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Abstract. The field of classical differential geometry has expanded enor-
mously over the last several decades, helped by the development of tools from
neighboring fields such as partial differential equations, complex analysis and
geometric topology. In the spirit of the previous meetings in the series, this
meeting will bring together researchers from apparently separate subfields
of differential geometry, but whose work is linked by common themes. In
particular, this meeting will emphasize intrinsic geometric questions moti-
vated by the classification and rigidity of global geometric structures and the
interaction of curvature with the underlying geometry and topology.
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Introduction by the Organizers

The workshop Differentialgeometrie im Großen was held July 4 - July 10, 2021.
The participants were specialists in differential geometry and its neighboring fields,
covering a broad spectrum of subareas which are in the focus of current develop-
ments.

The workshop was held in a hybrid mode due to the ongoing pandemic. There
were 22 in-person participants and a further 26 virtual participants.

The lectures during the five days of the meeting were roughly organized accord-
ing to different themes. Most of the talks were in the afternoon or evening, to
accommodate virtual participants in North America.
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The first day of the meeting began with a broad selection of talks on positively
curved manifolds, the Ricci flow, rigidity in Carnot groups and hyperkähler man-
ifolds. On the second day we started with talks in metric geometry and the
structure of metric spaces, and ended with talks on negatively curved manifolds
and the SYZ conjecture.

On Wednesday, the in-person participants enjoyed a hike in the morning. In
the afternoon we had three talks on complex geometry. On Thursday we had
short talks on Einstein metrics and intermediate Ricci curvature followed by talks
on geometric group theory, hyperbolic structures and symmetric spaces. In the
evening we saw a talk on geometric flows.

We ended the workshop on Friday with three talks on the Ricci flow and com-
parison geometry.

The meeting gave a good overview of the current developments in differential
geometry, and highlighted some of the important developments in the field. The
participants included researchers from all over the world, ranging from graduate
students to scientific leaders in their areas. Despite a smaller number of in-person
participants compared to a normal year, the atmosphere during the meeting was
lively and open. In particular, attendees appreciated the opportunity to experience
again in-person mathematical dialogue and activity, and greatly benefited from the
ideal environment at Oberwolfach.
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Abstracts

Torus actions on positively curved manifolds

Burkhard Wilking

(joint work with Lee Kennard, Michael Wiemeler)

We study positively curved manifolds with isometric torus actions.
Our first main result states that a fixed point component of a five-torus has the

rational cohomology of a rank one symmetric space.
Using this result for 5-dimensional subgroups of large torus actions we can

also recover the topology of the ambient manifold if we make slightly stronger
assumptions. For example we show that if T 7 ⊂ Iso(Mn), κ > 0, bodd(M) = 0,
then M has the rational cohomology of a rank one symmetric space.

A relative entropy for expanders of the Ricci flow

Alix Deruelle

(joint work with Felix Schulze)

A Ricci soliton is a triple (Mn, g,X) where (Mn, g) is a Riemannian manifold and
a vector field X satisfying the equation

Ric(g) − 1

2
LX(g) +

λ

2
g = 0,

for some λ ∈ {−1, 0, 1}. We call X the soliton vector field. A soliton is said to
be steady if λ = 0, expanding if λ = 1, and shrinking if λ = −1. Moreover,
if X = ∇gf for some real-valued smooth function f on M called the potential
function then (Mn, g,∇gf) is said to be a gradient soliton. In this paper, we focus
on expanding gradient Ricci solitons whose equation reduces to

2 Ric(g) + g = L∇gf (g).(1)

Notice that equation (1) normalizes the metric and defines the potential function
f up to an additive constant.

A Ricci soliton is said to be complete if (Mn, g) and the vector field ∇gf are com-
plete in the usual sense. To each expanding gradient Ricci soliton (Mn, g,∇gf),
one may associate a self-similar solution of the Ricci flow as follows:

g(t) = tϕ∗
t g,

where (ϕt)t>0 is the one-parameter family of diffeomorphisms generated by the
vector field −∇gf/t such that ϕt=1 = IdM . This solution is Type III, i.e. there
exists a nonnegative constant C such that for any t ∈ (0,+∞),

t sup
M

|Rm(g(t))| ≤ C,

if the curvature is bounded on the manifold Mn. Therefore, it is likely that ex-
panding gradient Ricci solitons are good candidates for singularity models for Type
III solutions to the Ricci flow. To illustrate these heuristics more accurately, let us
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mention that the second author and Simon [1] have shown that expanding gradient
Ricci solitons naturally arise as a blow-down of non-compact non-collapsed Type
III solutions with non-negative curvature operator.

Given an expanding gradient Ricci soliton (Mn, g,∇gf) with quadratic Ricci
curvature decay together with covariant derivatives, one can associate a unique
tangent cone (C(S), dr2 + r2gS, o) with a smooth Riemannian link (S, gS): [2,
3, 4]. In particular, such an expanding gradient Ricci soliton is asymptotically
conical. Moreover, the metric cone (C(S), dr2 + r2gS , o) can be interpreted as the
initial condition of the Ricci flow (g(t))t>0 associated to the soliton in the sense
that (Mn, dg(t), p)t>0 converges to (C(S), dr2 + r2gS , o) in the pointed Gromov-
Hausdorff sense as t→ 0, if p is a critical point of the potential function f .

In this note, we investigate the uniqueness question among the class of asymp-
totically conical expanding gradient Ricci solitons coming out of a given metric
cone over a smooth link.

Notice that uniqueness holds true when considering the class of complete ex-
panding gradient Kähler-Ricci solitons coming out of Kähler cones: see [5] and [6,
Corollary B] for a precise statement.

Observe that the uniqueness question is of interest even in the case of an as-
ymptotic cone (C(S), dr2 + r2gS , r∂r/2) which is Ricci flat and endowed with
the radial vector field r∂r/2 since it is an exact expanding gradient Ricci soli-
ton outside the tip. In particular, if a complete expanding gradient Ricci soliton
comes out of (C(S), dr2 + r2gS , r∂r/2) then uniqueness of the Ricci flow fails in
case metric singularities are allowed. Now, even if we restrict our attention to
complete expanding gradient Ricci solitons coming out of a given Ricci flat cone,
Angenent-Knopf [7] have proved that uniqueness still fails for some Ricci flat cones
in dimension greater than 4.

The first main result is a unique continuation result at infinity for two expanding
gradient Ricci solitons coming out of the same cone and it can be informally stated
as follows.

Theorem 1. Let (Mn
i , gi,∇gifi), i = 1, 2, be two expanding gradient Ricci solitons

coming out of the same cone (C(S), gC := dr2 + r2gS ,
r
2∂r) over a smooth link

(S, gS). Assume the soliton metrics g1 and g2 are gauged in such a way that their
soliton vector fields coincide outside a compact set. Then the trace at infinity

lim
r→+∞

rne
r2

4 (g1 − g2) =: tr∞
(
rne

r2

4 (g1 − g2)
)

exists in the L2
loc(C(S) \ {o})-topology, it preserves the radial vector field ∂r and

its tangential part is divergence free with respect to the metric on the link in the
weak sense. Moreover, g1 and g2 coincide pointwise outside a compact set if and
only if their associated trace at infinity vanishes, i.e.

tr∞
(
rne

r2

4 (g1 − g2)
)
≡ 0 .

The main tool to show the above result is as follows: we establish the existence
of a suitable frequency function at infinity, where the method follows the work of
Bernstein for mean curvature flow in codimension one [8], which itself is based on
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the fundamental work of Garofalo-Lin [9]. The main difficulty and crucial point
in this approach comes from the fact that different to the case of mean curvature
flow, where the graphical representation at infinity of one expander over the other
yields a natural well-controlled gauge, in the current setting it is necessary to
establish a suitable gauge at infinity between the two expanders. To establish the
needed decay estimates for the frequency function it is necessary to simultaneously
control the gauge together with the frequency function. The gauge we employ is
a Bianchi gauge, motivated by the work of Kotschwar [10] for the comparison
of two general solutions of Ricci flow. Due to self-similarity of our solutions the
evolution equation for the Bianchi gauge turns into an ODE, which then results
in an ODE-PDE system for the frequency function set-up.

Kotschwar-Wang [11] have employed Carleman estimates to prove the unique-
ness of Ricci shrinkers smoothly asymptotic to a smooth cone. We expect that
similar to work of Bernstein [8] for mean curvature flow, the methods in this paper
can be adapted to give an alternative proof of the result of Kotschwar-Wang. But
different to the case treated by Bernstein, the setup for Ricci shrinkers does not
directly transform in the system treated in the current paper. A unique contin-
uation result for expanders asymptotic to Ricci flat cones was obtained by the
first author using Carleman estimates [12]. The results of Bernstein for mean
curvature flow have been extended to the higher codimension case by Khan [13].
The unique continuation result of Bernstein [8] has been employed centrally by
Bernstein-Wang [14] in their proof that the space of expanders smoothly asymp-
totic to smooth cones has the structure of a smooth Banach manifold. Frequency
bounds for solutions to a general class of drift laplacians equations have been
obtained by Colding-Minicozzi in [15].

In case the asymptotic cone is Ricci flat, the convergence rate was shown to hold
pointwise in the smooth sense in [12]. For an arbitrary asymptotic cone, Theorem
1 shows that the same convergence rate holds for the L2 norm on level sets of the
distance function from the tip of the cone.

As an application of the decay estimates achieved via the frequency function,
we show the existence of a relative entropy for two expanders asymptotic to the
same cone.

Theorem 2 (A relative entropy for two expanders coming out of the same cone).
Let (Mn

1 , g1,∇g1f1) and (Mn
2 , g2,∇g2f2) be two expanding gradient Ricci solitons

coming out of the same cone (C(S), gC := dr2 + r2gS ,
r
2∂r) over a smooth link

(S, gS). Then the following limit exists for all t > 0 and is constant in time:
(2)

W(g2(t), g1(t)) := lim
R→+∞

(∫

f2(t)≤R

ef2(t)

(4πt)
n
2

dµg2(t) −
∫

f1(t)≤R

ef1(t)

(4πt)
n
2

dµg1(t)

)
.

Feldman-Ilmanen-Ni [16] have introduced a forward reduced volume and an ex-
panding entropy (denoted by W+) that detect expanding gradient Ricci solitons
on a closed manifold. The purpose of Theorem 2 is to provide a replacement of
the aforementioned functionals in the non-compact setting.
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In order to prove that the limit (2) in Theorem 2 is well-defined, we invoke the
integral convergence rate for the difference of the soliton metrics g2 − g1 obtained
in Theorem 1. Observe that comparing the solutions to their common initial cone
metric only yields a quadratic decay and is therefore not sufficient to ensure the
existence of the limit (2). We underline the fact that (2) is established by taking
differences rather than by considering a renormalization.
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Rigidity and flexibility of bilipschitz, quasiconformal, and Sobolev
mappings in Carnot groups

Bruce Kleiner

(joint work with Stefan Müller, László Székelyhidi, Xiangdong Xie)

The lecture covered results from a series of recent papers on geometric mapping
theory in Euclidean space and Carnot groups; these were motivated by geometric
group theory, analysis on metric spaces, differential geometry, and PDEs.
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The first results concern rigidity of product structure in Rn. A mapping f :
X1×X2 → Y1×Y2 between product sets splits (or preserves product structure) if
it is of the form f(x1, x2) = (f1(x1), f2(x2) for some mappings fi : Xi → Yi, after
possibly reindexing the factors Y1, Y2.

Theorem 1 (K-Müller-Szekelyhidi-Xie). If n ≥ 2 and f : Ω → Rn × Rn is a

W 1,2
loc -mapping such that Df(x) is split and bijective for a.e. x ∈ Ω, then f is

split.

The exponent 2 is sharp:

Theorem 2 (KMSX). For every 1 ≤ p < 2 there is a W 1,p
loc -mapping

f : Rn × R
n → R

n × R
n

such that Df(x) is split and bijective for a.e. x ∈ Ω, but f is not split.

The assertion in Theorem 1 is false when n = 2 because of the map R2 → R2

which folds along the diagonal line {x1 = x2}. In fact, there are even bilipschitz
counterexamples:

Theorem 3 (KMSX). There is a bilipschitz homeomorphism f : R×R → R×R

such that

• Df(x) is split and bijective for a.e. x.
• f is not split.
• f is area preserving: detDf(x) = 1 for a.e. x.
• There is a null set N such that Df(x) takes only five values for x 6∈ N .

The remaining results are joint with Stefan Müller and Xiangdong Xie, and are
concerned with bilipschitz, quasiconformal, and Sobolev mappings in the Carnot
group setting. Such mappings have been studied since the 1970s, and arise, for
example, in geometric group theory as boundary homeomorphisms associated with
bilipschitz mappings X → X ′ between negatively curved manifolds, or as blow-
downs of quasi-isometries between finitely generated nilpotent groups. Since the
work of Pansu on rigidity in 1989, they have been of interest to a broader commu-
nity of differential geometers, people working on analysis in metric spaces, and on
PDEs.

