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Introduction by the Organizers

The workshop Geometric Methods of Complex Analysis this time, in view of the
corona pandemy, took place as a hybrid meeting. It has attracted 53 researchers
from 14 countries. Both, leading experts in the field and young researchers (in-
cluding one Ph. D. student and three postdocs) were represented in the meeting.
There was 10 female researchers among the participants of the workshop. A rather
wide spectrum of topics related to Complex Analysis (and this was one of the aims
of the workshop) was covered by the talks and following after them informal dis-
cussions. All 19 lectures presented on the meeting can be conditionally divided
into the following groups.

Holomorphic Dynamics and Nevanlinna’s Theory were represented by the talks of
T.-C. Dihn and N. Sibony. Dihn discussed the theory of random walks on the group
G = SL2(C) acting by linear transformations on the complex projective line P1.
In this setting new versions of the Local Limit Theorems for the norm cocycle and
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for the random matrices under the optimal moment conditions were established.
Sibony presented some analogies between holomorphic dynamical systems and
equidistribution problems in Nevanlinna’s Theory. He explained that under some
natural assumptions on a non-degenerate holomorphic map from an open complex
manifold with a good p.s.h. exhaustion function to a compact complex manifold
the Valiron defect is zero except for a pluri-polar set of parameters.

L2-methods and Cohomologies were represented by the talks of X. Zhou, J.-P.
Demailly, X. Wang, B.-Y. Chen, T. Ohsawa and N. Tardini. Zhou gave some
generalizations of Siu’s lemma related to multiplier ideal sheaves and explained
their applications in some problems related to L2 extension in Kähler case, com-
parison between singular metrics on the twisted relative pluricanonical bundles,
subadditivity of the generalized Kodaira-Iitaka’s dimensions and extension of co-
homology classes. Demailly presented new results on the existence of differential
equations that strongly restrain the locus of entire curves in the general context
of foliated or directed varieties, under appropriate semistability conditions. These
results are closely related to the famous Green-Griffiths-Lang conjecture. Wang
explained how to obtain an explicit estimate of the Bergman kernel for positive
line bundles. Chen presented results that generalize classical Bergman theory to
the case of Lp-spaces. Ohsawa explained how Hörmander’s method of compar-
ing L2 cohomology groups with respect to different weights can be revisited and
refined to deduce some extension theorems and approximation theorems of new
type. Tardini showed that on a compact 4-dimensional almost-complex manifold
X the Hodge number h1,1

∂
(X) is a topological invariant for locally conformally

Kähler and globally conformally Kähler metrics.

Plurisubharmonic Functions and Pluripotential Theory were represented by the
talks of E. Di Nezza, E. Wulcan, V. Guedj, D. Witt Nyström, S. Kolodziej, L.
Lempert, B. Stensønes and Z. B locki. Di Nezza presented results on the behavior
of the Monge-Ampère measures on contact sets. These results were motivated
by the study of geodesics in the space of Kähler metrics and the transcendental
holomorphic Morse inequalities on projective manifolds. Wulcan explained how to
define a Monge-Ampère operator with nice continuity properties for a large class
of (in particular not locally bounded) plurisubharmonic functions. These results
extend in a natural way earlier results of Demailly, Cegrell and B locki. Guedj
presented a systematic study of quasi-plurisubharmonic potentials whose Monge-
Ampère measures have finite entropy. He explained that these potentials belong
to the finite energy class E n

n−1 , where n denotes the complex dimension, and gave
examples showing that this critical exponent is sharp. Witt Nyström showed how
the Hele-Shaw flows can be used to produce examples of the solutions to the Dirich-
let problem for the homogeneous complex Monge-Ampère equation which fail to
have C2-regularity. Kolodziej presented results on the existence of a continuous
quasi-plurisubharmonic solution to Monge-Ampère equations with very general
right hand side on a compact Hermitian manifold. As a consequence, he gave a
characterization of measures admitting Hölder continuous quasi-plurisubharmonic
potential, inspired from the work of Dinh-Nguyen. Lempert explained how to
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generalize earlier results of Darvas on geodesics in the space of relative Kähler po-
tentials to Lagrangians that are fiberwise convex, continuous, and invariant under
parallel translation. Stensønes presented results on domains in Cn, n ≥ 3. with
real analytic boundary which can be bumped to type. In particular, she explained
that if Ω ⊂⊂ Cn is pseudoconvex and can be bumped to type at every boundary
point, then we get supnorm estimates for ∂. She also presented results in the case
of dimension n = 3, which asserts that Ω can be bumped to type. B locki discussed
results and problems related to interior regularity of solutions of the Dirichlet
problem for the real and complex Monge-Ampère equation for domains which are
not necessarily strongly pseudoconvex (namely, for non-smooth bounded admis-
sible domains). He has presented some partial results in this direction as well as
some recent work in progress.

Geometric Questions of Complex Analysis were represented by the talks of F.
Forstnerič, B. Jöricke and A. Zimmer. Forstnerič explained how to establish precise
estimates of derivatives and the rate of growth of conformal harmonic maps from
hyperbolic conformal surfaces into the unit ball Bn of Rn for any n ≥ 3. Such maps
parameterize minimal surfaces, objects of high interest in geometry. As a special
case of his main result one gets a generalization of the Schwarz–Pick lemma, due to
H. A. Schwarz (1869), H. Poincaré (1884), and G. A. Pick (1915), to a much larger
class of maps. Jöricke discussed the question of the restricted validity of Gromov’s
Oka principle and obstructions to this principle in case the target is not a Gromov-
Oka manifold. She also explained how to get upper and lower bounds (differing by
multiplicative constants) of the conformal modules of conjugacy classes of elements
of π1(C \ {−1, 1}, 0) introduced by Gromov, by quantities that are expressed in
terms of certain representing words and are easy to compute. Zimmer defined
a new notion of a domain Ω ⊂ Cd with bounded intrinsic geometry. He then
explained how to generalize a classical result of Fu-Straube on compactness of the
∂̄-Nuemann operator Nq on (0, q)-forms for bounded convex domains to the case of
domains with bounded intrinsic geometry. Zimmer also presented a generalization
to the defined by him class of domains of Li’s theorem which characterizes the
symbols in L2(Ω) for which the associated Hankel operator is compact.
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Abstracts

Siu’s lemma: generalizations and applications

Xiangyu Zhou

(joint work with Langfeng Zhu)

Siu’s lemma related to multiplier ideal sheaves (m.i.s.), which is coined by Phong
and Sturm, plays an important role in Siu’s work on some open problems in com-
plex algebraic geometry. In this talk, we’ll present some generalizations and their
applications in some problems related to L2 extension in Kähler case, comparison
between singular metrics on the twisted relative pluricanonical bundles, subaddi-
tivity of the generalized Kodaira-Iitaka’s dimensions with m.i.s., and extension of
cohomology classes. This is joint work with Langfeng Zhu.

Siu’s lemma [6]: Let ϕ(z) be a nonpositive plurisubharmonic function on B1
r ×

Bn−1
r such that

Iϕ :=

∫

(z2,··· ,zn)∈B
n−1
r

e−ϕ(0,z2,··· ,zn)dλn−1 < +∞,

Assume that r1 ∈ (0, r). Then there exists a positive number C independent of ϕ,
such that

lim
z1→0

∫

(z2,··· ,zn)∈B
n−1
r1

e−ϕ(z1,z2,··· ,zn)dλn−1 ≤ CIϕ.

Using Ohsawa-Takegoshi L2 extension theorem movably which is a key idea in
the proof of the Demailly’s strong openness conjecture ([4]), Zhou and Zhu prove
generalized Siu’s lemma with trivial m.i.s [7]:

Let ϕ(z′, z′′) be a plurisubharmonic function, P (z′, z′′) be a nonnegative con-
tinuous function on B1

r × Bn−1
r .

lim
ε→0+

1

µ(B1
ε)

∫

B1
ε×B

n−1
r

P (z′, z′′)e−ϕ(z′,z′′)dλn

=

∫

z′′∈B
n−1
r

P (0, z′′)e−ϕ(0,z′′)dλn−1

The above implies Siu’s Lemma with C = 1.

Using the strong openness property of multiplier ideal sheaves ([4]), Zhou and Zhu
prove: generalized Siu’s lemma with nontrivial m.i.s.

Assume that

If,ϕ :=

∫

z′′∈B
n−m
r

|f(z′′)|2e−ϕ(0,z′′)dλn−m < +∞

Assume that ε, r1, r2 ∈ (0, r) and r1 < r2.
Then there exists a holomorphic function F (z′, z′′) on Bm

r2 ×Bn−m
r2 (1 ≤ m ≤ n)

such that F (0, z′′) = f(z′′) on Bn−m
r2 ,
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∫

Bm
r2

×B
n−m
r2

|F (z′, z′′)|2e−ϕ(z′,z′′)dλn < +∞,

and

lim
ε→0+

1

λ(Bm
ε )

∫

Bm
ε ×B

n−m
r1

P (z′, z′′)|F (z′, z′′)|2e−ϕ(z′,z′′)dλn

=

∫

z′′∈B
n−m
r1

P (0, z′′)|f(z′′)|2e−ϕ(0,z′′)dλn−m

Using the iteration method by Berndtsson-Paun, Zhou-Zhu establish general-
ized Siu’s lemma with nontrivial Lp m.i.s..

Let p ∈ (0, 2]. Let ϕ(z′, z′′) be a psh function on Bm
r × Bn−m

r , M(z′) be a
bounded nonnegative measurable function on Cm with compact support, and f(z′′)
be a holomorphic function on Bn−m

r satisfying
∫

z′′∈B
n−m
r

|f(z′′)|pe−ϕ(0,z′′)dλn−m < +∞.

Theorem ([8]). Assume that r1, r2, r3 ∈ (0, r) and r1 < r2 < r3. Let β be a
positive number such that

Iβ :=

∫

z′′∈B
n−m
r3

|f(z′′)|pe−(1+β)ϕ(0,z′′)dλn−m < +∞

(the existence of β is guaranteed by strong openness of the multiplier ideal sheaves),
and α ∈ (1 − p

2mβ, 1) be a nonnegative number. Then there exists a holomorphic
function F (z′, z′′) on Bm

r × Bn−m
r3 such that F (0, z′′) = f(z′′) on Bn−m

r3 ,
∫

(z′,z′′)∈Bm
r ×B

n−m
r3

|F (z′, z′′)|pe−(1+β)ϕ(z′,z′′)

|z′|2mα
dλn < +∞

and

lim
ε→0+

∫

(z′,z′′)∈Bm
r ×B

n−m
r1

1

ε2m
M

(z′
ε

)
P (z′, z′′)|F (z′, z′′)|pe−ϕ(z′,z′′)dλn

=

∫

z′∈Cm

M(z′)dλm

∫

z′′∈B
n−m
r1

P (0, z′′)|f(z′′)|pe−ϕ(0,z′′)dλn−m.

Among applications, one can obtain the pseudoeffectivity of the twisted relative
pluricanonical bundles in the Kähler case ([1], [5], [8]); prove a comparison conjec-
ture between two singular metrics on the twisted relative pluricanonical bundles
posed in [1] and [5] ([8]); introduce the generalized Kodaira-Iitaka’s dimensions
with m.i.s. and obtain the subadditivity of these dimensions for Kähler fibration
([9]); solve a problem on the extension of cohomology classes posed in [2] by devel-
oping Demailly’s technique on regularization of the closed positive (1, 1) currents
in [3] and then obtain a new injectivity theorem which unifies the previous ones
([10]).
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Entire curves in complex projective varieties and differential equations

Jean-Pierre Demailly

For a given complex projective variety, the existence of entire curves is strongly
constrained by the positivity properties of the cotangent bundle. The Green-
Griffiths-Lang conjecture stipulates that entire curves drawn on a variety of general
type should all be contained in a proper algebraic subvariety. We present here
new results on the existence of differential equations that strongly restrain the
locus of entire curves in the general context of foliated or directed varieties, under
appropriate semistability conditions.

Let X be a complex projective manifold, dimCX = n. Our goal is to study the
existence and distribution of entire curves, i.e. non constant holomorphic curves
f : C → X , in view of the following fundamental conjecture.

Conjecture (Green-Griffiths-Lang). Assume that X is of general type, namely
that κ(X) = n = dimX where κ(X) := lim supm→+∞ log h0(X,K⊗m

X )/ logm.
Then there exists an algebraic subvariety Y ( X containing all entire curves
f : C → X.

In case X is defined over a number field K0, the smallest algebraic subvariety
Y as above is expected to coincide with the Mordell locus of points where the
K-rational points accumulate, for all number fields K containing K0. We concen-
trate here on the geometric problem of studying the locus of entire curves. It is
convenient to work in the category of directed varieties:
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• objects are pairs (X,V ) where X is a complex manifold and V ⊂ TX a
linear subspace of TX , defined by a coherent subsheaf O(V ) ;

• arrows ψ : (X,V ) → (Y,W ) are holomorphic maps X → Y such that
dψ(V ) ⊂W .

The absolute case refers to the case of pairs (X,TX) where V = TX , but the
integrable situation [O(V ),O(V )] ⊂ O(V ) corresponds to the interesting case
of holomorphic (possibly singular) foliations. An important object attached to
a directed manifold (X,V ) is its canonical sheaf, which is simply defined to be
KV = det(V ∗) when V is a subbundle, and is taken to be the rank 1 sheaf bKV

of sections of det V ∗ that are locally bounded with respect to a smooth ambient
metric on TX in the singular case.

