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Introduction by the Organizers

The workshop Analysis, Geometry and Topology of Positive Scalar Curvature Met-
rics, organized by Bernd Ammann (Regensburg), Bernhard Hanke (Augsburg) and
Anna Sakovich (Uppsala) was the third in a series of workshops with the same title,
one in 2014, one in 2017 and the current one. It was attended by 18 participants
in presence, mainly from Europe, and 18 online participants from Europe, the US,
and China, both numbers including some doctoral and postdoctoral researchers.

On Monday Carla Cederbaum (Tübingen) and Richard Bamler (Berkeley) de-
livered two extended 80 minute survey lectures on initial data sets in general rel-
ativity and the uniqueness of solutions to the Ricci flow, respectively. Important
applications of the Ricci flow include the long sought-after result that the space of
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positive scalar curvature metrics on the 3-sphere is contractible and a definition of
pointwise lower scalar curvature bounds for C0-metrics, the latter being the topic
of a separate talk later in the week.

Recently metric properties of manifolds with lower scalar curvature bounds
have become accessible to the Dirac operator method by the use of appropriate
potentials. A number of research talks reported on this important development,
including index theoretic proofs of Gromov’s band width, long neck and cube
inequalities. This discussion included geometric boundary conditions such as lower
mean curvature bounds, which can also be addressed systematically in the context
of h-principles as pointed out in another lecture.

Minimal hypersurfaces are an important and by now classical tool in positive
scalar curvature geometry. This method can be refined using volume functionals
with counterforce. One of the talks used stable minimizers of such functionals,
so-called µ-bubbles, to provide an alternative approach to band width inequalities
which competes with the Dirac method.

Spaces of metrics with lower scalar curvature bounds were addressed from sev-
eral perspectives, exploring the natural action of the diffeomorphism group, the
flexibility under surgery in codimension at least three and the dominant energy
condition. A related discussion concerned spaces of metrics for which the first
eigenvalue of certain Laplace type operators is non-negative, a property that plays
a role in minimal hypersurfaces, the Yamabe problem and the Ricci flow with
surgery.

A number of talks were devoted to the positive mass theorem, which naturally
arises in the investigation of initial data sets in general relativity, via the con-
straint equations. We heard about the positive mass theorems for ALF, ALG and
asymptotically hyperbolic manifolds. This theme can also be approached from a
spin geometric perspective, as pointed out in another lecture.

The positive scalar curvature problem exhibits remarkable aspects in low di-
mensions and on manifolds with restricted geometric properties. Besides the
aforementioned results emerging from the Ricci flow, some talks of the workshop
participants covered a variety of related topics such as rigidity results for (not
necessarily uniform) positive scalar curvature metrics on contractible 3-manifolds,
the use of spacetime harmonic functions for constructing obstructions to positive
scalar curvature, the rich interplay of the Yamabe invariant and complex geome-
try in dimension four, and global and local scalar curvature rigidity properties of
Einstein manifolds.

Most research talks had a length of 60 minutes with some additional 40 minutes
talks contributed by younger participants. On Thursday evening a problem session
fostered a lively exchange of ideas and perspectives. Similar to the preceding
meetings in this series we observed an intense interaction of scientists with different
mathematical backgrounds throughout the workshop, integrating the in-person as
well as the online participants.

We could always rely on the perfect working conditions at the Oberwolfach
institute and the great support by its staff. In particular we appreciated the
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possibility to invite a significant number of in-person participants who enjoyed the
traditional, stimulating Oberwolfach atmosphere, which was indispensible for the
success of our workshop.
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µ-Bubbles and the Band Width Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 1601

Georg Frenck
Diffeomorphisms and positive (scalar) curvature . . . . . . . . . . . . . . . . . . . . . 1603

Lan-Hsuan Huang (joint with Zhongshan An)
Existence of static vacuum extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1606

Claude LeBrun (joint with Michael Albanese)
Kodaira Dimension and the Yamabe Problem, Revisited . . . . . . . . . . . . . . 1609

Christian Bär (joint with Bernhard Hanke)
Spaces of metrics with positive scalar curvature on manifolds
with boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1612

Mattias Dahl (joint with Klaus Kröncke)
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Abstracts

Overview lecture: Initial data sets in general relativity: when, why,
and how should we take into account their extrinsic curvature?

