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Abstract. Dissipation of energy — as well as its sibling the increase of en-
tropy — are fundamental facts inherent to any physical system. The concept
of dissipativity has been extended to a more general system theoretic setting
via port-Hamiltonian systems and this framework is a driver of innovations
in many of areas of science and technology. The particular strength of the
approach lies in the modularity of modeling, the strong geometric, analytic
and algebraic properties and the very good approximation properties.
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Introduction by the Organizers

This workshop was organized by Sara Grundel (MPI Magdeburg), Volker Mehr-
mann (TU Berlin), Jacquelien M.A. Scherpen (U of Groningen, Netherlands), and
Felix L. Schwenninger (U Twente, Netherlands, and U Hamburg). The workshop
topics represented, in particular, physics and data based modeling, with a strong
focus in model order reduction, numerical simulation and control methods, for lin-
ear and nonlinear, finite and infinite dimensional problems. Applications included
the distributed control of smart energy systems, such as the power grid or gas
transport.

Dissipativity is pivotal for a variety of topics — including physics-oriented mod-
eling (see, e.g., thermodynamics, conservation of energy), numerics, optimization,
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and control. In the latter, it serves as the canvas of seminal concepts such as
Lyapunov stability and passivity. In optimization it triggered the development
of semi-definite programming to tackle linear matrix inequalities and in control
theory it is at the forefront of approaches to robust design concepts pioneered
by Kalman, Yakubovich and Popov. Whereas energy-based modeling has a long
tradition, its framework character is key to taming the complexity of large-scale
coupled systems. Indeed, the concept of dissipativity allows to easily interconnect
various system components and to describe their characteristic properties. For
instance, port-Hamiltonian systems leverage this advantageously. Yet, fundamen-
tal obstacles remain — prime examples of open problems are a unifying theory
handling evolution equations in higher-dimensional domains analytically and nu-
merically. This gap becomes even more pronounced for highly nonlinear and/or
infinite-dimensional systems. Hence, deriving a mathematically sound abstraction
formalism which paves the way towards unified methods in numerics, optimiza-
tion, and control is of crucial importance. Here, preserving phenomena peculiar for
infinite-dimensions requires profound theoretical tools from different mathemati-
cal fields including, e.g., complex analysis, operator theory, and partial differential
equations.

Dissipation is also omnipresent in theoretical mathematical developments; such
as contraction concepts playing a fundamental role in operator algebras, abstract
differential equations, and the qualitative study of numerical schemes. The in-
fluential work by von Neumann continues to stimulate research in areas, as for
instance the work on Crouzeix’s conjecture. The latter strongly links Blaschke
products as the building blocks of function theory to convergence rates for Krylov
methods, hindered by the enigmatic properties of numerical ranges, which in turn
relates to algebraic geometry. Further challenges arise when additional exogenous
inputs are taken into account – either as controls or as disturbances. In this con-
text, dissipativity has crucially influenced robust control design. Recently, strong
links between properties of parametric problems in calculus of variations/optimal
control and abstract dissipation inequalities have been established. The dissipa-
tivity approach proved to be pivotal in analyzing turnpike properties in optimal
control problems. In turn, the turnpike property can also be leveraged for tailored
numerical solution strategies for optimal control problems for partial differential
equations.

It stands to reason that dissipativity is foundational for dynamic phenomena
in thermodynamics, electrodynamics and beyond. That is, it appears in the equa-
tions of Maxwell and Navier-Stokes alike. On the other hand, the above described
universal language offered through port-based modeling paves the way for elab-
orating multi-physics applications ranging from mechatronics (e.g. robotics) to
coupled gas and energy networks. However, in the currently dawning age of an
information rich world, the ubiquity of data, measurement devices, and embed-
ded control units is in the process of becoming a presumption, if not a conditio
sine qua non in manifold research activities in applied mathematics and beyond.
While data-driven methods as such will lead to – and already have led to – seminal
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progress in various application domains, this development carries the risk of un-
necessarily distancing the analysis, design and control of dynamic systems at large
from fundamental dissipation principles and the underlying mathematics. It will,
and to a certain extend already is, a promising topic to leverage hybrid models
including available data while not losing the physical knowledge gained.

To summarize, this mini-workshop investigated the mathematics of dissipation,
which is a core concept to ensure robust modeling as well as robust numerical
computation. In doing so, it addressed the gap between first principle-based ap-
proaches and the rapidly growing branch of data-driven methods.

This workshop had a focus in 1) Applications, 2) Control, Numerics and Opti-
mization, 3) Data-Driven Methods 4) Infinite-Dimensional Systems, and 5) Model
Order Reduction. This was also how the five days of the week were distributed
initially. Each day had two to four talks and on Wednesday and Thursday we also
had longer brainstroming sessions about research directions and open problems
were discussed.

Discussed research directions: While the port-Hamiltonian framework in the
setting of a linear ordinary differential equation is entirely clear, and extensions to
nonlinear, infinite dimensional as well as the differential algebraic setting exists,
some of those extensions are not yet developed in all generality. Aspects of that
are, for instance, control design, delay equations, stochastic PDEs, discrete-time.
We furthermore discussed the potential of control design in a pH network and also
that we may have to rethink standard approaches in optimal control problems.
Another topic was the link between gradients systems and pH systems.
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Carmen Gräßle (joint with Olena Burkovska)
Model order reduction for phase field systems governed by the
Cahn-Hilliard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268

Weiwei Hu
Optimal Control Design for Fluid Mixing: from Open-Loop to
Closed-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1270

Birgit Jacob (joint with Julia T. Kaiser and Hans Zwart)
Controllability and Riesz bases of infinite-dimensional port-Hamiltonian
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1273

Bernhard Maschke (joint with Arjan van der Schaft )
Recent progresses on Implicit Port Hamiltonian Systems defined with
respect to reciprocal differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 1276

Manuel Schaller (joint with Timm Faulwasser, Bernhard Maschke,
Friedrich Philipp, Karl Worthmann)
Optimal control of port-Hamiltonian systems with minimal energy supply 1278

Jacquelien Scherpen (joint with Juan E. Machado and Michele Cucuzzella)
Passivity-based modeling and control of multi-producer district heating
systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1280

Benjamin Unger (joint with R. Altmann, V. Mehrmann)
The port-Hamiltonian framework for poroelastic network models . . . . . . . 1283

Karl Worthmann, Timm Faulwasser, Friedrich Philipp, and Manuel
Schaller (joint with Kathrin Flaßkamp and Sina Ober-Blöbaum)
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Abstracts

The influence of the Hamiltonian in structure-preserving
model reduction

Tobias Breiten

(joint work with Riccardo Morandin, Philipp Schulze, Benjamin Unger)

Computing reduced-order models for large-scale systems that arise, e.g., from a
spatial semi-discretization of a partial differential equation has become one of
the standard techniques for efficient control and simulation of complex dynamical
processes. In the case that the original model has a particular structure, one often
aims at a structured surrogate model. This is particularly true for the class of
port-Hamiltonian systems for which several structure-preserving techniques have
been developed recently, see, e.g., [4, 5].