Definition. We say that (X,V ) is of general type if bKV is big, i.e. if the space
H0(X, (bKV )⊗m) provides a generic embedding of X for a suitable m≫ 1, possibly
after taking a suitable blow-up of X.

Generalized Green-Griffiths-Lang conjecture (GGL conjecture). If

(X,V ) is directed manifold of general type, i.e. if K[•]
V is big, then there exists an

algebraic locus Y ( X such that for every f : (C, TC) → (X,V ), one has f(C) ⊂ Y.

The generalized GGL conjecture is an elementary consequence of the Ahlfors-
Schwarz lemma when r = rankV = 1. In fact, the function t 7→ log ‖f ′(t)‖V,h
is strictly subharmonic if r = 1 and (V ∗, h∗) big. The conjecture is possibly too
optimistic: it might be safer to add a suitable (semi-) stability condition on V .
The basic strategy is to how that entire curves f : (C, TC) → (X,V ) must satisfy
nontrivial algebraic differential equations P (f ; f ′, f ′′, . . . , f (k)) = 0 with operators
of the form

P (f[k]) = P (f ; f ′, f ′′, . . . , f (k)) =
∑

aα1α2...αk
(f(t)) f ′(t)α1f ′′(t)α2 . . . f (k)(t)αk .

Such operators of homogeneous degree m = |α1|+2|α2|+ . . .+k|αk| define a sheaf
denoted EGG

k,mV
∗. If we let Jnc

k V ⊂ JkV be the set of non constant k-jets of curves,

the Green-Griffiths bundle is the projectivized bundle XGG
k = Jnc

k V/C∗ obtained
as a quotient by the natural weighted C∗ action, and we have the direct image
formula

EGG
k,mV

∗ = (πk)∗OXGG
k

(m).

where OXGG
k

(1) is the associated tautological rank 1 sheaf and πk : XGG
k → X

the natural projection. Given a real (1, 1)-form θ on X , the q-index set of θ is
defined to be X(θ, q) = {x ∈ X | θ(x) has signature (n − q, q)}, and we also set
X(θ,≤ q) =

⋃
0≤j≤qX(θ, j). An application of holomorphic Morse inequalities to

suitable Finsler metrics on OXGG
k

(1) yields the following fundamental estimates.

Main cohomology estimates (D-, 2010). Let (X,V ) be a directed manifold,
A an ample Q-line bundle over X, (V, h) and (A, hA) hermitian structures such
that ΘA,hA

> 0. Define

Lk = OXGG
k

(1) ⊗ π∗
kO

(
− 1

kr

(
1 + 1

2 + . . .+ 1
k

)
A
)
,
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η = ΘdetV ∗,deth∗ − ΘA,hA
.

Then all m≫ k ≫ 1 such that m is sufficiently divisible and for all q ≥ 0 we have
upper and lower bounds

hq(XGG
k ,O(L⊗m

k )) ≤ mn+kr−1

(n+kr−1)!
(log k)n

n! (k!)r

(∫
X(η,q)(−1)qηn + C

log k

)
,

hq(XGG
k ,O(L⊗m

k )) ≥ mn+kr−1

(n+kr−1)!
(log k)n

n! (k!)r

(∫
X(η,{q, q±1})

(−1)qηn − C
log k

)
.

The case q = 0 is the most useful one, as it gives estimates for the number of
holomorphic sections in

H0(XGG
k , L⊗m

k,ε ) ≃ H0(X,EGG
k,mV

∗ ⊗O(−mδkεA))

for m≫ k ≫ 1 and ε ∈ Q>0 small. By the fundamental vanishing theorem due to
[Green-Griffiths 1979], [Demailly 1995] and [Siu-Yeung 1996]), all global sections
P of the above group provide a differential equation P (f[k]) ≡ 0 for the entire
curves f : (C, TC) → (X,V ). The hardest part consists in investigating the base
locus

Z =
⋂

m∈N∗

⋂

σ∈H0(XGG
k

,L⊗m
k,ε

)

σ−1(0) ⊂ XGG
k .

and trying to show that πk(Z) ( X . For this, one would like to construct nonzero
section of H0(Z,L⊗m

k ), so as to get new differential equations that reduce further
the base locus. Very recently (April 2021), we succeeded to get such sections when
Z ⊂ XGG

k is a component of a complete intersection of irreducible hypersurfaces
⋂

1≤j≤ℓ

{
k-jets f[k] ∈ XGG

k ; Pj(f) = 0
}
, Pj ∈ H0(X,EGG

sj ,mj
V ∗ ⊗Gj)

with k ≥ k0, ord(Pj) = sj , 1 ≤ s1 < · · · < sℓ ≤ k,
∑

1≤j≤ℓ

1
sj

≤ δ log k, and

Gj ∈ Pic(X) (agin using holomorphic Morse inequalities). Unfortunately, this is
yet insufficient to prove the GGL conjecture.
A promising approach consists in the use of the tower of Semple bundles (Xk, Vk),
where Xk = P (Vk−1), dimXk = n+ k(r − 1), rankVk = r,

πk,0 : Xk
πk−→Xk−1 → · · · → X1

π1−→X0 = X,

and Vk is defined inductively by

Vk,(x,[v]) =
{
ξ ∈ TXk,(x,[v]) ; dπk,k−1(ξ) ∈ Cv ⊂ Vk−1 ⊂ TXk−1,x

}
.

Every curve f : (C, TC) → (X,V ) admits a k-jet lifting f[k] : (C, TC) → (Xk, Vk).
Far any irreducible algebraic subset Z of Xk, one also gets an induced directed
structure (Z,W ) →֒ (Xk, Vk) by taking the linear subspace W ⊂ TZ ⊂ TXk|Z to
be the closure of TZ′ ∩Vk taken on a suitable Zariski open set Z ′ ⊂ Zreg where the
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intersection has constant rank and is a subbundle of TZ′ . Using this technology
and the existence of suitable “tautological morphisms”, we recently proved

Theorem (D-, 2021). Let (X,V ) be a directed variety. Assume that bΛpV ∗ is
strongly big for some p ≤ r = rankV , in the sense that for A ∈ Pic(X) ample,
the symmetric powers Sm(bΛpV ∗)⊗O(−A) are generated by their sections over a
Zariski open set of X, for m≫ 1.

• If p = 1, (X,V ) satisfies the generalized GGL conjecture (well known fact!)
• If p ≥ 2, there exists a subvariety Y ( X and an induced directed variety

(Z,W ) ⊂ (Xk, Vk) with rankW ≤ p − 1, such that all entire curves f :
(C, TC) → (X,V ) satisfy either f(C) ⊂ Y or f[k](C) ⊂ Z.

• In particular, if p = 2, all entire curves f : (C, TC) → (X,V ) are either
contained in Y ( X, or they are tangent to a rank 1 foliation on a sub-
variety Z ⊂ Xk. This implies that the leaves are parametrized by a finite
dimensional space.

The above results also give rise to logarithmic and orbifold directed versions.
Let ∆ =

∑
∆j be a reduced normal crossing divisor in X . We want to study

entire curves f : C → X \ ∆ drawn in the complement of ∆. At a point where
∆ = {z1 . . . zp = 0} one defines the logarithmic cotangent sheaf T ∗

X〈∆〉 to be gen-
erated by the 1-forms dz1/z1, ..., dzp/zp, dzp+1, ..., dzn.

Logarithmic statement (D-, 2021). If Λ2T ∗
X〈∆〉 is strongly big on X, there

exists a subvariety Y ( X and a rank 1 foliation F on some k-jet bundle Xk, such
that all entire curves f : C → X \ ∆ are contained in Y or tangent to F .

For the orbifold case, we refer the reader to our forthcoming work in collabo-
ration with F. Campana, L. Darondeau & E. Rousseau. In all cases, proving the
GGL conjecture with optimal positivity conditions (i.e. only assuming bigness of
the logarithmic/orbifold canonical sheaf) seems to require a better understanding
of stability properties of the cotangent bundle.

An explicit estimate of the Bergman kernel for positive line bundles

Xu Wang

Let (L, e−φ) be a positive line bundle over an n-dimensional complex manifold X .
Let m be a positive integer. Let KX be the canonical line bundle over X . We call

(1) Kmφ(x) := sup
u∈H0(X,KX+mL)

u(x) ∧ u(x) e−mφ(x)

∫
X u ∧ ū e−mφ

,

the Bergman kernel forms and

(2) Bmφ(x) := sup
u∈H0(X,mL)

|u(x)|2e−mφ(x)

∫
X |u|2e−mφ MAmφ

, MAmφ :=
(i∂∂(mφ))n

n!
,
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the Bergman kernel functions. In [11] Tian proved that if X is compact then

(3) lim
m→∞

Kmφ

MAmφ
= lim

m→∞
Bmφ =

1

(2π)n
.

Effective lower bound estimate (with Ricci curvature, diameter and volume as-
sumptions) for Bmφ is known as Tian’s partial C0-estimate [12]. The first general
result is obtained by Donaldson–Sun [5] using proof by contradiction. Our main
results are the followings:

Theorem A. Let (L, e−φ) be a positive line bundle over a compact Riemann
surface X. Put ω := MAφ = i∂∂φ. Denote by Ricω := i∂∂ logω the Ricci form
of ω. Assume that

Ricω ≤ ω, L0 ≥ 2π,

where L0 denotes the infimum of the length of closed geodesics in X, then we have
Kφ/MAφ ≥ 1

8π .

Theorem B. Let (L, e−φ) be a positive line bundle over a compact Riemann sur-
face X. If

−ω/2 ≤ Ricω ≤ ω/2, L0 ≥ 2π
√

2,

then Bφ ≥ 1
16π .

Remark. In case X = P1 and ω = 2 · i∂∂ log(1 + |z|2) we have

Ricω = ω, L0 = 2π,

a direct computation gives L = −KX and Kφ/MAφ = 1
4π . We do not know

whether

Kφ/MAφ ≥ 1

4π
is always true with the assumptions in Theorem A. On the other hand, Theorem
A implies Kmφ/MAmφ ≥ 1/(8π) for every positive integer m. This is also near
optimal since by (3)

lim
m→∞

Kmφ/MAmφ = 1/(2π).

In case Ricω ≤ 0, L0/2 is equal to the injectivity radius. For example if X = C/Γ

is a torus and ω = i∂∂(|z|2/2) then Ricω = 0 and L0 = inf06=γ∈Γ |γ|.
In the first version of this paper, a weaker version of the above theorems is

proved using an Ohsawa–Takegoshi type theorem, a variant of the Blocki–Zwonek
estimate [2] and the isoperimetric inequality. Later we find that one may use
the Hessian comparison theorem to simplify the proof and generalize the above
theorems to the followings higher dimensional cases.

Theorem An. Let (L, e−φ) be a positive line bundle over an n-dimensional com-
pact complex manifold X. Assume that the sectional curvature of ω := i∂∂φ is
bounded above by 1/(4n) and L0 ≥ 2π

√
n then Kφ/MAφ ≥ 1

2
1

(4πn)n .

Theorem Bn. Let (L, e−φ) be a positive line bundle over an n-dimensional com-
pact manifold X. Assume that the sectional curvature of ω := i∂∂φ is bounded
above by 1/(8n), L0 ≥ 2π

√
2n and Ricω ≥ −ω/2. Then Bφ ≥ 1

2
1

(8πn)n .
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Remark. Since the Ricci curvature is certain sums of sectional curvatures, the
curvature assumptions in Theorem Bn also imply a lower bound of the sectional
curvature. Hence one may use [6, Corollary 2.3.2] to find a lower bound of L0 in
terms of the lower bound of the volume and the upper bound of the diameter. Thus,
except the upper bound of the sectional curvature, the assumptions in Theorem Bn
follow from the standard assumptions in Tian’s partial C0-estimate (for results
on Tian’s partial C0-estimate, see [1, 3, 4, 7, 8, 9, 10, 13, 14, 15], etc). Our
main contribution is the explicit constant in the estimate. Moreover, our estimate
implies that

(⋆) Bmφ ≥ 1

2

1

(8πn)n

for all positive integers m. From the last section in [5], it seems that for gen-
eral positive line bundles over higher dimensional manifolds, the Ricci curvature
assumptions might not enough to derive (⋆).
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Monge-Ampère measures on contact sets

Eleonora Di Nezza

(joint work with Stefano Trapani)

Let (X,ω) be a compact Kähler manifold of dimension n and fix θ a smooth closed
real (1, 1)-form. A function ϕ : X → R ∪ {−∞} is called quasi-plurisubharmonic
(qpsh for short) if locally ϕ = ρ+u, where ρ is smooth and u is a plurisubharmonic
function. We say that ϕ is θ-plurisubharmonic (θ-psh for short) if it is quasi-
plurisubharmonic and θϕ := θ + i∂∂̄ϕ ≥ 0 in the weak sense of currents on X .
We let PSH(X, θ) denote the space of all θ-psh functions on X . The class {θ} is
pseudoeffective if PSH(X, θ) 6= ∅ and it is big if there exists ψ ∈ PSH(X, θ) such
that θ + i∂∂̄ψ ≥ εω for some ε > 0, or equivalently if PSH(X, θ − εω) 6= ∅.

