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Introduction by the Organizers

For many complex systems, such as climate models, neural science, epidemiology,
there is no mathematical model of the dynamics and/or the model includes very
high-dimensional dynamics and nonlinearities. Classical model-based methods for
analysis and controller design cannot be used. In the past, a simplified model of
the system was used in controller design. This often led to drastic compromises in
controller performance.

Feedback control is needed in order to implement a controller. Calculation of
the optimal control in feedback form for a nonlinear system requires solution of a
Hamilton-Jacobi-Bellman (HJB) equation. This equation has complexity increas-
ing exponentially with system order; this is called the “curse of dimensionality”.
Computation of feedback controllers that meet stability and performance objec-
tives for nonlinear systems is an open problem, except for very low-order models.
Solution of Lyapunov equations is required in many controller designs and some
model reduction methods. There are also challenges in solving large-order Lya-
punov equations.
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This mini-workshop, “Analysis of Data-driven Optimal Control”, focused on using
data-driven approaches to obtain optimal feedback control for complex systems.
Machine learning has had great success in image classification and is now being
applied to other areas. It has recently been used to approximately solve HJB
and Lyapunov equations of higher order than previously possible. Fundamental
questions associated with machine learning include: When does it work well? And
why? There are close links between optimization and machine learning. Progress
in optimal controller design may also provide insight into machine learning, and
more specifically, deep learning, algorithms.

The hybrid mini-workshop was well attended with 16 participants from Europe
and North America. Most talks were attended by 14-15 people, despite the issues
with varying time zones. Some talks were also attended by participants of the
mini-workshop “Mathematics of Dissipation — Dynamics, Data and Control”,
which took place in Oberwolfach in the same week. The researchers had varied
backgrounds that included analysis, computational mathematics, optimization and
control theory.

Many of the talks had a connection to machine learning (ML) techniques, partic-
ularly analysis of algorithms and the approximation capabilities of ML approaches,
with a focus on high-dimensional problems. The remaining talks were related to
the analysis of data-driven approaches using algorithms not typically regarded as
machine learning.

Regarding ML, Dante Kalise explained in his talk how to combine Pontryagin’s
maximum principle and HJB equations with modern approximation architectures
like tensor train formats and neural networks and showed some first estimates for
the computational complexity of such approaches. Nathan Kutz explained how
neural networks can be set up in order to represent high-dimensional dynamical
systems and how Koopman operator theory can be used for the analysis of such
representations. Roberto Guglielmi discussed sensitivity results and regularity for
solutions of HJB equations, which are important for the subsequent approximation
analysis. Sophie Tarbouriech and Enrique Zuazua both showed how control theo-
retic methods can be used for analyzing ML techniques, addressing optimization al-
gorithms and universal approximation properties of neural networks, respectively.
The talks by Jiequn Han, Lars Grüne and Wei Kang all centered around different
aspects of high-dimensional approximations using neural networks. Jiequn Han
used the particular structure of stochastic optimal control problems, while Lars
Grüne and Wei Kang looked at compositional features of the functions under con-
sideration, which were Lyapunov functions in the first case and the dynamics and
cost functions in optimal control in the second case.

Data-driven methods were featured in several of the ML-related talks just dis-
cussed (quite prominently in Nathan Kutz’ talk, for instance) but also in the
remaining talks of the workshop. Péter Koltai discussed in his talk how particular
features of complex dynamical systems can be derived from measured data. Flo-
rian Dörfler and Sebastian Peitz both looked at how the dynamics governing an
optimal control problem can be derived from measured data, though with rather



Mini-Workshop: Analysis of Data-driven Optimal Control 1211

different mathematical approaches from behavioural systems theory on the one
hand and Koopman operator theory on the other hand.

The organizers encouraged participants to take the traditional Wednesday af-
ternoon walk, and take photos that could then be shared. In the late Wednesday
afternoon session, all participants contributed photos from their walks, and talked
about it. It was nice to have a glimpse of the local life of the participants. This
way some of the social aspects of a normal workshop were realized in the virtual
format.

Although each participant was in a different location, and none knew all the
other participants, discussion sessions were very lively. It was a group of peo-
ple who, although diverse in background and approaches, had in common that
they were open to listening to other ideas. One recurring topic was the advan-
tages/disadvantages of physics-based and data-based approaches. Is a physics-
based model always advantageous when there are underlying physical laws? A
very important question is what problems, in particular what modelling and con-
troller design problems, can be solved better with ML? There was consensus that
ML is advantageous when only data available, but how does it differ from tradi-
tional data-based approaches? There was some optimism about the promise of
ML for handling complex systems. The notion of a benchmark library of control
problems was discussed and it was generally agreed that this would be a good
idea, but we did not decide what problems or form it should take. In terms of
understanding ML, mathematics has contributed a dynamical systems perspective
to ML which has been useful in analysis of algorithms. It is possible that a con-
trol systems perspective may further contribute to a better understanding of the
fundamentals of ML.

In addition to the discussion sessions with the whole group, several participants
met separately to discuss newly discovered relationships between their approaches
and possible future collaborations. We were particularly pleased by this because
the workshop was held in hybrid form and all but one of the participants attended
virtually. Although the interaction was unfortunately not as close as it would
have been with an on-site event, some of the important aspects of an Oberwolfach
workshop were at least partially realized. All participants were enthusiastic about
how much they enjoyed the workshop; several said that it was the “best online
workshop” and one of the best workshops ever.
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Abstracts

Data-enabled predictive control

Florian Dörfler

(joint work with J. Coulson, L. Huang, J. Lygeros, and I. Markovsky)

1. Motivation and Context

Direct vs. indirect: The vast realm of data-driven control methods can be
classified into indirect data-driven control approaches consisting of sequential sys-
tem identification and model-based control as well as direct data-driven control
approaches seeking an optimal decision compatible with recorded data. Both
approaches have a rich history, and they have received renewed interest cross-
fertilized by novel methods and widespread interest in machine learning. The pros
and cons of both paradigms have often been elaborated on: e.g., modeling and
identification is cumbersome, its results are often not useful for control (due to,
e.g., incompatible uncertainty quantifications), and practitioners generally prefer
end-to-end approaches. While direct data-driven control promises to resolve these
problems by learning control policies directly from data, the available methods of-
ten do not (yet) lend themselves to real-time and safety-critical control systems due
to lack of certificates and overburdening computational and sample complexity.

Behavioral approach: In recent years a novel direct data-driven control ap-
proach has surfaced in the wake of Willems’ Fundamental Lemma [1]. The key
idea is to take the behavioral perspective and abstract a dynamical system as a
set of trajectories (the behavior), e.g., an LTI system is a shift-invariant subspace
in the space of all time series. While systems can be represented using parametric
models (e.g., state-space equations), Willems et al. showed that the behavior may
equally well be represented by a matrix time series containing raw data. This data-
driven representation provides a fruitful ground for a blooming research approach
to data-driven control that promises to overcome the shortcomings of other direct
data-driven control approaches. Whereas the Fundamental Lemma can be taken
at face value for deterministic LTI systems, extra care must be taken in the noisy
and nonlinear cases. Here we discuss data-enabled predictive control (DeePC),
based on the Fundamental Lemma and robustified by means of regularization.

2. Data-Driven and Non-Parametric System Theory

LTI behaviors: Consider the discrete time axis Z, the signal space R
q, and the

space of time series R
qZ consisting of all sequences (. . . , w(−1), w(0), w(1), . . . )

with w(i) ∈ R
q. Consider a permutation matrix Π partitioning each w(i) =

Π
[

u(i)
y(i)

]

, where u(i) ∈ R
m and y(i) ∈ R

q−m are free and dependent variables that

will later serve as inputs and outputs. The behavior B is defined as a subset of the
space of trajectories, B ⊂ R

qZ, and a system as the triple (Z,Rq,B). A system
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is linear if B is a subspace of RqZ. Let σ denote the shift operator with action
σw(t) = w(t+ 1). A system is time-invariant if B is shift-invariant: σB = B.

Representations and LTI complexity: Rather than set-theoretic descriptions,
one typically works with parametric representations (colloquially termed models).
For instance, a kernel representation with lag ℓ specifies an LTIbehavior as

B = kernel(R(σ)) =
{

w ∈ R
qZ : R(σ)w = 0

}

,

where R(σ) = R0 +R1σ + · · ·+Rℓσ
ℓ is a polynomial matrix of degree ℓ, and the

matrices R0, R1, . . . , Rℓ take values in R
(q−m)×q. Alternatively, one can unfold

the kernel representation by revealing a latent variable: the state x(t) ∈ R
n. The

input/state/output (or state-space) representation is

B =
{

w = Π [ uy ] ∈ R
qZ : ∃x ∈ R

nZ such that

σx = Ax+Bu , y = Cx+Du
}

,

where A,B,C,D are matrices of compatible dimensions. We assume that the lag ℓ
(resp., the state dimension n) are minimal. The state dimension n manifests itself

in a kernel representation as n =
∑q−m

i=1 ℓi, where ℓi is the lag of the ith row of
R(σ). Conversely, the lag ℓ manifests itself in a state-space representation as the
observability index, i.e., the number of measurements to recover the initial value.

Hence, an LTI system is characterized by the complexity parameters (q,m, n, ℓ).
We denote the corresponding class of LTI systems by L

q,n
m,ℓ.

Fundamental Lemma: Let BL be the restriction of the behavior to R
qL, i.e.,

the set of trajectories of length L. The restricted behavior BL can be described
by the above parametric models. Alternatively, we consider a data-driven image
representation of BL via a matrix time series. Consider a set of trajectorieswd

j (i) ∈
BL experimentally obtained from the system. Here the index i ∈ {1, . . . , L}
denotes time, the subscript j denotes the jth experiment, and the superscript d is
a shorthand for “data”. We define the associated trajectory matrix (or library) as

HL(w
d) =











wd
1(1) wd

2(1) . . .
wd

1(2) wd
2(2) . . .

...
... . . .

wd
1(L) wd

2(L) . . .











.

We present a necessary and sufficient version of the Fundamental Lemma due to
[3]: Consider an LTI system B ∈ L

q,n
m,ℓ. The following are equivalent for L > ℓ:

colspan
(

HL(w
d)
)

= BL ⇐⇒ rank
(

HL(w
d)
)

= mL+ n .