However, basically all existing methods ensure structure-preservation by uti-
lizing the Hamiltonian matrix within the projection step. Proceeding this way
obviously reduces the degree of freedom for a Petrov-Galerkin projection as one
of the matrices is pre-determined by the Hamiltonian. Moreover, the approxima-
tion qualitiy implicitly depends on the specifically chosen realization of the port-
Hamiltonian system, raising the question of existence of an optimal Hamiltonian
with regard to model order reduction.

As is well-known [1,6,7], by solving a Kalman-Yakubovich-Popov linear matrix
inequality (KYP-LMI) every minimal and passive system can be represented as
a port-Hamiltonian system. In [2], this relation has been used to improve the
performance of a modified version of the Q-conjugated LQG balanced truncation
from [8,9]. In essence, the idea is to represent the port-Hamiltonian in coordinates
that lead to the Hamiltonian being one of the extremal solutions of the KYP-LMI.
Based on similar considerations, in [3], a novel passivity-preserving model reduc-
tion method has been suggested. Its main idea is to approximate certain spectral
factors, thus performing implicit model reduction of the underlying system.

Interestingly enough, while being optimal for model reduction purposes, ex-
tremal solutions of the KYP-LMI are very sensitive with respect to perturba-
tions, [1]. Consequently, finding appropriate port-Hamiltonian formulations may
suffer from concurrent goals (e.g., sensitvity vs approximability) and should be
investigated in more detail. In particular, finding appropriate representations for
nonlinear port-Hamiltonian systems remain a largely open research field.
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Optimization-based Control of Energy Grids and Dissipativity? Ideas
and Open Problems

Timm Faulwasser

The crucial link between the system-theoretic notion of dissipativity and optimal
control is already evident in the foundational work of Jan Willems [1] and in
his seminal paper on least-squares optimal control [2]. In a nutshell, for finite-
dimensional control systems

(1) ẋ = f(x, u), x(0) = x0 ∈ R
n

dissipativity implies the existence of a storage function S : Rn → R and a corre-
sponding supply rate ω : Rn × R

m → R such that the dissipation inequality

(DI) S(x(T ))− S(x0) ≤
∫ T

0

ω(x(t), u(t)) dt

holds along all solutions of (1) driven by some control u : [0, T ] → Rm.
Recently, there has been substantial interest in a specific dissipativity notion

for optimal control which relates (DI), and specifically the supply rate ω, to the
problem of minimizing

(2)

∫ T

0

ω(x(t), u(t)) − ω̄ dt

subject to (1) and further constraints, and where ω̄ is an appropriate normaliza-
tion. When minimizing (2) subject to (1) the dissipation inequality (DI) directly
implies a lower bound on the optimal value function. Moreover, strict variants of
(DI), which hold with equality only on a subset of Rn, imply the presence of a
turnpike property in the open-loop optimal solutions, see [3] for a recent overview.

In this context we formulate re-dispatch problems for large-scale energy sys-
tems as receding-horizon optimal control which involves time-varying, and usually
uncertain, predictions of future energy demands and renewable energy generation.
We show how to handle the stationary description of electricity grids given by
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the so-called power-flow equations, while the ramp constraints on generators and
the dynamics of storages induce multi-stage coupling (i.e., discrete-time dynam-
ics). Results on the dissipativity of the resulting discrete-time optimal control
problem [4] motivate the formulation of open problems and ideas for future inves-
tigations. This includes:

(i) Classically, and especially in the context of passivity and port-Hamiltonian
systems, dissipativity supply rates ω admit physical interpretations and
motivations [5]. However, requiring that the objective (2) of an opti-
mal control problem corresponds to the right hand side of the dissipation
inequality (DI)—modulo normalization and see [3]—leads to the funda-
mental question of how both view points are related. First steps in this
direction also discussed in [6].

(ii) Only little research has investigated the link of dissipativity and stochastic
optimal control problems and corresponding stochastic turnpike notions.
This is likely due to the fact that not much has been done beyond the
in-expectation formulation of stochastic dissipation inequalities.

(iii) Despite substantial progress on the dissipativity-based analysis of opti-
mal control problems, the vast majority of available results assume that
inequality constraints on states and inputs are not active at the local
steady-state minimizer of (2). Hence the problem of dissipativity-based
turnpike analysis with active constraints appears to still open.
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Model order reduction for phase field systems governed by the
Cahn-Hilliard model

Carmen Gräßle

(joint work with Olena Burkovska)

Phase field systems are widely used in many applications to describe e.g. the
process of phase separation and interface motion. We consider the Cahn-Hilliard
model which can be formulated as a coupled system of equations

∂tu−∆w = 0,(1a)

w = −ε2∆u+ f ′(u),(1b)

subject to homogeneous Neumann boundary conditions and an initial condition
u(0) = u0. Here, u denotes the phase field variable, w is the chemical potential,
ε > 0 is an interface parameter, which is related to the width of the interface, and
f is a free energy potential with sufficient regularity. A common choice for f is,
for instance, the smooth double-well potential

f(u) :=
1

4
(u2 − 1)2,(2)

see e.g. [7] for more details. The pure phases in the Cahn-Hilliard system corre-
spond to the values u = ±1, whereas in the interface region steep transitions in
the phase field variable occur. For the numerical implementations, this requires a
high discretization resolution in the interface areas, whereas in the pure phases a
coarse resolution suffices. This motivates to use adaptive finite elements. In order
to reduce the computational times, a POD reduced-order approach is considered
replacing the original system by a low-order surrogate model. To construct the
reduced-order model, snapshots of the original system are collected in an offline
phase and the combination of space-adapted snapshots with a POD reduced-order
approach can be handled according to [9, 12].

