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Abstract. Progress in algebraic geometry often comes through the introduc-
tion of new tools and ideas to tackle the classical problems in the development
of the field. Examples include new invariants that capture some aspect of ge-
ometry in a novel way, such as the derived category, and the extension of the
class of geometric objects considered to allow constructions not previously
possible, such as the transition from varieties to schemes or from schemes to
stacks. Many famous old problems and outstanding conjectures have been
resolved in this way over the last 50 years. While the new theories are some-
times studied for their own sake, they are in the end best understood in the
context of the classical questions they illuminate. The goal of the workshop
was to study new developments in algebraic geometry, with a view toward
their application to the classical problems.
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Introduction by the Organizers

The workshop Classical Algebraic Geometry held June 20–26, 2021 at the Ma-
thematisches Forschungsinstitut Oberwolfach was organized by Olivier Debarre
(Paris), David Eisenbud (Berkeley), Gavril Farkas (HU Berlin) and Ravi Vakil
(Stanford). The workshop took place in hybrid format with 28 participants present
in Oberwolfach, the rest participating online. There were 20 one-hour talks (12 in
person and 8 in Zoom format), including one Zoom talk every evening to accom-
modate for the different time zones of the participants. On Tuesday an evening
session of short presentations took place, allowing young participants to introduce
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their current work (and themselves). The extended abstracts give a detailed ac-
count of the broad variety of topics of the meeting. We have selected a few of the
highlights of the meeting:

• János Kollár: Projectivity criteria
In one of the central talks of the workshop, János Kollár spoke on projectivity
criteria for Moishezon manifolds. The culmination of the lecture was the recent
theorem proved by his student Villalobos Paz, that a compact Moishezon manifold
X is projective if and only if there are no rational curve R on X such that −R
lies in the closure of the Mori cone of curves NE(X). The start of the story
was also the start of Mori’s work at the dawn of the Minimal Model Program
based on contracting rational curves one at a time. A corollary is that if X is
not a projective variety, then it contains a rational curve. Villalobos Paz extends
this result to algebraic spaces, a seemingly small extension, but a big problem
because the Minimal Model Program steps of Birkar-Cascini-Hacon-McKernan are
not étale-local in nature (that is, they do not commute with étale base change).
Kollár described a second main theorem of Villalobos Paz in a similar vein, on the
fact that nice enough — but not flat — proper morphisms of complex analytic
spaces with projective fibers, and projective away from a point, are actually locally
projective. As he often does, throughout his talk, Kollár gave a number of natural
questions that will certainly guide the future developments of this subject.

• Hannah Larson: Brill–Noether theory over the Hurwitz space
Formulated in the late 19th century and rigorously proven by Griffiths and Har-
ris in the 1980s, the Brill-Noether Theorem establishes which linear systems can
appear on a general curve C of genus g. A similar question can be asked for a
general curve C of genus g and prescribed gonality k, that is, endowed with a
degree k map f : C → P1. In a very impressive talk, Larson explained how in
two important papers, she found and proved analogues of all the main theorems
of Brill-Noether theory for the case of general curves of prescribed gonality. She
determined the dimension of the Brill-Noether variety W r

d (C) (which in general
will be different from the answer one gets for a general curve of genus g) and
determined the dimensions of all of its components corresponding to the various
scrollar invariants (splitting type) of the degree-k map in question. In particular,
all these components are normal and Cohen-Macaulay. She then computed their
cohomology classes in the intersection ring of the Jacobian of C and pointed out
that, quite surprisingly, the system of cohomology classes of splitting strata lead
to a very interesting problem in the theory of Coxeter groups.

• Carl Lian: Counting linear series on curves: old and new results
Carl Lian addressed in his talk the following basic question in enumerative geom-
etry. Given a general curve C of genus g and fixed points x1, . . . , xn on C, how
many linear systems ℓ ∈ Gr

d(C) corresponding to maps f : C → Pr exist which
satisfy prescribed incidence conditions at the points x1, . . . , xn? He showed that
when d is large and n is chosen so that one expects finitely many such maps, their
number equals (r + 1)g. In the case r = 1 (in which case n = g + 3), his answer
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recovers a recent result of Tevelev, who showed that the degree of the evaluation
map Picg+1(C) 99K M0,g+3 equals 2g. This result, motivated by questions in the
theory of scattering amplitudes, was the original motivation of Lian’s study, who
in his wonderful talk, explained how in the range when the degree d is smaller, the
number of linear systems on C with prescribed incidences has an interpretation
in terms of intersection on Schubert cycles on the Grassmannian G(r + 1, d + 1)
of r-planes in the projective space Pd. These numbers can be explicitly computed
when r = 1 and recover very recent results of Cela, Pandharipande and Schmitt.

• Stefan Schreieder: Infinite torsion in the Griffiths group
Stefan Schreieder gave a beautiful talk on the construction of smooth projective
complex varieties for which the 2-torsion of the Griffiths group is not finitely gen-
erated. The Griffiths group of a smooth complex projective variety is the group
of homologically trivial cycles modulo algebraic equivalence. This is a countable
abelian group that measures the failure of injectivity of the cycle class map. Grif-
fiths introduced these groups in 1969 and gave the first examples of nontrivial
Griffiths groups using his transcendental Abel–Jacobi map. Clemens generalized
this result by constructing in 1983 Griffiths groups that are not finitely generated
modulo torsion. Schreieder gave a very pleasant introduction to and overview of
the subject and defined a new theory which he called refined unramified cohomol-
ogy. He then proceeded to explain how he used these new cohomology groups and
a degeneration argument to show that the third Griffiths group of the product of
a very general Enriques surface and the Jacobian of a very general plane quartic
curve has infinitely many 2-torsion classes that are linearly independent modulo
2.

The young participants’ presentations, listed below, covered a similarly wide range
of topics. Based on past experience, it is likely that these researchers will establish
themselves as leaders in their areas.

• Andrei Bud (HU Berlin)
Maximal gonality on strata of differentials

• Andrea di Lorenzo (HU Berlin)
Take five: five invariants of five stacks in five minutes

• Laure Flapan (Michigan State)
Some cycles on hyperkähler manifolds

• Zhuang He (HU Berlin)
Birational geometry of blow-ups of Pn along points and lines

• Ritvik Ramkumar (Berkeley)
A moduli space for pairs of linear spaces in Pn

• Emre Sertöz (MPIM Bonn)
Separating periods of quartic surfaces

• Jieao Song (Paris, IMJ-PRG)
Geometry of Debarre-Voisin varieties
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Abstracts

On the coniveau of rationally connected threefolds

Claire Voisin

Let X be a smooth complex projective variety. A cohomology class α ∈ Hi(X,Z)
is said to be of coniveau ≥ c if there exists a closed algebraic subset Y ⊂ X with
codimY ≥ c and α|X\Y = 0. Equivalently α comes from a cohomology class with
support on Y and the adequate version of Poincaré duality says that, denoting
j : Y → X the inclusion of Y in X , one has

α = PDX(j∗β)

for some homology class β ∈ H2n−i(Y,Z), where n = dimX , and PDX denotes
the Poincaré duality isomorphism

H2n−i(X,Z) ∼= Hi(X,Z).

When passing to rational coefficients, Deligne’s theory of mixed Hodge structures

[4] implies that, introducing a desingularization Ỹ
τ
→ Y of Y and the morphism

j̃ = j ◦ τ : Ỹ → X , one has

Im (j∗ : H2n−i(Y,Q) → H2n−i(X,Q)) = Im (j̃∗ : H2n−i(Ỹ ,Q) → H2n−i(X,Q)).

This equality does not hold in general with Z-coefficients. In the paper [2], Benoist
and Ottem say that a class α ∈ Hi(X,Z) is of strong coniveau ≥ c if there exist

a smooth projective variety Ỹ of dimension n − c, a morphism f : Ỹ → X and a

homology class β̃ ∈ H2n−i(Ỹ ,Z) such that α = PDX(j̃∗β̃). Passing to rational
coefficients, we get from Deligne theorem that a rational cohomology class is of
coniveau ≥ c if and only if it is of strong coniveau ≥ c. With Z-coefficients, we
only have the obvious inclusion

Ñ cHi(X,Z) ⊂ N cHi(X,Z)

where on the left, we have cohomology of strong coniveau ≥ c and on the right
cohomology of coniveau≥ c, and Benoist-Ottem show that for any i ≥ 3 there exist
examples of degree i integral cohomology classes on smooth projective varieties X
which are of coniveau ≥ 1 but not of strong coniveau ≥ 1.

My interest in these questions comes from the fact that, for any i, the group

Hi(X,Z)/Ñ1Hi(X,Z)

is a stable birational invariant of smooth projective varieties, so if a smooth pro-

jective variety X is stably rational, then Hi(X,Z) = Ñ1Hi(X,Z) for i > 0. The
(stable version of) Lüroth problem asks whether rationally connected varieties (or
unirational varieties) are stably rational; we have plenty of negative answers to
that question, starting from dimension 3. However the invariants used to exhibit
counterexamples are not so numerous and easy to compute. The natural question
from this viewpoint is:
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Let X be a rationally connected smooth projective variety. Is Hi(X,Z) = Ñ1Hi(X,Z)
for i > 0?

Note that, if we replace the strong coniveau by the coniveau, the answer to this
question is yes, by a result of Colliot-Thélène and myself [3].

The result I presented in this talk is proved in [5].

Theorem 1. Let X be a smooth rationally connected threefold. Then

Ñ1H3(X,Z)/Torsion = H3(X,Z)/Torsion.

I do not know if the torsion of H3(X,Z) is of strong coniveau 1 or not. This
torsion is called the Artin-Mumford invariant of X (or Brauer group in this case).
It was the first invariant ever used to exhibit unirational threefolds which are not
stably rational, although we now know that there are other obstructions to stable
rationality, even for unirational threefolds, see [6].

The main ingredients of the proof are (1) the fact that H3(X,Z) = N1H3(X,Z)
as already mentioned, (2) the injectivity of the Abel-Jacobi map on torsion codi-
mension 2 cycles, established by Bloch and (3) Kollár-Miyaoka-Mori method of
gluing very free rational curve to a given curve mapping to X in order to make it
unobstructed.
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Irrational Gushel Mukai Threefolds

Giovanni Mongardi

(joint work with Olivier Debarre)

The rationality of algebraic varieties has long been an interesting and challenging
field of study. After the cases of curves and surfaces were established, rational-
ity (or rather, irrationality) of threefolds was studied using several techniques.
The first was introduced by Clemens and Griffiths: they noticed that a rational
threefold must have the intermediate Jacobian of an algebraic curve, therefore ra-
tionality can be disproven either by looking at singularities of the Theta divisor,
or by looking at polarized automorphisms of the intermediate Jacobian. Here, we
will use the latter.
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Beauville established in [1, Theorem. 5.6(ii)] that a general Fano threefold with
Picard number 1, index 1, and degree 10 (also known as a Gushel Mukai, or GM,
threefold) is irrational, but not a single smooth example was known, although
it is expected that all of these Fano threefolds are irrational. In this work, we
construct an explicit two dimensional projective family of irrational GM threefolds.
Our starting point was a very special EPW (for Eisenbud–Popescu–Walter) sextic
hypersurface YA ⊂ P5, constructed in [8], with a faithful action by the simple
group G := PSL(2,F11) of order 660.

By [5], the intermediate Jacobians of the GM varieties of dimension 3 or 5
obtained from the sextic YA are all isomorphic to a fixed principally polarized
abelian variety (J, θ) of dimension 10. This applies in particular to X5

A
, and the

G-action on X5
A
induces a faithful G-action on (J, θ). We use this fact to prove that

the GM threefolds that we construct from YA are not rational: by the Clemens–
Griffiths criterion ([4, Corollary 3.26]), it suffices to prove that their (common)
intermediate Jacobian (J, θ) is not a product of Jacobians of curves. For this,
we follow Beauville and use the fact that (J, θ) has “too many automorphisms”
(because of the G-action). Note that the GM threefolds themselves may have no
nontrivial automorphisms. This is how we produce a complete 2-dimensional family
of irrational GM threefolds, all mutually birationally isomorphic. The situation
is reminiscent of that of the Klein cubic threefold W ⊂ P4: Klein proved in [6]
that W has a faithful linear G-action; one hundred years later, Adler proved that
the automorphism group of W is exactly G and Roulleau showed that W is the
only smooth cubic threefold with an automorphism of order 11. The intermediate
Jacobian of W is a principally polarized abelian variety of dimension 5 isomorphic
to the product of 5 copies of an elliptic curve with complex multiplication and
Adler proved that it is the only abelian variety of dimension 5 with a faithful
action of G. This is the reason why we call our sextic YA the Klein EPW sextic.

Let ξ : G → GL(Vξ) be one of the irreducible representation of G of dimension
5, where the action of one of the order 11 elements has eigenvalues which are all
squares. Notice that the other dimension 5 representation is the dual one. From
the existence of a unique (up to multiplication by a nonzero scalar) G-equivariant
symmetric isomorphism

w : Λ2Vξ → Λ2V ∨
ξ

we infer that there is a unique G-invariant quadric Q whose equation is

x12x13 + x23x24 + x34x35 − x45x14 + x15x25 = 0.