When θ is non-Kähler, elements of PSH(X, θ) can be quite singular, and we
distinguish the potential with the smallest singularity type in the following manner:

Vθ := sup{u ∈ PSH(X, θ) such that u ≤ 0}.

Given ϕ ∈ PSH(X, θ), following the construction of Bedford-Taylor [1] in the local
setting, it has been shown in [5] that the sequence of positive measures

(1) 1{ϕ>Vθ−k}θ
n
max(ϕ,Vθ−k)

has total mass (uniformly) bounded from above and is non-decreasing in k ∈ R,
hence converges weakly to the so called non-pluripolar Monge-Ampère measure
θnϕ. As a consequence of Bedford-Taylor theory it can be seen that the measures

in (1) all have total mass less than
∫
X θnVθ

, in particular, after letting k → ∞
∫

X

θnϕ ≤
∫

X

θnVθ
.

In the following we are going to work with some well known envelope constructions:

Pθ(f), Pθ[ϕ](f).

Given a function f on X bounded from above, we consider the “rooftop envelopes”

Pθ(f) := (sup{v ∈ PSH(X, θ), v ≤ f)})∗.

Then, given a θ-psh function ϕ, the above procedure allows us to introduce

Pθ[ϕ](f) :=
(

lim
C→+∞

Pθ(min(ϕ+ C, f))
)∗

.

Note that by definition we have Pθ[ϕ](f) = Pθ[ϕ](Pθ(f)), and that when f = 0,
Pθ(0) = Vθ.

The questions we are interesting in concerns the regularity of such envelopes and
what kind of information one can get on the non-pluripolar Monge-Ampère mea-
sures θnPθ(f)

and θnPθ [ϕ](f).

The geometric motivations we can mention are, among others, the study of geo-
desics in the space of Kähler metrics and the transcendental holomorphic Morse
inequalities on projective manifolds.
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The study of such envelopes has lead to several works. We start by summarizing
them in the case of a smooth barrier function f .
The first result to mention is [3], where the author proves that in the case θ ∈ c1(L)
where L is a big line bundle over X , the envelope Pθ(f) is C1,1 on Amp ({θ}) and
moreover

(2) θnPθ(f)
= 1{Pθ(f)=f}θ

n
f .

After [2], people started to work on possible generalizations of the above results
in the case of a pseudoeffective class {θ}, that does not necessarily represent the
first Chern class of a line bundle. Assume that {θ} is big and nef, Berman [4],
using PDE methods, proved that the envelope Pθ(f) is in C1,α on Amp ({θ}) for
any α ∈ (0, 1) and that the identity in (2) holds. The optimal regularity C1,1 in
the Kähler case was then proved independently by [9] and [7], while the big and
nef case was settled in [6].

The result obtained in collaboration with Stefano Trapani answers to the ques-
tion about the behavior of the Monge-Ampère measures on contact sets and it
states as follows:

Theorem (Di Nezza-Trapani [8]). Let θ be smooth closed real (1, 1)-form on
X such that the cohomology class {θ} is pseudoeffective. Let ϕ be a θ-plurisub-
harmonic function and f ∈ C1,α(X) for any α ∈ (0, 1). Assume ϕ ≤ f . Then the
non-pluripolar product θnϕ satisfies the equality

(3) 1{ϕ=f}θ
n
ϕ = 1{ϕ=f}θ

n
f .

As (almost an immediate) corollary we get:

Corollary. Let ϕ ∈ PSH(X, θ) and f ∈ C1,α(X) for any α ∈ (0, 1), be such that
ϕ ≤ f . We have:

i) θnPθ(f)
= 1{Pθ(f)=f}θ

n
f .

ii) θnP [ϕ](f) = 1{P [ϕ](f)=f}θ
n
f .

We conclude by observing that the above Theorem can not hold when the
barrier function f is singular. The following counterexample shows indeed that
(3) does not hold when f is merely continuous.

Let B ⊂ X be a small open ball and let ρ be a smooth potential such that
ω = ddcρ in a neighborhood of B. We solve the Dirichlet problem

(ddc(ρ+ v))n = 0 in B, v|∂B = 0.

Since the boundary data is continuous, one can guarantee the existence of a con-
tinuous solution v ≥ 0 which is ω-psh in B. We then define

f :=

{
v in B

0 in X \ B.
By construction f ≥ 0 is a continuous function and, since max(v, 0) = v, one can
infer that f is also ω-psh. On the other hand we observe that∫

X\B

ωn
f =

∫

X

ωn
f =

∫

X

ωn >

∫

X\B

ωn.
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Since {f = 0} ⊆ X \ B, we then deduce that the two measures 1{f=0}ω
n and

1{f=0}ω
n
f can not coincide.
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Random walks on SL2(C)

Tien-Cuong Dinh

(joint work with Lucas Kaufmann, Hao Wu)

The theory of random walks on Lie groups is a classical and well developed topic.
Initiated from the work of Furstenberg and Kesten in the 1960s, it was later
developed by Guivarc’h, Kifer, Le Page, Raugi, Margulis, Goldsheid and others
[3]. Even after important progress in the last decades, there are questions whose
answers were found only recently and others remain unsolved, see e.g. [1]. This
topic is still very active and a modern overview can be found in the book [2].
Here, we focus on the group G = SL2(C) acting by linear transformations on the
complex projective line P1.

The general problem can be described as follows. Let µ be a probability measure
on G. Then, µ induces a random walk on G: for n ≥ 1 we let Sn := gn · · · g1 where
the gj ’s are independent random elements of G with law given by µ. One also has
an induced random walk on P1: for a point x ∈ P1 we look at its trajectory under
Sn, i.e. Sn · x = gn · · · g1 · x. The general goal is to describe the asymptotic
behaviour of these random walks and study questions such as the growth and
distribution of the norm of Sn or of its coefficients, etc.

A remarkable fact is that these random processes satisfy analogues of many of
the classical limit theorems for sums of i.i.d. random variables. More precisely,
consider the norm cocycle defined by

σ(g, x) = σg(x) := log
‖gv‖
‖v‖ , for v ∈ C2 \ {0}, x = [v] ∈ P1 and g ∈ G.
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Notice that ‖σg‖∞ = log ‖g‖, where ‖g‖ is denotes operator norm of g.
When µ has a finite first moment, that is,

∫
G

log ‖g‖ dµ(g) < ∞, its (upper)
Lyapunov exponent is the finite number defined by

γ := lim
n→∞

1

n
E
(

log ‖Sn‖
)

= lim
n→∞

1

n

∫
log ‖gn · · · g1‖ dµ(g1) · · · dµ(gn).

A fundamental result of Furstenberg-Kesten (the analogue of the Law of Large
Numbers) tells us that we actually have that 1

n log ‖Sn‖ converges to γ almost
surely as n→ ∞.

In order to obtain finer limit theorems, some conditions on µ need to be imposed.
We need the support of µ to be sufficiently rich and, as in the case of sums of i.i.d.’s,
the random variables must verify some moment conditions.

We say that µ is non-elementary if its support does not preserve a finite
subset of P1 and if the semi-group it generates is not relatively compact in G.
It is an important result of Furstenberg that a non-elementary measure admits a
unique stationary measure, also called the Furstenberg measure. This is the
only probability measure ν on P1 such that

∫

G

g∗ν dµ(g) = ν.

To date, many limit theorems are know both for the sequences σ(Sn, x) and
log ‖Sn‖. However, most of them require the strong condition of finite exponential
moment, that is,

∫
G ‖g‖α dµ(g) < ∞ for some α > 0. These results include the

Central Limit Theorem (CLT), the Law of Iterated Logarithm (LIL), the Local
Limit Theorem (LLT), etc. See [2] for a complete treatment in the more general
setting of reductive groups. These results rely on the fundamental work of Le Page
[9], which studies in detail the Markov operator and its perturbations for measures
with finite exponential moment.

However, it turns out that the above exponential moment condition is too
strong, since the classical versions of the aforementioned limit theorems all hold
under much weaker conditions. A recent breakthrough by Benoist-Quint lead to
the proof of the optimal version the CLT under the second moment condition∫
G log2 ‖g‖dµ(g) < ∞, see [1]. See also [5] for other results under low moment

conditions based on their techniques. However, this method is difficult to tackle
the LLT and the other problems we study.

Up to now, the approach using the Markov operator and its perturbations has
not been successful when the moment conditions are weak. The main difficulty is
to study the spectral properties of these operators without the exponential moment
hypothesis. A recent progress was made in [7], where we were able to obtain a
spectral gap theorem for the Markov operator under the first moment condition.
This allowed us to give an independent proof of the CLT under the second moment
condition in the SL2(C) case, along the lines of [9]. The main idea of [7] is to replace
the random process induced by µ by a generalized (deterministic) self-map of P1.
From there, we were able to use techniques from Complex Dynamics, most notably
the ones developed in [6].
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In this work we continue to develop the ideas of [7] and apply them to prove
some new results about SL2(C) random walks under low moment conditions.

Local Limit Theorems (LLTs). Our first main result is the following LLT
for the norm cocycle under the optimal moment condition. When µ has a finite
exponential moment this result is known since Le Page [9].

Theorem 1 (LLT for the norm cocycle). Let µ be a non-elementary probability
measure on G := SL2(C) with a finite second moment. Let γ be its Lyapunov
exponent and ν be the corresponding stationary measure. Then the norm cocycle
satisfies the LLT.

More precisely, let Sn = gn · · · g1 where the gi are i.i.d. with law µ and set
p(t) := (2π)−1/2 exp(−t2/2). Then, there exists a number a > 0 such that for
every continuous function f with compact support on R× P1 we have

sup
(t,x)∈R×P1

∣

∣

∣

√
naE

(

f
(

t+ σ(Sn, x)− nγ, Sn · x
)

)

− p
( t

a
√
n

)

∫

R×P1

f(s, y) ds dν(y)
∣

∣

∣

→ 0, for n → ∞.

Next, we obtain an analogous LLT for the coefficients of the random matrices.
It is worth noting that, even in the case of finite exponential moment, this property
has been proved only recently by Grama-Quint-Xiao [8].

Theorem 2 (LLT for matrix coefficients). Let µ be a non-elementary probability
measure on G = SL2(C) with a finite 3-moment and let γ be its Lyapunov exponent.
Then the coefficients of Sn satisfies the LLT: for any b1 < b2 in R and uniformly
on u, v ∈ C2 \ {0}, we have

lim
n→∞

√
2πnaP

(
log

|〈Snu, v〉|
‖u‖‖v‖ − nγ ∈ [b1, b2]

)
= b2 − b1.

Fourier coefficients. Assume now that µ is non-elementary and it is supported
by SL2(R), that is, the random matrices have real coefficients. In this case, the
action on P1 preserves the real projective line RP1, which via a stereographic
projection is naturally identified with a circle C parametrized by 0 ≤ θ < 2π.
Then, the stationary measure ν is supported by C. We define the Fourier transform
of ν by

ν̂(k) :=

∫

C

eikθdν(θ) for k ∈ R.

An important class of probability measures, called Rajchman measures, are
those for which the Fourier transform vanishes at infinity. This is a fine property
of the measure that is related to its regularity, but also to some non-arithmeticity
of its support. For instance, it is known that any measure on the standard middle-
thirds Cantor set (no matter how regular) is not a Rajchman measure. Rajchman
property is closely related to sets of uniqueness for trigonometric series.

Recently, Li showed that stationary measures are Rajchman measures under a
finite exponential moment condition, see [10] and also [4, 11] for some arithmetic
and geometric settings. Here, we generalize this result by relaxing the moment
condition.
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Theorem 3. Let µ be a non-elementary probability measure on SL2(R) with a
finite second moment. Then the associated stationary measure ν on C ⊂ P1 is a
Rajchman measure.
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Schwarz–Pick lemma for harmonic maps which are conformal
at a point

Franc Forstnerič

(joint work with David Kalaj)

The original preprint is available at https://arxiv.org/abs/2102.12403.
We establish precise estimates of derivatives and the rate of growth of conformal

harmonic maps from hyperbolic conformal surfaces into the unit ball Bn of Rn for
any n ≥ 3. Such maps parameterize minimal surfaces, objects of high interest in
geometry.

The following special case of our main result generalizes the Schwarz–Pick
lemma, due to H. A. Schwarz [15, Bd. II, p. 108] (1869), H. Poincaré [13] (1884),
and G. A. Pick [12] (1915), to a much larger class of maps. Let D = {z ∈ C : |z| <
1} denote the unit disc.
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Theorem 1. If f : D → D is a harmonic map which is conformal at a point
z ∈ D, then at this point we have that

(1) ‖dfz‖ ≤ 1 − |f(z)|2
1 − |z|2 ,

with equality if and only if f is a conformal diffeomorphism of the disc D.

The classical Schwarz–Pick lemma gives the same conclusion provided the map
f is holomorphic or antiholomorphic, which means that it is conformal at every
noncritical point. This is the most fundamental rigidity result in complex anal-
ysis, leading to the notion of Kobayashi hyperbolic manifolds and providing a
connection to complex differential geometry via the Ahlfors lemma and its gener-
alizations.