Note that the choice (2) permits pure phases, but allows the phase field variable u
to take unphysical values |u| > 1. For this reason, the non-smooth double obstacle
free energy can be considered, given by

f(u) :=

{

f0(u) if |u| ≤ 1

+∞ if |u| > 1

}

= f0(u) + I[−1,1](u),(3)

where f0 is a smooth, non-convex part of the potential, which is often chosen as
f0(u) =

1
2 (1− u2) and I[−1,1] is the convex indicator function

I[−1,1](u) :=

{

0 if u ∈ [−1, 1],

+∞ otherwise.

With this non-smooth choice for the potential f , the derivative of the potential
in (1) should be understood by means of a generalized subdifferential ∂f(u) =
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f ′
0(u)+∂I[−1,1](u), where ∂I[−1,1](u) is the subdifferential of the indicator function
I[−1,1](u). This leads to the Cahn-Hilliard model involving a variational inequality:

{

∂tu−∆w = 0,

(w, v − u) ≤ ε2(∇u,∇(v − u)) + (f ′
0(u), v − u), ∀v ∈ H1(Ω), |v| ≤ 1,

(4)

together with |u| ≤ 1 a.e., see e.g. [3, 4] for more details. In order to solve the
discretized problem the primal-dual active set method [11] can be applied, see
also, e.g., [2]. In [5], we introduce a parametrized version of the Cahn-Hilliard
problem (4), for instance by considering a parametrization of the initial condition
or by parametrization of the problem by model parameters.

To construct low-dimensional spaces following the reduced basis method, we
consider a problem in a saddle point form. We extend some of the previously
developed model order reduction techniques for elliptic and parabolic variational
inequalities with unilateral constraints [6, 10], cf. also [1, 8, 13]. Possible transport
phenomena of the interfaces as well as the non-smoothness of the potential pose
additional challenges for the model reduction.
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Optimal Control Design for Fluid Mixing: from Open-Loop to
Closed-Loop

Weiwei Hu

1. Abstract

The question of what velocity fields effectively enhance or prevent transport and
mixing, or steer a scalar field to a desired distribution, is of great interest and
fundamental importance to the fluid mechanics community. In this work, we
mainly discuss the problem of optimal mixing of an inhomogeneous distribution of
a scalar field via active control of the flow velocity, governed by the Stokes or the
Navier-Stokes equations. Specifically, we consider that the velocity field is steered
by a control input which acts tangentially on the boundary of the domain through
the Navier slip boundary conditions. This is motivated by mixing within a cavity
or vessel by rotating or moving walls. Our main objective is to design a Navier slip
boundary control for achieving optimal mixing. Non-dissipative scalars governed
by the transport equation will be of our main focus. In the absence of molecular
diffusion, mixing is purely determined by the flow advection. This essentially
leads to a nonlinear control and optimization problem. A rigorous proof of the
existence of an optimal open-loop control and the first-order necessary conditions
for optimality will be addressed. Moreover, a feedback law for the closed-loop
system will be also constructed utilizing the optimal control approach. Finally,
numerical experiments will be presented to demonstrate our ideas and control
designs.

2. Problem Statement

Consider an inhomogeneous scalar field advected by an incompressible flow in an
open bounded and connected domain Ω ⊂ R2 with a smooth boundary Γ. The
scalar field is described by the transport equation

∂tθ + v · ∇θ = 0, ∇ · v = 0 in Ω× [0,∞),(1)

with initial condition θ(0) = θ0, where θ stands for the mass distribution or scalar
concentration, κ > 0 is the thermal diffusivity, and v is the velocity of an incom-
pressible fluid flow. Here we consider that the flow velocity is governed by the
incompressible Stokes equations

∂tv − ν∆v +∇p = 0, ∇ · v = 0 in Ω× [0,∞),(2)

or the incompressible Navier-Stokes equations

∂tv + v · ∇v +∇p = ν∆v + f(θ) and ∇ · v = 0 in Ω× [0,∞),(3)

where ν > 0 is the viscosity, p is the pressure, and f(θ) stands for the local force
(such as buoyancy) imposed on the velocity field in the case of active transport.
Moreover, the Navier slip boundary conditions are employed [12], that is,

v · n|Γ = 0 and (2νn · D(v) · τ + αv · τ)|Γ = g · τ,(4)
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where n and τ denote the outward unit normal and tangential vectors with respect
to the domain Ω, and D(v) = (1/2)(∇v + (∇v)T ). The friction between the fluid
and the wall is proportional to −v with the positive coefficient of proportionality
α. The nonhomogeneous boundary term g with g · n|Γ = 0, is the control input
depending on both space and time, which is applied to generate the velocity field
for mixing. The initial condition is given by (θ(0), v(0)) = (θ0, v0).

The presence of the feedback f couples the transported scalar to the velocity.
In contrast, a passive scalar has no dynamical effect on the flow, i.e., f(θ) = 0, and
hence the velocity determines the properties of the scalar. Although passive and
active scalars considered in this proposal are governed by the same transport equa-
tion, their nature is essentially distinct. The complexity of the two-way coupling
between the scalar and the flow gives rise to a major challenge in analysis. The
understanding of the active transport is far behind that of its passive counterpart.
In the study of active scalars, the current work only focuses on mixing in the two
dimensional buoyancy-driven flow modeled by the Boussinesq approximation with
zero diffusivity, which arises naturally in certain geophysical situations [5, 13, 15].
In this case, f(θ) = θe2 and e2 = (0, 1)T is a unit vector in the direction of
buoyancy.

