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Abstract. Over the last decade computability theory has seen many new
and fascinating developments that have linked the subject much closer to
other mathematical disciplines inside and outside of logic. This includes, for
instance, work on enumeration degrees that has revealed deep and surprising
relations to general topology, the work on algorithmic randomness that is
closely tied to symbolic dynamics and geometric measure theory. Inside logic
there are connections to model theory, set theory, effective descriptive set
theory, computable analysis and reverse mathematics. In some of these cases
the bridges to seemingly distant mathematical fields have yielded completely
new proofs or even solutions of open problems in the respective fields. Thus,
over the last decade, computability theory has formed vibrant and beneficial
interactions with other mathematical fields.

The goal of this workshop was to bring together researchers representing
different aspects of computability theory to discuss recent advances, and to
stimulate future work.

Mathematics Subject Classification (2010): Primary: 03Dxx; Secondary: 03B30, 03C57, 03Fxx,

68Qxx.

Introduction by the Organizers

Computability theory is one of the main branches of mathematical logic. It ex-
plores the computational limitations of mathematics. Classical concepts at the
center of the area include the degrees of unsolvability, the arithmetical and analytic
hierarchies, and many other methods of calibrating relative complexity. Principal
applications have been to algorithmic randomness, mathematical logic, algebra,



1150 Oberwolfach Report 21/2021

analysis, and proof theory. A number of deep tools have been developed in the
area, including priority methods, effective forcing methods, and sophisticated cod-
ing techniques. While there have been several memorable recent results clarifying
the pure theory, much of current research is devoted to using these techniques to
distill the effective content of applications and give insight into applications.

Here are some of the special topics that we managed to draw together at this
meeting in addition to general computability theory:

The Enumeration Degrees in Effective Topology. Computability theory formalizes
notions of relative complexity: it classifies objects by algorithmic information con-
tent, defining when one object contains more information than another. The most
commonly used tool is Turing reducibility, which measures the complexity of func-
tions f : N → N. Turing reducibility is extended by enumeration reducibility, which
allows us to study more objects.

An early example of this phenomenon is given by C. F. Miller (unpublished)
and M. Ziegler who applied enumeration reducibility in group theory, to state and
prove an extension of Higman’s embedding theorem for finitely generated groups.
More recently, J. Miller showed that Turing reducibility is not sufficient to mea-
sure the complexity of continuous functions on the unit interval, but enumeration
reducibility is. In this work he introduced the continuous degrees, a degree struc-
ture that sits between the Turing degrees and the enumeration degrees. The proof
that the continuous degrees are strictly larger than the Turing degrees invokes
nontrivial topological theorems.

Kihara and Pauly use the continuous degrees to solve an open problem in de-
scriptive set theory, following Jayne’s study of restricted isomorphisms on topo-
logical spaces; they constructed continuum-many spaces, which are pairwise non
isomorphic by finite-level Borel isomorphisms.

Definability results show how topological notions are reflected in the abstract
structure of enumeration degrees of complexity. Cai, Ganchev, Lempp, Miller and
Soskova proved that the Turing degrees have a natural first order definition in the
partial order of enumeration degrees, solving an longstanding open problem set by
Rogers in the 1960’s. Andrews, Igusa, J. Miller, and M. Soskova proved that the
continuous enumeration degrees also form a definable class, characterized by its
relation to the Turing degrees. Another class of degrees (the cototal degrees) has
realizations in many parts of mathematics including graph theory, symbolic dy-
namics by McCarthy, and once again via a structural feature of some enumeration
degrees by Miller and Soskova. Kihara, Ng, and Pauly characterized them as the
degrees of points in computable Gδ spaces. Thus, the topological considerations
again give a good approach for the fine-grained study of the enumeration degrees,
as both previously studied substructures as well as new ones of interest to com-
putability theorists appear in this fashion. In the words of the authors: “We have
only just started to reveal the topological aspects of the enumeration degrees.”

Algorithmic Randomness. Algorithmic randomness attempts to answer questions
such as “what does it mean for an individual binary sequence to be random?”.
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It develops tools to compare different strengths of randomness, and relates them
to the Turing and enumeration degrees on one hand, and notions from analysis
on the other. Recently, research has focused on effective properties of dynamical
systems. Effective symbolic dynamics has been studied, among others, by Simp-
son, who related complexity, dimension, and entropy. Westrick showed that “sea
of squares” subshifts are sofic. This built on celebrated work by Hochman and
Meyerovitch who characterized the entropies of higher dimensional shifts of finite
type as those which are the reals which are computably approximable from the
right. On the measure side, effective ergodic theory has been studied, relating
notions of randomness to different ergodic theorems. Yampolsky and co-authors
explored the effective properties of complex dynamics.

Mayordomo showed that effective Hausdorff dimension can be characterized by
descriptive complexity. A striking recent body of work by N. Lutz and co-authors
makes use of this idea to give new results in classical geometric measure theory.
For example, Lutz and Stull extended Marstrand’s projection theorem, that says
that for an analytic set E, for almost all lines ℓ through the origin, the Hausdorff
dimension of E’s projection onto ℓ is maximal. They also gave improved lower
bounds on the dimension of generalized sets of Furstenberg type. J. and N. Lutz
used Kolmogorov complexity to give a new proof of Davies’ theorem about the
dimension of Kakeya sets in the plane (sets that contain unit line segments in
every direction).

Interactions Between Set Theory and Computability. There have always been close
connections between computability and set theory, harking back to the diagonal
method used by both Cantor, Gödel and Turing to show the uncountability of the
reals on one hand, and the undecidability of the halting problem on the other. In
the late 1950s and early 1960s, work of Spector, Gandy, Kreisel and Sacks has laid
the basis for effective descriptive set theory, which blends both areas seamlessly.
On a technical level, Sacks and his followers showed how common ideas lie behind
the technique of forcing, which is now a fundamental tool in both computability
and set theory.

Recent work in effective descriptive set theory has seen unexpected applications
and has developed in new directions. Here we can mention, for example, Kihara’s
use of the Shore-Slaman join theorem on the one hand, very recent work by Day
and Marks (in preparation) which has utilized iterated priority arguments to solve
the long-standing decomposition problem of functions in the Borel hierarchy. In-
volving measure, another example is the study of higher randomness, which uses
set-theoretic techniques to study randomness at the level of analytic sets. Hjorth,
Nies, Chong, and Yu showed that modern notions of algorithmic randomness can
behave in surprising ways when their higher analogues are considered. Bienvenu,
Greenberg and Monin explored the role of continuity in the theory of randomness.
In parallel, set theorists have explored classes of real numbers computable by infi-
nite time Turing machines, and how these classes related to Gödel’s constructible
hierarchy. This in turn gives rise to new notions of randomness.



1152 Oberwolfach Report 21/2021

Computable Model Theory. Computable model theory investigates the effective
content of structures: either in particular algebraic classes (groups, fields, graphs,
...) or in generality. The main theme is understanding how algebraic structure
and computable properties affect each other. For example, a central notion is that
of algorithmic dimension: the number of computable copies up to computable
isomorphism. Goncharov used the theory of numberings to show that any finite
number is possible. Recently, Fokina, Kalimullin and R. Miller have suggested a
more flexible invariant based on the Turing reducibility: the degree of categoricity,
regarding the complexity of not only the structures but also of the isomorphisms
between them. This was extended by Bazhenov, Kalimullin and Yamaleev and
Csima and Stephenson. These notions suggest many interesting questions, one of
which was very recently solved by Turetsky (unpublished).

Also there are different approaches and questions related to the computability
of uncountable objects, as well as the numbering theory is under active develop-
ment which uses the methods both from Classical Computability Theory and from
Computable Model Theory.

Reverse Mathematics and Weihrauch Complexity. Reverse mathematics, devel-
oped by Harvey Friedman and Steve Simpson, is a branch of proof theory which
attempts to answer the question “what axioms of mathematics are actually neces-
sary for proving a given mathematical theorem?”. The context is usually second-
order arithmetic, working over a weak base theory. This study has very close
connections to computability, as the natural models involved are well-behaved
collections of Turing degrees, the set-existence axioms investigated are related to
logical definability and computational strength. For example, the common base
theory RCA0 states, roughly, that computable objects exist, and that induction
can be performed on computably enumerable sets.

More recently, it turned out that there are certain theorems that do not allow
for such a simple classification. Perhaps the best studied such example is Ramsey’s
theorem for pairs that yields a class on its own and is not linearly linked to the
other classes above. A major effort to fully understand Ramsey’s theorem for pairs
has very recently culminated in Monin and Patey’s (in preparation) separation
between the stable and general versions of the theorem within standard models of
arithmetic. We expect that their new techniques will be widely applicable.

