the unipotent radical of the opposite
Borel, let X∗(T ) and X∗(T ) be the cocharacter and character lattices, let Φ =
Φ+ ⊔ Φ− be the root system, let ρ be the half-sum of the positive roots, and set
tQ = X∗(T )⊗Z Q.

Let Gr = G(C((z)))/G(C[[z]]) be the affine Grassmannian of G. The torus T
acts on Gr, and the fixed points for this action are the elements Lµ = [µ(z)]

for µ ∈ X∗(T ). Given a dominant λ ∈ X∗(T ), define Grλ = G(C[[z]])Lλ; given

µ ∈ X∗(T ), define S−
µ = N−(C((z)))Lµ. The intersection Grλ ∩ S−

µ has pure
dimension d = ρ(λ − µ); its irreducible components are called Mirković–Vilonen
(MV) cycles.

Let G∨ be the Langlands dual of G (over Q). The geometric Satake equival-

ence [7, 8] identifies the intersection homology IH
(
Grλ,Q

)
with the irreducible

G∨-module of highest weight λ, denoted by V (λ). Mirković and Vilonen further
identify the weight space V (λ)µ with the top-dimensional Borel–Moore homology

H2d

(
Grλ ∩ S−

µ ,Q
)
. An MV cycle Z therefore yields a vector vZ ∈ V (λ)µ.

Let Z be an MV cycle, irreducible component of Grλ ∩ S−
µ . Then Z is an

affine T -variety and has a unique T -fixed point, namely Lµ. The torus T acts on
Γ(Z,OZ) with weights in NΦ+, and acts on the tangent space of Z at Lµ with
weights in Φ−. Therefore Lµ is a nondegenerate T -fixed point of Z in the sense
of Brion [2], and we can consider the equivariant multiplicity eLµ

Z of Z at Lµ,
a rational function on tQ. If θ ∈ X∗(T ) is regular antidominant, then (eLµ

Z)(θ) is
the multiplicity of the finitely generated graded algebra

Γ(Z,OZ) =
⊕

n≥0




⊕

χ∈X∗(T )

〈−θ,χ〉=n

Γ(Z,OZ)χ


 .

On the other side of the geometric Satake equivalence, the group G∨ comes with
a Borel subgroup B∨ and a maximal torus T∨ ⊂ B∨. Let N∨ be the unipotent
radical of B∨, and let t∨ = X∗(T )⊗ZQ and n∨ be the Lie algebras of T∨ and N∨.
Fix a principal nilpotent element e ∈ n∨. For each regular element x in t∨, there
exists a unique element nx ∈ N∨ such that Adnx

(x) = x+ e.
Let v∗λ be the linear form on V (λ) dual to the highest weight vector v{Lλ}.

We can evaluate the matrix coefficient 〈v∗λ, ? vZ〉 at any element in N∨. Let q :
X∗(T ) → Z be a quadratic form invariant under the Weyl group and let ι :
X∗(T ) → X∗(T ) be the polar form of q. The main result of this talk is that for
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any regular element θ ∈ X∗(T ),

(†) (eLµ
Z)(θ) = 〈v∗λ, nι(θ)vZ〉.

The right-hand side of this equation seemingly depends on the choice of q and e
(via nι(θ)), while the left-hand side does not. To overcome this contradiction,

we note that q and e are used to normalize the action of G∨ on IH
(
Grλ,Q

)
.

Explicitly, q determines a projective embedding of Gr, whence a very ample line
bundle L on Gr, and Ginzburg shows in [5] that e acts as the cup-product with
c1(L). The contributions compensate, and nι(θ)vZ does not actually depend on
the choice of q or e.

The formula (†) leads to a short proof of the following conjecture by Muthiah:
For any dominant λ ∈ X∗(T ), the linear map V (λ)0 → Q(tQ) that extends the as-
signment vZ 7→ eL0Z is equivariant under the action of the Weyl group. Muthiah’s
paper [9] contains a beautiful proof of this result in the case where G∨ = SLd and
λ ≤ d̟1, which translates the problem through the Schur–Weyl duality to the
classical results of Joseph and Hotta on Springer representations.

The proof presented during the talk follows the line of sects. 8 and 9 in [1].
The equivariant multiplicity of Z at Lµ is obtained as a coefficient in the Fourier

transform of the Duistermaat–Heckman (DH) measure of Z (defined in the algebro-
geometric setup by Brion and Procesi [3]). This measure is computed by a method
due to Knutson [6]: it is equal to the sum, over the set of all maximal chains of
closures of MV cycles {Lλ} ( Y1 ( · · · ( Yd−1 ( Z, of DH measures of projective
spaces. The sum is weighted by intersection multiplicities, which are matched to
the action of Chevalley monomials on vZ by means of Ginzburg’s result.

