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Introduction by the Organizers

All 12 talks were of the highest quality, summarising and highlighting fundamen-
tal recent developments in the field, triggering lively discussions even despite the
virtual format on zoom. The material presented in the talks covered a wide range
of aspects of Bayesian nonparametric statistics and its mathematical foundations.
Loosely speaking there were 3 main clusters of topics, on i) Asymptotic behaviour
of Bayes methods, ii) Bayesian inverse problems, and iii) Sampling methods for
complex posterior distributions. We now summarise the contributions in somewhat
more detail.

i) Asymptotic behaviour of Bayes methods

There were two talks on the recently emerged area of Bayesian multiple testing,
and Ismael Castillo and Elisabeth Gassiat presented an overview of recent progress
on the asymptotic behaviour of such methods in a variety of settings, including
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Hidden Markov models. Chao Gao presented his work on a unified convergence
rate analysis of variational Bayes methods, which are often relevant in complex set-
tings where standard computation of posteriors is impossible. Aretha Teckentrup
reviewed recent work of hers on convergence properties of Gaussian process re-
gression in a ‘noise-less’ regression setting. Johannes Schmidt-Hieber talked about
recent results establishing contraction rates for posterior distribution arising from
‘deep’ Gaussian processes (where multiple layers are generated by conditioning
steps). Botond Szabo reviewed recent work of himself and collaborators on Gauss-
ian process regression in ‘distributed’ settings with computational ‘communication
constraints’.

ii) Bayesian inverse problems

Another cluster of the workshop was concerned with recent progress in the un-
derstanding of Bayesian methodology applied in inverse problems (arising with
PDEs or otherwise). Martin Burger presented recent work on the variational in-
terpretation and computation of MAP estimators (posterior modes) arising from
log-concave priors. Nik Kovachki presented his work with Andrew Stuart and Bam-
dad Hosseini on learning operators in Bayesian inverse problems. Hanne Kekkonen
presented her consistency results for nonparametric Bayesian inference in a non-
linear inverse problem arising with a parabolic Schrödinger equation. Tapio Helin
discussed results about the use of the Laplace approximation to approximately
compute posterior distributions by ‘Gaussian surrogates’.

ii) Sampling methods for complex posterior distributions

Eric Moulines discussed new MCMC/importance sampling type algorithms based
on non-equilibrium sampling ideas, and described recent progress on the theoretical
understanding of such methods. Sven Wang presented results on poly-nomial
time computational guarantees for Langevin MCMC samplers for high-dimensional
posterior measures arising in non-log-concave PDE settings with a Schrödinger
equation.

Acknowledgement: We would like to thank the MFO for hosting us and Stefan
Franssen, Matteo Giordano and Deborah Sulem for helping with the organisation
of the online workshop and the preparation of this report.
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Abstracts

Bayesian multiple testing: overview and sharp boundary for
sparse sequences

Ismaël Castillo

(joint work with Kweku Abraham & Étienne Roquain)

Bayesian posterior distributions that allow for variable selection are often used
in practice to address multiple testing questions. Besides their empirical success,
they have been advocated among others by Bradley Efron for use in combination
with empirical Bayes estimators of unknown prior parameters.

We consider three popular multiple testing procedures based on spike and slab
priors. The first simply selects coordinates based on low posterior probabilities of
coming from the null distribution, so-called ℓ–values (also known as ‘local FDR’
values). The second procedure is based on cumulative ℓ–values and the third on
thresholding of so-called q–values (Storey 2003). While simple decision-theoretic
arguments show that these procedures have optimality properties in the Bayesian
setting assuming the prior is correct, it is natural to wonder whether their excel-
lent behaviour in practice can be backed-up by theoretical guarantees if the true
parameter is a fixed sparse (but otherwise arbitrary) vector.

In a sparse normal means setting, we demonstrate that the procedures behave
optimally in a number of ways, if the spike-and-slab weight is calibrated using
marginal maximum likelihood in an Empirical Bayes fashion. On the one hand,
we prove that the frequentist FDR (False Discovery Rate) of these procedures is
uniformly controlled: it goes to zero slowly for the ℓ–value procedure, and stays
close to a user-specified nominal level for the q–value procedure. On the other
hand, we study the power through the FNR (False Negative Rate). We investigate
multiple testing minimax rates and prove that sharp adaptive minimaxity for the
multiple testing risk is achieved by Empirical Bayes-calibrated ℓ–value procedures.

References

[1] Ismaël Castillo, Étienne Roquain, On spike and slab empirical Bayes multiple testing, The
Annals of Statistics, 2020.