In words, the trajectory matrix HL(w
d) parametrizes all L-length trajectories if

and only if rank
(

HL(w
d)
)

= mL+n. This result extends the original Fundamental
Lemma [1] which requires input/output partitioning, controllability, persistency of
excitation of order L + n (i.e., HL+n(u) must have full row rank), and a Hankel
structure of HL(w

d) as sufficient conditions.
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3. DeePC and Robustifications

Direct data-driven control: The indirect control approach is based on sequen-
tial data collection, pre-processing, identification of a parametric model, state
estimation, and finally model-based control. In comparison, we can formulate a
compact direct data-driven control problem based on the fundamental lemma:

minimize over w, g f(w − wr)

subject to HL(w
d)g =

[

wini

w

]

.
(1)

Here w ∈ R
qL is the future trajectory to be designed, wr ∈ R

qL is a reference to be
tracked, wini ∈ R

qTini is a prefix trajectory of length Tini ≥ ℓ to estimate the initial
condition, f is the control cost, and the vector g selects columns of the trajectory
matrix according to the fundamental lemma. The data-driven formulation (1) is
due to [2] (though with Hankel structure) and assumes perfect data: both offline
data wd and online measurements wini come from a deterministic LTI system.

DeePC formulation: For real-world applications the problem formulation (1)
has to be robustified against noise as well as nonlinearities. Below we summarize
the robustifications proposed in [4, 5, 6]. The need for robustification is threefold.

First, note that when implementing (1) in receding-horizon, the online measure-
ment data wini is noisy leading to infeasible constraint equations. As a remedy,
DeePC opts for a moving-horizon least-error estimation and softens these con-
straints with a slack variable σ penalized in the cost. Second, the data-driven
problem (1) is also subject to multiplicative noise via the data matrix HL(w

d).
This noise can be mitigated offline by pre-processing the trajectory library (e.g.,
by seeking a low-rank approximation of HL(w

d)), but in the spirit of direct data-
driven control – seeking an online decision based on raw data – DeePC opts for a
regularizing the problem (1) with a nonnegative term h(g), which will be justified
below. A third minor – yet practicably important – modification is to augment the
data-driven LQ problem (1) with constraints w ∈ W on inputs and outputs, re-
spectively. These can account for, e.g., saturation, operational limits, or terminal
constraints needed for closed-loop stability of the predictive control.

We arrive at the regularized, robustified, and constrained DeePC formulation

minimize over w ∈ W , g, σ f(w − wr) + γ · ‖σ‖p + λ · h(g)

subject to HL(w
d)g =

[

wini + σ
w

]

,
(2)

where γ and λ are nonnegative hyperparameters, and ‖ · ‖p is a p-norm.

Regularization replaces system identification: Different regularizers h(g)
have been proposed. One set of regularizers can be derived from implicit data pre-
processing and system identification which are by-passed in the DeePC formulation
(2) [6]. These by-passed intermediate steps can be formally modeled as multi-level
optimization problems. For example, the outer problem is optimal control based on
a model, where the model itself is identified in an inner least-square identification
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problem. This particular bi-level problem can be formally reduced and convexified
to a single-level problem of the form (2) with regularizer h(g) = ‖Tg‖p, where T
is a projector accounting for the least-square orthogonality condition. If the inner
problem corresponds to denoising by low-rank approximating the data matrix
HL(w

d), then a convexification leads to h(g) = ‖g‖1. This 1-norm regularizer
promotes a sparse solution g selecting a sparse basis from the trajectory library.

Regularization to achieve robustness: Another approach leading to regular-
ization is due to distributional robustness [5]. Problem (2) can be abstracted as

minimize over x ∈ X f ′(ξ, x) = Eξ∼P̂

[

f ′(ξ̂, x)
]

,(3)

where x collects (w, g, σ), ξ are the data samples wd, and P̂ is the associated
empirical (sample) distribution. If the solution of the sample-average problem (3)
is implemented on the real system, one suffers an out-of-sample loss since the true
distribution P might have arisen from a complicated nonlinear stochastic process
that is only poorly represented by the samples P̂ . To be robust against such
processes, we propose the distributionally robust problem formulation

infx∈X supQ∈B
p
ǫ (P̂ ) Eξ∼Q̂

[

f ′(ξ̂, x)
]

,(4)

where B
p
ǫ (P̂ ) is a Wasserstein ball centered at P̂ , of radius ǫ > 0, and with metric

induced by the p-norm. One can formally show that, under integrability condi-
tions, the formulation (4) is equivalent to regularized DeePC (2) with λ being the
product of ǫ and the Lipschitz constant of the cost, and h(g) = ‖g‖⋆p, where ‖ · ‖⋆p
is the dual norm of that one used to construct the Wasserstein ball.

Finally, a similar robustification can be applied to stochastic constraints [5],
and similar robustifying regularizations can also be derived deterministically [7].

4. Applications and Validations of DeePC

We demonstrate the utility of DeePC with nonlinear and stochastic case studies
(numerical as well as experimental) from the energy and robotics domains [8, 9].
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Curse-of-dimensionality-free deep learning of Lyapunov function
using compositionality

Lars Grüne

Introduction. Lyapunov functions are one of the key tools for the stability
analysis of nonlinear systems of ordinary differential equations

ẋ = f(x)

with x ∈ R
d. They do not only serve as a certificate for asymptotic stability of an

equilibrium but also allow to give estimates about its domain of attraction or to
quantify its robustness with respect to perturbations, for instance, in the sense of
input-to-state stability. In the context of this talk, Lyapunov functions serve as a
simplified model problem for more general optimal control problems, because just
like optimal value functions they can be computed using Hamilton-Jacobi-Bellman
(HJB) PDEs, which in case of Lyapunov functions simplify to linear equations [11].

This similarity allows to use neural network-based approximation techniques
developed recently for certain classes of high-dimensional PDEs (e.g., [4, 5, 10])
also for Lyapunov functions. While it is well known that any continuous function
can in principle be approximated by a neural network, it is also known that this
does in general not remove the curse of dimensionality [1, 7], i.e., the fact that
the computational effort and the storage effort grows exponentially with the space
dimension d. However, under additional structural assumptions on the function to
be approximated (here: the Lyapunov function), improved statements are possible.
One of the structural assumptions under which this is possible is that the function
is compositional [8].

Small-gain theory and compositional Lyapunov functions. A particular
form of a compositional function is a separable function

V (x) =
s
∑

k=1

Vk(zk),

where the zk ∈ R
dk , k = 1, . . . , s, are subvectors of x ∈ R

d of moderate dimensions
dk, which do not grow (or at least do not grow too fast) with d. It is relatively
easy to check that if the dynamics ẋ = f(x) can be decomposed into m decoupled
subsystems

zk = fk(zk)

and for each subsystem there exists a Lyapunov functions Vk, then the function
V (x) =

∑m
k=1 Vk(zk) is a Lyapunov function for the overall system, which is

obviously separable.
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Obviously, the existence of s decoupled subsystems is a very strong condition.
However, nonlinear small-gain theory provides weaker conditions for the existence
of separable Lyapunov functions. It provides conditions on the strength of the
interconnection between the subsystems fk under which the existence of separable
Lyapunov functions is still guaranteed. These results come in different forms; a
result which yields a Lyapunov function of the separable form from above can be
found in [2], related results can be found in, e.g., [9, 3] and many other references.

Neural network structure and approximation result. If the subsystem
structure defined by the vectors zk needed for writing the separable Lyapunov
function is known, then the neural network from Figure 1, in which each grey
block approximates one of the low dimensional functions Vk, is easily seen to be
appropriate for computing an approximation W (·; θ) ≈ V (·).

output

input

ŷ11 ŷ1M ŷs
1 ŷs

M

z1,1 z1,d1 zs,1 zs,d s

= 1
L1 Ls

W(x;ѳ)

Figure 1. Neural network for approximating separable Lya-
punov function with known structure

However, it is in general not easy to determine the subsystem structure that
would allow for a separable Lyapunov function analytically. As a remedy, we
can add another layer to the network, in which a linear change of coordinates
is performed that “identifies” the necessary subsystems. Figure 2 shows such a
network.

With these networks, it is possible to prove that the number of neurons that is
needed for approximating V with a desired accuracy (in the L∞-sense on a compact
set) grows only polynomially in d. For precise statements and assumptions as well
as for numerical tests illustrating the practicability of the approach we refer to [6].

Discussion. In the context of this mini-workshop, the results from this talk are
related to several other talks. The idea to use a coordinate transformation in order
to transform the system to a form in which the considered problem can be easily
solved by a neural network is prominently featured in Nathan Kutz’ talk. There,
instead of being compositional, after transformation the problem can be efficiently
represented, e.g., by a Koopman operator of small dimension. Compositionality
also played a key role in Wei Kang’s talk, with the main difference that in his
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output

inputx1 x2 xn

ŷ11 ŷ1M ŷn
1 ŷn

M

y11 y1dmax

y1(n– 1)dmax +1
y1
ndmax = 1

= 2
L1 Ln

W(x;ѳ)

Figure 2. Neural network for approximating separable Lya-
punov function with unknown structure

talk the ingredients of the problem (dynamics, cost function, . . . ) are assumed
to be compositional while in this talk the Lyapunov function (i.e., the solution
of the problem) is assumed to be compositional. The precise relation between
these approaches and the respective advantages and disadvantages still need to be
explored.

Conceptually, the approach has many similarities with the one presented in
Jiequn Han’s talk. However, it seems that the compositional structure of the solu-
tion is a more general and less demanding assumption than the stucture exploited
in his results. Conversely, in Han’s talk the problem class is more general and
challenging. Finally, the learning schemes presented in this talk (described in [6])
bear certain similarities with methods from Dante Kalise’s talk. Here in particu-
lar the differences between supervised and non-supervised learning highlighted in
D. Kalise’s talk deserve attention.
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Sensitivity analysis of the value function for infinite dimensional
optimal control problems and its relation to Riccati equations

Roberto Guglielmi

The main objective of the presentation is to provide a sensitivity analysis with re-
spect to the initial condition of the value function associated with optimal control
problems subject to semilinear parabolic equations. The higher order approxima-
tion of the value function associated with the control system is developed up to
the second order. Indeed, we derive sufficient conditions which guarantee that the
first and the second derivatives of the value function can be expressed in terms
of the adjoint equation and a suitably defined Riccati operator. More precisely,
we aim at obtaining a local representation of the value function Vr along optimal
trajectories of the form

(1) Vr(z) = Vr(z̄) + (p̄(0), z− z̄)2,Ω +
1

2
(P (0)(z − z̄), z− z̄)2,Ω + o

(

‖z − z̄‖2∞,Ω

)

,

in a neighborhood of the reference initial condition z̄, where p̄(0) and P (0) are
respectively the values of the adjoint state and the solution of an appropriately
defined differential Riccati equation evaluated at the time t = 0.