In what follows, all Carnot groups will be equipped with their Carnot-Caratheo-
dory (i.e. sub-Riemannian) distance.

Theorem 4. Let H be the Heisenberg group and U1, U2 ⊂ H be connected open
subsets. Suppose

f : U1 × U2 → U ′ ⊂ H×H

is a quasisymmetric homeomorphism. Then f is split.

The same holds more generally for a W 1,3
loc -mapping provided the horizontal

differential dHf is nonsingular almost everywhere. We do not know the optimal
Sobolev exponent for rigidity. This is a special case of a general result for maps
between products of Carnot groups.
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Theorem 5. Let HC
n be the nth complex Heisenberg group.

• (Hypoellipticity) Any quasisymmetric homeomorphism HC
n ⊃ U → U ′ ⊂

HC
n is locally holomorphic or antiholomorphic.

• Any globally defined quasisymmetric homeomorphism HC
n → HC

n is affine.

Reimann-Ricci proved the first assertion above, assuming f is C2. The regu-
larity result only requires that f ∈W 1,2n+1

loc , and nondegeneracy of the horizontal
differential dHf almost everywhere.

Theorem 6. If G is a nonrigid Carnot group (in the sense of Ottazzi-Warhurst)
other than Rn or a Heisenberg group, and f : G ⊃ U → U ′ ⊂ G is quasisymmetric,
then f ∈W 1,∞

loc , and is locally bilipschitz. If U = G, then f is bilipschitz.

The starting point for our results is theorem about Pansu pullback – the pull-
back of differential forms using the Pansu differential. Although Pansu pullback
need not commute with the exterior derivative even for smooth contact diffeomor-
phisms, a partial analog does hold.

The lecture also mentioned:

• Applications to quasiregular mappings in Carnot groups.
• Sobolev mappings induce a chain mapping on Rumin complexes, in the

setting of contact manifolds.
• A rigidity result characterizing Sobolev mappings N ⊃ U → N where
N ⊂ GL(n,R) is the Carnot group of upper trianglar matrices with 1s on
the diagonal.

Collapsing geometry of hyperkähler 4-manifolds

Song Sun

In this talk I discussed the collapsing geometry of 4 dimensional hyperkähler met-
rics. I gave an overview of the background and explained various examples and
related previous results. Then I talked about my recent joint work with Ruobing
Zhang which has the following geometric consequences

• Any collapsing Gromov-Hausdorff limit of unit diameter hyperkähler met-
rics on the K3 manifold is either an interval, a singular special Kähler
metric on S2, or a flat quotient T 3/Z2.

• Any non-flat complete hyperkähler 4-manifold with finite energy must be
asymptotic to a known model end, which belongs to 6 families given by
ALE,ALF,ALG,ALH,ALG∗, and ALH∗.

Together with recent results studying gravitational instantons with given asymp-
totic structure, the above also proves Yau’s compactification conjecture for gravi-
tational instantons.

I expect that the ideas and techniques developed in this work will have further
applications.
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Triangulating metric surfaces

Paul Creutz

(joint work with Matthew Romney)

Our main result is the following very general triangulation theorem.

Theorem 1 ([2]). Let X be a geodesic metric space homeomorphic to a closed
surface and ε > 0. Then X may be decomposed into finitely many non-overlapping
convex triangles, each of diameter at most ε

Here, triangle means a subset of X homeomorphic to the closed disk whose
boundary is the union of three geodesics. We remark that Theorem 1 does not
give a triangulation of X in the usual sense. The difference is that we do not
require adjacent triangles to intersect along entire edges.

Theorem 1 is a classical result when X is a surface of synthetically bounded to-
tal curvature. This is already a very general condition that is satisfied for example
whenX is a Riemannian manifold or a metric simplicial complex, or more generally
satisfies an upper or lower curvature bound à la Alexandrov. However, in recent
years there has also been an increasing interest in different classes of surfaces that
do not fall into this setting. These include Finsler surfaces, surfaces satisfying a
quadratic isoperimetric inequality, Ahlfors 2-regular quasispheres, fractal spheres
and many more. In contrast to the classical bounded-curvature triangulation the-
orem, our result now also applies to all of these.

The main application of the classical triangulation theorem for surfaces of
bounded curvature is to show that every such surface is a limit of smooth surfaces
of uniformly bounded integral curvature. Theorem 1 allows for similar applica-
tions in much more general settings. In particular in the subsequent article [3] it is
applied to prove an analogous approximation theorem for geodesic surfaces of lo-
cally finite Hausdorff measure. This generalized approximation theorem then has
further remarkable applications concerning the intensively studied uniformization
problem.

One key step in the classical proof of the triangulation theorem for surfaces of
bounded curvature is to show that any point in such surface has polygonal neigh-
bourhoods of arbitrary small perimeter. As has been noted before, this is the only
step in the proof that relies on the bounded curvature assumption. Simple exam-
ples however show that this property does not hold for general geodesic surfaces,
and indeed it is quite difficult to prove even under the the bounded-curvature as-
sumption. Instead, our proof relies on a relatively short argument showing that
every point in X has a neighborhood that may be covered by finitely many poly-
gons, each of arbitrary small perimeter. Thus our approach also quite simplifies
the classical proof of the bounded curvature case.

As mentioned above, in principle, this is the only major difference between
our proof of Theorem 1 and that of the classical triangulation theorem in the
bounded curvature setting. However it turns out that, despite its fundamental
significance, a proper proof of the bounded-curvature triangulation theorem can
only be found in the textbook [1]. Actually even the proof in [1] contains several
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technical errors. These errors are related to the fact that geodesics can be highly
non-unique and hence intersect in complicated ways. Fixing these errors requires
some serious technical work and thus we believe that our, now clean, proof of
Theorem 1 might also be an important contribution to the literature on surfaces
of bounded curvature.
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Improving conical bicombings

Giuliano Basso

A bicombing σ on a metric space X distinguishes for every pair of points a geodesic
connecting them. More precisely, σ : X ×X × [0, 1] → X is called bicombing if for
all x, y ∈ X , the curve σxy := σ(x, y, ·) : [0, 1] → X is a constant speed geodesic
from x to y. We say that σ is conical if

(1) d(σxy(t), σx′y′(t)) ≤ (1 − t)d(x, x′) + t d(y, y′)

for all x, y, x′, y′ ∈ X and all t ∈ [0, 1]. Conical bicombings have been introduced
by Descombes and Lang in [3]. They are a useful tool in metric fixed point theory
and geometric group theory (see, for example, [5, 6, 7]). As it turns out, in some
situations it is desirable to work with bicombings that satisfy conditions which are
more restrictive than (1).

We say that a bicombing σ is consistent if σpq is a subsegment of σxy whenever
p, q ∈ σxy([0, 1]). There are many examples of conical bicombings which are
not consistent. In fact, consistency seems to be a rather restrictive notion. For
example, if E is a dual Banach space and C ⊂ E is a closed convex subset with
nonempty interior, then the bicombing on C consisting of all linear segments is
the only consistent conical bicombing on C (see [2, Theorem 1.5]). The following
question arises naturally:

Question 1. Does every metric space with a conical bicombing also admit a con-
sistent conical bicombing?

In [3], Descombes and Lang showed that Question 1 has a positive answer for
all proper metric spaces of finite combinatorial dimension in the sense of Dress
(see [4]). In fact, they showed that such spaces have unique straight geodesics and
the bicombing consisting of straight geodesics is a consistent concial bicombing.
In [1], I proved the following result:

Theorem 2. Let X be a proper metric space admitting a conical bicombing. Then
X admits a consistent bicombing γ which consists of straight geodesics such that
t 7→ d(γxy(t), γx′y′(t)) is convex on [0, 1] whenever d(x, y) = d(x′, y′).
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A geodesic γ : [0, 1] → X is called straight if dz ◦ γ is convex on [0, 1] for all
z ∈ X , where dz := d(z, ·). Notice that if σ is a consistent conical bicombing,
then any σ-geodesic is necessarily straight. Moreover, if a consistent bicombing σ
is conical, then the function t 7→ d(σxy(t), σx′y′(t)) is convex on [0, 1] for all x, y,
x′, y′ ∈ X . At present, I do not know if the bicombing γ appearing in Theorem 2
is in fact conical. This would give a positive answer to Question 1 for all proper
metric spaces.
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Asymptotic dimension of planes and planar graphs

Koji Fujiwara

(joint work with Panos Papasoglu)

The notion of asymptotic dimension introduced by Gromov [2] has become central
in Geometric Group Theory mainly because of its relationship with the Novikov
conjecture. The asymptotic dimension asdimX of a metric space X is defined as
follows: asdimX ≤ n if and only if for every m > 0 there exists D(m) > 0 and
a covering U of X by sets of diameter ≤ D(m) (D(m)-bounded sets) such that
any m-ball in X intersects at most n + 1 elements of U . We say asdimX ≤ n,
uniformly if one can take D(m) independently from X if it belongs to a certain
family.

We prove the following, [1]: Let P be a geodesic metric space that is homeomor-
phic to R2. Then the asymptotic dimension of P is at most three, uniformly. More
generally if P is a geodesic metric space such that there is an injective continuous
map from P to R2, then the conclusion holds.

To be more precise, the following holds: Given m > 0 there is some D(m) > 0
such that there is a cover of P with sets of diameter < D(m) and that any ball of
radius m intersects at most 4 of these sets.

Moreover, we can take D(m) = 3 · 106m.
In the talk, I give an outline of the proof of our results. We fix a basepoint e

in P and we consider ‘annuli’ around e of a fixed width (these are metric annuli



1698 Oberwolfach Report 32/2021

so, if P is a plane with a Riemannian metric, topologically are generally discs
with finitely many holes). Here, annuli are subsets defined as follows: Consider
f(x) = d(e, x). Fix m > 0. We will pick N ≫ m and consider for k ∈ N the
“annulus”

Ak(N) = {x|kN ≤ f(x) < (k + 1)N}
We show that in the large scale these annuli resemble cacti. Generalizing a well

known result for trees and R-trees we show that cacti have asymptotic dimension
at most 1. We then show that ‘coarse cacti’ also have asymptotic dimension 1.
Finally, we decompose our space in ‘layers’ which are coarse cacti which implies
that the asymptotic dimension of the space is at most 3.

An obvious open question is the following: Is the asymptotic dimension of a
plane at most two for any geodesic metric?

Jørgensen-Lang [3] have answered the question affirmatively by now.
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Curvature bounds of subsets in dimension two

Stephan Stadler

(joint work with Alexander Lytchak)

This work concerns the intrinsic geometry of subsets in two-dimensional metric
spaces with upper curvature bounds. The main geometric result is

Theorem 1. Let X be a two-dimensional contractible CAT(κ) space. Let A ⊂ X
be a closed, Lipschitz connected subset with H1(A) = 0. Then A is a CAT(κ)
space with respect to the induced intrinsic metric.

For κ = 0, this confirms a folklore conjecture, which appeared in print in [2,
Conjecture 1]. Related statements and conjectures about subsets of non-positively
curved spaces can be found in [1, Chapter 4].

Some special cases of Theorem 1 are known. In [3] and later in [8], it was
shown that Jordan domains in the euclidean plane are CAT(0). A more general
version appeared in [5]. In [7], Theorem 1 is proved for CAT(0) euclidean simplical
complexes. Another special case plays a central role in [6].

The contractibility assumption is redundant for κ ≤ 0; for κ > 0 it is satisfied
if the diameter of X is less than π√

κ
. For κ > 0 the statement is wrong without

the contractibility assumption: A closed metric ball of radius π > r > π
2 in the

round sphere S
2 is contractible but not CAT(1) in its intrinsic metric.

Localizing the above result we deduce the following:
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Corollary 1. Let Y be a metric space of curvature bounded above by κ and
dimension two. Let A ⊂ Y be closed, Lipschitz connected and locally simply
connected. Then A has curvature bounded above by κ with respect to the intrinsic
metric.

If κ ≤ 0, the theorem of Cartan–Hadamard implies that the universal covering
of A is contractible. Hence A is aspherical in the sense that all higher homotopy
groups of A vanish:

Corollary 2. Let Y be a two-dimensional space of non-positive curvature and
let A ⊂ Y be a closed, Lipschitz connected and locally simply connected subset.
Then A is aspherical with respect to the topology induced by the intrinsic metric.

Somewhat surprisingly, no topological assumption is needed for our next con-
clusion. Indeed, we obtain the following topological statement about all subsets
of non-positively curved metric spaces of dimension two.

