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Introduction by the Organizers

The Conference “Analysis, geometry and topology of singular PDE” took place
at Oberwolfach from June 7-11, 2021. This workshop brought together a diverse
audience of mathematicians interested in the study of stratified spaces and sin-
gular structures that appear in specific problems in topology, in various parts of
geometric analysis and mathematical physics, as well as in the different techniques
that are used to solve these problems. The setting of stratified geometries is a par-
ticularly convenient one, occupying a middle ground between the study of “very
singular” (e.g. metric measure) spaces and the usual study of smooth manifolds.
During the past decade, many important advances have been made in develop-
ing the tools of geometric analysis in these settings, and in using these tools to
explore the relationships between topological, geometric and analytic concepts on
these spaces. There are now a number of different, albeit related, approaches,
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and an increasingly wide range of problems in this area to which these techniques
are being applied. During this workshop, we focused on various directions going
from the more algebraic and topological ideas needed in general index theories, the
very flexible use of groupoids and their applications to the deep PDE questions
and geometric microlocal methods adapted to carry out analysis in these singular
settings.

The workshop started with an an introductory talk by Georges Skandalis on pseu-
dodifferential calculi associated with Lie groupoids. The aim was to provide the
audience with the necessary tools to understand recent advances based on these
calculi and their generalisations, and in particular the recent spectacular work of
Androulidakis, Mohsen, Van Erp and Yuncken, which was presented during the
week by Omar Mohsen. This work deals with inhomogeneous calculus. Mohsen
explained how to define an inhomogeneous principal symbol associated to a sin-
gular filtration of the tangent bundle together with an associated deformation
groupoid and a pseudo-differential calculus. He also explained how the inhomoge-
neous principal symbol can be used to compute the index of differential operators
which are elliptic in such calculus. Another use of groupoids in the study of op-
erators associated with singular spaces was proposed in Paulo Carrilo Rousse’s
lecture on Friday. He presented a collaborative work with Jean-Marie Lescure and
Mario Velasquez where they study Fredholm boundary conditions on manifolds
with corners. This involves the introduction of conormal homology, a very simple
and computable homology group which depends on the faces, and in which the
obtructions of being Fredholm live.

A number of talks were devoted to the use of suitable pseudodifferential calculi,
and other methods from geometric microlocal analysis, to study singular geometric
problems. Pierre Albin discussed his work with Hadrian Quan on the study of the
heat kernel on a contact manifold X as the metric degenerates in the transverse
direction to the corank 1 subbundle H ⊂ TX defining the contact structure.
The heat kernels for this family of degenerating metrics is analyzed, leading to
a formula for the limit of the analytic torsion associated to the Rumin complex.
Daniel Grieser’s talk described his analysis of the low energy resolvent behavior
for Laplace-type operators on spaces with fibered boundary metrics. This is an
analytic result, naturally within the domain of geometric scattering theory, but
these types of results have been shown to be important in the analysis of long-time
asymptotics of the heat kernel on these spaces, which in turn is a key tool in index
theory on this class of open manifolds.

Andras Vasy explained a set of techniques he has developed over the last several
years to analyze ‘on-spectrum’ behavior of resolvents. More specifically, if H is
a quantum Hamiltonian, for example −∆+ V on an asymptotically conic space,
then the resolvent R(λ) = (H −λ)−1 is a holomorphic family of operators lying in
the small scattering calculus when λ lies in the resolvent set of H . The limiting
absorption theorem describes what happens as λ approaches points of the real line
which lie in the smooth part of the continuous spectrum. In the limit, R(λ) cannot
be bounded on L2, but following a very old theme in scattering theory, the goal is
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to find spaces on which this limit is bounded, or perhaps even better. Vasy’s work,
strongly motivated by his work on stability problems for cosmological spacetimes
in general relativity, presents a new class of spaces for which this limit is actually
Fredholm. The key point is that although H − λ is elliptic on the asymptotically
conic space itself, its scattering symbol on a compactification of this space is not
elliptic, and propagation of singularities phenomena ‘at infinity’ become relevant.
Vasy explained how initially he had defined new function spaces which allow for a
microlocal drop in regularity along bicharacteristics, and on which one can show
that the limit of R(λ) is Fredholm. He concluded his talk with the description of
a 2-microlocalization which makes it possible to define suitable spaces even more
simply.

Other lectures focused on problems where the techniques stemmed from other
parts of analysis. Gilles Carron presented his recent work with Lye and Vert-
man about the Yamabe flow on manifolds with iterated edge singularities. This
flow and the Ricci flow had been studied in this same setting of incomplete edge
metrics by several authors, including Vertman and Bahuaud, and the ‘stationary’
Yamabe problem itself has been analyzed in detail for iterated edge spaces by
Akutagawa, Carron and Mazzeo. Analysis of this flow presents many very dif-
ficult analytic challenges. This new work shows how, under a certain condition
on the integrability of the scalar curvature, the linearization of this flow may be
studied using abstract methods for parabolic equations on spaces satisfying some
weak global conditions, e.g. existence of a Sobolev inequality, etc. They apply
this in the setting of spaces with positive Yamabe invariant to obtain long-time
existence and subsequential convergence of the flow. Elmar Schrohe reported on
his joint work with Thorben Krietenstein about a bounded H∞-calculus and its
use in the treatment of certain degenerate elliptic boundary value problems with
non-smooth coefficients. Particular emphasis was given to the construction of a
parameter dependent parametrix, using an extension of the Boutet de Monvel
calculus.

Julie Rowlett’s talk was about spectral geometry. She explained her recent work
with Erik Nilsson and Felix Rydell concerning isospectral but non-isometric tori.
Their interest is in understanding the flat choir number ♭n, i.e., the supremum
over all k ∈ N such that there is a collection T1, . . . , Tk of mutually isospectral and
non-isometric flat tori.

There were also talks connecting to more topological problems. Francesco Bei
reported on the use of the heat kernel in order to compare the (maximal) L2-
cohomology groups and Lp-cohomology groups for p > 2, on an incomplete Rie-
mannian manifold. His main result shows that under suitable assumptions there
exist homomorphisms between these groups that are injective and in some cases
even isomorphisms. Applied to certain Thom-Mather spaces, this yields inter-
esting inequalities relating the dimension of the intersection cohomology in dif-
ferent perversities. Chris Kottke reported on joint work with Richard Melrose
on the emerging theory of bigerbes, and in particular on the so-called Brylinski-
McLaughlin bigerbe. He explained why its triviality (as a bigerbe) is equivalent
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to the existence of a string structure on the underlying manifold X . This is also
equivalent to the existence of a fusion loop-spin structure on the loop group LX .

Yet other talks were devoted to new developments in index theory. Christian
Bär reported on joint work with Alexander Strohmaier, explaining a new approach,
based on Feynman propagators, to their Atiyah-Patodi-Singer index formula on
Lorentzian manifolds. Matthias Lesch reported on joint work with Alexandre Bal-
dare, Rémi Come and Victor Nistor. There, given a Γ-invariant pseudodifferential
operator P on a Γ-manifold without boundary, Γ-finite, and given an irreducible

representation α ∈ Γ̂, the main question is whether the restriction of P to a α-
isotypical component of a Sobolev space is Fredholm. His work gives a necessary
and sufficient condition.

The other major focus of the workshop was on analysis related to moduli spaces
and other ‘naturally occuring’ singular spaces. Richard Melrose’s talk considered
the problem of computing the Hodge cohomology, i.e., space of L2 (or weighted
L2) harmonic forms on the Riemann moduli space for surfaces of genus g with
respect to the Weil-Petersson metric. This moduli space is a much-studied and
natural geometric object which plays a key role in many parts of mathematics.
It is a ‘naturally occuring’ singular space, and the singular structure of this met-
ric presents a number of new technical challenges. Melrose used this setting as
motivation to describe the more general process of constructing pseudodifferential
calculi adapted to certain classes of adapted metrics on manifolds with corners
carrying an iterated fibration structure. This gave him an opportunity to sharpen
a set of hypotheses required to carrry out this analysis.

There were also talks involving the class of gravitational instantons, i.e., four-
dimensional complete hyperKaehler manifolds. These are important spaces which
arise in many different contexts, for example, as the ‘bubbles’ in various types of
degenerations of Calabi-Yau surfaces and other Einstein 4-manifolds. There is now
a satisfactory theorem showing that there are six separate families of these objects,
going by the monikers ALE, ALF, ALG, ALG*, ALH and ALH*. This subject
has deep relationships with gauge theory, for example, these spaces may arise as
gauge-theoretic moduli spaces. However, they are also natural backgrounds to
study gauge theory; Two talks represented new work in this area.

The talk of Sergey Cherkis presented a set of results he has developed over
the last several years, most recently with Hubach and Stern, which provides a
parametrization of Yang-Mills instantons over ALF manifolds. This involves his
notion of bow moduli spaces, a deep and intricate generalization of the classi-
cal ADHM construction, which provides a complete description of all Yang-Mills
instantons on S4. These bows are defined by diagrams which are partly linear
algebraic and partly analytic in nature. He presented the ‘up’ and ‘down’ trans-
forms, which carry bows to instantons and vice versa, and outlined the main result
that these transforms are natural isomorphisms between the moduli space of bow
representations and the moduli space of Yang-Mills instantons. Finally, Xuwen
Zhu described her recent work with Mazzeo concerning the Fredholm theory of
Laplace-type operators on ALH* manifolds, and some applications. After some
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transformations, it turns out that these operators and their inverses lie in the class
of a-pseudodifferential operators, as developed initially by Grieser and Hunsicker.
The analytic results that Zhu obtains sharpen results obtained earlier by Chen-
Sun-Viaclovsky-Zhang using more classical methods. The main new applications
include a computation of the space of L2 harmonic forms, generalizing old work
of Hausel-Hunsicker-Mazzeo, and a description of the local deformation theory of
these spaces.

Overall, this workshop provided an excellent setting for specialists from differ-
ent parts of this general field of research to understand the range of problems and
applications being studied and to learn the variety of techniques which are being
brought to bear. One of the original intents of this workshop was to help build
better communication between the communities of researchers who use group tech-
niques and those who employ geometric microlocal analysis, and in this regard,
the meeting was a definite success.
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Abstracts

The sub-Riemannian limit of a contact manifold

Pierre Albin

(joint work with Hadrian Quan)

Let M be a contact manifold of dimension m = 2n + 1 endowed with a global
contact form; that is, a smooth one form θ such that θ ∧ (dθ)n is a nowhere-
vanishing form of top degree. The null space of θ is a co-rank one sub-bundle of
the tangent bundle which we denote H.

An illustrative example is R3 with contact form

θ = dz + 1
2 (x dy − y dx).

HereX = ∂x+
y
2∂z and Y = ∂y−

x
2∂z make up a frame for H. Since [Y,X ] = ∂z, we

see that every vector field on R3 can be obtained as a linear combination of sections
of H and their brackets. We can assign an H-degree to a differential operator as
the smallest degree of a polynomial in the vector fields tangent to H that yields
that operator. Clearly X and Y have H-degree one and ∂z has H-degree two.
Note that the H-degree will be well-behaved for anisotropic dilations of R3,

(x, y, z) 7→ (λx, λy, λ2z).

Michel Rumin [Rum94] used similar anisotropic dilations on arbitrary contact
manifolds to introduce a complex of differential forms, now known as the Rumin
complex,

0 → Ω0
HM

dH−−→ · · ·
dH−−→ Ωn

HM
DH−−→ Ωn+1

H M
dH−−→ · · ·

dH−−→ Ωm
HM → 0.

This complex computes the de Rham cohomology ofM and has the striking feature
that the operator DH is a differential operator of order two.

In subsequent work, Rumin [Rum00] showed that the contact complex can be
derived from a spectral sequence. He also studied the behavior of the resolvents
of Hodge Laplacians of Riemannian metrics gε equal to a fixed bundle metric gH
on H that are blowing-up in the directions transverse to H as ε→ 0.

In this talk I report on joint work with Hadrian Quan in which we analyze
the behavior of the heat kernels of these Hodge Laplacians and particularly their
traces in this limit. As a first step we carry out the Mazzeo-Melrose approach to
spectral sequences via Hodge theory [MM90]. This has the advantage of making
the Rumin complex appear analytically and singles out the different asymptotic
regimes in which the Laplacian degenerates as ε→ 0.

We construct manifolds with corners on which the heat kernels of the Hodge
Laplacians are polyhomogeneous down to ε = 0. Similarly we find manifolds with
corners on which the traces of the heat kernels, initially functions of t and ε, lift
to be polyhomogeneous. We apply this to analyze the behavior of global spectral
invariants such as the η-invariant and the determinants of the Laplacians. In
particular we show that contact versions of the relative η-invariant the relative
analytic torsion are equal to their Riemannian analogues and hence topological.
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Local index theory for Lorentzian manifolds

Christian Bär

(joint work with Alexander Strohmaier)

On a closed manifold, index theory is intimately related to ellipticity. A differ-
ential operator is Fredholm on the standard Sobolev spaces if and only if it is
elliptic. On compact Riemannian manifolds with boundary, the index theorem
by Atiyah, Patodi, and Singer [1] says that Dirac-type operators are Fredholm if
suitable global boundary conditions are imposed. This extends to general elliptic
differential operators of first order [2]. Surprisingly, it turns out that there is an
analog for this on Lorentzian manifolds with boundary where the Dirac operator
is not elliptic but hyperbolic.