To quantify mixing, a classical measure is the spatial variance of the concentra-
tion of the scalar [1]. However, this measurement fails in the case of zero diffusivity
since it is unable to quantify pure stirring effects [11]. Recently, the mix-norm and
negative Sobolev norms have been adopted to quantify mixing based on ergodic
theory, which are sensitive to both stirring and diffusion [11, 14]. In fact, any
negative Sobolev norm H−s, for s > 0, can be used as a mix-norm thanks to the
property of weak convergence [14]. Since a general open and bounded domain will
be considered in this project, without imposing any additional boundary condi-
tions other than no-penetration on the velocity field, the negative Sobolev norm
will be replaced by the norm of the dual space (Hs(Ω))′ of Hs(Ω) with s > 0 as
in our previous work [6–10]. Without loss of generality, (H1(Ω))′ will be used to
quantify mixing in this work.

2.1. Formulation of the Optimal Control Problem. We formulate the opti-
mal control problem as follows: for a given T > 0, find a control g minimizing the
cost functional

J(g) =
1

2
‖θ(T )‖2(H1(Ω))′ +

γ

2
‖g‖2Uad

− ζ

2

∫ T

0

‖∇× v‖2L2 dt, (P)

where Uad is the set of admissible controls and γ > 0 is the control weight param-
eter, which is chosen to establish the relative weight depending on the first and
the third term. Here ∇× v = ∂1v2 − ∂2v1 stands for the vorticity and ζ ≥ 0 is the
regularization parameter for vorticity, which is set to be zero for the Stoke flow
problem. Note that the long-time dynamics may be dominated by strong coher-
ent vortices that can possibly slow down mixing, thus ζ may be used to test the
sensitivity of mixing rate with respect to vorticity. Since the mapping g 7→ (θ, v)



1272 Oberwolfach Report 24/2021

is nonlinear, problem (P ) is non-convex and hence the optimal solution may not
be unique in general.

3. Main Results and Ongoing Work

Problem (P) has been well-studied in our recent work [6–10], subject to Stokes or
the Navier-Stokes equations. Specifically, the existence and uniqueness of an opti-
mal solution are addressed, where the uniqueness is obtained under certain small
conditions on the system data. The first-order optimality conditions are derived
for charactering and solving the optimal solution. Some preliminary numerical
results for mixing via Stokes flows have been presented in [10]. However, to solve
the resulting optimality system, one has to solve the governing system forward in
time, coupled with the adjoint system backward in time together with a nonlinear
optimality condition. Straightforward use of this theory can result in extremely
to impossibly high computational costs.

Our ongoing work is to establish the closed-loop feedback controls and the cor-
responding feasible computational methods for optimization and stabilization of
both passive and active transport and mixing. In particular, the idea of instan-
taneous control design [2–4] is employed, which leads to a suboptimal feedback
law. In fact, such a feedback law can be possibly obtained by a direct approxima-
tion of the optimality system using appropriate numerical schemes. Furthermore,
we are also interested in understanding the long-time behavior of the nonlinear
closed-loop system, identifying the explicit mixing decay rate, and establishing
the relation between the mixing decay rate and the control actuation. These are
rather challenging problems that require fine analysis and merit continuing inves-
tigation in our future work.
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Controllability and Riesz bases of infinite-dimensional
port-Hamiltonian systems

Birgit Jacob

(joint work with Julia T. Kaiser and Hans Zwart)

The location of the spectrum, the Riesz basis property and controllability of
infinite-dimensional linear port-Hamiltonian systems on a 1D spatial domain are
studied. It is shown that these systems with full boundary control are exactly
controllable and the Riesz basis property is equivalent to the fact that system
operator generates a strongly continuous group. Moreover, in this situation the
spectrum consists of eigenvalues only, located in a strip parallel to the imaginary
axis and they can decomposed into finitely many sets having each a uniform gap.

More precisely, we consider first order linear port-Hamiltonian systems on a
one-dimensional spatial domain of the form

∂x

∂t
(ζ, t) =

(

P1
∂

∂ζ
+ P0

)

(H(ζ)x(ζ, t)),

x(ζ, 0) = x0(ζ),(1)

u(t) =WB

(
f∂(t)
e∂(t)

)

, y(t) =WC

(
f∂(t)
e∂(t)

)

where ζ ∈ [0, 1] and t ≥ 0. Equation (1) describes a special class of port-
Hamiltonian systems, which cover in particular the wave equation, the transport
equation and the Timoshenko beam as well as coupled systems. For more infor-
mation we refer to [4–7].

In this article we make the following assumptions: The d× d Hermitian matrix
P1 is invertible, P0 is a d × d skew-symmetric matrix, WB and WC are full row
rank d × 2d-matrix such that

[
WB

WC

]
is invertible and H(ζ) is a positive d × d

Hermitian matrix for a.e. ζ ∈ (0, 1) satisfying H,H−1 ∈ L∞(0, 1;Cd×d). Thus,
the matrix P1H(ζ) can be diagonalized as P1H(ζ) = S−1(ζ)∆(ζ)S(ζ), where ∆(ζ)
is a diagonal matrix and S(ζ) is an invertible matrix for a.e. ζ ∈ (0, 1). We
suppose the technical assumption that S−1, S, ∆ : [0, 1] → Cd×d are continuously
differentiable. Boundary effort e∂ and boundary flow f∂ are defined by

(
f∂
e∂

)

=
1√
2

(
P1 −P1

I I

)(
[Hx](1)
[Hx](0)

)

,
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and the Hamiltonian (energy) of the port-Hamiltonian system is given by

H(x(·, t)) = 1

2

∫ 1

0

x(ζ, t)∗H(ζ)x(ζ, t) dζ.

An easy calculation shows that

d

dt
H(x(·, t)) = 1

2

[
[Hx]∗ (ζ, t)P1 [Hx] (ζ, t)

]1

0
= e∂(t)

∗f∂(t).

In the following we assume that the port-Hamiltonian system impedance passive,
that is,

d

dt
H(x(·, t)) ≤ u(t)∗y(t).

This is satisfied if and only if

(
WBΣW

∗
B WBΣW

∗
C

WCΣW
∗
B WCΣW

∗
C

)−1

≤
(
0 I
I 0

)

,

where Σ = [ 0 I
I 0 ]. As state space we choose X := L2((0, 1);Cd) equipped with

the (energy) norm 〈x, y〉X := 1
2

∫ 1

0
x(ζ)∗H(ζ)y(ζ) dζ, which is equivalent to the

standard L2-norm. The system operator A : D(A) ⊂ X → X is defined by

(2) Ax := (P1
d

dζ
+ P0)(Hx), x ∈ D(A),

(3) D(A) :=
{
x ∈ X | Hx ∈ H1((0, 1);Cd) and WB

[
f∂
e∂

]
= 0
}
.