Over the previous decade a more uniform approach to the classification of the-
orems was developed by Brattka, Gherardi, Marcone and Pauly and many others.
Uniformity is achieved in the sense that not just properties of instances are related
to properties of solutions, but the dependency of solutions on instances itself is
classified. This approach is based on the concept of Weihrauch reducibility and
directly considers theorems as mathematical problems that can be compared using
the notion of reducibility. This yields a much more fine grained classification of the
computational content with purely computability theoretic techniques, the results
of which typically refine the results of reverse mathematics.



Computability Theory 1153

A very new recent trend is the study of higher areas of Weihrauch complexity that
are analogous to ATR0, a project that is driven by Kihara, Marcone, and Pauly,
on the one hand, and Goh on the other.
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Abstracts

Proof Mining in Nonconvex Optimization

Ulrich Kohlenbach

During the last two decades a systematic program of ‘proof mining’ emerged as a
new applied form of proof theory and has successfully been applied to a number
of areas of core mathematics (see e.g. [5]). Recently, this methodology has been
used to extract explicit effective rates of convergence (in the metrically regular
case) or rates of metastability in the sense of T. Tao (in the boundedly compact
case) for the famous proximal point algorithm (PPA) and its strongly convergent
(even in the absence of compactness assumptions) Halpern-type variant (HPPA):
see [9, 12, 10, 13, 6, 7, 3, 11, 14] among other papers.

The significance of these algorithms is that they approximate zeros of (maxi-
mally) montone operators A which in the case where A (in Hilbert space) is the
subdifferential of a lower semi-continuous convex function coincide with the mini-
mizers of the function.

In recent years, nonconvex/nonconcave minimization problems have been stud-
ied in optimization. Then the resulting operators A in general will no longer be
monotone but may satisfy weaker conditions such as ρ-comonotonicity for nega-
tive ρ in the sense of [1] (also called cohypomonotonicity for |ρ| in [2]). In [1], it
has been established that (for suitable ρ ∈ R, λ > 0), the resolvent JλA of such
operators will be an averaged mapping (but no longer be 1/2-averaged, i.e. firmly
nonexpansive). Some control on the averaging constant is sufficient (see [15]) to
obtain a common so-called modulus of strong nonexpansivity which is the key
concept used in [6, 7]. This makes it possible to generalize the quantitative results
obtained in [6, 7] from monotone to ρ-comonotone operators.
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Bi-embeddable categoricity of computable structures

Nikolay Bazhenov

Two structures A and B are bi-embeddable if A is isomorphically embeddable
into B, and B is isomorphically embeddable into A. In this talk, we discuss
computability-theoretic properties of bi-embeddability types of algebraic struc-
tures. For known results on degree spectra up to bi-embeddability, we refer
to [1, 2, 3].

Let d be a Turing degree. A computable structure S is d-computably bi-
embeddably categorical (or d-computably b.e. categorical, for short) if for any com-
putable structure A bi-embeddable with S, there exist d-computable isomorphic
embeddings f : A →֒ S and g : S →֒ A. A degree x is the degree of bi-embeddable
categoricity for S if x is the least degree such that S is x-computably b.e. cate-
gorical.

The paper [4] showed that the index set of 0′-computably b.e. categorical,
strongly locally finite graphs is Π1

1-complete. We prove that the index set of
computably b.e. categorical graphs is Π1

1-complete. We also show that every de-
gree d ≥ 0′, which contains a Π0

1 function singleton, is a degree of bi-embeddable
categoricity.
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The Cantor-Bendixson theorem in the Weihrauch lattice

Alberto Marcone

(joint work with Vittorio Cipriani, Manlio Valenti)

In a 2015 Dagstuhl seminar I asked “What do the Weihrauch hierarchies look
like once we go to very high levels of reverse mathematics strength?” In other
words, I proposed to study the multi-valued functions (aka ‘problems’) arising
from theorems which lie around ATR0 and Π1

1-CA0.
In [3] we started the study of problems arising from statements classically equiv-

alent to ATR0. In particular, we considered several problems corresponding to the
perfect tree theorem. Among these PTT1 is the problem of finding a perfect sub-
tree of a tree T ⊆ N<N with uncountably many paths. PTT1 turned out to be
equivalent to CNN , the choice function on nonempty closed subsets of Baire space.
This, together with other evidence collected in that paper, supports the claim
that CNN is one of the problems corresponding to ATR0: others include UCNN (the
restriction of CNN to singletons) and the problem ATR2 introduced in [1].

The natural problem corresponding to Π1
1-CA0 is Π1

1-CA : TrN → 2N (where
Tr is the space of subtrees of N<N): given a sequence of trees (Tn)n∈N find the
characteristic function of {n | Tn is well-founded}.

Recall that the Cantor-Bendixson theorem states that any closed set A in a
Polish space can be decomposed in the union of its largest (possibly empty) perfect
subset (called the perfect kernel of A) and a countable set (called the scattered part
of A). The Cantor-Bendixson theorem is well-known to be equivalent to Π1

1-CA0.
Viewing a closed subset of NN as the set of paths [T ] in a tree T ∈ Tr we can

consider the following problems:

• PKTr : Tr → Tr: given a tree T find its largest perfect subtree (called the
perfect kernel of T );

• wCBTr : Tr ⇒ Tr × NN: given a tree T find its perfect kernel and list the
elements of the scattered part of [T ];

• CBTr : Tr ⇒ Tr×NN×N: given a tree T find wCBTr(T ) plus the cardinality
of the scattered part of [T ].

Jeff Hirst in [2] proved that PKTr ≡W Π1
1-CA, providing the first analysis in the

Weihrauch hierarchy of a statement equivalent to Π1
1-CA0.

For X a computable Polish space we consider the following problems:

• PST1,X : ⊆A−(X) ⇒ A−(X): given an uncountable closed subset A ⊆ X
find a perfect subset of A;

• PKX : A−(X) → A−(X): given a closed A ⊆ X find the perfect kernel of
A;

• wCBX : A−(X) ⇒ A−(X) × NN: given a closed A ⊆ X find the perfect
kernel of A and list the elements of the scattered part of A;

• CBX : A−(X) ⇒ A−(X)× NN × N: given a closed A ⊆ X find wCBX(A)
plus the cardinality of the scattered part of A.

So far we considered only these problems when X is either NN or 2N, but we are
planning to expand our research to other spaces, starting with Euclidean spaces.
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PK2N ,PKNN ,wCB2N ,wCBNN ,CB2N

CNN ,PTT1

Π1
1-CA,PKTr,wCBTr,CBTr

CBNN

ATR2

PST1,2N ,PST1,NN

UCNN

Our results are summarized in the attached figure. Here problems in the same
box are Weihrauch equivalent, black arrows mean strict Weihrauch reductions,
red arrows mean non-reductions, and blue lines separate arithmetic Weihrauch
degrees. The main open problem left is establishing whether CNN ≤W CBNN .

References
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Two Vignettes

Peter Cholak

(joint work with Peter Gerdes, Rod Downey, Noam Greenberg)

We will use our time to hopefully evocatively discuss the two results below. But
perhaps a theme which runs though these stories is having fun with effective con-
structions.

Result 1: Consider the following statement S(m,n): If C is any set which is
(m+ 1)-REA and not of m-REA degree, there exists a set A which is n-r.e. in C
such that A⊕C is not of (m+n)-REA degree. Soare and Stob [1982] showed this
statement holds for m = 0 and n = 1. Cholak and Hinman [1994] showed that
this statement holds for m = 0, 1 and arbitrary n ≥ 0. They also conjectured it
holds for all n and m. However, Cholak and Gerdes showed that this statement
fails for n = 2 and m = 1.
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Result 2: With Downey and Greenberg, we showed that if a c.e. set A is low2

then L(A) and E are isomorphic.

References

[1] Peter A. Cholak and Peter G. Hinman. Iterated relative recursive enumerability. Arch. Math.
Logic, 33(5):321–346, 1994.

[2] Robert I. Soare and Michael Stob. Relative recursive enumerability. In Proceedings of the
Herbrand symposium (Marseilles, 1981), volume 107 of Stud. Logic Found. Math., pages
299–324. North-Holland, Amsterdam, 1982.

Kolmogorov Complexity and Capacitability of Dimension

Theodore Slaman

The Hausdorff Dimension of a set of real numbers A is a numerical indication of
the geometric fullness of A. Sets of positive measure have dimension 1, but there
are null sets of every possible dimension between 0 and 1.

Effective Hausdorff Dimension is a variant which incorporates computability-
theoretic considerations. By work of Jack and Neil Lutz, Elvira Mayordomo, and
others, there is a direct connection between the effective Hausdorff dimensions of
the elements of a set A and the Hausdorff dimension of A itself. We will describe
how this point-to-set principle works and how it allows for novel approaches to
classical problems in Geometric Measure Theory.