Theorem 1 (Bär-Strohmaier (2019) [4]). Let (M, g) be an even-dimensional com-
pact globally hyperbolic Lorentzian spin manifold with boundary ∂M = Σ− ⊔ Σ+.
Here Σ± are smooth spacelike Cauchy hypersurfaces.

Then the Dirac operator DAPS under Atiyah-Patodi-Singer boundary conditions
is Fredholm and its index is given by

(1) ind[DAPS] =

∫

M

Â(g) +

∫

∂M

TÂ(g)−
h(A−) + h(A+) + η(A−)− η(A+)

2
.

The right hand side in the index formula is precisely the same as in the orig-

inal Riemannian Atiyah-Patodi-Singer index theorem. Here Â(g) is the Â-form
manufactured from the curvature of the Levi-Civita connection of the Lorentzian
manifold, TÂ(g) is the corresponding transgression form which also depends on
the second fundamental form of the boundary (and vanishes if the boundary is to-
tally geodesic). Moreover, A± denotes the Dirac operator on Σ±, h the dimension
of the kernel, and η the η-invariant.

The theorem has been extended in various ways. The author and Hannes
show that the Atiyah-Patodi-Singer conditions can be replaced by a large class
of boundary conditions [3]. Braverman [7] drops spatial compactness and adds
certain potentials to the Dirac operators so that it behaves similarly as on com-
pact manifolds. Shen and Wrochna [8] drop temporal compactness and obtain a
scattering-type result. In [5] the author and Strohmaier apply the index theorem
to compute the chiral anomaly in quantum field theory on curved backgrounds.
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The theorem applies also to the Dirac operator twisted with a coefficient bundle
with connection ∇E , provided ∇E is compatible with a positive metric on E. One
then has to include the Chern character form of ∇E in the index formula as usual.
The compatibility condition on the connection is necessary to ensure that the
Dirac operators induced on the boundary are self-adjoint. Otherwise, it is unclear
what is meant by Atiyah-Patodi-Singer boundary conditions and, more seriously,
the argument in [4] involving spectral flow breaks down.

Based on [6], the talk is devoted to an alternative derivation of the index for-
mula (1) without resorting to the Riemannian index formula using spectral flow.
This direct computation of the index density uses Feynman propagators and a
detailed analysis of their singular structure. The result is an analog of the local
index theorem in the Riemannian setting. Integration then yields a generalization
of (1) for general Dirac-type operators.
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L
p-cohomology, heat operator and stratified spaces

Francesco Bei

Let (M, g) be a possibly incomplete Riemannian manifold of finite volume and
dimension m. For any 1 ≤ p ≤ q ≤ ∞ and k ∈ {0, ...,m} it is well known that the
identity Ωk

c (M) → Ωk
c (M) gives rise to a continuous inclusion i : LpΩk(M, g) →֒

LqΩk(M, g), with LpΩk(M, g) and LqΩk(M, g) denoting the Banach space of Lp

and Lq k-forms, respectively. Let (LpΩ∗(M, g), d∗,p,max) be the Lp-maximal de
Rham complex of (M, g). We recall that dk,p,max : LpΩk(M, g) → LpΩk+1(M, g)
is defined as the distributional Lp extension of dk : Ωk

c (M) → Ωk+1
c (M). Given

any q ≥ p it is not difficult to check that the above continuous inclusion i induces a
morphism of complexes i : (LqΩ∗(M, g), d∗,q,max) → (LpΩ∗(M, g), d∗,p,max). Hence
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we get well-defined maps acting between the corresponding (reduced) cohomology
groups:

i : H
k

q,max(M, g) → H
k

p,max(M, g), i : Hk
q,max(M, g) → Hk

p,max(M, g).

However the above maps are in general neither surjective nor injective. In this
report we are going to describe some results obtained in [3] which provide a partial
answer to the following question:

under what circumstances are the morphisms i : H
k

q,max(M, g) → H
k

p,max(M, g)

and i : Hk
q,max(M, g) → Hk

p,max(M, g) injective and/or surjective?

One of the main ingredient that we used in our results is a spectral curvature
condition known as “Kato class”, see e.g. [4]. More precisely: let (M, g) be any
Riemannian manifold. The well known Weitzenböck formula says that there exists
a section Lk ∈ C∞(M,End(Λk(M))) such that ∆k = ∇t ◦ ∇ + Lk. Let us define
ℓ−k :M → R as

ℓ−k (x) := max{−λk(x), 0}

with

λk(x) := inf
v∈ΛkT∗

xM, g(v,v)=1
g(Lk,xv, v).

We say that the negative part of Lk lies in the the Kato class of (M, g), ℓ−k (x) ∈
K(M), if

lim
t→0+

sup
x∈M

∫ t

0

∫

M

p(s, x, y)ℓ−(y)dvolg(y)ds = 0

where p(s, x, y) denotes the kernel of e−t∆F

0 : L2(M, g) → L2(M, g) and ∆F
0 :

L2(M, g) → L2(M, g) is the Friedrichs extension of the Laplace-Beltrami operator
∆0 : C∞

c (M) → C∞
c (M).We recall that for the Kato class the following properties

are true: if ℓ−k ∈ L∞(M) then ℓ−k ∈ K(M); moreover if m > 2, (M, g) carries a

Sobolev embedding W 1,2
0 (M, g) →֒ L

2m
m−2 (M, g) and ℓ−k ∈ Lq(M, g) with q > m/2

then ℓ−k ∈ K(M). We are finally in position to state our first main result:

Theorem A. Let (M, g) be an open and incomplete Riemannian manifold of di-
mension m > 2. Assume that:

• volg(M) <∞;

• There is a Sobolev embeddings W 1,2
0 (M, g) →֒ L

2m
m−2 (M, g);

• There exists k ∈ {0, ...,m} such that ℓ−k ∈ K(M);
• We have the following equality ∆k,abs = ∆F

k .

Then for any 2 < p ≤ ∞ there exists an injective linear map

βp : H
k

2,max(M, g) → H
k

p,max(M, g).

Above ∆k,abs denotes the absolute extension of ∆k : Ωk
c (M) → Ωk

c (M), that is
the self-adjoint extension of ∆k : Ωk

c (M) → Ωk
c (M) induced by the L2-maximal de

Rham complex whereas ∆F
k is the Friedrichs extension of ∆k : Ωk

c (M) → Ωk
c (M).

Our second main result reads as follows:
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Theorem B. Let (M, g) be an open incomplete Riemannian manifold of dimension
m > 2. Assume that

• volg(M) <∞;
• There exists k ∈ {0, ...,m} such that ℓ−k−1, ℓ

−
k ∈ K(M);

• Im(dk−1,max,q) is closed in LqΩk(M, g) for some 2 ≤ q <∞;

• There is a Sobolev embedding W 1,2
0 (M, g) →֒ L

2m
m−2 (M, g);

• We have the following equalities ∆k,abs = ∆F
k and ∆k−1,abs = ∆F

k−1.

Then
ik : Hk

q,max(M, g) → Hk
2 (M, g)

is injective. In addition if Im(dk−1,max,2) is closed in L2Ωk(M, g) then

ik : Hk
q,max(M, g) → Hk

2 (M, g)

is an isomorphism.

In the proofs of both the above theorems a key ingredient is provided by the

Lp-Lq mapping properties of the heat operator e−t∆F

k . The above results are then
applied in the setting of compact Thom-Mather-Witt stratified pseudomanifolds
whose regular part is endowed with an iterated conic metric. Thanks to [1] and [2]
we know that all the hypothesis of Theorem B except that concerning the Kato
class are fulfilled. Moreover thanks to [5] we know that the Lr-cohomology of the
regular part of a Thom-Mather stratified pseudomanifold X endowed with an iter-
ated conic metric g is isomorphic to the intersection cohomology of X with respect
to the perversity qr(j) := j − 2 − [[j/r]], with [[j/r]] denoting the biggest integer
number strictly smaller than j/r. Therefore in the presence of suitable curvature
properties the above theorems can be used to show various (in)equality between
the dimensions of intersection cohomology groups corresponding to different per-
versities. More precisely:

Theorem C. Let X be a compact smoothly Thom-Mather-Witt stratified pseudo-
manifolds of dimension m > 2. Let g be an iterated conic metric on reg(X) such
that d+ dt is essentially self-adjoint on L2Ω•(reg(X), g). Then:

(1) If ℓ−k ∈ K(reg(X)) for some k ∈ {0, ...,m} then

dim(ImHk(X,R)) ≤ dim(IqrHk(X,R))

for any 2 ≤ r <∞.
(2) If ℓ−k−1, ℓ

−
k ∈ K(reg(X)) for some k ∈ {0, ...,m} then

dim(ImHk(X,R)) = dim(IqrHk(X,R))

for any 2 ≤ r <∞.
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On Fredholm boundary conditions on manifolds with corners,
geometric and topological obstructions

Paulo Carrillo Rouse

(joint work with Jean-Marie Lescure, Mario Velasquez)

In this talk I reported on a joint work with Jean-Marie Lescure (Paris 13) and
Mario Vélasquez (Bogota), [1, 2], and ongoing work with Lescure. In a series of
papers we have been studying obstructions on Fredholm boundary conditions for
manifolds with corners, in particular we have showed how these obstructions live
in some very simple and computable homology groups depending on the faces,
conormal homology, denoted by Hcn

ev/odd(X) for a manifold with corners X .

In the first part of the talk I resumed and explained the main results of these se-
ries of papers on conormal homology and Fredholm boundary conditions. Indeed,
after recalling the previous work of several authors (Melrose and Piazza; Melrose
and Nistor; Nazaikinskii, Savin and Sternin; Monthubert and Nistor among the
principal ones) I explained how the obstruction for a given b−elliptic operator
on a closed manifold with corners to be Fredholm (up to perturbation by a reg-
ularizing operator) is encoded in what we called the boundary analytic index of
the operator (of its principal symbol class). To be more precise for D an elliptic
b-pseudodifferential operator on a compact manifold with corners X it is known
that D is Fredholm (up to perturbation as explain in [1, 2]) if and only if

Ind∂X([σb(D)]) = 0 in K0(Kb(X)) ∼= K0(Kb(∂X)),

whereK0(Kb(X)) (or it’s isomorphic restriction to the boundary version) is theK0-
group of the C∗-algebra of b-compact operators (the closure as bounded operators
on some L2-spaces of the regularizing b-operators), and where

(1) Ind∂X : K0(bT ∗X) −→ K0(Kb(X))

is the index morphism associated to the principal symbol pseudodifferential exten-
sion in the calculus. This motivated in the talk the presentation of the following
computation initiated in [1] and completed in [2].

Theorem [Carrillo Rouse, Lescure, Velasquez, 2019] For every connected manifold
with corners X there are morphisms

(2) Tev/odd : Kev/odd(Kb(X)) −→ Hcn
ev/odd(X)⊗Q

inducing rational isomorphisms.

The computation, as explained in the talk can be made very explicit by means
of the use of an appropriate embedding on some euclidean space and the construc-
tion of an associated topological space whose singular cohomology computes the
conormal homology.
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The previous discussion and results make clear that besides being able to com-
pute the above groups in where the obstructions live it is important to be able to
compute the conormal cycles or classes associated a b-elliptic operator, that is to
be able to compute the image of the principal symbol class by the composition of
the morphism (1) followed by (2) above.

In the second part I talked about how to explicitly compute, for a given elliptic
pdo in the calculus, the conormal cycles that give such obstructions, it was done in
low codimensions for more clarity (codimension 2 and 3). In fact, as I sketched in
the talk, these cycles depend on a series of Atiyah-Singer and Atiyah-Patodi-Singer
kind of indices on the (strictly positive) even codimension faces. For example for
X of codimension two, for D b-elliptic and for any corner component c ∈ F2(X)
there is an associated Fredholm operator Dc on c×R2 (translation invariant) and
we have that:

In Hcn
ev/odd(X) ∼= Ker δ2 ⊂ Z#F2 :

Ind∂X([σD]) =
∑

c∈F cn
2 (X)

IndAS(Dc) · c,

where IndAS(Dc) is some type of Atiyah-Singer index (given then in particular
by a classical topological index formula) associated to the Fredholm operator Dc

and where F cn
2 (X) ⊂ F2(X) is the set of faces belonging to a conormal cycle

(notion explained in the talk). An explicit formula for the above conormal bound-
ary analytic index for codimension 3 manifolds was then presented, in this case
the conormal class can be computed by a 2-conormal cycle whose coefficients are
given this time by some Atiyah-Patodi-Singer indices on the closed manifolds with
boundary obtained by closing each 2-codimensional component on the manifold.
All this second part of the talk is based on work in progress with Jean-Marie
Lescure.

References

[1] Carrillo Rouse, Paulo; Lescure, Jean-Marie, Geometric obstructions for Fredholm boundary
conditions for manifolds with corners, Ann. K-Theory 3 (2018), no. 3, 523–563.

[2] Carrillo Rouse, Paulo; Lescure, Jean-Marie; Velasquez, Mario, On Fredholm boundary con-
ditions on manifolds with corners I: Global corner’s cycles obstructions, to appear in Ann.
K-Theory.