Theorem 2. Let Y be non-positively curved and two-dimensional. Let A ⊂ Y
be an arbitrary subset. Then all higher Lipschitz homotopy groups of A vanish:
Every Lipschitz n-sphere in A with n ≥ 2 bounds a Lipschitz ball in A.

This result is of geometric origin and is deduced from our main theorem. It has
the following purely topological application:

Corollary 3. Let Y be a two-dimensional space of non-positive curvature. Then
any neighborhood retract A ⊂ Y is aspherical.

It is known, but surprisingly difficult to prove that all subsets of the euclidean
plane are aspherical, [4]. This and the results above make the following general-
ization of the famous Whitehead Conjecture [9] plausible:

Conjecture 1. Let X be a two-dimensional aspherical space. Then any subset A
of X is aspherical.

Possibly, a combination of the geometric ideas of the present paper and the
purely topological methods of [4] may lead to the resolution of this conjecture for
non-positively curved spaces.
We expect our results to simplify the description of geodesically complete two-
dimensional CAT(κ) spaces obtained and announced in [6]. Moreover, we expect
the results to facilitate a good understanding of two-dimensional CAT(κ) spaces
beyond geodesic completeness. For instance, they might lead to a resolution of the
following conjecture of potential relevance to geometric group theory:

Conjecture 2. Any compact two-dimensional non-positively curved space is ho-
motopy equivalent to a finite, two-dimensional, non-positively curved euclidean
complex.

We want to point out that all the results above trivially hold in dimension one,
since any one-dimensional CAT(κ) space is covered by a tree. On the other hand,
all results completely fail in dimension at least three: already the complement of
an open ball in R3 is not non-positively curved and not aspherical.
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[2] Berestovskĭı, V. N., Pathologies in Alexandrov spaces with curvature bounded above, Siberian
Adv. Math. (2002), 1–18 (2003).

[3] Bishop, R. L., The intrinsic geometry of a Jordan domain, Int. Electron. J. Geom. (2008),
33–39.

[4] Cannon, J. W. and Conner, G. R. and Zastrow, Andreas, One-dimensional sets and planar
sets are aspherical, Topology Appl. 120 (2002), 23–45.

[5] Lytchak, A. and Wenger, S., Isoperimetric characterization of upper curvature bounds, Acta
Math. (2018), 159–202.

[6] Nagano, K. and Shioya, T. and Yamaguchi, T., Two-dimensional Alexandrov spaces with
curvature bounded above I, arXiv: 2102.00623 (2021).

[7] Ricks, R., Closed subsets of a CAT(0) 2-complex are intrinsically CAT(0), arXiv:1909.00048
(2019).

[8] Ricks, R., Planar subspaces are intrinsically CAT(0), arXiv:1001.2299 to appear in Tsukuba
Journal of Mathematics (2020).

[9] Whitehead, J. H. C., On adding relations to homotopy groups, Ann. of Math. (2) 42 (1941),
409–428.

On torsion in discrete isometry groups of negatively curved manifolds

Michael Kapovich

In 1960 Attle Selberg wrote an influential paper on discrete subgroups of Lie
groups, where, among other things he proved a result now known as “Selberg’s
Lemma”

Theorem 1. Suppose that Γ is a finitely generated subgroup of G = SLn(C).
Then Γ contains a torsion-free subgroup of finite index Γ′.

Other proofs of this theorem can be found for instance in [4, 16]. The geometric
meaning of Selberg’s result is that if X = SLn(C)/SU(n) is the symmetric space
of the group G (i.e. the space of positive-definite hermitian matrices with unit
determinant) and Γ < G is discrete, then, in general, the quotient space X/Γ is
not a manifold but an orbifold O because of torsion (finite order elements) in Γ.
What Selberg’s Lemma guarantees is the existence of a finite-sheeted orbi-covering
O′ = X/Γ′ → O, where O′ is a manifold.

In Selberg’s paper his “lemma” was just a technical result, Selberg’s main inter-
est was a generalization of Calabi’s infinitesimal rigidity theorem to other classes
of locally-symmetric spaces. What he did not know is that by proving this lemma
he also solved Fenchel’s Conjecture (1940s):

Conjecture 2. If Γ < PSL(2,R) is a finitely-generated Fuchsian subgroup, then
Γ contains a torsion-free finite index subgroup.

Fenchel’s conjecture was supposed to have been solved in 1952 by Ralph Fox,[6],
following earlier work by Jakob Nielsen, [14], who also gave the conjecture its name.
Except, the solution by Fox turned out to be partially incorrect (he made mistakes
in some special cases) and his work was completed only by T. C. Chau in 1983,
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[2], who, apparently, was unaware of Selberg’s paper and the fact that Selberg
proved a much more general result 23 years earlier. This amusing story is only a
digression of our main theme.

Gregory Margulis knew Selberg’s work quite well and in late 1960s Margulis
proved his most famous superrigidity theorem (and its application, Arithmetic-
ity Theorem), which is a far-reaching generalization of the earlier rigidity results.
Margulis’ work became well-known and he was, of course, invited to give a talk at
the ICM in Vancouver, in 1974. And, of course, he was not allowed to go there.
Instead, the text of Margulis’ address was read by David Kazhdan (who was just
allowed to immigrate from USSR to Israel in 1974). In his ICM address, [12],
Margulis, among other things, explored similarities between discrete subgroups
of Lie groups and discrete isometry groups of Riemannian manifolds of nonposi-
tive curvature (Hadamard manifolds to be more precise) and posed a number of
questions and conjectures. In particular, Margulis asked

Question 3. Does an analogue of Selberg’s Lemma hold for finitely generated
subgroups of isometry groups of Hadamard manifolds?

Recall that a Hadamard manifold is a complete simply-connected Riemannian
manifold whose sectional curvature is ≤ 0. The relation of this question to
Selberg’s Lemma that each symmetric space of noncompact type, such as X =
SLn(C)/SU(n), is Hadamard.

Note that if Γ is a group containing finite-index torsion-free subgroup, then the
orders of torsion elements in Γ are bounded. Thus, if Γ < SL(n,C) is finitely
generated then orders of finite order elements in Γ are bounded. In particular, if
Selberg’s Lemma were to hold for Hadamard manifolds, then each finitely gener-
ated subgroup of the isometry group of a Hadamard manifold would have bounded
torsion. It turns out that Margulis’ question has negative answer:

Theorem 4. (M. Kapovich, [8].) For each n ≥ 4 and ǫ > 0 there exists a
Hadamard manifold Xn = X of sectional curvature −1 − ǫ ≤ KX ≤ −1 and a
discrete finitely generated isometry group Γn = Γ of X such that torsion in Γ is
unbounded.

In particular, an analogue of Selberg’s Lemma fails for Hadamard manifolds of
dimension ≥ 4. At the same time, Selberg’s Lemma does hold for discrete isometry
groups of Hadamard manifolds in dimension ≤ 3. The key is

Theorem 5. (M. Feighn, G. Mess, [5]) If X is a contractible 3-dimensional man-
ifold and Γ is a group acting effectively and properly discontinuously on X, then
the orbifold O = X/Γ contains a compact core, i.e. a compact suborbifold Oc

whose fundamental group is isomorphic to that of O.

At the same time, if Oc is a good compact 3-dimensional orbifold (such as one in
the above theorem), then π1(Oc) contains a torsion-free subgroup of finite index,
i.e. π1(Oc) satisfies the conclusion of Selberg’s Lemma. This deep result is a
combination of work of many people:
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1. John Hempel, [7], Darryl McCullough and AndyMiller, [13], who proved,
following ideas of William Thurston, that this holds for 3-dimensional orbifolds
satisfying Thurston’s Geometrization Conjecture.

2. Orbifold Geometrization Theorem (Michel Boileau, Berhnard Leeb and Joan
Porti, [1], again following ideas of William Thurston, and with important contribu-
tions of Darryl Cooper, Craig Hodgson and Steve Kerckhoff [3]; Bruce Kleiner and
John Lott, [10], extending the work of Gregory Perelman), stating that all com-
pact 3-dimensional orbifolds containing no bad 2-dimensional suborbifolds, satisfy
Thurston’s Geometrization Conjecture.

The proof of Theorem 4 is based on my earlier work with Leonid Potyagailo,
[9, 15], where we constructed discrete finitely generated subgroups of PO(4, 1),
the isometry group of the hyperbolic 4-space, which have infinitely many cusps.
A suitable “cusp-closing” of the corresponding hyperbolic 4-manifolds results in
4-dimensional negatively curved orbifolds whose fundamental groups have un-
bounded torsion.

Conjecture 6. 1. Let Γ be a finitely generated discrete isometry group of a neg-
atively curved Hadamard manifold X with negatively pinched sectional curvature,
−b2 ≤ KX ≤ −1. Assume that the critical exponent δΓ of Γ is ≤ 2. Then X/Γ
has only finitely many cusps and orders of torsion elements in Γ are bounded.

2. There exists a sequence of 4-dimensional Hadamard manifolds Xk with neg-
atively pinched sectional curvature, −b2k ≤ KX ≤ −1 and their discrete finitely
generated isometry groups Γk such that:

(a) The sequence δΓk
converges to 2 (from above).

(b) limk→∞ bk = 1.

A very recent positive result in the direction of part 1 of this conjecture was
proven by Beibei Liu and Shi Wang:

Theorem 7. (B. Liu, S. Wang, [11]) The cusp finiteness part in the conjecture
holds if δΓ < 1.
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Metric SYZ conjecture and beyond

Yang Li

A Calabi-Yau manifold is an n-dimensional compact Kähler manifold with a
nowhere vanishing holomorphic volume form Ω. By the celebrated theorem of
Yau, there is a unique Kähler Ricci-flat metric ω within the given Kähler class,
characterized by the complex Monge-Ampère equation

ωn = const Ω ∧ Ω.

The major open problem is to describe the behaviour of this canonical metric; in
the case of interest, we fix the Kähler class, but allow the complex structure to
vary (concretely, this means taking a family of projective varieties and vary the
coefficients of the defining equations, and in the limit the varieties can become
singular.) A particularly severe degeneration is called the large complex structure
limit, the prototypical case being the Fermat family

Xs = {Z0Z1 . . . Zn+1 + e−s
n+1∑

0

Zn+2
i = 0}, s≫ 1.

As s → ∞ the algebraic limit is the union of (n + 2) planes in CP
n+1, but the

metric behaviour is much more elusive (except when n = 1, in which case these
are cubic elliptic curves carrying flat metrics).

The Strominger-Yau-Zaslow (SYZ) conjecture (subject to some interpretation)
asks for a special Lagrangian T n-fibration at least in the generic region of the
Calabi-Yau manifold, where ‘generic’ could be taken to mean an open region with
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0.99 of the total measure. The word ‘special Lagrangian’ means a submanifold
satisfying

ω|L = 0, Im Ω|L = 0.

These are absolute minimizers of volume within their homology classes.
In the presentation we discuss two types of results. The first theorem, specific

to the Fermat family, confirms the SYZ conjecture up to taking a subsequence of
s → ∞. The restriction to the Fermat family mainly comes from the combina-
torial step in the arguments which uses the permutation group symmetry. The
second theorem is in principle much more general, and says that assuming a certain
conjecture in non-archimedean geometry, the SYZ conjecture will follow in large
generality. Very roughly, there is a non-archimedean object called the Berkovich
space which can be associated to a degeneration family, and there is a version of
the Calabi conjecture on this Berkovich space, whose formulation involves only
algebraic concepts such as intersection numbers and nef line bundles. This non-
archimedean Calabi conjecture has been solved by Boucksom-Favre-Jonsson, but
not much is known about the properties of the solution. The non-archimedean
conjecture is that this solution is not too wild.

Thus our result morally fits into the general philosophy of ‘existence questions of
complex geometric PDE is controlled by a purely algebraic criterion’, exemplified
by the Yau-Tian-Donaldson (YTD) conjecture, which puts an equivalence between
Kähler-Einstein metrics and K-stability. It must be conceded that while we have
reduced the SYZ conjecture to a purely algebraic question, there is still little
practical means to verify it in examples. This we hope will be overcome by further
developments in algebraic geometry. A little more historical comparison with the
YTD conjecture may be encouraging: even after the initial breakthrough of Chen-
Donaldson-Sun, it was still difficult in practice to verify the K-stability condition
in examples, and it takes algebraic geometers almost a decade to gradually improve
the situation.

A few words concerning the proof: the key intermediate step is that in the
generic region, the Calabi-Yau metric is up to C∞ small errors approximated by
a semiflat metric. By a nontrivial result of Savin, this can be reduced to a C0

convergence result at the level of Kähler potentials, which in turn is achieved
using tools from pluripotential theory.
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Pluripotential Theory: how to get singular Kähler-Eisntein metrics

Eleonora Di Nezza

(joint work with Tamas Darvas, Chihn Lu)

We recall some notions and facts also in order to fix notations.