The following theorem summarizes results concerning existence of solutions of the
port-Hamiltonian system (1).

Theorem 1 ( [7]). If the port-Hamiltonian system impedance passive, then

(1) The operator A, given by (2)-(3) generates a contraction semigroup on X.
(2) There are t0,mt0 > 0: Every classical solution of (1) satisfies

‖x(t0)‖2X +
∫ t0

0 ‖y(t)‖2dt ≤ mt0

[

‖x(0)‖2X +
∫ t0

0 ‖u(t)‖2dt
]

.

(3) For every initial condition x0 ∈ X and input function u ∈ L2
loc([0,∞),Cd)

the system has an unique (mild) solution x ∈ C([0,∞), X) and y ∈
L2
loc([0,∞),Cd).

Definition 2. We call the port-Hamiltonian system (1) exactly controllable, if
there exists a time τ > 0 such that for all x1 ∈ X there exists a control function
u ∈ L2([0, τ ],Cd) such that the corresponding mild solution satisfies x(0) = 0 and
x(τ) = x1.

Our first main result is as follows:

Theorem 3 ( [2]). Every impedance passive port-Hamiltonian system (1) is ex-
actly controllable.
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We note that the operator A, given by (2)-(3), is closed and that its resolvent
operator is compact, see [1]. This immediately implies that the spectrum of A,
denoted by σ(A), consists of isolated eigenvalues with finite multiplicity only. Thus

σ(A) = {λk}k∈N.

As the port-Hamiltonian system is impedance passive, we have supk∈N Reλk ≤ 0.
By E(λk) we denote the spectral projections on the spectral subset {λk} is

defined as

E(λk) =
1

2πi

∫

Γk

(s−A)−1ds,

where Γk is a closed Jordan curve containing λk and no point of σ(A) \ {λk}. If
WBΣW

∗
B = 0, then it is easy to see that the normalized eigenvectors of A form an

orthonormal basis. In general there are port-Hamiltonian systems with σ(A) = ∅,
for example the operator Ax = d

dζ
x with D(A) = {x ∈ X | x′ ∈ X, x(1) = 0} has

empty spectrum.

Definition 4. The operator A is called a discrete Riesz spectral operator, if

(1) for every k ∈ N there exists Nk ∈ L(X) such that

AEk = (λk +Nk)Ek,

(2) the sequence of closed subspaces (Ek(X))k∈N is a Riesz basis of subspaces
of X, that is, Span(Ek(X))n∈N is dense and there exists an isomorphism
T ∈ L(X), such that (TEk(X))n∈N is system of pairwise orthogonal sub-
spaces of X.

(3) N :=
∑

k∈N
Nk is bounded and nilpotent.

Our second main results reads:

Theorem 5 ( [3]). Let [W1 W0 ] := WB
1√
2

[
P1 −P1

I I

]
, Z−(1) denotes the span of

the eigenvectors of P1H(1) corresponding to its negative eigenvalues and Z+(0) :=
the span of the eigenvectors of P1H(0) corresponding to its positive eigenvalues.
Then the following are equivalent:

(1) A is a discrete Riesz spectral operator.
(2) −A is the generator of a C0-semigroup.
(3) A is the generator of a C0-group.
(4) W1H(1)Z−(1)⊕W0H(0)Z+(0) = Cd.

If A is a discrete Riesz spectral operator, then the eigenvalues (counted according
to the algebraic multiplicity) can be decomposed into finitely many sets each having
a uniform gap, i.e., infk 6=m |µk − µm| > 0.
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Recent progresses on Implicit Port Hamiltonian Systems defined with
respect to reciprocal differential operators

Bernhard Maschke

(joint work with Arjan van der Schaft )

Recently Port Hamiltonian systems [3,9] have been extended to an implicit defini-
tion of the energy function which is defined in terms of a Lagrangian submanifold.
This is classically used in the definition of Hamiltonian systems [1, chap. 5.3] and
has been adapted to finite-dimensional linear Port Hamiltonian systems in [7,8]. In
this contribution, we elaborate on the recent extension of [7] to infinite-dimensional
linear Port Hamiltonian systems where the Lagrangian subspace has been defined
with respect to differential operators of first order [6].

First, let us briefly recall the definition of Boundary Port Hamiltonian Systems
[10]. They are defined by a Hamiltonian system

(1)
∂x

∂t
= J Q x

where x ∈ HN ([a, b] , Rn), Q ∈ L∞ ([a, b] , Rn×n) is symmetric positive and J is
a Nth-order matrix differential Hamiltonian operator

(2) J =

N∑

k=0

∂k

∂zk
Jk

where Jk ∈ R
n×n is symmetric if k is odd and Jk ∈ R

n×n is skew-symmetric if k
is even, augmented with the pair of conjugated boundary port variables

(3)

(
f∂
e∂

)

=

√
2

2

(

Λ̃ −Λ̃
Ik Ik

)

tr
(

L̃
(

e⊤ ∂e⊤

∂z
· · · ∂N−1e⊤

∂z(N−1)

))

where tr denotes the trace operator,

(4) e = Q x

and the matrices Λ̃ , L̃ are matrices chosen in such a way that the operator J and
(3) defines a Stokes-Dirac structure [5, 10].
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We have extended the constitutive relation defining the co-energy variables (4) to
the differential constitutive relations

(5) S∗x− P∗e = 0

defined by two (n× n) matrix differential operator of differential orderm, denoted
by P and S

P =

M∑

i=0

Pi

∂

∂z

i

,S =

M∑

i=0

Si

∂

∂z

i

, M ∈ N, Pi, Si ∈ R
n×n

and satisfying the formal reciprocity condition

(6) S∗P − P∗S = 0

We have then defined the class of Boundary Port Hamiltonian systems with
power and energy port variables

∂

∂t
Pξ = JSξ(7)

(
f∂
e∂

)

=

√
2

2

(

Λ̃ −Λ̃
Ik Ik

)

tr
(

L̃Sξ
)

(8)

(
φ∂
ψ∂

)

= Σtr
(

Π̃ ξ
)

(9)

where ξ ∈ HM ([a, b] , Rn) and the matrix Π̃ is chosen in such a way that (5)
and the energy port variables (9) define a Lagrangian subspace associated with the
total energy of the system.

