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techniques for enumerative problems, and relations to mathematical physics.
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Introduction by the Organizers

The workshop Enumerative Geometry of Surfaces was aimed at bringing together
the communities working on geometric and counting problems related to two im-
portant types of metrics on Riemann surfaces (aka complex algebraic curves). On
the one hand, there are hyperbolic metrics. On the other hand, the choice of a
holomorphic one-form on a Riemann surface determines a flat metric with conical
singularities at the zeroes of the differential, and the dynamics of the SL2(R)-action
on the moduli of flat surfaces has motivated various counting problems, the first
of them being the determination of Masur-Veech volumes. Many experts on either
the flat or hyperbolic (or both) geometry viewpoint were present at this workshop
(in person or remotely, thanks to the hybrid format). The program was comprised
of 17 research talks by participants (50min + questions), to which were added 2
evening talks of the same format by distinguished guests Maxim Kontsevich and
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Amol Aggarwal. The diverse techniques (hyperbolic geometry, differential geom-
etry and topology, algebraic geometry and intersection theory, tropical geometry,
dynamics, combinatorics) relevant to such questions were represented. Most talks
addressed the above core areas, and a few of them outreached towards adjacent
topics. The majority of results presented by the lecturers date from the last two
years, or concerned ongoing work, showing how fast the boundary of knowledge
has moved. Although the main focus was on enumerative questions in complex
dimension 1/real dimension 2, the richer but less understood world of complex
dimension 2 was also discussed in some talks.

The moduli space of algebraic curves (or Riemann surfaces) of genus g is one of
the classical object of study in modern algebraic geometry. Solutions of many enu-
merative geometry questions about Riemann surfaces can be expressed in terms
of intersection theory on the Deligne-Mumford compactification Mg,n of the mod-
uli space of curves. Fundamental examples of this fact are the famous proof of
Witten’s conjecture on intersection numbers of ψ-classes, first by Kontsevich (us-
ing graph counting ideas from mathematical physics), then by Mirzakhani (us-
ing the ideas from the hyperbolic geometry of surfaces), as well as the discovery
by Ekedahl–Lando–Shapiro–Vainshtein of an intersection-theoretic formula for the
number of simple branched covers of the Riemann sphere. Even three decades after
Kontsevich’s proof, basic asymptotic questions regarding the behavior of intersec-
tion numbers on Mg,n in large genus, which has a direct relevance in dynamics,
were only recently solved or are just about to be solved, as Aggarwal reported in
his talk.

In recent years the intersection theory on suitable compactifications of moduli
spaces of flat surfaces has revealed striking parallels to that on Mg,n, on the one
hand, and to the geometry of the double ramification cycle on the other hand. This,
in turn, connects to counting problems arising from Hurwitz spaces, i.e. spaces of
branched covers of the Riemann sphere. Core questions of flat geometry were ad-
dressed by Goujard on Masur-Veech volumes for all strata quadratic differentials,
and in terms of compactifications and evaluation of intersection numbers — by
Nguyen and Schmitt. More precisely, the talk of Nguyen described the incidence
variety compactification of the moduli of k-differentials with prescribed orders of
zeroes and poles, and in this context obtained a formula for their volume as an in-
tersection number of divisors.In his talk, Schmitt explained that such intersection
numbers can be compared (including boundary contributions) to the top inter-
section of ψ-classes on the double ramification locus in Mg,n. For the latter, he
gave an efficient formula whose flavor is similar to those obtained by Okounkov-
Pandharipande in the Gromov-Witten theory of P1 about 20 years ago; he also
conjectured a formula of the same kind for refined counts taking into account the
parity of spin structures which appear for k odd. Besides, Goujard presented
her ongoing work leading to a combinatorial formula (in terms of ribbon graph
counts previously studied by Kontsevich in his 1991 work on Witten’s conjecture)
for the Masur–Veech volume of an arbitrary stratum of the moduli of quadratic
differentials.
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In the talk of Lewański, we also heard about the refined count of branched covers
of the Riemann sphere by spin parity, which are called spin Hurwitz numbers. He
explained that, very much like the usual Hurwitz numbers, the spin Hurwitz num-
bers can be computed in three ways: intersection theory on Mg,n using notably
Chiodo classes (now twisted by Witten’s 2-spin class), the semi-infinite wedge and
integrability (now with neutral fermions and BKP hierarchy instead of charged
fermions and KP), and topological recursion (now involving Z2-equivariant spec-
tral curves). In particular, he showcased the appearance of double Hodge inte-
grals in this problem, and mentioned expected but conjectural relations to the
Gromov-Witten theory of complex surfaces. The talk of Oberdieck explained how
to approach curve counting in complex surfaces via the Gromov-Witten theory
of their Hilbert scheme, and proposed fundamental conjectures that should gov-
ern this computation for K3 surfaces: quasi-Jacobi modularity, a relation between
multicover counts and Hecke operators, and a holomorphic anomaly equation.

Farkas presented recent developments in counting of maps of fixed degree d
from a curve of genus g to Pr with marked points on the source being sent to
marked points on the target. When r = 1, this relates to the geometry of Hurwitz
spaces and the computation of Tevelev degrees. For general r, Farkas gave an
interpretation of this problem in terms of intersection theory on the Grassmannian,
which led to a formula for a restricted range of (g, d) in terms of Schubert calculus.

The talks of Cavalieri andMarkwig highlighted the tropical aspects of curve count-
ing problems, which is an important trend of modern research. Although it has
not yet been connected to the available corpus of knowledge on the aforementioned
questions, we can still notice common themes and the possibility of future connec-
tions. Starting from the classical problem of counting bitangents of plane quartics
in complex or real algebraic geometry, Markwig presented a tropical analogue of
this problem which led her to formulate an arithmetic count (taking values in the
Grothendieck ring of quadratic forms on a given base field) which is capable of
retrieving simultaneously the signed counts over the reals and the usual (complex)
count. In his talk, Cavalieri reported on the construction ψ-classes on the trop-
ical compactified moduli space of curves, which contains more information than
the usual ψ-classes on M1,1, but whose intersection theory in adequate situations
retrieves the usual intersection theory. He exemplified this with the tropical ana-
logue of the computation of

∫
M1,1

ψ1 = 1
24 . The construction of tropical analogues

of the other natural classes on the moduli space of curves, and their relevance to
enumerative geometry questions, which is well-documented in the case of Mg,n,
is an interesting question for the future. One can note that, when lifted to the
Teichmüller space, the tropical compactification seems to sit in between the aug-
mented Teichmüller space (whose quotient by the mapping class group gives the
Deligne-Mumford compactification) and the (much bigger) Thurston compactifi-
cation using measured foliations.

In Thurston compactification, projectivized measured foliations on real surfaces
are used to describe degenerations of hyperbolic surfaces. In his talk, Filip started
with this point of view to propose an analogue of measured foliations on those K3



1466 Oberwolfach Report 28/2021

surfaces whose automorphism group is a lattice in SO1,ρ−1(R). This is done by
associating a closed positive (1, 1)-current to a class in the boundary of the ample
cone. For certain aspects this is related to the degeneration of the (unique) Ricci-
flat metric in a given cohomology class that one lets converge to the boundary of
the ample cone.

A second important direction covered by the workshop was the hyperbolic geome-
try of surfaces, and the many developments building upon the works of Mirzakhani.
Although the emphasis of this workshop was not on dynamics, many of these
questions, for instance about the relative frequency of various topological types of
curves or the first eigenvalue λ1 of the Laplacian, have a direct relevance for the
dynamics on Teichmüller space. The Selberg trace formula was mentioned in sev-
eral talks. In relation with a special case of Selberg’s 1

4 -conjecture, an important

open problem is showing that λ1 should be close fo 1
4 (the value for the hyperbolic

upper half-plane) for a typical hyperbolic surface of large genus g chosen randomly
with respect to the Weil-Petersson metric on the moduli space of curves.Wright
reported important recent advance on this problem, showing that for any ǫ > 0,
the probability of λ1 >

3
16 − ǫ converges to 0 when g → ∞. The method hinges on

a clever use of Selberg trace formula. Petri ’s talk addressed extremal questions
about λ1 and its multiplicity m1, the systole and the kissing number on hyperbolic
manifolds, and reported some results in any dimension for the kissing number and
proved with help of the Selberg trace formula that the maximum of m1 is realized
by the Klein quartic. Andersen presented the formalism of geometric recursion as
a far-reaching generalization and abstraction of Mirzakhani-McShane identities,
allowing a construction of natural functions (having e.g. an enumerative meaning)
on the moduli space of curves by applying the cut-and-paste recursively. The inte-
grals of these functions against the Weil-Petersson measure automatically satisfy a
topological recursion. He described an ongoing work providing a version of Mirza-
khani’s identity for surfaces with boundary and corners, opening the way towards
a geometric recursion for statistics of closed curves and (by means of the Selberg
trace formula) statistics of eigenvalues of the Laplacian.

Arana-Herrera described power saving error terms for the asymptotic growth
of the number of filling curves of length L→ ∞ on a fixed hyperbolic surface. Er-
landsson studied the rigidity of hyperbolic metrics having conical points of angle
> 2π, i.e. asking whether the “endpoints” of infinite geodesics (in the universal
cover) determine the metric, and gave a positive answer (up to orbifold branched
covers) to this question. In the rigid situation this gives for instance a characteri-
zation of the metric of hyperbolic polygons in terms of their billiard dynamics.

In a beautiful combination of differential-geometric and algebro-geometric tools,
Norbury related the volume of the moduli space of super Riemann surfaces to
intersection theory of the Θ-class (coming from the geometry of 2-spin curves) and
the Weil-Petersson class, up to foundational unresolved questions. He proposed a
generalization of Witten’s conjecture, namely that the generating series of these
volumes should be a tau function of the KdV hierarchy, and should furthermore
satisfy the topological recursion (i.e. obey Virasoro constraints), the equivalence of
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the two characterizations being a theorem. The topological recursion is expected
to come from the integration of the super Mirzakhani identity found by Stanford
and Witten, by a mechanism similar to the one mentioned in Andersen’s talk.

Three talks have put forward the relation of the core areas of the workshop to
currently hot topics in mathematical physics. Zvonkine showed how to reformulate
the study of Laughlin states (that provide a model for certain types of quantum
Hall effects) as the study of the space of sections of a line bundle on the n’th sym-
metric power of a complex curve. Classical algebro-geometric techniques can then
be applied to answer (in terms of characteristic classes) physics questions such
as determining the number of states, the behavior of the system under change of
the magnetic field and/or the underlying metric surface. Flat geometry and more
specifically the geometry of trajectories of a differential is relevant in the study
of asymptotics of solutions of ODEs (aka WKB expansions in physics) and their
Stokes phenomena. This in turn plays an important role in the determination of
BPS invariants in gauge theory. Motivated by applications to WKB, Korotkin
related the Goldman and the Kostant-Kirillov symplectic structure on character
varieties of complex curves, and showed how to express them in terms of Fock-
Goncharov coordinates depending on a graph on the curve (which in the WKB
context is determined by the geometry of trajectories of the underlying differen-
tial). He also emphasized the role of tau functions as canonical transformations,
described their transformation under the change of graphs (so-called mutations
in the language of cluster algebras). Such transformations are important to de-
scribe wall-crossing phenomena in the asymptotics of solutions of families of ODEs.
In a different vein, Kontsevich sketched an algorithmically effective approach to
describe the wall-crossing phenomena for abelian differentials, which in concrete
terms means the determination of a Novikov ring generating series of (families
of topologically equivalent) trajectories of abelian differentials. He motivated his
proposal by classical facts from topology and Floer theory.

The talks led to lively interaction among the participants, even more intensely
among the 17 participants present in Oberwolfach. They unanimously appreciated
the efficiency of in-person mathematical discussions with long-missed colleagues
after a long period of online-only conferences and too-formal scheduled-only con-
versations during the pandemic.
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Abstracts

A new spin for Hurwitz numbers and Chiodo classes

Danilo Lewański

(joint work with Alessandro Giacchetto, Reinier Kramer)

Let Mg,n be the moduli space of stable curves of genus g with n marked points.
Chiodo classes can be thought as elements of a certain collection1

{
Ω[x]

g,n(r, s; a1, . . . , an) ∈ Heven(Mg,n)[x]

}

2g−2+n>0,
∑

ai≡(2g−2+n)s mod r

of cohomology classes arising from the moduli space of spin structures and related
to each other (they form a cohomological field theory). These classes lie inside
well-behaved subrings of the cohomology called tautological, and their explicit
expression in terms of stable graphs decorated with ψ- and κ-classes is known.

Especially in the very last few years, applications of these classes blossomed in
the literature. For example, many kinds of Hurwitz numbers can be expressed as
integrals of Chiodo classes against ψ-classes, just as Norbury Θ-classes, Masur-
Veech volumes, the Euler characteristic of open moduli spaces of curves.