Given a differentiable map f = (f1, . . . , fn) : D → Rn, we denote by fx and fy
its partial derivatives with respect to x and y, where z = x+ ıy ∈ D. The gradient
∇f = (fx, fy) is an n × 2 matrix representing the differential df . The map f is
said to be conformal at z ∈ D if the differential dfz preserves angles, which holds
if and only if

|fx(z)| = |fy(z)| > 0 and fx(z) · fy(z) = 0.

Here, the dot stands for the Euclidean inner product on Rn, and |x| is the Euclidean
norm of a vector x ∈ Rn. We allow maps to have branch points; the estimates
that we shall present are trivially fulfilled at such points. We denote by |∇f | the
Euclidean norm of the gradient:

|∇f(z)|2 = |fx(z)|2 + |fy(z)|2, z ∈ D.

If f is conformal at z, then clearly ‖dfz‖ =
√

2
−1|∇f(z)| = |fx(z)| = |fy(z)|. The

map f = (f1, . . . , fn) : D → Rn is harmonic if and only if every component fk is a

harmonic function on D, meaning that the Laplacian ∆fk = ∂2fk
∂x2 + ∂2fk

∂y2 vanishes

identically.
We denote by Bn the unit ball of Rn. Our main result is the following.

Theorem 2. Let f : D → Bn for n ≥ 2 be a harmonic map. If f is conformal at
a point z ∈ D and θ ∈ [0, π/2] denotes the angle between the vector f(z) and the
plane Λ = dfz(R2) ⊂ Rn, then

(2) ‖dfz‖ =
1√
2
|∇f(z)| ≤ 1 − |f(z)|2

1 − |z|2
1√

1 − |f(z)|2 sin2 θ
,

with equality if and only if f is a conformal diffeomorphism of D onto the affine
disc (f(z) + Λ) ∩ Bn. Without assuming that f is conformal, we have that

(3)
1√
2
|∇f(z)| ≤

√
1 − |f(z)|2
1 − |z|2 , z ∈ D.

Equality holds in (3) for some z0 ∈ D if f(z0) is orthogonal to the 2-plane Λ =
dfz0(R2) and f is a conformal diffeomorphism onto the affine disc (f(z0) + Λ)∩Bn.
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In dimension n = 2 we necessarily have θ = 0, so (1) is a special case of (2).
Without assuming that f is conformal at z or that f(z) = 0, the inequality (2)
fails for some harmonic diffeomorphisms of the disc. The first and the main part of
Theorem 2 is proved by exploring a connection to Lempert’s seminal work [9] from
1981 on complex geodesics of the Kobayashi metric on bounded convex domains
in Cn. The inequality (3) is obtained from the L2-estimate of the map.

It is classical that a conformal map f : D → Bn (n ≥ 3) parameterizes a minimal
surface if and only if it is harmonic. The inequality (2) can be interpreted as the
distance-decreasing property of conformal harmonic maps D → Bn with respect
to the Poincaré metric PD on the discD and the Cayley–Klein metric1 on the ball
Bn, where the latter is defined for any point x ∈ Bn and tangent vector v ∈ Rn by

CK(x,v)2 =
(1 − |x|2)|v|2 + |x ·v|2

(1 − |x|2)2
=

|v|2
1 − |x|2 +

|x ·v|2
(1 − |x|2)2

.

Corollary 3. If f : D → Bn is a conformal harmonic map then

CK
(
f(z), dfz(ξ)

)
≤ |ξ|

1 − |z|2 = PD(z, ξ), z ∈ D, ξ ∈ R2,

with equality for some z ∈ D and ξ ∈ R2 \ {0} if and only if f is a conformal
diffeomorphism onto the affine disc Σ = (f(z) + dfz(R2)) ∩ Bn and the vector
dfz(ξ) is tangent to the diameter of Σ through the point f(z).

This shows in particular that every linear conformal embedding f : D → Σ
onto an affine disc in Bn is geodesic on each diameter (−1,+1) ∋ r 7→ f(reıt) ∈ Σ
for every fixed t ∈ R. However, distances between points of different rays strictly
decrease from the Poincaré metric on D to the Cayley–Klein metric on the disc
Σ ⊂ Bn.

Our results also hold if the disc D is replaced by an arbitrary hyperbolic con-
formal surface M , i.e., one whose universal conformal covering space is the disc
D. Such M is endowed with the Poincaré metric PM , which is defined by the
condition that the universal conformal covering map D →M is an isometry in the
Poincaré metrics on the respective surfaces.

Our results provide foundations of hyperbolicity theory for domains in Rn

(n ≥ 3) in terms of conformal minimal surfaces that they contain, in analogy
to Kobayashi’s approach to hyperbolicity of complex manifolds; see [6, 7, 8].

1The Cayley–Klein model (also called the Beltrami–Klein model) of hyperbolic geometry was
introduced by Arthur Cayley [2] (1859) and Eugenio Beltrami [1] (1968), and was developed
by Felix Klein [4, 5] (1871, 1873). The underlying space is the n-dimensional unit ball, and
geodesics are straight line segments with ideal endpoints on the boundary sphere. See Ratcliffe
[14] for a modern treatment. This is a special case of the Hilbert metric on convex domains in
Rn, introduced by David Hilbert in 1895 [3]. I am indebted to László Lempert who told me
about this metric; see also his papers [10, 11].
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An extended Monge-Ampère operator

Elizabeth Wulcan

(joint work with Mats Andersson, David Witt Nyström)

This is joint work in progress with Mats Andersson and David Witt Nyström. The
overall goal is to define a Monge-Ampère operator with nice continuity properties
for a large class of plurisubharmonic (psh) functions.

Let Ω be a domain in Cn, and let u be a psh function on Ω. If u is assumed to be
C2, then ddcu is a positive form. The associated Monge-Ampère measure, defined
as the top wedge power of this form with itself plays a leading role in pluripotential
theory, similar to role played by the Laplacian in ordinary potential theory.

In the 80’s Bedford and Taylor [4, 5] defined Monge-Ampère products for locally
bounded psh functions. Assume that T is a closed positive current and that
u is a locally bounded psh function. Then uT is a well-defined current, and
ddcu∧T := ddc(uT ) is again positive and closed. Thus one can recursively define
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closed positive currents

(ddcu)p = ddc(u(ddcu)p−1).

The Monge-Ampère operators u 7→ (ddcu)p have some essential continuity prop-
erties. In particular, if uℓ is a sequence of psh functions decreasing to u, then
(ddcuℓ)

p converges weakly to (ddcu)p.
We are interested in the situation when u is not locally bounded. Demailly

showed that it is possible to extend the Bedford-Taylor Monge-Ampère operators
to psh functions that are bounded outside small sets, see, e.g., [11]. Moreover,
B locki, [7], and Cegrell, [10], characterized the largest class D(Ω) of psh functions
on which there is a Monge-Ampère operator u 7→ (ddcu)n that is continuous under
decreasing sequences.

To handle more singular psh functions Bedford and Taylor [6] introduced the
notion of non-pluripolar Monge-Ampère products

(1) 〈ddcu〉p = lim
ℓ→∞

1{u>−ℓ}(ddc max(u,−ℓ))p.

If the limit is locally finite, then 〈ddcu〉p is a positive closed (p, p)-current see [9].
However, the Monge-Ampère operators u 7→ 〈ddcu〉p are far from being continuous
under decreasing sequences in general.

We introduce a new class of psh functions.

Definition 1. Let Ω be a domain in Cn. We say that a psh function u on Ω is in
G(Ω) if, for each p < n, 〈ddcu〉p is locally finite and u is locally integrable against
〈ddcu〉p.

If u ∈ G(Ω) and p ≤ n− 1, then u〈ddcu〉p is a well-defined current and thus by
mimicking the original construction by Bedford-Taylor we can define generalized
Monge-Ampère products.

Definition 2. Given u ∈ G(Ω) for p = 1, . . . , n we define

[ddcu]p = ddc(u〈ddcu〉p−1)

and

Sp(u) = [ddcu]p − 〈ddcu〉p.
Using basic properties of the non-pluripolar Monge-Ampère operator it is easily

verified that these currents are closed positive currents. In particular [ddcu]n is
a positive measure that dominates the non-pluripolar Monge-Ampère measure
〈ddcu〉n.

These definitions are inspired by the construction of generalized Monge-Ampère
products in [1, 2]. From [2] it follows that psh functions with analytic singularities
(i.e., psh functions that are locally of the form c log |f |2 + b, where c > 0, f
is a tuple of holomorphic functions, and b is locally bounded) are in G(Ω). In
particular, there are functions in G(Ω) that are not in D(Ω).

Given a psh function u, note that uℓ := max(u,−ℓ) is a natural sequence of locally
bounded psh-functions decreasing to u, cf. (1).
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Theorem 3. Assume that u ∈ G(Ω). Then
(
ddc max(u,−ℓ)

)p → [ddcu]p, ℓ→ ∞.

More generally, let χℓ : R → R be a sequence of nondecreasing convex functions,
bounded from below, that decreases to t as ℓ→ ∞, and let uℓ = χℓ ◦ u. Then

(ddcuℓ)
p → [ddcu]p, ℓ→ ∞.

For u with analytic singularities, this was proved in [3].
Since there are functions in G(Ω) that are not in D(Ω) we cannot expect conti-

nuity for all decreasing sequences. Our next result is a variant of Theorem 3 that
illustrates the failure of continuity. Let v be a locally bounded psh-funtion on Ω.
Then uℓ := max(u, v−ℓ) is a sequence of locally bounded psh functions decreasing
to u.

Theorem 4. Assume that u ∈ G(Ω) and that v is a smooth psh function on Ω.
Then

(
ddc max(u, v − ℓ)

)p → [ddcu]p +

p−1∑

j=1

(ddcv)p−j ∧ Sj(u), ℓ→ ∞.

More generally, let χℓ : R → R be a sequence of nondecreasing convex functions,
bounded from below, that decreases to t as ℓ → ∞, and let uℓ = χℓ ◦ (u − v) + v.
Then

(ddcuℓ)
p → [ddcu]p +

p−1∑

j=1

(ddcv)p−j ∧ Sj(u), ℓ→ ∞.

Note in particular that the lower degree products [ddcu]p comes into play. It
follows from Theorem 4 that if Sp(u) 6= 0 for some p < n, then u /∈ D(Ω).

Let us turn to the global setting. Assume that (X,ω) is a compact Kähler manifold
of dimension n, and that ϕ is an ω-psh function on X , i.e. ϕ + h is psh if h is
a local ddc-potential for ω. We say that an ω-psh function ϕ is in G(X,ω) if
ϕ + h ∈ G(Ω), where ddch = ω in Ω. Then there are well-defined closed positive
currents [ddcϕ+ ω]p, locally defined as [ddc(ϕ+ h)]p, and corresponding currents
Sω
p (ϕ). We have the following global version of Theorem 4.

Theorem 5. Assume that ϕ ∈ G(X,ω). Then

(
ddc max(ϕ,−ℓ) + ω

)p → [ddcϕ+ ω]p +

p−1∑

j=1

ωp−j∧Sω
j (ϕ), ℓ→ ∞.

More generally, let χℓ : R → R be a sequence of nondecreasing convex functions,
bounded from below, that decreases to t as ℓ→ ∞, and let ϕℓ = χℓ ◦ ϕ. Then

(ddcϕℓ + ω)p → [ddcϕ+ ω]p +

p−1∑

j=1

ωp−j∧Sω
j (ϕ), ℓ→ ∞.
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In the situation of analytic singularities this was proved in [8]. From Theorem 5
we get the following mass formula. In fact, this is also an immediate cohomological
consequence of the definition of [ddcϕ+ ω]p.

Theorem 6. Let (X,ω) be a compact Kähler manifold X of dimension n. Assume
that ϕ ∈ G(X,ω). Then

∫

X

〈ddcϕ+ ω〉n +

n∑

p=1

∫

X

Sω
p (ϕ)∧ωn−p =

∫

X

ωn.

In particular 〈ddcϕ+ ω〉n has full mass if and only if Sω
p (ϕ) = 0 for all p.

Similar to the the local case, ω-psh functions with analytic singularities are in
G(X,ω). Moreover, D(X,ω) ⊂ G(X,ω), where ϕ is in D(X,ω) if ϕ + h ∈ D(Ω).
The definition of G(X,ω) can be understood in terms of energy. In particular, it
follows that the class of ω-psh functions with finite energy, E1(X,ω), is contained
in G(X,ω), which in turn implies that G(X,ω) has certain convexity properties
and thus a quite rich structure.
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Finite entropy vs finite energy

Vincent Guedj

(joint work with Eleonora Di Nezza, Chinh H. Lu)

Probability measures with either finite energy [4] or finite entropy [3] have played
an important role in recent developments in Kähler geometry (see [5, 6, 7, 9, 3]
and the references therein).
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Indeed the search for Kähler-Einstein metrics on Fano manifolds boils down to
maximizing the Ding functional whose leading term is a Monge-Ampère energy,
while a constant scalar curvature Kähler metric minimizes the Mabuchi functional,
whose leading term is an entropy. The purpose of this talk is to systematically
compare these two notions.

Let (X,ω) be a compact Kähler manifold of complex dimension n ≥ 1, normalized
so that Volω(X) :=

∫
X
ωn = 1. We consider µ = fωn, 0 ≤ f , a probability measure

with finite entropy

0 ≤ Entωn(µ) :=

∫

X

f log f ωn < +∞.