[2] Kweku Abraham, Ismaël Castillo, Étienne Roquain, Empirical Bayes cumulative ℓ–value
multiple testing procedure for sparse sequences, arXiv:2102.00929.

[3] Kweku Abraham, Ismaël Castillo, Étienne Roquain, Sharp multiple testing boundary for
sparse sequences, manuscript in preparation.
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Distance measures for Learning and Bayesian Inversion

Martin Burger

(joint work with Felix Lucka, Tapio Helin, Martin Benning)

Common distance measures in statistics are based on variances or covariances,
which corresponds to Hilbert space norms. In recent high-dimensional applications
such as Bayesian inverse problems or machine learning one often chooses to work
with priors very far from Gaussians, which implies that the geometric structure is
very far from a Hilbertian one. Thus, quantification in terms of a Hilbert space
norm can be far from optimal.

In the case of log-concave priors we investigate distance measures such as Breg-
man distances and (scaled) Jensen distances, which turn out to be efficient for
analyzing the variational problems related to maximum a-posteriori error esti-
mates. Our results show that for appropriate choice of the distances, the max-
imum a-posteriori probablity estimate or the conditional mean estimate can be
obtained as minimizers. This directly yields contraction estimates in a corre-
sponding transport distances. The latter can be generalized to estimates between
posterior distributions in the transport distances. In the infinite-dimensional set-
ting a similar analysis can be applied, but the distances have to modified if the
negative logarithm of the prior is not one-homogeneous.

References

[1] Martin Burger, Felix Lucka, Maximum a posteriori estimates in linear inverse problems with
log-concave priors are proper Bayes estimators, Inverse Problems, 30 (2014), 114004.

[2] Tapio Helin, Martin Burger, Maximum a posteriori probability estimates in infinite-
dimensional Bayesian inverse problems, Inverse Problems, 31 (2015), 085009.

Convergence Rates of Variational and Empirical Bayes:
A Unified Analysis

Chao Gao

(joint work with Fengshuo Zhang)

We study the convergence rates of empirical Bayes posterior distributions for non-
parametric and high-dimensional inference. We show that as long as the hyperpa-
rameter set is discrete, the empirical Bayes posterior distribution induced by the
maximum marginal likelihood estimator can be regarded as a variational approx-
imation to a hierarchical Bayes posterior distribution. This connection between
empirical Bayes and variational Bayes allows us to leverage the recent results in
the variational Bayes literature, and directly obtains the convergence rates of em-
pirical Bayes posterior distributions from a variational perspective. For a more
general hyperparameter set that is not necessarily discrete, we introduce a new
technique called “prior decomposition” to deal with prior distributions that can be
written as convex combinations of probability measures whose supports are low-
dimensional subspaces. This leads to generalized versions of the classical “prior
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mass and testing” conditions for the convergence rates of empirical Bayes. Our
theory is applied to a number of statistical estimation problems including non-
parametric density estimation and sparse linear regression.

References

[1] Fengshuo Zhang, Chao Gao, Convergence Rates of Empirical Bayes Posterior Distributions:
A Variational Perspective, arXiv:2009.03969.

Non-Equilibrium Sampling

Eric Moulines

(joint work with Achille Thin, Yazid Janati, Sylvain Le Corff, Charles Ollion,
Arnaud Doucet, Alain Durmus, Christian Robert)

Sampling from a complex distribution π and approximating its intractable nor-
malizing constant Z are challenging problems. In this paper, a novel family of
importance samplers (IS) and Markov chain Monte Carlo (MCMC) samplers is
derived. Given an invertible map T, these schemes combine (with weights) el-
ements from the forward and backward Orbits through points sampled from a
proposal distribution ρ. The map T does not leave the target π invariant, hence
the name NEO, standing for Non-Equilibrium Orbits.cNEO-IS provides unbiased
estimators of the normalizing constant and self-normalized IS estimators of ex-
pectations under π while NEO-MCMC combines multiple NEO-IS estimates of
the normalizing constant and an iterated sampling-importance resampling mecha-
nism to sample from π. For T chosen as a discrete-time integrator of a conformal
Hamiltonian system, NEO-IS achieves state-of-the art performance on difficult
benchmarks and NEO-MCMC is able to explore highly multimodal targets. Addi-
tionally, we provide detailed theoretical results for both methods. In particular, we
show that NEO-MCMC is uniformly geometrically ergodic and establish explicit
mixing time estimates under mild conditions.