Let r = 2s be an even positive integer. Spin Hurwitz numbers hr,θg,µ are related
to spin curves (curves C together with a theta characteristic N of their canonical
N⊗2 ∼= KC) and are defined as

hr,θg,µ =
∑

f∈Hr

(−1)Arf(f)

|Aut(f)|

where f runs over connected genus g branched covers of the Riemann sphere with
the prescribed ramification µ over zero (partition which must have only odd parts)
and all other ramifications are given by a spin analogue of the (r + 1)-completed
cycles (in any case equal to (r + 1) cover sheets meeting at the branch point plus
a particular linear combination of lower order terms). The Arf invariant is defined
by pulling back the only spin structure of the Riemann sphere and tensoring it
with the ramification divisor Rf

Arf(f) = h0(C, (f
∗O(−1))⊗OC(Rf/2))

The motivation for studying these numbers arises from different areas of math-
ematics:

1. Integrability: It is known that usual Hurwitz numbers with completed
cycles hrg,µ satisfy an integrability of type KP, in the sense that their
partition function is a τ -function of the KP integrable hierarchy. It has
also been proved that the numbers hr,θg,µ are integrable, but of type BKP.

1here all parameters are integers with the exception of the degree formal variable x, and r > 0
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2. Topological recursion perspective: Topological recursion in the sense
of Eynard and Orantin is a universal recursive procedure that generates
solutions of enumerative geometric problems from the input of a so-called
”spectral curve”. It has been proved that hrg,µ are generated via topologi-
cal recursion from a certain known spectral curve. It is a natural question
whether hr,θg,µ also can be computed via topological recursion, and which
feature should the corresponding spectral curve have, also possibly in re-
lation with the different type of integrability.

3. Gromov-Witten theory perspective: usual Hurwitz numbers with
completed cycles hrg,µ are the key Hurwitz counterpart of the celebrated
Gromov-Witten/Hurwitz correspondence for curve targets of Okounkov-
Pandharipande. Conjecturally, there exist a spin enriched version of the
GW/H correspondence involving spin curves as targets and hr,θg,µ as Hur-
witz numbers. Moreover, it has been proved that the Gromov-Witten
theory of Kähler surfaces with smooth canonical divisor is completely de-
termined by its embedded spin curves.

4. Cohomology of Mg,n: The main advantage that topological recursion
provides to algebraic geometry is a cohomological representation over the
moduli space of curves of the numbers it produces (i.e., given a spectral
curve, it spits out infinitely many numbers Ng,µ together with a recipe
to build the statement of the form ”Ng,µ is equal to an explicit linear

combination of integrals
∫
Mg,n=ℓ(µ)

Cg,nψ
d1
1 · · ·ψdn

n , where the cohomology

class Cg,n can be determined from the initial data of the spectral curve).

Apart from proving the spin GW/H correspondence, investigating the points
above is what we do.

Firstly, together with the coauthors A. Giacchetto and R. Kramer, we propose
a conjectural spectral curve for hr,θg,µ, and we test the conjecture numerically.

The conjecture has recently been proved by A. Alexandrov and S. Shadrin in
[1].

Conjecture 1 ([2], Theorem [1]). For s ≥ 1 and for r = 2s, the spectral curve
given by
(1)

x(z) = log z−zr, y(z) = z , B(z1, z2) =
1

2

(
dz1 dz2

(z1 − z2)2
+

dz1 dz2
(z1 + z2)2

)
.

produces via Eynard-Orantin topological recursion correlators ωg,n such that

∫ x1

· · ·
∫ xn

ωg,n =
∑

µ odd

hr,θg,µ

n∏

i=1

eµixi

We then apply the recipe of topological recursion to build an explicit cohomo-
logical representation of hr,θg;µ over the moduli space of curves. The answer arises
at first as sum over decorated stable graphs, which can then be interpreted as the
product of Chiodo’s class with Witten’s 2-spin class.
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Theorem 2. The conjecture above is equivalent to the following spin ELSV-type
formula: for r = 2s and for µ = (µ1, . . . , µn) odd
(2)

hr,θg;µ = r
(r+1)(2g−2+n)+d

r

(
n∏

i=1

(
µi

r

)[µi]

[µi]!

)∫

Mg,n

(ǫ21)∗
(
c
(2)
W,g,n · (ǫr2)∗Ω[1]

g,n(r, 1; 〈~µ〉)
)

∏n
i=1(1− µi

r ψi)

where µi = r[µi] + r − (2〈µi〉 + 1), with 0 ≤ 〈µi〉 ≤ s− 1, and ǫa·bb is the forgetful
map from the moduli space of a · b spin structures to the moduli space of b spin

structures, and c
(2)
W is Witten’s 2-spin class.

Example 1 (s = 1). In particular, the ELSV for µi = 2bi − 1 reads

(3) h2,θg;µ = 24g−4+2n

(
n∏

i=1

µbi−1
i

(bi − 1)!

)∫

Mg,n

Λ(1)Λ(− 1
2 )∏n

i=1

(
1− µi

2 ψi

) ,

expressing spin single Hurwitz numbers with 3-completed cycles in terms of double
Hodge integrals.

As open directions of research, we mention the understanding of the Witten
spin parameter t (which is currently t = 2) in the ELSV formula, and the under-
standing of the spin enriched version of the GW/H correspondence, which we plan
to investigate in future works.
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The incidence variety compactifications of strata of k-differentials in
genus 0

Duc-Manh Nguyen

(joint work with Vincent Koziarz)

Given k ∈ Z≥2 and n ∈ Z≥3, let H(k)
0,n denote the space of tuples (X, x1, . . . , xn, q)

where (X, x1, . . . , xn) is a stable curve of genus 0, and q a holomorphic section of
the line bundle kωX +

∑n
i=1(k− 1)xi on X (ωX is the dualizing sheaf of X). The

space H(k)
0,n is a vector bundle of rank k(n−2)+1−n over M0,n. Denote by PH(k)

0,n

the associated projective bundle.
Let k := (k1, . . . , kn) be a family of n integers such that ki ≥ 1 − k, and

k1 + · · · + kn = −2k. Denote by ΩkM0,n(k) the stratum of k-differentials whose
zeros and poles have orders prescribed by (k1, . . . , kn). Elements of ΩkM0,n(k) are
tuples (P1

C
, x1, . . . , xn, q), where (P

1
C
, x1, . . . , xn) ∈ M0,n and q is a (meromorphic)

k-differential on P1
C
whose zeros and poles are contained in the set {x1, . . . , xn}
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with order at xi being ki. Denote the by PΩkM0,n(k) the projectivization of
ΩkM0,n(k).

The stratum ΩkM0,n(k) and its projectivization PΩkM0,n(k) are naturally

subspaces of H(k)
0,n and of PH(k)

0,n respectively. By definition, the Incidence Variety

Compactification of PΩkM0,n(k), which will be denoted by PΩkM0,n(k), is its

closure in PH(k)
0,n (see [5, 1, 2]).

The boundary ∂M0,n := M0,n \M0,n is a simple normal crossing divisor. The

irreducible components of ∂M0,n are in bijection with partitions of {1, . . . , n} into
two subsets {I0, I1} such that min{|I0|, |I1| ≥ 2}. Denote by P the set of such
partitions. For any S = {I0, I1} ∈ P , we will always choose the numbering of the
subsets I0, I1 such that

(1)
∑

i∈I0

ki ≤ −k ≤
∑

i∈I1

ki

(recall that k1 + · · ·+ kn = −2k). The component of ∂M0,n associated to S will
be denoted by DS .

Consider now a point x in M0,n. Assume that the curve Cx parametrized by x
has (r+1) irreducible components, which will be denoted by C0

x
, . . . , Cr

x
. Let N (x)

be the set of nodes of Cx. Note that |N (x)| = r. For any α ∈ N (x), let Sα :=
{I0,α, I1,α} be the associated partition of {1, . . . , n}. Let Ux be a neighborhood of
x that satisfies the following

(i) Ux does not intersect any boundary divisor DS such that S /∈ {Sα, α ∈
N (x)},

(ii) Ux can be identified with an open subset of Cn−3 such that for each α ∈
N (x), there is a coordinate function tα such that DSα

∩ Ux is defined by
the equation tα = 0.

As M0,n is a projective variety, we can actually choose Ux to be an open affine of

M0,n such that tα is an element of the coordinate ring of Ux.

Splitting a node α ∈ N (x) into two points, we obtain two subcurves Ĉ0
x,αĈ

1
x,α of

Cx, where Ĉ
k
x,α contains the i-marked points with i ∈ Ik,α. For j ∈ {0, . . . , r}, α ∈

N (x), define

(2) βj,α =

{
k +

∑
i∈I1,α

ki if Cj
x
⊂ Ĉ1

x,α,

0 otherwise,

(3) βj = (βj,α)α∈N (x), and tβj =
∏

α∈N (x)

tβj,α
α .

Let OM0,n
be the structure sheaf of M0,n, and IUx

be the ideal sheaf of OM0,n|Ux

generated by {tβ0 , . . . , tβr}. We will prove
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Theorem 1.

(i) The family {IUx
, x ∈ M0,n} defines a sheaf of ideals I of OM0,n

.

(ii) The incidence variety compactification PΩkM0,n(k) of PΩ
kM0,n(k) is iso-

morphic to the blow-up M̂0,n(k) of M0,n along I.
(iii) Let p̂ : M̂0,n(k) → M0,n be the blow-up projection. For every x ∈ M0,n

the fiber p̂−1({x}) is always a projective space, whose dimension is deter-
mined by k and the stratum of M0,n to which x belongs.

Remark 1.

• The blow-up M̂0,n(k) can be equal to M0,n for instance in the case ki < 0
for all i = 1, . . . , n.

• When n = 4, we always have M̂0,4(k) ≃ M0,4. When n = 5, it can be

shown that M̂0,5(k) is always an orbifold. However, for n > 5, the space

M̂0,n(k) is highly singular in general.

Our second main result shows that for all strata ΩkM0,n(k) such that k does
not divide any of the ki, i ∈ {1, . . . , n}, vol1(PΩkM0,n(k)) can be computed by

the self-intersection number of an explicit divisor on M̂0,n(k). Specifically, define

(4) µi := −ki
d
, i = 1, . . . , n, and µ := (µ1, . . . , µn).

We will call µi the weight of the i-th marked point on the pointed curves parame-
trized byM0,n. We associate to each componentDS of ∂M0,n, where S = {I0, I1},
a weight µS given by

(5) µS :=
1

2
·
(∑

i∈I0

µi −
∑

i∈I1

µi

)
= 1−

∑

i∈I1

µi.

Note that µS is always non-negative. Recall that ψi, i = 1, . . . , n, is a divisor in
M0,n which represents the line bundle σ∗

iKC0,n/M0,n
. Define

(6) Dµ :=
d

2

(
n∑

i=1

−µiψi +
∑

S∈P

(1− µS)DS

)
.

By construction p̂−1I · O
M̂0,n(k)

is isomorphic to the line bundle associated to an

explicit Cartier divisor E on M̂0,n(k).

Theorem 2. Define D̂µ := p̂∗Dµ + E. Then the restriction of the tautological

line bundle O(−1)
PH

(d)
0,n

to M̂0,n(k) is isomorphic to the one associated to D̂µ.

Moreover, if k does not divide ki, for all i = 1, . . . , n, then

(7) vol1(PΩ
kM0,n(k)) =

(−1)n−3

dn−2
· (2π)n−2

2n−2(n− 2)!
· D̂n−3

µ

where D̂n−3
µ means the self-intersection number D̂µ · · · D̂µ︸ ︷︷ ︸

n−3

of D̂µ in M̂0,n(k).
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Remark 2.

• The Q-divisor Dµ actually represents a line bundle L̄µ over M0,n.

• That D̂n−3
µ computes the volume of PΩkM0,n(k) follows from the results

of [4].

• In the cases where k < ki < 0, for all i = 1, . . . , n, we have M̂0,n(k) ≃
M0,n, D̂µ ≃ Dµ, and (7) is the content of [6, Th. 1.1].
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Quantum Hall effect via the GRR formula

Dimitri Zvonkine

(joint work with Semyon Klevtsov)

1. The Hall effect.

The classical Hall effect is the deviation of the electric current in a thin conducting
plate traversed by a perpendicular magnetic field. At low temperature surprising
quantum effects kick in: for instance, for a range of values of the magnetic field,
the current in the plate flows in the direction perpendicular to the difference of
potentials.

The suggested explanation is that the ground state of the Hamiltonian of
a charged particle on the conducting surface is highly degenerate (that is, the
eigenspace with lowest eigenvalue has a high dimension), and the quantum Hall
effect occurs when it is completely filled with particles.

In this work we study the quantum Hall effect on a closed surface of genus g.