We have illustrated this definition on different examples of elasto-dynamical
systems and have shown that it encompasses non-local constitutive relations. We
have also discussed the relation with the Descriptor Port Hamiltonians systems
suggested in [2, 4].
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Optimal control of port-Hamiltonian systems with minimal
energy supply

Manuel Schaller

(joint work with Timm Faulwasser, Bernhard Maschke, Friedrich Philipp, Karl
Worthmann)

Port-Hamiltonian systems are a class of dynamical systems stemming from net-
work-based modeling [1] which in their linear form are given by

ẋ(t) = (J −R)Qx(t) +Bu(t)

y(t) = B⊤Qx(t),
(pHs)

where J = −J∗, R = R∗ ≥ 0 and Q = Q∗ ≥ 0 are square matrices of appropriate
dimension and B is an input matrix.

A central tool is the energy-based analysis and modeling and in particular the
energy balance equation

H(x(T ))−H(x(0)) =

∫ T

0

y(t)⊤u(t)− ‖R 1
2Qx(t)‖2 dt,(1)

where H(x) := 1
2x

⊤Qx is the Hamiltonian and
∫ T

0 y(t)⊤u(t) dt is the energy sup-
plied to the system over the time period [0, T ]. In modeling of electrical circuits
for example, the input u is typically be given by the voltage, whereas the output
y is the resulting current, leading to the product of y and u being the electrical
power.

A natural task for optimal control is then the following: Given an initial state
x0 and a desired terminal state xT , find a control u ∈ L1(0, T ; [−1, 1]m) (m ∈ N

being the input dimension) that drives the dynamical system (pHs) from x0 to xT
with minimal energy supply. Such a control is given by a solution of the optimal
control problem

min
u∈L1(0,T ;[−1,1]m)

∫ T

0

y(t)⊤u(t) dt

s.t. (pHs)

x(0) = x0, x(T ) = xT .

(pHOCP)

A key property of this optimal control problem is the fact that the cost functional
is not quadratic. This means, that standard techniques for existence of solutions,
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Riccati theory or turnpike theory can not be applied to characterize the optimal
control. However, due to the close connection of the cost functional and the
dynamics via the energy balance relation (1), one can show various qualitative
and quantitative properties of the optimal control problem [2, 4]:

i) Despite the singularity of the optimal control problem, i.e., the cost not
being coercive in the control, one can show (assuming ker(RQ) ∩ im(B) =
{0}) that the optimal control is completely determined by the optimal state
and the corresponding adjoint state [2, Theorem 8].

ii) Using the energy balance equation one can prove a subspace turnpike prop-
erty towards the conservative subspace of the port-Hamiltonian dynamics,
i.e., kerRQ, see [2, Lemma 15] . Qualitatively speaking this means that
solutions of (pHOCP) stay close to the kernel of the dissipation operator
for the majority of the time, cf. Figure 1.

iii) Under controllability assumptions and reformulating the OCP via the en-
ergy balance equation (1), one can prove that the adjoint states show a
turnpike behavior towards zero.

iv) The optimal control problem (pHOCP) is strictly dissipative with respect
to the kernel of the dissipation operator, see [2, Theorem 18].

We presented first steps towards quantitative and qualitative analysis of optimal
control problems with port-Hamiltonian systems with the goal of minimal energy
supply. Many of the above presented properties can also be shown in the context
of differential-algebraic or infinite dimensional port-Hamiltonian systems, cf. [3,4].

Figure 1. Subspace turnpike behaviour of the optimal state.
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Passivity-based modeling and control of multi-producer district
heating systems

Jacquelien Scherpen

(joint work with Juan E. Machado and Michele Cucuzzella)

1. Introduction

District Heating (DH) refers to a network of insulated pipes carrying thermal
power from heating stations (producers) towards clusters of consumers within a
neighborhood, town center or city [1]. Prospective DH systems would promote a
more sustainable heating sector by substantially increasing the share of renewable
energy sources (e.g., geothermal or solar thermal), waste heat sources (e.g., from
industrial buildings) and thermal storage units, featuring as consequence system
topologies with multiple (and distributed) heat producers connected to a common
distribution network (see, e.g., [2]).

In this research [3] (see also [4]) we propose an ODE-based thermo-hydraulic
model of a multi-producer DH system and establish conditions under which hy-
draulic and thermal layers of the model are shifted passive.

2. System Model

Consider a water-based DH system with npr heat producers and nc consumers con-
nected to a common distribution network. Producers, consumers and distribution
network are composed of elementary hydraulic devices, namely, valves, pipes and
pumps. Producers are assisted by hydraulic pumps to deliver thermal power to
the system by circulating and heating water through heat exchangers (viewed here
as pipes): cold water is continuously drawn from the return layer of the distribu-
tion network which is then heated and injected back into the supply layer. The
operation mode of consumers is analogous to that of producers (see [8] for details).
Storage devices are not considered in this abstract due to space constraints.1

We view the DH system as a connected graph G = (N , E), where the nodes
N are the system junctions and the edges E are all two terminal devices (pumps,

1It is assumed that water is incompressible and that its density ρ is constant. All system
pipes are assumed to be cylindrical. For simplicity gravitational forces are neglected.
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pipes and valves). Each edge is assumed to have an arbitrary and fixed orientation
and this is codified through the node-edge incidence matrix B0. For any edge i ∈ E ,
TE,i and qE,i denote temperature and volumetric flow rate; for any node k ∈ N ,
TN,k and pN,k are temperature and pressure. The cardinalities of E and N are
denoted by nE and nN, respectively. For simplicity, we view edges and nodes as
lumped elements and assume that water occupies the whole interior of these for
all time; their volumes are VE,i and VN,j , for each i ∈ E , j ∈ N .

EDGES: Under a number of simplifying assumptions, the equations for mass,
momentum and energy balance of each edge i ∈ E can be written as follows:

qE,i = qinE,i = qoutE,i(1a)

pinE,i − poutE,i = JE,iq̇E,i + θE,i|qE,i|qE,i − wE,i(1b)

ρcshVE,iṪE,i = ρcsh|qE,i|
(
T in
E,i − TE,i

)
+ Ppr,i − Pc,i(1c)

where qinE,i, q
out
E,i and pinE,i, p

out
E,i are the pipe’s inlet-outlet flow and pressure pairs.