Carla Cederbaum

1 A relativistic initial data set (IDS) is a tuple (M, g,K) consisting of a smooth
Riemannian manifold (M, g) and a smooth, symmetric (0, 2)-tensor field K on M .
Typically, M will have dimension n = 3 or n ≥ 3; sometimes, we consider initial
data sets of dimension n = 2 as toy models or arising from a symmetry reduction.

1. Where do initial data sets come from?

As the name indicates, initial data sets (M, g,K) arise as hypersurfaces of con-
stant (“initial”) time in “spacetimes” (L, g); here, a spacetime is a time-oriented
Lorentzian manifold and M is an orientable spacelike hypersurface or “slice” in
(L, g) with induced metric g and second fundamental form K (with respect to the
future pointing normal). The following are important examples of spacetimes and
initial data sets therein:

(1) The Minkowski spacetime (Rn+1, η = −dt2 + δ), δ the Euclidean metric
on Rn, with
(a) ({t = 0}, δ,K = 0), the canonical initial data set,
(b) or more generally the boosted hyperplanes (M = {t = ~a ·~x+c}, g,K =

0), with ~a ∈ Rn, |~a|δ < 1, c ∈ R, with (M, g) isometric to (Rn, δ),
(c) either sheet (MR, gR,KR) of the two-sheeted hyperboloid of radius

R > 0, where (MR, gR) is isometric to the hyperbolic space of radius
R, (Hn, bR), and KR is proportional to gR, the hyperboloidal initial
data sets.

(2) The de Sitter (dS, Λ > 0) and Anti de Sitter (AdS, Λ < 0) spacetimes

(R×R+×Sn−1,−
(
1− 2Λr2

n(n−1)

)
dt2+ 1

1− 2Λr2

n(n−1)

dr2 + r2ΩSn−1), with ΩSn−1

the canonical metric on Sn−1 containing the canonical initial data set {t =
0} with K = 0. For Λ < 0, ({t = 0}, g) is isometric to (Hn, bR(Λ)).

(3) The Schwarzschild spacetime of “mass”m > 0, (R× ((2m)
1

n−2 ,∞)× Sn−1,
−
(
1− 2m

rn−2

)
dt2+ 1

1− 2m

rn−2
dr2+r2ΩSn−1), with its canonical initial data

set {t = 0} having K = 0, modeling the exterior of a static, spherically
symmetric black hole.

1We refer the interested reader to [9] for more information and references.
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2. Features of initial data sets

We care about the asymptotics of initial data sets (M, g,K), most notably:

• M is closed (compact without boundary): in (mathematical) cosmology,
and

• (M, g,K) is asymptotically Euclidean, i.e.,

M ≈Φ compact set ∪
I⋃

i=1

(
Rn \Bri(0)

)
,

(Φ∗g)ij = δij + l.o.t., (Φ∗K)ij = l.o.t. as r → ∞ in each end Rn \Bri(0),
• (M, g,K) is asymptotically hyperboloidal, i.e., M as above and (Φ∗g)ij =
(bR)ij+ l.o.t., (Φ∗K)ij ∝ (bR)ij+ l.o.t. as r → ∞ in each end (cf. Example
1c), and

• (M, g,K) is asymptotically hyperbolic, i.e., M as above and (Φ∗g)ij =
(bR)ij + l.o.t., (Φ∗K)ij = l.o.t. as r → ∞ in each end (cf. Example 2).

Another aspect of initial data sets we care about is whether they satisfy the
(Einstein) constraint equations Rg +(trg K)2 − |K|2g − 2Λ = 16πG

c2 µ, divg(K −
trg K g) = − 8πG

c4 J , where G, c, Λ denote the gravitational constant, the speed of
light, and the cosmological constant, µ and J denote the energy and momentum
density, and Rg, | · |g, and divg denote the scalar curvature, induced tensor norm,
and induced divergence on (M, g,K), respectively. The constraint equations arise
from combining the Einstein equation in the ambient spacetime for some matter
model with the Gauss–Codazzi–Mainardi equations for spacelike hypersurfaces.
We typically focus on either specific matter models (resulting in specific choices
of µ and J) such as vacuum (µ = J = 0) or we consider matter models satisfying
certain energy conditions (resulting in conditions on µ and J), most notably the
dominant energy condition (DEC) which implies µ ≥ |J |g.