2. Gauge theory.

Let C be a conducting surface with a Riemannian metric that we represent as a
pair ω, I, where ω is a symplectic form and I a complex structure. In particular,
C acquires the structure of a Riemann surface.
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A magnetic field B over C is described by a principal U(1)-bundle P → C endowed
with a connection ∇, up to a connection-preserving isomorphism. The intensity of
the magnetic field is the curvature of ∇. The degree d of P is the total magnetic
flux through C. From now on we will work under the constant magnetic field
assumption, in other words, we assume that B = βω, where β is the intensity of
the magnetic field independent of time and of the point on C.

3. One charged particle.

We define a complex hermitian line bundle L → C by L = C ×U(1) P . The
hermitian structure on L (inherited from C) and the complex structure on C
automatically endow L with the structure of a holomorphic line bundle via the
operator ∂ = ∇0,1.

The wave function of a charged particle on C is a section ψ of L. The Hamil-
tonian operator is

Hψ = (∇∗∇+∇∇∗)ψ = [(∂
∗
∂ + ∂∂

∗
) + β]ψ,

where the second equality is the Weitzenböck identity between laplacians.
Thus ground states of the Hamiltonian, i.e., eigenfunctions of H with lowest

eigenspaces, are holomorphic sections of L.

4. Many charged particles.

It is not possible to solve exactly the system of N interacting particles. Instead,
physicists introduced several phenomenological models to describe their behavior.
The simplest is the Laughlin model. Denote by L → CN the line bundle

L = π∗
1L⊗ π∗

2L⊗ · · · ⊗ π∗
NL.

Further, let ∆ =
⋃

i<j{zi = zj} be the union of diagonals in CN . For a positive
integer b, a Laughlin state ofN particles on C is a holomorphic SN -invariant section
of L(−b∆), where SN permutes the factors of CN and, for odd b, multiplies ψ by
the sign of the permutation.

5. Question 1:

What is the dimension of the space of Laughlin states?

6. Working in families.

Up to now we have considered one line bundle L over one Riemann surface C.
It turns out that switching on the electric field corresponds to changing the line
bundle L. Indeed, the electric field changes the connection ∇ with time while
keeping its curvature (corresponding to the magnetic field) invariant. This changed
the operator ∂ and thus the holomorphic structure of L. In other words, the
electric field makes us travel over Picd(C). Laughlin states form a vector bundle

over Picd(C). It turns out that the Hall conductivity (electric current divided by
the electric field) equals the slope (1st Chern class divided by rank) of this vector
bundle.
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7. Question 2:

Find the characteristic classes of the vector bundle of Laughlin states over Picd(C).
An even larger family can be obtained by also varying the surface C itself, but

we will not touch this here.

8. Method.

The line bundle L(−b∆) descends to the symmetric power SNC to the curve. By
abuse of notation, we will still denote the obtained line bundle by L(−b∆). An-
swers to Questions 1 and 2 are obtained by applying the Grothendieck-Riemann-
Roch theorem to this line bundle. By a theorem of Mattuck, the natural map
SNC → PicN (C) is a the projectivization of a vector bundle. It has two natu-

ral 2-cohomology classes: Θ (the pull-back of the theta-class from PicN (C)) and
ξ = c1(O(1)). We have

c1(L(−b∆)) = bΘ+ pξ,

where p = d − b(N + g − 1) measures how many more particles could have been
added to the ground state. For p ≥ 0 the Kodaira vanishing applies to L(−b∆);
thus the GRR formula gives the Chern character of the vector bundle of sections
of L(−b∆) on the symmetric power SNC of the curve, which are precisely the
Laughlin states.

Applying the GRR formula leads to nontrivial computations in the cohomology
ring of SNC, solved using the Lagrange inversion theorem.

9. Results.

The Chern character of the vector bundle V of Laughlin states over Picd(C) equals

chm(V ) =

g∑

k=m

(
g −m

k −m

)(
N − g + p

k − g + p

)
bk−mΘm

m!
.

In particular, its rank equals

g∑

k=0

(
g

k

)(
N − g + p

k − g + p

)
bk.

The simplest particular case is p = 0. In this case one gets

ch(V ) = bm exp(Θ/b).
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Wall-crossing for abelian differentials

Maxim Kontsevich

(joint work with Yan Soibelman)

For an abelian differential on a complex curve one can count saddle connections
in all possible relative homology classes. These numbers jump when one crosses
a wall in the moduli space of abelian differentials. I will show that the jumping
formula is a particular case of the general wall-crossing formalism of Y. Soibelman
and myself. The corresponding graded Lie algebra is the algebra of matrices over
the ring of Laurent polynomials in several variables. The wall-crossing structure is
explicitly calculable, and is determined by a finite collection of invertible matrices
over the field of rational functions. The whole story generalizes from curves to
higher-dimensional complex algebraic varieties.

Curves on the Hilbert scheme of a K3 surface

Georg Oberdieck

1. An enumerative problem

Let S be a smooth complex projective surface which we assume here for simplicity
to be Fano (in particular, pg = q = 0). Let L be a line bundle with no higher
cohomology. We are interested in counting curves in the linear system |L| of given
geometric genus and gonality.

Definition 1. A smooth proper connected curve C is n-gonal if there exists a
morphism C → P1 of degree n.

Definition 2. Let Ng,n(L) be the number of irreducible curves C ∈ |L| such that:

(i) the normalization C̃ is n-gonal of genus g
(ii) C passes through ℓ(g, n) generic points.

Here ℓ(g, n) is the number of points which makes the problem of expected
dimension 0. To find it recall first that because the Brill-Noether number reads
ρ(g, a, d) = g − (a + 1)(g − d + a), in a given family of genus g curves the loci
of n-gonal curves has expected codimension −ρ(g, 1, n) = g + 2 − 2n. Second,
the locus of geometric genus g curves in a family arithmetic genus pa curves is of
expected codimension pa − g. Let pa(L) be the arithmetic genus of a curve in |L|.
Hence

ℓ = ℓ(g, n) = dim |L| − (pa(L)− g) + ρ(g, 1, n)

=
1

2
L · (L−K)−

(
1

2
L · (K + L) + 1− g

)
− (g + 2− 2n)

= c1(S) · L− 1 + 2n− 2.
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2. Hilbert schemes

By a classical idea of Graber, the Hilbert scheme of n points S[n] can be used
to approach the count Ng,n(L). By definition a morphism T → S[n] from a
Noetherian scheme T corresponds to a closed subscheme C ⊂ T ×S flat over T of
degree n. Hence we find the natural bijection:

{
maps f : P1 → S[n]

}
∼=−→
{
subcurves C ⊂ P1 × S
flat over P1 of degree n

}
.

Moreover, as explained in [3, Sec. 1] the map f has class β+kA under the natural
isomorphism H2(S

[n],Z) ∼= H2(S,Z)⊕ZA if and only if we have [C] = β+n[P1] ∈
H2(S×P1,Z) and χ(OC) = k+n. Similarly, the projection of C to S is incident to
a point P ∈ S if and only if f(P1) is incident to the cycle I(P ) = {ξ ∈ S[n]|P ∈ ξ}.

Define the genus g Gromov-Witten invariant of the Hilbert scheme:

〈
α; γ1, . . . , γN

〉S[n]

g,β+kA
:=

∫

[Mg,N (S[n],β+kA)]vir
ev∗1(γ1) · · · ev∗N (γN )τ∗(α)

where α is a tautological class on Mg,N , which is the target of the forgetful mor-
phism τ . A virtual count Hg,n(β) of n-gonal genus g curves on S in class β passing
through ℓ points is then defined by

∑

k∈Z

〈
I(P )ℓ

〉S[n]

0,β+kA
pk =

∑

g

Hg,n(β)(p
−1/2 + p1/2)2n+2g−2.

The justification for this is that for an isolated genus g curves C ⊂ S × P1, the
corresponding map f : P1 → S[n] meets the diagonal ∆S[n] in 2n+ 2g − 2 points,
and by Graber each of these intersection points should contribute p−1/2 + p1/2 to
the left hand side. In particular Graber proves:

Theorem 1 ([1]). For S = P2 the count Hg,2(β) is enumerative, or in other words
equal to Ng,2(β). For an explicit recursion see [1].

3. K3 surfaces

The above discussion motivates the study of the Gromov-Witten theory of the
Hilbert scheme of points of a K3 surface. We state a triality of conjectures which
governs the structure of the theory. Let S → P1 be an elliptic K3 surface with
section B and fiber class F . We define potential of reduced Gromov-Witten in-
variants:

Fg,m(α; γ1, . . . , γN ) =

∞∑

d=−m

∑

r∈Z

〈α; γ1, . . . , γN 〉S
[n]

g,m(B+F )+dF+kA q
d(−p)k.

By deformation invariance these series determine all Gromov-Witten invariants
of hyper-Kähler varieties of K3[n]-type [4]. By convention, we assume k = 0 for
n = 1. Recall the algebra QJac of quasi-Jacobi forms [3].
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Conjecture 2. Fg,m(α; γ1, . . . , γN ) is a quasi-Jacobi form of index n − 1 and
weight n(2g − 2) +

∑
i deg(γi)− 10 of the form

Fg,m(α; γ1, . . . , γN ) ∈ 1

∆(q)
QJac.

Here, if γ ∈ H∗(S[n]) is written in terms of the action of Nakajima operators

γ =
∏

i

qai
(δi)1, 1 ∈ H∗(S[0])

where δi are elements of a fixed basis {W := B + F, F, p, 1, e3, . . . , e22} with ei ∈
H2(S) orthogonal to W,F , then the modified degree function deg is defined by

deg(γ) = deg(γ) + w(γ) − f(γ)

where w(γ) and f(γ) are the number of classes δi equal to W and F respectively.

Conjecture 3. We have the multiple cover conjecture:

Fg,m(α; γ1, . . . , γN ) = m
∑

i deg(γi)−deg(γi) · Tm,ℓFg,1(α; γ1, . . . , γN )

where ℓ = n(2g− 2)+
∑

i deg(γi) and Tm,ℓ is the formal Hecke operator on Jacobi
forms, see [4, 2.6].

Conjecture 3 implies that every Fg,m is a quasi-Jacobi form (with poles at q = 0)
of index m(n−1) for the congruence subgroup Γ0(n)⋊Z2. The weight is as before.

Conjecture 4. We have the holomorphic anomaly equation:

d

dG2
Fg,m(α; γ1, . . . , γN ) =Fg,m(α; γ1, . . . , γN , U)

+ 2
∑

g=g1+g2
{1,...,N}=A⊔B

Fg1,m(α1; γA, U1)F
vir

g2 (α2; γB, U2)

− 2

N∑

i=1

Fg,m(α · q∗(ψi); γ1, . . . , γi−1, Uγi, γi+1, . . . , γN )

− 1

m

∑

a,b

(G−1)abTeaTebFg,m(α; γ1, . . . , γN )

with the following notations:

• by convention the last term vanishes in case m = 0,
• the intersection matrix G of the ea is defined by Gab = 〈ea, eb〉,
• we let ρ : ∧2H2(X) ∼= so

(
H2(X)

)
→ EndH∗(X) be the Looijenga-Lunts-

Verbitsky algebra action for X = S[n] with the conventions of [2],

• U = f̃F = ρ(−f ∧ F ),
• TλFg,m(α; γ1, . . . , γN ) =

N∑
i=1

Fg,m(α; γ1, . . . , γi−1, ρ(λ∧F )γi, γi+1, . . . , γN ),
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• q :Mg,N (S[n], β) →Mg,N (Pn, π∗β) is induced by the Lagrangian fibration

π : S[n] → Pn associated to S → P1,
• F vir

g is the potential of ordinary (non-reduced) Gromov-Witten invariants.

The first two conjectures can be found in [3] and [4]. The last one generalizes
the K3 surface case [5]. Example calculations will be discussed elsewhere.
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Integrals of ψ-classes on spaces of differentials and twisted double
ramification cycles

Johannes Schmitt

(joint work with Matteo Costantini, Adrien Sauvaget)

Intersection numbers of strata of k-differentials

Let g, n, k ≥ 0 be integers such that 2g − 2 + n > 0 and let a ∈ Zn such that∑
i ai = k(2g − 2 + n). Then we define the closed subset

(1) Mg(a) =

{
(C, p1, . . . , pn) : ω

⊗k
log

∼= OC

(
n∑

i=1

aipi

)}
⊆ Mg,n

inside the moduli space of smooth curves. Note that the condition on the line
bundles in (1) is equivalent to the existence of a meromorphic k-differential on C
with zeros and poles of orders ai − k at the marked points pi. Thus we call the
closure Mg,n(a) ⊆ Mg,n inside the moduli space of stable curves a stratum of
k-differentials. The first part of the talk studies the following concrete problem:

Question 1. Can we give a formula in terms of g, a for the intersection numbers

(2) Bg(a) =

∫

[Mg(a)]

ψ2g−3+n
1

of the fundamental class of Mg(a) with a power of the first ψ-class?
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Here, the exponent 2g − 3 + n of ψ1 is chosen since for a /∈ k · Zn
>0 this is the

dimension of Mg(a), see e.g. [7, 13, 2, 3]. Computing such numbers is natural
from the point of view of the enumerative geometry of the strata of k-differentials,
but they also appear in recursive formulas for volumes of spaces of flat surfaces
[12] and Euler characteristics of minimal strata of differentials (see below).