Several questions have been asked at the end of the talk.
Can ( †) be proved without Duistermaat–Heckman measures?
In [10], Yun and Zhu construct an isomorphism of group schemes over tQ from

the spectrum of the T -equivariant homology of Gr (a Hopf algebra for the Pontry-
agin product) to the universal centralizer

C = {(b, x) ∈ B∨ × t∨ | b centralizes e+ x}
(C is viewed as a scheme over tQ thanks to ι−1 : t∨ → tQ). The space C comes
with a map C → B∨, and by composition we get a homomorphism of algebras

Q[B∨] → Q[C] ∼= HT
∗ (Gr,Q). Let Z ⊂ Grλ be an MV cycle; then the matrix coef-

ficient 〈v∗λ, ? vZ〉, viewed as an element in Q[B∨], is mapped to the T -equivariant
fundamental class [Z] ∈ HT

∗ (Gr,Q). After localization in equivariant homology,
this observation (due to Kamnitzer) provides another proof of (†).

Can one actually compute examples?
Computing the equivariant multiplicity eLµ

Z of an MV cycle Z seems almost as
hard as computing the corresponding basis element vZ . Methods currently known
to perform this task are not completely algorithmic.

Suppose that G has semisimple rank one, write α for the positive root, and set

µ = λ− nα with 0 ≤ n ≤ 〈α∨, λ〉. The intersection Grλ ∩ S−
µ is irreducible, hence

is an MV cycle. It is smooth and its equivariant multiplicity at Lµ is (−1/α)n.
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Take now G of type A3, take for λ the highest positive root (so that V (λ) is the
adjoint representation), and set µ = 0. Here there are three MV cycles, whose
equivariant multiplicities at L0 are

−1
α1(α1+α2)(α1+α2+α3)

, −(α1+2α2+α3)
α2(α1+α2)(α2+α3)(α1+α2+α3)

, −1
α3(α2+α3)(α1+α2+α3)

.

In particular, we see that the second MV cycle is not smooth at L0.
One can also use (†) the other way around, to acquire information on vZ from

the geometry of Z; see the appendix of [1] for an application. Recently, Casbi
undertook a more systematic study of these equivariant multiplicities [4].
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Verlinde rings, eigenfunctions and DAHA actions

Catharina Stroppel

This talk will be about Verlinde rings (or also called fusion rings) which are certain
Grothendieck rings attached to a semisimple tensor category constructed from
representations of quantum groups at roots of unities. These fusion rings were
already studied from many different aspects. For instance using categories of
representations of affine Kac-Moody algebras at a fixed level (by Finkelberg and
Kazhdan-Lusztig) or using K-theory (by Freedman-Hopkins-Teleman) or using
generalisd Θ-functions (by Beauville). These rings come with an integral basis and
integral structure constants which (originally also by Verlinde) can be interpreted
as dimensions of conformal blocks. This integral structure comes from Jordan-
Hoelder multiplicities of tensor product in the underlying category. The category
itself is a crucial player in Chern-Simons theory and can also be used to construct
invariants of knots and 3-manifolds (for instance by Reshethikin-Turaev).
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The setup of the talk was as follows: Let g be a semisimple complex Lie algebra
or g = gl)m with Cartan matrix C = (ci,j). An important number is D ∈ {1, 2, 3},
which denotes the maximum of the ci,j for i/not = j. Let now q ∈ C be a fixed
primitive ℓth root of unity. We set ℓ = ℓ′ if ℓ is odd and ℓ = 1

2ℓ
′ if ℓ is even.

Finally we will distinguish two cases

Case I):D does not divide ℓ′, and Case II) : D | ℓ′.
Consider the category Rep(U) of finite dimensional complex representations of
Lusztig’s divided power quantum group U = Uq(g) with its Weyl and dual Weyl
modules ∆(la), ∇(λ) for λ ∈+, the set of dominant integral weights. An object
T ′ ∈ Rep(U) is called tilting if it has both, a Verma and also a dual Verma flag.
By general theory of highest weight categories the indecomposable tiltings are
classified and in natural bijection to X∗. We denote them by T (λ). By a theorem
of Paradowski, the tiltings form an additive monoidal ribbon category T . Since
Paradowski’s proof is quite involved we provide an easier proof for type A, in fact
for all types where the fundamental weights are miniscule.

We now take T modulo the tensor ideal given by all negligible objects, i.e. whose
quantum dimension vanishes. This quotient is a semisimple tensor category. Its
Grothendieck ring is the Verlinde or fusion ring, which we call A. We denote

Aℓ = {λ ∈ X+ | (λ+ ρ,Θ0) < ℓ′}(1)

where Θ0 is the longest short (resp. maximal) root if we are in Case I (resp. II).