Besides the inherent interest in this topic, the importance of such results resides in
the fact that this information can be used for local approximations of the solution
to the Hamilton-Jacobi-Bellman equation for optimal control problems. The nu-
merical solution of this equation is impeded by the high dimension of this equation
(the so-called curse of dimensionality). Therefore one possible numerical approach
consists in computing the value function and its derivatives at reference points fol-
lowed by high-dimensional interpolation. In [12, 13], this idea is exploited on the
base of a zero and first order information. This approach is extremely powerful
when embedding model-based knowledge of the system into data-driven schemes,
where partial information on the system in a finite number of points may enhance
deeper insight on the controlled dynamics.
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More precisely, given a positive constant α > 0 and a target state yd : Q→ R, we
consider the optimization problem

min
u∈L2(0,T )

[

J̃(z, y, u) =
1

2
‖y − yd‖22,Q +

α

2
‖u‖2L2(0,T )

]

,

where the state y is subject to the control system

yt(x, t)−Ay(x, t) + f(y(x, t)) = u(t)χω(x) , (x, t) ∈ Q

y(x, t) = 0 , (x, t) ∈ Σ

y(x, 0) = z(x) x ∈ Ω

for some initial data z ∈ L∞(Ω), a control u ∈ L2(0, T ), a uniformly elliptic
operator A, a monotone and smooth nonlinearity f , and given functions χω ∈
L∞(Ω) with support localized in an open subset ω of Ω and yd ∈ Lp(0, T ;Lq(Ω)),
where p, q ∈ [2,∞] such that 1

p + d
2q < 1, d ≥ 2. The adjoint system associated

with the control problem has the form










−pt +A∗p+ f ′(y)p = y − yd , in Q ,

p = 0 , on Σ ,

p(x, T ) = 0 , in Ω ,

where A∗ stands for the adjoint operator of A.

(2) −dP (t)

dt
η + P (t)Ã(t)η + Ã∗(t)P (t)η + P (t)D1P (t)η = D2(t)η

for all η ∈ D(A) = H2(Ω)∩H1
0 (Ω) and with P (T ) = 0, where Ã(t) := A+f ′(ȳ(t))I

with domain

D(Ã(t)) = D(A) = {ϕ ∈ V : Aϕ ∈ H} for all t ∈ (0, T ) .

Since we deal with a nonlinear state equation, we admit the existence of locally
optimal solutions which are not globally optimal. For this reason, the expan-
sion (1) will be possible in a neighbourhood of locally optimal solutions at which
appropriate second order sufficient optimality conditions are satisfied. Indeed, a
sufficient condition to obtain the representation (1) is to assume that there exists
ε > 0 such that

(3) p̄(x, t)f ′′(ȳ(x, t)) < ε ≤ 1 for a.e. (x, t) ∈ Q ,

which implies a second order sufficient optimality condition. The smallness con-
dition (3) links the optimal adjoint state with the degree of the nonlinearity. A
similar condition was used ealier in [11] and also appears in [20] on the study of
the turnpike property for semilinear optimal control problems.

Let us point to some related literature. The two paper [1] and [8] are closely re-
lated to this presentation. In [1] the authors study the sensitivity with respect to
the initial condition of the value function associated with a semilinear parabolic
optimal control problem, and derive a second order expansion of the value function
but do not establish the relationship to Riccati equations. They consider instead
problems with constraints, and under a polyhedricity assumption and second order
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sufficient optimality conditions the second order term of the expansion of the value
function in [1] is related to an auxiliary quadratic optimal control problem with
control constraints. The expansion is achieved by matching local estimates from
below and from above, following the methods in [2, 3]. The expansion of the value
function has also been considered in [4], in the case of state constraints. Our main
interest is to link the second order term of the expansion of the value function to
the solution of a suitably defined Riccati equation. For this reason, we must con-
sider an optimal control problem which is well posed without constraints. In this
respect let us note that while the constraints create extra technical difficulties they
also regularize the underlying problem in a convenient way. In our work, under as-
sumption (3), we prove that the value function is twice Fréchet differentiable along
optimal trajectories. This is achieved by differentiating the optimality system with
respect to the initial condition, for which we apply an implicit function theorem
and use L∞ regularity of the state and adjoint solutions. In a similar fashion,
for a nonlinear Mayer optimal control problem with the state equation given by a
differential inclusion in finite dimensions, the paper [8] proves the relation of the
second order term in the expansion of the value function with a suitable Riccati
operator. Indeed, the authors give conditions to ensure that the value function
is twice Fréchet differentiable along optimal trajectories, and moreover that the
Hessian of the value function satisfies a matrix differential Riccati equation. In
this perspective, the results of the present paper can be seen as an analogue of the
results in [8] in infinite dimension (but for different optimal control settings).

In a broader context, the stability and sensitivity of optimization problems under
perturbations of parameters has received a considerable amount of attention in
the literature, and we can only refer very selectively to related literature. An early
work on the differentiability of the solution to parametrized problems in finite di-
mension dates back to Fiacco [10], where the author applies the implicit function
theorem to show the regularity of the solution, under a second order sufficient
optimality condition with respect to a strong topology. First and second order
optimality conditions are also the main assumptions adopted to analyze stability
and sensitivity in several different settings for optimization problems subject to
an ordinary differential equation (ODE) in the presence of state and control con-
straints, see for example [15, 16, 18]. In the context of optimal control problems
governed by a partial differential equation (PDE), the work [22] gives conditions to
ensure the directional differentiability of the solution under a linear perturbation
of the operator and of the source term, with an application to shape sensitivity.
In addition, regularity properties of the value function have been further analyzed
exploiting the characterization of the value function as the viscosity solution of a
Hamilton-Jacobi equation. For example, the paper [14] proves the semi-concavity
of the value function for a stochastic optimal control problem, whereas in [5, 6, 7]
the semi-concavity and Lipschitz continuity of the value function is established for
optimal control problems constrained to semilinear parabolic or hyperbolic equa-
tions. In the paper [17], the authors show the stability in L∞ for the solution of a
class of parametrized optimal control problems governed by a semilinear parabolic



Mini-Workshop: Analysis of Data-driven Optimal Control 1225

equation. Finally, a crucial aspect in our analysis is provided by the L∞ regularity
of the solutions to the nonlinear state equation, deduced in the papers [9, 21].
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Solving high-dimensional control problems with deep learning

Jiequn Han

Solving high-dimensional control problems and partial differential equations
(PDEs) has been a notoriously difficult problem in scientific computing and com-
putational science, due to the well-known curse of dimensionality (CoD): The
computational complexity grows exponentially as a function of the dimensionality
of the problem. The development of deep learning has provided us new powerful
tools to solve these high-dimensional problems. This talk starts with a control-
viewpoint of deep learning, discussing the connection between optimizing deep
neural networks (DNN) and solving optimal control problems. Inspired by such a
connection, we present two lines of research that leverage deep learning to solve
high-dimensional control problems: (1) solving stochastic control problems [2],
with possible delay effect [4] (2) solving parabolic PDEs based on backward sto-
chastic differential equations (BSDE) [1, 5, 3].

One intimate connection between deep learning and optimal control can be
understood from a simple linear-quadratic example. Given the dynamics

xt+1 = xt + at, xt ∈ R
d, at ∈ R

d,

we aim to solve the control problem

min
{at}

T−1

t=0

T−1
∑

t=0

β

2
‖at‖2 +

γ

2
‖xT ‖2.

By dynamic programming, we have the Bellman optimality equation characterizing
the value function

Vt(x) = min
a

{β
2
‖a‖2 + Vt+1(x+ a)}, VT (x) =

γ

2
‖x‖2.

One can then prove by induction that

Vt(x) =
γt
2
‖x‖2, a∗t = − γt+1

γt+1 + β
xt,

where

γt =
βγt+1

γt+1 + β
, γT = γ.

If we know the optimal control a∗ must be in an affine form with respect to the
state variable, we can look for a closed-loop control in the form of at =Wtxt + bt,
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i.e.,

min
{Wt,bt}

T−1

t=0

Ex0

T−1
∑

t=0

β

2
‖at‖2 +

γ

2
‖xT ‖2,

subject to xt+1 = xt +Wtxt + bt,

where the expectation is taken with respect to a specified distribution of the initial
state x0. This problem can be readily interpreted as optimizing a linear residual
network with a loss function consisting of a terminal term related to the output
xT and intermidate terms related to the residual block at. One can build a deep
residual neural netowrk corresponding to this problem and use backpropogation
and staochastic gradient descent (SGD) to find near-optimal Wt, bt. This is an
approach dramatically different the dynamic programming. It is flexible to use in
general high-dimensions: one can add nonlinear activation or use multiple layers
to deal with the general cases. This control example exhibits close resemblance
to the DNN-SGD paradigm in deep learning. From an abstract viewpoint, DNN
can be viewed as a (discrete) dynamical system, of which residual network is a
good example. SGD is a natural consequence when applying GD to the problem
in which the objective function is an expectation.

The above methodology can be readily applied to the stochastic control prob-
lems, as proposed in [2], which is one of the earliest applications of deep learning
to problems in scientific computing. We construct a feedforward neural network
at each timestamp to approximate the optimal control and stack them together
according to the system’s dynamics to form a big deep neural network for end-to-
end optimization. The work [3] further extends this idea to the stochastic control
problems with a delay effect. A recurrent neural network is introduced to ap-
proximate the optimal control to capture the problem-dependent feature of the
problem. It turns out the recurrent neural network can solve complex problems
more efficiently and accurately than feedforward neural networks in this setting.

The Deep BSDE method was the first deep learning-based numerical algorithm
for solving general nonlinear (parabolic) PDEs in high dimensions [1, 5]. It also
shares a similar spirit with the above work, in the sense of reformulating the PDE
as a stochastic control problem. This is done with the help of BSDEs, hence the
name “Deep BSDE method”. As a by-product, the Deep BSDE method is also
an efficient algorithm for solving high-dimensional BSDEs. The BSDEs can be
interpreted as a nonlinear version of the famous Feynman-Kac formula. Under its
reformulation, we start with the unknown solution at the initial time and aim to
find the optimal control, corresponding to the gradient of the true solution, such
that the forward stochastic process corresponding to the solution would match the
given terminal condition. Similarly, we approximate the unknown control with
feedforward neural networks and employ SGD to find near-optimal parameters.
Later the method is extended in combination with the fictitious play technique to
solve Nash equilibrium in many-player games [3].