Namely, in the 1950s Besicovitch and Davies showed that if A is an analytic
subset of the real numbers and A has Hausdorff dimension d, then for every s less
than d, A has a compact subset of Hausdorff dimension at least s. We show that
the assumption that A be analytic cannot be improved within ZFC. Consider the
situation under the assumption that V = L. Let B be the set of reals x such that x
can compute a representation of the ordinal at which x is constructed. As is well-
known, B is co-analytic, uncountable and has no uncountable closed subset. A
direct point-to-set argument shows that if V = L then B has Hausdorff dimension
1. Consequently, if V = L then the conclusion of the Besicovitch-Davies theorem
does not extend to the class of co-analytic sets.

HYP with finite mind-changes: On Kechris-Martin’s theorem and a
solution to Fournier’s question

Takayuki Kihara

According to Steel [2], Kechris and Martin have claimed that the Wadge rank of
the ω-th level of the decreasing difference hierarchy of coanalytic sets is ω2 un-
der the axiom of determinacy. In this talk, we give an alternative proof of the
Kechris-Martin theorem, by understanding the ω-th level of the decreasing dif-
ference hierarchy of coanalytic sets as the (relative) hyperarithmetical processes
with finite mind-changes. Moreover, we give a negative answer to Fournier’s ques-
tion [1] on the gap between the increasing and decreasing difference hierarchies
of coanalytic sets, by relating them to the Π1

1- and Σ1
1-least number principles,
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respectively. We also show that the decreasing difference hierarchy of coanalytic
sets is a proper subclass of the class of sets which are ∆1

1 relative to coanalytic
sets.

References
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On definability of c.e. degrees in the 2-c.e. degree structures

Mars Yamaleev

In our talk we will discuss some recent achievements for the problem of definabil-
ity of c.e. degrees in various degree structures in the finite levels of the Ershov
hierarchy. We show how the problem can be solved for the case of m-degrees.
Also we analyze possible approaches for the case of Turing degrees, and show how
the problem can be solved for easier settings. One of our approaches is based on
studying the relative enumerability of 2-c.e. degrees in c.e. degrees below them.
Despite an application for the definability questions, the topic of relative enumer-
ability is itself of interest, in particular, there is an old question which goes to the
work of Soare and Stob (1982): given a noncomputable low c.e. Turing degree,
does there exist a properly 2-c.e. Turing degree which is above it and relatively
enumerable in it? We will finish our talk by answering this question.

Relativized depth

Valentino Delle Rose

(joint work with Laurent Bienvenu, Wolfgang Merkle)

The notion of depth was introduced by Bennett in [1], with the aim of separating
“useful” and “organized” information from random noise and trivial information.
Formally, a subset X of the natural numbers N, identified with its characteristic
sequence X ∈ 2N, is said to be deep if for every computable time-bound t,

lim
n→∞

Kt(X ↾ n)−K(X ↾ n) = ∞,

where X ↾ n denotes the string formed by the first n bits of the characteristic
sequence of X , K is the prefix-free Kolmogorov complexity and Kt denotes its t-
time-bounded version. If a set is not deep, we call it shallow. A natural example of
deep set is given by the halting problem ∅′. On the other hand, neither ML-random
nor computable sets are deep. Finally, depth is upward-closed under tt-reductions:
if X is deep and X ≤tt Y , then Y is deep. Since tt-reductions are equivalent to
oracle computations running within some computable time-bound and hence, in
some sense, “fast”, the upward-closure of deep sets under tt-reductions is known
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as the slow growth law, as it expresses, intuitively, that no shallow set is able to
compute a deep set fast.

One possible way to relativize the notion of depth, in order to better understand
how oracles may help in organizing information, is the following.

Definition. Given an oracle A ∈ 2N, a set X ∈ 2N is A-deep if for every com-
putable time-bound t,

lim
n→∞

KA,t(X ↾ n)−KA(X ↾ n) = ∞,

where KA and KA,t denotes, respectively, the unbounded and t-time-bounded prefix-
free complexities relative to A.

The main properties of depth relativize in the following way: neither A-ML-
random nor A-tt-computable sets are deep, A′ is A-deep and, finally, if A is A-deep
and X ≤tt Y ⊕A, then Y is A-deep.

Intuitively speaking, access to an oracle increases computation power and ac-
cordingly, for most classes of sets that are considered in computability theory
the relativized version either contains or is contained in the unrelativized version,
examples are given by the classes of computable and of ML-random sets, respec-
tively. However, this is not the case of depth. Indeed, given an oracle A, the four
following cases may occur.

(1) Depth and A-depth may be incomparable. We show that this is the case
for ∅′. Indeed, ∅′ is clearly ∅′-shallow. Moreover, the following holds.

Theorem 1. There exists a ∆0
2 set X which is ML-random (hence shallow) but

∅′-deep.

(2) A-depth may be strictly weaker than depth. That is, every deep set is
A-deep and there are shallow sets which are A-deep. We show that this is the case
whenever A is ML-random. In particular, we prove the following results.

Theorem 2. If X is deep and A is ML-random, then X is A-deep.

A weaker statement is also true for shallowness.

Theorem 3. If X is shallow and A is X-2-random, then X is A-shallow.

However, Theorem 3 fails in the unrelativized case. Since complete extensions of
PA are deep (see [2]), the Randomness Basis Theorem ([3], Prop. 7.4) guarantees
the existence of a deep set Y such that A is Y -ML-random. Then the set X =
(Y xorA), i.e. the symmetric difference of Y and A, is both Y -ML-random (hence
shallow) and A-deep.

Theorem 4. For every ML-random oracle A there exists a shallow set X which
is A-deep.

Such a set X can be also used to give a short proof of the fact that every PA-
complete degree is the join of two ML-random degrees, which has been shown in
[4].



1164 Oberwolfach Report 21/2021

(3) A-depth may be strictly stronger than depth.

(4) A-depth may coincide with depth.

It is easy to see that every K-trivial oracle falls either under case (3) or case
(4). However, it is open in general which of these two cases may apply. Obviously,
case (4) apply to all computable sets.
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Generic algebraic fields

Russell Miller

(joint work with Kirsten Eisenträger, Caleb Springer & Linda Westrick)

The goal of this work is to investigate the “common” behavior of algebraic field
extensions of the rational numbers Q, with respect to Hilbert’s Tenth Problem
and related questions. Such fields are exactly the subfields of (a fixed computable
presentation of) the algebraic closure Q of Q. We use Sub(Q) to denote the space
of all those subfields. We are justified in calling it a space, because it has an
established topology, under which it is homeomorphic to the Cantor space 2ω: the
clopen sets, which form a basis, are precisely those sets of the form

Ua;b = {F ∈ Sub(Q) : Q(a) ⊆ F & b ∩ F = ∅},

for finite tuples a and b from Q. This topology is recognizable to field theorists:
it arises under a standard construction that dates back to Vietoris. A separate
development given in [5] considers the space of all isomorphism types of algebraic
field extensions of Q, which is just the quotient space modulo isomorphism of the
space Sub(Q), and which too is homeomorphic to 2ω. Since 2ω has the property
of Baire, so do both of these spaces, and we therefore naturally use the notion of
a meager subset of Sub(Q) to describe size: a property P of fields is “common” if
the collection of subfields of Q satisfying P is comeager. Here we will state results
for Sub(Q), but analogous results also hold in the space of isomorphism types.

For a field F (or any ring), Hilbert’s Tenth Problem for F is the set

HTP(F ) = {f ∈ F [X1, X2, . . .] : f = 0 has a solution in F},
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describing the polynomial equations over F that can be solved in F . The root set
of F is its restriction to single-variable polynomials

RF = {f ∈ R[X1] : f ∈ HTP(F )}.
Hilbert’s original Tenth Problem, from 1900, was the case F = Z, and was resolved
in 1970 by Matiyasevich [4], who used work [1] of Davis Putnam, and Robinson
to show that HTP(Z) is computably isomorphic to the Halting Problem. The
decidability status of HTP(Q) remains unknown. At the other extreme in Sub(Q),
however, HTP(Q) is trivially decidable. Our purpose is to investigate the Turing
degrees of HTP(F ) for fields F algebraic over Q, using techniques from [2].

For the restricted case of RF , this investigation begins with Rabin’s Theorem.
Rabin’s original theorem appeared in [8], as a result about computable fields.
Here we give a relativized version, applicable to all presentations F (computable
or not) of algebraic subfields of Q. We define a Rabin embedding of F (into our
fixed presentation Q) to be a field homomorphism f : F → Q that is computable
in the atomic diagram ∆(F ). Its image f(F ) is a Rabin image of F .

Theorem 1 (Rabin). There is a Turing functional Φ such that, for every presen-
tation F of any algebraic field extension of Q, Φ∆(F ) is a Rabin embedding of F
into Q. Moreover, for every Rabin embedding f of F , we have Turing equivalence
between RF and the image f(F ), relative to ∆(F ):

f(F )⊕∆(F ) ≡T RF ⊕∆(F ),

with both Turing reductions given uniformly in f .