A relation to the double ramification cycles

To approach this problem, we use a relation between the strata of k-differentials
and the so-called (twisted) double ramification cycles DRg(a). This was proposed
as Conjecture A in [7, 13] and recently proven in [9, 1]. Stated informally, it says
that for a /∈ k · Zn

>0 we have

(3) [Mg(a)] + (boundary terms) = DRg(a) ∈ H2g(Mg,n) .

Here the class DRg(a) has an explicit formula [10] in the tautological ring of

Mg,n proposed by Pixton and is a cycle-valued polynomial in a by [11]. Using
the concrete form of the boundary terms above (which are described as products
of further strata of k- and 1-differentials), it is easy to see that for vectors a with

a1 /∈ [1, k(2g− 1)]∩ k · Z, the class ψ2g−3+n
1 vanishes on these boundary terms, so

that the function Bg(a) agrees with the intersection number

(4) Ag(a) =

∫

DRg(a)

ψ2g−3+n
1 .

Our first main result is a concrete formula for Ag, generalizing a similar formula
from [5] for vectors a with

∑
i ai = 0.

Theorem 2. Given g, n ≥ 0, a ∈ Zn and setting k = (
∑

i ai)/(2g − 2 + n), we
have

(5) Ag(a) = [z2g] exp

(
a1z · S ′(z)

S(kz)

)
·

∏n
i=2 S(aiz)

S(z)S(kz)2g−1+n
, for S(z) = sinh(z/2)

z/2
,

where [z2g] denotes the operation of taking the coefficient of z2g in the subsequent
power series.

To prove this result, we show a series of properties and recursive formulas for the
function Ag (in particular including the fact that the function is polynomial in a,
as follows from [11]). Then we give a combinatorial argument that these properties
(together with the initial data of A0,A1) uniquely determine all functions Ag. The
proof of Theorem 2 is then finished by showing that the formula from the theorem
satisfies these universal properties.

Finally, as we saw above, this allows to compute Bg(a) on many input vectors
a. Then, with some more work, one can in fact compute all intersection numbers

∫

[Mg(a)]

ψu
1 for a with k = k(a) > 0, for all u.
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Euler characteristics of minimal strata of differentials

For k = 1, the paper [6] gives a formula for the orbifold Euler-characteristic
χ(Mg(a)) of the strata of 1-differentials in terms of intersection numbers on the
spaces of multi-scale differentials, a compactification of Mg(a) constructed in [4].
For the case n = 1, i.e. the minimal strata of holomorphic differentialsMg(2g−1),
we are able to use divisorial relations in the spaces of multi-scale differentials to
bring this formula into a shape where all terms can be computed explicitly. Due
to space constraints, we only state the following informal version here.

Theorem 3 (in progress). For any g ≥ 1, the Euler characteristic χ(Mg(2g−1))
is given by an explicit formula involving numbers ag′ , bg′ , defined using power series

identities involving S(z) = sin(z/2)/(z/2), and the function Ag′ above, for g′ ≤ g.

Spin refinements

For k, a1, . . . , an odd and (C, p1, . . . , pn) ∈ Mg(a) we have

ω⊗k
C

∼= OC

( n∑

i=1

(ai − k)pi
)

⇐⇒ ωC
∼=
(
ω
−(k−1)/2
C

( n∑

i=1

ai − k

2
pi
)

︸ ︷︷ ︸
=:L

)⊗2
,

so that the line bundle L above defines a spin structure on C, i.e. a root of ωC .
For such bundles L the parity pL = (h0(L) mod 2) is a deformation invariant, so
that Mg(a) decomposes into odd and even components. We define the spin class

[Mg(a)]
spin = [Mg(a)]

even − [Mg(a)]
odd

and the variant

Bspin
g (a) =

∫

[Mg(a)]spin
ψ2g−3+n
1

of the function Bg above. Then we make the following predictions concerning
intersection numbers of these classes and functions:

Conjecture 4. There exists a tautological class DRspin
g (a) ∈ H2g(Mg,n), given

by a cycle-valued polynomial of degree 2g in a, equivariant with respect to permu-
tations of markings, such that for vectors a with a1 /∈ [1, k(2g− 1)]∩k ·Z, we have
Bspin
g (a) = Aspin

g (a) for

Aspin
g (a) =

∫

DRspin
g (a)

ψ2g−3+n
1 .

Conjecture 5. We have

Aspin
g (a) = 2−g[z2g] exp

(
a1z · S ′(z)

S(kz)

)
· cosh(z/2)S(z)

∏n
i=2 S(aiz)

S(kz)2g−1+n
.

For now, we have a sketch of proof that Conjecture 4 implies Conjecture 5.
Furthermore, for the cycle DRspin

g (a) we have an explicit proposed formula, given
by a variation of Pixton’s formula for DRg(a). This proposal is inspired by formulas
in the recent paper [8] studying a spin-variant of the r-spin Hurwitz numbers.
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An analogue of measured foliations on K3 surfaces

Simion Filip

Measured foliations and laminations on surfaces are fundamental tools in the study
of the topology and dynamics of surfaces. The space of all measured foliations is
used to compactify the Teichmüller space of all complex structures on a given
compact surface. Masur’s criterion [2] relates the recurrence in moduli space with
unique ergodicity properties of measured foliations.

The talk presented an analogue of some of the above concepts on K3 surfaces,
developed in joint work with Valentino Tosatti [1]. Recall that a K3 surface is a
compact complex 2-dimensional manifold which is simply-connected and has trivial
canonical bundle (i.e. a nowhere vanishing holomorphic 2-form). K3 surfaces carry
canonical Ricci-flat metrics, which exist and are unique in any cohomology class
which admits some Kähler metric, by a theorem of Yau. From a different point of
view, some of the results described in the talk can be related to the degeneration
of the Ricci-flat Kähler metrics as the cohomology class approaches the boundary
of the ample cone of the K3 surface.

Recall that the ample cone Amp(X) consists of all cohomology classes which
are represented by ample R-divisors, and its boundary is denoted ∂Amp(X). The
setting of [1] is assuming that the group of holomorphic automorphisms Aut(X)
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of the K3 surface X is a lattice in the corresponding group SO1,ρ−1(R), where ρ
is the rank of the Neron-Severi group. We have

Theorem 1. There exists a unique map

η : ∂cAmp(X) → Z1,1
pos(X)

where Z1,1
pos(X) denotes closed positive currents, which is characterized by the prop-

erties:

(1) The map η is Aut(X)-equivariant.
(2) The map η is continuous, for the weak topology of convergence on currents.

Additionally:

• The currents in the image of η have continuous potentials.
• (also established by Verbitsky-Sibony) For irrational cohomology classes in
∂cAmp(X), the closed positive representatives are unique.

Note that the boundary ∂cAmp(X) that appears in the statement of the theorem is
a slightly modified version of the usual boundary, taking into account the behavior
of hyperbolic geodesics which enter certain cusps of hyperbolic manifolds.

An analogous theorem is proved to show the existence of height functions, when
the K3 surface X is defined over a number field. In that case, similar characteri-
zations of the heights are available.
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Hyperbolic cone surfaces and billiards

Viveka Erlandsson

(joint work with Christopher J. Leininger and Chandrika Sadanand)

Let S be a closed surface of genus at least 2 and C ⊂ S a finite set of marked
points. A hyperbolic cone metric on S is a metric ϕ which is hyperbolic on S \C
and has cone singularities at the points of C with cone angles greater than 2π. We
call a geodesic η in the universal cover p : (S̃, ϕ̃) → (S, ϕ) non-singular if it does
not pass through any of the cone points in p−1(C) and we call it a basic geodesic
if it is either non-singular or a limit of non-singular geodesics. We are interested
in the set

Gϕ̃ ⊂ ∂S̃ × ∂S̃ \∆/(x, y) ∼ (y, x)

of pairs of endpoints of basic ϕ̃-geodesics and to what extent this set determines
the metric ϕ. (Here ∂S̃ denotes the Gromov boundary and ∆ the diagonal.) More
precisely, we say that a hyperbolic cone surface (S, ϕ) is rigid if whenever Gϕ̃ = Gϕ̃′

for some hyperbolic cone metric ϕ′, we must have that ϕ and ϕ′ is the same metric
(up to isotopy).
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The motivation is marked length spectrum rigidity. Recall that we say a family of
metrics M on S is marked length spectrum rigid if the mapping

M → RS , ϕ 7→ (ℓϕ(η))η∈S

is injective, where S is the set of homotopy classes of closed curves on S and ℓϕ(η)
is the ϕ-length of a geodesic representative. Otal [8] proved that the family of
negatively curved Riemannian metrics is marked length spectrum rigid by showing
that a metric’s Liouville current determines the metric. This result has been
generalized in various directions (see [3, 4, 7]), including to non-positively curved
cone metrics on S through work by Duchin-Leininger-Rafi [5], Bankovic-Leininger
[1], and Constantine [2], showing that such metrics are also determined by their
Liouville current and hence are marked length spectrum rigid. However, while
the Liouville current has full support in the Riemannian case, it does not for cone
metrics. In fact, the Liouville current for a hyperbolic cone metric ϕ is exactly the
set Gϕ̃ introduced above. Hence a hyperbolic cone metric is rigid if it is determined
by only the support of its Liouville current.

In [6] we show that hyperbolic cone metrics are indeed generically rigid and
characterize exactly the flexible case. If (S, ϕ) admits a locally isometric branched
covering of a hyperbolic orbifold O and every cone point maps to an even order
orbifold point, then any non-trivial orbifold deformation of O lifts to a non-trivial
deformation ϕ′ of ϕ with Gϕ̃ = Gϕ̃′ . However, this is the only way (S, ϕ) can fail
to be rigid:

Theorem 1. Suppose (S, ϕ) and (S, ϕ′) are hyperbolic cone surfaces with Gϕ̃ =
Gϕ̃′ . Then either ϕ = ϕ′ or (S, ϕ) branch cover an orbifold and the two metrics
are related by an orbifold deformation.

See [6] for the precise statement.
As an application we parameterize the space of hyperbolic polygons with the

same symbolic coding for their billiard dynamics. Given a compact, simply con-
nected hyperbolic polygon P with cyclically labeled sides, any billiard trajectory
on P results in a bi-infinite sequence in the labels. The bounce spectrum B(P )
of P is the collection of all such sequences and we say that P is billiard rigid if it
is determined by its bounce spectrum. By “unfolding” P into a hyperbolic cone
surface we use rigidity of such surfaces to show that generically B(P ) = B(P ′) if
and only if P and P ′ are isometric. For instance, in the cases where P has an
interior angle which is an irrational multiple of π or when it has no angle of the
form π/2k for some k ∈ N, we have that P is billiard rigid.
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Large Genus Asymptotics for Intersection Numbers

Amol Aggarwal

1. Results

Fix integers g, n ≥ 0 with 2g+n ≥ 3. Let Mg,n denote the moduli space of genus g
stable curves with n marked points. Letting ψ1, ψ2, . . . , ψn denote the tautological
ψ-classes on Mg,n, denote the intersection number, or correlator, by

〈τd1τd2 · · · τdn
〉g,n =

∫

Mg,n

ψd1
1 ψ

d2
2 · · ·ψdn

n ,(1)

for any nonnegative integer sequence d = (d1, d2, . . . , dn); it is nonzero only if
|d| = ∑n

i=1 di = 3g + n − 3. We will be interested in the asymptotics of this
correlator as g tends to ∞. The below theorem states that

〈τd1τd2 · · · τdn
〉g,n g→∞−−−→ (6g + 2n− 5)!!

24gg!
∏n

i=1(2di + 1)!!

(
1 + o(1)

)
,(2)

uniformly in d, as long as n = o(g1/2). To make this more precise, define a
normalization of the correlator (1) given by

〈d〉 = 〈d〉g,n =
24gg!

∏n
i=1(2di + 1)!!

(6g + 2n− 5)!!
〈τd1τd2 · · · τdn

〉g,n;

then, (2) suggests it should tend to 1. For any ε > 0, further define the set

∆(g; ε) =
{
d = (d1, d2, . . . , dn) ∈ Zn

≥0 : |d| = 3g + n− 3, n < εg1/2
}
,

which will be used to make sense of “uniformity in d, as long as n = o(g1/2),”
when g and n are simultaneously tending to ∞.

Theorem 1 ([1, Theorem 1.5]). We have lim
ε→0

(
lim
g→∞

(
max

d∈∆(g;ε)

∣∣〈d〉 − 1
∣∣
))

= 0.

Remark 3. It can be shown for large g that 〈3g− 2, 1n−1〉g,n ≈ eC , if n ≈ √
12Cg.