We say that an IDS (M, g,K) is time-symmetric or Riemannian if K = 0, cor-
responding to an infinitesimal time-reflection symmetry of the ambient spacetime
around said IDS.

3. Typical questions about initial data sets

Typical questions about IDSs include questions on their evolution in time (key-
words: global hyperbolicity, dynamical stability, hyperbolic PDEs, gravitational
waves, numerical simulation), on existence of solutions of the constraint equations
displaying physically relevant features (keywords: gluing, regularity, numerical
simulation), on mapping of the solution space of the constraint equations (key-
words: conformal method and variants thereof), on asymptotic properties (key-
words: asymptotic geometric invariants, special asymptotic coordinate charts),
and on behavior in the presence of (spacetime) symmetries (keywords: Killing
initial data (KIDs), staticity, stationarity).
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4. Important theorems and open questions on initial data sets

Two central theorems about initial data sets are the “positive mass theorem
(PMT)” and the “Riemannian Penrose inequality (RPI)”. The PMT states that
any geodesically complete, asymptotically Euclidean IDS of dimension n = 3 sat-
isfying the DEC will have positive “ADM-mass” (an asymptotic geometric invari-
ant), with equality if and only if the IDS sits isometrically inside the Minkowski
spacetime. It was first proven with different approaches by Schoen and Yau and
by Witten. Today, we know many versions of the PMT: different asymptotic
conditions (combined with different asymptotic geometric invariants and different
choices of cosmological constant), higher dimensions, lower regularity, etc.

The RPI states that any asymptotically Euclidean, time-symmetric IDS of di-
mension n = 3 satisfying the DEC and being geodesically complete up to a minimal

surface inner boundary ∂M has ADM-mass m satisfying m ≥
√

|∂M|
16π , with equal-

ity if and only if the IDS is isometric to the canonical slice of a Schwarzschild
spacetime. It was first proven with different approaches by Huisken and Ilmanen
and by Bray. Today, we know many versions of the RPI: different asymptotic
conditions, higher dimensions, lower regularity, etc. However, we still lack a (full)
generalization of the Penrose inequality for initial data sets (replacing minimal
surface with “MOTS” inner boundary).

Many other results on time-symmetric IDSs have also not yet been general-
ized to general IDSs. Relevant results and techniques include the quasi-spherical
approach to solving the constraint equations by Bartnik [1] and other methods
for constructing suitable “extensions” of certain inner boundary data such as the
recent construction by Mantoulidis and Schoen [11, 3]. Another branch of ques-
tions and ideas where very little is known beyond time-symmetry (but see [2])
is the question of “stability” of geometric inequalities such as the PMT and the
(R)PI, meaning whether IDSs that almost saturate the inequalities will need to
be geometrically “close” to the saturating ones (see e.g. [7, 10, 4]).

Methods for extending results from the Riemannian (time-symmetric) context
to general IDSs include the Jang equation approach (e.g. for the PMT), small K
results obtained by applying the implicit function theorem around K = 0, but also
generalizations guided by physical/geometric intuition. To give an example of the
latter, let us consider the beautiful idea of studying the “center of mass” of an
asymptotically Euclidean IDS via an asymptotic foliation by constant mean curva-
ture (CMC) surfaces first developed by Huisken and Yau [8]. As we have described
with Nerz [5], this approach has subtle convergence issues (e.g. in certain graphi-
cal IDSs in the Schwarzschild spacetime). With Sakovich [6], we have developed
a spacetime covariant approach to defining the center of mass of asymptotically
Euclidean IDSs, using instead asymptotic foliations by constant spacetime mean
curvature (STCMC), i.e., such that the Lorentzian length of the codimension 2
mean curvature vector is constant. This approach remedies in particular the con-
vergence issues addressed in [5].
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Spacetime harmonic functions and applications to relativity

Sven Hirsch

(joint work with Hubert Bray, Demetre Kazaras, Marcus Khuri, Pengzi Miao,
Tin-Yau Tsang, Yiyue Zhang)

In [7] the crucial observation has been made that Bochner’s identity, the Gauss
equation and Gauss-Bonnet’s theorem can be combined to study scalar curvature
via harmonic maps. For instance, this allows for the followinsg simple proof that
there is no PSC metric on T 3:

By elementary topological considerations there exist non-trivial maps from T 3 to
S1. Minimizing in this class leads to a harmonic map u : T 3 → S1. For simplicity
we assume |∇u| 6= 0. Since u is harmonic, Bochner’s identity yields