Convergence, Robustness and Flexibility of Gaussian
Process Regression

Aretha Teckentrup

(joint work with Matt Dunlop, Mark Girolami, Andrew Stuart)

We are interested in the task of estimating an unknown, deterministic function
from a set of point evaluations. In this context, Gaussian process regression is
often used as a Bayesian inference procedure. However, hyper-parameters appear-
ing in the mean and covariance structure of the Gaussian process prior, such as
smoothness of the function and typical length scales, are often unknown and learnt
from the data, along with the posterior mean and covariance.

In the first part of the talk, we study the robustness of Gaussian process regres-
sion with respect to mis-specification of the hyper-parameters. We work in the
framework of empirical Bayes’, where a point estimate of the hyper-parameters is
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computed, using the data, and then used within the standard Gaussian process
prior to posterior update. Using results from scattered data approximation, we
provide a convergence analysis of the method applied to a fixed, unknown function
of interest. We show convergence of the mean of the Gaussian process posterior to
the true function f , and the convergence of the variance of the Gaussian process
posterior to zero.

In the second part of the talk, we discuss deep Gaussian processes as a class
of flexible non-stationary prior distributions. We provide a general framework in
which deep Gaussian processes can be constructed and analysed, and we demon-
strate the power of deep Gaussian processes in a regression problem where we wish
to recover a multi-scale function from noisy point evaluations.

References

[1] A.L. Teckentrup. Convergence of Gaussian process regression with estimated hyper-
parameters and applications in Bayesian inverse problems. SIAM/ASA Journal on Uncer-
tainty Quantification, 8(4), p. 1310–1337, 2020.

[2] M.M. Dunlop, M.A. Girolami, A.M. Stuart, A.L. Teckentrup. How deep are deep Gaussian
processes? Journal of Machine Learning Research, 19(54), 1–46, 2018.

Learning Operators for Forward and Inverse Problems

Nikola Kovachki

A general framework for data-driven approximation of input-output maps between
infinite-dimensional spaces is developed. Motivated by the recent successes of neu-
ral networks, the proposed approach uses a combination of ideas from deep learning
and model reduction. This combination results in a neural network approximation
which, in principle, is defined on infinite-dimensional spaces and, in practice, is
robust to the dimension of the finite-dimensional approximations of these spaces
required for computation. For large classes of input-output maps, and suitably
chosen probability measures on the inputs, convergence of the proposed approx-
imation methodology is proved. Numerically, the effectiveness of the method is
demonstrated on classes of parametric PDE problems with applications in reservoir
modeling, the deformation of plastic materials, and the turbulent flow of fluids.
Convergence and robustness of the approximation scheme with respect to the size
of the discretization is established. The method is shown to be faster and more
accurate than many existing algorithms in the literature.

References

[1] Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, Andrew M. Stuart, Model
Reduction and Neural Networks for Parametric PDEs, arXiv:2005.03180

[2] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, Anima Anandkumar, Fourier Neural Operator for Parametric Partial Dif-
ferential Equations, arXiv:2010.08895

[3] Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar,
Andrew Stuart, Kaushik Bhattacharya, A learning-based multiscale method and its appli-
cation to inelastic impact problems, arXiv:2102.07256
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Posterior contraction for deep Gaussian process priors

Johannes Schmidt-Hieber

(joint work with Gianluca Finocchio)

Deep neural networks are now state of the art for many complex learning tasks
and, in particular, outperform shallow neural networks. While the role of depth in
neural networks is not yet completely understood, an interesting follow-up question
is whether other methods can be enhanced my making them deep. Nonparametric
Bayes with Gaussian process priors is a popular method in machine learning and
closely related to Bayesian neural networks. By composing Gaussian processes, we
easily can create deep processes. Little is, however, known regarding the theoretical
properties of deep Gaussian processes. We fill this gap by studying deep Gaussian
process priors from the frequentist Bayes perspective, assuming that the data
are generated from the nonparametric regression model and that the underlying
regression function itself has a composition structure. Conditions are derived that
guarantee a posterior contraction rate close to the minimax estimation rate. These
conditions can be verified if the deep Gaussian process prior construction is based
on standard families of Gaussian processes.

References

[1] Gianluca Finocchio, Johannes Schmidt-Hieber, Posterior contraction for deep Gaussian
process priors, arXiv:2105.07410.

On polynomial-time computation of high-dimensional posterior
measures by Langevin-type algorithms

Sven Wang

(joint work with Richard Nickl)

The problem of generating random samples of high-dimensional posterior distri-
butions is considered. The main results consist of non-asymptotic computational
guarantees for Langevin-type MCMC algorithms which scale polynomially in key
quantities such as the dimension of the model, the desired precision level, and the
number of available statistical measurements. As a direct consequence, it is shown
that posterior mean vectors as well as optimisation based maximum a posteriori
(MAP) estimates are computable in polynomial time, with high probability un-
der the distribution of the data. These results are complemented by statistical
guarantees for recovery of the ground truth parameter generating the data.