Thus, the constraint n = o(
√
g) cannot be directly removed in the asymptotic (2).
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For n = 1, the approximation provided by (2) is exact, a fact which follows from
the Kontsevich-Witten theorem [5, 6]. For n = 2, it was proven in [3], based on a
simple explicit formula for the two-point correlator derived in [8]. In general, the
proof of the theorem appearing [1] is based on a comparison between the recursive
relations (Virasoro constraints) that uniquely determine the correlators (1) with
the jump probabilities of a certain asymmetric simple random walk.

2. Applications

In this section we focus on an application of Theorem 1 to flat surfaces of large
genus. Let Qg denote the moduli space of pairs (X, q), where X is a Riemann
surface of genus g, and q is a quadratic differential on X with n simple poles; q
induces a flat metric on X , and so (X, q) can be viewed as a flat surface. This
moduli space of quadratic differentials Qg admits a volume form Vol, known as
the Masur-Veech measure, given by the pullback of the Lebesgue measure under
the period map. It was shown by Delecroix-Goujard-Zograf-Zorich [3] that VolQg

can be expressed in terms of the correlators (1). In particular, they wrote

VolQg =
∑

Γ

Vol(Γ),(3)

where Γ is summed over all stable graphs of genus g, and Vol(Γ) is an explicit
polynomial in the correlators 〈d〉. The quantity Vol(Γ) admits a geometric in-
terpretation. It can be viewed as the contribution to VolQg coming from those
surfaces whose horizontal cylinder decomposition has “backbone” given by Γ; for
example, each edge of Γ corresponds to a horizontal cylinder of the surface.

Using (3), Theorem 1, and the explicit expression for Vol(Γ) from [3], each
quantity Vol(Γ) can be analyzed explicitly in the large genus limit. One can then
sum over all stable graphs Γ as in (3) (which requires some effort, since this sum
involves exponentially in g many terms). This leads to the following asymptotics
for the volume VolQg of the moduli space of quadratic differentials.

Theorem 2 ([1, Theorem 1.7]). As g tends to ∞, VolQg =
1

π

(
8

3

)4g−4(
1+o(1)

)
.

More precise asymptotics for VolQg, namely, an all-order expansion of the form

VolQg =
1

π

(
8

3

)4g−4
(
1 +

K∑

j=1

cjg
−j +O(g−K−1)

)
,

for constants c1, c2, . . ., have been predicted by Yang-Zagier-Zhang in [7]. Addi-
tionally, predictions on the large genus asymptotics for other (non-principal) strata
volumes of quadratic differentials can be found in [2].

The geometric interpretation described above for the quantities Vol(Γ) from
(3) implies that (VolQg)

−1Vol(Γ) can be viewed as the probability of a random
surface admitting backbone Γ under its horizontal cylinder decomposition; observe
that Theorem 2 enables an approximation for the prefactor (VolQg)

−1. Using
this, together with more intricate geometric and combinatorial considerations, the
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recent work [4] provides a very precise description for the geometry of random
square-tiled surfaces. For example, they show that the number of cylinders under
its horizontal cylinder decomposition (equivalently, the number of edges in its
backbone Γ) converges in law, as g tends to ∞, to a Poisson random variable of
mean 1

2

(
log(24g − 24) + γ + o(1)

)
, where γ is the Euler-Mascheroni constant.
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Extremal hyperbolic surfaces and the Selberg trace formula

Bram Petri

(joint work with Maxime Fortier Bourque)

1. The invariants

Our work is about extremal problems in hyperbolic geometry. These extremal
problems are the natural hyperbolic analogues of classical problems in the theory
of Euclidean sphere packings.

Suppose we are given an oriented connected closed hyperbolic manifold M –
that is, a Riemannian manifold with a metric of constant sectional curvature≡ −1.
In what follows, we will focus on two geometric and two spectral invariants of M .

On the geometric side, we will consider the systole sys(M) ofM – the length of
the shortest closed geodesic on M – and the kissing number kiss(M) of M – the
number of oriented closed geodesics realizing its systole1.

To define the spectral invariants, recall that the Laplacian on M is the differ-
ential operator ∆ : C∞(M) → C∞(M) given by ∆f = −div ◦ grad f , where grad

1Note that with this convention the kissing number of a hyperbolic manifold is always an
even number. The reason for choosing this convention is that it mimics the kissing number of a
Euclidean lattice, which also counts oriented geodesics on the torus corresponding to the lattice.
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denotes the gradient of a function and div denotes the divergence of a vector field.
The spectral theorem for ∆ states that the solutions to the eigenvalue problem
∆ϕ = λ · ϕ consist of a discrete set of real eigenvalues

0 = λ0(M) < λ1(M) ≤ λ2(M) ≤ . . .

corresponding to eigenfunctions (ϕn)n that – when normalized – form an orthonor-
mal basis of L2(M). We will concentrate on the smallest non-zero eigenvalue
λ1(M) and its multiplicity m1(M).

2. The questions

The basic question we ask is: suppose we fix the volume of M – in dimension two,
this is the same as fixing its genus – how large can sys(M), kiss(M), λ1(M) and
m1(M) be? That is, determine the following functions:

S(n, v) = max
M∈H(n,v)

{sys(M)}, K(n, v) = max
H(n,v)

{kiss(M)},

Λ(n, v) = max
H(n,v)

{λ1(M)}, M(n, v) = max
H(n,v)

{m1(M)},

where H(n, v) denotes the set of connected oriented closed hyperbolic n-manifolds
of volume ≤ v. Of course, stated like this, this is a very ambitious question. But
even the question of determining the maximizers for low volumes or determining
the asymptotic behavior of these functions as v → ∞ is open in most cases.

Let us focus on the two-dimensional case and discuss some of the things we do
know. Jenni [9] proved that the Bolza surface maximizes the systole among closed
hyperbolic surfaces of genus 2 and it follows from a topological argument that it
also maximizes the kissing number in genus 2 (see eg. [11]). The same surface
is also expected to maximize λ1 and m1 among hyperbolic surfaces of genus 2,
but this currently remains open (for this and several other conjectures on which
surfaces should maximize what invariant, see [15]). One of our results (in progress)
below determines the m1-maximizer in genus 3: the Klein quartic. For as far as
we’re aware, the above is a complete list of known maximizers.

Concerning the large genus behavior of the functions defined above also plenty
of open questions remain. It’s known that S grows logarithmically as a function of
genus. The upper bound comes from a simple argument based on area growth and
the lower bound from an explicit arithmetic construction due to Buser-Sarnak
[1]. An asymptotic equivalent for S however remains elusive, in particular, the
multiplicative constant in front of the logarithm is not known. Schmutz [16], again
using arithmetic surfaces, proved that K grows faster than g4/3−ε for every ε > 0
and Parlier [13] proved that it grows slower than g2/ log(g). Our methods also
give an alternative proof of Parlier’s result. On the spectral side, the asymptotes
are also still to be determined. Cheng [2] proved that lim sup

v→∞
Λ(2, v) ≤ 1

4 and it is

believed that this limit exists and equals 1
4 . This would for instance follow from

the Selberg conjecture. The best known results towards the Selberg conjecture,
due to Kim-Sarnak [10], prove that the lim inf

v→∞
Λ(2, v) ≥ 975

4096 . Finally, Colin de
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Verdière [4] proved that the maximal multiplicity M grows faster than
√
g and

Sévennec [17] proved that it grows at most linearly as a function of the genus g.
Of course, the set of closed hyperbolic surfaces of genus g forms a moduli space

Mg, so we can also ask for local maximizers for any of our invariants. This has
been mostly studied for the systole (see [16, 8, 7]).

3. Our results

Our program with Maxime Fortier Bourque is to attack the problems above using
the Selberg trace formula – a formula that links the Laplacian spectrum of a
hyperbolic manifold to the lengths of closed geodesics on the same manifold. Our
method is the hyperbolic analogue of a method developed by Cohn-Elkies [3] in
the setting of Euclidean sphere packings.

Using these methods, we first of all recover Parlier’s two-dimensional kissing
bound and are able to generalize it to higher dimensions [5]:

Theorem 1 (Parlier, Fortier Bourque-P.). For every n ≥ 2, there exists a constant
Cn > 0 such that:

K(n, v) ≤ Cn · v2

log(v)

for all v > 0.

More recently, we’ve started applying our methods to the low genus case in
dimension two [6]. One of our results is:

Theorem 2 (Fortier Bourque-P. in progress). We have

max{m1(M); M ∈ M3} = 8

and this maximum is realized by the Klein quartic.

The proof of this result relies on a patchwork of arguments. We combine our
methods based on the Selberg trace formula with bounds on λ1 due to Ros [14], a
bound on the number of small eigenvalues due to Otal-Rosas [12] and topological
ideas due to Sévennec [17] to prove that m1(M) ≤ 8 for hyperbolic surfaces M
of genus 3. To prove that the Klein quartic realizes the upper bound, we again
use the Selberg trace formula, but now combined with information on the length
spectrum the automorphism group of the Klein quartic. Some of our work is based
on computer searches for optimal test functions for the Selberg trace formula. We
are currently in the process of performing the final rigorous verifications.
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Effective counting estimates for filling closed geodesics on
hyperbolic surfaces

Francisco Arana-Herrera

Counting problems for closed geodesics on hyperbolic surfaces have been exten-
sively studied since the 1950s. Huber’s prime geodesic theorem [10] can be con-
sidered as one of the first major breakthroughs in this subject. According to this
theorem, the number p(X,L) of primitive closed geodesics of length ≤ L on a
closed, orientable hyperbolic surface X admits the following estimate,

(1) p(X,L) = Li
(
eL
)
+OX

(
e(1−κ)L

)
,

where the gap κ = κ(X) > 0 depends only on the smallest non-zero eigenvalue
of the Laplacian of X , and where Li : [2,+∞) → R is the Eulerian logarithmic
integral

Li(x) :=

∫ x

2

dt

log t
.

Let us highlight the fact that Li(x) is asymptotic to x/ log(x) as x → +∞. The
backbone of Huber’s proof, and of many of the subsequent improvements and gen-
eralizations due to several authors [9, 19, 22], is Selberg’s famous trace formula [23].
A proof of an estimate analogous to (1) for arbitrary compact, negatively curved
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Riemannian manifolds was given by Margulis in his thesis [11] using dynamical
and geometric arguments.

Neither Huber’s nor Margulis’s methods can be used to prove an estimate for
the number s(X,L) of simple closed geodesics of length ≤ L on a closed, orientable
hyperbolic surfaceX . This problem, which garnered great interest towards the end
of the last century [5, 13, 14, 21], would witness major developments through the
work of Mirzakhani. In her thesis [15, 17], Mirzakhani showed that the following
asymptotic estimate holds as L→ +∞,

(2) s(X,L) ∼ n(X) · L6g−6,

where n(X) > 0 is a constant depending on the geometry of X , and where g ≥
2 is the genus of X . An important driving force behind Mirzakhani’s proof is
the ergodicity of the action of the mapping class group on the space of singular
measured foliations, a result proved by Masur in [12].

The methods introduced in Mirzakhani’s thesis did not provide an error term.
It would actually take more than 15 years and several developments in Teichmüller
dynamics for Eskin, Mirzakhani, and Mohammadi [6] to show that

(3) s(X,L) = n(X) · L6g−6 +OX

(
L6g−6−κ

)
,

where the gap κ = κ(g) > 0 depends only on the genus of X . The main source
of effective estimates in the proof of (3) is the exponential mixing property of the
Teichmüller geodesic flow, a result proved by Avila and Resende [4] building on
previous work of Avila, Gouëzel, and Yoccoz [3].

Both the methods introduced in Mirzakhani’s thesis and those introduced in
her later work with Eskin and Mohammadi can be used to study more refined
counting problems of closed geodesics on hyperbolic surfaces. Two closed curves
on homeomorphic surfaces are said to have the same topological type if there exists
a homeomorphism between the surfaces identifying their free homotopy classes.
Given a closed, orientable hyperbolic surface X of genus g ≥ 2, a closed curve β
on X , and L > 0, denote by c(X, β, L) the number of closed geodesic on X of
the same topological type as β and length ≤ L. In [6], Eskin, Mirzakhani, and
Mohammadi showed that if β is simple then

(4) c(X, β, L) = n(X, β) · L6g−6 +OX,β

(
L6g−6−κ

)
,

where n(X, β) > 0 is a constant depending on the geometry of X and the topo-
logical type of β, and where the gap κ = κ(g) > 0 depends only on the genus of
X . Let us highlight the fact that the proof of this estimate makes crucial use of
the assumption that the closed curve β is simple.

As the estimates in (1), (2), and (3) show, simple closed geodesics account
for just a tiny fraction of all primitive closed geodesics of a closed, orientable
hyperbolic surface. Furthermore, primitive closed geodesics are generically filling,
i.e., all but a quantitatively small number of primitive closed geodesics of a closed,
orientable hyperbolic surface cut the surface into discs.