Thus a Rabin image f(F ) of F need not be ∆(F )-computable, since RF may
not be computable from ∆(F ). Of course, f(F ) is always c.e. relative to ∆(F ), as
is RF . It is also useful here to introduce the index set IF of a presentation F :

IF = {f ∈ Z[X ] : f has a root in F}.
The polynomials here have coefficients in a fixed copy Z of the integers, indepen-
dent of the presentation. The index set identifies the isomorphism type: IE = IF
just if E ∼= F . Again, IF is always c.e. in ∆(F ), but need not be computable from
∆(F ). In fact, IF ⊕∆(F ) ≡T RF ⊕∆(F ), with uniformity in both reductions.

The essence of the following theorem appeared first in [6].

Theorem 2. Let F ∈ Sub(Q) be a generic subfield. Then there exists a presenta-
tion E ∼= F such that IF = IE 6≤T ∆(E) (and hence RE 6≤T ∆(E) too). However,
every E ∼= F satisfies

(IE)
′ ≤T (RE ⊕∆(E))′ ≤T (∆(E))′.

In short, RE and IE are always low relative to ∆(E), but each sometimes fails to
be computable in ∆(E).

This contrasts with the situation for fields in Sub(Q) generally. Many fields –
for example, all number fields F – have RF ≤T ∆(F ) (and since number fields all
have computable presentations, IF is decidable). On the other hand, other fields
K have RK ≡1 (∆(K))′, so that RK and IK are non-low, indeed as complex as
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possible, relative to ∆(K). In fact, for each c.e. set W of prime numbers, the
field Q(

√
p : p ∈ W ) has a computable presentation K with IK ≡T RK ≡T

W . So, while Theorem 2 describes the generic situation, each aspect described
(noncomputability and lowness) can definitely fail for non-generic fields.

The main theorem presented in the talk at Oberwolfach on April 27 states that,
for generic fields F (and hence on a comeager subset of Sub(Q)), the multivariable
case is no more difficult than its restriction to the single-variable case. The key
to its proof, arising from [2], is a demonstration that a natural forcing relation
(a; b)  α is decidable for all existential sentences α in the language of fields.

Theorem 3 (Eisenträger-Miller-Springer-Westrick). Let F ∈ Sub(Q) be a generic
subfield. Then every presentation E ∼= F has RE ⊕ ∆(E) ≡T HTP(E) ⊕ ∆(E).
Thus, among presentations E of F , Hilbert’s Tenth Problem HTP(E) must some-
times be noncomputable relative to ∆(E), but will always be low relative to ∆(E).

In view of Rabin’s Theorem, we can add a corollary.

Corollary 4. There is a uniform procedure that, for every generic subfield E ⊆ Q,
decides HTP(E) when given an oracle for E as a subset of Q.

We emphasize the distinction: in Theorem 3, we are given an algebraic field
as a freestanding structure, whereas in Corollary 4, the oracle tells us exactly
which elements of Q lie in E and which do not. By Rabin’s Theorem, the former
situation is equivalent to having an enumeration of the subfield of Q, while in the
latter, the oracle serves as a decision procedure for membership in the subfield.
To understand why the latter is more powerful, imagine the simple question of
whether X3 − 2 has a root in the subfield. Given a decision procedure, we simply
find the three cube roots of 2 in Q and use the procedure to check whether any
of them lies in the subfield. However, from an enumeration of the subfield (or in
a freestanding presentation of the field), we can recognize a cube root of 2 if one
ever appears, but can never be sure that no such cube root lies in the subfield: the
enumeration might simply not have revealed it yet.

It would be natural to try to transfer Lebesgue measure from Cantor space to
Sub(Q), and this would yield a different notion of size of subsets of Sub(Q), possibly
giving different answers about what behaviors are “common.” The difficulty with
this approach is that the transferred measure depends heavily on the choice of
the homeomorphism used for the transfer, and there is as yet no natural choice
known. (In particular, the Haar-compatible measure defined in [5] is not as simple
as was reported there, and has been abandoned for the present.) We still hope
to determine an appropriate probability measure on Sub(Q) for these purposes,
but for now this question remains open. Baire category, of course, avoids these
problems, as the concept of meagerness is defined in purely topological terms: thus
a subset of Sub(Q) has comeager preimage in 2ω under one homeomorphism just
if its preimage there is comeager under every homeomorphism.
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[2] K. Eisenträger, R. Miller, C. Springer, & L. Westrick; A topological approach to undefin-
ability in algebraic fields, submitted for publication.

[3] J. Koenigsmann; Defining Z in Q. Annals of Mathematics 183 (2016) 1, 73–93.
[4] Yu.V. Matiyasevich; The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR 191

(1970), 279–282.
[5] R. Miller, Isomorphism and classification for countable structures, Computability 8 (2019)

2, 99–117.
[6] R. Miller; Non-coding enumeration operators, in Beyond the Horizon of Computability:

16th Conference on Computability in Europe, CiE 2020, eds. M. Anselmo, F. Manea, & A.
Pauly, Lecture Notes in Computer Science 12098 (Berlin: Springer-Verlag, 2020), 112–123.

[7] J. Park; A universal first-order formula defining the ring of integers in a number field,
Mathematical Research Letters 20 (2013) 5, 961–980.

[8] M. Rabin; Computable algebra, general theory, and theory of computable fields, Transac-
tions of the American Mathematical Society 95 (1960), 341-360.

Combinatorial equivalence of a computability theory question

Lu Liu

We prove that a question of Miller and Solomon—whether every coloring c on
the d-ary string space admits a c-computable variable word infinite solution, is
equivalent to a combinatorial question. The combinatorial question asks whether
there is an infinite sequence of integers so that each of its prefixes satisfies a Ramsey
type property. The negation of the combinatorial question is a generalization of
the Hales-Jewett theorem (a cornerstone in combinatorics).

On the “Heap” Problem

Vadim Puzarenko

(joint work with Smeliansky R.L.)

There is the deep relation between well-known paradox “What the heap is?” (be-
longing to Eubulid from Miletus) and certain problems of quantum mechanics.
As Maslov V.P. is said in [1], “If we measure the quantity of grains of sand by
counting them – it’s not a heap. If we don’t want or can not to count them and
measure by other means – it’s a heap. . . If from an open bottle with gas which was
considered by L. Boltzmann, 106 particles goes out in 10−10 seconds, it is impos-
sible to number these particles in order to trace their further path”. However, the
quantitative justification of impossibility isn’t given anywhere in that paper.

To sort 106 molecules in 10−10 seconds, we need to execute about 6·106 compar-
ison operations for this time. It means that, even taking into account a possibility
of parallelizing merge operations of merge in Hoare’s sorting, our computer must
have the clock frequency about 17 · 1018 Hz. But this frequency corresponds to a
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X-ray radiation! Without going into technical details of the modern and perspec-
tive technologies in the field of an electronics engineering, the computer with such
clock frequency can’t exist.

We give a new algorithm for L. Boltzmann’s task.

Theorem 1 ([2]). There exists an algorithm for Boltzmann’s task whose level
complexity is O(n). Moreover, it depends on shot but is independent of the quantity
of particles.

Notice that the considered shot is fixed. How many particles we can number
within 10−10 s, if the maximum frequency of a modern processing unit is no more
than 5·109 Hz and the comparison operation takes 1 clock tick? It is not difficult to
calculate that the answer is none! With the modern level of computing technology,
the goal is not reachable.

Finally, we introduce additional computational structures for L. Boltzmann’s
task.
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Ill-founded orders and Weihrauch degrees

Manlio Valenti

(joint work with Jun Le Goh, Arno Pauly)

In this work we investigate the uniform strength of the two (Weihrauch equiva-
lent) problems DS and BS, where the first one consists in finding a descending
sequence through an ill-founded linear order, and the second one asks for a bad
sequence through a non-well quasi-order. The problem DS can be seen as a “one-
sided” version of ADS (given an infinite linear order produce either an ascending
or a descending chain). However their computational contents are very different:

while the latter is easily seen to be Weihrauch reducible to RT
2
2, and hence is an

arithmetic problem, there is a computable ill-founded linear order with no hyper-
arithmetic descending sequence, which places DS in the “non-hyperarithmetic”
part of the Weihrauch hierarchy.

Recently [2] introduced the concept of first-order part 1f of a multi-valued
function f , intuitively describing the strongest problem with codomain N reducible
to f . In the same spirit, we define the notion of deterministic part DetY (·) of
a multi-valued function, representing the strongest (single-valued) function with
codomain Y reducing to f . We show that 1DS ≡W Π1

1−Bound, where Π1
1−Bound

is the problem that takes in input a finite A ∈ Π1
1(N) and returns a bound for it.