Let (X,ω) be a compact Kähler manifold of dimension n and fix θ a smooth closed
real (1, 1)-form. A function u : X → R∪{−∞} is called quasi-plurisubharmonic if
locally u = ρ+ϕ, where ρ is smooth and ϕ is a plurisubharmonic function. We say
that u is θ-plurisubharmonic (θ-psh for short) if it is quasi-plurisubharmonic and
θu := θ + ddcu ≥ 0 in the weak sense of currents on X . We let PSH(X, θ) denote
the space of all θ-psh functions on X . The cohomology class {θ} ∈ H1,1(X,R) is
big if there exists ψ ∈ PSH(X, θ) such that θ + ddcψ ≥ εω for some ε > 0.

A potential u ∈ PSH(X, θ) has analytic singularities if it can be written locally

as u(z) = c log
∑k

j=1 |fj(z)|2+h(z), where c > 0, the f ′
js are holomorphic functions

and h is smooth. By the fundamental approximation theorem of Demailly [5], if
{θ} is big there are plenty of θ-psh functions with analytic singularities.

Given u, v ∈ PSH(X, θ), we say that
• u is more singular than v, i.e., u � v, if there exists C ∈ R such that
u ≤ v + C;

• u has the same singularity as v, i.e., u ≃ v, if u � v and v � u.
The classes [u] of this latter equivalence relation are called singularity types.

When θ is non-Kähler, elements of PSH(X, θ) can be quite singular, and we
distinguish the potential with the smallest singularity type in the following manner:

Vθ := sup{u ∈ PSH(X, θ) such that u ≤ 0}.
A function u ∈ PSH(X, θ) is said to have minimal singularities if it has the same
singularity type as Vθ, i.e., [u] = [Vθ].

Given θ1, ..., θn closed smooth (1, 1)-forms representing big cohomology classes
and uj ∈ PSH(X, θj), j = 1, ...n, following the construction of Bedford-Taylor
[2, 1] in the local setting, it has been shown in [3] that the sequence of positive
measures

(1) 1⋂
j{uj>V

θj
−k}θ

1
max(u1,Vθ1−k) ∧ . . . ∧ θnmax(un,Vθn−k)

has total mass (uniformly) bounded from above and is non-decreasing in k ∈ R,
hence converges weakly as k → +∞ to the so called non-pluripolar product

θ1u1
∧ . . . ∧ θnun

.

The resulting positive measure does not charge pluripolar sets. In the particular
case when u1 = u2 = . . . = un = u and θ1 = ... = θn = θ we will call θnu the non-
pluripolar measure of ui, which generalizes the usual notion of volume form in case
θu is a smooth Kähler form. As a consequence of Bedford-Taylor theory it can
be seen that the measures in (1) all have total mass less than

∫
X
θnVθ

:= vol(θ), in

particular, after letting k → ∞ we notice that 0 ≤
∫
X
θnu ≤

∫
X
θnVθ

. In what follows

we are going to consider only the case of non-vanishing mass, i.e.
∫
X
θnu > 0.



1706 Oberwolfach Report 32/2021

It was recently proved in [6, Theorem 1.2] (and generalized in [7, Theorem 1.1])
that for any u, v ∈ PSH(X, θ) the following monotonocity property holds for the
total masses:

u � v =⇒
∫

X

θnu ≤
∫

X

θnv ,

u ≃ v =⇒
∫

X

θnu =

∫

X

θnv .

It is worth noticing that the reverse implication in the latter statement is not
true, meaning that there are examples of θ-psh functions not having the same
singularity type but having the same mass. One can then wonder if, given u ∈
PSH(X, θ), there exists a least singular potential that is less singular than u but
has the same full mass as u. As we will see this is indeed the case.

In joint works with Tamas Darvas and Chinh Lu [8], we introduce the ceiling
operator C : PSH(X, θ) 7→ PSH(X, θ) defined by

C(u) = sup

{
v ∈ PSH(X, θ) : [u] ≤ [v], v ≤ 0 and

∫

X

θnu =

∫

X

θnv

}
.

This function is proved to θ-psh, less singular than u and with the same mass.
We then say that a potential φ ∈ PSH(X, θ) is a model potential if φ = C(φ),

i.e., if φ is a fixed point of C. Similarly, the corresponding singularity types [φ] are
called model type singularities.

Examples of model potentials are functions with analytic singularities. As a
more specific example we have that the potential Vθ is a model potential.

Fixing a model potential φ ∈ PSH(X, θ), it is natural to consider the set of φ-
relative full mass potentials :

E(X, θ, φ) :=

{
u ∈ PSH(X, θ), [u] ≤ [φ] such that

∫

X

θnu =

∫

X

θnφ

}
.

Observe that when φ = Vθ, the relative class E(X, θ, Vθ) is nothing else than
the full Monge-Ampère energy class E(X, θ), previously introduced by [9].

In a series of works [7, 10] with Chinh Lu and Tamas Darvas, we studied solutions
to complex Monge-Ampère equations with prescribed singularity. One starts with
a potential u ∈ PSH(X, θ) and a density 0 ≤ f ∈ Lp(X), p > 1, and looks for
a solution u ∈ PSH(X, θ) such that θnu = fωn and [u] = [φ]. The compatibility
condition

∫
X θnφ =

∫
X fωn > 0 is necessary for the probability of this equation.

Beyond this normalization condition, as it turns out, the necessary and sufficient
condition for the well posedness is that φ is a model potential. The result we
achieved states as

Theorem 1 ([10]). Let λ ≥ 0. Assume φ is a model potential and that µ is a
non-pluripolar positive measure on X such that µ(X) =

∫
X θnφ > 0. Then there

exists a unique (up to constant when λ = 0) u ∈ E(X, θ, φ) such that θnu = eλuµ.
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In addition to this, in the particular case when µ = fωn with f ∈ Lp(X,ωn), p >
1 we have that

φ− C
(
λ, p, ω,

∫

X

θnφ , ‖f‖Lp

)
≤ u ≤ φ ≤ 0.

When θ is Kähler and φ = 0, the first part of the Theorem is due to [9] while the
second part reduces to Ko lodziej’s L∞-estimate [11] in the context of the Calabi-
Yau theorem [12]. In the general case {θ} a big class and φ = Vθ, then the above
result was proved in [4] and [13].

This result is a significant generalization of Ko lodziej’s L∞ estimate [11] to our
relative context.

Solutions of complex Monge-Ampère equations are linked to existence of spe-
cial Kähler metrics. In particular, we can think of the solution to θnu = fωn

as a potential with prescribed singularity type and prescribed Ricci curvature in
the philosophy of the Calabi-Yau theorem. As an immediate application of the
resolution of the Monge-Ampère equation θnu = eλufωn with prescribed singular-
ities [u] = [φ], we obtain existence of singular Kähler-Einstein (KE) metrics with
prescribed singularity type on Kähler manifolds of general type.

Corollary 2 ([7]). Let X be a smooth projective manifold with canonical ample
(KX > 0) and let h be a smooth Hermitian metric on KX with θ := Θ(h) > 0.
Suppose also that φ ∈ PSH(X, θ) is a model potential, has small unbounded locus
and

∫
X θnφ > 0. Then there exists a unique singular KE metric he−φKE on KX

(θnφKE
= eφKE+fθθn, where fθ is the Ricci potential of θ satisfying Ric θ = θ +

ddcfθ), with φKE ∈ PSH(X, θ) having the same singularity type as φ.

An analogous result also holds on Calabi-Yau manifolds. For the sake of complete-
ness, we should mention that the existence of singular Kähler-Einstein metrics with
prescribed singularities on a Fano manifold is studied in [14].
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Smooth asymptotics for collapsing Calabi-Yau manifolds

Hans-Joachim Hein

(joint work with Valentino Tosatti)

Consider a surjective holomorphic map f : Xm+n → Bm of compact Kähler
manifolds such that the total space is Calabi-Yau, i.e., c1(X) = 0 in H2(X,R). By
adjunction, the generic fiber of f is a smooth compact Calabi-Yau manifold Y n.
The underlying diffeomorphism type of Y n is fixed but its complex structure will
usually depend on the point of B whose preimage we are considering.

For arbitrary smooth Kähler forms ωB, ωX on B,X , consider the 1-parameter
family kt = [f∗ωB] + e−t[ωX ] of Kähler classes on X , where t ∈ [0,∞). Note that,
here, e−t is just generic notation for a small parameter. Let ωt denote the unique
Ricci-flat Kähler metric on X representing the class kt according to Yau’s theorem
[13]. It is an interesting problem to understand the asymptotics of ωt as t→ ∞.

This problem has been solved completely in two special cases where ωt can be
approximated by a gluing construction, meaning that there exist a covering of X
by open regions and more or less explicit collapsing Ricci-flat model metrics in each
region that agree sufficiently well on all overlaps. Case 1 is X = K3, B = CP 1 and
f an elliptic fibration (i.e., the generic fiber of f is a smooth elliptic curve) with
24 singular fibers, each of which is a torus pinched along a meridian [3]. Case 2 is
X a suitable Calabi-Yau 3-fold, B = CP 1 and f a Lefschetz pencil of K3 surfaces,
i.e., the generic fiber of f is a smooth K3 surface and the singular fibers are K3
surfaces with at worst ordinary nodes, i.e., isolated quadratic (Morse) singularities
[9]. In both cases, the picture that emerges is that locally uniformly away from the
singular fibers, ωt is increasingly well approximated by a model metric of the form
f∗ωcan + e−tωSRF. Here ωcan is a certain canonical Kähler metric on B with mild
singularities along the singular values of f and with nonnegative Ricci curvature.
Indeed, Ric(ωcan) is equal to the Weil-Petersson Kähler form pulled back from the
moduli space of polarized Calabi-Yau structures on Y . On the other hand, ωSRF

is a so-called semi-Ricci-flat form, i.e., a closed (1, 1)-form on X that restricts to
the unique Ricci-flat Kähler metric representing the class [ωX |Y ] on each regular
fiber Y . Life is far more complicated near the singular fibers. In particular, near
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the nodes of the singular fibers, Taub-NUT metrics [7] bubble off in Case 1 and
one of Yang Li’s 3-dimensional analogs of the Taub-NUT metric [8] in Case 2.

Over the last 10 years or so, a lot of effort has been invested into determining the
asymptotic behavior of ωt locally uniformly away from the singular fibers without
making any particular assumptions about the structure of the singular fibers, in
particular, without using any gluing models near the singular fibers (which would
be unavailable in all but a few special cases such as the ones mentioned above).

That this may be possible was first demonstrated in [10], where by using Yau’s
estimates it was proved that ωt converges to f∗ωcan weakly as currents on X and
that locally uniformly away from the singular fibers, ωt is uniformly equivalent to
f∗ωcan + e−tωSRF in the sense of eigenvalues of metric tensors. From that point
on it has always seemed plausible that the problem can be treated as some kind of
higher-order interior regularity problem (local on the base, global on the fibers) for
the degenerate complex Monge-Ampère equation that governs the behavior of ωt.
Still using Yau’s estimates, the results of [10] were improved to C0

loc convergence
ωt → f∗ωcan away from the singular fibers in [11] and to C∞

loc convergence if the
generic fiber is a quotient of a complex torus in [2]. In [12] it was also proved that
the latter case is the only one where the sectional curvature of ωt remains locally
uniformly bounded. In our previous work [5], using the Liouville theorem of [4], we
introduced a new nested blowup-and-contradiction method. This method allowed
us to prove that ωt → f∗ωcan in C0,α

loc in general and in C∞
loc if the regular fibers

are biholomorphic to each other (but not biholomorphic to quotients of tori). The
latter two statements seem to be beyond the reach of Yau’s estimates.

The difficulty with all of these results is that ordinary Ck,α norms (for instance
in local coordinates) are not well-adapted to the problem because the ellipticity of
the PDE blows up like et in the fiber directions. It is more reasonable to introduce
weighted Ck,α norms, where each fiber derivative is penalized by a weight of et/2.
However, this idea raises several problems. First, these weighted Ck,α norms are
very sensitive to coordinate changes as soon as k+α > 0, i.e., they do not remain
uniformly equivalent to their counterparts in different coordinate systems. Second,
even with a lot of fine-tuning of the norms it has turned out to be impossible to go
beyond weighted C1,α estimates in general (unpublished), although in the isotrivial
(i.e., all regular fibers are pairwise isomorphic) or torus fibered cases the results of
[2, 5] do establish uniform weighted C∞ estimates. Third, even in the latter two
cases, it is not clear whether these estimates answer the original question.