This quadric does not contain the Grassmannian Gr(2, Vξ), therefore it defines a
Gushel-Mukai fivefold

(1) X5
A := Q ∩Gr(2, Vξ)

A computer check with Macaulay now ensures that the GM fivefold X5
A
defined

by (1) is smooth.
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The group G is simple and nonabelian, therefore the representation Λ5Vξ is trivial.
The isomorphism w therefore induces an isomorphism of representations

(2) v : Λ2Vξ → Λ2V ∨
ξ ⊗ Λ5Vξ ∼= Λ3Vξ.

Since w is symmetric, v satisfies v(x)∧y = x∧v(y) for all x, y ∈ Λ2Vξ. Let χ0 : G →
Vχ0

be the irreducible trivial representation and consider the G-representation

V6 := Vχ0
⊕ Vξ.

We can define a lagrangian subspace A in Λ3V6 as follows:

A := {e0 ∧ x+ v(x) | x ∈ Λ2Vξ}.

The Gushel Mukai fivefold X5
A
is the one associated with the Lagrangian A and

the hyperplane Vξ ⊂ V6. The ten dimensional intermediate jacobian (J, θ) of X5
A

has therefore a faithful G action. If we take special hyperplanes, corresponding to
singular points of the dual EPW sextic

YA⊥ := {[H ] ∈ P(V ∨
6 ), such that H ∧ Λ2(V ∨

6 ) ∩ A⊥ 6= 0}

we obtain Gushel Mukai threefolds with intermediate Jacobian (J, θ) by [5]. One
of them, computed by Kuznetsov, is given by the intersection of Gr(2, Vξ) with
the following linear space

x03 + x12 = x04 − x23 = 0,

and the quadric with equation

x01x02 − x13x14 − x24x34 = 0.

To prove the irrationality of the above threefold and all Gushel Mukai threefolds
associated to A, we will work on (J, θ):

Proposition 1. The principally polarized abelian variety (J, θ) is indecomposable.

Proof. If (J, θ) is isomorphic to a product of m ≥ 2 nonzero indecomposable
principally polarized abelian varieties, such a decomposition is unique up to the
order of the factors hence induces a map from G to the permutation group of
the factors. Since the analytic representation is irreducible, the image of u is
nontrivial and, the group G being simple, u is injective; but this is impossible
because G contains elements of order 11 but the permutation group of the factors
does not, because m ≤ 10. �

We can now sketch the proof of our main result.

Theorem 2. Any smooth GM threefold associated with the Lagrangian A is irra-
tional.

Proof. Let X be such a threefold. There is a G-equivariant isomorphism

(Jac(X), θX) → (J, θ).

We follow [2, 3]: to prove that X is not rational, we apply the Clemens–Griffiths
criterion ([4, Corollary 3.26]); in view of the previous Proposition, it suffices to
prove that (J, θ) is not the Jacobian of a smooth projective curve.
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Suppose (J, θ) ∼= (Jac(C), θC) for some smooth projective curve C of genus 10.
The group G then embeds into the group of automorphisms of (Jac(C), θC); by
the Torelli theorem, this group is isomorphic to Aut(C) if C is hyperelliptic and to
Aut(C) × Z/2Z otherwise. Since any morphism from G to Z/2Z is trivial, we see
that G is a subgroup of Aut(C). This contradicts the fact that the automorphism
group of a curve of genus 10 has order at most 432 ([7]). �
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Tautological classes of matroids

Christopher Eur

(joint work with Andrew Berget, Hunter Spink, Dennis Tseng)

Methods inspired from the algebraic geometry of realizable matroids has recently
led to fruitful developments in matroid theory. We introduce a new framework that
recovers, unifies, and extends these developments. For notations and conventions
regarding matroids, we point to [11] as a standard reference.

Let M be a matroid of rank r on a nonempty ground set E = {0, 1, . . . , n}. Let
T = (C∗)E be the algebraic torus with the standard action on CE . A realization
(over C) of M is an r-dimensional linear subspace L ⊆ CE such that the set

of bases of M equals the subcollection {B ∈
(
E
r

)
| L ∩

⋂
i∈B Hi = {0}} of size

r subsets of E. Here Hi denotes the i-th coordinate hyperplane of CE . Let
XE be the permutohedral variety of dimension n, which is obtained from Pn by
sequentially blowing up from lower to higher dimensions (the strict transforms of)
all coordinate subspaces of Pn. It is a toric variety with the open torus T/C∗, the
quotient of T by the diagonal copy of C∗.

Given a realization L ⊆ CE of a matroid M , we define two T -equivariant vector
bundles SL and QL on the permutohedral variety XE as follows.
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Definition 1. The tautological subbundle SL (resp. the tautological quo-
tient bundle QL) is the unique torus-equivariant vector bundle whose fiber over
a point t in the open torus T/C∗ of XE is t−1L (resp. CE/t−1L).

The T -equivariant K-classes of SL and QL depend only on the matroidM that
L realizes, and one can thus define T -equivariant K-classes [SM ] and [QM ] on XE

for an arbitrary, not necessarily realizable matroid M . The Chern classes of these
tautological classes recover previously studied geometric models of matroids:

• The first Chern class c1(QM ) equals the nef divisor class on XE corre-
sponding to the base polytope [8] of the matroid M .

• The top Chern class c|E|−r(QM ) equals the Bergman class ∆M of the
matroid M as studied in [12, 9], which coincides with the homology class
in XE of the wonderful compactification [5] of a realization L of M when
M has a realization.

• The products of Chern classes ci(SM )c|E|−r(QM ) for 0 ≤ i ≤ r equal the
Chern-Schwartz-MacPherson (CSM) classes of a matroid M introduced
in [10], and coincides with the CSM classes of the associated hyperplane
arrangement complement when the matroid has a realization.

The permutohedral variety XE resolves the rational Cremona map Pn
99K Pn.

Let α and β be divisor classes on XE obtained as the pullbacks of the hyperplane
class from each Pn. We express the Tutte polynomial of a matroid, which is
the universal deletion-contraction invariant of matroids, in terms of intersection
multiplicities of α, β, and Chern classes of SM and QM .

Theorem 1. Let
∫
XE

: A•(XE) → Z be the degree map on XE , and TM (u, v) the
Tutte polynomial of a rank r matroid M on ground set E. Then, one has

∑

i+j+k+ℓ=n

(∫

XE

αiβjck(S
∨
M )cℓ(QM )

)
xiyjzkwℓ =

(x + y)−1(y + z)r(x + w)|E|−rTM

(x+ y

y + z
,
x+ y

x+ w

)
.

We also establish a log-concavity property for the Tutte polynomial. For a
homogeneous polynomial f ∈ R[x1, . . . , xN ] of degree d with nonnegative co-
efficients, we say that its coefficients form a log-concave unbroken array if, for
any 1 ≤ i < j ≤ N and a monomial xm of degree d′ ≤ d, the coefficients of

{xki x
d−d′−k
j xm}0≤k≤d−d′ in f form a log-concave sequence with no internal zeros.

Theorem 2. The coefficients of the polynomial

tM (x, y, z, w) = (x+ y)−1(y + z)r(x+ w)|E|−rTM

(x+ y

y + z
,
x+ y

x+ w

)

form a log-concave unbroken array.

The two theorems together unify, recover, and extend several previous geometric
interpretations for the Tutte polynomial and the log-concavity properties for the
characteristic polynomial of a matroid, as given in [1, 3, 7, 9, 10, 2]. We prove
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Theorem 1 by using the method of localization in torus-equivariant geometry, and
Theorem 2 by using methods from tropical Hodge theory. Previous geometric
frameworks for studying matroids were disjoint in the sense that one could not
easily use both of these two fundamental methods within one framework.

In order to use Theorem 1 to recover previous K-theoretic interpretations of the
Tutte polynomial of a matroid, we develop an exceptional Hirzebruch-Riemann-
Roch type formula for permutohedral varieties.

Theorem 3. There exists a ring isomorphism ζXE
: K0(XE)

∼
→ A•(XE) which

satisfies

χ
(
[E ]
)
=

∫

XE

(1 + α+ · · ·+ αn) · ζE([E ])

for any [E ] ∈ K0(XE). Denote by
∧i

for the i-th exterior power and c(E , u) :=∑
i≥0 ci(E)u

i the Chern polynomial of [E ]. If [E ] “has simple Chern roots” (which

S∨
M and Q∨

M do) and rank rk(E), then we have
∑

i≥0

ζXE

(
[
∧i E ]

)
ui = (u + 1)rk(E)c(E , u

u+1 ), and

∑

i≥0

ζXE

(
[
∧i E∨]

)
ui = (u + 1)rk(E)c(E , 1)−1c(E , 1

u+1 ).

The map ζE is not the Chern character map, and the Chow class (1+α+· · ·+αn)
is not the Todd class of XE . The proof of Theorem 3 is a purely algebraic. We
use the localization methods for T -equivariant K-theory and T -equivariant Chow
rings of toric varieties along with the Atiyah-Bott localization formula.

Question 1. Is there a geometric interpretation or a proof of this Hirzebruch-
Riemann-Roch type formula (Theorem 3)?

Remark 1. One can show that the map ζE is the unique isomorphism that sends
[OWL

], the K-class of the structure sheaf of the wonderful compactification WL

associated to a realization L of a matroid, to the Chow class [WL] in XE of WL

as a subvariety of XE . However, this description of ζE makes it unclear why such
isomorphism should even exist.

Theorem 3 also opens new questions about wonderful compactifications. For
instance, it implies that for a realization L ⊆ KE of a matroid M over an alge-
braically closed field K of arbitrary characteristic, one has that the Euler charac-
teristic of the line bundle detQM pulled back to WL satisfies

χ(detQM ;WL) = |µ(M)|,

where µ(M) is the constant coefficient of the characteristic polynomial of M .
Separately, one can show by computation that also h0(detQM ;WL) = |µ(M)|.

Question 2. Is Hi(detQM ;WL) = 0 for all i > 0?

When the realization L is over a field of characteristic zero, one can show via
Kawamata-Viehweg vanishing theorem that Hi(detQM ;WL) = 0 for all i > 0.
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Compactifying Lagrangian fibrations

Giulia Saccà

Lagrangian fibration are the natural higher dimensional analogues of elliptic K3
surfaces and provide natural means to study, construct and classify compact hyper-
Kähler manifolds. This short note describes some results from [13], a work in
progress on compactification techniques for quasi-projective Lagrangian fibrations.

Definition 1. A Lagrangian fibration is a proper surjective morphism f :M → B
with connected fibers, where M is a Kähler manifold with a holomorphic symplectic
form, B is a normal variety, and the general fiber of f is a Lagrangian submanifold.

By the Arnol’d-Liouville theorem, the general fiber is a complex torus. In this
note we will be mostly concerned with the case M is quasi-projective and f is a
projective morphism, though we may also allow M to be a symplectic variety in
the sense of [2]. By Mastushita [10], a Lagrangian fibration is equidimensional.

Example 2. Let S → P1 be an elliptic K3 surface. The composition S[n] →
Symn S → Symn P1 = Pn is a Lagrangian fibration.

In [4], Donagi and Markman gave a necessary and sufficient condition, expressed
in terms of the tangent map of the classifying morphism from U to the moduli
space of ppav, for the total space of the family f : JU → U of principally polarized
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abelian varieties to admit a holomorphic symplectic form making the fibration La-
grangian. For more details, see [4, §7.2]. This condition is the applied to construct
several Lagrangian fibrations of geometric origin. In view of constructing examples
of compact hyper-Kähler manifolds, we considering the following question:

Question 3. Let U ⊂ Pn be an open subset and let πU :MU → U be a Lagrangian
fibration. When does there exist a smooth hyper-Kähler compactification M ofMU ,
with a regular morphism π : M → Pn extending πU?

Given an smooth projective fibration MU → U , with U ⊂ Pn, Brosnan [3]
noticed an obstruction to the existence of a smooth compactification of the total
space, with a regular equidimensional morphism to Pn. This obstruction is ex-
pressed in terms of the intermediate extension of the local systems coming from
the smooth part of the fibration. Since it depends only on these local systems, it is
the same for any other fibration which is locally isomorphic to MU → U . The fol-
lowing examples shows that 1) there are abelian group schemes which do not admit
a hyper-Kähler compactification but have torsors that do admit a hyper-Kähler
compactification; 2) there is an abelian group scheme which admits a hyper-Kähler
compactification and has a non trivial torsor with a hyper-Kähler compactification
in a different deformation class.