Counting problems for closed geodesics of non-simple topological types had been
previously studied by Mirzakhani. A closed curve on a closed, orientable surface
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is said to be filling if it intersects every homotopically non-trivial closed curve.
In [18], Mirzakhani showed that if X is a closed, orientable hyperbolic surface of
genus g ≥ 2 and β is a filling closed curve on X , then, asymptotically as L→ +∞,

(5) c(X, β, L) ∼ n(X, β) · L6g−6,

where n(X, β) > 0 is a constant depending on the geometry of X and the topologi-
cal type of β. As in her thesis, the proof of this estimate is also based on dynamical
arguments, but the key player in this case is the ergodicity of the earthquake flow,
a result proved earlier by herself in [16]. An asymptotic estimate analogous to (5)
for closed geodesics of any topological type was later proved by Erlandsson and
Souto [8] using original arguments introduced in their earlier work [7]. Neither
Mirzhakani’s methods nor the methods of Erlandsson and Souto provide an error
term.

The problem of proving a quantitative estimate with a power saving error term
for the counting function c(X, β, L) in the case where β is non-simple has since
remained open. This problem was alluded to in work of Mirzakhani [18, §1.6.9]
and was recently advertised by Wright [24, Problem 18.2]. In this talk we discuss
a recent solution to this problem in the generic case where β is filling.

We address this problem using a novel method we refer to as the tracking
method. This method relies on recent progress made in the prequels [1] and [2]
on the study of the effective dynamics of the mapping class group on Teichmüller
space and the space of closed curves of a closed, orientable surface. These re-
cent developments in turn rely on the exponential mixing rate, the hyperbolicity,
and the renormalization dynamics of the Teichmüller geodesic flow as their main
driving forces.
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Towards optimal spectral gap in large genus

Alex Wright

The first non-zero Laplace eigenvalue λ1 of a hyperbolic surface controls the error
term in the Geometric Prime Number Theorem, the speed of mixing of geodesic
flow, and measures the extent to which the surface is an expander.

Let Λg denote the maximum value of λ1 over all genus g hyperbolic surfaces.
Proving that lim supg→∞ Λg ≤ 1

4 is not hard. The question of whether Λ = 1
4 goes

back at least to 1987 [11], and may go as far back as the early 1970s [6]. More
concretely:

Question 1. Is there a sequence of hyperbolic surfaces Sn with genus going to
infinity and λ1(Sn) → 1

4?

The best lower known bound for Λ is Λ ≥ 1
4 − ( 7

64 )
2, which can be derived from

the appendix of [2] (written by Kim and Sarnak). A positive answer would follow
from Selberg’s famous 1

4 conjecture.
Despite the difficulty of this open problem, it is natural to conjecture that λ1

of a typical genus g surface is close to 1
4 for large g; see, for example, [12].

Conjecture 2. For all ǫ > 0, the Weil-Petersson probability that a surface of
genus g has λ1 <

1
4 − ǫ goes to zero as g → ∞.

In [3], we obtained the following weaker result:



Enumerative Geometry of Surfaces 1497

Theorem 3 (Lipnowski-W, Wu-Xue). For all ǫ > 0, the Weil-Petersson proba-
bility that a surface of genus g has λ1 <

3
16 − ǫ goes to zero as g → ∞.

The same result was obtained independently by Wu and Xue in [13]. Related
results, again with 3

16 appearing, for random covers of a fixed surface were obtained
previously in [5, 4].

Mirzakhani pioneered the study of Weil-Petersson random surfaces [8], and
devoted her ICM address to this topic [7]. She proved in particular a version of

Theorem 3 with 3
16 replaced with 1

4

(
log(2)

2π+log(2)

)2
≈ 0.002 [8].

Our proof of Theorem 3 involved computing the average number of closed
geodesics of length C log(g) on for surfaces of genus g, up to a 1/g multiplica-
tive error. Our work is inspired by and builds on recent work of Mirzakhani and
Petri [9], and hinges on the idea that at length scales growing slowly with genus,
most geodesics are simple and non-separating.

On the topic of Conjecture 2, see also the work of Anantharaman, Monk, and
Thomas [1, 10].
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Volumes of odd strata of quadratic differentials

Élise Goujard

(joint work with Eduard Duryev)

In this work in progress we express the Masur-Veech volumes of ”completed” odd
strata of quadratic differentials as a sum over stable graphs. This formula is a direct
generalization of the formula of Delecroix-G-Zograf-Zorich in the case of principal
strata. The coefficients of the formula are in this case intersection number of psi
classes with the Witten-Kontsevich combinatorial classes; they naturally appear
in the count of integer metrics on ribbon graphs with prescribed odd valencies.
The main issue here is that this formula computes the Masur-Veech volumes of
odd strata together with the weighted volumes of some degenerated strata. In this
talk I describe our attempts to understand the weights appearing in the formula
and I list all the cases where we are able to explain them (work in progress with
E. Duryev).

The moduli space Qg,n of integrable meromorphic quadratic differentials with
n simple poles on genus g Riemann surfaces identifies with the cotangent bundle
to the moduli space of Riemann surfaces of genus g with n marked points, by
classical Teichmüller theory. It is stratified with respect to the orders of the zeros
of the differentials, so we have Qg,n =

⊔
k⊢4g−4+n Q(k,−1n) where k is a partition

of 4g−4+n. Each stratum is a complex orbifold of dimension d = 2g−2+ℓ(k)+n,
which is locally modelled on Cd via the period map. The Lebesgue measure on local
coordinates is preserved by change of coordinates and gives rise to a well defined
measure µ on each stratum. The Masur-Veech measure defined by disintegration
of µ on the level sets of the area function is finite, as proven by Masur and Veech
independently. The Masur-Veech volume of some stratum is then defined as

Vol(Q(k)) = c · µ
({

(x, q) ∈ Q(k),

∫

X

|q| ≤ 1

})

where c depends on the normalization choice, and it can be evaluated by counting
integer points in the moduli space, namely square-tiled surfaces:

Vol(Q(k)) = c lim
N→∞

Card{(X, q) ∈ QZ(k),
∫
X |q| ≤ N}

Nd
.

The formula that we present here is a natural generalization of the formula for the
volumes of principal strata given in [3].

For m∗ = (m0,m1, . . . ) a sequence of non-negative integers being almost all
zero, denote by Wm∗,n the Witten-Kontsevich combinatorial cycle defined in [10]
from the space of equivalence classes of metric ribbon graphs with n boundary
components and mi vertices of valency 2i − 1 (no vertices of even valency) in
the combinatorial moduli space. These cycles and their relation to the algebraic
geometry of moduli space were studied in particular in [1], [11], [6], [7], [8]. The
intersection numbers of the ψi classes along the Wm∗,n are denoted by

〈τd〉m∗
=

∫

Wm∗,n

ψd1
1 . . . ψdn

n .
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The exponential generating series for these intersection numbers is an asymptotic
expansion of a matrix integral, as proven in [10]. The results of [4] allow to com-
pute these numbers from the usual intersection numbers 〈τd〉. The homogeneous
polynomial

Nm∗
g,n (b1, . . . , bn) =

1

25g−6+2n−2M

∑

d⊣3g−3+n−M

〈τd〉m∗

d1! . . . dn!
b2d1
1 . . . b2dn

n ,

where M =
∑
mi(i − 1), is equal, up to lower order terms and outside a finite

number of hyperplanes, for all integer bi such that
∑
bi is even, to the weighted

count of integer metrics on ribbon graphs of genus g of type m∗ with n boundaries
of length bi, by a result of [10].

Theorem 1. The completed Masur-Veech volumes of odd strata of quadratic dif-
ferentials are given by

Vol(Q(k)) =
2d · 2d
d!

∏

i

mi!
∑

Γ∈Gm∗
g,n

1

2|V (Γ)|−1

1

Aut(Γ)
Z
( ∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Nm∗,v
gv,nv

(bv)

)

where Gm∗

g,n is the set of decorated stable graphs of genus g with n leaves and
decoration m∗, the partition k = ((2i − 1)mi), and Z is a linear operator defined

on monomials by Z(
∏

i b
li
i ) =

∏
i li! · ζ(li + 1).

Our main result is that the completed volume Vol(Q(k)) is a sum of the actual
Masur-Veech volume Vol(Q(k)) with additional weighted contributions of certain
adjacent strata. The weights appearing in this sum are still conjectural, we give a
list of those conjectural weights in some of the first cases.

Conjecture 2. For any ν = (1k,−1n) such that the following strata exist, we
have:

VolQ(3, ν) =VolQ(3, ν) + Vol
(
H(0)×Q(−1, ν)

)

VolQ(5, ν) =VolQ(5, ν) + 3 ·Vol
(
H(0)×Q(1, ν)

)

VolQ(7, ν) =VolQ(7, ν) + 5 ·Vol
(
H(0)×Q(3, ν)

)
+ 3 ·Vol

(
H(2)×Q(−1, ν)

)

+
7

2
·Vol

(
H(0)2 ×Q(−1, ν)

)

VolQ(9, ν) =VolQ(9, ν) + 7 ·Vol
(
H(0)×Q(5, ν)

)
+ 9 ·Vol

(
H(2)×Q(1, ν)

)

+
27

2
· Vol

(
H(0)2 ×Q(1, ν)

)

VolQ(3, 3, ν) =VolQ(3, 3, ν) + 2 · Vol
(
H(0)×Q(−1, 3, ν)

)

+Vol
(
H(0)2 ×Q(−1,−1, ν)

)

VolQ(5, 3, ν) =VolQ(5, 3, ν)

+ 3 ·Vol
(
H(0)× [Q(1, 3, ν)

)
+Vol

(
H(0)×Q(−1, 5, ν)

)

+ 3 ·Vol
(
H(0)2 ×Q(−1, 1, ν)

)

VolQ(11, ν) =VolQ(11, ν)
)
+ 9 · Vol

(
H(0)×Q(7, ν)

)
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+ 15 · Vol
(
H(2)×Q(3, ν)

)
+ 5 ·Vol

(
H(4)×Q(−1, ν)

)

+
55

2
· Vol

(
H(0)2 ×Q(3, ν)

)
+ 33 · Vol

(
H(0)×H(2)×Q(−1, ν)

)

+
33

2
· Vol

(
H(0)3 ×Q(−1, ν)

)

The formula for the completed Masur-Veech volumes together with an analysis
of the contributions of the adjacent strata should allow to study some large genus
asymptotics questions, as the contribution of the one cylinder surfaces, the distri-
bution of the numbers of cylinders, etc, similarly to the principal case studied in
[3].

We already wish to thank Adrien Sauvaget for finding a nice general formula
for all these completion coefficients after the talk, and more generally, we sincerely
thank the workshop participants for interesting discussions that will certainly help
us to finish this project. We also thank the MFO for making this progress possible
and for providing such a nice research environment.
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Counts of bitangents of tropical plane quartics

Hannah Markwig

(joint work with Maŕıa Angélica Cueto, Yoav Len, Sam Payne, Kristin Shaw)

A plane quartic curve defined over an algebraically closed field has exactly 28
bitangent lines. This beautiful geometric count is known since a long time, going
back to Plücker in 1834 [10]. If we consider a quartic over the reals, then the
number of bitangents depends on the topology of the curve. There can be 4, 8, 16
or 28 real bitangents.

The aim of this talk was to use this old counting problem to showcase how
tropical geometry can be used as a tool to study geometric counting problems
simultaneously over different fields.

Tropical geometry can be viewed as a degeneration of algebraic geometry, where
algebraic curves are degenerated to certain piecewise linear graphs in the plane
called tropical curves [4, 8]. As many important properties of the underlying
algebraic curves can be read off the tropical curves, tropical geometry allows to
infuse combinatorial methods into algebraic geometry.

Tropical geometry has proved to be a successful tool for the study of enumerative
questions. This was pioneered by Mikhalkin [9] who proved that you can determine
both Gromov-Witten invariants and Welschinger invariants of the plane using
the same count of tropical curves, only with different multiplicity. The Gromov-
Witten invariants count complex curves of a certain degree and genus satisfying
point conditions. The Welschinger invariant is the analogous signed count of real
curves. The fact that the tropical count can be used simultaneously for the real
and the complex invariants also demonstrates the usefulness of this tool for counts
over various fields.

For tropical plane quartics, there can be infinitely many bitangents. But we
can define an equivalence relation declaring two bitangents equivalent if we can
transform one into the other while maintaining bitangency. Then, it has been
shown that there are 7 equivalence classes of tropical bitangents [1, 6]. Figure 1
shows an example of a tropical quartic and its 7 bitangent classes. For a given
equivalence class, we can ask which members lift to a bitangent of an algebraic
plane curve tropicalizing to our given tropical curve. These are 4 when we work
over an algebraically closed field [2, 7], yielding 7 · 4 = 28 complex bitangent lines,
as expected. If we study lifts over the real numbers, it turns out that a tropical
bitangent class can have 0 or 4 lifts [3]. The question remains how to recover the
4 different possibilities for real counts mentioned above. This is being studied by
my PhD student Geiger together with Panizzut and they will publish a preprint
about it soon.