Yamabe flow on some singular spaces

Gilles Carron

(joint work with Jørgen Olsen Lye and Boris Vertman)

We study the convergence of the normalized Yamabe flow with positive Yamabe
constant on a class of pseudo-manifolds that includes stratified spaces with iter-
ated cone-edge metrics. We establish convergence under a low-energy condition.
We also prove a concentration–compactness dichotomy, and investigate what the
alternatives to convergence is.
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The Yamabe flow: The Yamabe flow [7] is the gradient flow of the Hilbert
functional

S : g ∈ C(g0) 7→

∫

M

Scalgdvg

restricted to conformal metrics with fixed volume:

C(g0) :=
{
g = e2fg0, such that volg(M) = 1

}
.

Critical points of S : C(g0) → R are conformal metric with constant scalar curva-

ture. In dimension n ≥ 3, writing gt = u
4

n−2 (t)g0, the Yamabe flow induces a non
linear parabolic PDE:

∂

∂t
u(t) =

n− 2

4

(
σ(t)u(t)− u

4
n−2 (t)Lu(t)

)
,

where

L = 4
n− 1

n− 2
∆g0 + Scalg0 = cn∆g0 + Scalg0

is the Yamabe operator of the metric g0 and

σ(t) :=

∫

M

Scalgtdvgt

=

∫

M

[
cn|du(t)|

2 + Scalg0u
2(t)

]
dvg0 ,

Recall that the Yamabe flow is the gradient flow of S, hence t 7→ σ(t) is decreasing
(unless the metric has constant scalar curvature).

Thanks to the works of Yamabe, Trudinger, Aubin and Schoen, we know that
there is a smooth conformal metric (a Yamabe minimizer) g ∈ C(g0) realizing

Y (M) = inf
C(g0)

S,

this metric have constant scalar curvature equals to Y (M). An important tool to
conclude about the existence of Yamabe minimizer is the positive mass theorem
in dimension n ∈ {3, 4, 5} and for locally conformally flat metrics.

Concerning the Yamabe flow on smooth closed manifold, we know that there is
a global, in times, smooth solution:

u : [0,+∞)×M −→ R.

Hence the issue is about the convergence of the flow when t 7→ +∞. It has been
shown by Brendle [4, 5] and Schwetlick-Struwe [8] that when the positive mass
theorem holds for g0, then the Yamabe flow converges when t 7→ +∞ toward
a smooth conformal metric with constant scalar curvature. The positive mass
theorem is used to show that no bubbling phenomena occurs.

We have investigated the Yamabe flow on a singular setting, our results are
parabolic counterpart of results of [1] concerning the existence of Yamabe mini-
mizer in a singular setting. Let’s first give a short and imprecise description of the
geometry of these spaces.
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Stratified space with iterated edge metric: If Σ is a complete metric space
with distance dΣ, the metric cone C(Σ) over Σ is the completion of the product
(0,∞)× Σ with the distance for p = (t, x), q = (s, y) ∈ (0,∞)× Σ

d(p, q) =

{
t+ s if dY (x, y) ≥ π√
t2 + s2 − 2ts cos (dY (x, y)) if dY (x, y) ≤ π

We have only to blown down {0} × Σ to a point (the vertex of the cone) from
[0 +∞)× Σ.

A stratified space with iterated edge metric is a compact metric space (X, d)
with a stratification

X ⊃ Xn−2 ⊃ · · · ⊃ X1 ⊃ X0

such that

• near each point x ∈ X \ Xn−2 = Xreg, the geometry is Riemannian and
induced by a Riemannian metric g0.

• near each point x ∈ Xk \Xk−1, the geometry ”looks like” a product

Rk × C(Σx)

where Σx is a (n− k − 1)- dimensional stratified space.

Scalar curvature: The regular partXreg := X\Xn−2 is a smooth open Riemann-
ian manifold and as volXn−2 = 0 we can extend Scalg : X → R to a measurable
function. We can also define the Yamabe operator, for this purpose we introduce

H1(X) that is the completion of Lip(X) with u 7→
√∫

Xreg
|du|2 + u2 . It turns

out that C∞
0 (Xreg) is dense in H

1(X) and the Yamabe operator L is the Friedrichs
extension of the quadratic form

u 7→

∫

X

[
cn|du|

2 + Scalg0u
2
]
dvg0 .

It enjoys the same conformal properties as the Yamabe operator on smooth man-
ifold. We can then define the Yamabe constant of X by

Y (X) = inf
u∈H1(X)

{∫

X

[
cn|du|

2 + Scalg0u
2
]
dvg0 ,

∫

X

|u|
2n

n−2dvg0 = 1

}

= inf
u∈C∞

0 (Xreg)

{∫

Xreg

[
cn|du|

2 + Scalg0u
2
]
dvg0 ,

∫

Xreg

|u|
2n

n−2dvg0 = 1

}
.

When u ∈ C(X) is positive and smooth on Xreg, one can define the conformal

metric gu = u
4

n−2 g0 and we will get that

Y (X) = inf
u such that volgu (X)=1

∫

Xreg

Scalgudvgu .

Theorem A (Carron, Olsen Lye & Vertman, 2021) Assume that X is a stratified
space of dimension n > 2 and that g0 is iterated edge metric on Xreg such that

Y (X) > 0 and volg0Xreg = 1 and Scalg0 ∈ Lp>n
2 .

Then there is a long time solution of the Yamabe flow starting at g0.
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This solution is given by t 7→ u
4

n−2 (t)g0 where for each t > 0, u(t) is Hölder
continuous and Lu(t) ∈ Lp. We also have a rough description of the convergence
scenario when t→ +∞:

Theorem B (Carron, Olsen Lye & Vertman, 2021) Assume that X is a stratified
space of dimension n > 2 and that g0 is iterated edge metric on Xreg such that

Y (X) > 0 and volg0Xreg = 1 and Scalg0 ∈ Lp>n
2 .

and t 7→ u(t) be the solution of the Yamabe flow. There are tk → ∞ and a Hölder
continuous function u∞ : X → (0,∞) solving the Yamabe equation

Lu∞ = σ∞u
n+2
n−2
∞

where σ∞ = limt→+∞ σ(t). Such that

uk := u(tk)
H1

⇀ u∞,

Moreover outside a finite set F = {x1, . . . , xL} ⊂ X, we have strong convergence

uk
Cα

loc(X\F )
−→ u∞.

We have also obtained a more precise description of the bubbling phenomena
(bubble tree description).

Some questions

• Is it possible that concentrations occurs at smooth points or is it alway
true that F ⊂ X \Xreg ?

• We cannot, in general, exclude that different scenarios occur along differ-
ent sub-subsequence diverging towards infinity. For instance it could be
possible that along tk → +∞ and sℓ → +∞ we have one of the following
behavior:
(1) u(tk) converges strongly in H1 to some solution of the Yamabe equa-

tion and u(sℓ) converges weakly (and not strongly) to another solution
of the Yamabe equation.

(2) bubbling phenomena occurs for {u(tk)} in a neighborhood of a finite
set F and bubbling phenomena occurs for {u(sℓ)} in a neighborhood
of another finite set F ′ 6= F .

It would be interesting to build such examples or to find a general criterion
to exclude these kinds of behavior.

• Viaclovsky has shown that the stereographic conformal compactification of
ALE gravitational instantons do not carry conformal metric with constant
scalar curvature [9]. So in these case, we necessary have that u(t) converges
weakly in H1 to 0 and that concentrations occurs at the unique singular
point. It will be interesting to have a finer description of bubble tree. Our
paper provides a general answer but in that case we do not know wether
different diverging subsequences could produce different bubble trees and
even more than one bubble.
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• In some cases, we know that there is no Yamabe minimizers. Akutagawa
and Mondello obtained this non existence for certain ramified cover of the
sphere [2]. A recent result of Brendle [6] provides new examples: (Mn, g)
is a complete manifold with non negative Ricci curvature with Euclidean
growth that is not the Euclidean space, then we have that

∀ϕ ∈ C∞
0 (M) : Y∞(M, g)

(∫

M

|u|
2n

n−2dvg

)1− 2
n

≤

∫

M

cn|du|
2dvg

with Y∞(M, g) = Y (Sn)

(
lim

R→∞

vol (B(x,R))

ωnRn

) 2
n

.

Moreover there is no u such that du ∈ L2 and u ∈ L2n/(n−2) realizing
this equality. Hence if (M, g) has a conformal compactification (M̂, ĝ) that
is a stratified space with an iterate edge metric (for instance if (Mn, g)

is Asymptotically Locally Euclidean) then Y (M̂, ĝ) = Y∞(M, g) is not

realized by any conformal deformation v
4

n−2 ĝ with v ∈ H1(M̂, ĝ).
It will be interesting to investigate the Yamabe flow on these exam-

ples and study wether we could find there other conformal metrics with
constant scalar curvature.
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Bows to Instantons and Back

Sergey A. Cherkis

(joint work with Andrés Larráın-Hubach and Mark Stern)

We report the results of [1] relating bow data to Yang-Mills instantons on Asymp-
totically Locally Flat (ALF) space M . Each solution of a bow representation R

was expected to correspond to an instanton (E →M,A). We prove this fact (both
that the resulting curvature FA of connection A is anti-self-dual and is L2(M))
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and compute all of the topological classes of the resulting instanton in terms of
the bow representation ranks.

Our prior work [2] lays the groundwork for the Down transform mapping an
instanton on any ALF space to a solution of the corresponding bow representation.

(E,A)→M
⋆FA=−FA

ww♣♣
♣♣
♣♣
♣♣
♣♣
♣

Dirac Op.:

/DA

��

G−equiv.bundle

Ker Dt → µs(ν)

ff▼▼▼▼▼▼▼▼▼

Twisted Family:

/DA+as

��

Dt=( d
ds

+T+B)+

+( d
ds

+t+b)c

OO

Index Bundle:

Ind /DA+as
→ Bow

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

Solution

(T, B) ∈ µ−1
R

(ν)

OO

Bow

Rep. R

88qqqqqqqqqqqq

For brevity we focus on the Ak bow, presented as a circle of perimeter ℓ that is
cut in k points, we call these p-points. Its representationR consists of a Hermitian
vector bundle over that circle that might change rank at p-points or at n other
points, so called λ-points. The affine space Dat(R) involves a connection and three
endomorphisms T1, T2, T3 of that bundle. The latter are L2 close to prescribed
poles at λ. This L2 condition ensures that Dat(R) is a Hilbert space and is
hyperkähler. The bundle gauge group GR acts on it respecting its hyperkähler
structure. The level set at level ν of its action is µ−1

R
(ν). And the hyperkähler

quotient is the moduli space of the bow representation R

MR = Dat///GR := µ−1
R

(ν)/GR.

Any ALF space is a moduli space of some bow representation, for example a
k-centered Taub-NUT space is a moduli space of a small bow representation s of
an A-type bow that has rank one and no λ-points. This is how the base space of
the desired instanton emerges from the bow. Thus, any solution of the small bow
representation (t, b) ∈ µ−1

s (ν) gives a point in M. Importantly, the level set itself
µ−1
s (ν) can be regarded as a family (parameterized by the bow itself) of principal
U(1) bundles over M = Ms.

Any solution (T,B) ∈ µ−1
R

(ν) of some given bow representation R, has a cor-
responding bow Dirac operator DT,B . Similarly, for any solution (t, b) ∈ µ−1

s (ν)
there is a bow Dirac operator Dt,b and its charge conjugate Dc

t,b. Combining the
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two, one obtains a family of bow Dirac operators

Dt := DT,B ⊗ 1s + 1R ⊗Dc
t,b,

parameterized by the level set µ−1
s

(ν). Crucially, the moment map conditions and
the matched levels of R and s ensure that D∗

tDt is positive and commutes with
all quaternions (i.e. acts as scalar on the spin bundle). Thanks to positivity, the
resulting index bundle is indeed a bundle over the level set of the small repre-
sentation µ−1

s (ν), i.e. KerDt = {0}. Quotient by the gauge group of the small
representation produces the bundle E → Ms = µ−1

s
(ν)/Gs.

We prove that

(1) the connection induced on E is anti-self-dual (which is rather straightfor-
ward in this quaternionic setup),

(2) the asymptotic form of this connection is the direct sum of pullback of
monopole connections from R3 (as in Theorem 1 below).

We also express all topological properties of the resulting connection in terms of
the bow representation.

Technical Results. Our first regularity result is

Lemma 1:
On an ǫ-neighborhood of a λ-point for the difference Tj(λ + s) +

iρj

2s we have

L2 =⇒ s−
1
2L∞ =⇒ L∞.

For any representation, p- and λ-points subdivide the bow into open intervals.
For each of these special points we introduce a space of solutions of the dual equa-
tion Dtχ = 0 over its neighborhood, satisfying appropriate matching conditions at
that point. The direct sum of all such spaces is denoted by Y = ⊕λYλ⊕⊕pYp. For
each open interval, we introduce the space of solutions of D∗

tψ = 0 over it. The
direct sum of all such spaces is denoted by X = ⊕I∈IntervalsXI . Since χ and ψ
satisfy dual equations, there is a good pairing 〈χ(s), ψ(s)〉 which does not depend
on s. Therefore the space E = KerD∗

t fits into the short exact sequence

0 → E → X → Y ∨ → 0.

Counting the dimensions of the spaces X and Y (and using positivity of D∗
tDt)

we find the rank of the instanton bundle expressed in

Lemma 2

E = dimKerD†
t = −IndDt = dimX − dimY = |Λ| = n.

I.e. the rank of the instanton bundle equals to the number of λ-points of the bow
representation R.