Since µ is absolutely continuous with respect to the volume form ωn, it is in
particular “non-pluripolar” hence it follows from [10, 8] that there exists a unique
full mass potential ϕ ∈ E(X,ω) such that supX ϕ = 0 and

(ω + ddcϕ)n = µ.

Here d = ∂ + ∂ and dc = i
2π

(
∂ − ∂

)
are real operators so that ddc = i

π∂∂, and
E(X,ω) denotes the set of ω-plurisubharmonic functions ϕ whose non pluripolar
Monge-Ampère measure (ω + ddcϕ)n is a probability measure. We consider, for
p > 0,

Ep(X,ω) := {ϕ ∈ E(X,ω) | Ep(ϕ) < +∞},
where Ep(ϕ) :=

∫
X |ϕ|p(ω + ddcϕ)n.

It has been observed in [3] that

Ent(X,ω) ⊂ E1(X,ω),

where Ent(X,ω) is the set of ω-psh functions whose Monge-Ampère measure has
finite entropy. However all computable examples suggest that ϕ actually belongs
to a higher energy class Ep(X,ω) for some p > 1 depending on the dimension. We
confirm this experimental observation by showing the following:

Theorem A. Let µ = (ω + ddcϕ)n = fωn be a probability measure with finite
entropy Entωn(µ) =

∫
X f log fωn < +∞. Then

ϕ ∈ E n
n−1 (X,ω).

Moreover the inclusion Ent(X,ω) →֒ Ep(X,ω) is compact for any p < n
n−1 .

This exponent is sharp when n ≥ 2. If n = 1 then ϕ is continuous, hence it
belongs to Ep(X,ω) for all p > 0.

The case of Riemann surfaces deserves a special treatment: finite entropy po-
tentials turn out to be bounded (and even continuous), but this is no longer the
case in higher dimension. The proof of Theorem A relies on a Moser-Trudinger in-
equality which provides a strong integrability property of finite energy potentials.
This is the content of our second main result:
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Theorem B. Fix p > 0. There exist positive constants c, C > 0 depending on
X,ω, n, p such that, for all ϕ ∈ Ep(X,ω) with supX ϕ = −1,

∫

X

exp
(
c|Ep(ϕ)|−1/n|ϕ|1+ p

n

)
ωn ≤ C.

Theorem B is an interesting variant of Trudinger’s inequality on compact Kähler
manifolds. The case p = 1 settles a conjecture of Aubin (called Hypothèse fonda-
mentale [1]) which is motivated by the search for Kähler-Einstein metrics on Fano
manifolds. The conjecture was previously proved by Berman-Berndtsson [2] under
the assumption that the cohomology class of ω is the first Chern class of an ample
holomorphic line bundle.

We also establish local versions of these results, valid in any bounded hyper-
convex domain of Cn.
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On the p−Bergman theory

Bo-Yong Chen

(joint work with Liyou Zhang)

In this work we attempt to develop a general p−Bergman theory. The Bergman
theory makes essential use of complete orthonormal bases in the Bergman space,
which are not available in the Lp case. On the other hand, there is some similarity
between the Bergman theory and the spectrum theory of the Laplacian; one can
also expect that the spectrum theory of the nonlinear p−Laplacian would play a
role on the p−Bergman theory for p 6= 2.
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For a bounded domain Ω ⊂ Cn, we define Ap(Ω) to be the p−Bergman space
of Lp holomorphic functions on Ω. Consider the following minimizing problem:

mp(z) := inf {‖f‖p : f ∈ Ap(Ω), f(z) = 1} .
It is easy to see that there exists at least one minimizer for p > 0 and exactly one
minimizer, say mp(·, z), for p ≥ 1. We define the p−Bergman kernel Kp(z) (p > 0)
and the off-diagonal p−Bergman kernel Kp(z, w) (p ≥ 1) by

Kp(z) := mp(z)−p and Kp(z, w) := mp(z, w)Kp(z).

Clearly, one has Kp(z) = Kp(z, z) and K2(z, w) is the standard Bergman kernel.
The p−Bergman metric is given by

Bp(z;X) := Kp(z)−
1
p · sup{|Xf(z)| : f ∈ Ap(Ω), f(z) = 0, ‖f‖p = 1}.

Note that B2(z;X) is the standard Bergman metric.
Uniqueness of the minimizer yields the following

Proposition 1. We have

(1) Let F : Ω1 → Ω2 be a biholomorphic mapping between bounded simply-
connected domains. Then

KΩ1,p(z, w) = KΩ2,p(F (z), F (w))JF (z)
2
p JF (w)1−

2
p JF (w).

(2) Let Ω′ and Ω′′ be bounded domains in Cn and Cm respectively. Set Ω =
Ω′ × Ω′′ and z = (z′, z′′). Then we have

KΩ,p(z, w) = KΩ′, p(z′, w′) ·KΩ′′, p(z′′, w′′).

(3) Kp(z, w) is continuous in (z, w).
(4) If Ω is simply-connected and mp(·, z) is zero-free, then Ks(z) = Kp(z) for

s ≥ p and ms(·, z) = mp(·, z)p/s for s ≥ p ≥ 1.

Remark. By (4) we see that if Ω is a simply-connected Lu Qi-keng domain, i.e.,
K2(z, w) is zero-free on Ω × Ω, then Kp(z, w) = K2(z, w)2/pK2(w)2/p−1 for any
z, w ∈ Ω and p ≥ 2.

As an application of the transformation formula, we have

Proposition 2. Let Ω ⊂ Cn be a bounded simply-connected domain and G ⊂
Aut(Ω) a properly discontinuous group. Let L(G) denote the limit set of G. Then

(1) For any p and any w ∈ L(G), there exists f ∈ Ap(Ω) such that

lim sup
z→w

|f(z)| = ∞.

(2) For any neighborhood U of w ∈ L(G), the Hausdorff dimension of ∂Ω∩U
is no less than 2n− 1.

The calculus of variations yields

f(z) =

∫

Ω

|mp(·, z)|p−2Kp(·, z) f, ∀ f ∈ Ap(Ω),

which in turn implies that
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Proposition 3. (1) |Kp(z, w)| ≤ Kp(z)
1
p Kp(w)

1
q with equalities hold if and

only if z = w, where 1/p+ 1/q = 1.
(2) Re {Kp(z, w) +Kp(w, z)} ≤ Kp(z) + Kp(w), with equalities hold if and

only if z = w.

The nonlinear fact |mp(·, z)|p−2 in the reproducing formula causes the real dif-
ficulty for applications. With the help of techniques from nonlinear analysis of the
p−Laplacian, we are able to show the following regularity result.

Theorem 4. (1) For any p ≥ 2 and any compact set S ⊂ Ω, there exists a
constant C > 0 such that

|Kp(z, w) −Kp(z, w′)| ≤ C|w − w′| 12 .
(2) For any 1 < p < 2 and any compact set S ⊂ Ω, there exists a constant

C > 0 such that

|Kp(z, w) −Kp(z, w′)| ≤ C|w − w′| 1p .
(3) Let Sw := {K1(·, w) = 0}. For every open set w ∈ U ⊂⊂ Ω\Sw, there

exists a constant C > 0 such that

|K1(z, w) −K1(z, w′)| ≤ C|w − w′| 12 , ∀ z, w′ ∈ U.

For a real-valued upper semicontinuous function u defined on a domain Ω ⊂ Cn,
we define the generalized Levi form of u by

i∂∂̄u(z;X) := lim inf
r→0+

1

r2

{
1

2π

∫ 2π

0

u(z + reiθX)dθ − u(z)

}
.

It is well-known that i∂∂̄ logK2(z;X) = B2(z;X)2. Using the second variation,
we are able to show the following

Theorem 5. (1) i∂∂̄ logKp(z;X) ≥ p
2(p−1) Bp(z;X)2 for p ≥ 2.

(2) i∂∂̄ logKp(z;X) ≥ p
2 C(z;X)2 for p ≤ 2, where C(z;X) denotes the

Carathéodory metric.

Remark. In particular, logKp(z) is a Lipschitz continuous strictly psh function,
so that the minimal set of Kp(z) defined by {z ∈ Ω : Kp(z) = infζ∈Ω Kp(ζ)} is
either empty or a totally real subset of Ω.

Concerning the asymptotic behavior as p→ ∞, we have

Proposition 6. (1) limp→∞mp(z, w) = 1.
(2) limp→∞Bp(z;X) = C(z;X).

We also have the following stability result.

Theorem 7. (1) lims→p−Ks(z, w) = Kp(z, w) for p > 1.

(2) lims→p+Ks(z, w) exists. Moreover, if Ap′

(Ω) lies dense in Ap(Ω) for some
p′ > p, then Kp(z, w) = lims→p+Ks(z, w).
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Corollary 8. If Ω has positive hyperconvexity index, i.e., there exists a negative
continuous psh function ρ with −ρ . δα for some α > 0, where δ denotes the
boundary distance, then

K2(z, w) = lim
p→2

Kp(z, w).

On the other hand, we have

Proposition 9. Let Ω = D\S where D is a bounded domain in C and S is a
compact set in D which has positive 2−capacity but zero p−capacity for every
p < 2. Then

K2(z) > lim
p→2+

Kp(z).

Recall that the p−capacity of S is given by Capp(S) := infφ
∫
C
|∇φ|p where the

infimum is taken over all φ ∈ C∞
0 (C) such that φ ≥ 1 on S. The condition of

Proposition 0.9 is satisfied for instance, if the h−Hausdorff measure Λh(S) of S is
positive and finite where h(t) = (log 1/t)−α for some α > 1.

Finally, we compare Kp(z) with K2(z) as follows.

Theorem 10. Let Ω be a bounded pseudoconvex domain with C2−boundary.

(1) There exist constants γ, C > 0 such that the following inequalities hold
near ∂Ω :

Kp(z)
1
p /K2(z)

1
2 ≤ C δ(z)

1
2−

1
p | log δ(z)|

n(p−2)
2pγ , p ≥ 2,

Kp(z)
1
p /K2(z)

1
2 ≥ C−1 δ(z)

1
2−

1
p | log δ(z)|−

(n+γ)(p−2)
2pγ , p ≤ 2.

(2) For every 2 ≤ p < 2 + 2
n there exists a constant C = Cp,Ω > 0 such that

the following inequality holds near ∂Ω :

Kp(z)
1
p /K2(z)

1
2 ≥ C−1 δ(z)

(n+1)(p−2)
2p | log δ(z)|−

(n+1)(p−2)
2pγ .

Corollary 11. Let Ω be a bounded pseudoconvex domain with C2−boundary. For
every 2 ≤ p < 2 + 2

n , Kp(z) is an exhaustion function on Ω.

Singular solutions to the homogeneous Monge-Ampère equation via
the Hele-Shaw flow

David Witt Nyström

(joint work with Julius Ross)

This is based on joint work/work in progress with Julius Ross.

The Dirichlet problem for the homogeneous Monge-Ampère equation.
Recall that if u is psh and locally bounded, then by the work of Bedford-Taylor
[3] the Monge-Ampère MA(u) of u is a welldefined positive measure which equals
(ddcu)n when u is C2. The Dirichlet problem for the homogeneous complex Monge-
Ampère equation (here HMAE for short) asks us to find a psh function u such
that MA(u) = 0, and such that u = f on the boundary of the given domain. Two
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particular settings of this Dirichlet problem have been the focus of much research,
and I will discuss them both in turn.

The local setting. Let D ⊆ Cn be a smoothly bounded strictly pseudoconvex
domain, and let f be a smooth function on ∂D. Then the Dirichlet problem for
the HMAE asks us to find u ∈ PSH(D) ∩ C(D̄) such that MA(u) = 0 on D,
while u|∂D = f . The existence and uniqueness of a solution u was established by

Bedford-Taylor [2]. It was later showed by Krylov that the solution lies in C1,1(D̄)
(see e.g. [8] and references therein).

That Krylov’s regularity result is sharp is shown by the following exaple due to
Gamelin-Sibony [7].

Example 1. We consider the unit ball B ⊆ C2, and let

f(z, w) :=

{
(|z|2 − 1/2)2, for (z, w) ∈ ∂B, |z|2 ≥ 1/2,

(|w|2 − 1/2)2, for (z, w) ∈ ∂B, |w|2 > 1/2.

Then it can be easily show that u(z, w) := (max(|z|2 − 1/2, |w|2 − 1/2, 0))2 solves
the Dirichlet problem, and one notes that u is not twice differentiable along the
hypersurfaces |z|2 = 1/2 and |w|2 = 1/2.

The global setting. Here we let (X,ω) be a compact Kähler manifold, and Σ a
Riemann surface with boundary. In this talk we will only consider the cases when Σ
is either the unit disc D := {τ : |τ | < 1} or the unit strip S := {t+ is : 0 < t < 1}.
We also let f ∈ C∞(X × ∂Σ), and we also assume that f(·, τ) is ω-psh (i.e.
ω + ddczf(z, τ) ≥ 0) for each τ ∈ ∂Σ.