Example 4. Let (S,H) be a general polarized K3 surface of genus g and let m
and χ be integers, with m ≥ 1. Consider the Mukai vector v = (0,mH, χ) and
let Mv be the moduli space of H-semistable pure dimension one sheaves on S with
Mukai vector v. This moduli space is smooth if and only if gcd(m,χ) = 1. If
this is the case, Mv is a hyper-Kähler manifold of K3[n]-type, for n = v2/2 + 1.
If this is not the case, then the moduli space has a symplectic resolution if and
only if m = g = 2. This symplectic resolution is of OG10-type. Fix m ≥ 2.
Let U ⊂ |mH | be the open subset parametrizing smooth curves, let CU/U be the
family of smooth curves, and for χ ∈ Z, let Picχ(CU/U) → U be the relative
Picard variety of degree d = χ + H2/2. If gcd(χ,m) = 1, then Mv is a hyper-
Kähler compactification of Picχ(CU/U) → U . If m = g = 2 and χ is even,
then a symplectic resolution of Mv, which is of OG10-type, is a hyper-Kähler
compactification of Picχ(CU/U) → U . Finally, if gcd(χ,m) 6= 1 and m and g are
not both equal to 2, then Picχ(CU/U) → U has no hyper-Kähler compactification.

We now come to the main results.

Theorem 5. [13] Let U ⊂ B be an open subset of a normal projective variety
B and let πU : MU → U be a projective Lagrangian fibration with holomorphic
symplectic form σMU

. Suppose the complement of U in B has codimension ≥ 2
and that there is a compactification of MU with a holomorphic 2-form extending
σMU

. Then there exists a Q-factorial terminal symplectic compactification M of
MU and a projective Lagrangian fibration π : M → B extending πU . Moreover,
the following are equivalent:
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(1) M is smooth;
(2) M is birational to a smooth holomorphic symplectic variety;
(3) M is smoothable by a flat deformation.

Sketch of Proof. Let M̃ be any smooth projective compactification of MU with

a regular morphism π̃ : M̃ → Pn. By assumption there exists a holomorphic

2-form on M̃ which is generically non-degenerate, so the canonical bundle of M̃

is effective, and trivial if and only if M̃ is hyper-Kähler. If this is not the case,
then the canonical divisor is supported on the complement of MU and, since the
complement of U in B has codimension ≥ 2, it is not nef over Pn. Following Lai
[7] (see also [5]) it is possible to run the minimal model program and reach, after a
finite sequence of birational maps relative to Pn, a Q-factorial terminal symplectic
compactification M̄ ofMU with a regular morphism to Pn. The equivalence (1)–(2)
follows as in [12, Prop. 1.7] and (1)–(3) is the main result of [11]. �

A consequence of this result is that to answer Question 3 it is equivalent to
show there exist a hyper-Kähler compactification with a regular morphism to Pn

or a projective birational model that is hyper-Kähler. A comment about the
assumption on the extension of the holomorphic form: using the techniques of
[8, §2], it is possible to show in certain geometric settings that the holomorphic 2
form on a family of abelian varieties extends to a holomorphic form on any smooth
projective compactification of the total space. The following answers a question
asked to me by Voisin.

Theorem 6. [13] Let π : M → Pn be a Lagrangian fibration with integral fibers.
Then there exists a projective hyper-Kähler manifold A, with a Lagrangian fibration
A→ Pn that has a section and is étale locally isomorphic to M → Pn.

Sketch of Proof. By [1, 9], there exists a fibration A◦ → Pn with a holomorphic
symplectic form and which, étale locally over the base, is isomorphic to the smooth
locus of π. We refer to this fibration as the relative Albanese fibration ofM → Pn.
Applying to A◦ a similar argument to that of Theorem 5, yields a projective, Q-
factorial, terminal, symplectic birational model A of A◦, with a regular morphism
to Pn. By construction, A and M are birational étale locally over Pn. To extend
these birational maps to isomorphism, we use the fact that since the restriction
map H2(M) → H2(Mt) has rank one and since the fibers of M → Pn are irre-
ducible, any line bundle on M that is ample on the general fiber is ample on every
fiber. A similar argument was used in [14]. �

Example 4 shows that the integrality of the fibers is, in general, a necessary
condition for the conclusion of this theorem to hold. One may also consider, instead
of the relative Albanese fibration, the relative degree-0 Picard variety Pic0(M/Pn).
In this case using the same techniques one can prove that there exists a Q-factorial
terminal symplectic compactification. While there are examples where it is know
that the relative Picard variety has a symplectic compactification, at this time the
author does not know a general statement.
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Odd cohomology vanishing and polynomial point counts on moduli
spaces of stable curves

Sam Payne

(joint work with Jonas Bergström and Carel Faber)

In the late 1990s, Arbarello and Cornalba developed a method based in algebraic
geometry, Hodge theory, and the combinatorial structure of the boundary to com-
pute rational cohomology groups of moduli spaces of stable curves. As applications
of this method, they computed H2(Mg,n), giving explicit generators and relations,

and showed that Hk(Mg,n) vanishes for k ∈ {1, 3, 5}, for all g and n [1]. It was

already known that H11(M1,11) ∼= Q2.
Our first main result affirmatively answers the natural question they posed,

regarding the vanishing of odd cohomology in the two intermediate degrees; we
show that H7(Mg,n) and H

9(Mg,n) vanish for all g and n.
The proof of this result follows the inductive procedure developed by Arbarello

and Cornalba, leveraging a number of intermediate results that have been proved
in the past twenty years to establish the needed base cases. For H7, all of the
needed cases can already be extracted from the existing literature. The required
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cases for g = 2 and 3 were established by Bergström, Petersen, and Tommasi
[3, 4, 8], while the cases g = 4 and n = 0, 1 are special cases of vanishing results in
the virtual cohomological dimension [6, 7]. These same references, plus [9], handle
all but three of the cases needed for H9.

In order to prove our first main result, we needed to show that H9(M4,n)
vanishes for n ∈ {1, 2, 3}. In fact, we have proved much more. Our second main
result says that #M4,n(Fq) is a polynomial in q, for n ∈ {1, 2, 3}. It then follows,
via the Behrend Trace Formula for algebraic stacks [2], that the cohomology of
M4,n is pure Hodge-Tate, and in particular that it is supported in even degrees.
Moreover, we have computed the polynomials and the isomorphism class of the
Sn-representation (modulo a few details that remain to be checked).

Both of our main results confirm predictions of the Langlands Program, via
the conjectural correspondence between irreducible motives appearing in Deligne-
Mumford stacks that are smooth and proper over the integers and polarized al-
gebraic cuspidal automorphic representations of conductor 1. The latter have
recently been classified in weights less than 23 by Chenevier and Lannes [5]. The
predictions work as follows.

Suppose X is smooth and proper over Z. The classification of Chenevier and
Lannes contains no representations of odd weight less than 11. Therefore, assuming
the conjectural correspondence, one concludes thatHk(X) vanishes for all odd k <
11. Furthermore, the only representation of weight 11 corresponds to the motive
S12 and any space that contains this motive must also possess a holomorphic 11-
form. Thus, if X has no holomorphic 11-form (e.g., if X is unirational) and if
dimX ≤ 12 then the correspondence predicts that the cohomology of X should be
pure Hodge-Tate. In particular, since dimM4,n = 9 + n and M4,n is unirational

in the relevant cases, the correspondence predicts that the cohomology of M4,n is
pure Hodge-Tate for n ≤ 3. This is what we have now proved, unconditionally.

In the talk, I also explained some advances in the standard point counting sieve
method, by systematically using inverse Hasse-Weil Zeta functions to collect terms
and simplify cancellations. This simplification is based on a proposition of Vakil
and Wood from [10], and was first used in the context of point counts on moduli
spaces by Wennink [11].
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Towards the Kodaira dimension of moduli spaces of
Abelian differentials

Martin Möller

(joint work with Matteo Costantini, Dawei Chen)

The moduli spaces of Abelian differentials ΩMg,n(µ) parametrize n-pointed stable
curves of genus g together with an abelian differential with zeros at the marked
points of orders µ = (m1, . . . ,mn). These strata have attracted a lot of inter-
est from the dynamics viewpoint since they admit and action of SL2(R) that
encodes the dynamics on polygonal billiard tables. Here we report on progress to-
wards the algebraic geometric properties of the projectivized strata PΩMg,n(µ) =
ΩMg,n(µ)/C

∗.
For low genus strata, i.e. g ≤ 9 for all n and moreover for some strata for g ≤ 11

but large n, the strata are unruled by results of Barros [1] and Bud [2]. For large
genus the moduli space of curves Mg,n is of maximal Kodaira dimension and the
moduli spaces of abelian differentials are finite of covers of such Mg,n if moreover
n is large by results of [3]. This implies that ΩMg,n(µ) has maximal Kodaira
dimension if both g and n is large.

The main open question is thus the behaviour of the Kodaira dimension for g
large in the cases with few points, including the special case of subcanonical points
where n = 1 and thus µ = (2g − 2). The connected components of strata have
been classified by Kontsevich and Zorich [6]. For each µ there are up to three
components, distinguished by odd or even spin parity and possibly components
consisting entirely of hyperelliptic curves. The even and the hyperelliptic com-
ponents are unirational for trivial reasons. For the first interesting case we are
reasonably confident to conjecture:

Conjecture 1. The odd components of the minimal strata PΩMg,n(2g − 2)odd

have maximal Kodaira dimension for g ≥ 12.

The strategy is the classical one of Harris and Mumford [7] writing the canonical
bundle of a compactification as an ample plus an effective divisor. Two prereq-
uisites have been provided by earlier work. The compactification from [4] is a



1538 Oberwolfach Report 29/2021

smooth proper Deligne-Mumford stack and [5] gives a formula the canonical class
on this stack.

The first step in our program is to show that the coarse moduli space associated
with the compactified stack is actually a projective variety by exhibiting an ample
line bundle. We denote that coarse moduli space by PMS(µ), an acronym for
the multi-scale differentials whose moduli space compactifies the moduli space of
Abelian differentials.

The second step is to understand the ramification divisor of the map from the
compactified stack to the compact coarse moduli space. The third step is to control
the singularities. Both these steps have been carried out. We give a flavour of the
result in the interior. The complete result is a long case distinction.

Theorem 2. The singularities of the coarse moduli space PΩMg,n(µ) with marked
points are canonical except for the holomorphic stratum ΩM1,2(0, 0) and the mero-
morphic strata µ = (m, 2−m) in genus g = 2 for m ≥ 4 and m ≡ 1 mod 3.

However, the compactified coarse moduli space PMS(µ) has non-canonical sin-
gularities for all but finitely many µ.

The fourth step is to find an effective divisor with small slope. For this purpose
we use a generalized Weierstrass divisor. At least for µ = (2g − 2)odd and µ =
(2g − 3, 1) the slope beats for g ≥ 12 the slope of the canonical class, which is the
main reason for the conjecture. However, with respect to several other boundary
divisors the Weierstrass divisor has pretty bad slope. So the fifth step will be to mix
with known Brill-Noether divisors, pulled back from Mg,n and estimate that the
slope is good enough to control all boundary divisors, even with a compensation
term stemming from non-canonical singularities.
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Counting linear series on curves: old and new results

Carl Lian

(joint work with Gavril Farkas)

One of the most celebrated achievements of 19th century algebraic geometry re-
mains Castelnuovo’s enumeration of covers of minimal degree of P1, clarified a
century later by Griffiths-Harris.

Theorem 1 (Castelnuovo [3], Griffiths-Harris [9]). Let C be a general curve of
genus 2h ≥ 0. Then, the number of covers f : C → P1 of degree h + 1 is the
Catalan number Ch = 1

h+1

(
2h
h

)
.

A modern formulation of the proof may be given in the language of limit linear
series [5]. Namely, a map f is given by the data of L ∈ Pich+1(C) such that
V = H0(L) has dimension 2. If C degenerates to a singular curve C0 given by
2h elliptic tails attached at nodes to P1, then V specializes to a limit linear series
V0 on C0. The limit linear series V0 is essentially determined by a 2-dimensional
subspace W0 ⊂ H0(P1,O(h+1)), ramified at the nodes on P1, and the number of
such W0 is computed by Schubert calculus.

Our first new result concerns enumerating covers with higher ramification,
which has been studied in many special cases, e.g. in cycle class computations
on moduli spaces of curves, see [10, 15, 7]. Let C be a general curve of genus
g, and consider f : C → P1 of degree d constrained to have ramification indices
d1, . . . , dm ≥ 2 at unspecified points on C. (The situation where these points are
specified is easier, see [16].) Upon a limit linear series degeneration as above, the
interesting contributions come now from genus 1.

Theorem 2 (L. [12]). Let (E, p1) be a general elliptic curve. Let d, d1, d2, d3, d4
be integers such that d1 + d2 + d3 + d4 = 2d + 4. Then, the number of 4-tuples
(p2, p3, p4, f), where pi ∈ E are pairwise distinct points, and f : E → P1 is a cover
of degree d with ramification index di at each pi, is

Nd1,d2,d3,d4
=

∫

Gr(2,d+1)

(
4∏

i=1

∑

ai+bi=di−2

σai
σbi

)
(8σ11 − 2σ2

1).

A mysterious consequence is the invariance of Nd1,d2,d3,d4
under the involution

di 7→ d+2−di, that is, Nd1,d2,d3,d4
= Nd+2−d1,...,d+2−d4

, which we have only been
able to verify by direct computation.