We also show that DetNN(DS) = lim. We further characterize the lower cone of DS
under Weihrauch reducibility, showing how it misses many arithmetic problems.
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We also consider the problems Γ-DS and Γ-BS of finding descending sequences
(resp. bad sequences) through a Γ presented linear order (resp. quasi-order), where
Γ ∈ {Σ0

k,Π
0
k,∆

0
k,Σ

1
1,Π

1
1,∆

1
1}.

This creates a hierarchy of DS-like problems. We show that this hierarchy does
not collapse at any finite level by characterizing the first-order part of ∆0

k-DS. In
particular, for each k we have Σ0

k+1-DS ≡W ∆0
k+1-BS ≡W ∆0

k+1-DS ≡W Π0
k-DS.

We also exploit and generalize a technique based on Π1
1-inseparable sets (first

used in [1]) to show that Σ1
1-DS is strictly weaker than the problem CNN (which

can be thought of as the problem of finding a path through an ill-founded subtree
of N<N). The problems Π1

1-DS and Σ1
1-BS are much stronger: they can be used

to compute the leftmost path of an ill-founded tree, and this locates them in the
realm of Π1

1−CA0.
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Densely computable structures

Valentina Harizanov

(joint work with Wesley Calvert, Douglas Cenzer)

In 2012, Jockusch and Schupp studied generically computable and coarsely com-
putable sets, which they defined using dense sets (see [6, 5]). We generalize these
notions of approximate computability from sets to structures. The asymptotic
density of a set A ⊆ ω, if it exists, is

limn→∞
|A∩{0,...,n}|

n+1 .

We say that a set A is dense if its asymptotic density is 1.
We show that a set A ⊆ ω has asymptotic density δ if and only if the set

A×A has density δ2 in ω×ω. We also show that there is a computable dense set
C ⊆ ω × ω such that for any infinite c.e. set A, the product A×A is not a subset
of C. These results lead us to the notion of a generically computable structure
below [1]. We further define a Σn generically c.e. structure using the following
definition of a Σn elementary substructure. We say that a substructure B of A is
a Σn elementary substructure if for every infinitary Σn formula θ(x1, . . . , xn) and
any b1, . . . , bn from B, we have:

A |= θ(b1, . . . , bn) iff B|= θ(b1, . . . , bn).

Consider structures for finite languages. A structure is computable if its domain
is a computable set and its relations and functions are computable. We say that
a structure D with domain D is a c.e. structure if D is c.e., each relation of D is
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c.e., and each function of D is the restriction of a partial computable function to
D. By cR we denote the characteristic function of R.

Definition 1.

(1) A structure A is generically computable if A has a substructure D with a
c.e. domain D of asymptotic density 1 such that for every k-ary function f
and every k-ary relation R of A, both f ↾ Dk and cR ↾ Dk are restrictions
to Dk of some partial computable functions.

(2) A structure A is Σn generically c.e. if there is a c.e. dense set D such that
the substructure D with domain D is a c.e. substructure and also a Σn

elementary substructure of A.

We will now focus on injection structures (see also [4]) and equivalence struc-
tures (see also [2, 3]). An injection structure A is a set A together with a one-to-one
function f : A → A. It is not hard to see that every c.e. injection structure is
isomorphic to a computable injection structure.

The orbit of an element a under f is

Of (a) = {x : (∃n ∈ ω)[x = f (n)(a) ∨ a = f (n)(x)]}.
Infinite orbits may be of type Z or of type ω. The character of A is

χ(A) = {(k, n) ∈ (ω \ {0})× (ω \ {0}) : A has at least n orbits of size k}.

Theorem 2. An injection structure A = (ω, f) has a generically computable copy
iff

(i) A has an infinite substructure isomorphic to a computable structure iff
(ii) A has an infinite orbit or χ(A) has an infinite c.e. subset.

Having a Σ1 generically c.e. isomorphic copy has a simple characterization.

Theorem 3. A structure A = (ω, f) has a Σ1 generically c.e. copy iff

(i) A has a computable copy iff
(ii) χ(A) is a c.e. set iff
(iii) A has a Σ2 generically c.e. copy.

An equivalence structure A = (A,E) is a set A with an equivalence relation E
on A. Its character is denoted by χ(A). We have a surprising result that every
equivalence structure (ω,E) has a generically computable copy. We show that if
an equivalence structure (ω,E) is generically computable, then there is an infinite
computable C ⊆ ω such that the restriction of E to C × C is computable.

Theorem 4. An equivalence structure A = (ω,E) has a Σ1 generically c.e. copy
if and only if at least one of the following conditions holds:

(a) χ(A) is bounded;
(b) χ(A) has a Σ0

2 subset Kwhich is a character with a computable Khisamiev
s1-function;

(c) A has an infinite class and χ(A) has a Σ0
2 subset K;

(d) A has infinitely many infinite classes.
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Theorem 5. A structure A = (ω,E) has a Σ2 generically c.e. copy iff

(i) A has a c.e. copy iff
(ii) A has a Σ3 generically c.e. copy.

Next, we introduce the notions of coarsely computable and coarsely Σn struc-
tures [1].

Definition 6.

(1) A structure A is coarsely computable if there are a computable structure
E and a dense set D such that the structure D with domain D is a sub-
structure of both A and E and all relations and functions agree on D.

(2) A structure A is Σn coarsely c.e. if there are a c.e. structure E and a dense
set D such that the substructure D with domain D is a Σn elementary
substructure of both A and E and all relations and functions agree on D.

We show that every generically computable injection structure has a coarsely
computable copy, while there is a generically computable injection structure that
is not coarsely computable. There is a coarsely computable injection structure
with no generically computable copy.

Theorem 7. (1) There are injection structures with no coarsely computable
copies.

(2) There are equivalence structures with no Σ1 coarsely c.e. copies.

Theorem 8. An injection structure A = (ω, f) has a Σ1 coarsely c.e. copy iff

(i) A has a computable copy iff
(ii) χ(A) is a c.e. set.

We also characterize equivalence structures with Σ2 coarsely c.e. copies, as well
as Σ3 coarsely c.e. equivalence structures.
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Almost Theorems of Hyperarithmetic Analysis

Richard A. Shore

Theorems of hyperarithmetic analysis (THA) occupy an unusual neighborhood
in the realms of reverse mathematics and recursion theoretic complexity. They
lie above all the fixed (recursive) iterations of the Turing Jump but below ATR0

(and so Π1
1-CA0 or the hyperjump). There is a long history of proof theoretic

principles which are THA. Until Barnes, Goh and Shore [ta], there was only one
mathematical denizen found by Montalbán [2006]. BGS studied many variations of
graph theoretic theorems of Halin [1965], [1970] and others appearing in Diestel’s
standard text [2017]. This study revealed an array of theorems in graph theory
living in this THA neighborhood.

We introduce a new neighborhood of theorems which are almost theorems of
hyperarithmetic analysis (ATHA). When combined with ACA0 they are THA
but on their own the are very weak. We generalize several conservativity classes
(Π1

1, r-Π
1
1 and Tanaka) and show that all our examples (and many others) are

conservative over RCA0 in all these senses and weak in other recursion theoretic
ways as well. We provide denizens both mathematical and logical.

The original motivating result for this investigation was what appeared to be
a reduction between two variants of the theorems studied in BGS. This reduction
appeared in a graph theoretic paper by Bowler, Carmesin and Pott [2015]. It relied
on the fact that every graph satisfying the hypotheses of Halin’s theorem has a
locally finite subgraph also satisfying these conditions. This theorem turned out
to be an ATHA. We then found many other variations of standard theorems and
logical theories which are all highly conservative over RCA0 but very strong over
ACA0. They include examples going up a hierarchy which ends at systems very
weak over RCA0 but stronger than full second order arithmetic over ACA0.

These results can be seen as answering a question raised by Hirschfeldt and
reported in Montalbán [2001] by providing a long list of pairs of principles one of
which is very weak over RCA0 but over ACA0 is equivalent to the other which
may be strong (THA) or even much stronger. Thus one can say that they supply
a collection of theorems and theories which should be considered relative to ACA0

rather than RCA0.
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On A-computable Numberings

Marat Faizrahmanov

This talk is concerned with the computational properties of families of subsets of N.
Recall that any surjective mapping from N onto a countable family F ⊆ 2N is called
a numbering of F . Following [1, 2], we say that, for a given set A, a numbering ν is
A-computable if there is a computable function f such that ν(x) = WA

f(x) for each

x ∈ N. Families with A-computable numberings are also called A-computable. A
numbering ν is said to be reducible to a numbering µ (ν 6 µ) if ν = µ◦ f for some
computable function f . Two numberings ν and µ are said to be equivalent (ν ≡ µ)
if they are reducible to each other. The Rogers semilattice of an A-computable
family is the quotient structure of its A-computable numberings with respect to
the equivalence of numberings.