Estimating the Green’s function: (D∗
tDt)

−1 < C
|~t|2

, we find approximate basis

{fa}
n
a=1 of KerD∗

t (with each element fa of this basis concentrated near one λ-point
λa). After establishing the accuracy of this approximation we use it to compute
the induced instanton connection A with connection matrix, thus proving
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Theorem 1:
There exists a local frame in which the induced connection matrix (Aab) has es-
sentially diagonal form

Aab =

∫

Bow

f∗
a∇

esfbds+O(
1

|~t|2
),

implying

A(∂τ ) = diaga
−i

ℓ+
∑

p
1

2|~t−~νp|

(
λa +

ma + |{pσ < λa}|

2|~t|

)
+O(t−2)..(1)

Here, ∂τ is the triholomorphic isometry vector field of the multi-Taub-NUT, ma is
the rank discontinuity of R representation across λa. And the effective ‘monopole
charge’ m̂a is the sum of the rank change ma and the number of p-points to the
left of λa.

In order to compute the values of the Chern-Weil forms we use the Hausel-
Hunsicker-Mazzeo [3] compactificationM and, using the above theorem, we extend
the instanton bundle E → M to a bundle E → M. We judiciously extend the
bundles X and Y to X →M and Y →M , so that they still fit into an short exact
sequence

0 → E → X → Y
∨
→ 0.(2)

The instanton connection now gives a singular connection on E with logarithmic
singularity at infinity. Comparing the Chern character values of E computed using
the short exact sequence (2) with the same Chern character values computed using
the singular connection A on E , we obtain

Theorem 2:

i

2π

∫

Cp

trFA = ∆Rp − rp +
∑

λ

λ

ℓ
,

1

2

(
i

2π

)2 ∫

M

trFA ∧ FA = −
1

2

∑

λ

m̂λ −R0 +
∑

λ

λ

ℓ
m̂λ −

k

2

∑

λ

(
λ

ℓ

)2

.

Here rp is the number of λ-points to the right of p, Cp is the preimage in M of a
ray in R3 originating at νp, and R0 is the rank of the representation R over s = 0.
This expresses all topological properties of the resulting instanton in terms of the
bow representation R.
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Low energy resolvent asymptotics for fibred boundary metrics

Daniel Grieser

(joint work with Boris Vertman, Mohammad Talebi)

The resolvent of the Laplacian in R3 has the Schwartz kernel

R(z, z′, k) = const ·
e−k|z−z′|

|z − z′|
, z, z′ ∈ R3, k > 0 .

Besides the standard singularity at the diagonal z = z′ it exhibits rapid decay away
from the diagonal, i.e. as |z − z′| → ∞, uniformly as z → ∞ but non-uniformly
as k → 0 (’low energy limit’). For k = 0 the formula gives the Schwartz kernel
of a particular inverse of ∆. The precise asymptotic behavior of the resolvent
as z → ∞, z′ → ∞ or k → 0, or any combination of these, can be efficiently
described in terms of blow-ups: compactify R3 to a manifold with boundary, X ,
by adding a sphere at infinity. Then the resolvent kernel R is a function on the
interior of X2× [0,∞)k, and its pull-back to a suitable blow-up space X2

ac,k under

the blow-down map β : X2
ac,k → X2 × [0,∞)k extends smoothly to the boundary

of X2
ac,k.

Such a blown-up space was constructed by Melrose and Sá Barreto, and it was
shown by Guillarmou and Hassell [6] that the same asymptotic behavior occurs
for the resolvent of the Laplacian on asymptotically conical spaces, which have a
similar metric structure at infinity as Rn. Guillarmou and Hassell also allow an
added potential and impose certain restrictions on the null space of the Schrödinger
operator. This result was generalized to weaker conditions and to the Hodge
Laplacian in [7, 8].

Such results can (and have been) used for example for analyzing mapping prop-
erties of the Riesz transform or the long time behavior of the heat kernel, which
in turn is needed to analyze spectral invariants like the analytic torsion.

We generalize these results further to a class of spaces, so-called φ-manifolds,
which are modelled on products of compact Riemannian manifolds with asymptot-
ically conical spaces and hence generalize the latter. More precisely, we consider a
compact manifold with boundary, X , with interior M = int(X), whose boundary
∂X is equipped with a fibration

φ : ∂X → B

over a closed manifold B, with fibres given by copies of a closed manifold F . On
M we consider a fibred boundary metric, or φ-metric, g. This means that for some
collar neighborhood U ∼= [0, 1)× ∂X of the boundary ∂X it has the form

(1) gφ = gΦ,0 + h , gΦ,0 =
dx2

x4
+
φ∗gB
x2

+ gF .

Here x : U → [0, 1) is the first component of the collaring, so x−1(0) = ∂X , gB
is a Riemannian metric on the base B, gF is a symmetric bilinear form on ∂X
which restricts to a Riemannian metric on each fiber F , and h is a higher order
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term satisfying |h|gΦ,0 = O(x) as x → 0. It is also assumed that φ∗gB + gF is a
Riemannian submersion metric on ∂X .

An example of a φ-manifold is a global product Y ×F where (F, gF ) is a compact
Riemannian manifold and Y is a manifold with boundary B and asymptotically

conic metric, i.e. a metric of the form
dx2

x4
+
φ∗gB
x2

near the boundary (for example,

Y = Rn, where x = 1
r , B = Sn−1). Non-product examples are the moduli space

of non-abelian magnetic monopoles of charge 2 with its natural metric, cf. [10, 2],
and gravitational instantons, i.e. complete hyperkähler 4-manifolds.

An essential complicating feature of the Hodge Laplacian on a φ-manifold is
that it annihilates forms which at the boundary are ’fibre harmonic’ (i.e. whose
restriction to any fibre, in a suitable sense, is harmonic) to a higher order as x→ 0
than arbitrary smooth forms. This implies that it cannot be inverted in the ’small’
φ-pseudodifferential (ΨDO) calculus introduced for such spaces by Mazzeo and
Melrose [11] (it is not fully elliptic), and that it is not Fredholm on the standard
Sobolev spaces associated to a φ-metric. A large ΨDO calculus containing the
Fredholm inverse was constructed by Vaillant [14] and by Grieser and Hunsicker
[3, 4]. It lives on the same blown-up space X2

φ as the small φ-calculus, but allows
more general asymptotic behavior at the boundary faces. Since this asymptotic
behavior differs between fibre harmonic forms and general forms, the calculus is
also called split calculus, and the corresponding Sobolev spaces are called split
Sobolev spaces.

Our main result is as follows, see [5].

Theorem 1. Under certain additional assumptions on the metric the Schwartz
kernel of the resolvent (∆φ+k

2)−1, k > 0, of the Hodge Laplacian lifts to a polyho-
mogeneous conormal distribution on an appropriate manifold with corners X2

φ,k,
with a conormal singularity along the diagonal.

We also determine the exponents and the leading terms in the asymptotics of
the resolvent kernel, and make the different asympotic behavior with respect to
the decomposition into fibrewise harmonic forms and their orthogonal complement
explicit.

The additional assumptions are that dimB ≥ 2 (otherwise the k → 0 behavior
is quite different, though it may be analyzed by the same techniques), that there
are no resonances (i.e. harmonic forms which are almost in L2 are already in L2),
and a certain flatness condition on the bundle H → B of fibre harmonic forms.
Also, the higher order term h in (1) is required to satisfy |h|gΦ,0 = O(x3).

The space X2
φ,k is constructed similarly as X2

ac,k, with additional fibrations
arising from φ over the boundary faces, and with an additional blow-up that
accounts for the fact that the Laplacian is a φ-operator and its inverse is in the
split calculus.

The proof proceeds by the usual techniques of geometric microlocal analysis:
construction of the blown-up space, identification and solution of the model prob-
lems at the various boundary hypersurfaces, proof of a composition theorem.
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Essentially it is a combination of the constructions of Guillarmou/Sher and of
Grieser/Hunsicker (with some refinements of the latter even at k = 0).

Kottke and Rochon [9] have obtained a very similar result in parallel work. See
also [12, 13] for an application to analytic torsion.
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Bigerbes and applications

Chris Kottke

(joint work with Richard Melrose)

1. Introduction and review of gerbes

Gerbes on a space X are ‘geometric representatives’ of the cohomology group
H3(X ;Z), in the same way that complex line bundles1 L→ X represent H2(X ;Z)
through their first Chern class c1(L), which is to say naturally with respect to

1Or equivalently principal U(1)-bundles.
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pullbacks, products, and inverses. While various versions of 2-gerbes, represent-
ing H4(X ;Z), have been defined, the theory [3] of bigerbes, summarized in this
talk, affords certain advantages compared to existing theories, with an important
application discussed in §3.

To review: bundle gerbes in the sense of Murray [4] may be defined equivalently
(if not originally) as follows. Let π : Y → X be a locally split map of spaces, mean-
ing a continuous surjection admitting local sections, and denote the k-fold fiber
product of π by Y [k] = Y ×X Y ×X · · ·×X Y. Then the Y [•] along with the various

projections2 πj : Y [•+1] → Y [•] form a simplicial space Y Y [2] Y [3]

and the alternating tensor product of pullbacks of a line bundle L→ Y [•] defines

a ‘differential’ dL =
⊗
π∗
jL

(−1)j → Y [•+1] such that d2L → Y [•+2] is canonically

trivial. A bundle gerbe is then a line bundle L → Y [2] equipped with a trivializa-
tion3 of dL→ Y [3] inducing the canonical trivialization4 of d2L. Such data define
a characteristic Dixmier-Douady class DD(L) ∈ H3(X ;Z) which is natural with
respect to pullbacks, inverses, and tensor products, and which vanishes if and only
if the gerbe admits a trivialization, meaning an isomorphism L ∼= dQ for a line
bundle Q→ Y [1].

A primary application known as the lifting bundle gerbe arises in the following
situation: if G is a group admitting a central U(1) extension

1 → U(1) → Ĝ→ G→ 1

and E → X is a principal G-bundle with difference map χ : E[2] → G, then the

line bundle L→ E[2] associated to χ∗Ĝ (considered here simply as a U(1)-bundle)

represents the obstruction to lifting E to a principal Ĝ-bundle, in that such a lift
is equivalent to a bundle gerbe trivialization of L.

For another example, every 3-class is represented by a bundle gerbe L→ P [2]X
where PX is the based5 path space mapping to X by endpoint evaluation. Identi-
fying the space P [2]X of endpoint-coincident pairs of paths in an obvious way with
the (based) loop space LX , the bundle gerbe structure on L makes it what has
been termed a fusion line bundle [6, 7] on LX , for which c1(L) ∈ H2(LX ;Z) is the
image ofDD(L) ∈ H3(X ;Z) by the transgression map H•(X ;Z) → H•−1(LX ;Z).

2. Bigerbes

Various higher versions of gerbes have been defined, such as bundle 2-gerbes [5],
in which the line bundle L→ Y [2] in the preceding section is replaced by a bundle
gerbe over Y [2] with a trivialization of the induced gerbe over Y [3]. One drawback
is that the associativity condition becomes more complicated: one cannot simply
say that the induced trivialization over Y [4] agrees with the canonical one; it is

2Along with ‘partial diagonal’ inclusions going the other way, of which we do not make use.
3This structure is equivalent to the ‘gerbe product’ or groupoid structure of Murray’s original

definition and in other versions of gerbes.
4This property is equivalent to associativity of the gerbe product.
5It is possible to work with free path and loop spaces by incorporating an additional condition,

see [3].
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necessary to specify a 2-morphism relating these and then this 2-morphism must
satisfy a rather complicated coherence condition when pulled back over Y [5]. The
natural extension to higher gerbes necessitates ever higher and more complicated
coherence conditions over Y [6] and beyond.

Bigerbes provide a simpler and more symmetric definition, beginning with the
prescription of a locally split square, meaning a commutative diagram (a) below in
which all maps along with the natural map W → Y ×X Z are locally split:

(a)
Y W

X Z

=⇒ (b)

Z [3] W [1,3] W [2,3] W [3,3]

Z [2] W [1,2] W [2,2] W [3,2]

Z W W [2,1] W [3,1]

X Y Y [2] Y [3]

Extending above and to the right by fiber products leads to the diagram (b) in
which W [•,•] forms a bisimplicial space and there are two commuting differentials
d1 and d2 taking line bundles over W [•,•] to W [•+1,•] and W [•,•+1], respectively.

By definition, a bigerbe is a line bundle L → W [2,2] equipped with trivializa-
tions of diL for i = 1, 2 which induce the canonical trivializations of d2iL and
a coincident trivialization of d1d2L ∼= d2d1L. Such an object has a well-defined
characteristic class G(L) ∈ H4(X ;Z) which is shown in [3] to be natural with
respect to pullbacks, products, and inverses, and which vanishes if and only if L
admits a bigerbe trivialization, meaning an isomorphism L ∼= d1Q1 ⊗ d2Q2 for two
line bundles Q1 → W [1,2] and Q2 → W [2,1]. A further result gives a necessary
and sufficient condition for a locally split square to admit a bigerbe representing a
given 4-class, and the extension to ‘multigerbes’ representing Hk(X ;Z) for k ≥ 5
is straightforward.