Proposition 1. Assume ℓ is larger than the Coxeter number. Then

(1) λ 6∈ Aℓ implies that T (λ) is negligible.
(2) The classes of the T (λ) with λ ∈ Aℓ form a basis of A. In particular is A

finite dimensional except in case g = gln.
(3) Aℓ is a fundamental domain for the action of the affine Weyl group which

is the semiproduct of the Weyl group with ℓ′ times the (co)root lattice in
Case I (respectively in Case II).

We like to understand now the ring A. Observe that A is a quotient of the
character ring. In [1], an explicit description in terms of generators and relations
is given. The following result goes back to [6] and then reproved in [5].

Theorem 2. In case of g = gln, the fusion ring A is isomorphic to the quantum
cohomology of the Grassmannian of n dimensional subspaces in ℓ′-dimensional
space. Under this isomorphism, the basis vector given by T (λ) is mapped to the
quantum Schubert class labeled by the partition attached to λ and the quantum
parameter corresponds to the class of the determinant representation in A.

The proof was given in terms of an integrable systems model. More precisely we
constructed a certain Bethe eigenbasis for certain symmetrised hopping operators
and used this to match the multiplication in this eigenbasis with the well-known
Verlinde product formula. The defining ideal I(n, ℓ′) in the Siebert-Tian present-
ation of A arises than nicely as a solution to the Bethe Ansatz equations. This
approach has more interesting side-effects. For instance, the hopping operators
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from the intergable systems model give rise to a crystal action of the affine Kac-

Moody Lie algebra of ŝln on the fusion ring, turning it into certain KR-module,
and the fusion product can be completely described via an action of symmetric
functions in affine plactic generators. Moreover, the base change matrix from the
standard basis to the Bethe basis can be matched with the S matrix of the under-
lying tensor category, in case the category is modular. In that case the Verlinde
ring inherits an SL2(Z)-action and should be seen as an example of a Verlinde ring
in the sense of Cherednik. Cherednik’s philosophy, from [2] says that any Verlinde
algebra should be a module for a double affine Hecke algebra (DAHA). We make
this claim precise.

For that, let H be the DAHA in the sense of [2] corresponding to g with its
weight lattice. We specialise both parameters to q. Let Pol be the polynomial
representation. Now to connect with the character ring and fusion ring we consider
the spherical DAHA eHe. Then ePol becomes an eHe-module.

Proposition 3. (1) Via the triangular decomposition of H, ePol can be iden-
tified with the symmetrised Laurent polynomials identified with the sym-
metrised negative part of H.

(2) Factoring out the radical for a certain bilinear form defines a quotient Q
of ePol which is an irreducible representation of eHe which is semisimple
for the action of the positive part of eHe with 1-dimensional eigenspaces.

We can now consider A as a quotient of the character ring R(g) which we embed
into ePol. The following is shown in [3], [4].

Theorem 4. The following holds

(1) The surjection onto Q factors through A and defines a surjection A 7→ Q.
(2) This surjection is an isomorphism in case our tensor category is modular.
(3) In case of g = gln we have a commutative diagram with exact row:

{0} // I(n, ℓ′)

��

// R(g)

��

// A //

��

{0}

{0} // Rad // ePol // Q // {0}
Here, the obvious middle map restricts to a map on the left and then
induces a map on the quotient which is in fact an isomorphism. Moreover,
the eigenvectors in A constructed in [5] coincide with the eigenvectors for
the positive part of eHe under this isomorphism.

We like to note that the spherical DAHA action can be used to detect modu-
larity, even more the generalised eigenspace decomposition for the action of the
positive part of eHe gives a precise measure for the failure of modularity and al-
lows to define a further quotient of our tensor category which is modular or at
least spin modular. These categories appear in work of Brugieres. As an upshot:

The spherical DAHA acts on fusion rings and MacDonald operators can be used
to verify, measure the failure and analyse modularity.
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Characteristic cycles, categories of singularities and Hall algebras

Eric Vasserot

(joint work with Michela Varagnolo)

LetQ be a quiver of Kac-Moody type. LetX be the variety of all finite dimensional
representations of Q and X its moduli stack. Lusztig has introduced a graded ad-
ditive monoidal subcategory of the bounded constructible derived category Db

c (X )
of the stack X whose split Grothendieck group is isomorphic to the integral form
of the quantum unipotent enveloping algebra of type Q. This construction can be
viewed as a categorification of Ringel-Hall algebras. There are no known analogues
of Ringel-Hall algebras for super quantum groups.