∆|∇u|2 = 2Ric(∇u,∇u) + 2|∇2u|2.(1)

Using the Gauss equations, the first term can be rewritten as

2Ric(∇u,∇u) = |∇u|2(R −RΣ +H2 − |A|2).(2)

Here R,RΣ are the scalar curvature of T 3 and the level sets Σ of u, A is the second
fundamental form of Σ, and H the mean curvature. Integrating those identities
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yields

0 =

∫

T 3

( |∇2u|2
|∇u| +R|∇u| −RΣ|∇u|

)
dV.(3)

Thus, the result follows from Gauss-Bonnet’s theorem, the co-area formula and
the fact that T 3 contains no non-separating spheres.

Harmonic functions can also be used to yield a new proof of the Riemannian posi-
tive mass theorem which has been the subject of [3]. However, harmonic functions
are by no means the only functions where the combination of Bochner’s formula,
Gauss equations and Gauss-Bonnet’s theorem yield new information about PSC
metrics. In general, we have the formula

(4)

∫

M

(∆u)
2

|∇u| dV −
∫

∂M

2H |∇u|dA =

∫

M

( |∇2u|2
|∇u| + (R − 2K)|∇u|

)
dV

which holds true for any function on any 3-manifold M , which is constant on ∂M .
Thus, by prescribing ∆u carefully, new results about PSC metrics can be obtained:

This has led in [4] to a new proof of the spacetime positive mass theorem using the
equation ∆u = −Trg(k)|∇u| where k is the symmetric two tensor associated to an
initial data set. In [1] we obtained a new proof of the positive mass theorem with
charge using the equation ∆u = 〈E,∇u〉 where E is the electric field, and in [2]
to a new proof of the hyperbolic positive mass theorem using again the equation
∆u = −Trg(k)|∇u|. In fact, even the Hawking energy monotonicity formula which
has been crucially exploited in [6] can be obtained from equation (4) by inserting

the formula ∆u = 〈∇|∇u|,∇u〉
|∇u| + 2 |∇u|2

u .

These level set techniques are by no means just a way to reprove old theorems,
but in fact they have several advantages over minimal surfaces and spinors to
obtain proofs which would otherwise be not possible. For instance, consider then
convergence result for the Brown-York mass established in [5]. The proof crucially
relies on the mass formula for the positive mass theorem with corners, and exploits
that the formula is even valid in case the manifold does not have non-negative
scalar curvature. This differs from the corresponding spinor formula which relies
on the manifold having non-negative scalar curvature in order to obtain a coercivity
estimate which is necessary to show existences of such harmonic spinors.
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Scalar and mean curvature comparison via the Dirac operator

Rudolf Zeidler

(joint work with Simone Cecchini)

In recent years, Gromov has initiated a programme of metric inequalities in the
presence of lower scalar curvature bounds which are vaguely reminiscent of classical
comparison geometry. This has lead to a number of conjectures, two of which we
now recall to set the stage.

Conjecture 1 ([6, 11.12, Conjecture C]). Let M be a closed connected manifold
of dimension n − 1 6= 4 such that M does not admit a metric of positive scalar
curvature. Let g be a Riemannian metric on V = M × [−1, 1] of scalar curvature
bounded below by n(n− 1) = scalSn . Then

width(V, g) ≤ 2π

n
,

where width(V, g) := distg(∂−V, ∂+V ) is the distance between the two boundary
components of V with respect to g.

Conjecture 2 ([5, p. 87, Long neck problem]). Let (M, g) be a compact connected
n-dimensional Riemannian manifold with boundary such that its scalar curvature
is bounded below by n(n − 1). Suppose that Φ: M → Sn is a smooth area non-
increasing map which is locally constant near the boundary. If

distg(supp(dΦ), ∂M) ≥ π

n
,

then the mapping degree of Φ is zero.

One of Gromov’s first results on these questions [6] was a proof of Conjecture 1
for the torus and related manifolds via the geometric measure theory approach to
positive scalar curvature going back to the minimal hypersurface method of Schoen
and Yau. Subsequently, in the recent articles [9, 2, 10], we have demonstrated that
the spin Dirac operator method can also be used to approach such questions.