The results are derived in a general high-dimensional non-linear regression set-
ting (with Gaussian process priors) where posterior measures are not necessarily
log-concave, employing a set of local ‘geometric’ assumptions on the parameter
space, and assuming that a good initialiser of the algorithm is available. The
theory is applied to a representative non-linear example from PDEs involving a
steady-state Schrödinger equation.
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References

[1] Richard Nickl, Sven Wang, On polynomial-time computation of high-dimensional posterior
measures by Langevin-type algorithms, arXiv:2009.05298.

Consistency of Bayesian inference with Gaussian process priors for a
parabolic inverse problem

Hanne Kekkonen

We consider the statistical nonlinear inverse problem of recovering the absorption
term f > 0 in the heat equation











∂tu− 1

2
∆xu+ fu = 0 on O × (0,T)

u = g on ∂O × (0,T)

u(·, 0) = u0 on O,

where O ∈ R
d is a bounded domain, T < ∞ is a fixed time, and g, u0 are given

sufficiently smooth functions describing boundary and initial values respectively.
The data is assumed to consist of N discrete noisy point evaluations of the solution
uf on O× (0,T). We study the statistical performance of Bayesian nonparametric
procedures based on a large class of Gaussian process priors. We show that, as the
number of measurements increases, the resulting posterior distributions concen-
trate around the true parameter generating the data, and derive a convergence rate
for the reconstruction error of the associated posterior means. We also consider
the optimality of the contraction rates and prove a lower bound for the minimax
convergence rate for inferring f from the data, and show that optimal rates can
be achieved with truncated Gaussian priors.

References

[1] Hanne Kekkonen Consistency of Bayesian inference with Gaussian process priors for a
parabolic inverse problem, arXiv:2103.13213.

Laplace approximation in Bayesian inverse problems

Tapio Helin

(joint work with Remo Kretschmann)

The Laplace approximation is a popular approximative numerical scheme in large-
scale non-linear Bayesian inverse problems. In addition to the large-scale problems,
it is frequently applied in Bayesian optimal experimental design and has recently
been considered as a reference measure for numerical quadrature and importance
sampling. We quantify approximative properties of the Laplace method applied
to the posterior distribution arising in non-linear Bayesian inverse problems. Our
work is motivated by Schillings et al. (2020), where it is shown that in such a
setting the Laplace approximation error in Hellinger distance converges to zero in
the order of the noise level.
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Our main results introduce novel error estimates for a given noise level that
additionally quantify the effect due to the non-linearity of the forward mapping
and the dimension of the problem. In particular, we are interested in inverse
problems, where a linear forward mapping is perturbed by a small non-linear
mapping. Our results provide insight into Bayesian inference in non-linear inverse
problems, where linearization of the forward mapping has suitable approximation
properties.

References

[1] Tapio Helin, Remo Kretschmann, Non-asymptotic error estimates for the Laplace approxi-
mation in Bayesian inverse problems, arXiv:2012.06603.

Bayesian multiple testing for dependent data and hidden
Markov models

Elisabeth Gassiat

Given a nonparametric Hidden Markov Model (HMM) with two states, the ques-
tion of constructing efficient multiple testing procedures is considered, treating
one of the states as an unknown null hypothesis. A procedure is introduced, based
on nonparametric empirical Bayes ideas, that controls the False Discovery Rate
(FDR) at a user–specified level. Guarantees on power are also provided, in the
form of a control of the true positive rate. One of the key steps in the construction
requires supremum–norm convergence of preliminary estimators of the emission
densities of the HMM. We provide the existence of such estimators, with conver-
gence at the optimal minimax rate, for the case of a HMM with J ≥ 2 states, which
is of independent interest. Then, we are interested in the procedures for strutured
sequences of hypothesis. The behaviour of the HMM prior is investigated when it
approaches the limit case of independent variables, where phase transitions may
appear. In such cases, rates of estimation of the parameters is shown to depend
on quantities related to the distance to the limit cases.

References

[1] Kweku Abraham, Ismael Castillo, Elisabeth Gassiat, Multiple Testing in Nonparametric
Hidden Markov Models: An Empirical Bayes Approach, arXiv:2101.03838.