The numerical results in all works mentioned above suggest that the proposed
algorithms achieve satisfactory accuracy and, at the same time, can handle rather
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high-dimensional problems, say, in 100 dimensions. This opens up new possibili-
ties in economics, finance, and operational research, by considering more realistic
and informative high-dimensional states. See more relevant discussion in a recent
review article [6].
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Supervised learning for optimal feedback laws

Dante Kalise

(joint work with Giacomo Albi, Behzad Azmi, Sara Bicego, Karl Kunisch)

We study the design of feedback laws for the problem

min
u(·)∈L2(t0,T ;Rm)

J(u; t0, x) :=

∫ ⊤

t0

ℓ(y(t)) + β‖u(t))‖22 dt , β > 0 ,(1)

subject to y(t) in R
n being the solution to the control-affine nonlinear dynamics

d

dt
y(t) = f(y(t)) + g(y(t))u(t) , y(t0) = x .(2)

We assume that the running cost ℓ : Rn → R, the dynamics f : Rn → R
n, and

g : Rn → R
n×m are continuously differentiable. It is well-known that in this case

the optimal feedback synthesis is given by the Dynamic Programming Principle,
synthesizing the optimal control as

(3) u∗(t, x) = argmin
u∈Rm

{

β‖u‖22 +∇V (t, x)⊤ (g(x)u)
}

= − 1

2β
g⊤(x)∇V (t, x) ,

where V (t, x) : [0, T ]× R
n −→ R is the value function of the problem

(4) V (t, x) := inf
u(·)

{J(u; t, x) subject to (2)} .
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This value function satisfies a first-order, nonlinear Hamilton-Jacobi-Bellman
(HJB) partial differential equation of the form

{

∂tV (t, x)− 1
4β ‖g(x)⊤∇V (t, x)‖ + 〈V (t, x), f(x)〉 + ℓ(x) = 0 ,

V (T, x) = 0 ,
(HJB)

to be solved over the state space of the dynamics X ⊂ R
n. We assume that V is

C1, see e.g.[1]. The main difficulty of this approach lies in the construction of a
numerical scheme for (HJB) in the high-dimensional case n≫ 1, as the computa-
tional complexity of traditional numerical schemes often scales exponentially with
the dimension of the state space, a phenomenon known as the curse of dimension-

ality. We circumvent this limitation by considering a causality-free approximation
of the value function, as proposed in [2]. For a given initial condition, Pontryagin’s
Maximum Principle (PMP) yields first-order optimality conditions for (1)-(2) in
the form of a two-point boundary value problem for a forward-backward coupling
between optimal state, adjoint p∗ = (p∗1, . . . , p

∗
n), and control variables, denoted

by (y∗(t), p∗(t), u∗(t)) respectively, which in short reads






























d

dt
y∗(t) = f(y∗(t)) + g(y∗(t))u∗(t) ,

y∗(t0) = x ,

− d

dt
p∗(t) = ∂y(f(y

∗(t)) + g(y∗(t))u∗(t))⊤p(t) + ∂yℓ(y
∗(t)) ,

p∗(T ) = 0 ,

(TPBVP)

closed with the optimality condition

u∗(t) = − 1

2β
g⊤(y∗(t))p∗(t) , ∀t ∈ (t0, T ) .(5)

This procedure yields an optimal state-adjoint-control triple originating from the
initial condition x. We interpret system (TPBVP) as a representation formula
for the solution of (HJB) . In the simplest version of this relation, assuming
the solution of the HJB PDE is C2, it can be shown that the forward-backward
dynamics originating from the PMP correspond to the characteristic curves of
the HJB equation. This result was further improved in [3], where the PMP was
derived from the viscosity solution of a first-order HJB PDE. The precise result
linking the solution of the PMP with the characteristic curves of the HJB PDE,
and the identification of the adjoint variable as the gradient of the value function
can be found in [4, Theorems II.9 and II.10]. More concretely, the computation of
a given V (ti, xi) can be realized by solving (TPBVP) setting t0 = ti and the initial
condition y(t0) = xi, and evaluating the optimal cost (1) using the optimal triple
(y∗(t), p∗(t), u∗(t)). Moreover, the optimal adjoint verifies p∗(t) = ∇V (t, y∗(t)).

In [5], we restrict our attention to a class of smooth and unconstrained nonlin-
ear optimal control problems where the aforedescribed link between PMP and the
HJB PDE is direct, and we use it to generate a characteristic-based, causality-
free method to approximate V (t, x) and as a by-product u(t, x), without solv-
ing (HJB). To do this, we sample a set of initial conditions {(ti, xi)}Ni=1, for
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which we compute both V (ti, xi) and ∇V (ti, xi) by realizing the optimal trajec-
tory through PMP. This is done by following a reduced gradient approach, in
which forward-backward iterative solves of (TPBVP) are combined with a gradi-
ent descent method to find the minimizer of J(u; t0, x). Having collected a dataset
{ti, xi, V (ti, xi),∇V (ti, xi)}Ni=1 enriched with gradient information, we fit a poly-
nomial model for the value function

Vθ(t, x) =

q
∑

i=1

θiΦi(t, x) = 〈θ,Φ〉 ,(6)

with Φ(t, x) = (Φ1(t, x), . . . ,Φq(t, x)) are elements of a suitable polynomial basis,
and the parameters θ = (θ1, . . . , θq) obtained from a LASSO regression

min
θ∈Rq

‖[Φ;∇Φ] θ − [V ;∇V ]‖22 + λ‖θ‖1,w ,(7)

where the matrix [Φ;∇Φ] ∈ R
(n+1)N×q and the vector [V ;∇V ] ∈ R

(n+1)N include
value function and gradient data. The optimal feedback map is recovered as

u∗(t, x) = argmin
u

{β‖u‖22 +∇Vθ(t, x)⊤ (g(x)u)} .(8)

In [6] we extend this framework by considering the infinite horizon case T → ∞,
where the use of PMP is not a suitable computational alternative to generate a
synthetic dataset. However, assuming dynamics can be expressed in semilinear
form

(9)
d

dt
x(t) = A(x(t))x(t) +B(x(t))u(t) ,

and l(x) = x⊤Qx with Q ≻ 0, a stabilizing feedback operator can be computed as

(10) u(x) = −K(x)x = − 1

β
B⊤(x)Π(x)x .

where Π ∈ R
n×n solves the State-dependent Riccati Equation (SDRE) [7]

A⊤(x)Π(x)+Π(x)A(x)− 1

β
Π(x)B(x)B(x)⊤Π(x)+Q=0 .(11)

The implementation of an SDRE-based controller requires the solution of algebraic
Riccati equations at a very fast rate along the trajectory x(t). This computational
constraint becomes prohibitive for large-scale dynamical systems. We investigate
the training of a suitable artificial neural network to replace this task based on the
following alternatives:

• Learning u(x). We train a model for the vector-valued feedback law u(x) :
R

n → R
m upon a set of Ns training states {x(i)}Ns

i=1, the solution of the
corresponding Π(x), and the controls u(x) via (10).

• Learning V (x). We train a model for the scalar function V (x) : Rn → R

from V (x) = x⊤Π(x)x and its gradient ∇V (x) = 2Π(x), where Π(x) is
a positive definite solution of (11) for each x in the training set. The
feedback law is then expressed as u(x) = − 1

2βB(x)⊤∇V (x).
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Compositional features and approximation theory for deep learning

Wei Kang

(joint work with Qi Gong)

It has been widely observed in science and engineering that complicated and high
dimensional information input-output relations in real-world applications can be
represented as compositions of simple and low dimensional functions. Using power
system as an illustrative example, the electric air-gap torque, Pe in a model of
power systems, is a vector valued function that can be approximated by [1, 10]
(1)

(Pe)i = E2
iGii +

m
∑

j=1,j 6=i

EiEj(Gij cos(δi − δj) +Bij sin(δi − δj)), 1 ≤ i ≤ m,

where m is the number of generators, δi, i = 1, 2, · · · ,m, are rotor angles of the
generators. Other variables in (1) represent constant parameters. As a function,
its input dimension is determined by the number of generators, m, ranging from
tens to thousands for networked power systems of various sizes. Nevertheless,
this function can be represented as compositions of functions that have low input
dimensions, d ≤ 2, (Figure 1). In this example, we use a layered directed acyclic
graph (layered DAG) to represent the compositional function. In the DAG, each
node is a function. Several reasons motivate us to study compositional structures
and their layered DAGs as a fundamental concept for deep learning.
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Figure 1. Layered DAG of (Pe)i defined in (1)

• A widely used idea of representing functions in mathematics is to project a
function to a sequence of finite dimensional subspaces. For instance, func-
tions can be represented using Fourier series consisting of sin(2nπx) and
cos(2nπx) as basis functions. This representation is closed under linear
combination because a linear combination of Fourier series is still in the
form of a Fourier series. However, the Fourier series representation is not
closed under function composition because the composition of two Fourier
series is not in the form of a Fourier series. On the other hand, the family
of compositional functions represented by layered DAGs is closed under
function composition. In fact, it is proved in [5] that the family of com-
positional functions is closed under several algebraic operations including
linear combination, composition and substitution.

• Obviously, deep neural networks are compositional functions in which each
node is an activation function. Proved in [5], some compositional fea-
tures determine an upper bound of deep neural network complexity for
applications such as regression and dynamical system approximation; and
the neural networks may share a similar compositional structure with the
input-output relation to be approximated.

• Iterative algorithms are computational processes in which a function is re-
peatedly applied to the result from the previous step. The iterative process
is equivalent to a finite sequence of function compositions. Therefore, any
function that can be approximated using iterative algorithms, such as the
trajectories of differential equations or discrete dynamical systems, can be
treated as compositional functions. An approximation theory developed
for compositional functions is applicable to a wide spectrum of problems.

• Compositional structure is an inherent property of continuous functions
with any input dimension. Kolmogorov’s Representation Theorem [4] re-
veals that any continuous function defined on a d-dimensional cube can be
exactly represented by a composition of a set of continuous 1-dimensional
functions as

f(x1, · · · , xd) =
2d+1
∑

q=1

φq

(

d
∑

p=1

ψpq(xp)

)

,
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where φq and ψpq are continuous univariate functions. This implies that
every continuous function is a compositional function in which each node
has a single input (excluding linear nodes).