The goal of this talk was to present a novel point of view towards these and
other conjectures, based again on the Dirac operator, which appeared in the recent
joint work with S. Cecchini [1]. In our new approach, the mean curvature of the
boundary becomes one of the main players. Indeed, the general idea is that in these
situations one can establish a precise quantitative relationship between the scalar
curvature, the mean curvature of the boundary and a relevant distance quantity.
In certain situations, our new point of view also allows to formulate and prove
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rigidity statements. As a central example showcasing these ideas, the following
theorem was presented:

Theorem 1 (cf. [1]). Let (V, g) be a Riemannian spin band, that is, a compact
spin manifold V together with a decomposition ∂V = ∂−V ⊔ ∂+V into non-empty

unions of components, such that Â(∂−V ) 6= 0 and scalg ≥ n(n − 1). Then the
following holds:

(1) If Hg ≥ − tan(nl/2) for some 0 < l < π/n, then

width(V, g) = distg(∂−V, ∂+V ) ≤ 2l.

(2) If, in addition, equality in the above estimate is attained, then V is iso-
metric to M × [−l, l],

g = cos(nx/2)2/ngM + dx2,

for some spin manifold (M, gM ) that admits a parallel spinor.
(3) In particular, width(V, g) < 2π/n.

Our results in [1] also yield (1) in many other situations, including bands over
all even-dimensional enlargeable manifolds. Moreover, the equality (3) was es-
tablished previously by both Cecchini and Zeidler in cases with non-vanishing
Rosenberg index; see [9, 2, 10] for details. The latter is a sophisticated index
invariant living real K-theory of group C*-algebras, which makes sense and has a
rich set of non-trivial examples in all parities of the dimension.

Our main result corresponding to Conjecture 2 reads as follows:

Theorem 2 (cf. [1]). Let (M, g) be a compact connected n-dim. Riemannian spin
manifold with boundary such that scalg ≥ n(n − 1) on M , where n ≥ 2 is even.
Let f : M → Sn be a smooth area non-increasing map. Suppose that for some
0 < l < π/n the following estimates hold:

• distg(∂M, supp(df)) ≥ l.
• Hg ≥ − tan(nl/2) on ∂M ,

Then the mapping degree of f is zero.

One of the crucial observations here is that as l → π/n, the lower mean curva-
ture bound in the hypotheses of both theorems tends to −∞. In other words, as l
approaches this threshold and assuming that there is a non-trivial index invariant
or mapping degree, the mean curvature must explode somewhere at the boundary.

Our techniques also yield rigidity result for annuli in space forms as follows:

Theorem 3 (cf. [1]). Let n ≥ 3 be odd, κ ∈ R and (Mκ, gκ) be the n-dimensional
simply connected space form of curvature κ. Consider the annulus around a base-
point p0 ∈ Mκ

At−,t+ = {p ∈ Mκ | t− ≤ dgκ(p, p0) ≤ t+},
where 0 < t− < t+ < t∞ with t∞ = π/

√
κ if κ > 0 and t∞ = +∞ otherwise.
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Then any Riemannian metric g on At−,t+ such that

• g ≥ gκ,
• scalg ≥ scalgκ = κn(n− 1),
• Hg ≥ Hgκ = ± ctκ(t±),

must satisfy g = gκ.

On a technical level, our proofs are based on augmenting the spinor Dirac
operator by a Lipschitz potential and subjecting it to Chiral boundary conditions
which are tailor-made for this problem. We develop all of this inside a general
framework via a new notion of so-called relative Dirac bundles (see [1, Sections 2-
4] for details). The main principle is that we can use these tools to compare certain
spin manifolds to model spaces which are suitable warped products, provided that
one can produce a non-trivial solution of a boundary value problem associated
to the augmented Dirac operator on the given manifold (see [1, Section 8] for
details). The warped product appearing in the rigidity part of Theorem 1 is just
one particular example of this. Moreover, the potential used to augment the Dirac
operator has a direct geometric interpretation: Up to a constant it corresponds to
the mean curvature of the cross sections in the model warped product space.

In in light of the previous paragraph, our techniques have a formal similarity
to µ-bubbles or generalized soap bubbles, which have recently led to substantial
advances via the geometric measure theory approach to scalar curvature, see [5,
Section 5], [3, 4, 7] for examples. In this context, analogous estimates as stated in
Theorem 1 for bands were also exhibited recently by Räde [8]. It may be a fruitful
endeavour for the future to investigate if there are deeper connections between
these two approaches beyond this formal similarity.
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Uniqueness of Weak Solutions to the Ricci Flow and
Topological Applications

Richard Bamler

(joint work with Bruce Kleiner)

In this talk I surveyed recent work [1, 2, 3] with Kleiner in which we verify the
following two topological conjectures using Ricci flow.