The third problem was addressed in [1] in the torus fibered case, where using
a fiberwise interpolation argument it was proved that the weighted C∞ estimates
of [2] imply that ωt − (f∗ωcan + e−tωSRF) decays faster than any finite power of
the small parameter e−t in all Ck,α norms (weighted or unweighted), up to terms
pulled back from the base that converge to zero at an unspecified rate. Using this
idea, it is then also easy to show that the weighted C∞ estimates of [5] imply the
same statement in the isotrivial case. This finally led us to realize that the correct
statement in general should be that ωt − (f∗ωcan + e−tωSRF) admits an expansion
according to finite powers of e−t whose coefficient functions are determined by the
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local complex geometry of the fibration. Thus, in [6], we prove the following by a
very technical refinement of our blowup method from [5].

Theorem (simplified). Write ωt − (f∗ωcan + e−tωSRF) = i∂∂̄ψt and decompose
ψt into its fiberwise average, ψt, with respect to the fiberwise Calabi-Yau volume
form and the rest. Then for all k and α, over all sufficiently small balls B contained
in the regular values of the fibration, ψt goes to zero in Ck+2,α. Moreover, we can
decompose ψt−ψt = ψ′

t +ψ′′
t , where the “obstruction part” ψ′

t lies in a fixed finite-

rank C∞(B)-submodule of C∞(f−1(B)) determined by the local complex geometry
of the fibration over B and by k and α, and where the “remainder” ψ′′

t is uniformly
bounded in weighted Ck+2,α. The obstruction part ψ′

t is only bounded in unweighted
Ck+2,α. However, both of these bounds depend only on the constants in the uniform
C0 equivalence ωt ∼ f∗ωcan + e−tωSRF over any slightly larger ball B′ ⊃ B.

As a corollary, ωt converges to f∗ωcan in unweighted C∞ locally uniformly away
from the singular fibers. In addition, we also always have a uniform weighted C1,α

bound on ωt − (f∗ωcan + e−tωSRF) for every α < 1, but precisely at the scale of
weighted C2 there is a contribution

e−2ti∂∂̄∆−2
Y gµ̄νcan(〈Aµ, Aν̄〉 − 〈Aµ, Aν̄〉)

to the obstruction part, which is uniformly bounded in unweighted Ck,α for all k, α
but not in weighted C2,α for any α > 0. Here ∆Y denotes the fiberwise Laplacian
with respect to the unique fiberwise Calabi-Yau metric in the class [ωX |Y ] and Aµ

denotes the Kodaira-Spencer form in direction ∂zµ on Y (harmonic with respect
to the fiberwise Calabi-Yau metric). The latter vanishes in the isotrivially fibered
case. In the torus fibered case it is parallel, so that 〈Aµ, Aν̄〉 = 〈Aµ, Aν̄〉.

Simply for the sake of proving an expansion there probably exist easier and more
direct approaches, but we discovered the correct statement by trying to understand
and repairing the failure of our uniform weighted Ck,α estimates for k ≥ 2, and this
approach has a useful consequence: the expansion is purely local on the base, and
the pieces of the expansion are uniformly controlled once there is uniform control
on the constants in the C0 equivalence ωt ∼ f∗ωcan +e−tωSRF. In our setting, this
overcomes the notorious problem of controlling an asymptotic expansion uniformly
in terms of additional parameters that the solution may depend on.
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Steady gradient Kahler-Ricci solitons on crepant resolutions of
Calabi-Yau cones

Ronan J. Conlon

(joint work with Alix Deruelle)

A steady gradient Kahler-Ricci soliton is a triple (M, ω, X), where (M, ω) is a
complete Kahler manifold with Kahler form ω and X is a complete real holo-
morphic vector field on M equal to ∇gf for some smooth real-valued function
f : M → R, such that the Ricci form ρω of ω satisfies

(1) ρω =
1

2
LXω.

The vector field X is called the soliton vector field. There are two points of view
that one can take when considering steady gradient Kahler-Ricci solitons: the
static and the dynamic. From the static point of view, equation (1) provides a nat-
ural generalisation of the Calabi-Yau condition, namely ρω = 0. From the dynamic
point of view, steady gradient Kahler-Ricci solitons give rise to eternal solutions of
the Kahler-Ricci flow evolving only by pullback by biholomorphisms. Indeed, given
(M, ω, X) as above, let ϕt be the one-parameter family of biholomorphisms of M
generated by the vector field −X

2 with ϕ0 = Id. Then ωt := ϕ∗
tω, t ∈ (−∞, ∞),

defines such a solution. These particular solutions are important in that they may
arise as singularity models of the flow.

Steady gradient Kahler-Ricci solitons that are not Calabi-Yau are necessarily
non-compact [8]. Examples include Hamilton’s cigar soliton [7] on C which was
generalised by Cao [3] to Cn and KPn . Further generalisations were then obtained
by Dancer-Wang [6], Yang [13], and more recently by Schafer [10]. All exam-
ples mentioned thus far are highly symmetric and were constructed by solving an
ODE. In [2], Biquard-Macbeth implement a gluing method to construct examples
of complete steady gradient Kahler-Ricci solitons in small Kahler classes of an
equivariant crepant resolution of Cn/Γ, where Γ is a finite subgroup of SU(n)
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acting freely on Cn \{0}. Our main result is the construction of a complete steady
gradient Kahler-Ricci soliton in every Kahler class of a crepant resolution of a
Calabi-Yau cone, unique up to the flow of the soliton vector field, converging at a
polynomial rate to Cao’s steady gradient Kahler-Ricci soliton on the cone.

Cao’s construction of a steady gradient Kahler-Ricci soliton on Cn [3] allows
for an ansatz to construct a one-parameter family of incomplete steady gradient
Kahler-Ricci solitons ω̃a, a ≥ 0, on any Calabi-Yau cone (C0, g0). With this in
mind, our main result can be stated as follows.

Theorem 1 (C.-Deruelle [4, Theorem A]). Let (C0, g0) be a Calabi-Yau cone of
complex dimension n ≥ 2 with complex structure J0, Calabi-Yau cone metric g0,
radial function r, and trivial canonical bundle. Let π : M → C0 be a crepant
resolution of C0 with complex structure J such that the real holomorphic torus
action on C0 generated by J0r∂r extends to M so that the holomorphic vector
field 2r∂r on C0 lifts to a real holomorphic vector field X = π∗(2r∂r) on M . Set

t := log(r2) and define the Kahler form ω̂ := i
2∂∂̄

(
nt2

2

)
on C0.

Then in every Kahler class k of M , up to the flow of X, there exists a unique
complete steady gradient Kahler-Ricci soliton ω ∈ k with soliton vector field X and
with LJXω = 0 such that for all ε ∈ (0, 1), there exist constants C(i, j, ε) > 0
such that

(2) |∇̂iL(j)
X (π∗ω − ω̂)|ĝ ≤ C(i, j, ε)t−ε− i

2
−j for all i, j ∈ N0,

where ĝ denotes the Kahler metric associated to ω̂ and ∇̂ is the corresponding
Levi-Civita connection. More precisely, for all ε ∈

(
0, 1

2

)
and for all a ≥ 0, there

exist constants C(i, j, ε, a) > 0 such that

(3) |∇̂iL(j)
X (π∗ω − ω̃a − ζ̂)|ĝ ≤ C(i, j, ε, a)t−2+ε− i

2
−j for all i, j ∈ N0,

where ζ̂ is a real (1, 1)-form uniquely determined by k that is invariant under the
flow of X and JX, and ω̃a, a ≥ 0, denotes Cao’s family of incomplete steady
gradient Kahler-Ricci solitons on C0. If k is compactly supported or if n = 2, then
for all a ≥ 0, there exists a smooth real-valued function ϕ : M → R and constants
C(i, j, a) > 0 such that for all i, j ∈ N0,

(4) ω − ω̃a = i∂∂̄ϕ, where |∇̂iL(j)
X (t−n+1entϕ)|ĝ ≤ C(i, j, a)t−

i
2
−j.

A resolution for which the torus action on the cone extends to the resolution
is called equivariant. Such a resolution of a complex cone always exists (cf. [9,
Proposition 3.9.1]). However, for Calabi-Yau cones, it may not necessarily be
crepant. On the other hand, if a crepant resolution of a Calabi-Yau cone is unique,
then it is necessarily equivariant; apply the proof of [5, Lemma 2.13] to see this.
Moreover, the steady solitons of Theorem 1 display so-called “cigar-paraboloid”
asymptotics. Most notably, the volume of a ball of radius R in M grows at

rate O(R
1

2
dimR M ) and the curvature decays linearly. Furthermore, Cao’s steady

gradient Kahler-Ricci soliton ω̃a on C0 also converges to ω̂ at infinity, yielding the



Differentialgeometrie im Grossen 1713

following more refined asymptotics:

|∇̂iL(j)
X (π∗ω − ω̂)|ĝ ≤

{
C(i, j)t−1− i

2
−j log(t) if j = 0,

C(i, j)t−1− i
2
−j if j ≥ 1.

Finally, the steady solitons of Theorem 1 are κ-collapsed, hence they cannot appear
as blowup models of finite-time singularities of the Kahler-Ricci flow.

To prove Theorem 1, we first construct a background Kahler metric onM that is
asymptotic at a polynomial rate to the steady gradient Kahler-Ricci soliton on the
cone given by the ansatz of Cao. This metric serves as an “approximate” steady
gradient Kahler-Ricci soliton on M . We then perturb this metric to an actual
steady gradient Kahler-Ricci soliton by solving a complex Monge-Ampere equation
with polynomially decaying data. This involves two steps. First, we solve the
complex Monge-Ampere equation for compactly supported data by implementing
the continuity method as in the seminal work of Aubin [1] and Yau [14] on the
existence of Kahler-Einstein metrics on compact Kahler manifolds, although we
work with functions that, together with their derivatives, decay exponentially at
infinity in order to compensate for the non-compactness of M . The main difficulty
in this step is obtaining an a priori C0-estimate in the closedness part of the
continuity method. To do this, we introduce, in line with Tian-Zhu [12] and their
work on the uniqueness of shrinking gradient Kahler-Ricci solitons on compact
Kahler manifolds, the I- and J-functionals on the space of Kahler potentials.
Thanks to the exponential decay, these functionals are well-defined on the function
spaces with which we work in this step. By considering their difference, we obtain
an a priori weighted energy estimate. A localisation result for points where the
global maximum and global minimum values of solutions along the continuity
path occur then allows us to derive the desired a priori C0-estimate. The second
step involves an application of the implicit function theorem to solve the initial
complex Monge-Ampere equation with polynomially decaying data by reducing
to the compactly supported case. These ideas were subsequently adapted to the
asymptotically cylindrical setting by Schafer [11].

References

[1] T. Aubin, Reduction du cas positif de l’equation de Monge-Ampere sur les varietes kahle-
riennes compactes a la demonstration d’une inegalite, J. Funct. Anal. 57 (1984), no. 2,
143–153. MR 749521

[2] O. Biquard and H. Macbeth, Steady Kahler-Ricci solitons on crepant resolutions of finite
quotients of Cn, arXiv:1711.02019 (2017).

[3] H.-D. Cao, Existence of gradient Kahler-Ricci solitons, Elliptic and parabolic methods in
geometry (Minneapolis, MN, 1994), A K Peters, Wellesley, MA, 1996, pp. 1–16. MR 1417944

[4] R. J. Conlon and A. Deruelle, Steady gradient Kahler-Ricci solitons on crepant resolutions
of Calabi-Yau cones, arXiv:2006.03100 (2020).

[5] R. J. Conlon, A. Deruelle, and S. Sun, Classification results for expanding and shrinking
gradient Kahler-Ricci solitons, arXiv:1904.00147 (2019).

[6] A. Dancer and M. Wang, On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom.
39 (2011), no. 3, 259–292. MR 2769300 (2012a:53124)



1714 Oberwolfach Report 32/2021

[7] R. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz,
CA, 1986), Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237–262.
MR 954419

[8] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4,
301–307. MR 1249376

[9] J. Kollar, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166,
Princeton University Press, Princeton, NJ, 2007. MR 2289519

[10] J. Schafer, Existence and uniqueness of S1-invariant Kahler-Ricci solitons,
arXiv:2001.09858 (2020).