Recall that u is said to be π∗
Xω-psh if, given a local potential h of π∗

Xω, u + h
is psh, and that if u is locally bounded, the Monge-Ampère MAπ∗

X
ω(u) of u is the

positive measure locally defined as MA(u+ h).
The Dirichlet problem for the HMAE in this setting now asks us to find u ∈
PSH(X×Σ, π∗

Xω)∩C(X×Σ̄) such that MAπ∗
X
ω(u) = 0 on X×Σ, while u|XΣ = f .

One should note that when Σ = S and f(z, is) = u0(z) and f(z, 1+ is) = u1(z),
then ut(z) := u(z, t) defines a so called weak geodesic in the space of Kähler metrics
cohomologous to ω (or really in its completion) (see e.g. [8]).

The existence and uniqueness of a solution u was established by Chen [5]. Chen
with complements by Blocki established the almost C1,1 regularity of u [4], while
finally the full C1,1 regularity up to the boundary was shown by Chu-Tosatti-
Weinkove [6].

Lempert-Vivas proved in [11] that in the case of Σ = S this is optimal, by
showing that there are examples of geodesics u which do not belong to C2(X× S̄).
In comparison with the easy example of Gamelin-Sibony, their example is very
unexplicit. For instance one cannot see where it fails to be C2, if it is on the
boundary or in the interior, or both.

In [13] Ross and I constructed a solution on P1 × D̄ which also fails to be C2.
This solution was more explicit, and could be seen to be not twice differentiable
along a certain curve on the boundary. However, the behaviour of that solution
in the interior was still not easily understood.
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The goal of the talk was to explain how one can construct a more explicit
solution where the failure of C2 happen also in the interior. The construction rests
on the same foundation as the earlier example, namely the connection between a
certain class of solutions and the so called Hele-Shaw flow.

The Hele-Shaw flow. The Hele-Shaw flow models the propagation of a viscous
fluid trapped in a thin layer, as in a Hele-Shaw cell, where two glass plates have a
small gap between them, and fluid is pumped into this gap through a small hole.
The thinness of the layer makes the situation essentially two-dimensional, and the
region the fluid uccupies at a time t is represented by a domain Ωt in C. We place
the point of injection at the the origin. The fluid will then spread (approximately)
according to Darcy’s Law, which in this setting postulates that the normal velocity
Vt of the boundary of the fluid domain Ωt should equal minus the gradient of the
pressure pt in the fluid. If the pressure is assumed to be zero on the boundary,
and harmonic away from the injection point, it follows that −pt(z) = GΩt

(z, 0),
where GΩt

(z, 0) denotes the Greens function of the domain Ωt with a logarithmic
pole at 0.

If one instead assumes that the medium between the plates have varying per-
meability κ, then the equation becomes

Vt = −κ∇pt.
This setting was first properly inverstigated by Hedenmalm-Shimorin [10].

This is the classical formulation of the Hele-Shaw flow, but there is also a weak
formulation which goes back to Gustafsson [9]. Let φ be a subharmonic function
on C such that

ddcφ =
dλ

κ
,

where dλ denotes the Lebesgue measure. For t ≥ 0 we let

φt := sup{ψ ≤ φ : ψ ∈ SH(C), ν0(ψ) ≥ t},
where ν0(ψ) denotes the Lelong number of ψ at 0. We also let Ωt := {φt < φ}.
The increasing family of domains Ωt is called the (weak) Hele-Shaw flow with
respect to φ (or ddφ = dλ/κ). It can be shown that ddcφt = 1{Ωc

t}
ddcφ, so (φ,Ωt)

and φt contains the same information. Thus the family φt is also called the weak
Hele-Shaw flow of φ. It can be shown that this indeed is the correct weak notion
of the Hele-Shaw flow, but we will not explain that here.

Connection to the HMAE. In [12] Ross and I established the following con-
nection between the Hele-Shaw flow and a class of solutions to the HMAE.

Theorem 2. If φ ∈ SH(C) and φ − ln(1 + |z|2) is bounded, and φt denotes its
weak Hele-Shaw flow, then

u(z, τ) := sup
0≤t≤1

(φt(τz) − t ln |τ |2)

solves the HMAE on C × D with the boundary condition f(z, τ) := φ(τz). Using
the Fubini-Study form ωFS on P1, u can be extended to P1 × D.
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We also recall the following definition, which is fundamental for the analysis of
solutions to the HMAE.

Definition 3. If u solves the HMAE in some domain D, and h : D → D is a
holomorphic disc, then h is called a harmonic disc if u ◦ h is harmonic.

Solutions u of the HMAE that are regular enough locally give rise to foliations
of D by harmonic discs. Importantly, if you have a holomorphic fibration which
is transverse to such a foliation, the corresponding flow between the fibers will
preserve the form ddcu (see [1]).

In our setting there is a clear correspondence between proper harmonic discs
and simply connected Hele-Shaw doamins Ωt, expressed in the following theorem.

Theorem 4. The graph of the holomorphic function g : D → P1 is a harmonic
disc iff 1): g = 0, or 2): g(τ) = w/τ for some w ∈ Ωc

1, or 3): τ 7→ τg(τ) is a
Riemann mapping for a simply connected Hele-Shaw domain Ωt such that 0 7→ 0.

How to find u /∈ C2(P1 × D)? The idea is to find φ such that its Hele-Shaw
domains Ωt all are simple connected. Then let f1 : D → Ω1 be a Riemann mapping
such that f1(0) = 0. Thanks to Theorem 4 we will get at foliation of U ⊆ P1 × D

by harmonic discs, where U intersected with the fiber over τ is f1(τD)/τ . The
fact mentioned above that the flow along a foliation by harmonic discs transverse
to a fibration preserves the form ddcφ then shows that u fails to be C2 along the
boundary of U .

The question remains how to find such a φ. Here one can use the fact that any
nice increasing family of domains Ωt actually gives rise to a φ by the formula

ddcφ =
|∇pt|dλ
|Vt|

.

The problem is to make sure that the resulting φ is smooth, but this seems to
work, at least if we allow ddcφ to be zero at the singular points of Ωc

1.
One should note that the construction is closely related to the example in [14],

but there only the disc corresponding to Ω1 was used.
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New continuous solutions to Monge-Ampère equations on
Hermitian manifolds

S lawomir Ko lodziej

(joint work with Cuong Ngoc Nguyen)

We prove the existence of a continuous quasi-plurisubharmonic solution to Monge-
Ampère equations with very general the right hand side on a compact Hermitian
manifold. These are measures dominated by capacity, in particular, moderate
measures studied by Dinh-Nguyen-Sibony. As a consequence, we give a character-
ization of measures admitting Hölder continuous quasi-plurisubharmonic potential,
inspired from the work of Dinh-Nguyen.

The setting is as follows: a compact Hermitian manifold (X,ω) of dimension n.
The fundamental form ω is given in local coordinates by

ω =
i

2

∑

k,j

gkj̄dz
k ∧ dz̄j .

The matrix (gkj̄) is positive definite and Hermitian symmetric. Such a form exists
on any complex manifold, which is not the case for Kähler forms dω = 0. An upper
semicontinuous function u on X is called ω−psh if ddcu + ω ≥ 0 (as currents).
Then we write u ∈ PSH(ω).

Consider a positive Radon measure µ with finite total mass on X . To solve the
complex Monge-Ampère equation for µ we need to find an ω−psh function u and
a positive constant c such that

(ω + ddcu)n = c µ.

For smooth, strictly positive measures Cherrier (1987) obtained smooth solu-
tions of the M-A equation assuming either n = 2 or that ω is balanced (d(ωn−1) =
0). Tosatti-Weinkove (2010) got the statement without those extra assumptions.
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Dinew-Ko lodziej. and Ko lodziej-Nguyen ’12-’16: The existence of continuous
solutions for f ∈ Lp, p > 1.

Stability and Hölder continuity for f ∈ Lp, p > 1 by Ko lodziej-Nguyen ’18 and
Lu-Phung-To ’20. In the latter the Hölder exponent is improved, matching the
one for Kähler manifolds.

Ko lodziej-Nguyen ’19 proved that Hölder continuous subsolution implies the
existence of such solution. Moreover the property that a measure is the M-A mass
of a Hölder continuous function is a local property.

To formulate the results we need the Bedford-Taylor capacity: For a Borel
subset E of X

capω(E) := sup

{∫

E

(ω + ddcu)n : u ∈ PSH(ω), 0 ≤ u ≤ 1

}
.

We shall distinguish classes of measures dominated by the capacity in a suitable
way. Let h : R+ → (0,∞) be an increasing function such that

∫ ∞

1

1

x[h(x)]
1
n

dx < +∞.

In particular, limx→∞ h(x) = +∞. Such a function h is called admissible. In what
follows h is always admissible. Set Fh(x) = x

h(x− 1
n )
.

Measures dominated by capacity. Let µ be a positive Radon measure satisfying

µ(E) ≤ Fh(capω(E)),

for any Borel set E ⊂ X and some Fh. Denote by F(X,h) the set of all measures
satisfying the above inequality for some admissible h.

Here are results for continuous solutions.

Theorem 1. Let µ ∈ F(X,h) be such that µ(X) > 0. Then, there exists a
continuous ω-psh function u and a constant c > 0 solving the equation

(ω + ddcu)n = c µ.

If µ = 0 then there are no bounded solutions.

Theorem 2. Let µ ∈ F(X,h), µ(X) > 0 and λ > 0. Then, there exists a unique
continuous ω-psh solution v to

(ω + ddcv)n = eλvµ.

Examples of measures satisfying the assumptions:

- measures with densities in Lp, p > 1, or even broader Orlicz spaces,
- smooth forms on smooth hypersurfaces or totally real submanifolds,

(those can be shown to belong to one of the classes H(τ) which are unions
(over C > 0) of F(X,h1) with h1(x) = Cxnτ and fixed τ > 0)
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- Borel measures locally dominated by Monge-Ampère measures of contin-
uous plurisubharmonic functions whose moduli of continuity η(t) satisfy
the Dini-type condition

∫ 1

0

[η(t)]
1
n

t| log t|dt < +∞.

- moderate measures (Dinh-Nguyen-Sibony) - the union over C > 0, α > 0
of F(X,h2) with h2(x) = Ceαx for C,α > 0.

The next result extends a theorem of Dinh and Nguyen on Hölder continuous
solutions for Kähler manifolds.

Theorem 3. A positive Radon measure µ belongs to H(τ) and µ is Hölder contin-
uous on PSH(0,1)(ω) if and only if there exists a Hölder continuous ω-psh function
u and a constant c > 0 such that

(ω + ddcu)n = c µ.

This is used to generalize to Hermitian manifolds recent results of Pham and
Vu.

The principle of least action in the space of Kähler potentials

László Lempert

Let (X,ω) be a compact Kähler manifold and

H = Hω = {u ∈ C∞(X) : ω + i∂∂u = ωu > 0}
its space of relative Kähler potentials. Here C∞(X) refers to the Fréchet space
of real valued smooth functions on X . The space H, as an open subset of a
Fréchet space, inherits a Féchet manifold structure, whose tangent bundle has a
canonical trivialization TH ≈ H×C∞(X). In the 1980–90s Mabuchi and Semmes
independently and with different motivations introduced a torsion free connection
∇ on TH.

One way to explain ∇ is through its parallel transport. We will use dot ˙ to
denote derivative of a function of one real variable, and gradv to indicate gradient of
a function X → R with respect to the Kähler metric of ωv. Let u : [a, b] → H be a
smooth path. By integrating the time dependent vector field (−1/2) gradu(t)u̇(t)
on X we obtain a smooth family of diffeomorphisms ϕ(t) : X → X . In fact
ϕ(t) : (X,ωu(0)) → (X,ωu(t)) is symplectomorphic. The parallel translate of
ξ ∈ Tu(t)H ≈ C∞(X) to u(0) along the path u is then

ξ ◦ ϕ(t) ∈ C∞(X) ≈ Tu(0)H.
Given a smooth path u : [a, b] → H, a vector field

ξ : [a, b] ∋ t 7→ ξ(t) ∈ Tu(t)H
along it is parallel if invariant under parallel translation; and the path is a geodesic
for ∇ if its velocity vector field u̇(t) is parallel.
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Mabuchi, Semmes and Darvas introduced various Riemannian and Finsler met-
rics that are compatible with the connection. Darvas found that (with slight sim-
plification) geodesics of ∇ are the shortest paths between their endpoints, when
length of a path is computed using any of his metrics. The talk generalized Dar-
vas’s result to all parallel Finsler metrics, and in fact even beyond, to Lagrangians
L : TH → R that are fiberwise convex and continuous, and invariant under parallel
translation. From now on L is such a Lagrangian.

Theorem 1 (Principle of least action). If v : [0, T ] → H is a geodesic for ∇, then
u = v minimizes action ∫ T

0

L(u̇(t))dt

among all piecewise C1 paths u : [0, T ] → H with u(0) = v(0), u(T ) = v(T ).

The next result is about how least action varies as one moves along geodesics;
it is a manifestation of seminegative curvature. Fix T > 0. If w,w′ ∈ H, the least

action LT (w,w′) between them is the infimum of the actions
∫ T

0 L(u̇(t))dt over all

piecewise C1 paths u : [0, T ] → H connecting w with w′. It is not obvious, but
LT (w,w′) is finite.

Theorem 2. If u, v : [a, b] → H are geodesics for ∇, then the function LT (u, v) :
[a, b] → R is convex.