[2] Kweku Abraham, Elisabeth Gassiat, Zacharie Naulet, Fundamental limits in the learning
of Hidden Markov Models, manuscript, 2021.
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Product vs mixture of experts: On distributed Gaussian
Process regression

Botond Szabo

(joint work with Amine Hadji, Aad van der Vaart, Harry van Zanten)

Gaussian Process (GP) are arguably one of the most popular choices of priors
in Bayesian nonparametrics, with applications including predicting the spread
of malaria, medical imaging, artificial intelligence, and modeling the rate of cell
growth. However, the computation of the posteriors coming from GP priors typi-
cally scale poorly with the data size n even in the standard nonparametric regres-
sion model, i.e. the computational complexity of training and predicting are O(n3)
and O(n2), respectively. This considerably limits their practical applicability for
big data sets.

In practice various approximation methods were proposed to speed up the com-
putations, including distributed Bayes, variational Bayes, coreset methods, banded
or reduced rank approximation of the posterior covariance matrix, just to mention
a few. In the presentation we focus on distributed Bayesian techniques, where the
data is divided over local machines/cores and the posteriors are computed locally
in parallel to each other based on the partial data sets. Then in the final step the
local posteriors are aggregated into a global approximation of the original posterior
distribution. The distributed architecture, beside speeding up the computations,
also helps in reducing the memory requirement and in protecting privacy. We
investigate the statistical properties of distributed Bayesian methods, i.e. whether
the resulting approximate posteriors contract around the true functional parame-
ter of interest with the optimal minimax rate and if the corresponding approximate
credible sets are asymptotically valid confidence sets.

Depending on how the data are divided over the local machines we distinguish
two main classes of approaches, the product and mixture of GP experts. In the
product of experts the data are divided randomly, each local machine receiving
observations over the whole domain of the regression function. In the mixture
of experts the data are divided spatially, each local machine receiving all the
observations corresponding to a given small region or bin. Various techniques
were proposed in the literature for both cases, typically with very limited, if any,
theoretical underpinning. In our work we compare these methods and provide
theoretical guarantees and limitations for them.

We start our analysis with the product of experts methods, including naive
averaging, Consensus Monte Carlo [7], WASP [6], (generalized) Gaussian Product
of Experts [1], Bayesian Committee Machine [10],... etc. First we derive contrac-
tion rates and frequentist coverage results in a non-adaptive framework where the
regularity of the functional parameter is assumed to be known. We show that
although several of the proposed approaches provide bad estimation and unre-
liable uncertainty quantification, appropriately tunned methods can achieve the
minimax contraction rate and provide asymptotically valid confidence sets, see
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[8, 2]. However, typically the regularity of the regression function is not avail-
able in practice. To deal with these problem several approaches were proposed in
the distributed setting, including maximizing the sum of local marginal likelihood
functions or providing cross validated estimator for the regularity based on local
data sets. However, these standard approaches do not achieve adaptation due to
the insufficient information content available locally.

In the second part of the talk we consider the mixture of expert methods where
the local posteriors are computed over small regions and then “glued” together. We
derive optimal minimax contraction rates both in the non-adaptive and adaptive
setting in the nonparametric regression model for rescaled integrated Brownian
motion priors, [3]. However, the resulting approximation has discontinuities at
the boundary of the local regions. To deal with this problem various methods
were proposed for optimally combining the local posteriors, including the patched
GP method [4] or a two step mixture approach [9, 5]. In our numerical analysis we
take the weighted average of the local posteriors (extended to the whole domain),
with weights proportional to the inverse of the posterior variance times the ex-
ponentiated and rescaled distance to the local bins/regions. We show empirically
that our approach deals with the discontinuities and provides good estimations
and reliable uncertainty quantification.
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Place du Maréchal de Lattre de Tassigny
75775 Paris Cedex 16
FRANCE

Prof. Dr. Chris Holmes

Department of Statistics
University of Oxford
1 South Parks Road
Oxford OX1 3TG
UNITED KINGDOM

Dr. Hanne Kekkonen

Delft Institute of Applied Mathematics
(DIAM),
TU Delft
Mourik Broekmanweg 6
Delft 2628 XE
NETHERLANDS

Dr. Alisa Kirichenko

Department of Statistics
University of Oxford
24-29 St Giles’
Oxford OX1 3LB
UNITED KINGDOM

Dr. Geerten Koers

Mathematisch Instituut
Universiteit Leiden
Niels Bohrweg 1
2333 CA Leiden
NETHERLANDS

Nikola B. Kovachki

California Institute of Technology
MC 305-16
1200 E. California Boulevard
Pasadena CA 91125
UNITED STATES

Prof. Dr. Antonio Lijoi

Department of Decision Sciences
Bocconi University
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