If i ∈ E is a pipe, then JE,i = (ρℓE,i)/AE,i > 0, where ℓE,i and AE,i are the pipe’s
length and cross-section area; also θE,i > 0 depends on the pipe’s friction factor
and diameter. If i is a valve, then JE,i = VE,i = wE,i = 0 and θE,i > 0. The
latter parameter is constant and represents the valve’s friction coefficient. If i is a
pump, then JE,i = VE,i = 0 and wE,i is the pressure difference produced between
its terminals. If i is associated to the heat exchanger of a producer (consumer),
then Ppr,i (Pc,i) is the heat injection (extraction) into (from) the DH system by
the producer (consumer). In this work Ppr,i and wE,i are viewed as control inputs.

NODES: Let Sk and Tk denote the set of edges whose streams source from or
target node k ∈ N , respectively. Then, we impose the following nodal constraints

V̇N,k = 0 =
∑

i∈Tk

|qE,i| −
∑

i∈Sk

|qE,i|(2a)

pN,k = pinE,i, i ∈ Sk, pN,k = poutE,i , i ∈ Tk, k ∈ N(2b)

0 = ρcsh
∑

i∈Tk

|qE,i|TE,i − ρcsh

(
∑

i∈Sk

|qE,i|
)

TN,k, k ∈ N .(2c)

Equations (2a) and (2b) guarantee mass balance and pressure consistency at each
junction. The energy balance at k ∈ N is given by (2c), where we have assumed
that VN,k is negligibly small and that any number of streams targeting k are
perfectly mixed in it, then, any stream leaving k will have a temperature TN,k. An
additional constraint is TN,k = T in

E,i, for all i ∈ Sk, k ∈ N .

3. Propositions

Proposition 1 (Hydraulic layer). There exists a collection C ⊂ E of nch pipes
whose flows qch,i are independent variables. All system flows can be computed as
qE = F⊤qch, where F is the (full rank, properly ordered) fundamental loop matrix
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associated to C. The vector qch is governed by the dynamics2

(3) Jchq̇ch = fch(qch) + uch,

where Jch = J ⊤
ch > 0, −fch is a monotone mapping associated to the pipes and

valves’ viscous friction, and each uch,i is an independent input (associated to prop-
erly placed pumps wE,i). Moreover, (3) is shifted passive with passive output qch
and storage function Sch(qch) = 1

2 (qch − q̄ch)
⊤Jch(qch − q̄ch), then the inequal-

ity Ṡsh ≤ (uch − ūch)
⊤(qch − q̄ch) holds for all time and for any equilibrium pair

(ūch, q̄ch) of (3).

Proposition 2 (Thermal layer). Let

B = B0diag(sign(qE)), T =
1

2
(B + |B|) , S =

1

2
|B − |B|| .

Then, the thermal dynamics of the DH system is described by
[
〈VE〉 0
0 0nN×nN

] [
ṪE
0nN

]

=

[
−〈|qE|〉 〈|qE|〉S⊤

T 〈|qE|〉 −〈T |qE|〉

]

︸ ︷︷ ︸

=:A(qE)

[
TE
TN

]

+

[
BprPpr −BcPc

0nN

]

,(4)

where Bpr and Bc are suitable constant matrices. Assume that Pc is constant
and that qE is at equilibrium. Then A(qE) is a Kirchhoff Convection Matrix (⇒
A(qE) ≤ 0) and (4) is shifted passive with passive output Tpr := B⊤

prTE and storage

function Sth(TE) =
1
2 (TE−T̄E)⊤〈VE〉(TE−T̄E). Then, Ṡth ≤ (Ppr−P̄pr)

⊤(Tpr−T̄pr)
holds for all time and for any equilibrium pair (P̄pr, T̄E) of (4).

3

4. Discussion

Invoking conservation laws and graph theoretic tools we have derived a thermo-
hydraulic model of a multi-producer DH system and established that it is shifted
passive under certain conditions; this can be useful in the design of decentralized
passivity-based controllers with closed-loop stability guarantees (see [4]). Our cur-
rent research is aimed at designing decentralized or distributed control strategies
for a coordinated and fair distribution of the producer’s available heat (see [6]).
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The port-Hamiltonian framework for poroelastic network models

Benjamin Unger

(joint work with R. Altmann, V. Mehrmann)

We study an energy-based formulation of equations modeling porous material sat-
urated by m ∈ N fluid networks as they appear in geosciences or medical appli-
cations. The mathematical description [1, 5] in a Lipschitz domain Ω ⊆ Rd with
d ∈ {2, 3} is given by the coupled system of partial differential equations

ρ ∂ttu−∇ ·
(
σ(u)

)
+

m∑

i=1

∇(αipi) = f̂ in (0, T ]× Ω,(1a)

∂t

(

αi∇ · u+
1

M
pi

)

−∇ ·
(κi
νi
∇pi

)

−
∑

j 6=i

βij(pi − pj) = ĝi in (0, T ]× Ω,(1b)

which has to be solved for the displacement field u : [0, T ]×Ω → Rd of the porous
media and the pressure pi : [0, T ] × Ω → R of the ith (i = 1, . . . ,m) fluid net-
work. Note that these are averaged quantities across (infinitesimal) cubic elements.
Within this system, the stress tensor σ models the linear elastic stress-strain con-
stitutive relation

σ(u) = 2µ ε(u) + λ (∇ · u) I, ε(u) = 1
2

(
∇u + (∇u)T

)

with the Lamé coefficients µ and λ and the identity tensor I. Further, α denotes
the Biot-Willis fluid-solid coupling coefficient, M the Biot modulus, κ the perme-
ability, ρ the density, and ν the fluid viscosity. The right-hand side ĝ represents

an injection or production process and f̂ denotes the volume-distributed external
forces. In several applications the term ρ∂ttu appearing in (1a) is assumed small
enough that it can be neglected, yielding the so-called quasi-static formulation.