The Rogers semilattice of a computable family can be viewed as an algebraic
reflection of its effective topological properties. For example, the Rogers semilat-
tice of any computable effectively discrete family is one-element, but the Rogers
semilattice of any finite family with two sets comparable under inclusion is infinite.

The first part of the talk presents results on Rogers semilattices ofA-computable
families for any non-computable oracleA. Namely, we consider the questions about
their possible cardinalities, their latticeness, their distributivity, existence of their
largest and minimal elements, etc.

In the second part of the talk, we consider semilattices of all computable families
and allA-computable families under set-theoretic inclusion, whereA is an arbitrary
oracle. These semilattices were introduced and first studied by A.N. Degtev [3].
We consider the questions about definability of their Fréchet ideals, about existence
of their nontrivial definable singletons, and formulate some related questions.
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Randomness relative to almost everything

Tomasz Steifer

(joint work with Laurent Bienvenu, Valentino Delle Rose)

A famous theorem by van Lambalgen [2] states that for A⊕B is Martin-Löf random
if and only if A is Martin-Löf random and B is Martin-Löf relative to A, if and only
if B is Martin-Löf random and A is Martin-Löf random relative to B. It follow by
an easy argument that every Martin-Löf random set X is also Martin-Löf random
relative to almost all oracles. We introduce a following template notion:

Definition 1. Given a notion of relativized () randomness, we will say that X is
a.e. () random if the set of oracles Z such that X is not () random relative to Z,
is of measure zero.

It is known that for some notions of randomness a version of van Lambalgen’s
theorem does not hold. For instance, it was already observed by Yu [3] that
one of the implications fails for relativized computable randomness. Our main
observation is that van Lambalgen’s theorem fails for randomness in a certain
strong sense, namely that

Theorem 2. There exist a sequence X which is computably random but not a.e.
computably random.

The proof uses the fireworks technique advanced recently by several authors. At
the same time, Kolmogorov complexities of initial segments of an a.e. computably
random may be small—too small for a Martin-Löf random or even even a partial
computably random. This separation happens in almost everywhere dominating
degrees introduced by Dobrinen and Simpson [1].

Some open problems remains. We do not know if there is a set which is partial
computably random but not a.e. computably random. We do not have a proof
of separation between partial computable randomness and a.e. partial computable
randomness. More results will follow.
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Effectively Hausdorff Spaces

Matthias Schröder

In a previous Oberwolfach Workshop on Computability Theory, A. Pauly posed
the question whether or not any computably compact computably Hausdorff space
is computably regular (cf. [1, 5, 4]). We show that the answer to this question is
no. Indeed, the one-point compactification of any computable metric space that
is not locally compact yields a counterexample.

As a remedy, we introduce the new notion of an effectively Hausdorff space
which is stronger than the aforementioned notion of a computable Hausdorff space.
A computably admissible space X is called effectively Hausdorff, if there are two
computable sequences (ui)i∈N, (vi)i∈N of open subsets of X such that

⋃

i∈N

(ui × vi) = {(x, y) ∈ X ×X : x 6= y}.

This new notion includes computable metric spaces and admits the effectivisation
of some classical theorems from topology. In particular, the answer to the above
question changes to yes. A computably compact effectively Hausdorff space forms
even a computable metric space, provided that it has a computable dense sequence.

Furthermore, we discuss a form of compact overt choice that is computable for
any effectively Hausdorff space. Compact overt choice means the computational
task of finding an element in a non-empty compact subset given by positive in-
formation (see [3] for closed overt choice). This result can be used to prove a
characterisation of computable multifunctions.

Theorem 1. Let X be a computable metric space, and let Y be an effectively
Hausdorff space. Then a total multifunction F : X ⇒ Y is computable if, and
only if, there are computable functions h+ : X → K+(Y ) and hb : X → K−(Y )
satisfying

∅ 6= h+(x) ⊆ F [x] ∩ hb(x)

for all x ∈ X.

Here K+(Y ) and K−(Y ) denote the represented spaces of compact subsets of
Y equipped with the positive/negative representation for the compact subsets,
respectively (cf. [5, 6]). This result generalises a similar result by V. Brattka
and P. Hertling in [2] for the case that both spaces X,Y are computable metric
spaces. An open problem is to find a corresponding characterisation of computable
multifunctions for the case that both spaces X,Y are effectively Hausdorff spaces.
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Coarse computability, the density metric, and Hausdorff distances
between Turing degrees

Denis R. Hirschfeldt

(joint work with Carl G. Jockusch, Jr., Paul E. Schupp)

We discuss the metric space of coarse similarity classes of sets of natural numbers
under the distance function given by the upper density of the symmetric differ-
ence of two sets. We define a notion of distance between Turing degrees based
on Hausdorff distance in this space, and discuss aspects of the resulting metric
space, which by a relativized version of a result of Monin, is (0, 1/2, 1)-valued. We
also discuss computability-theoretic aspects of a Ramsey-theoretic theorem due to
Mycielski with connections to algorithmic randomness.

PA relative to an enumeration oracle

Mariya Soskova

(joint work with Jun Le Goh, Iskander Kalimullin, Joseph S. Miller)

Relativization is an important tool used in computability theory. It allows us to
extend properties or relations defined for computable sets to arbitrary Turing ora-
cles, by replacing the computably enumerable (c.e.) component of the definition by
c.e. relative to the Turing oracle. We can extend these definitions further to cap-
ture relations between enumeration oracles by replacing “c.e. in” by “enumeration
reducible to”.

We study the relation “PA relative to an enumeration oracle”. We isolate
several classes of enumeration oracles based on their behavior with respect to
this relation: the PA bounded oracles, the oracles that have a universal class,
the low for PA oracles, the self-PA oracles. We study the relationship between
them and other known classes. We also investigate a group of classes of oracles
that were introduced by Kalimullin and Puzarenko [1] based on properties that
are commonly studied in descriptive set theory. We characterize most of these
classes by restricting the relation “PA above” to a special sub-collection of Π0

1

classes. This allows us to completely determine the relative position of all classes
in question.
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Complexity of lines and planes: finite case

Alexander Shen

Consider a line on the plane R2 that has effective Hausdorff dimension s. (A
dimension of a line y = ax+ b is the dimension of the pair (a, b); the dimension of
a line x = c is the dimension of c. We omit here the words “effective Hausdorff”
since we do not consider other dimensions.) Then every point on the line has
dimension at most 1 + s, since this point is determined by the line and one of the
point’s coordinates. Also the dimension of every point does not exceed 2. Lutz
and Stull have recently proven that these two upper bounds are the only ones:
some of the points have dimension min(1 + s, 2).

To understand this result better, it is natural to look at its finite version. The
effective Hausdorff dimension is defined as lim inf of the complexities of prefixes
(per bit), so one could ask what happens with these complexities without lim inf.

First, one can look at a finite field case. Assume that F is a finite field of
size about 2n. The typical complexity of its elements is about n. (We consider
complexities with O(log n) precision.) Consider the affine plane F2; lines on this
plane have typical complexity 2n, and points also have typical complexity 2n. The
following finite version of Lutz–Stull theorem holds:

If a line has complexity s, then the maximal complexity of points
on it is min(2n, s+ n) +O(log n).

The combinatorial translation of this statement: if a set contains 2t points for
t < n−O(1), then at most 2t−n lines can be its subsets. This is easy to show, for
example, using the inclusion-exclusion formula (or the expander properties of the
lines–points graph).

Second, one can consider the continuous case, looking at the 2−n-approximations
of points and line coefficients. However, there is a technical problem, since the line
is infinite and this implies that the maximal complexity of (an approximation) of its
point is unbounded. To avoid this problem, one can consider the projective plane,
a two-dimensional compact manifold (a sphere with identified opposite points).
The lines are great circles on this sphere, and can be identified with corresponding
poles (duality). So we can speak about the complexity of 2−n-approximation of
points and lines. (Similar notion of approximation complexity can be defined for
most natural compact manifolds.)

It is quite surprising, taking into account Lutz–Stull result, that the bound for
the finite approximation is much weaker:

If a line on the projective plane has 2−n-approximation complexity
s, then it contains a point whose 2−n-approximation complexity is
n+ s/2.

Again there is a combinatorial counterpart connecting the area of a set A on the
projective plane (or on the sphere) with the area of set B of all poles of great
circles that lie entirely in A. The following geometric inequality holds:
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Let A and B be two measurable sets on the sphere of unit area.
Assume that for every b ∈ B all the points a that are orthogonal
to b belong to A. Then µ(B) ≤ µ(A)2.

Here µ is the uniform measure on the sphere S and µ(S) = 1.
Indeed, let ξ and η be independent random variables uniformly distributed on

S, and let ζ be the (unique) vector that is orthogonal to ξ and η, and forms a
positively oriented triple with ξ and η. (This vector is undefined when ξ = η,
but this happens with probability 0.) Then, for symmetry reasons, ζ is uniformly
distributed on S, so the event ζ ∈ N has probability µ(B). On the other hand,
it is a subset of the event (ξ ∈ A) ∧ (η ∈ A) that has probability µ(A)2 due to
independence.