The main difficulty in the proof of Theorem 2 is removing the excess loci where
the pi become equal, which is achieved by a geometric construction inspired by
Harris [10]. This method, however, produces a certain weighted count of linear
series with base-points, so a lengthy inclusion-exclusion procedure is needed to
obtain the main result. In particular, the formula for Nd1,d2,d3,d4

is not obtained
in a transparent way as an intersection of cycles on Gr(2, d+1), but suggests that
such a computation should be possible.

In joint work with Farkas, we also consider a variant of Theorem 1 in which
we impose incidence conditions on the map f . That is, we fix n general points
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each on C and P1, and require that f send the marked points on C to that on
P1. While this problem was studied in the infancy of Gromov-Witten theory [2],
it has recently received renewed interest after a result of Tevelev [18].

Theorem 3 (Cela-Pandharipande-Schmitt [4], Farkas-L. [8]). Let (C, p1, . . . , pn)
be a general pointed curve of genus g, and let q1, . . . , qn ∈ P1 be general points.
Let Lg,d be the number of maps f : C → P1 of degree d such that f(pi) = qi for
i = 1, 2, . . . , n = 2d− g + 1.

(a) Suppose d ≥ g + 1. Then

Lg,d = 2g.

(b) Suppose d, g are arbitrary, and let ℓ = d− g − 1. Then

Lg,d = 2g − 2
−ℓ−2∑

i=0

(
g

i

)
+ (−ℓ− 2)

(
g

−ℓ− 1

)
+ ℓ

(
g

−ℓ

)

=

∫

Gr(2,d+1)

σg
1 ·

[
∑

a+b=n−3

σaσb

]
.

Setting n = 3 in (b) recovers Theorem 1. The proof of Theorem 2 given by Cela-
Pandharipande-Schmitt [4] employs recent advances in the intersection theory of
Hurwitz spaces [17, 13], whereas that of [8] reduces, by degeneration as above, to
a Schubert calculus computation in genus 0.

The analogous problem for maps of sufficiently high degree (after part (a)) to
higher-dimensional projective spaces Pr is also addressed in [8]. For arbitrary d,
one needs to carry out an intersection theory calculation on the moduli space of
complete collineations, which is in progress. A parallel investigation in Gromov-
Witten theory for more general target spaces (e.g. flag varieties) has been initiated
by other authors; in the classical enumerative setting, one needs to develop Brill-
Noether-type statements for maps to such targets, which is another future direction
of interest.

One can recast all of our results for covers of P1 in terms of Hurwitz corre-
spondences. Namely, let H be the Hurwitz space of branched covers of P1 with
some specified branching data at marked points, compatified by admissible covers
[11, 1]. Then, H admits two forgetful maps φ : H → Mg,n and δ : H → M0,b

remembering the source and target, respectively. Our results give formulas for
degrees of the maps φ and (φ, δ) : H → Mg,n×M0,b in certain situations in which
they are expected to be generically finite.

A result of Faber-Pandharipande [6] shows more generally that the cycle class
(φ, δ)∗([H]) always lies in the tautological ring, and moreover gives an algorithm
to compute the class via virtual localization. However, the algorithm is intractable
to implement in practice, and so the question remains of whether such classes are
accessible by other means.

Our computations with limit linear series provide a hint toward an approach,
at least over the locus Mct

g,n of compact type curves. Namely, let π : Gr
d(Cg,n) →

Mct
g,n be the stack of universal limit linear series on curves of compact type [14].
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Then, cycle classes φ∗([H]) may be related to pushforwards of certain tautological
classes under π. The map π behaves similarly to a Grassmannian bundle, offering
a prototype for the systematic computation of such pushforwards, but various
technical issues would need to be surmounted. Our hope is that progress on this
problem will lead not only to new enumerative results but also applications to the
birational geometry of moduli spaces, via further-reaching computations of divisor
classes related to linear series.
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Brill–Noether theory over the Hurwitz space

Hannah Larson

(joint work with E. Larson, I. Vogt)

Brill–Noether theory studies the maps of algebraic curves to projective space.
Given a curve C, the data of a map C → Pr of degree d is equivalent to a degree
d line bundle L on C together with an (r+1)-dimensional space of global sections
having no common zeros. This motivates the definition of the Brill–Noether variety

W r
d (C) := {L ∈ Picd(C) : h0(C,L) ≥ r + 1}.

For a particular curve C, describing the geometry of W r
d (C) may be very difficult.

However, when C is general in moduli, the geometry of W r
d (C) is well-understood

through the following theorem, due to several mathematicians in 1970s and 1980s.

Theorem 1. For C a general curve of genus g, W r
d (C) is . . .

(1) Of the expected dimension ρ = g− (r+1)(g+ r− d) and nonempty if and
only if ρ ≥ 0. (Griffith–Harris 1980 [11])

(2) Normal, Cohen–Macaulay, and smooth away from W r+1
d (C). (Geiseker

1982 [10])
(3) Of class

[W r
d (C)] =

r∏

α=0

α!

(g − d+ r + α)!
· θ(r+1)(g−d+r).

(Independently by Kempf 1971 [13], and Kleiman–Laksov 1972 [14])
(4) Irreducible if ρ > 0. (Fulton–Lazarsfeld 1981 [9])
(5) When ρ ≥ 0, the universal Wr

d has a unique irreducible component domi-
nating the moduli space of curves. (Eisenbud–Harris 1987 [8])

In nature, curves often come to us already equipped with a map to some pro-
jective space. The presence of such a map may force C to be special in moduli and
fail the theorem above. It is therefore natural to ask: how does the presence of
some unexpected map affect the geometry of maps of C to other projective spaces?
The simplest case of this is to study W r

d (C) for curves C equipped with a degree
k map f : C → P1.

Although classical results fully describe W r
d (C) in the cases k = 2, 3 (Clifford’s

theorem for hyperelliptic curves and Maroni’s work on trigonal curves), the picture
is more complicated for k ≥ 4. This problem received much attention in the 1990s
and 2000s [4, 17, 1, 5, 6, 18, 7]. It was found that, in this setting, W r

d (C) often has
multiple components of varying dimensions. In 2017, through work of Pfluger [19]
and Jensen–Ranganathan [12], the dimension of the largest component of W r

d (C)
was determined for C a general curve of gonality k. However, the dimensions of
the other components remained a mystery.

The key to understanding these multiple components is to study the push for-
wards of line bundles from C to P1. This gives us a rank k vector bundle on P,
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whose splitting type we keep track of. Explicitly, given a degree k cover f : C → P1,
we define Brill–Noether splitting loci

W~e(C) := {L ∈ Picd(C) : f∗L ∼= O(e1)⊕ · · · ⊕ O(ek) or a specialization thereof}.

(These loci were independently introduced and studied by Cook-Powell–Jensen in
[2, 3]). Our main result describes the geometry ofW~e(C) (which in turn determines
the geometry of W r

d (C)). To state the theorem, let

u(~e) := h1(P,End(O(e1)⊕ · · · ⊕ O(ek))) =
∑

i,j

max{0, ei − ej − 1},

which is the dimension of the versal deformation space of O(e1)⊕ · · · ⊕ O(ek).

Theorem 2 (H. Larson [16] and E. Larson, H. Larson, and I. Vogt [15]). For C
a general degree k, genus g cover of P1, W~e(C) is . . .

(1) Of the expected dimension ρ′ := g − h1(End(O(~e)))

(2) Normal, Cohen–Macaulay, and smooth away from the union of theW~e ′

(C)
⊂W~e(C) having codimension 2 or more.

(3) Of class

[W~e(C)] =
N(~e)

u(~e)!
· θu(~e),

where N(~e) is the number of reduced words of a certain element w~e of the
affine symmetric group.

(4) Irreducible if ρ′ > 0.
(5) When ρ′ ≥ 0, the universal W~e has a unique irreducible component dom-

inating the Hurwitz space of degree k, genus g covers.

The basic approach is to degenerate C to a singular curve X , which is a chain
of g elliptic curves, attached so that the difference of two nodes on the same
component is exactly k-torsion. We then study the limit line bundles on X that
have enough sections at each twist by f∗O(1) to possibly be a limit of line bundles
with splitting type ~e. The key technical difficulty is to prove a regeneration theorem
in this context: we must show that all of these candidate limits are indeed limits
and thereby enable a study of W~e(C) via degeneration.
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The Rank of Syzygies of Curves

Michael Kemeny

The algebraic approach to studying the projective geometry of an embedded va-
riety X ⊆ Pn is to study the variety via it’s equations and via the relations (and
higher relations) amongst them. In order to do this, following Mumford [6], in
practice one typically makes the assumption that X is defined by quadrics, i.e. the
homogeneous ideal sheaf IX/Pn is generated in degree two.

The assumption that a variety is defined by quadrics is often satisfied in cases of
classical interest. For instance, we know it holds for canonical curves of Clifford
index at least two by Petri’s famous Theorem. In such a circumstance, it is very
natural to ask what one can say about the generating set of quadrics. In particular,
a fundamental invariant of a quadric is it’s rank, so it’s natural to ask what is the
minimal rank r such that there exists a generating set of quadrics of rank at most
r defining the variety X ⊆ Pn.

In the case of canonical curves C ⊆ Pg−1, it was conjectured in 1967 by Andreotti–
Mayer [1] that any canonical curve of Clifford index at least two should be defined
by quadrics of rank at most four. This was proven by Mark Green in 1984, [2].

In a seminar work [3], Mark Green introduced the study of syzygies, long a major
topic in commutative algebra, into algebraic geometry. Set S := C[x0, . . . , xn],
which we consider as a graded ring. Rather than just studying the ideal IX ⊆ S



Classical Algebraic Geometry 1545

of an embedded variety X ⊆ Pn, Green suggested to consider the entire minimal
free resolution

. . . F2 → F1 → IX → 0,

of the graded S-module I, and to ask the question of which intrinsic geometric
invariants of X could be read off from the graded pieces of the modules Fi. In
the case of canonical curves, Green further made a very precise conjecture to the
effect that one can read off the Clifford index from the resolution.

Following Green’s philosophy of generalizing from an ideal IX to the resolution
F• → IX , Schreyer provided a notion of rank for linear generators of the modules
Fi. Decompose the free modules Fi into their graded pieces by writing

Fi =
⊕

j≥1

Ki,j(X,L)⊗C S(−i− j),

where the vector space Ki,j(X,L), called the (i, j)th Koszul cohomology group.
For any α 6= 0 ∈ Kp,1(X,L), we have a well-defined notion of rank. The following
conjecture of Schreyer from the early 90s simultaneously unifies and generalises
both Voisin’s Theorem on generic Green’s Conjecture [7], [8] and Green’s Theorem
on the ideal sheaf of a canonical curve:

Conjecture 1 (The Geometric Syzygy Conjecture). For a general curve of genus
g, all linear syzygy spaces Kp,1(C, ωC) are spanned by syzygies of minimal rank
p+ 1.

In my talk at Oberwolfach, I explained a proof of The Geometric Syzygy Con-
jecture in full, based on the papers [4], [5].
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Effective cones of moduli spaces of stable rational curves and blown
up toric surfaces

Ana-Maria Castravet

(joint work with Antonio Laface, Jenia Tevelev, Luca Ugaglia)

A question attributed to Fulton is whether the moduli spaceM0,n, of stable ratio-
nal curves with n markings, has the property that every subvariety of codimension
k is numerically equivalent to an effective combination of strata of codimension
k (for all 0 < k < n − 3). The motivation comes from the stratification arising
from the topological type of the curves parametrized, which makes M0,n resemble
a toric variety. On toric varieties such a property holds because the action of the
open torus can be used to move subvarieties into the toric boundary.

For the case of curves (k = n− 4), the answer to Fulton’s question is known to
be affirmative when n ≤ 7 [7] and is not known for n ≥ 8. The statement that any
curve is a sum of 1-dimensional strata is known as the F-conjecture (after Fulton
and Faber). Results of Gibney, Keel and Morrison [5] show that the F-conjecture,
if true for for all n, implies the similar statement for all the moduli spaces Mg,n

of genus g stable curves with n markings, for all g and n, thus giving an explicit,
combinatorial description of ample divisors on the moduli spaces Mg,n.

For the case of divisors (k = 1) Fulton’s question can be reformulated as follows:

Is the cone Eff(M0,n) of effective divisors generated by boundary divisors?

IfM0,n denotes the locus of irreducible stable rational curves with n markings, i.e.,
the configuration space parametrizing n distinct, labeled, points on P1, taken up
to the action of PGL2, then M0,n ⊂ M0,n is a dense open set, and the boundary
divisors are the irreducible components of its complement. There is one boundary
divisor for each partition I ⊔ Ic = {1, . . . , n}, 2 ≤ |I| ≤ n − 2. The boundary
divisors generate the Picard group and the Chow ring of M0,n.

As noted, the answer is affirmative on M0,5, a del Pezzo surface of degree 5,
where the boundary divisors coincide with the (−1) curves, but it is negative
already for n = 6, with a counterexample found by Keel and Vermeire [9]. As a
consequence, Fulton’s question for divisors (as well as cycles of dimension ≥ 2)
has a negative answer for all n ≥ 6, as forgetful maps M0,n →M0,n−1 map strata
to strata. We prove that in fact the effective cone is not finitely generated:

Theorem. [1] The cone Eff(M0,n) is not polyhedral for n ≥ 10, both in charac-
teristic 0 and in characteristic p, for an infinite set of primes p of positive density,
including all primes up to 2000.