As sample applications, we first discuss cerebral edema [7], where one distin-
guishes the arterial blood network, the capillary network, the cerebrospinal fluid
network, and the venous blood network, yielding a total ofm = 4 compartments. A
second application stems from powder-bed fusion [6], an advanced additive man-
ufacturing technology. The resulting thermoelasticity model is mathematically
equivalent to linear poroelasticity.

Using appropriate function spaces, cf. [2, 3] and performing a first-order re-
formulation, we can rewrite the weak formulation of (1) as abstract operator
differential-algebraic equation. The key observation to obtain a port-Hamiltonian
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(pH) descriptor system, as introduced in [4], is to include the commonly omitted
second-order term ρ∂ttu. Hereby, we mimic the finite-dimensional properties of a
pH system in the infinite-dimensional setting, such that a semi-discretization in
space via mixed finite elements yields a finite-dimensional pH system. We empha-
size that in the pH formulation, the term ρ∂ttu can be set zero without affecting
the pH structure.
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From Velocity to Manifold Turnpikes

Karl Worthmann, Timm Faulwasser, Friedrich Philipp, and

Manuel Schaller

(joint work with Kathrin Flaßkamp and Sina Ober-Blöbaum)

Recently, the turnpike phenomenon, which refers to a similarity property of solu-
tions of parametric Optimal Control Problems (OCPs), was rediscovered and suc-
cessfully exploited in diverse applications like, e.g., Model Predictive Control [2]
or the numerical solution of (infinite-dimensional) optimal control problems, see,
e.g., [10, 16]. Moreover, the link between the turnpike property and dissipativity
was established, see, e.g., [1,7,9] or the recent survey article [11]. However, in con-
trast to the classical works by Dorfman, Samuelson, and Solow (see [12] and the
references therein), where so-called growth paths are considered, nowadays most
authors are concerned with analyzing systems optimally operated at some steady
state or periodic orbit in a finite- or an infinite-dimensional setting, see, e.g., [18]
or [15], respectively.

Before proceeding let us briefly recall the concept of optimal operation at steady
state in context of the continuous-time minimization problem

(1) min
L∞([0,T ],Rm)

1

T

∫ T

0

ℓ(x(t;x0, u), u(t)) dt
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subject to the initial value problem

(2) ẋ(t;x0, u) = f(x(t;x0, u), u(t)), x(0;x0, u) = x0

where the vector field f : Rn×Rm → Rn is continuous and locally Lipschitz w.r.t.
its first argument in order to guarantee (local) existence and uniqueness. Moreover,
let the stage cost ℓ : Rn ×Rm be continuous and bounded from below. Of course,
one may add state and/or control constraints. Then, assuming f(x∗, u∗) = 0, i.e.
let x∗ be a (controlled) steady state, the system (2) is said to be optimally-operated
at steady state if, and only if,

lim
T→∞

1

T

∫ T

0

ℓ(x(t;x0, u), u(t)) dt ≥ ℓ(x∗, u∗)

holds for all x0 ∈ Rn and u ∈ L∞([0, T ],Rm). This optimal steady state is a
solution to

min
x∈Rn,u∈Rm

ℓ(x, u) subject to f(x, u) = 0,

which is significantly easier to solve than the previous OCP. The turnpike phenom-
enon implies that for varying initial conditions x0 and varying horizon lenghts, the
the optimal solutions are close to (x∗, u∗) for most of the time. This knowledge
can be exploited in the analysis (and numerical solution) of the OCP (1). The
key assumptions to establish turnpike properties of OCPs are (strict) dissipativity
and some reachability/controllability property of the underlying dynamics.

Inspired by Vorotnikov’s notion of partial stability [17] and the original works
dealing with growth paths (again, we refer to [12]), we extended this notion to
so-called velocity steady-states in [4] for mechanical systems. Here, the OCP was
augmented by a terminal state constraint in order to adequately reflect the control
objective of state transition with minimal energy. The resulting OCP yields an
optimal rate of travel.

In view of mechanics, such energy-efficient solutions are often intrinsically linked
to symmetry-induced motions, e.g., translational or rotational ones, cp. [8] as
well as [6] and the references therein. In [5], the work [4] was extended by a
dissipativity-based characterization, which motivated the work [13], in which the
linear-quadratic case was essentially fully covered. Then, the notions were adopted
to the nonlinear setting in [3], where symmetry-related manifolds were character-
ized as energy-optimal motions – again via dissipativity. To this end, a manifold
consisting of basic motions – so-called trims was the set, in which optimal solutions
spent most of the time with an initial and a leaving arc for the transient phases
at the beginning and the end of the optimisation horizon, respectively.

These notions can be further generalized to consider unbounded sets as turnpike
attractors for linear port-Hamiltonian systems

ẋ(t) = (J −R)Qx(t) +Bu(t)

with output y(t) = B⊤Qx(t). Here, the energy balance equation

d

dt
H(x(t)) = u(t)⊤y(t)− ‖R 1

2Qx(t)‖22
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is automatically satisfied. The interesting part is that the term u(t)⊤y(t) corre-
sponds to the supplied energy while the dissipation is reflected by the positive
semi-definite matrix R. The intriguing aspect is that the energy-based modelling
approach, i.e. the port-Hamiltonian framework, automatically provides a dissipa-
tion inequality w.r.t. the conservative subspace (or the conservative manifold in
the nonlinear setting). Hence, we get the key assumption as an outcome of an
adequate modelling approach.

In conclusion, the turnpike property (and/or the respective dissipativity no-
tions) turned out to be an essential tool in mathematical systems theory, which is
widely applied in economics, mechanics and many other application areas. Com-
bining it with an energy-based modelling approach like the port-Hamiltonian one,
alleviates the verification of the required assumptions.
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[1] T. Damm, L. Grüne, M. Stieler, K. Worthmann An exponential turnpike theorem for
dissipative discrete time optimal control problems, SIAM Journal on Control and Optimiza-
tion 52:3, 1935-1957, 2014.

[2] M. Diehl, R. Amrit, J.B. Rawlings A Lyapunov function for economic optimizing model
predictive control, IEEE Transactions on Automatic Control 56:3, 703-707, 2010.

[3] T. Faulwasser, K. Flaßkamp, S. Ober-Blöbaum, M. Schaller, K. Worthmann: Man-
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