[11] , Asymptotically cylindrical steady Kahler-Ricci solitons, arXiv:2103.12629 (2021).
[12] G. Tian and X. Zhu, Uniqueness of Kahler-Ricci solitons, Acta Math. 184 (2000), no. 2,

271–305. MR 1768112
[13] B. Yang, A characterization of noncompact Koiso-type solitons, Internat. J. Math. 23

(2012), no. 5, 1250054, 13. MR 2914656
[14] S.-T. Yau, On the Ricci curvature of a compact Kahler manifold and the complex Monge-

Ampere equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350

A stability result for Einstein metrics of Tian

Frieder Jäckel

(joint work with Ursula Hamenstädt)

It is an easy and well known consequence of the convergence Theory for Riemann-
ian manifolds that for all n ≥ 2, λ ∈ R, D, i0 > 0 there exists ε = ε(n, λ,D, i0) such
that any closed manifoldM that admits a Riemannian metric g with diam(M, g) ≤
D, inj(M, g) ≥ i0 and |Ric(g) − λg| ≤ ǫ also admits an Einstein metric with con-
stant λ. We present an unpublished theorem of Tian that generalises the above
result by dropping the upper diameter bound, but in addition assumes a certain
L2-bound on Ric(g) + (n − 1)g. We then dicuss how to further generalise this
result when the injectivity radius bound is also dropped.

Intermediate Ricci, homotopy, and submanifolds of symmetric spaces

Masoumeh Zarei

(joint work with Manuel Amann, Peter Quast)

In the spirit of combining Riemannian geometry, topology and algebra in the
area of symmetric spaces we draw on the “generalized connectedness lemma” by
Guijarro–Wilhelm (see [3], Theorem B), inspired by the following proposition, in
order to suggest a new approach to the study of certain classes of submanifolds of
symmetric spaces genuinely containing totally geodesic ones.

Proposition 1. [1, Proposition 0.1] Let P be a symmetric space of compact
type. Then there exists a positive integer kP such that for all integers k with
dimP > k ≥ kP it holds that Rick > 0.

Theorem 1 presents the details of this approach, but before stating the theorem,
let us explain two points.
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First, we need to recall the “Cartan type”. We say that two classical irreducible
symmetric spaces of compact type have the same Cartan type if they have a
common Cartan symbol (CS) as given in Table 1.

Table 1. Cartan symbols of classical irreducible symmetric
spaces of compact type described by infinitesimal symmetric pairs
(g, k), see [4, Chap. X, §6]

CS g k Conditions

A sun × sun ∆sun n ≥ 2
A I sun on n ≥ 2
A II su2n spn n ≥ 2
A III sup+q s(up ⊕ uq) 1 ≤ p ≤ q
BD on × on ∆on n ≥ 3, n 6= 4
BD I op+q op ⊕ oq 1 ≤ p ≤ q, (p, q) /∈ {(1, 1), (2, 2)}
C spn × spn ∆spn n ≥ 1
C I spn un n ≥ 1
C II spp+q spp ⊕ spq 1 ≤ p ≤ q
D III o4n u2n n ≥ 2

Second, Theorem 1 works with different notions of equivalence. In order to
avoid a repetition and trying to merge these notions into one statement, we first
fix a notion of equivalence before stating the theorem. Accordingly, we state that
“Q is isomorphic to a symmetric space of compact type” if it is either homotopy
equivalent, homeomorphic, diffeomorphic, or isometric (by abuse of notation, of
course, the latter notion does incorporate the possibility of applying different scal-
ing factors on the different de Rham factors of a symmetric space) to a symmetric
space of compact type. Having chosen such a notion of equivalence, this determines
the term “isomorphic” throughout the theorem.

Note further that in the assertion of the theorem focQ is the focal radius of Q,
Sv is the shape operator of Q corresponding to a unit vector v normal to Q and
the quantities kP and CP are the respective ones from Table 3 in [1] for higher
rank spaces and respectively 1 and (n− 9)/2 for the rank one spaces.

Theorem 1. Let Q be a compact connected embedded proper submanifold of an
irreducible simply-connected compact classical symmetric space P with RickP

≥ δ,
for some δ > 0. Assume further that Q is isomorphic to a symmetric space of
compact type and satisfies the following condition: There exists some r ∈ [0, π/2)
with

focQ > r

such that for every x ∈ Q, every unit normal vector v ∈ TxQ
⊥, and any kP -

dimensional subspace W of TxQ we have that

|trace(Sv |W )| ≤
√

δ

kP
kP cot

(
π/2 −

√
δ

kP
r

)
.
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Then if codim Q ≤ CP , one of the following cases occurs:

1. If P is isometric to a sphere, then Q is isomorphic to a product of spheres
whose dimensions are at least 10.

2. If P ∼= SO(2+q)
SO(2)×SO(q) , q ≥ 10, then Q is isomorphic to a symmetric space

SO(2+q′)
SO(2)×SO(q′) , q

′ < q, possibly up to products with spheres of dimensions

at least 10, or Q is isomorphic to a complex projective space CP
n, n ≥ 5,

possibly up to products with spheres of dimensions at least 10.
Similarly, if Pn is isometric to a complex projective space with n ≥ 11,

then Q is isomorphic to a complex projective space CPr, r ≥ 5, possibly up
to products with spheres of dimensions at least 10, or Q is isomorphic to a

Grassmannian manifold SO(2+q)
SO(2)×SO(q) with q ≥ 10, possibly up to products

with spheres of dimensions at least 10.
3. If P is isometric to a Grassmannian manifold (other than those appearing

in Items 1 and 2), then Q is isomorphic to a symmetric space with the
same Cartan type as P , possibly up to products with spheres of dimensions
at least 10.

4. If P is none of the above symmetric spaces, then Q is isomorphic to a
necessarily reducible symmetric space of the form Q1 × Sl1 × . . . × Slr ,
where Q1 has the same Cartan type as P and li ≥ 10, for 1 ≤ i ≤ r.

Remark 2. Note that if dimP is not “large” enough, then CP < 1. Thus there
is no (proper) submanifold Q of P with codim Q ≤ CP < 1. For example, for
a compact rank one symmetric space P , if dimP ≤ 10, then CP < 1. For this
reason, we say that dimP is a valid dimension if CP ≥ 1. For instance the valid
dimension of a compact rank one symmetric space is 11.

In Theorem 1, we implicitly assume that dim P is a valid dimension.

Our approach for proving Theorem 1 comprises three major steps.

(1) First we present a uniform method of how to compute the smallest k for
which the symmetric space P has k-positive Ricci curvature. This will
follow from a detailed analysis of associated root systems and isotropy
orbits.

(2) Next, we use this information as one key ingredient in the generalized
connectedness lemma by Guijarro–Wilhelm [3, Theorem B]. As an outcome
in the respective cases we gain control on the degree of connectedness of
the embedding, and we arrange codimensions in such a way that the map
is 10-connected.

(3) In particular, this implies that the first 9 homotopy groups of the ambient
manifold and the submanifold have to coincide. We hence collect and com-
pute nearly all such homotopy groups for all irreducible simply-connected
symmetric spaces, and compare them with the ones of the ambient space.
This lets us conclude that Cartan types of “almost all” cases necessarily
agree in the codimension ranges we consider.



Differentialgeometrie im Grossen 1717

As already announced this new generalized approach applying to more general
submanifolds even has previously unknown consequences for totally geodesic sub-
manifolds.

We denote by Gr(p, n) the simply-connected Grassmannian of oriented real p-
planes in Rn (here by a slight abuse of notation), or complex p-planes in Cn, or
quaternionic ones in H

n, respectively. Furthermore, CP denotes the corresponding
number from Table 3 in [1].

Theorem 2. Let P = Gr(p, n) be as above with p ≥ 3, and let Q be a complete
totally geodesic embedded submanifold of P which satisfies codim Q ≤ CP . Then
Q has the same Cartan type as P .

Remark 3. It is interesting to note that restricting to the category of totally
geodesic submanifolds in most cases our approach allows us to reprove and to
actually even improve the estimate

indP ≥ rkP

stating that the codimension of a totally geodesic submanifold of P is at least as
large as its rank, where indP is the the lowest codimension of totally geodesic
submaniflds of P [2, Theorem 1.1].
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On positive surface group representations in SO(p, q)

Maria Beatrice Pozzetti

(joint work with Jonas Beyrer)

Let Γ denote the fundamental group of a topological surface S of genus g ≥ 2,
and G denote a semisimple Lie group of noncompact type, such as G = PO(p, q).
We consider points in the character variety Ξ(Γ,G) := Hom(Γ,G)//G as conjugacy
classes of actions of Γ on the associated symmetric space X := G/K, a manifold of
non-positive curvature.

In this context is natural to restrict the attention to the points corresponding
to conjugacy classes of injective representations ρ : Γ → G with discrete image, as
those correspond to properly discontinuous actions, and thus give rise to interesting
classes of infinite volume locally symmetric spaces.
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Question 1. Are there connected components of Ξ(Γ,G) only consisting of injec-
tive representations with discrete image?

It is well known that this is the case for the group G = PSL(2,R): indeed
the Teichmüller space, regarded as the parameter space of marked hyperbolic
structures on S, identifies with a connected components of Ξ(Γ,G) through the
holonomy representation. On the other hand, this can never be the case for G =
PSL(2,C) as the corresponding character variety is connected and contains the
trivial representation, which is clearly not injective. Despite one might naively
think that this can only be the case if G = PSL(2,R), and thus the action can
be cocompact, some other connected components with this property have been
discovered: Hitchin and maximal representation. It is by now customary to call
connected components of character varieties only consisting of conjugacy classes
of injective homomorphisms with discrete image Higher rank Teichmüller spaces.

A recent breakthrough in the field was given by Guichard-Wienhard, who in-
troduced the notion of Θ-positive structure [5]. Loosely speaking a semisimple Lie
group G admits a Θ-positive structure if there exists a parabolic subgroup PΘ for
which it is possible to define a good notion of positivity for pairwise transverse
triples in the flag manifold G/PΘ, which generalize the notion of positively ori-
ented triples of elements in S1 := PSL(2,R)/P. With this notion at hand they
formulated the following:

Conjecture 2 ([5]). There exist Higher rank Teichmüller spaces if and only if the
group G admits a Θ-positive structure.

An example of a group G admitting a Θ-positive structure is PO(p, q), where
the relevant flag manifold G/PΘ = F1,...,p−1 consists of flags V1 < . . . < Vp−1 of
isotropic subspaces Vi of dimension 1 ≤ i ≤ p− 1.

Theorem 3 ([2, 4]). Conjecture 2 holds true for G = PSO(p, q).

Observe that Guichard-Labourie-Wienhard don’t restrict themselves to the
group PSO(p, q) and prove, more generally in [4], the existence of higher rank
Teichmüller components for al groups G admitting a Θ-positive structure.

The goal of the talk is to give an idea of the proof of Theorem 3 presented in [2].
We say that a representation ρ : Γ → PSO(p, q) is Θ-positive Anosov if it admits
a continuous dynamics preserving transverse map ξ : S1 → F1,...,p−1 that maps
positively oriented triples to positive triples. The proof of Theorem 3 presented in
[2] shows, more specifically, that Θ-positive Anosov representations form connected
components of the character variety. This, in turn, is obtained as a consequence
of two geometric properties of Θ positive representations of independent interest,
which we now describe.

The first result is a weight vs root collar lemma. To this aim we say that two
elemets g, h ∈ Γ are linked if their geodesic representative intersect in one (and
thus any) hyperbolic structure on S. If we denote by λ1(ρ(g)), . . . , λp+q(ρ(g))
the generalized eigenvalues of the matrix ρ(g) counted with multiplicity, and or-
dered so that their absolute values decrease, the k-th root αk(ρ(g)) is given by
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log(λk/λk+1(ρ(g))) while its k-th weight ωk(ρ(g)) is given by 2 log(λ1 . . . λk(ρ(g))).
We then have

Theorem 4. Let ρ : Γg → PO(p, q) be Θ-positive Anosov. For any linked g, h ∈ Γ
it holds (

eαk(ρ(g)) − 1
)(

eωk(ρ(h)) − 1
)
≥ 1.

In particular this ensures that any limit ρ∞ of a sequence of Θ-positive Anosov
representations is k-proximal for any k ≤ p − 1, namely has eigenvalues gaps in
this range.

In Theorem 4, the k-th weight ωk(ρ(h)) can be reinterpreted as the translation
length of the element ρ(h) on the symmetric space X endowed with an appropriate
Finsler distance. The second geometric result shows some positivity of such length
functions, namely the existence of a geodesic current µk

ρ such that ωk(ρ(h)) can be

computed as intersection with µk
ρ. Thanks to results of [6] this is a consequence

of the following positivity of the pullback of the natural crossratio crk defined on
4-tuples in Isk(Rp,q). For this we denote by ξk : S1 → Isk(Rp,q) the maps induced
by ξ, so that ξ(x) = (ξ1(x), . . . , ξp−1(x)).

Theorem 5. Let ρ : Γ → PO(p, q) be Θ positive Anosov, and (a, b, c, d) ∈ (S1)4

be positively oriented. Then

crk(ξk(a), ξk(b), ξk(c), ξk(d)) > 1.

Having Theorem 4 and 5 at hand we can apply [1, Theorem B] and construct
transverse boundary maps for a limit representation, which we can then prove
being strongly dynamics preserving.