We detail the history of this question. By a theorem of Kapranov, for each
marking i ∈ {1, . . . , n}, the tautological line bundles ψi

1 induce birational mor-
phisms M0,n → Pn−3 that are iterated blow-ups of (n − 1) points in linearly

general position, proper transforms of all
(
n−1
2

)
lines spanned by any two points,

all
(
n−1
3

)
planes spanned by any three points, etc. Moreover, any boundary divisor

1The fiber of ψi at (C, p1, . . . , pn) ∈ M0,n is the cotangent bundle (TpiC)∨.
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is contracted by some Kapranov map. In particular, they span extremal rays of
the effective cone Eff(M0,n). Each boundary divisor is rigid (no multiple moves),
so they are uniquely determined by the extremal rays they span. For example,
for M0,5, the Kapranov maps give all the different ways of identifying a del Pezzo
surface of degree 5 as a blow-up of P2 at four points and each boundary divisor is
an exceptional (−1) curve for such a blow-up. The Keel-Vermeire divisor on M0,6

can be contracted by a birational contraction, and therefore it generates an ex-
tremal ray of the effective cone Eff(M0,6). There are 15 Keel-Vermeire divisors on

M0,6, but just one up to the action of S6 that permutes the markings. Hassett and

Tschinkel proved that Eff(M0,6) is generated by the boundary and Keel-Vermeire
divisors [6]. For all n ≥ 6, we introduced a generalization of the Keel-Vermeire
divisors in [2], namely hypertree divisors, also contractible by birational contrac-
tions, therefore, rigid divisors, spanning extremal rays of the effective cone. As n
grows, there are many hypertrees, even up to the Sn symmetry. Later on, Opie [8]
and Doran, Giansiracusa and Jensen [4] found other extremal divisors for n ≥ 7.
Our main result explains this complexity. We use an enhancement of a technique
introduced in [3], in order to reduce the question to a question about toric surfaces
blown up at a general point (we may assume, the identity point of the open torus).
The main result is:

Theorem. [1] There exist projective toric surfaces P∆, given by good polygons
∆, for which the blow-up at the identity point of the open torus has an effective
cone which is not polyhedral in characteristic 0. For some of these toric surfaces,
the effective cone is not polyhedral in characteristic p for an infinite set of primes
p of positive density.

Good polygons are lattice polygons which give rise to what we call arithmetic
elliptic pairs of infinite order, an interesting class of arithmetic threefolds, to which
we apply tools from arithmetic geometry and Galois representations to conclude
our analysis in characteristic p.
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Infinite torsion in Griffiths groups

Stefan Schreieder

For an algebraic scheme X of dimension d over C, we consider the Chow group

CHi(X) := CHd−i(X)

of (d− i)-dimensional cycles on X modulo rational equivalence, cf. [2]. We further
consider the quotient

Ai(X) := CHi(X)/ ∼alg

modulo algebraic equivalence.
For an abelian group A, we define

Hi(X,A) := HBM
2d−i(Xan, A),

where the right hand side denotes Borel–Moore homology of degree 2d− i of the
underlying analytic space Xan with values in A. If X is proper, then Borel–Moore
homology agrees with usual homology and if X is smooth and equi-dimensional,
then

Hi(X,A) ∼= Hi
sing(Xan, A)

agrees with the singular cohomology of Xan with values in A. The latter justifies
our notation.

For any algebraic scheme X over C, there is a cycle class map

cliX : Ai(X) −→ H2i(X,Z).

The kernel of this map is called the Griffiths group of X :

Griffi(X) := ker(cliX : Ai(X) → H2i(X,Z)).

That is, the Griffiths group is the quotient of the group of homologically trivial
cycles by the subgroup of algebraically trivial cycles. Since the Hilbert scheme
that parametrizes subschemes of X has only countably many components, the
group Ai(X) is a countable abelian group and so the same holds for Griffi(X).
While Griffiths [3] showed famously that this group may be nontrivial, determining
that group in explicit examples is notoriously difficult. For instance, not a single
nontrivial abelian group is known to be the Griffiths group of an algebraic scheme
(or of a smooth projective variety).

Some important results concerning the Griffiths group are as follows:

(1) For smooth complex projective varieties, the exponential sequence implies

Griff1(X) = 0. Using different arguments, Griff1(X) = 0 is shown to hold
for any algebraic scheme X over C in [6].
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(2) If X ⊂ P4
C
is a very general quintic hypersurface, then

Griff2(X)⊗Z Q ∼= Q⊕∞

holds by results of Griffiths [3] and Clemens [1]. In particular, Griffiths
groups are in general not finitely generated modulo torsion.

(3) Let C ⊂ P2
C
be a very general quartic curve with Jacobian JC (which is a

very general principally polarized abelian threefold). Then by a theorem
of Totaro [10], which builds on work of Nori, Bloch-Esnault, Schoen and
Rosenschon–Srinvias,

Griff2(JC)⊗Z Z/ℓ ∼= (Z/ℓ)⊕∞

for any prime ℓ. In particular, Griffiths groups are in general not finitely
generated modulo any prime ℓ.

Despite the above breakthroughs, it remained open whether the torsion sub-
group Griffi(X)tors of Griffiths groups is in general finitely generated. A positive
result in this direction is due to Merkurjev–Suslin:

Theorem 1 ([4]). Let X be a smooth complex projective variety. Then the tran-
scendental Abel–Jacobi map yields an injection

Griff2(X)tors →֒
H3(X,Z)

N1H3(X,Z)
⊗Z Q/Z.

In particular, for any n ≥ 1, the n-torsion subgroup of Griff2(X) is finite.

The first result presented in this talk generalizes the above theorem. To state
it, we define for any separated scheme of finite type over C the coniveau filtration
N∗ on Griffi(X) by

N j Griffi(X) := im
(
colim→ Griffi−j(Z) → Griffi(X)

)
,

where Z ⊂ X runs through all closed reduced subschemes with dim(Z) = dim(X)−
j. Since Griff1(Z) = 0 by [6], we get a decreasing filtration

N i−1 = 0 ⊂ N i−2 ⊂ · · · ⊂ N1 ⊂ N0 = Griffi(X).

The above filtration induces a filtration on the torsion subgroup Griffi(X)tors of

Griffi(X) by N j Griffi(X)tors = N j ∩Griffi(X)tors.

Theorem 2 (Sch. 2021). Let X be a separated scheme of finite type over C. Then
for any positive integer n, there is a transcendental Abel–Jaocbi map

λ̄itr : Griffi(X)tors −→
H2i−1(X,Z)

N1H2i−1(X,Z)
⊗Z Q/Z

which is induced by Griffiths’ transcendental Abel–Jaocbi map if X is smooth pro-
jective. The kernel of the above map is given by

ker(λ̄itr) = N1 Griffi(X)tors.



1550 Oberwolfach Report 29/2021

The above theorem implies that any torsion class z ∈ Griffi(X)tors which has
trivial Abel–Jacobi invariant is given by the pushforward of a homologically trivial
cycle z′ ∈ Griffi−1(D) on some divisorD onX and one can show that z′ may in fact
be chosen to be torsion of the same order as z. This property is not at all obvious in
any of the known explicit examples of torsion elements in the Griffiths group with
trivial Abel–Jacobi invariants, see [9, 8, 7] (non-torsion classes in the Griffiths
group with trivial Abel–Jacobi invariant have earlier been constructed by Nori
[5]). Since Borel–Moore homology of algebraic schemes is finitely generated, we

deduce from the above theorem that the cokernel ofN1 Griffi(X)[n] ⊂ Griffi(X)[n]
is finite for any n ≥ 1. Applying the same argument to any codimension one
subscheme D ⊂ X , we find that N1 Griffi−1(D)[n] ⊂ Griffi−1(D)[n] has finite
cokernel as well, and so one might be tempted to try to prove finiteness of the
n-torsion subgroup Griffi(X)[n] by induction on the coniveau filtration. The main
obstacle here is that there may be infinitely many choices of divisors D ⊂ X as
above.

The second result presented in this talk settles the long-standing question
whether the torsion subgroup of Griffiths groups is finitely generated. Our re-
sult shows in particular that an inductive approach as outlined above does in fact
not work; that is, N1 Griffi(X)tors is in general not supported on a finite union of
divisors D ⊂ X .

Theorem 3 (Sch. 2021). Let X be a very general Enriques surface over C and let
C ⊂ P2

C
be a very general quartic curve with Jacobian JC. Then

Griff3(X × JC)[2] ∼= (Z/2)⊕∞.

The above result is deduced from [10] together with the following injectivity
theorem, which is the main result of [7].

Theorem 4 (Sch. 2021). Let Y be a smooth complex projective variety and let X
be a very general Enriques surface over C. Then the exterior product map

Ai(Y )/2 −→ Ai+1(X × Y )[2], [z] 7→ [z ×KX ]

is injective for any i ≥ 1.
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Equivariant birational types

Yuri Tschinkel

(joint work with M. Kontsevich, V. Pestun, A. Kresch, B. Hassett)

Let X be a smooth projective variety of dimension n over an algebraically closed
field k of characteristic zero. We assume that X is rational, i.e., birational to
Pn, and that it carries a regular and generically free action of a finite group G.
A classical problem is to decide whether or not this action is linearizable, i.e.,
whether or not X is G-equivariantly birational to Pn, with a (projectively) linear
action of G. There is an extensive literature on this problem, already for n = 2,
going back to Bertini, Castelnuovo, Kantor, and many others, and culminating in
the work of Dolgachev–Iskovskikh [1].

Among the known equivariant birational invariants is:

(1) Existence of fixed points upon restriction to abelian subgroups of G.

A more sophisticated invariant was introduced in [9], for abelian G:

(2) Let p ∈ X be a point fixed by G. Let {a1, . . . , an} be its weights, i.e.,
characters of G in the tangent space to X at p, and

det(a1, . . . , an) = a1 ∧ · · · ∧ an ∈ ∧n(G∨)

the determinant. Let Y → X be a G-equivariant blowup. Then Y contains
a G-fixed point q (in the preimage of p) with weights {b1, . . . , bn}, such
that

det(b1, . . . , bn) = ± det(a1, . . . , an),

i.e., this is an equivariant birational invariant.

Inspired by applications of ideas from motivic integration to the study of rationality
properties of algebraic varieties [8, 4], and by keen interest in equivariant birational
geometry, the following generalization of (2) was introduced in [3]:

Let G be abelian, and XG = ⊔α Fα the decomposition of the G-fixed locus into
irreducible components. Recording the G-eigenvalues

[b1,α, . . . , bn,α], bj,α ∈ G∨ = Hom(G, k×),

in the tangent space Txα
X , at some xα ∈ Fα, we put, formally,

β(X) :=
∑

α

[b1,α, . . . , bn,α].

Let Sn(G) be the free abelian group generated by unordered tupels [b1, . . . , bn],
with bi ∈ G∨, such that

∑
i Zbi = G∨. Consider the quotient

Sn(G) → Bn(G),
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by the blow-up relations

β(Y )− β(X) = 0,

for every G-equivariant blowup Y → X . It turns out, that all such relations can
be encoded in a compact form:

(B) for all b1, b2, b3, . . . , bn ∈ G∨ we have

[b1, b2, b3, . . . bn] = [b1 − b2, b2, b3, . . . , bn] + [b1, b2 − b1, b3, . . . , bn], b1 6= b2,

= [b1, 0, b3, . . . , bn], b1 = b2.

Equivariant Weak Factorization yields:

(3) The class β(X) ∈ Bn(G) is a G-equivariant birational invariant [3].

The groups Bn(G) exhibit a rather intricate internal structure, they are equal to
cohomology of certain congruence subgroups, carry Hecke operators etc., see [3].
First geometric applications of this new invariant can be found in [2].

The next development, in [5], addressed three issues:

• extension to nonabelian groups,
• considerations of all possible, and not just maximal, stabilizers, and
• inclusion of the function-field information of strata, with induced actions.

The geometric input data for the definitions in [5] are:

• Bird(k) – birationality classes of varieties of dimension d over k,
• AlgN (K0) – isomorphism classes of Galois algebras K over K0 ∈ Bird(k)
for a finite group N , subject to a certain Assumption 1.

Let Burnn(G) = Burnn,k(G) be the Z-module, generated by symbols

(H,N y K,β),

where

• H ⊆ G is an abelian subgroup, with character group H∨, and N :=
NG(H)/H ,

• K ∈ AlgN (K0), with K0 ∈ Bird(k), and d ≤ n,
• β = (b1, . . . , bn−d), a sequence, up to order, of nonzero elements of H∨,
that generate H∨.

The symbols are subject to conjugation and blowup relations:

(C): (H,N y K,β) = (H ′, N ′ y K,β′), when H ′ = gHg−1, N ′ = NG(H
′)/H ′,

and β and β′ are related by conjugation by g ∈ G.

(B1): (H,N y K,β) = 0, when b1 + b2 = 0.