3. The Brylinski-McLaughlin bigerbe

A major application of bigerbes concerns the transgression of string structures on
a spin manifold X to spin structures (here called loop-spin to avoid confusion)
on the loop space LX . For context, consider the problem of lifting the structure
group of a Riemannian manifold X to subsequent groups in the Whitehead tower

O(n) SO(n) Spin(n) String(n)

of subsequently higher connected topological groups over the orthogonal group
O(n), a reduction to SO(n) being an orientation, a lift to Spin(n) being a spin
structure, and a further lift to String(n) (which is not a finite dimensional Lie
group) being a ‘string structure’, all of which admit cohomological obstructions
and classifications. In particular, string structures are obstructed by6 1

2p1(X) ∈

H4(X ;Z) and (if they exist) are classified by H3(X ;Z).

6The 1/2 comes from the fact that the Pontryagin class of the original SO(n) structure is
twice that of the Spin(n) structure for a spin manifold.
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Roughly speaking, the transgression of these obstruction classes to LX (which
has structure group LG whenever X has the structure group G) gives the obstruc-
tion to the structure problem ‘one degree lower’ on LX ; for example, if X is spin,
then LX admits an orientation, meaning a reduction to the connected structure
group L+SO(n) ∼= LSpin(n). However, consideration of fusion as in §1 is neces-
sary to give a complete bijection, e.g. between spin structures on X and fusion
orientations on LX , as shown in [6].

A loop-spin structure on LX (for X spin) is a lift to the structure group L̂Spin,
the universal central U(1) extension of the loop group LSpin, which is obstructed7

by the 3-class on LX transgressing 1
2p1(X). While a number of results state some

form of equivalence between string structures onX and loop-spin structures on LX
which incorporate fusion or related conditions [2, 1, 8], the Brylinski-McLaughlin
bigerbe of [3] gives a direct accounting. This utilizes the locally split square in
which Y = E is the principal Spin-bundle of X , Z = PX is the based8 path space
of X , and W = PE. The identification P [2] ∼= L leads to the diagram

E[2] PE[2] LE[2]

E PE LE

X PX LX

and the Brylinski-McLaughlin bigerbe is defined by the line bundle over L(E[2]) ∼=

(LE)[2] associated to the principal U(1)-bundle χ∗L̂Spin pulled back by the differ-
ence map χ : LE[2] → LSpin. A main theorem in [3] states that there is a complete
equivalence between (a) string structures on X , (b) fusion loop-spin structures on
LX , and (c) bigerbe trivializations of the Brylinski-McLaughlin bigerbe.
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Fredholm conditions for restrictions of invariant pseudodifferential
operators to isotypical components

Matthias Lesch

(joint work with Alexandre Baldare, Rémi Come, Victor Nistor)

This is a report on the papers [1] and [2].
Let Γ be a finite group acting by diffeomorphisms on a smooth compact manifold

M . For convenience we may choose a Γ-invariant Riemannian metric g onM such
that Γ acts by isometries.

We need to fix some notation. As usual, Γ̂ denotes the set of equivalence
classes of irreducible (unitary) representations of Γ. If H is a Γ–module then for

α ∈ Γ̂ we denote by Hα the α-isotypical component of H. Clearly, H =
⊕

α∈Γ̂ Hα

decomposes into a (finite!) direct sum of such isotypical components.
If T : H0 → H1 is a Γ-equivariant linear map of Γ-modules then T respects the

direct sum decomposition into isotypical components, that is T =
⊕

α∈Γ̂ πα(T ),
where πα(T ) : H0α → H1α.

Next let P be a Γ–invariant classical pseudodifferential operator of order m
acting between the sections of the Γ–equivariant vector bundles E0, E1 overM . It
is a classical result that P is a Fredholm operator Hs(M ;E0) → Hs−m(M ;E1) if
and only if its homogeneous principal symbol

(1) σm(P ) ∈ C∞(S∗M ; Hom(E0, E1))

is invertible. Here, as usual Hs(. . .) denote the respective Sobolev spaces of order
s and S∗M denotes the cosphere bundle over M . By slight abuse of notation, the
pullbacks of E0, E1 to S∗M are denoted by the same letter.

Here we are concerned with the problem of deciding whether for a fixed irre-

ducible representation α ∈ Γ̂ the operator

(2) πα(P ) : Hs(M ;E0)α → Hs−m(M ;E1)α ,

is Fredholm. Certainly, Fredholmness of P will be sufficient, but in general it turns
out not to be necessary.

To describe our result we need to introduce some more notation. Fix ξ ∈ S∗
pM .

Γ also acts on S∗M and Γξ is a subgroup of Γp. For an irreducible representation

ρ ∈ Γ̂ξ the homogeneous principal symbol induces a homomorphism

σΓ
m(P )(ξ, ρ) := πρ(σm(P )(ξ)) ∈ HomΓξ

(E0xρ, E1xρ)

For g ∈ Γ we denote by g · ρ ∈ Γ̂gξ the representation (g · ρ)(a) := ρ(g−1ag).
Furthermore, let Γ0 be a minimal isotropy group. Then let

Xα
M,Γ := {(ζ, ρ) | ζ ∈ S∗M,ρ ∈ Γ̂ζ and ∃g ∈ Γ,HomΓ0(g · ρ, α) 6= 0}

In other words the definition of Xα
M,Γ means Γ0 ⊂ Γgζ and g · ρ and α restricted

to Γ0 do have a common Γ0–irreducible representation in their Γ0–decomposition.
After these preparations our main result reads.



1436 Oberwolfach Report 27/2021

Theorem 1. Let Γ be a finite group and let P be a Γ–invariant classical pseudo-
differential operator of order m acting between sections of the Γ–equivariant vector
bundles E0, E1 over the compact smooth manifoldM . Then πα(P ) : H

s(M ;E0)α→
Hs−m(M ;E1)α is Fredholm if and only if σΓ

m(P )(ζ, p) is invertible for all (ζ, ρ) ∈
Xα

M,Γ.

Remarks.
1. In [3] the result was generalized to actions of compact (non-finite) Lie groups

on M .
2. If the principal orbit type Γ0 is the trivial group or if the bundles E0, E1

are the trivial rank 1 bundles (i.e. P is a scalar operator) then πα(P ) is Fredholm
if and only if P is elliptic in the ordinary sense and hence P itself is already
Fredholm.
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Hodge theory for the Weil-Petersson metric

Richard Melrose

Using the, rather protracted, project with Jesse Gell-Redman on the Hodge theory
for the Weil-Peterrson metric on the Riemann moduli spaces Mg,n as a guide I
will outline a notion of ‘iterated fibration’ structure on a manifold with corners.
The discussion here is restricted to codimension two and set in the general context
of the resolution/quantization of a Lie algebroid.

Consider first the case of a manifold with boundary, the case of codimension one.
Many examples have been extensively discussed in the literature – unfortunately
too many to list here. The example I concentrate on comes from a ‘real Weil-
Petersson’ metric on a compact manifold with boundary, X. This is arbitrary in
the interior and near the boundary takes the form

(1) g = dx2 + h(y, dy) + x6α2 + xe, x ≥ 0.

Here x is a defining function for the boundary, α is a connection form on a circle
bundle over (and extended off) the boundary, h is a metric on the base of the circle
bundle and e is an ‘error term’ which is smooth and bounded by the leading part.

Appropriately scaled this corresponds to a Lie algebroid, a Lie algebra of smooth
b-vector fields on X spanned locally near the boundary by

(2) x3 ×
(
x−3∂θ, x

−1(x∂x), ∂yj

)
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where I have multiplied the vector fields of bounded length by x3 to make them
smooth; ∂θ is a generator of the circle action.

This is a ‘geometric’ Lie algebroid; in particular a C∞(X)-module of smooth
b-vector fields, V , on X (that is the geometric part), and as in this case, I will
assume in general that it is unrestricted in the interior (although this should be
replaced by tangency to a b-fibration). By assumption (as a Lie algebroid) it has a
local smooth basis near each point. The notion of a ‘boundary-fibration structure’
involves the boundary filtration

(3) Wk =
(
V ∩ ρkVb(X)

)
/ρk, Wk = Wk

∣∣
∂X

⊂ C∞(∂X ; bT∂XX).

I will demand that the Wk are subbundles. The b-tangent bundle to X has a
canonical line subbundle over ∂X , spanned by x∂x, with the quotient being T∂X.
For each k I require that eitherWk meets this b-normal bundle only at the 0 section
or else contains it. It follows that for some minimal l – the boundary depth – there
is a b-normal vector field (inducing the section x∂x at the boundary) N ∈ Wl.

The space C∞(∂X ; bT∂XX) is a Lie algebra. I will require four further condi-
tions on V for it to be an iterated boundary fibration structure:-

(4)

The Wk are Lie algebras,

The quotients Wk/
bN define fibrations of ∂X,

The Wk are exact

[N,Wk] ⊂ Wk ∀ k.

The Wk/
bN ⊂ C∞(∂X ;T∂X), for k < l, then have local coordinate bases ∂yj

and
these lift to elements ∂yj

+ajx∂x of Wk; the exactness condition requires the closed
forms

∑
j ajdyj to be exact on the fibres. In fact the first three conditions can be

combined by requiring the action of Wk on the normal bundle to the boundary to
induce a fibration.

For such a Lie algebroid there is a ‘Frobenius’ basis analogous to (2). Most
significantly such a Lie algebroid can always be resolved by the construction of a
of generalized product, and in particular can be quantized to a calculus of pseudo-
differential operators. As noted above many cases included here are quite familiar:

l = 0 : b-calculus, (fibred) edge calculus
l = 1 : scattering calculus, fibred boundary calculus, Weil-Peterrson
l = 2 : a-calculus of Grieser and Hunsicker.

Note that, for brevity, I have excluded the ‘adiabatic calculi’ (where N is not in the
Lie algebroid). Ideally the definition should also be broadened further to include
the Θ-calculus. Such a generalization is even more relevant in higher codimension
to capture the compactifications of reductive Lie groups.

The main aim of this talk is to examine appropriate conditions for an iterated
boundary fibration in codimension two (and higher). So now let X be a compact
manifold with corners up to codimension 2 and let V ⊂ Vb(X) be a ‘geometric’
Lie algebroid. I will demand conditions as in (4) at the interior of the boundary
hypersurfaces. In fact, by generalizing the initial definition to allow non-trivial
interior fibrations and the extra normal direction one can proceed iteratively and



1438 Oberwolfach Report 27/2021

simply require that each of the spaces in (3), at each boundary hypersurface, define
an iterated boundary fibration structure.

Still we need further restrictions at each corner, F, of codimension two; for
simplicity I shall assume there is only one (connected) corner. There the boundary
filtration is parameterized by a multiorider κ :

(5) Uκ = (V ∩ ρκVb(M)) /ρκ, Uκ = Uκ

∣∣
F
⊂ C∞(F ; bTFX), ρ = (ρ1, ρ2).

Here the ρi are defining functions for the two local boundary hypersurfaces. These
space are automatically decreasing under the standard partial order κ′ ≥ κ. Again
we assume that

(6) Uκ = C∞(F ; bTFM) for some κ.

The space C∞(F ; bTFX) is again a Lie algebra (and Lie algebroid over F with
two abelian ‘fibre’ variables) and we demand that the Uκ be Lie subalgebroids.
The additional requirement I wish to emphasize – it is automatic in codimension
1 – is

‘Strong iteration’ : There exists a sequence of distinct multiindices

(7) (0, 0) = κ(0) < κ(1) < · · · < κ(N)

forming a chain and such that for any κ ∈ N2
0

(8) Uκ = Uκ(j), j(κ) = max{k;κ(k) ≤ κ}.

Of course the Uj = Uκ(j) then determine all the Uκ.

Beyond this a generalization of ‘boundary depth’ above is required. The b-normal
bundle to F is a canonically trivial subbundle of bTFX with fixed basis x1∂x1 ,
x2∂x2 corresponding to (but independent of) any local choice of defining functions.

‘b-normality’ : For each k the intersection

(9) bUj = Uj ∩
bNF is a subbundle with basis p1x1∂x1 − p2x2∂x2 , pi ∈ N0.

By assumption bUN = bNF since we are assuming that UN = bTFX. So the
bUj are decreasing starting from full rank two (so containing both generators).
If the rank drops from two to one (it could drop from two to zero) then the
remaining element is required to be some p1x1∂x1 − p2x2∂x2 . The sign condition
on the integers corresponds to the fact that this should generate a b-fibration of
the inward-pointing normal bundle to F.

Finally we require the fibration condition itself, that the

‘Fibration’ : Uj(F )/
bNF define fibrations of F

and that the induced 1-forms on F are exact on fibres. I also require homogeneity
with respect to the two normal vector fields.

Under these conditions an iterated fibration structure has a resolution by a
generalized product and hence quantization to a calculus of pseudodifferential
operators.
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The Weil-Petersson case shows that the chain condition need not be trivial to
arrange. Namely in codimension two the metric assumes the ‘product’ form

(10) g = dx21 + dx22 + h(y, dy) + x61α
2
1 + x62α

2
2 + x1e1 + x2e2.

The conditions above, without the chain condition, are achieved on the single space
defined by blow-up of the corner. The chain condition holds on the space defined
by parabolic blow-up of the resulting two corners.

Is there a simpler way?
The Hodge theorem asserts that the L2 null space of the Laplacian for a Weil-

Petersson metric is isomorphic to the cohomology of the manifold without bound-
ary obtained by collapsing the circle bundles.

Donut choirs and Schiemann’s symphony

Julie Rowlett

(joint work with Erik Nilsson and Felix Rydell)

We investigate the following:

Question 1. If two flat tori are isospectral, then are they necessarily also isomet-
ric?