In turn a key ingredient in the proofs of Theorem 4 and 5 is the following
property of the boundary maps, proven in [7].

Theorem 6. Let ρ : Γ → PO(p, q) be Θ-positive Anosov, then

(1) ξk(S1) is a C1 submanifold of Isk(Rp,q) tangent to ξk+1(x)/ξk−1(x) at
ξk(x) for all 1 ≤ k ≤ p− 2.

(2) ξp−1(S1) is a Lipschitz submanifold of Isp−1(Rp,q).

In order to prove an infinitesimal version of Theorem 5 (2) we need, among other
things, to establish a good control of the almost everywhere defined derivative in
case (2), analogue to case (1).
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Projective manifolds, hyperbolic manifolds and the Hessian of
Hausdorff dimension

Andrés Sambarino

(joint work with M. Bridgeman, B. Pozzetti and A. Wienhard)

Let Γ be the fundamental group of a closed (real) hyperbolic n-manifold M. We
study the second variation of the Hausdorff dimension of the limit set of convex co-
compact morphisms acting on the complex-hyperbolic space ρ : Γ → Isom(Hn

C
),

obtained by deforming a discrete and faithful representation of Γ that preserves a
totally geodesic (and totally real) copy of the real-hyperbolic space Hn

R
⊂ Hn

C
. This

computation is based on the study of the space of convex projective structures on
M and a natural metric on it induced by the Pressure form.

Non-uniqueness of minimal surfaces in Hermitian Lie groups

Vladimir Marković

Denote by Σg a surface of genus g ≥ 2. Let G be a Lie group and consider an
Anosov representation

ρ : π1(Σg) → G.

The main examples are:

(1) G is split and ρ is Hitchin,

(2) G is Hermitian and ρ is (Toledo) maximal.

Denote by Tg the Teichmüller space of marked complex structures on Σg. For
each S ∈ Tg there exists a unique harmonic map h : S → G/K induced by ρ.
Consider the associated energy functional

Eρ : Tg → (0,∞),

given as the energy of h. The work of Schoen-Yau implies that Eρ is proper on Tg.
Thus, Eρ achieves its global minimum and therefore it has at least one stationary
point (minimal surface).

Conjecture 1. The energy functional Eρ has a unique stationary point (and thus
a unique minimal surface).
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Schoen (applying the work of Micallef-Wolfson) proved the conjecture when
G = PSLR × PSLR. The conjecture was then proved for all rank 2 groups by
Labourie (the real split case), and Collier-Tholozan-Toulisse (the Hermitian case).
We disprove the Hermitian case [1] of the Uniqueness conjecture when the rank of

G is three.

Theorem 2. Let G be a Hermitian group of rank 3. For every large enough g ≥ 2,
there exists a maximal representation ρ : π1(Σg) → G such that Eρ : Tg → (0,∞)
has at least two stationary points.

It suffices to prove the theorem in the special case

G =

3∏

i=1

PSLR.

Theorem 3. For every large enough g ≥ 2, there exists a Fuchsian representation
ρ : π1(Σg) → ∏3

i=1 PSLR such that Eρ : Tg → (0,∞) has at least two stationary
points.
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Ancient solutions in geometric flows

Natasa Sesum

Ancient non-collapsed solutions to mean curvature flow. Unlike in the case
of ancient solutions to the curve shortening flow and Ricci flow on surfaces, ancient
solutions in the three-dimensional Ricci flow or ancient solutions to the mean
curvature flow are not given by explicit formula, which makes their classification
even more challenging.

We say that Mt = F (Mn, t), where F (·, t) : Mn → Rn+1 is a solution to the
mean curvature flow equation if

∂

∂t
F = −H ν,

where H is the mean curvature of Mt and ν is the outward unit normal vector.
We have already seen that G. Huisken in [12] showed that if M0 ⊂ Rn+1 is a

closed convex embedded hypersurface, the mean curvature flow starting at M0 con-
verges to a round point. In more general situations, in higher dimensions, without
the convexity assumption local singularities may likely occur. For example, if M0

looks like a dumbbel, the neck pinches off, that is a blowup limit around a singular-
ity is a round shrinking cylinder. Comparison argument with shrinking spheres im-
plies that every compact mean curvature flow develops singularities in finite time.
It is known that at the first singular time T , the lim supt→T supMt

|A|(·, t) = +∞.
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In the context of mean curvature flow there are several notions of weak solutions,
which enables one to continue the flow through singularities, without performing
surgery. Such notions of weak solutions are still missing in general in the context
of Ricci flow. As we have seen earlier, one of the ways to continue the flow past
the singular time in both, the Ricci flow and the mean curvature flow is the flow
with surgery. This includes cutting the hypersurface along necks, gluing in caps
and continuing the flow of the pieces, while the components of known geometry
and topology are discarded (see [13] and [9] for results of mean curvature flow with
surgery in different settings). Furthermore, similar to the Ricci flow, the study of
ancient solutions, could potentially help with surgeries in more general settings.

In [1, 2], with Angenent and Daskalopoulos we considered ancient compact
ancient solutions to the mean curvature flow in dimensions n ≥ 2, i.e. solutions
that are defined for t ∈ (−∞, T ), for some T < +∞.

There is a notion of α-noncollapsed solutions to the mean convex MCF, which is
the analogue to Perelman’s κ-noncollapsing condition for the Ricci flow. This was
first introduced by W. Sheng and X.J. Wang. The results that we will mention
below hold in any dimension, but for simplicity we will focus only on the case of
surfaces in R3.

In recent important work, S. Brendle and K. Choi (see [6] and references within)
gave the complete classification of noncompact ancient solutions to mean curvature
flow on surfaces that are strictly convex. More precisely, they showed that any
noncompact and complete ancient solution to mean curvature flow that is strictly
convex and noncollapsed is the Bowl soliton, up to scaling and ambient isometries.
The Bowl soliton is the unique rotationally-symmetric, strictly convex solution to
mean curvature flow that translates with unit speed.

In [1] and [2] we focused on ancient noncollapsed closed solutions to the mean
curvature flow. X.J. Wang showed in this case the backward limit as t → −∞ of
the rescaled flow is either a sphere or a cylinder R× S2 of radius

√
2.

It is known that if the backward limit is a sphere, then the ancient solution has to
be a family of shrinking spheres. Hence, to classify ancient compact noncollapsed
solutions one may restrict to the ones which are non-self-similar. We will refer
to them as ancient ovals. Based on formal matched asymptotics, S. Angenent
conjectured the existence of an ancient oval solution defined on t ∈ (−∞, T ) for
some T < +∞, which as t → −∞ becomes more and more oval in the sense that
it looks like a round cylinder R× S2 in the middle region, and like a rotationally
symmetric translating soliton (the Bowl soliton) near the tips. A variant of this
conjecture had been shown by B. White in 2003, but the approximate form of
these solutions was not shown. More recently, R. Haslhofer and O. Hershkovits
carried out B. White’s construction in more detail. We will refer to them as White
ancient ovals.

The main classification result of the authors with S. Angenent in [2] establishes
the uniqueness of ancient ovals. More precisely, any ancient oval in R

3 is equal
to the White oval solution up to ambient isometries, scaling, and translations in
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time. A similar result was shown to hold in any dimension n ≥ 3 (see in [2] for
the detailed statement). The proof has two steps: one first shows the rotational
symmetry of such solutions and then one establishes the uniqueness of rotationally
symmetric ancient ovals. Analyzing the asymptotic behavior as t → −∞ of the
rescaled ancient ovals plays an important role in our proof. This was done in [1],
where the precise unique asymptotics were described in each of the three regions:
the parabolic region, the intermediate region, and the tip region.

The classification of κ-solutions to 3-dimensional Ricci flow. We will next
discuss recent works by the authors and S. Brendle on the classification of non-
collapsed solutions to the three-dimensional Ricci flow, which finally resolves the
conjecture by G. Perelman.

We say that (M, g(t)) is a Ricci flow solution starting at the initial metric g0 if
it satisfies the equation

∂

∂t
gij = −2Rij , gij(·, 0) = g0ij(·),

where Rij is the Ricci curvature.
In a recent important work, S. Brendle [4] resolved the classification of an-

cient complete noncompact κ-noncollapsed solutions, showing that they are either
the round cylinders or steady Ricci solitons. After providing the classification of
those solutions under the assumption of rotational symmetry, he shows that any
three dimensional κ-noncollapsed noncompact ancient Ricci flow solution has to
be rotationally symmetric.

Regarding the classification of closed κ-noncollapsed ancient solutions, we have
recently modified Brendle’s arguments from [4] to show that such solutions must be
rotationally symmetric. What remained for the resolution of Perelman’s conjecture
was the classification of rotationally symmetric closed solutions. It turned out
that such result could be approached using the techniques that the authors have
developed in the case of the mean curvature flow, and has been resolved in a series
of papers, [3] and [7]. All these lead to the complete classification of closed ancient
κ-noncollapsed solutions to the three-dimensional Ricci flow, as envisioned by G.
Perelman.

Our uniqueness result heavily relies on analyzing the limits, as t→ −∞, of any
given solution. We show that such a limit has to be either a round sphere or has
a round cylinder as one of its backward limits. In the latter case, in [3], we show
that all three dimensional κ-solutions, that have the round cylinder as one of its
backward limits, have unique asymptotics. We describe the precise asymptotics in
each of the three regions: the parabolic region, the intermediate region, and the tip
region. The asymptotics are similar to those of two-dimensional mean curvature
flow ovals. We use these precise asymptotics in [7] to prove the classification of
κ-noncollapsed closed ancient solutions to the Ricci flow. More recently, in [8]
we generalize those techniques to prove analogous classifciation result in higher
dimensions under the assumption on positive isotropic curvature.



1724 Oberwolfach Report 32/2021

References

[1] Angenent, S., Daskalopoulos, P., and Sesum, N., Unique asymptotics of ancient convex
mean curvature flow solutions; to appear in J. Differential Geom., arXiv:1503.01178v3.

[2] Angenent, S., Daskalopoulos, P., and Sesum, N., Uniqueness of two-convex closed ancient
solutions to the mean curvature flow; to appear in Annals of Math.

[3] Angenent, S., Daskalopoulos, P., Sesum, N. Unique asymptotics of ancient compact non-
collapsed solutions to the 3-dimensional Ricci flow; to appear in CPAM.

[4] Brendle, S., Ancient solutions to the Ricci flow in dimension 3; Acta Math. 225 (2020), no.
1, 1–102.

[5] Brendle, S., Choi, K., Uniqueness of convex ancient solutions to the mean curvature flow
in R3; Invent. Math. 217 (2019), no. 1, 35–76.

[6] Brendle, S., Choi, K., Uniqueness of convex ancient solutions to mean curvature flow in
higher dimensions; arXiv: 1804.00018

[7] Daskalopoulos, P., Sesum, N., Uniqueness of ancient compact non-collapsed solutions to the
3-dimensional Ricci flow; to appear in Inventiones.

[8] Brendle,S., Daskalopoulos,P., Naff,K., Sesum,N., Uniqueness of compact ancient solutions
to the higher dimensional Ricci flow; arXiv:2102.07180.

[9] Brendle, S., Huisken, G., mean curvature flow with surgery of mean convex surfaces in R3;
Invent. Math. 203 (2016) 615–654.

[10] Hamilton, R., Three-manifolds with positive Ricci curvature; J. Differential Geom. 17 (1982)
255–306.

[11] Hamilton, R., The formation of singularities in the Ricci flow; Surveys in Differential Ge-
ometry II, International Press, Cambridge, Mass. (1995) 7 –136.

[12] Huisken, G., Flow by mean curvature of convex surfaces into spheres; J. Differential Geom.,
20 (1984).

[13] Huisken, G., Sinestrari, C., mean curvature flow with surgeries of two-convex hypersurfaces;
Invent. Math. 175 (2009), no. 1, 137–221.

[14] Perelman, G. The entropy formula for the Ricci flow and its geometric applications;
arXiv:math/0211159.

[15] Perelman, G. Ricci flow with surgery on three-manifolds; arXiv:math/0303109.
[16] Perelman, G. Finite extinction time for the solutions to the Ricci flow on certain three-

manifolds; arXiv:math/0307245.

Limiting behavior of Ricci flow on Fano manifolds

Gang Tian

(joint work with Yan Li, Xiaohua Zhu)

Consider the Kähler-Ricci flow on a Fano manifold M of complex dimension n:

∂ω(t)

∂t
= −Ric(ω(t)) + ω(t),(1)

ω(0) = ω0,

where ω0 is a given Kähler metric with Kähler class 2πc1(M). In 1986, H.D. Cao
proved that (1) has a unique solution ω(t) for all t ≥ 0. A long-standing problem
is the limiting behavior of ω(t) as t goes to ∞. The following was written down
in my 1997 paper in Invent. Math.:
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Conjecture 1. Any sequence of (M,ω(t)) contains a subsequence converging to
a length space (M∞, ω∞) in the Gromov-Hausdorff topology and (M∞, ω∞) is a
smooth Kähler-Ricci soliton outside a closed subset S of codimension at least 4.