(B2): (H,N y K,β) = Θ1 +Θ2, where

Θ1 =

{
0, if b1 = b2,

(H,N y K,β1) + (H,N y K,β2), otherwise,
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with

β1 := (b1 − b2, b2, b3, . . . , bn−d), β2 := (b1, b2 − b1, b3, . . . , bn−d),

and

Θ2 =

{
0, if bi ∈ 〈b1 − b2〉 for some i,

(H,N y K, β̄), otherwise,

with

H
∨
:= H∨/〈b1 − b2〉, β̄ := (b̄2, b̄3, . . . , b̄n−d), b̄i ∈ H

∨
,

and a specified action on a new algebra K. The Burnside groups Burnn(G) also
have an intricate internal structure: they admit interesting filtrations, forgetful
homomorphisms, restriction, induction, comparison homomorphisms, see [6].

The class of a G-variety X is computed on a standard model (X,D):

• X is smooth projective, D a normal crossings divisor,
• G acts freely on U := X \D,
• ∀g ∈ G and irreducible components D, either g(D) = D or g(D)∩D = ∅.

Passing to a standard model X , define the class:

[X x G] :=
∑

H

∑

F

(H,N y k(F ), βF (X)) ∈ Burnn(G),

where the sum is over (conjugacy classes of) abelian subgroups H ⊆ G, and all
F ⊂ X with generic stabilizer H . The symbols record the generic eigenvalues of
H in the normal bundle along F , as well as the N = NG(H)/H-action on the
function field of F , respectively the orbit of F . Note that, on a standard model,
all stabilizers are abelian, and all symbols satisfy Assumption 1.

(4) The class [X x G] ∈ Burnn(G) is a well-defined G-equivariant birational
invariant [5, Theorem 5.1].

Using this invariant, we found new examples of finite groups G admitting intran-
sitive, nonbirational actions on P2, addressing a problem raised in [1, Section 9],
and P3 [7].
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Antisymplectic involutions on projective hyper-Kähler manifolds

Emanuele Macr̀ı

(joint work with Laure Flapan, Kieran G. O’Grady, Giulia Saccà)

In this talk, I reported on the study of fixed loci of antisymplectic involutions on
projective hyper-Kähler manifolds, induced by an ample class of square 2 in the
Beauville-Bogomolov-Fujiki lattice. I presented results on how to determine the
number of connected components of the fixed loci and how to study their geometry
in lower dimensions.

Let X be a projective hyper-Kähler (HK) manifold, namely X is simply connected
and H0(X,Ω2

X) = C · η, where η is a non-degenerate symplectic form.

Definition 1. Let τ : X
∼=
−! X be an involution, τ2 = id. We say that τ is

antisymplectic if τ∗η = −η.

An immediate observation is that if τ is an antisymplectic involution, then its
fixed locus Fix(τ) ⊂ X is a closed lagrangian submanifold.

The goal is to understand the geometry of Fix(τ); see [1, 14]. The motiva-
tion comes from several viewpoint in the theory of HK manifolds, including un-
derstanding the correspondence with Fano manifolds (currently only observed in
special examples [2, 4, 5, 6]) and in the existence of covering families of lagrangian
submanifolds and applications to the study of Chow groups [16]. The rich geom-
etry of these fixed loci can be already observed in the lower dimensional case; for
example, EPW sextics [15] and cubic fourfolds [12].

Notice also that for symplectic involutions, namely if τ∗η = η, the fixed loci are
well understood for two of the main families of examples of HK manifolds [11]:
their connected components are symplectic submanifolds in that case.

Let (X,λ) be a polarized hyper-Kähler manifold of dimension 2n. We assume that

X is of K3[n]-type, namely it is deformation equivalent to the Hilbert scheme of n
points on a K3 surface.

Let qX denote the Beauville-Bogomolov-Fujiki quadratic form on H2(X ;Z).
We assume that the polarization λ satisfies qX(λ) = 2. If we denote by div(λ) the
positive generator of the ideal {q(λ,w) : w ∈ H2(X ;Z)} ⊂ Z, the divisibility of
λ, then we must have div(λ) ∈ {1, 2}; moreover, if div(λ) = 2, then 4 |n.

By the Global Torelli Theorem [17, 13, 10], to such polarization λ we can
associate an antisymplectic involution

τλ : X
∼=
−−! X
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which acts on H2(X ;Z) as reflection at λ:

τλ,∗(x) = −x+ qX(λ, x), x ∈ H2(X ;Z)).

Equivalently, we are looking at involutions τ for which the invariant part of the
action on H2(X ;Z) is of rank 1, generated by an ample class of square 2.

The main result in [8] determines the number of connected components of
Fix(τλ):

Theorem 2. The fixed locus Fix(τλ) has exactly div(λ) connected components.

We can then start looking at the geometry of such fixed loci in lower dimension.
We start with the divisibility 1 case; by Theorem 2 the fixed locus F := Fix(τλ) is
connected in this case. The case n = 2 is now well-known: the general (X,λ) in the
moduli space is a double EPW sextic, with the double cover involution coinciding
with the involution τλ. Then F is a surface of general type, whose invariants are all
known; see [7]. In the cases n = 3 and n = 4 we do expect a similar behavior: the
fixed locus F should be of general-type with an explicit formula for its canonical
bundle in terms of λ|F .

In the divisibility 2 case, again by Theorem 2 the fixed locus Fix(τλ) has ex-
actly two connected components. The first case n = 4 is already not completely
clear: all (X,λ) in the moduli spaces are isomorphic to the Lehn-Lehn-Sorger-van
Straten HK 8-fold associated to a cubic fourfold (not containing a plane), with
the involution coinciding with the involution coming from realizing X as moduli
space of equivalence classes of twisted cubic curves in the cubic Y ; see [12] and [3,
Appendix B]. One component to the fixed locus is then isomorphic to the cubic
fourfold Y itself. The second component is the closure of the locus parameteriz-
ing twisted cubics contained in a cubic surface with four A1-singularities, but the
global geometry of this component is still unknown (although we suspect it being
of general type).

The main result in [9] deals with the next case n = 8.

Theorem 3. Let n = 8 and let (X,λ) be a polarized HK manifold of K3[8]-type
such that qX(λ) = 2 and div(λ) = 2. Then one connected component Y of Fix(τλ)
is a prime Fano manifold of dimension 8 and index 3.

The odd cohomology of Y vanishes and its Hodge diamond is

H8(Y ;C) : 1 22 253 22 1
H6(Y ;C) : 1 22 1
H4(Y ;C) : 1 22 1
H2(Y ;C) : 1
H0(Y ;C) : 1

Some of the arguments in our proofs work for any n. In divisibility 2, we can
always isolate a special component Y , by using the choice of a linearization of the
action of the involution on the line bundle OX(λ). Theorem 3 would then hold in
any dimension, if we would be able to establish normality of a certain degeneration
of the fixed component Y .
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On the irrationality of moduli spaces of K3 and abelian surfaces

Daniele Agostini

(joint work with Ignacio Barros, Kuan-Wen Lai)

In recent years there has been a renewed interest in quantitative measures of irra-
tionality for algebraic varieties [2]. Beyond the usual Kodaira dimension, two such
measures for a complex variety X are the degree of irrationality irr(X), defined as
the minimum degree of a dominant map

X 99K P dimX ,

and the covering gonality cov. gon(X), the minimum gonality of a curve passing
through a general point of X .

Such rationality questions are especially interesting in the case of moduli spaces.
For example, the moduli space Mg of genus g curves is of general type for g large
[6], however the only known bounds on the measures of irrationality are in terms
of Hurwitz numbers [2], which grow very fast with the genus g.

In our work, we consider instead the moduli space Fg of polarized K3 surfaces
of genus g. As for Mg, this space is unirational for g small, but of general type
as soon as g is large enough [4]. However, the degree of irrationality is bounded
polynomially in terms of the genus:

Theorem 1 (A.-Barros-Lai, [1]). For every ε > 0 there exists a constant Cε > 0
such that

irr(Fg) ≤ Cε · g
14+ε for all g.

Furthermore, for infinitely many series, the bound can be improved:

Theorem 2 (A.-Barros-Lai, [1]). Let d : = 2g − 2 > 6, n a positive integer and
assume one of the following:

(A) d ≡ 0 or 2 (mod 6) and is not divisible by any odd prime p ≡ 2 (mod 3).
(B) d ≡ 2 or 4 (mod 8) and is not divisible by any prime p ≡ 3 (mod 4).
(C) d

2 − n is a square.

Then there exists a constant C > 0, depending on n in case (C), such that

irr(Fg) ≤ C · g10.

Another similar result, to appear soon, is about the moduli space Ad := A(1,d)

of abelian surfaces with a (1, d)-polarization.

Theorem 3 (A.-Barros-Lai, to appear). For every ε > 0 there exists a constant
Cε > 0 such that

irr(Ad) ≤ Cε · d
6+ε for all d.

Moreover, let n > 0 be a positive integer and suppose that d
6 −

e
2 is a square. Then

there exists Cn > 0 such that

irr(Ad) ≤ Cn · d2.
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To illustrate the idea of the proof, we consider case (A) of Theorem 2. In this
setting, Hassett [5] proved that there are dominant rational maps Fg 99K Cd of
degree at most two, onto some special divisors in the moduli space C of cubic
fourfolds. Hence irr(Fg) ≤ 2 · irr(Cd). Furthermore, the Cd are (components of)
Heegner divisors in the period domain C, which admits an embedding C →֒ PN into
a certain projective space. Thus, the irrationality degree of the Cd are bounded
by the degrees deg(Cd) of the closures Cd inside PN : indeed, a general linear
projection Cd → P19 has degree exactly deg(Cd). At this point, the fundamental
input is provided by the work of Borcherds [3], which implies that the generating
series ∑

d

deg(Cd) · q
d

6

is a modular form of weight 11, hence its coefficients grow at most like a polynomial
of degree 10.

The other cases of Theorem 2 are dealt with in a similar way. The same ideas
extend to Theorem 1: there are [8] simultaneous maps Fg 99K P# of all moduli
spaces into the same period space P#, the catch is that the images are not divisors
anymore but higher codimension cycles. However, we can use a generalization of
Borcherds’result, known as Kudla’s modularity conjecture [7], to conclude. Finally,
Theorem 3 is obtained by considering moduli of lattice-polarized K3 surfaces of
Kummer type.
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Torsion line bundles on finite covers

Aaron Landesman

We outline a new series of moduli spaces whose points are closely related to n-
torsion line bundles on degree d covers of a base B. The story is especially clean
when d = 2, in which case these spaces parameterize n-coverings of generically
singular genus 1 curves over B, as described in [1]. For example, when B = P1,
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we construct a moduli space whose P1 points parameterize n-torsion line bundles
on hyperelliptic curves.

This investigation is motivated by the Cohen-Lenstra heuristics in number the-
ory, which work in the case that B is the spectrum of the integers, and describe the
average number of n-torsion elements in class groups of quadratic number fields.
It is a big open question in arithmetic statistics to count the asymptotic number of
these n-torsion elements in quadratic fields, and it would be quite interesting if one
were able to use these moduli spaces to approach that problem. A simple-to-state
consequence of our approach is the following: under the correspondence between
quadratic forms and line bundles on spectra of rings of integers of quadratic fields,
a quadratic form q corresponds to an n-torsion line bundle if and only if there
exists a degree n polynomial whose resultant with q is ±1.

We now describe our moduli space in the case d = 2. Let S denote the se-
cant variety to the rational normal curve in Pn, and let U ⊂ S denote the open
subscheme where one removes the rational normal curve. Then, the relevant mod-
uli space is the quotient of U by PGL2, acting as automorphisms of the rational
normal curve.

Let us explain why the secant variety to the rational normal curve is related to n-
torsion line bundles on degree 2 covers. Starting with a degree 2 cover g : X → B
and an n-torsion line bundle L on X , we produce an embedding X → P(g∗L).
The condition that this is n-torsion amounts to the existence of an isomorphism
L⊗n ≃ OX . To understand the nth tensor power of L, we compose with the
n-Veronese embedding to get a map X → P(g∗L) → P(Symn(g∗L)). We have a
surjection Symn(g∗L) → g∗L

⊗n ≃ g∗OX → coker(OB → g∗OX) which picks out
a line M in P(Symng∗L) and a point p on M which does not meet X . In fibers,
we can think of X as two points on the rational normal curve. These two points
span the line M , and the point p on M is then a point on the secant variety to
the rational normal curve.

After explaining the above construction, we investigated in the case d = 2 and
n = 3. For this, we reviewed the classical correspondence between 3-torsion line
bundles on degree 2 covers and degree 3 covers. We used our construction to
understand this classical correspondence as a corollary of the fact that the secant
variety to the twisted cubic is all of P3.

We then proceeded to explain an analogous construction in degree d = 3. Here,
instead of the moduli space being the 2-secant variety to the rational normal curve
in Pn, the relevant space was the space of lines contained in the 3-secant variety to
the n-Veronese surface. Following this, we investigated the case d = 3 and n = 2,
which recovers the classical Recillas correspondence. We used our construction
to understand this as a corollary of the fact that any line in P5 not meeting the
2-Veronese surface lies on a unique 3-Secant 2-plane to the 2-Veronese surface.