We also prove a converse to the Principle of least action: under certain condi-
tions, only geodesics minimize action. When L defines Mabuchi’s metric, Calabi,
Chen, and Darvas already proved this, even for paths more general than what our
theorem covers.

Theorem 3. Suppose u : [a, b] → H is piecewise C1, v : [a, b] → H is a geodesic

for ∇ connecting u(a) and u(b), and
∫ b

a L(u̇(t)) dt =
∫ b

a L(v̇(t)) dt. If L is strictly
convex in the sense that for all w ∈ H, ξ, η ∈ TwH

L
(ξ + η

2

)
<
L(ξ) + L(η)

2
unless ξ = η,

then u = v.

In fact, versions of the above theorems hold for a certain generalization of
geodesics, called weak geodesics, in the space of bounded ω–plurisubharmonic
functions, rather than in H.

Towards unconventional L2 extension

Takeo Ohsawa

Hörmander’s method of comparing L2 cohomology groups with respect to dif-
ferent weights was revisited and refined to deduce some extension theorems and
approximation theorems of new type in [3]. For instance the following have been
shown.
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Theorem 1. If M is a weakly 1-complete manifold, A is an effective divisor on
M with compact support such that [A]||A| ≥ 0 and E|A∪Ω > 0 for some open set

Ω ⊂ M with compact complement, then ∃µ0 ∈ N such that H0,0(M,KM ⊗ E ⊗
[A]µ) ։ H0,0(A,KM ⊗ E ⊗ [A]µ) for all µ ≥ µ0. Here KM denotes the canonical
bundle of M .

Theorem 2. In the situation of Theorem 1, assume that A is pseudoconcave of
order >11, then

H0,q(M,KM ⊗ E ⊗ [A]µ) ∼= H0,q(M \ |A|,KM ⊗ E), q ≥ 1

hold for sufficiently large µ and the set of meromorphic sections of KM ⊗ E with
poles (at most) along |A| is dense in H0,0(M \ |A|,KM ⊗ E).

Corollary. Let S be a connected compact complex surface, let C ⊂ S be a smooth
complex curve of finite type in the sense of Ueda (cf. [5]) and let L → S be a
holomorphic line bundle such that L|C is positive. Then, for sufficiently large
µ, one can find holomorphic sections of KS ⊗ L3 ⊗ [C]µ whose ratio embeds a
neighborhood of C to CP5.

[3] is a natural continuation of [1, 2] and followed by [4], where the following is
proved.

Theorem 3. (to appear in Pure and Appl. Math. Quart.) Let Ω ⋐ M be a
pseudoconvex domain with C2-smooth boundary. Assume that M admits a Kähler
metric and KM |∂Ω < 0. Then there exists a holomorphic map with connected fibers
from Ω to CN for some N ∈ N which is proper onto the image.

Open questions which seem to be solvable by a similar method were discussed
in the talk.
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Harmonic forms on almost-Hermitian 4-dimensional manifolds

Nicoletta Tardini

(joint work with Adriano Tomassini)

Let X be a 2n-dimensional smooth manifold endowed with an almost-complex
structure J , namely a (1, 1)-tensor such that J2 = −Id. Then, the exterior deriv-
ative d splits as the sum of four operators. More precisely, if Ap,q(X) denotes the
space of (p, q)-forms on X , one has that

d : Ap,q(X) → Ap+2,q−1(X) ⊕Ap+1,q(X) ⊕Ap,q+1(X) ⊕Ap−1,q+2(X)

d = µ+ ∂ + ∂ + µ̄ .

Therefore, in the non-integrable case, the vanishing of d2 does not imply ∂
2

= 0
and so the Dolbeault cohomology

H•,•

∂
(X) :=

Ker ∂

Im ∂

is not well defined. More precisely, the Dolbeault cohomology is well defined if
and only if J is integrable.

On a compact complex manifold an effective way to compute the Dolbeault
cohomology is to fix an Hermitian metric and compute the associated space of
harmonic forms.

If J is non integrable, even though the Dolbeault cohomology is not well defined
we can still define the space of harmonic forms. Indeed, if we fix an Hermitian

metric g on an almost-complex manifold (X, J) the operator ∆∂ := ∂∂
∗

+ ∂
∗
∂ is

elliptic. When J is integrable and X is compact, H•,•

∂
(X) := Ker ∆∂ is isomor-

phic to the Dolbeault cohomology and so its dimension, denoted by h•,•
∂

(X), is a

holomorphic invariant. When J is non integrable H•,•

∂
(X) a priori depends on the

metric. This motivated Kodaira and Spencer to raise a question, listed as Problem
20 in a paper by Hirzebruch [1], regarding whether, on compact almost-complex
manifolds, the Hodge numbers h•,•

∂
(X) depend on the choice of the Hermitian

metric.
In [2] Holt and Zhang answered positively to this question, giving an explicit

construction on the Kodaira-Thurston manifold of an almost-complex structure
with h0,1

∂
(X) varying with different choices of Hermitian metrics.

However, if the Hermitian metric is almost-Kähler and 2n = 4, in [2, Proposition

6.1] it was shown that h1,1
∂

= b− + 1, where b− denotes the dimension of the space

of the anti-self-dual harmonic 2-forms. So, in such a case, h1,1
∂

depends only on

the topology of X .
In [2, Question 6.2] the authors asked the following

Question. Let (M,J) be a compact almost-complex 4-dimensional manifold which
admit an almost-Kähler structure. Does it have a non almost-Kähler Hermitian
metric such that

h1,1
∂

6= b− + 1?
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We studied this problem. First of all, in [3] it is shown that on 4-dimensional

manifolds h1,1
∂

is a conformal invariant and so Holt and Zhang’s result holds also

for globally conformally Kähler metrics.
So, using the existence (and uniqueness up to omotheties) of a Gauduchon met-

ric in every conformal class, namely an Hermitian metric ω such that ddcωn−1 = 0,
we proved the following

Theorem Let (X4, J) be a compact almost-complex manifold of dimension 4, then,
with respect to a (strictly) locally conformally Kähler metric,

h1,1
∂

= b−.

Here, by (strictly) locally conformally Kähler metric we mean an Hermitian metric
ω, such that

dω = θ ∧ ω
with θ a d-closed, non d-exact, differential 1-form.

In particular, for locally conformally Kähler and globally conformally Kähler
metrics on compact 4-dimensional almost-complex manifolds, h1,1

∂
is a topological

invariant.
Notice that by [4], (strictly) locally conformally Kähler and globally conformally

Kähler metrics cannot coexist on compact complex manifolds. However, this is not
the case on compact almost-complex manifolds. Indeed, we construct explicitly
a family of almost-complex structures Ja, with a ∈ R \ {0}, a2 < 1, on the
Kodaira-Thurston manifoldX that admit both almost-Kähler and (strictly) locally
conformally Kähler metrics. More precisely, (X, Ja) is a compact almost-complex
4-dimensional manifold which admit an almost-Kähler metric ω̃a and a non almost-
Kähler Hermitian metric ωa such that

h1,1
∂,ωa

= b− .

Hence, this example answers affirmatively to [2, Question 6.2] in the case of
the Kodaira-Thurston manifold endowed with the 1-parameter family of almost-
complex structures Ja.

Moreover, this answers to Kodaira and Spencer’s question, showing that also
the Hodge number h1,1

∂
depeends on the choice of the Hermitian metric and not

just on the almost-complex structure.
Since on compact complex surfaces h1,1

∂
is either b− + 1 (in the Kähler case) or

b− (in the non Kähler case) we ask the following

Question. Is there an example of a compact almost-complex 4-dimensional man-
ifold admitting an Hermitian metric ω such that

h1,1
∂

6= b− and h1,1
∂

6= b− + 1?
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Mappings from open Riemann surfaces to the twice punctured
complex plane and the restricted validity of Gromov’s Oka principle

Burglind Jöricke

According to Gromov the Oka principle holds for holomorphic mappings from a
complex manifold X to a complex manifold Y if each continuous mapping X → Y
is homotopic to a holomorphic mapping. Giving sufficient conditions on the target
Y for the validity of the Oka principle for holomorphic mappings from any Stein
manifold to Y , he initiated a line of interesting and fruitful research.

On the other hand he mentions mappings from annuli to the twice punctured
complex plane as simplest example for which this Oka principle fails and draws
attention to the fact that mappings from annuli play a crucial role for understand-
ing the “rigidity” of the target Y in case the Oka principle fails for mappings from
some Stein manifolds to Y .

We address the question of the restricted validity of Gromov’s Oka principle and
obstructions to this principle in case the target is not a Gromov-Oka manifold. We
restrict ourselves to the case of the twice punctured complex plane as target.

Obstructions for Gromov’s Oka principle are based on the relation between
conformal invariants of the source and the target. Conformal invariants are built
on Ahlfors’ conformal module of an annulus.

For a complex manifold X and a free homotopy class ê of loops in X (equiva-
lently, for a conjugacy class of elements of the fundamental group of X ) we put
M(ê) = supm(A) where the supremum ranges over all annuli A = {0 < r < |z| <
R <∞} that admit a holomorphic mapping to X whose restriction to {|z| =

√
rR}

represents ê. This invariant was introduced by Gromov for targets that are not
Gromov-Oka manifolds. It is supposed to capture certain ”conformal rigidity’ of
such a manifold.

We give upper and lower bounds (differing by multiplicative constants) of the
conformal modules of conjugacy classes of elements of π1(C\{−1, 1}, 0) introduced
by Gromov, by quantities that are expressed in terms of certain representing words
and are easy to compute.

A mapping f : X → C \ {−1, 1} is called reducible if it is homotopic (as
a mapping to the twice punctured plane) to a mapping with image contained
in a punctured disc. There are infinitely many homotopy classes of reducible
mappings from a finite open Riemann surface with non-trivial fundamental group
to C \ {−1, 1}, and if the Riemann surface has only thick ends, each reducible
homotopy class contains a holomorphic map.

On the other hand the estimates of Gromov’s invariants imply for instance, that
for Xε being the ε-neighbourhood of a skeleton of a torus with a hole, the number
of irreducible holomorphic mappings Xε → C \ {−1, 1} up to homotopy grows



Geometric Methods of Complex Analysis 1333

exponentially in 1
ε . This is a statement on the restricted validity of Gromov’s Oka

principle.
Further, we will say that a continuous mapping f from a finite open Riemann

surface X to the twice punctured complex plane has the Gromov-Oka property if
for each orientation preserving homeomorphism ω : X → ω(X) onto a Riemann
surface ω(X) with only thick ends the mapping f ◦ω−1 is homotopic to a holomor-
phic mapping. For finite open Riemann surfaces we show the existence of finitely
many embedded annuli in X , such that f has the Gromov-Oka property iff its
restriction to each of the annuli has this property, and describe all mappings with
the Gromov-Oka property. The mappings with the Gromov-Oka property are the
reducible mappings, and in case X is the two-sphere with at least three holes there
are also irreducible homotopy classes of mappings with the Gromov-Oka property.
Each consists of mappings with the following property. For each orientation pre-
serving homeomorphism ω : X → ω(X) onto a Riemann surface ω(X) (maybe,
of first kind) f ◦ ω−1 is homotopic to a holomorphic mapping that extends to a
conformal mapping P1 → P1 that maps three points in different holes to −1, 1 and
∞, respectively (in some order depending on the class).

Analytic problems on domains with bounded intrinsic geometry

Andrew Zimmer

The aim of this talk is to summarize some of the results from [3] and [4] concerning
analytic problems on domains satisfying a certain bounded geometry condition.

In [3] we introduced the following class of domains.

Definition 1. [3, Definition 1.1] A domain Ω ⊂ Cd has bounded intrinsic geometry
if there exists a complete Kähler metric g on Ω such that

• the metric g has bounded sectional curvature and positive injectivity ra-
dius,

• there exists a C2 function λ : Ω → R such that the Levi form of λ is
uniformly bi-Lipschitz to g and ‖∂λ‖g is bounded on Ω.

Many families of domains have bounded intrinsic geometry such as

(1) strongly pseudoconvex domains,
(2) finite type domains in C2,
(3) convex domains or more generally C-convex domains which are Kobayashi

hyperbolic (with no boundary regularity assumptions),
(4) simply connected domains which have a complete Kähler metric with

pinched negative sectional curvature,
(5) bounded homogeneous domains, and
(6) the Bers embeddings of the Teichmüller space of hyperbolic surfaces of

genus g with n punctures.

Further, by definition, any domain biholomorphic to one of the domains listed
above also has bounded intrinsic geometry.
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In [3] we considered the problem of characterizing when the ∂̄-Nuemann oper-
ator Nq on (0, q)-forms is compact. A classical result of Fu-Straube [1] states that
for bounded convex domains, the operator Nq is compact if and only if the bound-
ary does not contain any q-dimensional analytic varieties. In [3], we extended their
result as follows.

Theorem 2 (Z. [3]). Suppose Ω ⊂ Cd is a bounded domain with bounded intrinsic
geometry and gΩ is the Bergman metric on Ω. Then the following are equivalent:

(1) Nq is compact.

(2) If gΩ,z is identified with the d-by-d matrix
[
gΩ,z( ∂

∂zi
, ∂
∂z̄j

)
]
, then

lim
z→∂Ω

(the qth-smallest singular value of gΩ,z) = ∞.