This was often referred as the Hamilton-Tian conjecture.
First, I gave a brief tour on history of studying this conjecture. Since Perelman

in 2003, many progresses were made by Tian-Zhu (2006), Tian-Zhang-Zhu (2013)
and Dervan-Szekelyhidi (2020) under various assumptions on M . In general cases,
it follows from Q. Zhang’s upper estimate (2013) on volume ratio along Ricci flow
and Perelman’s non-collapsing result that (M,ω(t)) converge to a length space
(M∞, ω∞) in the Gromov-Hausdorff topology. Then the conjecture is reduced to
studying the regularity of (M∞, ω∞) and convergence of ω(t). This problem has
been solved due to works of Tian-Z.L. Zhang in 2016, R. Bamler in 2018 and Chen-
Wang in 2020. In fact, in his Annals paper in 2018, Bamler proved a generalized
version of the Hamilton-Tian conjecture.

Then we were led to studying the question: What is the best regularity of
(M∞, ω∞)? It was proved by Tian-Z.L.Zhang (Acta Math., 2016) by using the
Hamilton-Tian conjecture that M∞ is a normal variety and ω∞ is a smooth Kähler-
Ricci soliton outside its singular set which is an analytic subvariety. This was done
by developing a version of the partial C0-estimate for Kähler-Ricci flow. Does this
regularity answer the above question? There was a folklore speculation that M∞
is actually smooth, in other words, any solution ω(t) of (1) is of type I, that is,
the curvature of ω(t) is uniformly bounded. Our main result is to disprove this
speculation, i.e., there are solutions of type II, that is, the curvature of ω(t) may
be unbounded. Therefore, the regularity achieved in my work with Z.L.Zhang is
the best in general. We found solutions of type II by using G-manifolds.

Next in my talk, I recalled definition and some properties of Fano G-manifolds,
where G is a reductive Lie group. Then we stated a criterion proved by Delcroix
(2015) for a Fano G-manifold to admit Kähler-Einstein metrics. Delcroix proved
his criterion by the continuity method. Later, alternative proof was given by
Li-Zhou-Zhu (2017).

Next, I stated our theorem joint with Yan Li and Xiaohua Zhu:

Theorem 2. Let G be a semi-simple complex Lie group and M be a Fano G-
manifold which admits no Kähler-Einstein metrics, then any solution of the Kähler-
Ricci flow on M with an initial metric ω0 ∈ 2πc1(M) must be of type II.

I also remarked that the semi-simplicity condition can be dropped due to a
very recent observation by Tian-Zhu. According to Delcroix, there are three Fano
SO4(C)-manifolds and three Fano Sp4(C)-manifolds, and three of these six man-
ifolds do not admit Kähler-Eisntein metrics. As an application of Theorem 2, we
proved that on those Fano SO4(C)-manifolds and Fano Sp4(C)-manifold which do
not admit Kähler-Einstein metrics, the Kähler-Ricci flow develops singularity of
type II.

Then I discussed the ideas in the proof of Theorem 2. The most crucial step is
to prove
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Proposition 3. If (M∞, ω∞, J∞) be a smooth limit of Kähler metrics ωi with
Kähler class 2πc1(M) on a Fano G-manifold M in the Cheeger-Gromov topology,
then (M∞, ω∞) is also a Fano G-manifold.

I outlined a proof of this proposition and emphasised the role of the smoothness
condition in our proof.

Finally, I briefly discussed my work with Yan Li and Xiaohua Zhu on extending
Delcroix’s criterion to Fano G-varieties which may have normal singularity. I also
mentioned very recent work of Yan Li and Zhenye Li (2021) in which they identified
limits of Kähler-Ricci flow on those Fano SO4(C)-manifolds which do not admit
Kähler-Einstein metrics. It turns out that those limits are not Fano G-varieties.

Ricci flow of W 2,2 metrics in four dimensions

Miles Simon

(joint work with Tobias Lamm)

In this talk we explain how to construct solutions to Ricci flow and Ricci DeTurck
flow which are instantaneously smooth but whose initial values are (possibly) non-
smooth Riemannian metrics whose components, in smooth coordinates, belong to
certain Sobolev spaces.

For a given smooth Riemannian manifold (M,h), and an interval I ⊆ R, a
smooth family g(t)t∈I of Riemannian metrics on M is a solution to Ricci DeTurck
h Flow if

∂

∂t
gij = gab(h∇a

h∇bgij) − gklgiph
pqRjkql(h) − gklgjph

pqRikql(h)

+ 1
2g

abgpq
(
h∇igpa

h∇jgqb + 2h∇agjp
h∇qgib − 2h∇agjp

h∇bgiq

−2h∇jgpa
h∇bgiq − 2h∇igpa

h∇bgjq
)
,(1)

in the smooth sense on M×I, where here, and in the rest of the paper, h∇ refers to
the covariant derivative with respect to h. A smooth family ℓ(t)t∈I of Riemannian
metrics on M is a solution to Ricci flow if

∂ℓ

∂t
= −2Rc(ℓ)(2)

in the smooth sense on M × I. Ricci DeTurck flow and Ricci flow in the smooth
setting are closely related : given a Ricci DeTurck flow g(t)t∈I on a compact
manifold and an S ∈ I there is a smooth family of diffeomorphisms Φ(t) : M →M,
t ∈ I with Φ(S) = Id such that ℓ(t) = (Φ(t))∗g(t) is a smooth solution to Ricci
flow. The diffeomorphisms Φ(t) solve the following ordinary differential equation:

∂

∂t
Φα(x, t) =V α(Φ(x, t), t), for all (x, t) ∈Mn × I,

Φ(x, S) =x.(3)

where V α(y, t) := −gβγ
(
gΓα

βγ − hΓ
α
βγ

)
(y, t)
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There are a number of papers on solutions to Ricci DeTurck flow and Ricci
flow starting from non-smooth Riemannian metric/distance spaces: Given a non-
smooth starting space (M, g0) or (M,d0), it is possible in some settings, to find
smooth solutions g(t)t∈(0,T ) to (1), respectively ℓ(t)t∈(0,T ) to (2) defined for some
T > 0, where the initial values are achieved in some weak sense. Here is a non-
exhaustive list of papers, where examples of this type are constructed : [5, 3,
6, 7, 1, 2, 4]. The initial non-smooth data considered in these papers has certain
structure, which when assumed in the smooth setting, leads to a priori estimates for
solutions, which are then used to construct solutions in the class being considered.
In some papers this initial structure comes from geometric conditions, in others
from regularity conditions on the initial function space of the metric components
in smooth coordinates. In the second instance, this is usually in the setting, that
one has some C0 control of the metric. That is, the metric is close in the L∞ sense
to the standard euclidean metric in smooth coordinates: (1−ε)δ ≤ g(0) ≤ (1+ε)δ
for a sufficiently small ε. In this talk, the structure of the initial metric g(0)
comes from the assumption, in the four dimensional compact setting, that the
components in coordinates are in W 2,2, and uniformly bounded from above and
below : 1

aδ ≤ g(0) ≤ aδ for some constant c. Closeness of the metric to δ is not
assumed. With this initial structure, we show that a solution to Ricci DeTurck flow
exists. In the non-compact setting, we further require that the W 2,2 norm on balls
of radius one is uniformly small and a uniform bound from above and below in the
L∞ sense, both with respect to a geometrically controlled background metric. We
also investigate the question of how the initial values are achieved, in the metric
and distance sense, as time goes back to zero.

Using this solution g(t)t∈[0,T ) to Ricci DeTurck flow, we consider the Ricci flow
realted solution (Φ(t))∗(g(t))t∈(0,T ) as defined above, where Φ(S) = Id for some
S > 0. The convergence as time goes back to zero in the distance and metric sense
is investigated for this Ricci Flow solution. We require some new estimates on
convergence in the Lp sense for solutions to Ricci flow, in order to show that there
is indeed a limiting weak Riemannian metric, as time approaches to zero. We also
show that the initial metric value of the Ricci flow that is achieved is isometric, in
a weak sense, to the initial value g(0) of the Ricci DeTurck flow solution.
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Comparison geometry of holomorphic bisectional curvature

John Lott

Holomorphic bisectional curvature is a Kähler analog of Riemannian sectional
curvature. There is a well developed theory of Riemannian manifolds with lower
sectional curvature bounds, including such topics as triangle comparison, Gromov-
Hausdorff limits and Alexandrov spaces. We give Kähler analogs.

To state the first main result, we define a modified distance-squared function.
Given d ≥ 0 and K ∈ R, define dK ≥ 0 by

(1) d2K =





− 4
K log cos

(
d
√

K
2

)
if K > 0,

d2 if K = 0,

4
−K log cosh

(
d
√

−K
2

)
if K < 0.

(If K > 0 then we restrict to d ≤ π√
2K

.) Let M be a complete Kähler manifold.

Given p ∈ M and K ∈ R, let dp ∈ C(M) be the distance from p and define dK,p

using (1), replacing the d in the right-hand side by dp.
We write BK ≥ K if the holomorphic bisectional curvatures of M are bounded

below by K ∈ R. We prove the following analog of triangle comparison.

Theorem 2. Let M be a complete Kähler manifold. Given K ∈ R, the manifold
M has BK ≥ K if and only if it satisfies the following property. Let i : D2 →M
be an embedding of a disk into M , that is holomorphic on D2. Let Σ be the image
of i. Let dA denote the area form on Σ. Let z be the local coordinate on D2 and
let θ ∈ [0, 2π) be the local coordinate on ∂D2. Then

(3) d2K,p(0) ≥ 2

π

∫∫

Σ

log |z| dA+
1

2π

∫

∂Σ

d2K,p(θ)dθ,

where the “0” on the left-hand side denotes i(0), the center of Σ.

Next, we consider noncollapsing sequences of complete pointed Kähler manifolds
with BK ≥ K. Lee and Tam showed that after passing to a subsequence, there is
a pointed Gromov-Hausdorff limit that is a complex manifold [4]. Regarding its
geometry, we show that (3) holds on the limit.

Theorem 4. Let {(Mi, pi, gi)}∞i=1 be a sequence of pointed n-dimensional complete
Kähler manifolds with BK ≥ K. Suppose that there is some v0 > 0 so that for
all i, we have vol(B(pi, 1)) ≥ v0. Then after passing to a subsequence, there is a
pointed Gromov-Hausdorff limit (X∞, p∞, d∞) with the following properties.

(1) X∞ is a complex manifold.
(2) Embedded holomorphic disks Σ in X∞ satisfy (3), where dA is now the

two dimensional Hausdorff measure coming from d∞.

Some simple examples of such limit spaces come from two dimensional length
spaces with Alexandrov curvature bounded below. The proof of Theorem 4 uses
local Ricci flow techniques, as developed by Bamler-Cabezas-Rivas-Wilking [1],
Hochard [2], Lee-Tam [3] and Simon-Topping [6].
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We also show

• A complete Kähler manifold has BK ≥ K if and only if
√
−1∂∂d2K,p/2 ≤ ω

as currents.
• If a Hermitian manifold satisfies (3) then it must be Kähler.
• A domain M in a model space (of constant holomorphic sectional curva-

ture) satisfies (3) if and only if the length metric on M is the same as the
restricted metric from the model space.

We give a notion of “BK ≥ K” for possibly singular complex spaces. We use
the notion of Kähler spaces from [5], which is formulated in terms of local poten-
tial functions {φα}. We define metric Kähler spaces and an associated complex
Gromov-Hausdorff convergence, which may be of independent interest. We say
that a metric Kähler space has “BK ≥ K” if φα − d2K,p/2 is plurisubharmonic for

all α and p. For normal complex spaces, this is equivalent to (3) being satisfied.
The following properties hold:

• Given a sequence of metric Kähler spaces with “BK ≥ K”, if it converges
in the pointed complex Gromov-Hausdorff sense then the limit space has
“BK ≥ K”.

• Under the assumptions of Theorem 4, a subsequence converges in the
pointed complex Gromov-Hausdorff sense.

• If a Kähler orbifold has BK ≥ K in the sense of curvature tensors then
its underlying length space has “BK ≥ K”.

Finally, we discuss tangent cones of the limit spaces from Theorem 4. We show

• A tangent cone is a Kähler cone that is biholomorphic to C
n.

• When the distance function from the vertex is radially homogeneous on Cn,
the tangent cone is an affine cone over a copy of CPn−1 with “BK ≥ 2”.
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