To conclude, we returned to the case that d = 2 and gave two other equivalent
descriptions of our moduli space. First, we exhibited it as a moduli space for
families of generically singular genus 1 curves with a degree n line bundle and
geometrically integral fibers. Second, we exhibited it as a moduli space of families
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of smooth divisors in the linear system OY (1), for Y = P(OP1(2) ⊕ OP1(n)) the
Hirzebruch surface.
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Cohomology of line bundles on the incidence correspondence

Claudiu Raicu

(joint work with Zhao Gao)

Let V be a vector space of dimension n ≥ 3 over a field k and consider the
variety Flag(V ) parametrizing complete flags in V . A fundamental question at
the confluence of algebraic geometry and representation theory is the following.

Problem 1. Determine the cohomology groups of line bundles on Flag(V ).

In characteristic zero, Problem 1 is completely understood via Borel–Weil–Bott
theory. In particular, for each line bundle there exists at most one non-vanishing
cohomology group, which is an irreducible representation of GL(V ). This is no
longer true in characteristic p > 0, where describing the structure of the coho-
mology groups as GL(V )-representations is a wide open problem. It is natural
to consider a relaxation of Problem 1 where we only ask to detect which of the
cohomology groups (do not) vanish.

Problem 2. Characterize the (non)vanishing behavior of the cohomology groups
of line bundles on Flag(V ).

For H0, the answer to Problem 2 is given by Kempf’s vanishing theorem [6, 5]:
a line bundle L associated to a weight λ ∈ Zn has H0(Flag(V ),L) 6= 0 if and
only if λ is dominant (that is, if λ1 ≥ λ2 ≥ · · · ); moreover, for such line bun-
dles all the higher cohomology groups vanish. A complete characterization for the
(non)vanishing of H1(Flag(V ),L) is given by Andersen [1]. By Serre duality, the
aforementioned results characterize the (non)vanishing of Hd−1(Flag(V ),L) and
Hd(Flag(V ),L), where d = dim (Flag(V )), but the behavior of intermediate co-
homology groups remains more mysterious. One can also consider Problems 1, 2
in the context of generalized (partial) flag varieties G/B (resp. G/P ) where G
is a connected reductive algebraic group and B (resp. P ) is a Borel (resp. para-
bolic) subgroup. Despite some progress, these questions remain to a large extent
unanswered.

Following up on work of Liu [7] and Liu–Polo [8], we restrict in [3] to line bundles
corresponding to weights in Zn of the form

(1) λ2 = · · · = λn−1 = 0.

These arise as pullbacks of line bundles on the incidence correspondence

X = {(p,H) ∈ PV × PV ∨ : p ∈ H},
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along the natural forgetful map f : Flag(V ) −→ X . We note here that X is
an example of a partial flag variety, and that via the projection formula, the
cohomology of a line bundle on X agrees with that of its pull-back to Flag(V ). It
is convenient to parametrize the weights in (1) as

(2) λ = (e+ 1, 0, · · · , 0, d+ n− 1),

for d, e ∈ Z. It further suffices to consider only parameters satisfying d ≥ 0,
e ≥ −1, since the remaining cases can be analyzed using Kempf vanishing and
Serre duality. Our answer to Problem 2 for the line bundles coming from X is as
follows (note that the case n = 3 is contained in [4]).

Theorem 3. Suppose that char(k) = p > 0, let L = L(d, e) denote the line bundle
on Flag(V ) associated to the weight λ in (2), and assume that d ≥ 0, e ≥ −1.

(a) Hj(Flag(V ),L) = 0 for j ≤ n− 3 or j ≥ n.
(b) Hn−1(Flag(V ),L) 6= 0 if and only if e ≤ (t+ n− 2)q−n, where 1 ≤ t < p

and q = pr (or t = 0 and q = 1 if d = 0) are determined by the inequality

tq ≤ d < (t+ 1)q.

(c) Hn−2(Flag(V ),L(d, e)) = Hn−1(Flag(V ∨),L(e + 1, d − 1)), whose (non)
vanishing is determined by the recipe in part (b).

A key ingredient in the proof of the nonvanishing part of Theorem 3 is the theory
of Frobenius splittings due to Mehta and Ramanathan [9]. A second ingredient,
which is also relevant for the vanishing part, comes from the identification

(3) Hj(Flag(V ),L) = Hj−n+2(PV,DdR(e)),

where R = Ω1
PV (1) is the tautological rank (n− 1) subbundle on PV , and

Dd R = (Symd(R∨)∨)

is a divided power of R. We prove the vanishing for the cohomology groups on
the right hand side of (3) using natural filtrations defined on divided/symmetric
powers via Frobenius as in [2], along with considerations of Castelnuovo–Mumford
regularity, and prove the following.

Theorem 4. Suppose that char(k) = p > 0. For d ≥ 1, let q = pr and 1 ≤ t < p
such that tq ≤ d < (t+ 1)q. We have that the Castelnuovo–Mumford regularity of

Dd R is given by
reg(DdR) = (t+ n− 2)q − n+ 2.

A careful analysis of the arguments allows for some explicit calculations of
cohomology for extreme values of the parameters d, e. For instance, if d = tq and
e = (t+ n− 2)q − n in part (b) of Theorem 3, then

Hn−1(Flag(V ),L) = F q (St−1,t−1V ) ,

where St−1,t−1 denotes the Schur functor associated to (t− 1, t− 1, 0, · · · ), and F q

denotes the polynomial subfunctor of Symq generated by the q-th powers of linear
forms. Other explicit calculations of cohomology are contained in [7] and [8], but
a complete description for general parameters d, e remains unknown.
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Projectivity criteria for algebraic spaces

János Kollár

(joint work with D. Villalobos-Paz)

The talk discussed 2 results on the projectivity of algebraic spaces.
It was observed about 40 years ago that, as a consequence of Mori’s program,

proper but non-projective algebraic spaces should contain rational curves. In vary-
ing generality, results of this type were conjectured and proved by Campana,
Kollár, Peternell, Shokurov. A theorem of Villalobos-Paz turns this into a neces-
sary and sufficient condition.

Theorem 1. [2] Let X be a compact Moishezon manifold. Then X is non-
projective iff there is a rational curve C ⊂ X such that −[C] ∈ NE(X), where
NE(X) ⊂ H2(X,R) denotes the closed cone of curves.

More generally, this holds if X is Q-factorial with log terminal singularities.
There is also a variant for proper morphisms of algebraic spaces over C.

The main technical result shows that one can run the relative Minimal Model
Program for projective morphisms of algebraic spaces. Then one needs to apply
this to a projective modification of X , and study the first MMP step that results
in a non-projective variety.

The second result shows that, among algebraic spaces, flat deformations of a pro-
jective scheme are projective. We state the results for deformations over the disc
D, though similar results hold over arbitrary bases.

Theorem 2. [1] Let g : X → D be a proper, flat morphism of complex analytic
spaces. Assume that
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(1) X0 is projective,
(2) the fibers Xs have rational singularities for s 6= 0, and
(3) g is bimeromorphic to a projective morphism gp : Xp → D.

Then g is projective over a smaller punctured disc D◦
ǫ ⊂ D.

Note that g need not be projective over any smaller disc Dǫ ⊂ D.
To prove this, we may assume that X retracts to X0. Now take an ample line

bundle L0 on X0 and lift its Chern class to a cohomology class Θ ∈ H2(X,Z).
Usually Θ is not an algebraic cohomology class, but, a Chow-variety argument
shows that it satisfies Seshadri’s ampleness criterion on all but countably many
fibers Xs. One then proves that these fibers are projective. A Baire category
argument then shows that the non-projective fibers form a discrete set.
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Noether-Lefschetz theory of hyper-Kähler varieties via
Gromov-Witten invariants

Georg Oberdieck

1. Hassett-Looijenga-Shah divisors

Let M2 be the moduli space of quasipolarized K3 surfaces of genus 2. It is bira-
tional to the GIT quotient P(H0(P2,O(6)))//SL6 parametrizing double covers of
P2 branched along a sextic curve. Hwoever, there are differences in moduli. For
once, the Noether-Lefschetz divisor in M2 of elliptic K3 surfaces with section,

NL(2 1

1 0)
∈ Div(M2),

can not correspond to any divisor in the GIT moduli space.1 The divisor NL(2 1

1 0)
is the simplest example of an Hassett-Looijenga-Shah (HLS) divisor.

Let V10 be a 10-dimensional vector space and σ ∈ ∧3V ∗
10 a non-zero tri-linear

form. The Debarre-Voisin variety [4] associated to σ is defined by

Xσ = {V ∈ Gr(6, 10) |σ|V = 0}

and is hyperkähler if it is smooth of dimension 4. The period map gives rise
to a birational [7] morphism from the GIT moduli space to the moduli space of
hyperkähler fourfolds of K3[2]-type of degree 22 and divisibility 2:

P : P(∧3V ∗
10)//SL10 99K M

(2)
22

1If such K3 were realized as double cover of P2, the algebraic class of square zero and degree
1 against the quasi-polarization would give rise to an elliptic curve mapping with degree 1 to P2,
which is absurd.
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The rational map P restricts to a regular morphism P : U → M
(2)
22 on the open

subset parametrizing 4-dimensional Debarre-Voisin varieties which are smooth or
at most nodal along a smooth K3 surface. The complement of U has codimension
≥ 2, see [4, 1, 6].

Definition 1. An irreducible divisor D ⊂ M
(2)
22 is HLS if P∗(D) = 0 in Div(U).

Remark 1. This definition was first given in [2] although in slightly different but
equivalent form (see [6, Sec.6.2] why they are equivalent).

Following [3], let C2e ∈ Div(M
(2)
22 ) be the Noether-Lefschetz divisor of first kind

of discriminant e. We have that e is a square mod 11.

Theorem 1 ([2, 6]). C2, C6, C8, C10, C18 are HLS divisors on M
(2)
22 .

Remark 2. The HLS-ness of C2, C6, C10, C18 was first proven geometrically in [2].
An independent proof of these cases plus an extension to C8 was later given in [6]
using Gromov-Witten theory (the intersection theory on the moduli space of stable
maps).

2. Proof

The approach of [6] to the theorem is as follows: Let Ũ ⊂ P(∧3V ∗
10) be the preimage

of U under the quotient map. The complement of Ũ is of codimension 2. Since Ũ

is contained in the stable locus, the quotient map π : Ũ → U is a SL10-torsor. Let

ℓ ⊂ Ũ be a fixed line, and ιℓ → M
(2)
22 the classifying map of the associated pencil

of Debarre-Voisin varieties. Then we have:

P∗(C2e) = 0 ⇐⇒ π∗P∗(C2e) = 0

⇐⇒ (π∗P∗C2e) · ℓ = 0

⇐⇒

∫

ℓ

ι∗ℓC2e = 0.

The numbers
∫
ℓ ι

∗
ℓC2e are the Noether-Lefschetz numbers of first kind of the pen-

cil ℓ. They are related by an explicit invertible upper-triangular relation to the
Noether-Lefschetz numbers of second kind NL

ℓ(e) [6, Prop.5]. By a result of
Borcherds the generating series of Noether-Lefschetz numbers of second kind

ϕ(q) =
∑

e

NL
ℓ(e)qe/11

is a modular form of weight 11 for a specific congruence subgroup. In particular, it
only depends on finitely many data. In fact, when working with the corresponding
vector-valued modular form, one finds that 6 Fourier coefficients are enough to fix
the modular form completely. These coefficients are obtained by from the following
mostly formal input:

(i) the Gromov-Witten/Noether-Lefschetz relation [5],
(ii) known cases of a new multiple-cover conjecture for K3[n]-type hyperkähler

varieties [6] (the original motivation for this work),
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(iii) the abelian/non-abelian correspondence [8] (which allows to compute genus
0 Gromov-Witten invariants for zero loci of homogeneous vector bundles
in GIT quotients by passing to the abelian quotient).

This yields a closed evaluation of the Noether-Lefschetz series which we state next.

3. Generating series

Define the weight 1, 2, 3 modular forms

E1(τ) = 1 + 2
∑

n≥1

qn
∑

d|n

χp

(n
d

)
, ∆11(τ) = η(τ)2η(11τ)2

E3(τ) =
∑

n≥1

qn
∑

d|n

d2χp

(n
d

)

where η(τ) = q1/24
∏

n≥1(1− q
n) is the Dirichlet eta function, q = e2πiτ and χ11 is

the Dirichlet character given by the Legendre symbol
(

·
11

)
. Consider the following

weight 11 modular forms for Γ0(11) and character χ11:

ϕ0(q) = −5E11
1 + 430E8

1E3 +
5199920

9
∆3

11E
5
1 −

35407490

27
∆4

11E
3
1

+
49194440

9
∆2

11E
4
1E3 + 248350E5

1E
2
3 −

596661440

27
∆3

11E
2
1E3

−

306631760

9
∆11E

3
1E

2
3 +

51243500

3
∆4

11E3 +
1331452540

27
∆2

11E1E
2
3

+
349019440

9
E

2
1E

3
3

ϕ1(q) = −5E11
1 + 110E8

1E3 +
722740

3993
∆3

11E
5
1 −

1805750

3993
∆4

11E
3
1

−

12660620

11979
∆2

11E
4
1E3 − 990E5

1E
2
3 +

118940

363
∆5

11E1 +
5609180

3993
∆3

11E
2
1E3

+
29208460

11979
∆11E

3
1E

2
3 +

3500

33
∆4

11E3 +
2610980

1089
E

2
1E

3
3

Theorem 2. The generating series of Noether-Lefschetz numbers of a generic
pencil of Debarre-Voisin varieties is:

ϕ(q11) = ϕ0(q
11) + ϕ1(q) = −10 + 640q11 + 990q12 + 5500q14 + 11440q15

+21450q16 + 198770q20 + 510840q22 + . . .