K-theoretic Hall algebras yield another geometric construction of quantum groups.
In this theory quantum groups are categorified by the derived category Db(T ∗X )
of coherent sheaves on the cotangent dg-stack of X . The dg-stack T ∗X is iden-
tified with the derived moduli stack of finite dimensional representations of the
preprojective algebra ΠQ, which is a Calabi Yau algebra of dimension 2. In an
informal way, the relation between Ringel-Hall algebras and K-theoretic Hall al-
gebras is given by characteristic cycles of constructible sheaves. Our goal is to
prove that K-theoretic Hall algebras categorify both quantum groups and super
quantum groups.

We first consider the K-theoretic Hall algebra of the preprojective algebra ΠQ of
the quiver Q following Schiffmann-Vasserot’s approach. For each dimension vector
β, let Xβ ⊂ X be the variety of all representations of dimension β. A linear group
Gβ × C× acts on the cotangent T ∗Xβ . The C×-action is prescribed by a weight
function. The Gβ-action is Hamiltonian. The moment map µβ : T ∗Xβ → gβ is
Gβ × C×-equivariant, with C× acting with the weight 2 on gβ . The moduli stack
Xβ is the quotient of Xβ by Gβ . The cotangent dg-stack of Xβ is the derived fiber
product

T ∗Xβ = [T ∗Xβ ×R
gβ

{0} /Gβ × C×].
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We define T ∗X to be the sum of all dg-stacks T ∗Xβ . The category Db(T ∗X ) is a
graded triangulated category with a graded triangulated monoidal structure. The
internal grading is given by the C×-action. Thus the rational Grothendieck group
K(ΠQ) = G0(T

∗X ) of Db(T ∗X ) has a Q[q, q−1]-algebra structure. We call it the
K-theoretic Hall algebra of ΠQ. We’ll mostly consider another similar algebra
NK(ΠQ), which is the Grothendieck group of the derived category of all coherent
sheaves of dg-modules over the dg-stack T ∗X which are supported on a closed
substack of nilpotent elements.

Let U+ be the Lusztig integral form of the quantum enveloping algebra of the loop
algebra of the positive part of the Kac-Moody algebra of type Q, i.e., a Drinfeld
half of a toroidal quantum group. Our first goal is to prove the following.

Theorem 1. Let Q be a quiver of Kac-Moody type. Fix a normal weight function.
(a) There is a surjective NQ0 -graded algebra homomorphism φ : U+ → NK(ΠQ).

(b) If Q is of finite or affine type but not of type A
(1)
1 , then the map φ is injective.

This work is motivated by [4], where the graded triangulated category Db(T ∗X )
for a quiver Q of type A1 is compared with a derived category of graded modules

over the quiver-Hecke algebra of affine type A
(1)
1 . The method of the proof goes

back to some previous work of Schiffmann-Vasserot which considers the case of
Borel-Moore homology. There, it was observed that an essential step to prove a
similar isomorphism in Borel-Moore homology was to deform the algebraNK(ΠQ)
by allowing a big torus action, and to prove torsion freeness of this deformation
relatively to a commutative symmetric algebra generated by the classes of some
universal bundles. We prove a similar torsion freeness in K-theory. We also discuss
briefly the case of quivers which are not of Kac-Moody type.

Next, we consider the Drinfeld half UUU+ of the super toroidal quantum groups
of type A introduced in [1]. In this case, the relevant geometric algebra is the
deformed K-theoretic Hall algebra K(Q,W ) of a quiver with potential. We’ll use
the approach of Padurariu [3], which is inspired by the cohomological Hall algebras
of Kontsevich-Soibelmann. The algebra K(Q,W ) is defined as the Grothendieck
group of the category of singularities of some Landau-Ginzburg model attached to
the pair (Q,W ). The quiver Q and the potential W are described as follow. The
set of vertices is Q0 = Z/NZ and is partitioned into even and odd vertices. The
set of arrows is

Q1 = Q+
1 ⊔Q0

1 ⊔Q−
1

with
Q+

1 = {xi : i→ i+ 1 ; i ∈ Q0},
Q−

1 = {yi : i+ 1 → i ; i ∈ Q0},
Q0

1 = {ωi : i→ i ; i ∈ Qev
0 }.

The potential is

W =
∑

i∈Qev
0

(ωiyixi − ωixi−1yi−1) +
∑

i∈Qodd
0

yixixi−1yi−1.
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This category is Calabi Yau of dimension 3. The relation with the first part is
given by dimensional reduction [2].

Theorem 2. There is an NQ0-graded algebra homomorphism ψ : UUU+ → K(Q,W ).

We do not have a torsion freeness statement similar to the one of toroidal quantum
groups.

Conjecture 3. The map ψ is injective.

Both theorems have analogues in Borel-Moore homology involving Yangians.
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Weyertal 86 - 90
50931 Köln
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