It is easy to see that the bound s/2+n is achieved for the case where the line is
randomly taken from a small neighborhood of a simple line. This means that the
result of Lutz and Stull essentially uses the lim inf : the prefix where the lim inf is
achieved for the line can be shorter than the prefix for the point where the lim inf
is achieved.

Open question: How to formulate and prove the corresponding geometric state-
ment?

Acknowledgments: this open question arises from the discussions with Penn
State Logic Seminar (in particular, with Linda Westrick) and Moscow University
Kolmogorov seminar. The proof of the inequality for sphere areas was communi-
cated by Ilya Bogdanov (and simplified by Alexander Kozachinskiy).

Open Problems

Workshop participants

(Nikolay Bazhenov) Is the class of Heyting algebras universal in the sense of the
paper of Hirschfeldt, Khoussainov, Shore, and Slinko (2002)? One can also con-
sider restricted versions of this question: for example, can computable Heyting
algebras realize all possible categoricity spectra?

(Verónica Becher) If we toss a coin N times, the uniform probability distribution
says that each block of length n will occur about N/2n times. This is informative
only in case n ≤ logN . What can we say about blocks of length larger than logN?
Years ago Zeev Rudnick defined the Poisson generic real numbers as those whose
binary expansions obey the Poisson law. Formally, a binary sequence x is Poisson
generic if for all positive real numbers λ and for all non negative integers k,

lim
n→∞

# length-n words occur exactly k times in first [λ2n] symbols of x

# length-n words
= e

−λ λ
k

k!
.
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Theorem (Yuval Peres and Benjamin Weiss, 2010).

(1) Almost all (Lebesgue measure) real numbers are Poisson generic;
(2) All Poisson generic reals are Borel normal;
(3) The Champernowne number is not Poisson generic.

No example of a particular instance of a Poisson generic real is known. Ques-
tions:

(1) Is there a computable Poisson generic real?
(2) Are all Martin-Löf random reals Poisson generic?
(3) Is it possible to characterize Poisson generic reals with some kind of Kol-

mogorov complexity?
(4) Prove that the set of Poisson generic reals is Π0

3-complete.

The following talk by Weiss is relevant:
https://www.youtube.com/watch?v=8AB7591De68

(Chi Tat Chong) The tree coloring principle TT
1 states that every finite coloring

of the full binary tree has an isomorphic monochromatic subtree. It is immediate
that over RCA0, TT

1 6→ RT
2
2 since any ω-model of RCA0 satisfies TT1. However,

in terms of inductive strength, TT1 and RT
2
2 both imply Σ2-bounding but not Σ2-

induction. Furthermore under ¬IΣ2, every model of TT1 has a recursive instance
with no solution ≤T ∅′′. The same applies to RT

2
2.

Yet another similarity is exhibited in conservation: A recent result of Chong,
Wang and Yang (in preparation), mirroring an earlier theorem of Patey and

Yokoyama (2018) for RT
2
2, says that TT

1 +WKL0 is Π0
3-conservative over RCA0.

On the other hand, TT1 is Π1
1-conservative over PΣ1+BΣ2, a property not known

for RT2
2.

Finally, over RCA0, one has RT
2 → TT

1, where RT
2 =

⋃
k RT

2
k. These data

points lead to the following question:

(1) Does RCA0 + RT
2
2 imply TT

1?

(Peter Hertling) If the so-called Hyperbolicity conjecture about the Mandelbrot
set is true then the Mandelbrot set is computable in a strong sense. But this is cur-
rently unknown. It is even unknown whether the Mandelbrot set is a c.e. closed set.
More details and further open computability-theoretic questions concerning the
Mandelbrot set can be found in the article “Is the Mandelbrot set computable?”,
MLQ 51(1), 5–18, 2005, by P. Hertling.

(Steffen Lempp) I wanted to remind the participants of five long-standing open
problems that the younger people may now be able to solve after all:

(1) Sacks (1963) asked if every locally countable partial order of size con-
tinuum embeds into the Turing degrees. He showed that the answer is
positive under CH, and Abraham/Shore (1986) extended this by showing
that any locally countable upper semilattice of size ℵ1 embeds into the
Turing degrees as an initial segment. Recently, Higuchi and Lutz (to ap-
pear) showed that every size-continuum poset P embeds into the Turing

https://www.youtube.com/watch?v=8AB7591De68
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degrees if P contains only chains of size at most 2, but that under AD,
this may fail for P with chains of size at most 3.

(2) Lachlan and others (late 1960’s) asked which finite lattices can be embed-
ded into the c.e. Turing degrees. The best known result is a Π0

2-condition
for finite join-semidistributive lattices by Lerman (2000).

(3) Based on Rogers’ homogeneity conjecture, the existence of nontrivial auto-
morphisms of degree structures was raised. It has been completely solved
for the m- and the c.e. m-degrees (Ershov/Palyutin 1975 and Dëgtev 1978)
in the positive, and for the hyperarithmetic degrees (Slaman/Woodin/
1990’s) in the negative, but for the Turing and the enumeration degrees,
we only know that there are at most countably many (Slaman/Woodin
1990’s and Slaman/Soskova 2017).

(4) Ershov (1977) asked for which finite families F1 and F2 of c.e. sets their
Rogers semilattices are isomorphic. Ershov (2003) showed that (F ′

1,⊂) ∼=
(F ′

2,⊂) is a necessary condition, where F ′ is the finite partial order F with
the maximal elements removed; it is conjectured that this condition is also
sufficient.

(5) Muchnik/Semënov/Uspensky (1998) asked if Martin-Löf and Kolmogorov-
Loveland randomness coincide, where the latter is defined in terms of com-
putable non-monotonic adaptive martingales. Kastermans/Lempp (2010)
were only able to separate Martin-Löf randomness from the nonadaptive
version of KL randomness called injective randomness.

(Elvira Mayordomo) Classical Hausdorff (denoted dimH) and packing dimension
(denoted dimP) are defined in terms of covers. Lutz and Lutz (2018) proved their
point to set principles characterizing both Hausdorff and packing dimension for
the space of reals in terms of their corresponding relativized effective dimensions.
Using these principles, questions on classical dimensions can be rephrased as ques-
tions on effective dimensions. Several new results on classical fractal dimensions
have already been proven in this fashion; see Lutz, Mayordomo (2021, to appear
in the Handbook of Computability and Complexity in Analysis) and Lutz and Lutz
(2020, Complexity and Approximation). We propose the following open questions:

(1) A set A is regular if dimH(A) = dimP(A). Can computability (partially)
characterize regularity for A ⊆ 2ω?

(2) It follows from work of Besicovitch (1952), Davis (1952), and Joyce, Preiss
(1995) that for every A ⊆ 2ω which is regular and analytic and every
s ≤ dimH(A), there is a closed subset C ⊆ A with s ≤ dimH(C). Can we
give an alternative proof of this result using the point-to-set principles?
Can we remove the analyticity requirement for regular sets?

For further motivation, please refer to Slaman’s abstract in the present report.

(Arno Pauly) The Weihrauch lattice (see Brattka, Gherardi, Pauly (2017) for a
survey) has a rich algebraic structure, but besides it forming a distributive lattice
and a Kleene algebra, it does not seem to fit the mould of well-studied algebraic
structures well. In particular, while we would expect the Weihrauch lattice to be
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the prototypic algebraic model of some kind of logic, it does not belong to the
usual substructural logics studied (Brattka, Pauly (2018)). A potential next step
would be to characterize further operations in an algebraic way:

(1) Can we characterize any further fragments of the theory of
(W; 0, 1, ∅,⊓,⊔,×, ⋆,→,∗ ,⋄ ,̂) in a similar way?

A related group of issues is whether some of the operations are definable from
others. It is clear that 0,⊓,⊔, ∅ are definable from ≤W alone; and that 1,⋆ are
definable from ≤W,×. It was recently shown by Westrick (2021) that ⋄ is definable
from ≤W, ⋆. One particularly interesting question would be:

(2) Is 1 definable from ≤W alone?

An overview of recent development in the area, and further open questions, can
be found in Pauly (An update on Weihrauch complexity, and some open questions,
2020).

(Vadim Puzarenko) We work within KPU, i.e., axioms of Kripke–Platek with Ure-
lements. A wellfounded structure of KPU is called an admissible structure. We
consider hereditarily finite structures (e.g., HF(M)) and hyper structures (e.g.,
HYP(M)) as main examples of admissibles. Under A-c.e. and A-c. sets we un-
derstand respectively Σ and ∆ predicates on A. All the considered structures are
in some finite signature. Hence, such admissibles have universal c.e. predicates.
Our question concerns interconnections between Computability Approaches on
Admissibles and fixed points under the Jump operator.