The vanishing of the coefficients q1, q3, q4, q5, q9 implies that the corresponding
divisors are HLS. The number 640 is the number of singular fibers of the pencil.
The numbers 990 and 5500 have been independently computed by J. Song, see [1]
for a study of the geometry of the associated divisors.
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On the problem of generating Chow groups by smooth subvarieties

Olivier Benoist

Fix two integers c, d ≥ 1. In this talk, we will consider the following classical
question [5], as well as variants of it in real algebraic geometry.

Question 1 (Borel, Haefliger). Let X be a smooth projective variety of dimension
c + d over C. Is the Chow group CHd(X) = CHc(X) generated by classes of
d-dimensional smooth closed subvarieties Y ⊂ X?

It will be useful to keep the following heuristic in mind. In differential geometry,
Whitney has shown that a generic C∞ map f : Y d → Xc+d of differentiable
manifolds is an embedding if d < c. If d ≥ c, this is not the case anymore, as Y
will typically self-intersect in X . In particular, if d = c one expects finitely many
transverse self-intersections. It is thus easy to construct submanifolds of X if
d < c, but hard if d ≥ c in general. By analogy, one may expect that Question 1
has a positive answer if d < c, but not necessarily so if d ≥ c.

Let us now review what is known about the question of Borel and Haefliger.
Positive results are due to Hironaka [8] and Kleiman [10].

Theorem 1 (Hironaka). Question 1 has a positive answer if d < c and d ≤ 3.

Theorem 2 (Kleiman). Question 1 has a positive answer if c = 2 and d ∈ {2, 3}.

Of these two theorems, the most important for us is Theorem 1. The bound
stemming from the Whitney heuristic appears clearly in its statement. The prin-
ciple of its proof is the following. Given a possibly singular subvariety Y ⊂ X ,

Hironaka embeds a resolution of singularities Ỹ of Y in a relative projective space

π : PN ×X → X . Using linkage, he then moves Ỹ in PN ×X to put it in general
position. That d ≤ 3 ensures that the linkage process does not create singular-

ities. Once Ỹ has been put in general position, the Whitney-type bound d ≤ c

guarantees that the projection π|Ỹ is an embedding, hence that π(Ỹ ) is smooth.

https://arxiv.org/abs/2106.06859
https://arxiv.org/abs/2102.11622
https://arxiv.org/abs/1912.02659
https://arxiv.org/abs/1804.07786
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The first counterexamples to Question 1 were found by Harthorne, Rees and
Thomas [7] for c = 2 and d ≥ 7. A different construction due to Debarre [6]
works for c = 2 and d ≥ 5.

Theorem 3 (Hartshorne, Rees, Thomas, Debarre). Question 1 has a negative
answer in general if c = 2 and d ≥ 5.

The argument of Harthorne, Rees and Thomas would give counterexamples for
higher values of c as well. Debarre’s method yields the lowest-dimensional known
counterexamples. Their works do not allow to reach the Whitney threshold d = c.
Our first theorem remediates this situation. To formulate it, we let α(n) denote
the number of 1’s in the dyadic expansion of n.

Theorem 4 ([2]). Question 1 has a negative answer in general if d ≥ c and
α(c+ 1) ≥ 3.

In the crucial case where d = c, our proof is inspired by the Whitney heuristic.
We construct a smooth projective variety X of dimension 2d over C (a well-chosen
fixed point free quotient of an abelian variety) and a class α ∈ CHd(X). To show,
for instance, that α cannot be the class of a smooth subvariety Y ⊂ X , we compute
the number of self-intersections of Y in X . By means of a double point formula due
to Fulton, and of divisibility results for Chern numbers due to Rees and Thomas,
we show that the number of these self-intersections is odd, hence nonzero. This
contradicts the smoothness of Y .

We will now successively consider three questions in real algebraic geometry that
are related to Question 1, and we will state positive and negative results about
these questions that are inspired by Theorems 1 and 4.

The first question is motivated by the fact that, in real algebraic geometry, many
questions concerning real loci are insensitive to singularities at non-real points.

Question 2. Let X be a smooth projective variety of dimension c + d over R.
Is the Chow group CHd(X) generated by classes of subvarieties Y ⊂ X that are
smooth along their real locus Y (R)?

Theorem 5 ([2]). Question 2 has a positive answer if d < c.

Theorem 6 ([2]). Question 2 has a negative answer in general if d ≥ c and
α(c+ 1) ≥ 3.

The proof of Theorem 5 builds on Hironaka’s smoothing by linkage technique. A
notable feature is the removal of the hypothesis d ≤ 3 appearing in the statement
of Theorem 1. As the linkage process is bound to create singularities if d > 3,
proving Theorem 5 requires to control these singularities, and to ensure that they
are not real. Our main tool to do so is a study of linkage in families, for which we
rely on results of Peskine and Szpiro and of Huneke and Ulrich.

The proof of Theorem 6 follows the same method of counting self-intersections
as that of Theorem 4.

The second question investigates the subgroup of the Chow group generated by
subvarieties with no real points. To state it, we recall that for any smooth varietyX
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over R, the real cycle class map clR : CH∗(X) → H∗(X(R),Z/2) associates with a
subvariety Y ⊂ X the homology class [Y (R)] of its real locus.

Question 3. Let X be a smooth projective variety of dimension c+ d over R. Is
Ker

(
clR : CHd(X) → Hd(X(R),Z/2)

)
generated by classes of subvarieties Y ⊂ X

whose real locus Y (R) is empty?

Theorem 7 ([2]). Question 3 has a positive answer if d < c.

Theorem 8 ([2]). Question 3 has a negative answer in general if d ≥ c and
α(c+ 1) ≥ 2.

Kucharz [11] had already proved Theorem 7 if d = 1 and c = 2, and Theorem 8
if c is even. The proofs of Theorems 7 and 8 follow again, respectively, Hiron-
aka’s smoothing by linkage technique (combined with Ischebeck and Schülting’s
description of Ker(clR) [9]), and the method of counting self-intersections.

The last question that we examine concerns algebraic approximation of C∞ sub-
manifolds. If X is a smooth projective variety over R, and if ι : M →֒ X(R) is a
C∞ submanifold of its real locus, we consider the following property:

(i) For all neighbourhoods U ⊂ C∞(M,X(R)) of ι, there exist j ∈ U and a
subvariety Y ⊂ X smooth along Y (R) such that j(M) = Y (R).

There are homological obstructions to the validity of (i). For instance, asser-
tion (i) obviously implies that ι∗[M ] ∈ Im(clR). More generally, (i) implies the
algebraicity in X(R) of products of Stiefel–Whitney classes of M :

(ii) For all integers i1, . . . , ir, one has ι∗(wi1 (M) . . . wir (M)) ∈ Im(clR).

It is then natural to ask:

Question 4. Let X be a smooth projective variety of dimension c + d over R

and let ι : M →֒ X(R) be a d-dimensional C∞ submanifold of its real locus. Are
properties (i) and (ii) equivalent?

Theorem 9 ([2]). Question 4 has a positive answer if d < c.

Theorem 10 ([2]). Question 4 has a negative answer in general if d ≥ c and
α(c+ 1) = 2.

Theorem 9 for d = 1 had already been proven by Bochnak and Kucharz [4]
when c = 2 and by Wittenberg and myself [3] in general. The proofs of Theo-
rems 9 and 10 are further applications of Hironaka’s smoothing by linkage tech-
nique (combined with the relative Nash–Tognoli theorem of Akbulut and King [1]),
and of the method of counting self-intersections.
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Varieties of general type with small volume

Burt Totaro

(joint work with Chengxi Wang)

For smooth complex projective varieties X of general type, there is a constant
rn depending only on the dimension n of X such that the pluricanonical lin-
ear system |mKX | gives a birational embedding of X into projective space for
all m ≥ rn. This is a result of Hacon-McKernan, Takayama, and Tsuji [9, 13,
15]. It follows that there is a positive lower bound vn for the volume of all
smooth n-folds of general type; namely, 1/(rn)

n is a lower bound. (By def-
inition, the volume of X measures the asymptotic growth of the plurigenera:
vol(X) = lim supm→∞ h0(X,mKX)/(mn/n!). This is equal to the intersection
number Kn

X if the canonical bundle KX is ample.) It is a fundamental problem in
the classification of algebraic varieties to find the optimal values of these constants.
Our interest here is the asymptotics in high dimensions.

In low dimensions, strong results are known. In dimension 1, the optimal bounds
are r1 = 3 and v1 = 2, with equality for a curve of genus 2. In dimension 2, we
have r2 = 5 (by Bombieri) and v2 = 1, the extreme case being a general weighted
projective hypersurface of degree 10 in P (1, 1, 2, 5). Finally, in dimension 3, we
have r3 ≤ 57 and v3 ≥ 1/1680 by J. Chen and M. Chen [5, Theorem 1.6], [7], [6].
(It is an important feature of dimensions at least 3 that the volume of a smooth
variety of general type need not be an integer, because the canonical divisor of the
canonical model need not be Cartier.) The smallest known volume for a smooth
3-fold of general type is 1/420, by Iano-Fletcher: take a resolution of the weighted
projective hypersurface X46 ⊂ P (4, 5, 6, 7, 23) [12, section 15]. In that example,
|mKX | is birational if and only if m = 23 or m ≥ 27. The smooth 4-fold of general
type with smallest known volume is a resolution of X165 ⊂ P (10, 12, 17, 33, 37, 55),
with volume 1/830280, found by Brown and Kasprzyk [4].
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In dimensions at least 4, no explicit lower bound for the volume of a smooth va-
riety of general type is known. We at least give a bound in the other direction,
by finding varieties of general type with exotic behavior (Theorem 1) [14]. As in
previous examples, we do this by resolving suitable weighted projective hypersur-
faces with canonical singularities. These exhibit a huge range of behavior, and
our examples are certainly not optimal. (In contrast, Theorem 2 below should be
nearly optimal.)

Theorem 1. (1) For every sufficiently large positive integer n, there is a smooth
complex projective n-fold of general type with volume less than 1/n(n logn)/3.

(2) For every sufficiently large positive integer n, there is a smooth complex
projective n-fold X of general type such that the linear system |mKX | does not
give a birational embedding for any m ≤ n(logn)/3.

Theorem 1 builds on ideas of Ballico, Pignatelli, and Tasin. They found n-folds
of general type with volume about 1/nn, and such that |mKX | does not give a
birational embedding for m at most a constant times n2 [1, Theorems 1 and 2].
Here we improve the latter bound from n2 to about nlogn, which grows faster than
any polynomial.

Our methods also give super-exponentially small examples for several other
problems: (1) the constant an in Noether-type inequalities vol(X) ≥ anpg(X) −
bn for smooth projective n-folds X of general type, (2) the volume of terminal
Fano varieties, and (3) the volume of ample Weil divisors on terminal Calabi-Yau
varieties. The existence of some positive lower bound in each dimension was proved
by M. Chen and Z. Jiang for problem (1), and by C. Birkar for problems (2) and
(3) [8, Corollary 5.1], [2, Theorem 1.1], [3, Corollary 1.4].

If we weaken the assumptions on singularities, we can produce varieties with
even more extreme behavior [14]:

Theorem 2. For every integer n ≥ 2, there is a complex projective klt n-fold X
with ample canonical class such that vol(KX) < 1/22

n

.

We know that there is some positive lower bound in each dimension for the
volumes of klt varieties with ample canonical class, by Hacon-McKernan-Xu’s the-
orem that these volumes satisfy DCC [11, Theorem 1.3].

In this direction, Kollár constructed what may be the klt pair (Y,∆) of general
type with standard coefficients that has minimum volume in each dimension [10,
Introduction]. The example X described in Theorem 2 should be nearly optimal,
since it is in the more special class of klt varieties rather than klt pairs, and yet it
has the property that log(vol(KX)) is asymptotic to log(vol(KY +∆)) in Kollár’s
example, as the dimension goes to infinity. The details of the construction are
intricate, combining Sylvester’s sequence 2, 3, 7, 43, 1807, . . .with several sequences
of polynomials defined by recurrence relations.

This work was supported by NSF grant DMS-1701237.
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Université Paris-Saclay, Versailles
Bâtiment Fermat 3304
45 Avenue des États Unis
78035 Versailles Cedex
FRANCE

Prof. Dr. Elisabetta Colombo

Dipartimento di Matematica
Università di Milano
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