Existing approximation theory for neural networks cannot explain why deep
learning can solve high dimensional problems. Existing theory typically guarantees
a L2 error upper bound O(n−1/2), where n > 0 is the number of neurons, i.e., the
complexity of the neural network [2, 3] . Although the rate has a constant exponent
that is independent of the problem’s dimension, a constant C in O(n−1/2) can
depend on d exponentially. This challenge is called the curse-of-dimensionality,
i.e. the error upper bound increases exponentially with the dimension of the
problem. For some control system applications, L∞-norm is preferred over L2-
norm to achieve guaranteed performance in the worst case.

In [5, 6, 7, 9], some fundamental connections between the compositional fea-
tures of functions and their neural network approximations are revealed. A unified
theoretical framework of approximation theory for deep neural networks is devel-
oped that is applicable not only to functions as input-output relations, but also to
dynamical systems and optimal control. For any continuous function f : Rd → R

q

associated with a layered DAG, the graph is denoted by Gf . Each node in the
DAG represents a function that has relatively low input dimension. Denote the
jth node in the ith layer by fi,j . The mapping that maps a node to the layer
number of the node is denoted by Lf . It is proved in [5] that the following four
composition features of f are critical to the approximation error of deep neural
networks.
(2)


















Dimension feature rfmax : upper bound of di,j/mi,j ,
Volume feature Λf : upper bound of {(Ri,j)

mi,j , 1} ‖fi,j‖W∞

mi,j ,di,j

,

Lipschitz feature Lf
max : upper bound of Li,j,

Complexity feature V f

G : the number of nodes in

where di,j is the input dimension of fi,j (the jth node in the ith layer of Gf ), mi,j

is the smoothness of the node, Ri,j is the side length of the domain of fi,j (for
the simplicity of discussion, we assume the domain of fi,j is a d-cube), Li,j is a
Lipschitz constant associated with the node (for its definition, interested readers
are referred to [5]).

Theorem 1. ([5]) Consider a compositional function triplet (f ,Gf ,Lf ) with f :
[−R,R]d → R

q. Assume fi,j ∈W∞
mi,j ,di,j

wheremi,j > 1. For any integer nwidth >

0, there always exists a deep neural network, fNN , that has the following error
upper bound,
(3)
∥

∥f(x)− fNN (x)
∥

∥

p
≤ C1L

f
maxΛ

f
∣

∣V f

G

∣

∣ (nwidth)
−1/rfmax , for all x ∈ [−R,R]d,

where C1 is a constant determined by {di,j ,mi,j ; fi,j ∈ V f

G}. The complexity
(total number of neurons) of fNN is

∣

∣V f

G

∣

∣nwidth.
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In (3), the only term that depends on the input dimension is the exponential term
−1/rfmax. The definition of the feature, rfmax, in (2) depends on the input dimen-
sion of the individual nodes of f , not the input dimension of the overall function.
For instance, in the example (1), the input dimension of Pe depends on the number
of generators in the power system, which ranges from tens to thousands. How-
ever, rfmax is determined by the largest input dimension of the nodes (assuming a
constant smoothness mi,j), which is a constant di,j = 2 no matter what the size
of the power system is. In general, if the input dimension of individual nodes in a
compositional function is bounded, the error upper bound of deep neural network
approximation is a polynomial function of the compositional features, Λf , Lf

max,
and V f

G. For families of functions in which the compositional features do not de-
pend on d exponentially (A function family would be ill conditioned if a feature,
for instance the Lipschitz constant, increases exponentially with d), then neural
network approximations do not suffer from the curse-of-dimensionality.

In [5], the algebraic frame of compositional functions is applicable to iterative
computational algorithms because iterative algorithms form a special family of
compositional functions. The trajectories of ordinary differential equations can
be approximated by iterative algorithms, such as the Euler method. Therefore,
Theorem 1 is directly applicable to differential equations.

Theorem 2. Consider the following ODE

(4) ẋ = f(x), x ∈ R
d, f(x) ∈ R

d, t ∈ [0, T ].

in which f is a compositional function with a layered DAG Gf in which all nodes
satisfy the same assumption as in Theorem 1. Let φ(t;x) represent the solution at
t with initial state x. Then for any integer nwidth > 0, there exists a deep neural
network, φNN : Rd → R

d, satisfying

(5)

∥

∥

∥
φ(T ;x)− φNN(x)

∥

∥

∥

p
≤ C(nwidth)

−1/rfmax , x ∈ Df .

where C is a polynomial function of the compositional features, Λf , Lf
max, and V f

G.

In [5], the same approximation theory is also applied to optimal control to
prove that the feedback law of optimal control can be approximated by deep neu-
ral networks with an error boud that depends on the compositional features as
a polynomial function. Inspired by the results in [5], we believe that the study
of compositional features is essential to the fundamental question of why deep
learning is able to solve high dimensional problems. For future research, we will
study the role of compositional features in some fundamental and long term open
problems in deep learning, such as the error bounds in the regression of high di-
mensional nonsmooth functions, solving PDEs without the curse-of-dimensionality,
and finding efficient and effective data size and distribution for both training and
validation.
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Persistent dynamical structures and their manipulation

Péter Koltai

(joint work with various coauthors)

The identification of persistent forecastable structures in complicated dynamics is
vital for a robust prediction (or manipulation) of such systems in a potentially
sparse-data setting. We characterise and find such structures in non-stationary
fluid-dynamical applications. Then, we show how these objects relate to so-called
collective variables known from statistical physics. We have recently developed
a data-driven technique to find collective variables in molecular systems. These
generalize to other applications as well.

1. Coherent sets

Let a time-dependent velocity field v on R
d be given. We call a time-parametrized

family of sets, (At)t≥0, coherent, if it contains the flow associated with v in a
manner that is robust to noise. More precisely, for some small ε > 0 consider the
process xt governed by the SDE dxt = v(t, xt)dt + ε dwt, and the (upper) escape
rate from (At)t,

E((At)t) = − lim inf
t→∞

1

t
logP

(

xr ∈ Ar, 0 ≤ r ≤ t
)

,
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where P refers to the law of the standard Wiener process wt, and x0 is (say)
uniformly distributed over the bounded set A0. The family is said to be coherent
if the associated escape rate is small.

Our question is whether we have a characterization of coherent families (At)t
that allows for their numerical computation.

Let us consider the periodically-forced case, i.e., where t 7→ v(t, ·) is τ -periodic
with τ > 0. We consider the equivalent augmented form of the above SDE,

θ̇t = 1

dxt = v(θt, xt)dt+ ε dwt

which is a time-homogeneous process on τS1 × R
d. As such, it has a generator G

acting on twice differentiable L1 functions over τS1×R
d. Eigenfunctions of G can

be used to find coherent families:

Theorem 1. [4] Let Gf = κf , κ 6= 0. Then,
∫

f(θ, ·) = 0 ∀θ and for the family of
sets

Aθ := {f(θ, ·) ≥ 0}
it holds true that

E((Aθ)θ) ≤ −Re(κ).

Thus, if we find eigenfunctions f of G for eigenvalues close to zero, the family
of sets extracted from the eigenfunction has a small escape rate. Various grid-
based discretization techniques are readily available to solve the eigenproblem, we
refer to [4, 5]. An unsolved problem is whether there exist methods that allow an
efficient solution in higher dimensions.

Theorem 1 can be extended to the case where the system is not periodically-
forced and only considered on a finite time interval, and in this case escape rate is
replaced by an “escape ratio”. A similar statement holds true, where the generator
(in particular, the augmented process) needs to be adapted [5].

This framework is especially advantageous if we consider the problem of mixing
manipulation. There, the velocity field v is given, together with a set of possible
additive velocity perturbations δv. We would like to enhance (or suppress) the
advection-dominated (but slightly diffusive) mixing in the system, as measured
by the eigenvalues κ of the generator G. Different eigenmodes allow us to target
different structures. To target the overall (worst-case) mixing, one should target
the second eigenvalue. It turns out, that the optimization problem

min /max κ(G(v + δv)) s.t. ‖δv‖L2 ≤ C

is very well approachable, mostly due to the linear dependence of the generator
G on the velocity field v. Details are given in [5], see also [7]. Advantages of the
linear dependence on the control were discussed in the talk of Sebastian Peitz.

Coherent sets are one particular example of robust dynamical structures, mak-
ing them well-forecastable objects, central to complex fluid flows. In higher-
dimensional complex systems a structural reduction of a similar sort becomes
highly important if one is interested in a robust forecast—or simple manipulation—
of the system at hand. This brings us to our next topic.



Mini-Workshop: Analysis of Data-driven Optimal Control 1237

2. Collective variables

Depending on the context, collective variables are known by the names “reaction
coordinates” or “order parameters”, and their definitions might slightly deviate.
Our interpretation is that collective variables are sufficient to give a closed-form
description of the considered system’s dominant dynamical behavior.

To make this more precise, let us consider a time-discrete homogeneous pro-
cess (xt)t on R

N , where usually N ≫ 1. A (smooth) function ξ : RN → R
r,

where usually r ≪ N , is called a collective variable, if Law(ξ(xt+1)) can be to a
large accuracy expressed by Law(ξ(xt)) in a functional relationship, without any
explicit additional knowledge about the full state xt. This idea generalizes in a
straightforward way to time-continuous processes. A more rigorous characteriza-
tion of this fact is given in [2], where it is required that the dominant spectrum
of G, the generator of the process (xt)t, is pointwise close to the dominant spec-
trum of PξGPξ, where Pξ denotes the L2-orthogonal projection from L2(RN ) to
{f ∈ L2 | f = g ◦ ξ for some g : Rr → R}.

How to find collective variables if only the high-dimensional description of the
system is known? For this we consider the transition density function pτ (·, ·) of
the system (assuming it exists), defined by

Law(xt+τ ) =

∫

pτ (xt, ·)dLaw(xt).

We showed:

Theorem 2. [2] Let the system be reversible. It the set {pτ(x, ·) | x ∈ R
N} ⊂ L1

is ε-close to a r-dimensional (smooth) manifold, then there is a (smooth) r-
dimensional collective variable that reproduces dominant timescales (i.e., the dom-
inant spectrum of G) up to O(ε).

Theorem 2 gives a constructive statement in the sense that one can build a
computational procedure based on this. One needs to approximate transition
density functions at selected anchor points x, yielding a point cloud in function
space. Then one needs to parametrize this point cloud with a small number of
coordinates, e.g., by manifold learning techniques. For details we refer to [2].

Collective variables are strongly motivated by statistical physics, and especially
molecular dynamics, where such collective variables can help immensely in under-
standing for instance protein folding processes. We have found, however, that the
concept is informative in other applications as well.