There are two notions of relative computability among admissibles. First, we
say that M is Σ-definable in A iff there exists a map ν from A onto M such that
the ν-preimage of each signature relation on M including equality is A-c. Notice
that M is Σ-definable in HF(∅) iff M is computable. Notion of M to be Σ-
definable in HF(A) corresponds to effective interpretability of M in A introduced
in Harrison-Trainor, Melnikov, Miller, Montalbán (2017).

We give now a strong version of a computability level. We say that A is Σ-
reducible to B (shortly, A ⊑Σ B) iff there exists a map ν from B onto A such that
all the ν-preimages of n-ary A-c.e. relation are B-c.e., for each natural number n.
We say that A and B are Σ-equivalent (and denote it as A ≡Σ B) iff A ⊑Σ B and
B ⊑Σ A. Notice that M is Σ-definable in A iff HF(M) ⊑Σ A. As in classical case,
each admissible set A has a directed graph MA that A ≡Σ HF(MA).

Next we define the notion of the jump of a structure: J (A) = (HF(MA), P ) is
called a jump structure of A where P is a universal A-c.e. relation. In comparison
with classical case, the jump operation on structures has a fixed point as proved
by Puzarenko (2011) and Montalbán (2013).

We conjecture that for every admissible set A, the following conditions are
equivalent:

(1) A ≡Σ J (A);
(2) Σ-definability of B (as a structure) in A implies B ⊑Σ A.
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(1) ⇒ (2) can be easily checked. As for (2) ⇒ (1), at present, there are some exam-
ples which confirm the conjecture. See Puzarenko (2005) and Avdeev, Puzarenko
(2019).

(Mariya Soskova) A set A ⊆ ω is enumeration reducible to a set B ⊆ ω (and we
write A ≤e B) if there is a c.e. set W such that x ∈ A ⇔ ∃v[(x, v) ∈ W & Dv ⊆ B].
Let We(A) denote the set which is enumeration reducible to A via We. Let KA =⊕

e<ω We(A). We define the skip of A to be A⋄ = KA. The skip was introduced
and investigated by Andrews, Ganchev, Kuyper, Lempp, Miller, Soskova, and
Soskova (2019). It has the following properties:

(1) A ≤e B if and only if A⋄ ≤1 B⋄. (We can thus define the skip operator
on degrees: de(A)

⋄ = de(A
⋄).)

(2) For every A ≥e ∅⋄ there is some B such that B⋄ ≡e A
⋄.

(3) It is not always the case that A ≤e A⋄. In fact, A ≤e A⋄ if and only if
A has cototal enumeration degree. The enumeration jump of a set A is
defined as A′ = A⊕A⋄. So for cototal (and hence total) degrees a we have
that a′ = a⋄.

(4) A ≤e (A
⋄)⋄.

Questions:

(1) If G is arithmetically generic then for every n we have that the n-th skip
of G is not below the n+ 1-st skip of G. We say that G exhibits a zig-zag
behavior. Is there an arithmetical degree a such that for every n, the n-th
skip of a is not below the n+1-st skip of a? Equivalently, is there a degree
a such that for every n the n-th skip of a is nontotal?

(2) There is a set A such that (A⋄)⋄ = A. We call A a skip 2-cycle. AGKLMSS
(2019) proved that each skip 2-cycle bounds every HYP degree. Can the
HYP degrees be characterized as the degrees bounded by all skip 2-cycles?
(Jun Le Goh provided an affirmative answer to (2) during the workshop:
The set P = {A : A is a skip 2-cycle} is a nonempty Σ1

1 class. If X ≤e A
for everyA ∈ P then bothX andX are Σ1

1 in every member of a nonempty
Σ1

1 class. By the basis theorem of Harrington, Shore, Slaman (2017) X
and X are Σ1

1, hence X is HYP.)
(3) Is the skip operator first order definable in the enumeration degrees? An

affirmative answer would yield a first order definition of the cototal degrees
and by the above of the HYP degrees. (The HYP degrees are known to
be definable through Slaman and Woodin’s coding machinery though not
with a simple definition).

(Frank Stephan) Recall the following notions: a set A is truth-table reducible to B
iff there are recursive functions f, g such that A(x) = f(x,B(0)B(1) . . . B(g(x)))
where B(0)B(1) . . . B(g(x)) is a natural number representing the corresponding
binary string of length g(x)+ 1. A is positive truth-table reducible to B iff for the
same f, g it holds that whenever C is truth-table reducible to D and E to F via
these f, g and D ⊆ F then C ⊆ E. Frank Stephan (On the structure inside truth-
table degrees, JSL 66(2), pages 731-770, 2001) showed that the possible numbers of
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positive degrees inside nonrecursive truth-table degrees are either odd or infinite,
several odd numbers are found like 3, 19, 219, ..., namely all numbers mn where
mn is the number of partial orders on a set of n elements. The number 1 only
occurs in the recursive truth-table degree.

(1) What about the other odd numbers, can they occur as numbers of positive
degrees inside truth-table degrees?

Furthermore, a set A is many-one reducible to B iff there is a recursive function
f such that A(x) = B(f(x)) and A is one-one reducible to B if it is many-one
reducible to B via a one-one function. These reductions induce the corresponding
degrees. The following two questions were open 20 years ago and Frank Stephan
has not seen anywhere since then the solutions to them, though he did not actively
track the questions: Aleksandr Nikolaevich Dëgtev (tt- and m-degrees, Algebra
and logic 12(2):78-89, 1973) showed that every r.e. many-one degree either consists
of one one-one degree or is recursive or contains an infinite antichain of one-one
degrees.

(2) Does the above hold for all many-one degrees?

Furthermore, Dëgtev (Partially ordered sets of 1-degrees, contained in recur-
sively enumerable m-degrees. Algebra and Logic, 15(3):153-164, 1976) showed for
every natural number n there is an r.e. many-one degree having one least degree
and above it n minimal one-one degrees.

(3) Can there be infinitely many minimal one-one degrees in an r.e. many-one
degree?

(Manlio Valenti) There are several ways the open and clopen Ramsey theorems
can be phrased as computational problems. The uniform strength of the cor-
responding problems (as measured by Weihrauch reducibility ≤W) has been ex-
plored in Marcone, Valenti (to appear). In particular, we can consider the problem

Σ0
1−RT of finding a homogeneous solution for an open P ⊂ [N]

N
, and its restric-

tion wFindHSΠ0

1

to problems that have no homogeneous solutions that land in the
set. Can we use these problems to uniformly solve the problem CNN of computing
a path through an ill-founded subtree of N<N? Namely:

(1) CNN ≤W Σ0
1−RT?

(2) CNN ≤W wFindHSΠ0

1

?

Separately, in Goh, Pauly, Valenti (to appear), we explored the uniform com-
putational strength of the problem DS of finding a descending sequence through
an ill-founded linear order. A question that resisted full characterization is:

(3) KL ≤W DS?

Among the possible strengthenings of DS, we can consider the problem Γ-DS,
where the input order is represented via a Γ-code, with Γ among Σ0

k, Π
0
k, ∆

0
k,

Σ1
1, Π1

1, ∆1
1. We can also consider the problem Γ-BS, where we ask for a

bad sequence through a non-well quasi-order, and its restrictions Γ-BSLQO and
Γ-BSPO respectively to total quasi-orders and to partial orders. We showed that
Σ0

1-DS <W Σ0
1-BSLQO.
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(4) What are the exact relations between Σ0
1-DS, Σ0

1-BSLQO, Σ0
1-BSPO,

Σ0
1-BS, and ∆0

2-DS?

(Liang Yu) Turing determinacy (TD) says that for every cofinal set A of Turing
degrees, A contains an upper cone. Strong Turing determinacy (sTD) says that
for every set A of reals with cofinal range in the Turing degrees, A has a pointed
subset (a pointed set is a perfect set in which every real computes a representation
of the set). Over ZF,

(1) Does TD imply DCR?
(2) Does TD(+DC) imply sTD?

(Mars Yamaleev) A positive answer for the following question could be the essential
step for the long-standing problem of definability of c.e. Turing degrees in the
partial ordering of 2-c.e. Turing degrees.

(1) Given a 2-c.e. set D of properly 2-c.e. Turing degree, does there exist a
c.e. set A such that D 6≤T A and for any c.e. W ≤T D we have W ≤T A?

Second, Soare and Stob proved in 1982 that for any noncomputable low c.e. set
C there exists a set D which is CEA(C) and not of c.e. Turing degree. Arslanov
in 2011 showed that if this C is superlow then the degree of D must be 2-c.e.

(2) Can this property characterize superlow c.e. degrees? In other words, given
a noncomputable low, but not superlow, c.e. set C, does there exist a set
D which is CEA(C) and not of 2-c.e. Turing degree?

Reporter: Jun Le Goh
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