In the last part of the talk, we give an outlook on how to use tropical bitangents
for arithmetic counts. Arithmetic counts have been pioneered by Kass-Wickelgren
and Levine and aim at a universal theory of geometric counting, valid over any
field. Counting should not be taken should not be taken too literally in this setting.
We do not count geometric objects one by one, but we associate an element in the
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Figure 1. A tropical plane quartic with its seven bitangent
classes. On the right, the dual Newton subdivision and the rele-
vant parts of it for the bitangents. (Picture taken from [3].)

Grothendieck-Witt ring to a geometric object, and then add the elements in the
Grothendieck-Witt ring for all our objects. The Grothendieck-Witt ring contains
all formal sums of isomorphism classes of quadratic forms q : V × V → K, where
V is a K-vector space. We can think of such an element as a matrix A, since after
choosing a basis for V , a quadratic form is given by (x, y) 7→ xT · A · y. As an
example, the elements in the Grothendieck-Witt ring over C defined by the two
matrices below are equivalent:

[
1 0
0 −1

]
∼
[
1 0
0 1

]
since

[
1 0
0 i

]
·
[
1 0
0 −1

]
·
[
1 0
0 i

]
=

[
1 0
0 1

]
.

Viewed as elements in the Grothendieck-Witt ring over R however, they are not
equivalent.

Larson and Vogt studied an arithmetic count of bitangents of a plane quartic re-
cently [5]. We end the talk by showing how this arithmetic count can be simplified
by means of tropical geometry.
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Generating function of monodromy symplectomorphism,
isomonodromic tau-function and its WKB expansion

Dmitry Korotkin

(joint work with M. Bertola)

Consider the Fuchsian linear system

(1)
∂Ψ

∂z
=

N∑

i=1

Ai

z − ti
Ψ , Ψ(z = ∞) = I; .

We assume that all residues Aj ∈ SL(n) are diagonalizable, Aj = GjLjG
−1
j ,

where Lj are diagonal and such that the eigenvalues of each Aj do not differ by

an integer. Moreover, we assume that
∑N

j=1 Aj = 0. For fixed values of poles tj
the monodromy map sends the set of coefficients Aj (moduli simultaneous adjoint
action by an arbitrary SL(n) matrix) to a point of SL(n) character variety of
the N -punctured sphere. Let us order the monodromies Mj around tj such that
M1 . . .MN = I.

The space of coefficients Aj is equipped with the Kirillov-Kostant Poisson
bracket; this bracket is degenerate with Casimirs given by matrices Lj . There ex-
ists an extension of the Kirillov-Kostant bracket to the space of matrices (Gj , Cj)
given by a quadratic Poisson bracket defined by the dynamical r-matrix [1], which
is non-degenerate. The corresponding symplectic form is given by

(2) ΩA =

N∑

j=1

tr(dLj ∧G−1
j dGj)− tr(LjG

−1
j dGj ∧G−1

j dGj)

which can also be written as ΩA = dθA with θA =
∑N

j=1 tr(Lj ∧G−1
j dGj).

The monodromy map can be extended to the map F from the set of matrices
(Lj, Gj) to the set of matrices (Λj , Cj) where Λj = exp 2πiLj andMj = C−1

j ΛjCj .

The natural symplectic form ΩM on the (Λj , Cj) - space is given by the inverse of
an extension of the Goldman bracket from the character variety to the (Λj , Cj) -
space. The form ΩM can be expressed in terms of Fock-Goncharov coordinates and
a set of additional coordinates ρj (logarithms of normalizing factors of eigenvectors
of Mj), which are canonically conjugate to the (logarithms of) Casimirs of the
Goldman bracket [1]. The general structure of ΩM looks as follows:

(3) ΩM =
∑

j<k

njkdζj ∧ dζk + n

N∑

k=1

n−1∑

j=1

d logmk;j ∧ dρk;j

where σj are Fock-Goncharov coordinates corresponding to some triangulation Σ
of the Riemann sphere with N vertices; ρk;j , j = 1, . . . , N , k = 1, . . . , n−1 are the
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“toric variables” corresponding to the Casimirs mk;j . The integer coefficients njk

were computed in [1]. The symplectic potential such that dθM = ΩM can then be
chosen as follows:

θM =
1

2

∑

j<k

njk(ζjdζk − ζkdζj) + n
N∑

k=1

n−1∑

j=1

logmk;j ∧ dρk;j

It can be shown [5, 2] that the monodromy map F is a symplectomorphism, i.e.
F∗ΩM = ΩA for fixed values of tj . If d contains also the derivatives in tj and
the forms ΩA and ΩM are extended to the spaces including the positions tj of

the singularities, one gets the relation F∗ΩM = ΩA −∑N
j=1 dHj ∧ dtj [2], where

Hj =
∑

k 6=j
trAjAk

tj−tk
are the standard hamiltonians of the Schlesinger system. This

relation implies the existence of (local) function τ depending both on tj ’s and
monodromy data such that

(4) d log τ = θA −F∗θM −
N∑

j=1

Hjdtj

where in the definitions of the 1-forms θA (2) and θM (3) the “d”-operator is
assumed to contain also tj-part. The definition (4) implies in particular that
the tj-dependence of τ is given by the Jimbo-Miwa equations ∂tj log τ = Hj . In
addition, the equations (4) define the dependence of τ on the monodromy data,
including Casimirs.

The monodromy dependence of τ becomes especially simple in SL(2) case when
the Fock-Goncharov coordinates coincide with (complexified) Thurston’s shear
coordinates; to each edge e of Σ one associates the coordinate ζe. Then the
equations (4) give rise to
(5)

∂

∂ζe
log τ =

N
∑

j=1

trace

(

LjG
−1

j

∂Gj

∂ζe

)

−

1

4πi









∑

e′⊥v1
e≺e′

ζe′ −
∑

e′⊥v1
e′≺e

ζe′ +
∑

e′⊥v2
e≺e′

ζe′ −
∑

e′⊥v2
e′≺e

ζe′









where v1 and v2 denote vertices of Σ connected by the edge e ≺ denotes the
counterclockwise ordering of edges at each vertex of Σ. The change of τ under a
flip of an edge e of Σ looks as follows:

(6)
τ̃

τ
= exp

[
− 1

2πi
L

(
e2ζe

e2ζe + 1

)]

where L is the Roger’s dilogarithm; the relation (6) means that (an appropriate
power of) the tau-function defined via (4) can be interpreted as a section of the
natural “dilogarithm line bundle” on the character variety.

This formalism turns out to be convenient in analyzing the expansions of WKB
type [3, 4]. For example, let us introduce the small parameter ~ in the system (1):

(7)
dΨ

dz
=

1

~

N∑

j=1

Aj

z − tj
Ψ ;
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from now on we are not going to assume that the sum of Aj vanishes i.e. we allow
Fuchsian singularity at z = ∞. For, say, the 11 component of the matrix Ψ the
system (7) implies the scalar equation of second order

(8) ϕzz −
(
Q0

~2
+
Q1

~
+Q2

)
ϕ = 0

where meromorphic functions Qj are expressed in terms of coefficients of (7);

for example, Q0 = −det
(∑N

j=1
Aj

z−tj

)
. The graph Σ can then be naturally con-

structed from critical horizontal trajectories of the meromorphic quadratic differ-
ential Q0(z)(dz)

2. Another key ingredient of the WKB analysis is the hyperelliptic
curve C of genus N − 2 defined by µ2 = Q0. The WKB ansatz then looks as fol-
lows: ϕ = µ−1/2 exp

∫ z

z0
(~−1v−1 + v0 + ~v1 + . . . ) and the WKB differentials on

C are found recursively from (8); in particular v−1 = µdz, v0 = Q1(dz)
2

2v−1
etc. The

periods of vj on C are called the Voros symbols. To each edge e of Σ on can the
associate the 1-cycle le on C; then one can prove the following asymptotic expan-
sion of ζe in terms of Voros symbols: ζe =

∑∞
k=−1

∫
le
vk. This allows to compute

the ~-expansion of the generating function of the monodromy map, at least in the
first several orders [4] Notice that the ~-contribution to the generating function is
a special case of the Joyce function of Bridgeland [6].

Similar strategy can be applied to the WKB analysis of the second order equa-
tion on an arbitrary Riemann surface; in this case the leading coefficient is given
by the Bergman tau-function (a version of det∂̄-operator) [3].
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Tropical ψ-classes

Renzo Cavalieri

(joint work with Andreas Gross, Hannah Markwig)

The main goal of this talk is to introduce ψ classes for moduli spaces of tropical
curves of arbitrary genus, as in [1]. The notion of ψ classes on moduli spaces of
rational tropical curves is introduced by Mikhalkin in [5] and later investigated by
Kerber and Markwig [4], who prove a correspondence theorem stating the equality
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of intersection numbers of algebraic and tropical ψ classes. Katz [2] gives a non-
computational proof of such equality by combining the connection of tropical and
toric intersection theory with the fact that M0,n gives a tropical compactification.

In this talk we introduce a construction of ψ classes which lies entirely in the
tropical world. The main technical issue to overcome is how to make the integral
lattices of adjacent cones of the extended cone complex Mg,n communicate with
each other. The solution we propose is that families of tropical curves must be
endowed with such information, in the form of a sheaf of functions to be consid-
ered affine. Germs of functions at points of faces then provide the appropriate
transition data among the integral lattices of adjacent cones. Once one knows
how to transition affine functions across faces, it is possible to define a notion of
balancing, which is the key tool for tropical intersection theory. One may also de-
fine sheaves AC(ks) of affine functions with prescribed order along a linear section,
which are torsors over affine functions. This allows to sidestep the technical issue
of making sense of the notions of tangent bundles or relative dualizing sheaves in
the category of tropical spaces: the i-th cotangent line bundle of a family of tropi-
cal curves C is defined to be AC(−si), drawing from the algebraic identification of
the i-th cotangent line bundle with the conormal bundle to the i-th section. The
tropical ψ class then admits the natural definition

ψi := c1(AC(−si)),

where c1 denotes the first Chern class of a line bundle on a stack, i.e. a coherent
assignment of a degree one cycle on the base of any family of tropical curves.

Given the absence of any algebraic input, it is not surprising that one obtains
a combinatorial theory which is broader and not as well behaved as the algebraic
theory. Tropical ψ classes in general do not enjoy the positivity properties of
their algebraic counterparts. It appears however that when a family of tropical
curves arises from an algebraic one, then the combinatorial theory agrees with
the algebraic one. As evidence of the compatibility of our constructions with
the algebraic theory, the computation of the degree of ψ on M1,1 is very much
parallel to its classical counterpart [8, Section 3.13]: a pencil of plane cubics has
nine base points, and hence it provides a family of genus one curves with nine
sections, with total space Blp1,...,p9P

2. The ψ classes on this family are dual to the
self-intersections of the exceptional divisors, and hence have degree one. Since the

family has twelve rational fibers, the pencil gives a degree-twelve covering ofM
alg

1,1 .
We consider tropical stable maps instead of cubic curves to obtain a covering of
M1,1, as it would be impossible for curves with very large j-invariant to satisfy
the point constraints without contracting any edge. Well-spacedness, which is also
a realizability condition [7, 6], ensures that the family is pure-dimensional. After
that, the proof is parallel to the classical one: the degree of the covering is twelve,
as a consequence of the count of rational curves in the family, or from [3]. The class
ψi is supported on the unique curve where the i-th leg is incident to a four-valent
vertex, and an explicit computation shows that the multiplicity is one.
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The aim of this talk is to present the main ideas and intuition behind the
technical constructions in [1]. Our goal is to provide motivation for the concepts
through the illustration of several simple examples for the various constructions.
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Volume of the moduli space of super Riemann surfaces

Paul Norbury

Stanford and Witten defined the volume of the moduli space of super hyperbolic
surfaces via a natural measure on the character variety of a surface into a super-
group [5]. Alternatively, the volume of a symplectic supermanifold can be quite
generally expressed in terms of the Euler class of a bundle over an underlying sym-
plectic manifold together with its symplectic form. These two viewpoints lead to
a conjectural relationship between a collection of integrals of known cohomology
classes over the moduli space of stable Riemann surfaces and the volume of the
moduli space of super Riemann surfaces.

Define the moduli space of super hyperbolic surfaces via the character variety

M̂g,n := {ρ : π1(Σ) → OSp(1|2) hyp→ SL(2,R)}/ ∼
where Σ = Σ − {p1, ..., pn} for Σ a smooth compact genus g surface. Each rep-
resentation into the supergroup OSp(1|2) is required to live over a hyperbolic

(Fuchsian) representation π1(Σ)
hyp→ SL(2,R) which defines a spin structure over a

hyperbolic surface and gives a map to the moduli space of spin hyperbolic surfaces

M̂g,n → Mspin
g,n

known as its reduced space. This map possess a natural section Mspin
g,n → M̂g,n

and we denote the normal bundle of its image by νg,n → Mspin
g,n . The tangent

space of the character variety at a super hyperbolic surface Σ̂, which lives above
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the spin hyperbolic surface Σ, is naturally identified with the first cohomology

group of the sheaf of locally constant sections of the tangent space to Σ̂

H1(TΣ̂)
∼= H1(TΣ)⊕H1(T

1
2

Σ ).