This brings us back to fluid dynamics and – first – to coherent sets. It is nat-
ural to state the above coherence problem in a “Lagrangian” setting: What are
the most coherent material families of sets (At)t? Here, “material” refers to the
fact that At should be the set A0 evolved by the flow governed by ẋt = v(t, xt).
This suggests to consider the stochastic process dxt = v(t, xt)dt + ε dwt in the
co-evolving coordinate system evolved by the flow of ẋt = v(t, xt). That is in the
limit of ε→ 0 a reversible process, and we can consider collective variables for it.
This has been done in [1], and some results are shown in Fig. 1. This example shows
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that trajectories that have similar collective variables will belong most likely to the
same coherent set – they are having the same behavior from a mixing perspective.

Figure 1. On the left we see three-dimensional collective vari-
ables for a Rossby-perturbed Bickley Jet flow (trajectories of
which are shown on the right). The coloring is obtained by clus-
tering points on the left. Each point on the left corresponds to
an evolving trajectory on the right, where we impose the same
coloring. Evolving these trajectories shows that trajectories of
identical colors form coherent sets (the right-hand side shows the
trajectories midway through their evolution).

Another application in fluid dynamics is given in [8], where we find two-dimen-
sional collective variables in a Rayleigh–Bénard convection in a cylindrical con-
tainer, observed through temperature measurements. This is, in its physical de-
scription, an infinite dimensional system (N = ∞) governed by the Navier–Stokes
equations. Although it is not reversible, collective variables seem to exist in this
case as well.

An example of collective variables in social dynamics can be found in [6].
Therein, the high-dimensional system describes the evolution of each individual’s
opinion in a fixed population, while collective variables are expected to be fractions
of opinions in the whole populations (or some distinguished clusters of it).

3. Discussion

While the derivation of reduced models for complex high-dimensional systems has
been considered in the respective fields for decades, a unified view – overarching the
fields – on variables / observables that allow such a reduction is only emerging (cf.
also Nathan Kutz’s talk). Such low-dimensional representations are expected not
just to help with the prediction of systems, but, naturally, allow us to leverage this
structure for manipulating / controlling the process. The talks of Dante Kalise
and Jiequn Han considered numerical techniques (such as tensor decomposition
and deep learning) for control of high dimensional systems; and these could be
speculated to work well because the problems at hand featured a low-dimensional
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structure that the method could implicitly target. A more explicit manifestation
of a low-dimensional structure in the Lyapunov function of high-dimensional stable
equilibria appeared in Lars Grüne’s talk.
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Targeted use of deep learning for physics-informed model discovery

J. Nathan Kutz

(joint work with Steven L. Brunton, Kathleen Champion, Bethany Lusch,
Henning Lange)

Deriving governing parsimonious physical laws and constraints has until very re-
cently been accomplished by using expert knowledge, asymptotic reductions and
imposed constraints. These derivations have been uninformed by data except
in a qualitative way. Modern data-driven discovery has been recently pioneered
(Brunton, Proctor & Kutz, PNAS 2016) by simple sparse regression tools such as
the sparse identification of nonlinear dynamics (SINDy). Although attempts have
been made to use neural network (NN) architectures to learn physics, there remains
critical issues concerning generalizability, interpretability, overfitting and signifi-
cant data requirements, limiting their usefulness and computational tractability for
on-line learning. Regardless of the method used, they are compromised in practice
by limited data, corruption due to noise, unmeasured latent variables, parametric
dependencies, and unaccounted for multi-scale physics. We will overcome these
challenges by developing new priors (regularizers) based on physical knowledge,
scalable filtering algorithms, and representation formats (coordinates) based on
sparse, low-rank, and targeted neural network models. In addition to the SINDy
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architecture, Kutz and co-workers have recently pioneered leading strategies for
sensor placement, coordinate discovery and parametric reduced order models.

My goal is to specifically learn physically interpretable models of dynamical
systems from off-line and/or on-line streaming data. Furthermore, we consider
systems for which no baseline physical model or parametric form is known, al-
though partial physics knowledge can easily be included. Thus we seek to perform
system identification for dynamical systems from data y ∈ R

m in high dimensional
state spaces x ∈ X1 ⊂ R

n, where n≫ 1 and m≪ n. Specifically

ẋ = f(x, t,Θ,Ω),(1)

yk = h(tk,x(tk)) +Ξ

where the dynamics are prescribed by f : X1 → R
n the observation operator is

h : X1 → R
m, the frequency of observations are given by yk which are measured

at the times tk. Observations are compromised by measurement noise Ξ, which
is typically described by some probability distribution (e.g. a normal distribution
Ξ ∼ N(µ, σ)). The dynamics is prescribed by a set of parameters Θ. Moreover,
the dynamics may be subject to stochastic effects characterized by Ω.

My goal: Given p measurements yk arranged in the matrix Y = [y1 y2 · · · yp]
∈ R

m×p, infer the dynamics f(·) with parametrization Θ, the measurement oper-
ator h(·), or a proxy model of the true system, so that tasks such as control and
forecasting can be accomplished. Adding to the difficulty of the task are multi-
scale and multiphysics problems. In this case, the governing dynamics (1) for a
two time scale (fast and slow, although generally there are more scales) should be
modified to

(2)
dx1

dt
= f1(x1,x2, t, τ,Θ1,Ω1),

dx2

dτ
= f2(x1,x2, t, τ,Θ2,Ω2)

where τ=ǫt (ǫ≪1) is a slow scale. If h(·) is not the identity and/or ξk is not zero,
then we are in the case of imperfect data. This problem can be one of online learn-
ing where the update must occur in real-time and with no possibility of repeating
the experiment. This is an ill-posed problem whose solution must be accomplished
through judiciously chosen regularization and, in the case of (2), through first de-
composing the data into its constitutive fast (t) and slow (τ) timescales.

Solving the ill-posed problem (1) is a fundamental scientific and mathematical
challenge. To date, it has only been accomplished in highly specialized settings
with typically full state measurements and clean (low-noise) data. Significant
mathematical innovations will have to be developed in order to make this a general
and robust architecture. The multiscale (2) is uncharted territory requiring the
integration of a tremendously broad set of mathematical tools, something exhibited
by the PI Kutz in tackling this grand scale and basic science challenge. The
methodology can be broadly applied and the PI Kutz has extensive research work
in DoD relevant application areas of directed energy, scientific computing, fluid
dynamics and neuroscience where it can be test bedded.
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Sensors. Everything starts with data acquisition. This is often completely over-
looked in machine learning methods that assume that access to the correct vari-
ables are available. Thus learning the mapping h(·) from the measurements to the
state space through (1b) is important to learn. For many complex systems, the
latent variable space is an important aspect of the discovery process. Time-delay
embeddings, and recourse to Taken’s theorem, help establish a critical connection
to dynamical systems theory and a potential reconstruction of the full state space.
There are four critical aspects to developing a robust sensing framework: (i) sensor
placement, (ii) sensor cost, (iii) discovery of the measurement map h(·), and (iv)
multi-model data integration from diverse sensor types (e.g. video, audio, thermal,
etc). These tasks must all be integrated at the front end of the learning process.

Kutz and co-workers have developed some of the earliest rigorous mathemat-
ical results on formulating optimal sensor placement and minimal cost strate-
gies for complex spatio-temporal systems. These techniques are based upon low-
rank linear subspaces that can be used to great effect with greedy sampling tech-
niques. New fundamental mathematical innovations are required for generating
near-optimal greedy selection procedures for nonlinear manifold embeddings typ-
ical of real data. Neural networks can be used for decoder networks capable of
producing a highly improved mapping between the data to the underlying state
space. It would be also necessary to use the time-delay embedding structure to try
and reconstruct, as best as possible, the latent variables and reframe the greedy
algorithms based upon the time-delay data. To date, it is unknown what the limits
and mathematical possibilities are for using such a method to extract the full state
variable x from measurements yk. In addition to extracting critical information
on the state space, our recent neural network architectures are capable of denois-
ing data sets in a manner that is comparable, and in many cases better, than
Kalman filtering methods. This would be a pre-processing step for data streams
where the underlying model is known, unknown or partially known. Potentially
helping improve these results are multi-modal data fusion techniques which can
be potentially used to help improve decision making or predictions. Sensors are
critical for determining h(·).

Coordinate Discovery. Data processed from the multi-modal sensors are then
used to discover a transformation z = g(x) where a parsimonious, low-dimensional
dynamics can be constructed

(3) ż = F (z, t,Θ,Ω)

where z ∈ X1 ⊂ R
r is an r-dimensional (r ≪ n) model of the physics speci-

fied by F (·). Ultimately, the discovery of the nonlinear transform g(·), through
training neural network autoencoders, gives the coordinates for parsimonious dy-
namics F (·) required for the reduced models for the intelligent agent. These are
computationally tractable models of its own dynamics and environment.

If only limited data is available, then it may be required to produce a low-fidelity,
on-line model using a linear map. This can be done with an r-rank POD mode
truncation of the snapshots of x. Dynamic mode decomposition, or a Koopman
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approximation using augmented state-space measurements, can then be used on
this low-rank subspace to produce the best-fit linear model through the data.
This provides a baseline architecture for diagnostics and forecasting. As more
data is required, a full nonlinear mapping and nonlinear model can be used to
refine the results, both in terms of building a lower-rank nonlinear subspace and
for producing a parsimonious nonlinear dynamics. As sufficient data is acquired
from the sensors, the data-discovery pipeline then produces the flow:

y ∈ R
m(measurements) → x ∈ R

n(state space) → z ∈ R
r(reduced order model)

with two mappings to discover: h and g. With limited data, SVD provides a linear
approximation.

Learning Physics, Discrepancy Models, and Physics Constraints. The
backbone of the proposal is the highly effective method for model discovery: the
SINDy algorithm. It leverages simple sparse regression to discover nonlinear dy-
namical systems from data. The basic algorithmic structure of SINDy has been
modified by Kutz and co-workers to discover parametrically-dependent systems,
identify nonlinear control laws, infer biological networks, discover spatio-temporal
systems, and identify nonlinear systems in the low-data limit. The SINDy algo-
rithm posits a large set of potential candidate functions that comprise F (·) (or f(·)
for the full state vector), then uses sparsity to determine the dominant terms. A
library of candidate nonlinear functions Θ(Z) is constructed from Z. It is possible

to relate the time derivatives in Ż to the candidate nonlinearities by Ż = Θ(Z)Ξ,
where each column ξk in Ξ is a vector of coefficients that determines which terms
are active (nonzero). Sparsity promoting algorithms are used to ensure that most
of the entries of the column ξk are zero. By identifying the sparse coefficient vec-
tors ξk, a model of the nonlinear dynamics (3) is found. The SINDy framework is
the key regularization for solving the ill-posed problem (1).