A donut is a common albeit inaccurate visualization of a two dimensional flat
torus, that is obtained as the quotient R2/Γ for a full rank lattice Γ ⊂ R2, endowed
with the flat Riemannian metric inherited from the Euclidean metric on R2. In
spite of its inaccuracy, we choose to incorporate this playful language in the spirit
of Conway [1] and Kac [6]. Moreover, we identify the spectrum of a flat torus with
the song the donut sings, imagining isospectral flat tori as a choir of donuts that
sing in perfect unison. One such donut is shown in Figure 1.

Figure 1. Here we identify the spectrum of a flat torus
with ‘the song the donut sings.’ This image is open source:
https://charatoon.com/?id=2325

If the flat tori are one-dimensional, the answer to Question 1 is yes; this is a
calculus exercise. On the other hand, if the flat tori are sixteen-dimensional, the

https://charatoon.com/?id=2325
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answer is no. With the analogy of isospectral flat tori as a choir of donuts singing
in perfect unison, we introduce

Definition 1 (Flat choir numbers ♭n). In each dimension n ∈ N, we define the
(flat) choir number to be the supremum over all k ∈ N such that there is a collection
T1, . . . , Tk of mutually isospectral and non-isometric flat tori. The sequence ♭n is
called the sequence of (flat) choir numbers.

In 1978, Wolpert proved [13] that there are at most finitely many flat tori (up
to isometry) that share any given spectrum. However, there could be a sequence
of spectra, each of which has an increasingly larger choir of non-isometric donuts,
so that à priori one cannot conclude that ♭n is finite for all n. Suwa-Bier proved
in their 1984 doctoral thesis [11] that the flat choir numbers are in fact finite. In
1964, Milnor [7] proved that ♭16 ≥ 2. Milnor used a construction of Witt [12]
based on the root lattice, Dn, and the diamond packing, D+

n ,

Dn :=

{
z = (z1, . . . , zn) ∈ Zn :

n∑

i=1

zi ∈ 2Z

}
, D+

n := Dn ∪

(
1

2
1+Dn

)
.

Theorem 1 (Milnor’s duet). R16/(D+
8 ×D+

8 ) and R16/D+
16 are isospectral but not

isometric.

The flat tori in Milnor’s theorem are not isometric because the first is reducible
whereas the second is irreducible. They are isospectral because they have identical
theta series. This follows from the fact that the lattices are even and unimodular,
and consequently their theta series are modular forms for PSL2(Z). In 16 dimen-
sions there is only one such form (up to multiplication by scalars), hence all 16
dimensional donuts of identical volume obtained as quotients by even unimodular
lattices are isospectral. What is the largest donut choir in dimension 16, or more
generally we ask

Question 2. What is the precise value of ♭n for each n?

In soon-to-appear joint work [8], we investigate this and related questions. Two
flat tori are isospectral if and only if they have identical theta series. For a lattice
Γ this is

θΓ(z) :=
∑

γ∈Γ

eiπz||γ||
2

, z ∈ C with Imz > 0.

Checking isospectrality is therefore equivalent to checking whether the theta series
are identical, a seemingly infinite task. However, the theta series of certain lattices
are modular forms, in which case verifying isospectrality reduces to finitely many
calculations thanks to the identity theorem for modular forms [4]. Another way
to reduce verifying isospectrality to a finite number of calculations is to employ
techniques from the theory of linear codes [3].

Question 1 can be paraphrased in entirely different language that omits the
terms spectrum, flat torus, lattice, eigenvalues, and isometric. To see this, consider
a full rank lattice Γ = AZn ⊂ Rn. Then

q(x) := xTQx, Q := ATA, x ∈ Rn
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is a positive definite quadratic form. The representation numbers of the quadratic
form are for λ ∈ R≥0

R(q, λ) := #{x ∈ Zn : q(x) = λ}.

There are many quadratic forms associated to a given lattice, because for any
unimodular matrix G ∈ GLn(Z), AGZ

n = AZn is the same lattice. However, the
quadratic form for the basis AG might not be identical to the quadratic form for
the basis A. The quadratic form senses the choice of basis matrix, whereas the
lattice itself is blind to this choice. This motivates the equivalence notion: two
quadratic forms q(x) = xTQx, p(x) = xTPx are integrally equivalent if there is a
unimodular matrix G with Q = GTPG. Integrally equivalent quadratic forms have
identical representation numbers. To each donut we therefore associate a collection
of integrally equivalent quadratic forms. On the other (left) hand, for any C ∈
O(n), the lattice CAZn is congruent to AZn but is not necessarily identical. From
the quadratic form’s perspective (CA)T (CA) = ATA, so the quadratic form is
blind to congruence. Consequently, two donuts sing the same song if and only if the
representation numbers of their associated integral equivalence classes of quadratic
forms are identical. The donuts are isometric if and only if these equivalence classes
are in fact identical. Question 1 is therefore equivalent to: is an equivalence class
of integrally equivalent quadratic forms uniquely determined by its representation
numbers? The answer depends on the dimension.

Theorem 2 (Schiemann’s Symphony). The flat choir numbers satisfy: ♭1 = ♭2 =
♭3 = 1, ♭n ≥ 2 for all n ≥ 4.

The proof for dimensions one and two is a fairly simple exercise. In contrast,
the proof for dimension three requires a tremendous amount of effort and to date
has only been completed with further assistance by a computer [10]. The result
for four dimensions has been proven by Schiemann [9]. In 2011, Cervino & Hein
developed a method to systematically construct infinitely many isospectral non-
isometric pairs of flat tori in four dimensions [5], thereby proving a conjecture of
Conway & Sloane [2]. In [8], we invite readers to join us in exploring the questions
posed here from different mathematical perspectives with creative descriptions of
the mathematical objects intended not only to convey the concepts but also to
inspire the reader’s imagination.
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A pseudo-differential calculus for singular filtrations of the tangent
bundle and index theorem

Omar Mohsen

(joint work with I. Androulidakis, R. Yuncken, E. van-Erp)

A linear differential operator D on a smooth manifold M is called hypoelliptic if
for any distribution u on M

singsupp(u) ⊆ singsupp(Du)

where singsupp is the singular support. This is a crucial property of elliptic oper-
ators, closely related to Fredholmness when M is compact. It is well-known that
hypoellipticity generalizes to other classes of linear differential operators. Two
major sources of hypoelliptic operators are

• Hörmander’s sums-of-squares operators [11, 18] and generalizations to
other polynomials of vector fields, e.g. [12, 10].

• Rockland operators on nilpotent Lie groups [17, 9, 3], on Heisenberg man-
ifolds [19, 2] and more generally on filtered manifolds [14].

The standard proof of hypoellipticity for elliptic and Rockland operators on
manifolds is to introduce a pseudo-differential calculus in which the differential
operator admits a parametrix. This was achieved for Heisenberg manifolds in
[19, 2] and for general filtered manifolds in the unpublished manuscript by Melin
[14].

Building on the seminal work of Connes [5] and Debord-Skandalis [6], a simple
construction Melin’s pseudo-differential calculus was described in [8].

The main goal of this talk is to introduce a pseudo-differential calculus ap-
propriate to Hörmander’s operators and their generalizations. This will allow a
unified approach to hypoellipticity and Fredholmness results for all of the differ-
ential operators listed above. Furthermore, our approach using groupoids and
pseudo-differential calculus allows one to make sense of the notion of the princi-
pal symbol for sums-of-squares operators and their generalizations. This opens
up these operators to techniques such as K-theory and zeta functions which have
been widely applied in the elliptic and filtered settings.
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Let us describe our setting. Let N ∈ N be a natural number called the depth.
And let Xi be a finite number of real smooth vector fields on M . To each Xi,
let 1 ≤ ni ≤ N be a natural number. One declares the order of Xi to be ni and
the order of every other vector field on M to be N (of course there are non-trivial
relations forcing some vector fields to have order < N as we will see shortly).
Associated to this we define a pseudo-differential calculus. We prove that the
expected properties of a pseudo-differential calculus are satisfied. For example

(1) Operators of order k ∈ C with ℜ(k) = 0 are bounded operators on L2M .
(2) Operators of order k ∈ C with ℜ(k) < 0 are compact.
(3) All asymptotic expansions admit a limit in the calculus.
(4) Differential operators have a well defined inhomogeneous principal symbol

in our calculus. To be discussed below, in more details.
(5) If the principal symbol is invertible, then the differential operator admits

a parametrix in our calculus

A consequence of these properties is that if the principal symbol is invertible, then
the operator is hypoelliptic. Furthermore if M is compact, then the bounded
transform of the operator is Fredholm. This immediately implies Hörmander’s
theorem

Theorem 1 (Hörmander). Let X0, · · · , Xk be real vector fields, a0, · · · , ak ∈ N

such that a0 is odd. If the vector fields Xi together with their iterated Lie brackets

span TxM at every point x ∈M , then the operator Xa0
0 +

∑k
i=X

2ai

i is hypoelliptic.

It also immediately implies and generalizes Kohn’s theorem [13, Theorem A].
Some non trivial relations are forced from the choice of the orders on Xi. More
precisely, if X,Y are of order k, l respectively, then [X,Y ] = XY − Y X has to be
of order at most k + l. To keep track of such relations, we define the C∞(M,R)-
modules Di of compactly supported vector fields of order less than or equal to
i.

One has
0 = D0 ⊆ D1 ⊆ · · · ⊆ DN = Xc(M),

where Xc(M) is the C∞(M,R)-module of smooth compactly supported vector
fields on M . The modules have the fundamental property

[Di,Dj ] ⊆ Di+j .

For x ∈M , we define the Lie algebra

gr(D)x = ⊕N
i=1

Di

Di−1 + IxDi
,

where Ix ⊆ C∞(M,R) is the ideal of real valued smooth functions vanishing at
x. The Lie algebra structure on gr(D)x comes from the Lie bracket, making it
a graded nilpotent Lie algebra. Let Gr(D)x be the simply connected Lie group
integrating gr(D)x. Let us make some remarks on Gr(D)x.

(1) The bundle Gr(D) := ⊔Gr(D)x isn’t a fiber bundle in the usual topolog-
ical sense, because x → dim(gr(D)x) isn’t a continuous function. In fact
dim(gr(D)x) ≥ dim(TxM) and the difference measures in some sense how
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much Di fail to be sections of a vector bundle. Melin’s calculus is the case
where all the modules Di are sections of a subbundle of TM , in which case
dim(gr(D)x) = dim(TxM).

(2) Even though Gr(D) isn’t a fiber bundle, we can still define the C∗-algebra
of the bundle Gr(D), as we will see below.

Let D be a differential operator on M . We say that D is of order k if D can be
written as the sum of monomials Y1 · · ·Ys with s ∈ N, Yi ∈ Dai and

∑s
i=1 ai ≤ k.

The principal symbol (in our calculus) of D at x, is an unbounded multiplier of
a quotient of C∗Gr(D)x. In contrast with Melin’s calculus or the classical pseudo-
differential calculus, our principal symbol isn’t defined for all irreducible unitary

representations of Gr(D)x, only for a closed subset T ∗Dx of Ĝr(D)x which we call
the characteristic set. Before giving the definition of the characteristic set, let us
explain our strategy to define the pseudo-differential calculus.

The work of Debord and Skandalis and Van-Erp and Yuncken [6, 8] shows that
in order to define a pseudo-differential calculus one can first define the associated
deformation groupoid and then use the groupoid to define the pseudo-differential
calculus. The advantage of this approach is that properties like invariance under
local diffeomorphisms, closeness under composition and adjoint become geometric
statements about the groupoid.

For the classical pseudo-differential calculus the associated deformation
groupoid is the tangent groupoid defined by Connes [5]. For the more general
calculus defined by Melin [14], the assoicated deformation groupoid was defined
by Choi and Ponge [4], see also Van-Erp and Yuncken [7], and Mohsen [16]. In
both cases the assoociated groupoid is a Lie groupoid. In our case this cant be
true. The deformation groupoid for our calculus is algebraiclly equal to

(1) M ×M × R∗ ⊔ Gr(D)× {0}.

Since Gr(D) isn’t a fiber bundle, the groupoid in Eqn (1) cant be a Lie groupoid.
Our approach is to define the groupoid as the holonomy groupoid of a singular
foliation [1]. Recall that in Androulidakis and Skandalis terminology a singular
foliation is a C∞(M,R)-module of vector fields that is locally finitely generated
and closed under Lie bracket. On M ×R, we define the following singular foliation

aD = tD1 + t2D2 + · · · tNDN .

This is a well defined singular foliation. We show that the holonomy groupoid of
aD is equal algebraically to the one in Eqn (1). Now this groupoid is still not a
Lie groupoid but it can be covered by bi-submersions (local charts introduced in
[1]). These bi-submersions play exactly the role of local charts for our calculus. In
fact our operators are written as standard oscillatory integrals in such charts.