Here T
1
2

Σ is the flat rank two bundle over Σ associated to the natural action of
SL(2,R) on R2. The H1(TΣ) summand describes the classical, bosonic directions

TΣMspin
g,n while theH1(T

1
2

Σ ) summand describes the fermionic directions which rep-

resent the normal bundle H1(T
1
2

Σ ) →֒ νg,n → Mspin
g,n . This leads to the dimension

of the moduli space given by dimM̂g,n = (6g − 6 + 2n | 4g − 4 + 2n).
Torsion of the cochain complex produces a measure µ on H1(TΣ̂) which is used

in [5] to define the volume of the moduli space of super hyperbolic surfaces

Vol(M̂g,n) =

∫

M̂g,n

µ =

∫

Mspin
g,n

e(νg,n) exp(ω
WP ).

The second equality, valid for super symplectic manifolds, expresses the volume
using the Euler class and Weil-Petersson symplectic form on the reduced space.

The moduli space of stable spin curves is defined by

Mspin

g,n = {(C, L, p1, ..., pn, φ) | φ : L2 ∼=−→ ωlog
C }

where C is a stable twisted curve, or stack, with group Z2 such that generic points
have trivial isotropy group and non-trivial orbifold points have isotropy group

Z2. Denote by E the universal spin structure over Mspin

g,n and define the bundle

Eg,n = −Rπ∗E∨ over Mspin

g,n with fibre H1(L∨) →֒ Eg,n → Mspin

g,n .

Theorem 1 ([3]). There is a natural extension of νg,n to the compactification:

νg,n → Eg,n

↓ ↓
Mspin

g,n → Mspin

g,n .

defined by a canonical isomorphism of the sheaf of locally constant sections and
the sheaf of locally holomorphic sections:

H1
dR(Σ, T

1
2

Σ ) ∼= H1(Σ, L∨).

The theorem gives a cohomological expression for a measure e(νg,n), although
it remains to determine if Eg,n is the correct extension. The Euler class of Eg,n

can be evaluated via push-forward [4] using the forgetful map p : Mspin

g,n → Mg,n

Θg,n := (−1)n2g−1+np∗c2g−2+n(Eg,n) ∈ H4g−4+2n(Mg,n).

A deformation of the super symplectic form gives

V̂g,n(L1, ..., Ln) =

∫

M̂g,n(~L)

µ.
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Analogous to Wolpert’s formula for Weil-Petersson volumes, define

V Θ
g,n(L1, ..., Ln) :=

∫

Mg,n

Θg,n exp

{
2π2κ1 +

1

2

n∑

i=1

L2
iψi

}
.

The naturality of the extension of νg,n to Eg,n leads to the following conjecture.

Conjecture 2.

V̂g,n(L1, ..., Ln) = V Θ
g,n(L1, ..., Ln).

There exists a natural Hermitian metric and connection on Eg,n related to
the construction of the Weil-Petersson metric. This produces a differential form
representing e(Eg,n) which may coincide with e(νg,n) to prove the conjecture.

Define kernels Ĥ(x, y) = 1
2π

(
e
−x+y

4

1+e
−x+y

2

− e
x+y
4

1+e
x+y
2

)

D̂(x, y, z) = Ĥ(x, y + z), R̂(x, y, z) =
1

2
Ĥ(x+ y, z) +

1

2
Ĥ(x− y, z)

and PΘ
g,n(x, y, LK) = V Θ

g−1,n+1(x, y, LK) +
∑

g1+g2=g

I⊔J=K

V Θ
g1,|I|+1(x, LI)V

Θ
g2,|J|+1(y, LJ)

for K = {2, .., n}
Theorem 3 ([3]). The following two statements are equivalent.

L1V
Θ
g,n(L1, ..., Ln) =

1

2

∫ ∞

0

∫ ∞

0

xyD̂(L1, x, y)P
Θ
g,n(x, y, L2, ..., Ln)dxdy(1)

+
1

2

n∑

j=2

∫ ∞

0

xR̂(L1, Lj , x)V
Θ
g,n−1(x, L2, ..., L̂j, ..., Ln)dx

(2) ZBGW = exp
∑ 1

n!

∫

Mg,n

Θg,n ·
n∏

i=1

ψki

j tki
is a KdV tau function.

The recursion (1) matches Mirzakhani’s recursion for Weil-Petersson volumes
[2] except for the definition of the kernels. The KdV tau function in (2) is the
Brézin-Gross-Witten tau function and (2) has been verified up to genus six. The
proof of Theorem 3 is analogous to Mirzakhani’s proof of the Kontsevich-Witten
KdV tau function [1, 6] from intersection numbers of tautological classes on Mg,n.

Stanford and Witten [5] constructed the kernels D̂(x, y, z) and R̂(x, y, z) by
analysing super hyperbolic pairs of pants in a similar way to Mirzakhani’s deriva-
tion of D(x, y, z) and R(x, y, z) via hyperbolic pairs of pants. They used this to

prove that V̂g,n(L1, ..., Ln) satisfies the recursive formulae (1).
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Geometric Recursion

Jørgen Ellegaard Andersen

(joint work with Gaetan Borot and Nicolas Orantin)

In low dimensional topology, the following setup is very common. One has a
functor, say E from the category of compact oriented surfaces with boundary to
the category of vector spaces and for each such surface Σ, one has an assignment
of a vector

Σ 7−→ ΩΣ ∈ E(Σ)

which is invariant under the natural action of the mapping class group of Σ acting
on E(Σ).

To mention a few examples, one has various kinds of assignments of functions
on Teichmüller spaces T , such as the trivial constant function 1, sums over multi-
curves of functions applied to the hyperbolic length of the multi-curves, functions
applied to the spectrum of the spectrum of the Laplace operator acting on functions
on each hyperbolic surface, in particular spectral determinants of relevance in
string theory. If E is the vector space of smooth forms on T , then the Weil-
Petersson symplectic form on T is another example or its associated volume form.
When E is the vector space of smooth forms on the irreducible part of the moduli
space of flat G-connections MG, G is a semi-simple Lie group, then the Goldman
Symplectic form is another example. Further one can consider the vector space
of smooth functions on Teichmüller space times MG and as ΩΣ consider the Ricci
potential for the family of complex structor induced on MG parameterised by
T . In fact this family of complex structure is another examples in it self. If one
consider the vector space of smooth tensors on the higher Teichmüller spaces, then
the Pressure metric is yet another good example.

Indeed, Geometric Recursion is also about constructing such ΩΣ ∈ E(Σ) for
each compact oriented surface with boundary Σ, but the big difference to the
usual constructions mentioned above, is the recursive scheme we propose. In fact,
in our Geometric Recursion the construction proceeds by successive excisions of
homotopy classes of embedded pairs of pants, and thus by induction on the Euler
characteristic. We provide sufficient conditions to guarantee the infinite sums
appearing in this construction converge in a very general setting. In particular, we
can generate mapping class group invariant vectors ΩΣ ∈ E(Σ). The initial data
for the recursion encode the cases when Σ is a pair of pants or a torus with one
boundary, as well as the “recursion kernels” used for glueing.
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As a first application, we demonstrate that our formalism produce a large class
of measurable functions on the moduli space of bordered Riemann surfaces. Un-
der certain conditions, the functions produced by the geometric recursion can
be integrated with respect to the Weil-Petersson measure on moduli spaces with
fixed boundary lengths, and we show that the integrals satisfy a topological recur-
sion generalizing the one of Eynard and Orantin. We establish a generalization of
Mirzakhani-McShane identities, namely that multiplicative statistics of hyperbolic
lengths of multicurves can be computed by the geometric recursion, and thus their
integrals satisfy the topological recursion. As a corollary, we find an interpretation
of the intersection indices of the Chern character of bundles of conformal blocks
in terms of the aforementioned statistics. Please see [1] for more details.

The theory has however a wider scope than functions on Teichmüller space,
which will be explored in future work; one expects that many functorial objects
in low-dimensional geometry, including at least the above mentioned, could be
constructed by variants of our geometric recursion.

This work grew out of the search for an intrinsic geometric meaning of the topo-
logical recursion of [2], inspired by the famous but isolated example of Mirzakhani-
McShane identities and Mirzakhani’s recursion for the Weil-Petersson volume of
the moduli spaces of bordered Riemann surfaces [3].
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Hurwitz degrees and counting linear systems with
prescribed incidences

Gavril Farkas

(joint work with Carl Lian)

The results in this talk summarize our recent preprint [3]. Having fixed positive
integers r and s and setting g = rs + s and d = rs + r, in a celebrated paper
[1], Castelnuovo computed the number of linear series of type grd on a general
curve C of genus g. By degeneration to a g-nodal rational curve, he argued that
this number equals the degree of the Grassmannian G(r + 1, d+ 1) in its Plücker
embedding, that is,

g! · 1! · 2! · · · · · r!
s! · (s+ 1)! · · · · · (s+ r)!

.

Motivated by two very recent papers of Tevelev [4] and Cela-Pandharipande-
Schmitt [2] we consider a variant of this problem, where we impose incidence con-
ditions on the corresponding maps to projective spaces. Let [C, x1, . . . , xn] ∈ Mg,n

be a general n-pointed complex curve of genus g. We denote by Gr
d(C) the variety
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of linear systems ℓ = (L, V ) of type grd on C. A general ℓ ∈ Gr
d(C) corresponds to

a regular map φℓ : C → Pr. Evaluation at the points x1, . . . , xn induces a rational
map

(1) ev(x1,...,xn) : G
r
d(C) 99K

(
Pr)n/PGL(r + 1) =: Pn

r ,

to the moduli spaces of n points in Pr. We study the degree Lg,r,d of the map
ev(x1,...,xn) in the case when this map is generically finite and both spaces have
non-negative dimension. Since Gr

d(C) is a smooth variety of dimension ρ(g, r, d) =
g − (r + 1)(g − d+ r), whereas dim(Pn

r ) = rn− r2 − 2r as long as n ≥ r + 2, one
expects ev(x1,...,xn) to be generically finite precisely when

(2) n =
dr + d+ r − rg

r
.

If y1, . . . , yn ∈ Pr are general points, Lg,r,d counts the number of morphisms
f : C → Pr of degree d satisfying f(xi) = yi for i = 1, . . . , n. Since the points yi
are consider up to projective equivalence, these incidence conditions are intrinsic
to ℓ. For large d, it turns out there is a very simple formula for this degree:

Theorem 1. Suppose d ≥ rg + r, or equivalently n ≥ d+ 2. Then

Lg,r,d = (r + 1)g.

We remark that the hypothesis n ≥ d + 2 is automatically satisfied whenever
g ≤ 1. Indeed, if instead n ≤ d+1 and g ≤ 1, then d+1 ≥ n = d+1+ d

r −g ≥ d+ d
r ,

hence n ≤ d+ 1 ≤ r + 1, a contradiction.

When r = 1, the special case d = g + 1 was studied under the guise of scattering
amplitudes by Tevelev [4], who found the strikingly simple formula Lg,1,g+1 = 2g.
This raised the possibility, confirmed by Theorem 1, that in the range when d is
relatively large, the degree Lg,r,d has a simple expression. Using Hurwitz space
techniques, Cela-Pandharipande-Schmitt [2] obtained general formulas for Lg,1,d,
which they called Tevelev degrees ; in particular, when d ≥ g+1, they found again
Lg,1,d = 2g.

When either r = 1 or n = r+2, or under the hypotheses of Theorem 1, we obtain
a more general formula in terms of Schubert calculus. For a positive integer a, we
recall the notation σa for the class of the special Schubert cycle of codimension
a consisting of those (r + 1)-planes V ∈ G(r + 1, d+ 1) meeting a fixed subspace
W ⊆ Cd+1 of dimension d − a. We also recall that σ1r denotes the class of
the special Schubert cycle of codimension r consisting of those (r + 1)-planes
V ∈ G(r+ 1, d+ 1) whose intersection with a fixed codimension 2 linear subspace
U ⊆ Cd+1 has dimension at least r. Our main result is as follows:

Theorem 2. Suppose that either:

• d ≥ rg + r, (i.e., the same hypothesis as in Theorem 1),
• d = r + rg

r+1 (in which case n = r + 2), or
• r = 1.
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In each of these cases,

Lg,r,d =

∫

G(r+1,d+1)

σg
1r ·


 ∑

α0+···+αr=(r+1)(d−r)−rg

(
r∏

i=0

σαi

)
 .
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