One of the most attractive aspects of SINDy: the underlying mathematics is
simply a linear, overdetermined system of equations. The solution is achieved
by regularizing with sparsity. Because of this simple architecture, additional con-
straints can be easily placed on the linear regression, including regularizations cor-
responding to conservation of mass, energy, etc. Moreover, discrepancy models can
be easily accommodated since known physics terms can be easily incorporated into
the regression structure. The flexibility of this backbone algorithm is remarkable
and will serve as the core architecture for the intelligent agent in discovering non-
linear reduced order models for its environment. Alternatively, one can learn these
constraints from the data itself. Examples of known physics that may be explicitly
encoded include: non-negativity of physical variables (e.g., pressure, temperature,
chemical concentration, etc.), known dynamics (e.g., growth rates, frequencies,
etc.), conservation laws (e.g., mass, momentum, energy, chemical elements), and
symmetries. Our perspective is driven by the need for parsimonious representa-
tions that are efficient, avoid overfitting, and provide minimal descriptions of the
dynamics on interpretable intrinsic coordinates. Such models additionally offer
the best hope for generalizability.
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The QuaSiModO approach for universal transformations of
data-driven models to control systems

Sebastian Peitz

(joint work with Katharina Bieker)

This work pursues the central task to efficiently solve optimal control problems
for complex and thus expensive-to-evaluate dynamical systems. Mathematically
speaking, we consider the following problem over the time horizon p ·∆t:

(I)
min
u∈Up

J(y) = min
u∈Up

p−1
∑

i=0

P (yi+1)

s.t. yi+1 = Φ(yi, ui), i = 0, 1, 2, . . . ,

where yi and ui ∈ U are the system state and control at time instant ti = i∆t,
with U being the set of admissible controls, e.g., U = [umin, umax]. The objective
function (for instance, the distance to some desired trajectory yref) is denoted by
P , and Φ describes the flow of the underlying dynamical system (e.g., an ordinary
or a partial differential equation) over the time increment ∆t. The solution of
(I) yields the optimal control u∗ and corresponding state y∗. Feedback control
can then be achieved via Model Predictive Control (MPC) [4], i.e., by solving (I)
repeatedly over a short horizon and applying the first entry u∗0 to the real system
which is running simultaneously.

A substantial challenge that we often face is the fact that the efficient prediction
(and, by extension, control) of complex dynamical systems is hindered by the fact
that the system dynamics are either very expensive to simulate or even unknown.
Researchers have been investigating ways to accelerate the solution by using data
for decades, the Proper Orthogonal Decomposition (POD) being an early and very
prominent example [12]. More recently, the major advances in data science and
machine learning have lead to a plethora of new possibilities, for instance artifi-
cial neural networks such as Long Short-Term Memory (LSTM) Networks [5] or
Reservoir Computers / Echo State Networks [6], regression-based frameworks for
the identification of nonlinear dynamics [3], or numerical approximations of the
Koopman operator [11, 9, 7], which describes the linear dynamics of observable
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functions. These methods facilitate the efficient simulation and prediction of high-
dimensional spatio-temporal dynamics using measurement data, without requiring
prior system knowledge. As a consequence of the success of data-driven prediction,
many approaches for control have been presented over the past decades. However,
a drawback is that the construction of surrogate models with inputs is often much
more tedious and also problem-specific and data hungry [1, 2].

The approach we present here to solve (I) via surrogate models while avoiding
the aforementioned issues is based on modifying the control problem instead of
adjusting the surrogate modeling to the control setting. The resulting framework,
which we call QuaSiModO, consists of the following steps (cf. also Figure 1):

(1) Quantization of the the admissible control U (for instance by replacing
the interval U = [umin, umax] by the bounds V = {umin, umax});

(2) Simulation of the autonomous systems (e.g., Φumin/max(y) = Φ(y, umin/max);
(3) Modeling of the individual systems – using either the full state y or some

observable z = f(y) – via an arbitrary “off-the-shelf” surrogate modeling
technique (POD, neural network, Koopman operator, etc.);

(4) Optimization using the resulting set of autonomous surrogate models and
relaxation techniques.

This interplay between continuous and integer control modeling as well as between
the full system state and observed quantities (e.g., measurements) allows us to
utilize the best of both worlds, namely

• integer controls for efficient data-driven modeling using arbitrary predic-
tive models,

• continuous control inputs for real-time control, and
• existing error bounds for predictive models.

Figure 1. The QuaSiModO framework consisting of the four
steps Quantization, Simulation, Modeling and Optimization [8].
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QuaSiModO successively transforms Problem (I) into related control problems
that – as long as the predictive surrogate model is sufficiently accurate – yield
optimal trajectories y∗ that are close to one another. From (I) to (II), we quantize
the control, meaning that only a finite set V ⊆ U of inputs is feasible. This
allows us to replace the non-autonomous dynamical system Φ(y, u) by a finite set
of autonomous systems Φuj (y), each corresponding to one entry uj ∈ V . While
introducing an artificial drawback from the control perspective (Problem (II) is a
mixed-integer optimal control problem), we can now easily introduce an equivalent
Problem (III) that is based on surrogate models Φr

ui(z) for a reduced quantity
z = f(y). Here, the function f is an observable which maps measurements from
the state space of the full system to the space of measurements (which may be
of significantly smaller dimension). As the transformation from (II) to (III) acts
on a set of autonomous systems, we can approximate the individual systems Φuj

from individual measurement data sets, using whichever method we prefer.
In order to mitigate the disadvantages with respect to the complexity of the

control problem, the problem of selecting an optimal input from V is relaxed by
determining the optimal convex combination of the autonomous systems:

(IV)

min
α∈([0,1]m)p

Jr(z) = min
α∈([0,1]m)p

p−1
∑

i=0

P r(zi+1)

s.t. zi+1 = Φr(zi, αi) =

m
∑

j=1

αi,jΦ
r
uj (zi) and

m
∑

j=1

αi,j = 1.

Problem (IV) is again continuous – with respect to the input α. For control affine
systems, we can now determine u∗ =

∑m
j=1 α

∗
ju

j and directly apply it to the real

system. For non-affine systems, we use the sum up rounding algorithm from [10],
by which a control corresponding to one of the quantized inputs is applied to the
real system.

Besides the ability to include arbitrary predictive models into the QuaSiModO
framework, an important aspect is that existing error bounds for the chosen surro-
gate model can easily be included, see [8] for a detailed description The availability
of error bounds is of particular importance for engineering systems, where safety
is of utmost importance (e.g., for aircraft or autonomous vehicles). The bounds
guarantee the performance of a controller and – more importantly – will auto-
matically become stronger with future developments in the field of data-driven
modeling.

We have tested the QuaSiModO framework on a variety of dynamical systems,
observable functions and surrogate modeling techniques, cf. Figure 2, a detailed
description is given in [8]. For instance, we can control the lift force acting on
a cylinder (determined by the velocity and pressure fields governed by the 2D
Navier–Stokes equations) without any knowledge of the flow field using the stan-
dard LSTM framework included in TensorFlow, and stabilize the Mackey-Glass
equation using a standard echo state network. This highlights the flexibility and
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broad applicability of the method and the success of the technique in constructing
data-driven feedback controllers.

Figure 2. MPC using QuaSiModO applied to various combina-
tions of systems and surrogate models [8].
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Algorithms analysis via encapsulated nonlinearity Lyapunov
based framework

Sophie Tarbouriech

(joint work with Milan Korda)

1. Introduction

In this talk we address the way to deal with some optimization algorithms via
a dynamical system and control theory point of view, according to recent works
as [Lessard et al., 2016], [Michalowsky et al., 2020]. Indeed, we want revisit the
study of an algorithm behavior by noting that it can be viewed as a dynamical
system with feedback, allowing us to use the tools of control theory [Taylor et al.,
2018], [Michalowsky et al., 2020]. More especially, we consider fast and simple
algorithms and therefore, algorithms based on first-order methods.

Hence, by considering the following unconstrained optimisation problem

min
z∈Rn

f(z)

the main goal is to check that

‖ zk − z⋆ ‖≤ δρk ‖ z0 − z⋆ ‖

with z0 the initial condition, z⋆ the optimal value, ρ ∈ (0, 1) the convergence
rate, δ > 0. Note that other objectives could be addressed as function error
f(zk) − f(z⋆), ‖ ∇f(zk) ‖2, ... The general method of interest to solve such an
optimization is defined as

(1) zk+1 = zk + β(zk − zk−1)− α∇f(zk + γ(zk − zk−1))

with ∇f the gradient of f and some positive tuning parameters α, β and γ. Let us
cite the three main methods entering in this class of methods [Lessard, 2018], i.e.,
Gradient method, Heavy ball method and Nesterov accelerated method. See also,
[Polyak, 1987], [Boyd and Vandenberghe, 2004], [Beck, 2014] for other methods
and discussions.



1248 Oberwolfach Report 23/2021

2. Problem formulation

We focus on the Heavy ball (HB) method, which corresponds to (1) in which we
choose γ = 0. This method can then be interpreted as a dynamical discrete-time
system:

(2)

xk+1 = Axk +Buk
uk = ∇f(yk)
yk = Cxk
zk = Dxk

with xk =

[

zk
zk−1

]

;A =

[

1 + β −β
1 0

]

;B =

[

−α
0

]

;C =
[

1 0
]

= D.

Given Assumptions on f and ∇f , two complementary problems can be ad-
dressed:

• The analysis problem: given α and β, find the best convergence rate ρ.
• The design problem: given a desired ρ ∈ (0, 1) find α and β.

To address both problems above defined, we study the function f(z):

f(z) =







u0kgz if kgz > u0
k2

gz
2

2 if |kgz| ≤ u0
−u0kgz if kgz < −u0

with the minimizer z⋆ = 0 (z ∈ R
n, n = 1). That corresponds to the following

gradient, which is a saturation:

∇f(z) =







u0kg if kgz > u0
k2gz if |kgz| ≤ u0
−u0kg if kzg < −u0

= kgsatu0
(kgz)

with u0 > 0 the level of saturation. From (2) that leads to study the following
closed-loop system:

(3)
xk+1 = A0xk +B0φk
φk = satu0

(Kxk)−Kxk

with A0 = A + BK =

[

1 + β − αk2g −β
1 0

]

;B0 = kgB =

[

−αkg
0

]

;K =
[

kg 0
]

. where now the input of the system is a dead-zone-like nonlinearity.