Let us now introduce the characteristic set. Let DiffD(M) be the algebra of
differential operators filtered as above by declaring elements of Di to be of order
i. To define the principal symbol, one is naturally led to consider the algebra of
symbols

⊕∞
i=0

Diffi
D(M)

Diffi−1
D (M) + IxDiffi

D(M)
.
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One naturally has a Lie algebra homomorphism map

gr(D)x → ⊕∞
i=0

Diffi
D(M)

Diffi−1
D (M) + IxDiffi

D(M)
,

which sends a vector field to itself as a differential operator. Hence one has an
obviously surjective algebra homorphism

(2) U(gr(D)x) → ⊕∞
i=0

Diff i
D(M)

Diff i−1
D (M) + IxDiff i

D(M)
,

where U(gr(D)x) is the enveloping algebra over C. In contrast to the classical
pseudo-differential calculus and Melin’s calculus, the map (2) isn’t injective in
general. We define the algebraic characteristic set T ∗Dx to be the set of represen-
tations π of Gr(D)x such that π vanishes on the kernel of the map (2).

We remark that the characteristic set T ∗D is different from gr(D)∗ even for
some very simple operators like ∂2x + x2∂y.

We now come to our main theorem.

Theorem 2. Let D be a differential operator of order k such that for every x ∈M ,
π ∈ T ∗Dx\{1Gr(D)x}, π(σ

k
x(D)) is injective. Here π(σk

x(D)) denotes the principal
symbol of D evaluated at the irreducible non-trivial unitary representation π. Then
D admits a left parametrix in our calculus and D is hypoelliptic.
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Degenerate Elliptic Boundary Value Problems with
Non-smooth Coefficients

Elmar Schrohe

(joint work with Thorben Krietenstein)

The first topic of this talk is the existence of a bounded H∞-calculus in the sense
of McIntosh [5] for the realization of a strongly elliptic second order differential
operator A, endowed with a boundary condition T that is degenerate, so that, in
general, the pair (A, T ) will not be elliptic in the sense of Lopatinskij-Shapiro.
To introduce the notion of H∞-calculus, consider, for θ > 0, the sector

Λθ = {λ = reiφ ∈ C : r ≥ 0; |φ| ≥ θ}

and a closed linear operator B : D(B) → E in a Banach space E which is sectorial
in Λθ in the sense that supλ∈Λθ

‖λ(λ−B)‖L(E) <∞. For a bounded holomorphic
(H∞-) function f on C \Λ one defines the operator f(B) by the Dunford integral

f(B) =
1

2πi

∫

∂Λθ

f(λ)(λ −B)−1 dλ.(1)

Then B is said to have a bounded H∞-calculus, if there is a constantM such that

‖f(B)‖L(E) ≤M‖f‖∞, f ∈ H∞(C \ Λ).

The existence of anH∞-calculus for B for some θ < π/2 implies that the Cauchy
problem ∂tu + Bu = f , u(0) = u0 has the property of maximal regularity – an
important tool for the analysis of parabolic evolution equations. Indeed, we use
this property to show the existence of a short time solution to the porous medium
equation under the degenerate boundary condition. Apart from the existence of a
bounded H∞-calculus we obtain the solvability of the full boundary problem.

As Equation (1) suggests, the main point of the analysis is the construction of
a suitable parameter-dependent parametrix. For this we use a slightly extended
version of Boutet de Monvel’s calculus.

Let us fix some notation: X denotes a manifold with boundary ∂X and bounded
geometry of dimension n as in [1], and A a second order partial differential operator
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on X , written locally

A =
∑

1≤k,l≤n

akl(x)DkDl +
∑

1≤k≤n

bk(x)Dk + c0(x),(2)

where akl ∈ Cτ (X) are real-valued (the results hold, with obvious modifications,
for complex coefficients), the matrix (akl(x))1≤k,l≤n is positive definite with a
uniform positive lower bound, bk, c0 ∈ L∞(X). The boundary operator T is of the
form

T = ϕ0γ0 + ϕ1γ1.(3)

Here γ0 denotes evaluation and γ1 the evaluation of the exterior normal derivative
at ∂X ; ϕ0, ϕ1 ∈ C∞

b (∂X) are real-valued functions on the boundary with ϕ0, ϕ1 ≥
0 and ϕ0+ϕ1 ≥ c > 0. We obtain the classical Dirichlet problem for ϕ0 = 1, ϕ1 = 0
and the Neumann problem for ϕ0 = 0, ϕ1 = 1. Unless ϕ1 ≡ 0 or ϕ1(x) 6= 0
everywhere, the problem is not elliptic.

The Lp-realization of A with the boundary condition T is the unbounded op-
erator AT , acting like A on the domain

D(AT ) := {u ∈ H2
p (X) : Au ∈ Lp(X), T u = 0 on ∂X}.

This problem has been investigated by many authors, see e.g. Egorov-Kondrat’ev,
Kannai, and Taira [7], also for the case where the boundary operator T involves
an additional first order tangential differential operator. The present talk is partly
based on [4].

Theorem 1. For every 0 < θ < π a constant ν exists such that AT + ν has a
bounded H∞-calculus in Lp(X).

Theorem 1 extends to the case where T = γ0 + ϕ2γ1, i.e. ϕ0 = 1 (not an
essential restriction) and ϕ1 is the square of a C2+τ -function ϕ with τ > 0.

For s ∈ R and T as in (3) or s > −2− τ and T as above, we define

B
s−1−1/p
p,T (∂X) = {v = ϕ0v0 + ϕ1v1 : v0 ∈ Bs−1/p

p (∂X), v1 ∈ Bs−1−1/p
p (∂X)}.

Clearly, this is a Banach space with the topology of the non-direct sum.

Proposition 2. For s > 1 + 1/p the mapping T : Hs
p(X) → B

s−1−1/p
p,T (∂X) is

surjective.

Theorem 3. For every 0 < θ < π the operator

(
A− λ

T

)
: H2

p (X) −→

Lp(X)
⊕

B
1−1/p
p,T (∂X)

(4)

is a topological isomorphism for λ ∈ Λθ, |λ| sufficiently large.

Theorem 3 is a consequence of Theorem 1 and Proposition 2.

Theorem 4. Let 1 < p, q < ∞, n/p + 2/q < 1, m > 0, v0 ∈ H2
p (X) with

v0 ≥ c > 0, and φ ∈ C1([0, t0];B
1−1/p
p,T (∂X)), t0 > 0, with φ(0) = Tv0. Then the
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porous medium equation





v̇ −∆gv
m = 0

Tv = φ

v|t=0 = v0

(5)

has a unique short time solution

v ∈ Lq([0, t
∗];H2

p (X)) ∩W 1
q ([0, t

∗];Lp(X)), t∗ > 0.

Current work in progress is on a problem that arose in discussions with J. Es-
cher. It concerns the melting/solidification process of ice filling a volume X(t) at
time t ≥ 0. The evolution of X(t) is governed by the temperature u = u(x, t) in x
at time t, its (outer) normal derivative ∂νu, the normal velocity V of ∂X(t), and
its mean curvature κ, via the equations

∆u = 0 in X(t)

V + ∂νu = 0 on ∂X(t)

µ2V + κ = u on ∂X(t)

X(0) = X0 at t = 0.

Here, µ ∈ C∞
b (Rn) is a nonnegative function with a possibly non-empty zero set

(lower regularity is possible). This boundary condition lies between the Gibbs-
Thomson condition σκ = u, σ > 0 and thermal cooling V + κ = u.

Following partly an approach devised by Escher, Kneisel and Simonett [2, 3],
we choose a smooth bounded domain D, and suppose that there is a non-tangent
vector field such that µ = const. along the flow. In the flow coordinates (x, ρ),
x ∈ ∂D, ρ ≥ 0, we obtain the equations

A(ρ)v = 0 in J × D(6)

∂tρ + LρD∂v = 0 on J = ∂D(7)

γ0v + µ2D∂v = H(ρ) on J × ∂D(8)

ρ(0) = ρ0 on ∂D(9)

with J = [0, τ), a function Lρ > 0, the expression H(ρ) obtained for the mean
curvature, and an oblique derivative D∂ at the boundary.

The strategy now is to first solve the degenerate boundary value problem (6)/(8)
for v, given ρ. Inserting the solution v into (7) and linearizingH yields a quasilinear
evolution equation for ρ with a non-elliptic generator. We intend to solve it in
suitable little Hölder spaces with continuous maximal regularity techniques as
developed e.g. in [6].



Analysis, Geometry and Topology of Singular PDE 1449

References

[1] B. Ammann, N. Große, V. Nistor, Well-posedness of the Laplacian on manifolds with bound-
ary and bounded geometry, Math. Nachr. 292 (2019), no. 6, 1213-1237.

[2] J. Escher, G. Simonett. A center manifold analysis for the Mullins-Sekerka model. J. Dif-
ferential Equations 143 (1998), no. 2, 267–292.
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Lie groupoids and pseudodifferential calculus

Georges Skandalis

(joint work with Claire Debord)

1. Groupoids

1.1. Definitions. A (Lie) groupoid is given by two sets (manifolds): the sets
(manifolds) of objects denoted by G(0) and of arrows denoted by G(1) or just G.

We assume the following data are given.

• Every arrow has a source and a range – or target – which are objects. In
other words, we have two maps (smooth submersions) r, s : G→ G(0).

• Every object x has an identity arrow with source and range x. In other
words, we assume given a (smooth) map u : G(0) → G such that r ◦ u =
idG(0) and s ◦ u = idG(0) . We identify G(0) with its image in G via u.

• Arrows x, y are composable if s(x) = r(y). We denote byG(2) the set subset
of G × G consisting of composable arrows. If G(0) and G are manifolds
and r, s are submersions, G(2) is a submanifold of G×G.

Composition of composable arrows is a (smooth) map (x, y) 7→ xy from
G(2) to G. It is assumed to satisfy the following relations
Source and range: r(xy) = r(x), s(xy) = s(y);
Units are units: r(x)x = x and xs(x) = x;
Associativity: if s(x) = r(y) and s(y) = r(z), then (xy)z = x(yz).

• Finally, we assume that every arrow is invertible, i.e. there is a (smooth)
map x 7→ x−1 such that, for all x ∈ G, we have s(x−1) = r(x), r(x−1) =
s(x) and xx−1 = r(x), x−1x = s(x).

We write G⇒ G(0) to mean that G is a groupoid with set of objects G(0).

https://doi.org/10.1007/s00208-021-02251-1
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1.2. Elementary examples.

(1) A manifold M is a Lie groupoid M ⇒ M . All maps r, s, composition,
inverse are the identity of M ...

(2) A Lie group is a Lie groupoid with just one unit. All arrows are compos-
able.

(3) A family (Γx)x∈M of groups is a groupoid G = ⊔x∈MGx ⇒M (source and
range coincide). In particular, a smooth vector bundle is a Lie groupoid.

(4) Pair groupoid: LetM be a manifold. The setM×M is a Lie groupoid with
set of objectsM . We put r(x, y) = x, s(x, y) = y and (x, y)·(y, z) = (x, z).

1.3. Singularities and Lie groupoids. Let M be an (open) manifold. Let M
be a compact space containing M as a dense open subset; put ∂M =M \M . One
may think of ∂M as the singular part (e.g. the boundary, or the union of all the
singular strata).

We wish to study differential operators on M with given behavior near ∂M .
This behavior is given by the set E of vector fields allowed. We assume that E
is a module over C∞(M) (containing all vector fields supported in M) and is
closed under brackets. It is usually further assumed to be a projective module over
C∞(M); thus E is the space of sections of a vector bundle overM : a Lie algebroid
A → M . Such a situation is called a Lie manifold in [1]. It follows then from [4]
that it is the algebroid of a natural groupoid. Note that, thanks to [2] and the
recent work ([9]) one gets rid of the projectivity requirement.
Examples. For instance, let M be a manifold with boundary ∂M . We can then
naturally consider various natural modules: The module of vector fields tangent
to the boundary, yields the groupoid of the b-calculus of Melrose ([8], see [10]).
Associated to the module of vector fields tangent to a fibration at the boundary
is the groupoid of the edge-calculus: ([7]). The module of vector fields tangent to
a foliation of the boundary yields the calculus in [11]...

One can generalize to more general situations allowing corners ([10]) and strat-
ified manifolds ([5]), ...

2. Convolution on a Lie groupoid

2.1. Convolution of functions. Denote by C∞
c (G) the space of smooth func-

tions with compact support on a Lie groupoid. G. For f1, g2 ∈ Cc(G), put

f1 ∗ f2(x) =

∫

(x1,x2)∈G; x1x2=x

f1(x1)f2(x2) dν
x(x1, x2)

The set {(x1, x2) ∈ G × G; x1x2 = x} is a smooth manifold. The family
x 7→ dνx is a smooth “Haar system” i.e. a smooth choice of Lebesgue measures νu

satisfying a left invariance: for every (x, y) ∈ G(2), the measure νxy is the image
of νy by the diffeomorphism (x1, x2) 7→ (xx1, x2).

Particular cases are convolution on a group and of kernels on M ×M .

The adjoint of f ∈ C∞
c (G): function f∗ : x 7→ f(x−1).
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2.2. Pseudodifferential operators on a Lie groupoid. The convolution ex-
tends to many distributions. In particular to the distributions with compact sup-
port on G that are conormal to G(0) ⊂ G.

If P,Q are conormal distributions, then P ∗ Q is a conormal distribution, and
the principal symbol of P ∗Q is the product of the principal symbols of P and Q.