If, in addition, ∂Ω is C0, then the above conditions are equivalent to:

(3) ∂Ω does not contain any q-dimensional analytic varieties.

In [4] we considered the problem of characterizing the L2 symbols where the
associated Hankel operator is compact. More precisely, given a pseudoconvex
domain Ω ⊂ Cd let A2(Ω) ⊂ L2(Ω) denote the subspace of holomorphic square
integrable (with respect to the Lebesgue measure µ) functions on Ω. Then let PΩ :
L2(Ω) → A2(Ω) denote the Bergman projection, i.e. the orthogonal projection of
L2(Ω) onto A2(Ω). Finally, given φ ∈ L2(Ω), the associated Hankel operator Hφ

has domain

dom(Hφ) =
{
f ∈ A2(Ω) : φ · f ∈ L2(Ω)

}

and is defined by

Hφ(f) = (id − PΩ)(φ · f) = φ · f − PΩ(φ · f).

For strongly pseudoconvex domains, Li [2] characterized the symbols in L2(Ω) for
which the associated Hankel operator is compact in terms of how well the symbol
is approximated by holomorphic functions on each open metric ball BΩ(ζ, r) in the
Bergman metric.

Theorem 3 (Li [2]). Suppose Ω ⊂ Cd is a strongly pseudoconvex domain and
φ ∈ L2(Ω). Then the following are equivalent:

(1) Hφ extends to a compact operator on A2(Ω),
(2) for some r > 0

lim
ζ→∂Ω

inf

{
1

µ(BΩ(ζ, r))

∫

BΩ(ζ,r)

|φ− h|2 dµ : h ∈ Hol
(
BΩ(ζ, r)

)}
= 0.

For strongly pseudoconvex domains, one can show that on each sufficiently small
metric ball BΩ(ζ, r) the volume form 1

µ(BΩ(ζ,r))dµ is uniformly equivalent to the

volume form dVΩ induced by the Bergman metric. Also, for strongly pseudoconvex
domains one can show that Hφ is densely defined for any φ ∈ L2(Ω). For a general
pseudoconvex domain, we let S(Ω) ⊂ L2(Ω) denote the symbols φ where Hφ is
densely defined.
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With these remarks in mind, we extend Li’s theorem to general domains with
bounded intrinsic geometry as follows.

Theorem 4 (Z. [4]). Suppose Ω ⊂ Cd is a bounded domain with bounded intrinsic
geometry and φ ∈ S(Ω). Then the following are equivalent:

(1) Hφ extends to a compact operator on A2(Ω),
(2) for some r > 0

lim
ζ→∂Ω

inf

{∫

BΩ(ζ,r)

|φ− h|2 dVΩ : h ∈ Hol
(
BΩ(ζ, r)

)}
= 0.
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Finite type domains and plurisubharmonic polynomials

Berit Stensønes

Problem. Let Ω ⊂ Cn and f be a bounded (0, 1)−form such that ∂f = 0. Can
we find a function u such that

∂u = f

and

‖u‖∞ ≤ C(Ω)‖f‖∞
where C(Ω) only depends on the domain.

If Ω is strongly pseudoconvex, then there is a positive answer (see Henkin,
Ramirez... 1970’s). Sibony found a smoothly bounded pseudoconvex counterex-
ample in C3. We shall restrict our attention to pseudoconvex domains of finite
type.

If Ω ⊂ C2 the answer is positive. This is due to Fornæss, Fefferman-Kohn and
Range. So the task is to study the case when Ω ⊂ Cn, n ≥ 3. The following is
joint work with Dusty Grundmeier and Lars Simon.

Let Ω ⊂⊂ Cn pseudoconvex with real analytic boundary, then given a point
p ∈ ∂Ω, we can find local coordinates (z1, . . . , zn) such that:
(1) p = 0
(2) Locally

Ω = {ℜ(z1) + r(z̃, z̃) + O(z1z̃, ‖z1‖2) < 0}
where z̃ = (z2, . . . , zn).
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Definition. Ω can be bumped to type at 0 if there exists another pseudoconvex
domain Ω∗ such that Ω \ {0} ⊂ Ω∗, 0 ∈ ∂Ω∗ and we can find a smooth function Φ
such that
(1) Φ = z1 −AF (z2, . . . , zn) where {z; Φ(z) = 0} ⊂ Cn \ Ω

∗
except for 0

(2) If z = (z1, . . . , zn) ∈ ∂Ω then dist (z, ∂Ω∗) ≥ c|Φ(z)|.
Kohn-Nirenberg example:

Ω = {ℜ(z1) + |z2|8 +
15

7
|z2|2ℜ(z62) < 0}

= {ℜ(z1) + r(z2, z2) < 0}.
Now, r will be both positive and negative in different directions. Choose A > 0

large and Φ = z1 −A|z2|8. We have that ∂2r
∂z∂z

≥ |z2|6. Let

r′(z) = (1 − 1

32
)|z|8 +

15

7
|z2|2ℜ(z62).

Then r′ is subharmonic so

Ω∗ = {ℜ(z1) + r′(z2, z2) < 0}
is pseudoconvex. Let (z1, z2) ∈ ∂Ω, then

dist((z1, z2), ∂Ω∗) ∼ |z1| + |z|8.
Further if Φ = 0 then |z1| = A|z2|8 so

ℜ(z1) + r′(z2) = A|z2|8 + r′(z2) > 0.

Theorem. If Ω ⊂⊂ Cn is pseudoconvex with real analytic boundary and Ω can be
bumped to type at every boundary point then we get supnorm estimates for ∂

Theorem. If n = 3, then Ω can be bumped to type.

In order to prove bumping to type we need to study plurisubharmonic polyno-
mials. We look at

{ℜ(z1) + r(z̃, z̃) + O < 0}
To bump we have to study r(z̃, z̃)

r =
∑

j=2k

Pj .

The lowest degree is even since Ω is pseudoconvex, moreover P2k is plurisubhar-
monic and homogeneous.

Question. Is there a positive function G such that G ≥ |P2k| and there is another
homogeneous plurisubharmonic P ′

2k such that

P ′
2k ≤ P2k − ǫG

If yes, we get similar estimates for weighted homogeneous polynomials.
If P2k vanishes on a complex line L, we need to look at the higher order terms

of r.
The main difficulty is when there are complex structures in Γ, the set where

the Levi-form is degenerate, along which P2k is pluriharmonic.
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This only appears when our domain is in Cn, n ≥ 3, and P2k is a function of
two or more complex variables.

In a joint work with Gautam Bharali we were able to give a positive answer to
Question 1 when P2k is a polynomial in 2 complex variables.

We have several results on homogeneous plurisubharmonic, nonpluriharmonic
polynomials P2k : C2 → R.

(1) P2k can only vanish on finitely many complex lines through 0. If P2k is not
plurisubharmonic this is false: Example |z|4− |w|4. Also, this result does not hold
if P2k depends on 3 or more variables. But Lars Simon has been able to prove: If
P2k : Cn → R is as above, then it is pluriharmonic along at most finitely many
hyperplanes through 0.

Challenge: Describe the family of complex lines along which P2k is harmonic.
When we were looking at how P2k vanish along such a complex line we stumbled

on the following result:
(2) If P2k(z, z, w, w) is homogeneous in z, z and w,w separately, then P2k =

s(zαwβ) where s is subharmonic.
What if P2k is a polynomial of m variables and P2k is homogeneous in ℓ variables

can we find a map F : Cm → Cm−ℓ and a plurisubharmonic polynomial Q :
Cm−ℓ → R such that P2k = Q ◦ F?
(3) If P2k is harmonic along Σc = {g(z, w) = c} for an open set of values c for
some holomorphic g, then again

P2k = s(f(z, w))

where s is subharmonic and f is holomorphic.

Question A. P2k as above. Assume there exists holomorphic map

G : Cn → Cm, 1 ≤ m ≤ n− 1,

nonsingular on an open set U ⊂ Cn. Assume that P2k is harmonic along every
level set of G|U . Does this mean that there is a plurisubharmonic Q : Cm → R and
holomorphic polynomials F1, . . . , Fm : Cn → C such that P = Q ◦ (F1, . . . , Fm).

Nevanlinna’s theory, equidistribution of preimages

Nessim Sibony

The goal is to draw some analogies between holomorphic dynamical systems and
equidistribution problems in Nevanlinna’s Theory. A sample of the questions con-
sidered is as follows.

Let f : (Y, σ) → (N , ω), be a non-degenerate holomorphic map, from an open
complex manifold Y of dimension m, with a good p.s.h. exhaustion function σ,
and ω is a Kähler form on N , a compact complex manifold of dimension n.

A basic question in Nevanlinna’s theory is to study the distribution of preimages
under the map f , of subvarieties Da of codimension p, Da ⊂ N , which are in the
same cohomology class.
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When p = 1, we are given a large family of hypersurfaces Da, parametrized by
a complex manifold V. We assume they are in the cohomology class of ω.

Large means that it satisfies the following condition
⋂

a∈V

Da = ∅.

Or large enough with respect to f : Y → N . i.e.
⋂

a∈V

Da

⋂
f(Y) = ∅.

As usual we define

Tf (ω, r) :=

∫
f∗(ω) ∧ (ddc log σ)m−1 log+ r

σ

N(Da, r) :=

∫
f∗(Da) ∧ (ddc log σ)m−1 log+

r

σ

m(a, r) :=

∫
f∗(ua)dc log σ|§(r) ∧ (ddc log σ)m−1

d(a, r) :=

∫

B(r)

f∗(ua)(ddc log σ)m.

The Valiron defect for the hypersurface Da is defined as

∆(Da) = 1 − lim inf
r→R

N(Da, r)

T (r)
= lim sup

r→R

m(a, r)

T (r)
.

We show that the Valiron defect is zero except on a pluri-polar set of param-
eters, provided Tf (ω, r) → ∞, as r → R and (ddc log σ)m is compactly supported.

This shows that there is an optimal estimate for the growth of the preimage
except for a ”small” set of parameters.

We show that except on a a pluripolar set of parameters a,

1

Tf(ω, r)

(
f∗ω − f∗(Da)

)
log+

r

σ

converges to zero, as currents. This shows that the preimages distribute according
to the same pattern, except for a negligible set of parameters.

I will discuss also the case of points ,i.e. p = n. The notion of ”small” set has
to be modified. It depends on the type of singularities, for the kernel solving the
ddc-equation on N , for currents of bi-degree (p, p), cohomologous to zero.

Under a hypothesis on the various characteristics, we obtain similar equidistri-
bution results, for p = n.
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Interior Regularity of the Complex Monge-Ampère Equation in
Non-smooth Domains

Zbigniew B locki

The following result generelized the Bedford-Taylor [1] solution of the Dirichlet
problem for the complex Monge-Ampère equation from strongly pseudoconvex to
more general domains:

Theorem. ([2]) Assume that Ω is a bounded hyperconvex domain in Cn. Then

for any f ∈ C(Ω), f ≥ 0, there exists unique u ∈ PSH(Ω)∩C(Ω) such that u = 0
on ∂Ω and (ddcu)n = f dλ in Ω.

The talk is a survey on results related to the following problem which remains
still open:

Main Conjecture. If f ∈ C∞(Ω), f > 0, then u ∈ C∞(Ω).

Thanks to the estimate of Pogorelov [5] it is known that the analogous problem
for the real Monge-Ampère equation and bounded convex domains has an affir-
mative solution. Essentially the only known case of a non-smooth domain in Cn

where the answer is positive is a polydisc (see [3]). Cheng-Yau proved the following
version of the Pogorelov estimate in the complex case:

Theorem. ([4]) Assume that u ∈ PSH ∩C4(Ω) is such that u = 0 on ∂Ω, where

Ω is a bounded domain in Cn. If det(uij̄) = f > 0 then

(−u)2n−1∆u ≤ C,

where C depends only on f , diamΩ, and on the upper bound for supΩ u
ij̄uiuj̄.

It would be therefore enough to prove an interior estimate for uij̄uiuj̄ . A possible
step in this direction is the following estimate:

Theorem. Assume that u ∈ PSH ∩ C4, u < 0, and det(uij̄) = f > 0. Then for

w := uij̄uiuj̄ − u we have

upq̄(logw)pq̄ ≥ − 1

w

∑

i,j

uiuj̄(log f )̄ij
uīiujj̄

.

In particular, if f ≡ 1 then upq̄(logw)pq̄ ≥ 0.

One of plausible conjectures is that for convex domains in Cn the expression
uij̄uiuj̄ is globally bounded in Ω which would settle the main conjecture for convex
domains.
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UMR 5582 du CNRS
100 rue des Maths
38610 Gières
FRANCE

Prof. Dr. Fusheng Deng

School of Mathematical Sciences
University of Chinese Academy of
Sciences
19A Yuquan Road
Beijing 100049
CHINA

Dr. Eleonora Di Nezza
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SWEDEN

Dr. Jujie Wu

School of Mathematics (Zhuhai), Sun
Yat-Sen University,
519082 Zhuhai
CHINA



Geometric Methods of Complex Analysis 1345

Dr. Elizabeth Wulcan

Department of Mathematical Sciences
Chalmers University of Technology and
University of Göteborg
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Institut de Mathématiques de Toulouse
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