Mini-Workshop: Analysis of Data-driven Optimal Control 1249

3. Main technique

By leveraging on the framework associated to the class of systems (3), we can
propose some theoretical conditions in order to solve both problems above stated
(see, for example, [Tarbouriech et al., 2011]).

3.1. Analysis problem. Hence, to address the analysis problem, we fix a pair
α, β such that matrix A0 is Schur-Cohn. It is also important to note that that 1)
the eigenvalues of A are: 1, β, and 2) matrix A0 is not stable for any pair of (α, β),
as depicted on Fig. 1.

Figure 1. Illustration of area of stability (in green) or instability
(in red) for different values of (α, β)

First, we are trying to ensure the global asymptotic (or exponential) stability
of the closed loop, that is for any initial condition z0, and therefore search for

• a Lyapunov function V (xk) > 0, V (0) = 0,
• some properties to embed the nonlinearity φk as hg(xk, φk) ≥ 0 for xk ∈ R

2

such that along the trajectories of system (3):

V (xk+1)− ρV (xk) + τghg(xk, φk) < 0, ∀xk ∈ R
2

with ρ > 0, τg > 0. Thanks to theoretical conditions expressed as linear (or
quasi-) matrix inequalities (LMIs), which reveal to be unfeasible, and simulations
confirming this, we can show that the system (3) is not globally asymptotically
stable with the decay rate

√
ρ, or equivalently the HB algorithm is not globally

convergent with the convergence rate
√
ρ.
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Nevertheless, we can modify the way to encapsulate the dead-zone nonlinearity
to provide theoretical conditions ensuring that the system (3) is locally asymptot-
ically stable with the decay rate

√
ρ, or equivalently the HB algorithm is locally

convergent with the convergence rate
√
ρ. At this aim, we search for

• a Lyapunov function V (xk) > 0, V (0) = 0,
• some properties to embed the nonlinearity φk as hl(xk, φk) ≥ 0 for xk ∈
Ω ⊂ R

2

such that along the trajectories of system (3):

V (xk+1)− ρV (xk) + τlhl(xk, φk) < 0,
∀xk ∈ E(V, 1) = {xk ∈ R

2;V (xk) ≤ 1} ⊆ Ω

with ρ > 0, τg > 0. The region of admissible initial conditions, for which the
stability or the convergence is guaranteed, is then characterized as a level set of
the Lyapunov function V (xk). Such a region is illustrated on Fig.2, where two
trajectories are depicted: x0 ∈ E(P ) and the convergence to zero is ensured (in
red) and x0 6∈ E(P ) and the trajectories converge to a limit cycle (in blue). The

Figure 2. Illustration of the behavior for 2 initial conditions with
u0 = 2, kg = 1 and (α, β) = (1.9, 0.9) in or outside the level set
(depicted in green)

classical trade-off between the performance (ρ) and the size of the level set E(P )
of guaranteed initial conditions is also illustrated.

3.2. Design problem. To address the complementary problem of designing the
parameters α and β, we rewrite matrices A0 and B0 in which in this step α and β
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are the decision variables:

(4)

A0 =

[

1 + β − αk2g −β
1 0

]

=

[

1 0
1 0

]

+

[

1
0

]

K0

[

−k2g 0
1 −1

]

= A1 +B1K0C1

B0 =

[

−αkg
0

]

=

[

1
0

]

K0

[

−kg
0

]

= B1K0C2

K0 =
[

α β
]

Hence, we want to design the gain K0. Note that as previously matrix A0 has to
be Schur-Cohn.

The technique to design the parameters α and β follows the same procedure as
developed in the local stability analysis case, by using slack variables and adequate
change of variables. By considering the objective to enlarge the size of the level
set E(P ), one can illustrate that for a given performance level ρ, α is growing and
β is decreasing (towards 0).

4. conclusion

This talk allows of illustrating on a simple case how the framework developed for
systems with isolated nonlinearities (as saturation) can be used. Indeed, one can
reinterpret some optimization algorithms as the stability/stabilization of discrete-
time systems with a isolated nonlinearity in the input (corresponding to the gra-
dient of the function to optimize f(z)). Not only some performance level (as the
convergence rate) but also the characterization of the the basin of attraction of
the minimizer z⋆ can be studied. Some robustness issues (for example if there is
an error in the gradient ∇f(zk)) could be added as supplementary constraints.

These preliminary ingredients pave the way for several studies, as considering
other types of algorithms [Michalowsky et al., 2020], as considering more complex
functions to optimize (for example piecewise convex function, non-convex, ...), as
adding constraints in the optimization problem:

minz f(z)
subject to g(x) ≥ w

Finally, we could take inspiration of the recent results in the framework of non-
linear and hybrid systems to improve the class of algorithms of optimization
[Le and Teel, 2021].
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Neural ODE for classification, approximation and transport

Enrique Zuazua

(joint work with Domènec Ruiz-Balet)

In the past decade, deep learning has had a tremendous impact on technology,
in a wide range of applications ([1]). Deep learning techniques are employed, for
instance, in supervised learning, whose main goal is finding suitable approximations
of an unknown function f : X → Y given a large sample {(xi, yi)}Ni=1 of it. One
can typically distinguish between two types of problems: we refer to classification
(resp. regression) when Y is discrete (resp. continuous).

The so-called residual neural networks (ResNets, [4]) are a class of deep neural
networks that can be written in the form of a discrete dynamical system

(1)

{

xk+1
i = xk

i +W kσ(Akxk
i + bk)

x0
i = xi

for the layers 0 ≤ k ≤ Nlayers − 1, to be solved with input data xi, 1 ≤ i ≤ N ,
with the same discrete parameters Ak,W k ∈ R

d×d, bk ∈ R
d to be found, that play

the role of controls. The nonlinearity σ is the so-called activation function, which
is applied component-wise. Nlayers ≥ 1 is the number of layers or the depth of the
ResNet.

ResNets can also be understood as Euler schemes of a continuous-time formu-
lation (Neural ODEs) ([5])

(2)

{

ẋi(t) =W (t)σ(A(t)xi(t) + b(t)) for t ∈ (0, T )

xi(0) = xi ∈ R
d, 1 ≤ i ≤ N

whereW,A ∈ L∞((0, T );Rd×d) and b ∈ L∞((0, T );Rd) are time-dependent control
functions aimed to steer the dynamics of the system simultaneously for all initial
data xi ∈ R

d, 1 ≤ i ≤ N .
Typically the free-parameters of a neural network are found by means of op-

timization algorithms out of the ensemble of available samples. The objective
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functional is defined through the samples {xi, yi}Ni=1 of the unknown function f .
For a general mathematical study of the optimal control problems see [7, 8, 9].

In these notes we briefly present the main results in [6], focusing in the case of
the ReLU activation function (Figure 1).

-2 0 2
0

1

2

3

Figure 1. ReLU activation function, σ(x) = max{0, x}.

Let us first discuss the classification and interpolation problems, which can be
formulated as simultaneous control problems.

Let us assume that the data are distributed in M classes, {1, ...,M}. We first
build a partition of Rd, {Sm}Mm=1. The classification problem consists then on
finding controls W,A, b so that the solutions of (2) satisfy

(3) φT (xi;W,A, b) ∈ Sm ⇐⇒ yi = m

where φT is the solution of (2) at time T with initial data xi and controlsW,A, b.
Note that W,A, b are the same for every input xi, i = 1, ...N .

We are therefore facing a simultaneous control problem, the targets being the
sets Sm of the partition of the Euclidean space. Reaching these targets suffices to
assure that the classification has been successfully achieved.

The interpolation problem is more challenging, the goal being to drive the
trajectories to the N targets {zi}Ni=1 ⊂ R

d exactly:

(4) φT (xi;W,A, b) = zi, i = 1, ..., N.

These simultaneous controllability properties are rare for classical dynamical
systems in mechanics. For instance, it is an impossible task for linear systems,
when all trajectories are assumed to satisfy the same dynamics. The key property
that allows Neural ODEs to achieve this hard task is that the activation function
vanishes in half-space. The choice of A and b allows to determine that half-space,
in a time-dependent fashion, while the matrixW allows to orient the vector field in
the active half-space in which the sigmoid is active (see Figure 2). Employing these
flows in an adequate time-dependent fashion, one can achieve both classification
and the simultaneous control (see Figure 3).

An even more ambitious goal of supervised learning is to approximate a given
function. This can be also obtained in an approximate manner (in the L2-sense
for instance). In fact, the simultaneous control property of (2), can be interpreted
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Figure 2. Some of the flows generated by a Neural ODE with
the ReLU activation function.
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Figure 3. Qualitative representation of the procedure applied to
classify the data by a partition made out of parallel strips. Each
point is sent to the corresponding strip, according to its color. The
dotted line represents the hyperplane chosen as interface between
the active and frozen half-spaces and the black arrow the direction
of the vector field in the active half-space.

as the approximate control property of the following neural transport equation in
the Wasserstein distance

{

∂tρ+ divx
[

(W (t)σ(A(t)x + b(t))) ρ
]

= 0

ρ(0) = ρ0 ∈ Cc(R
d).
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One can even achieve a simultaneous control result for a finite number of Neural
transport equations:











∂tρm + divx [(W (t)σ(A(t)x + b(t))ρm)] = 0, m = 1, ...,M

ρm(0) = ρ0m ∈ Cc(R
d), m = 1, ...,M

supp(ρ0m) ∩ supp(ρ0m′) = ∅ if m 6= m′.

The interested reader is refereed to the article [6] for more precise statements
and the corresponding proofs.
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Mathematisches Institut
Universität Bayreuth
Postfach 101251
95447 Bayreuth
GERMANY



Mini-Workshop: Analysis of Data-driven Optimal Control 1257

Dr. Nathan Kutz

Department of Applied Mathematics
University of Washington
Lewis Hall 201
Seattle, WA 98195-3925
UNITED STATES

Brian Mao

Dept. of Applied Mathematics
University of Waterloo
200 University Avenue West
Waterloo ON N2L 3G1
CANADA

Prof. Dr. Kirsten Anna Morris

Department of Applied Mathematics
University of Waterloo
Waterloo ON N2L 3G1
CANADA

Dr. Sebastian Peitz

Institut für Mathematik
Universität Paderborn
Warburger Str. 100
33098 Paderborn
GERMANY

Prof. Dr. Sophie Tarbouriech

LAAS-CNRS
7, Avenue du Colonel Roche
31077 Toulouse Cedex 4
FRANCE

Prof. Dr. Enrique Zuazua

Department Mathematik
Universität Erlangen-Nürnberg
Cauerstr. 11
91058 Erlangen
GERMANY