3. Deformation to the normal cone and conormal distributions

3.1. Deformation to the normal cone. Let M be a manifold and let V ⊂ M
be a submanifold. Denote by NM

V the normal bundle of V in M
The deformation to the normal cone of V inM is a manifold obtained by putting

a very natural smooth structure on DNC(M,V ) = (M ×R∗)⊔ (NM
V ×{0}). This

construction is more or less the blowup of V × {0} in M × R.
Since this construction is functorial, if M is a Lie groupoid and V is a sub-

groupoid, then DNC(M,V ) carries a groupoid structure.
Alain Connes explained how this construction naturally gives the Analytic index

map of Atiyah-Singer, and used it to give a very nice proof of the Atiyah Singer
Index Theorem ([3]).

3.2. DNC and conormal distributions. LetM be a manifold V a submanifold.
Using a tubular neighbourhood, we may assumeM = E is a vector bundle over V .
ThenNM

V = E andDNC(M,V ) = E×R. One may define J ⊂ C∞
c (DNC(M,V ))

as the set of functions f on E × R with rapid decay such that f̂ vanishes as well
as all its derivatives on V × {0} ⊂ E∗ × R.

For f ∈ J and t ∈ R∗, let ft ∈ C∞
c (M) restriction of f to M × {t}.

Let m ∈ C. Conormal distributions of order m are in fact just integrals
∫ +∞

0
ft
tm

dt
t

with f ∈ J . Alternatively ([12]), one can characterize conormal distributions on
DNC(M,V ) using the natural action of R∗

+.
This idea can be used in order to produce pseudodifferential calculi in many

more general situations.
Details and more references and examples can be found in [6].
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Fredholm theory for scattering on asymptotically conic spaces
and applications

Andras Vasy

In this talk we consider generalizations of Euclidean resolvent estimates, in a
Fredholm framework; these are relevant for e.g. the asymptotic behavior of wave
equation solutions. Indeed, one motivation is understanding waves on Kerr space-
times in a joint project with Häfner and Hintz [2]. However, these are already
interesting in explaining the Euclidean phenomena: can one phrase the ‘limiting
absorption principle’ as a Fredholm problem?

In the asymptotically Euclidean setting, one considers H = ∆g+V where g0 be
the Euclidean metric, g metric on Rn with g − g0 ∈ S−δ, δ > 0 (i.e. gij − (g0)ij ∈
S−δ), g positive definite, V ∈ S−δ, real. (ImV ∈ S−1−δ is OK for Fredholm.) The
space of symbols Sm(Rn

z ), which is also used to capture asymptotically Euclidean
behavior in geometric problems, is: a ∈ Sm if ∀α |Dα

z a(z)| ≤ Cα〈z〉
m−|α|, where

〈z〉 = (1 + |z|2)1/2. The talk also included an extension to asymptotically conic
settings, which already arose in the work of Melrose [4]; effectively the ‘sphere
at infinity’ in Euclidean space is replaced by another compact manifold, reflecting
that Euclidean space (minus the origin) can be considered as a cone over the sphere.
Then H = ∆g + V is self-adjoint on L2(Rn), so H − λ, λ ∈ C \ R is invertible,
e.g. as a map H −λ : Hs,l → Hs−2,l, s, l ∈ R. Moreover, the spectrum in (−∞, 0)
is discrete, with 0 a possible accummulation point (e.g. Coulomb-like potentials);
[0,∞) the essential spectrum. Here Hs,l = 〈z〉−lHs, Hs is the standard Sobolev
space.

While H − λ will no longer be invertible between the weighted Sobolev spaces
when λ > 0, the limiting absorption principle states that (H − (λ ± i0))−1, un-

derstood as limǫ→0(H − (λ ± iǫ))−1 exist e.g. as limits in L(Hs−2,l, Hs,l′), l > 1
2 ,

l′ < − 1
2 (so l− l′ > 1). Under stronger assumptions, V ∈ S−2−δ, δ > 0, 0 is not an

accummulation point of the point spectrum, and under stronger restrictions on l, l′,
in particular l−l′ > 2, (H−(λ±i0))−1 is uniformly bounded between the weighted
Sobolev spaces as λ→ 0 if there are no 0-energy bound states (L2 nullspace of H)
or half-bound states (discussed in the talk). (Jensen, Kato [3],...,Fournais, Skib-
sted, Wang, Derezinski, Bony, Häfner, Rodnianski, Tao, Müller, Strohmaier, and
N -body analogues, e.g. Wang, Skibsted, Tamura, as well as geometric microlocal
analysis parametrix construction: Guillarmou, Hassell, Sikora [1])

Can one make the function spaces more precise, namely can one fit these into a
Fredholm (here typically invertible) statement? Such frameworks are necessarily
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sharp in a sense. Here one necessarily must have different domains/target spaces
for H − λ for the cases producing the inverses (H − (λ± i0))−1. What are these?

It is useful to write the spectral parameter as λ = σ2, with Imσ > 0 corre-
sponding to λ ∈ C \ [0,∞), and let P (σ) = H − σ2 = ∆g + V − σ2. We then are
interested in P (σ + i0)−1 = limǫ→0 P (σ + iǫ)−1; note that the limits with λ ± i0

become ±σ + i0 for σ ∈ R, and exist e.g. as limits in L(Hs−2,l, Hs,l′), l > 1
2 ,

l′ < − 1
2 (so l − l′ > 1). This is not a sharp estimate, even though it is sharp

on the standard scale of weighted Sobolev spaces; the point is that this is not a
satisfactory scale. One way to see this is the 1+ ǫ, ǫ > 0, order of loss of decay (cf.
one derivative loss in hyperbolic PDE relative to elliptic ones); one expects the loss
of 1 order if done right. One would also like to have a more precise description of
the output of P (σ)−1 for well-behaved inputs: should have the outgoing spherical
wave form eiσρ(...) where ρ = |z|.

The reason for the non-optimality is that phase space behavior is not taken
into account. To see what this looks like, consider scattering pseudodifferential
operators of which P (σ) is an example. These have a symbol calculus both in
the position z and in the momentum ζ. The class Ψm,l of scattering pseudodif-
ferential operators of Melrose [4] on asymptotic cones, going back to Shubin and
Parenti for Rn, arises (in Rn) from quantizing symbols Sm,l satisfying the esti-

mates |Dα
zD

β
ζ a(z, ζ)| ≤ Cαβ〈z〉

l−|α|〈ζ〉m−|β|; here m is the differential and l is the
decay order. One quantizes these symbols to operators via e.g. the standard left
quantization to obtain Op(a). These pseudodifferential operators are closed un-
der composition and adjoints, and one can compute the composition and adjoints
modulo ‘trivial’ operators in Ψ−∞,−∞, which map any weighted Sobolev space to
any other. For instance, to leading order, both in ζ and in z decay, Op(a)Op(b)
is given by Op(ab)! One calls [a], the class of a in Sm,l/Sm−1,l−1, the principal
symbol σm,l(A) of A = Op(a). A is elliptic if σm,l(A) is invertible. Moreover,
Ψm,l ⊂ L(Hs,r, Hs−m,r−l) for all s, r ∈ R. Indeed, one could define Hs,r as con-
sisting of tempered distributions u for which Au ∈ L2 for some elliptic A ∈ Ψs,r.

Now, ∆−σ2 has principal symbol |ζ|2−σ2, which vanishes for real σ at certain
(finite) ζ; the issue is that this persists as |z| → ∞, so in the spatial decay sense this
operator is not elliptic. Since the principal symbol is real, within the characteristic
set (where the principal symbol vanishes) we have propagation as for the wave
equation, and the key question is the behavior of the Hamilton flow, i.e. the flow
ofHp, or more precisely of Hp = ρHp. Here the Hp-flow has a source/sink structure,
with the source or sink corresponding to the phase space location of the incoming
(−) and outgoing (+) spherical wave phase functions e∓iσρ. The usual propagation
estimates propagate an existing estimate from one region to another, and one needs
a way of starting this propagation. At the source/sink the a priori controlled term
can be dropped if the decay order r is greater than the threshold value −1/2, while
if r < −1/2 then one can propagate estimates from a punctured neighborhood of
the source/sink to the source/sink itself; this already arose in [4].
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Issue: being Fredholm needs estimates for both P and P ∗ on dual spaces, so

• for both we need high regularity (as measured by decay) at either the
source or sink,

• which means low regularity at the same place for the dual,
• so we need r > −1/2, say, at source, r < −1/2 at the sink,
• so the decay order needs to be variable.

There are such variable order (or anisotropic) Sobolev spaces (going back to
Unterberger, Duistermaat...), and indeed can be defined via variable order A,
essentially Op(〈ζ〉s〈z〉r), but r = r(z, ζ) is a homogeneous degree 0 function in z:
u ∈ Hs,r if for such elliptic variable orderA, Au ∈ L2. (Other uses of variable order
spaces include Anosov dynamical systems: Faure, Sjöstrand, Dyatlov, Zworski,
Guillarmou...) The results then extend to:

Theorem 1 ([5], see [7] for the low energy version).

P (σ) : {u ∈ Hs,r : P (σ)u ∈ Hs−2,r+1} → Hs−2,r+1

is invertible (in particular Fredholm), provided r is monotone along the Hp-flow in
the characteristic set, < −1/2 at one of the source/sink, > −1/2 at the other.

We do not need to make sense of the limiting absorption principle resolvent as
a limit; it is an honest Fredholm problem, thus sharp!

Here we can make r high everywhere except in a small neighborhood of the sink,
say. But shouldn’t we be able to make it high everywhere but at the sink? Here
comes 2-microlocalization. Informally, 2-microlocalization blows up (resolves) the
phase space, and a version goes back to Bony in the 80s.

• Here we blow up the outgoing source or sink manifold, which creates a
new boundary hypersurface.

• Symbolic orders, as well as Sobolev space orders, arise from the order of
vanishing at the boundary hypersurfaces.

• Thus, we have three orders now: differentiability, general decay (call it
sc-decay) and outgoing decay (call it b-decay): Hs,r,l.

• We can have r > −1/2, l < −1/2 constant.

Theorem 2 ([6], see [8] for the low energy version).

P (σ) : {u ∈ Hs,r,l : P (σ)u ∈ Hs−2,r+1,l+1} → Hs−2,r+1,l+1

is invertible.
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[2] Dietrich Häfner, Peter Hintz, and András Vasy. Linear stability of slowly rotating Kerr black
holes. Invent. Math., 223(3):1227–1406, 2021.

[3] Arne Jensen and Tosio Kato. Spectral properties of Schrödinger operators and time-decay
of the wave functions. Duke Math. J., 46(3):583–611, 1979.



Analysis, Geometry and Topology of Singular PDE 1455

[4] Richard B. Melrose. Spectral and scattering theory for the Laplacian on asymptotically
Euclidian spaces. In Spectral and scattering theory (Sanda, 1992), volume 161 of Lecture
Notes in Pure and Appl. Math., pages 85–130. Dekker, New York, 1994.

[5] András Vasy. A minicourse on microlocal analysis for wave propagation. In Asymptotic
analysis in general relativity, volume 443 of London Math. Soc. Lecture Note Ser., pages
219–374. Cambridge Univ. Press, Cambridge, 2018.

[6] András Vasy. Limiting absorption principle on Riemannian scattering (asymptotically conic)
spaces, a Lagrangian approach. Comm. Partial Differential Equations, 46(5):780–822, 2021.

[7] András Vasy. Resolvent near zero energy on Riemannian scattering (asymptotically conic)
spaces. Pure Appl. Anal., 3(1):1–74, 2021.

[8] András Vasy. Resolvent near zero energy on Riemannian scattering (asymptotically conic)
spaces, a Lagrangian approach. Comm. Partial Differential Equations, 46(5):823–863, 2021.

The Fredholm theory of Tian–Yau metrics

Xuwen Zhu

(joint work with Rafe Mazzeo)

Gravitational instantons are defined as complete, noncompact four-dimensional
hyperKähler manifolds with sufficient curvature decay at infinity. They play im-
portant roles in several areas of mathematics and physics. There are six known
types of gravitational instantons, which go under the monikers ALE, ALF, ALG*,
ALG, ALH* and ALH. Among these, ALH* spaces are total spaces of nilmani-
fold fibrations over a half-line, and have volume growth r4/3 and curvature decay
r−2, and Tian–Yau metrics [5, 2] are a kind of ALH* spaces. Such metrics re-
cently appear as bubbles in the degeneration theory of four-dimensional Einstein
metrics [3].

The structure of Tian–Yau metrics at infinity is given by Calabi moduli. Such
doubly warped structure is a kind of a-structures discussed in [1], and using the
construction of pseudodifferential operators there we prove the Fredholm property
of the Laplace operator [4].

Theorem 1. The Laplace operator of a Tian–Yau metric (M, g) is a Fredholm
operator mapping between suitable weighted Sobolev spaces

(1)

∆ : xcHk
a
(M) → Π⊥

θ x
cHk−2

a
(M)⊕ΠθΠ

⊥
y x

c+2Hk−2
a

(M)⊕ΠyΠθx
c+4Hk−2

a
(M)

for any c, k except when c is an indicial root for ΠyΠθ∆ΠyΠθ.

As applications we prove the following result about the L2 cohomology of such
metrics.

Theorem 2. The L2 harmonic forms of a Tian–Yau metric is identified with
weighted cohomology and intersection cohomology with suitable perversities.

We also show the following

Theorem 3. Any Tian–Yau metric has a polyhomogeneous expansion at infinity.

and
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Theorem 4. The perturbation of the Tian–Yau metrics determined by the moduli
of Calabi model is unobstructed.
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Université de Paris
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Institut de Mathématiques de Jussieu -
Paris Rive Gauche, Université de Paris
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