Theorem 1 (Generalized Smale Conjecture). Let M = S3/Γ be a 3-dimensional
spherical space form. Then its diffeomorphism group and isometry group are ho-
motopy equivalent: Diff(M) ≃ Isom(M). More specifically, the inclusion map
Isom(M) → Diff(M) is a homotopy equivalence.

Theorem 2. Let M be a closed, orientable 3-manifold and denote by MetPSC(M)
the space of Riemannian metrics on M with positive scalar curvature (equipped
with the C∞-topology). Then MetPSC(M) is either empty or contractible.

Theorem 1 gives an alternative proof of the Smale Conjecture, concerning
M = S3, which was originally due to Hatcher [6]. Theorem 2 can be seen as
an extension of a result by Marques [8] who proved connectedness of MetPSC(S

3)
and MetPSC(M)/Diff(M).

Our proof is based on a new uniqueness theorem for singular Ricci flows. Singu-
lar Ricci flows were inspired by Perelman’s proof of the Poincaré and Geometriza-
tion Conjectures [9, 10, 11], which relied on Ricci flow with surgery. A Ricci flow
with surgery is a flow in which singularities are removed by a certain surgery
construction. Since this surgery construction depends on various auxiliary param-
eters, the resulting flow is not uniquely determined by its initial data. Perelman
therefore conjectured that there must be a canonical, weak Ricci flow that auto-
matically “flows through its singularities” at an infinitesimal scale.

In [7] Kleiner and Lott showed the existence of such a flow:

Theorem 3. Given any closed, orientable Riemannian 3-manifold (M, g) there
is a singular Ricci flow M “through its singularities” with initial time-slice (M0, g0)
∼= (M, g).

In this flow, change of topology essentially occurs at an infinitesimal scale.
Existence of this flow was obtained, via a compactness theorem, as a subsequential
limit of a sequence of Ricci flows with surgery starting from (M, g) with surgery
scale δi → 0. Due to the use of the compactness theorem, the proof of Kleiner and
Lott did not imply uniqueness of M; this was achieved by Bamler and Kleiner
using other techniques [1]:

Theorem 4. Any singular, 3-dimensional Ricci flow M is uniquely determined,
up to isometry, by its initial time-slice (M0, g0).

Theorems 3, 4 fully resolve Perelman’s conjecture. The proof of Theorem 4
furthermore implies the following continuity statement:
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Theorem 5. Let M be a closed 3-manifold. For any Riemannian metric g on
M let Mg be a singular Ricci flow with initial condition (M, g). Then the map
g 7→ Mg is continuous in a certain sense.

Theorem 5 allowed us to evolve continuous families of metrics by singular Ricci
flows and prove Theorems 1, 2. To illustrate our strategy, it is helpful to consider
the 2-dimensional case first. In this case, the flow behaves much nicer:

Theorem 6 (Chow, Hamilton [4, 5]). Any Ricci flow on S2 converges, modulo
rescaling, to a metric of constant curvature 1.

Thus—modulo some technical details—we may view Ricci flow as a deformation
retraction from Met(S2) to MetK≡1(S

2), where the latter denotes the space of
metrics of constant curvature 1 (those are isometric to the round metric). Since
Ricci flow preserves the positive scalar curvature condition, it can also be seen as
a deformation retraction from MetPSC(S

2) to MetK≡1(S
2). This implies that

MetPSC(S
2) ≃ MetK≡1(S

2) ≃ Met(S2) ≃ ∗
So all spaces are contractible. A standard topological argument involving the long
exact sequence of the fiber bundle Isom(S2) → Diff(S2) → MetK≡1(S

2) eventually
implies that Isom(S2) → Diff(S2) is a homotopy equivalence.

Our proofs of Theorems 1, 2 replicate this strategy and rely on Theorem 5
for continuous dependence of the flow on its initial data. However, the possible
occurrence of singularities and the resulting change in topology implies that we
cannot describe the singular flowsM by continuous paths in Met(M). To overcome
this issue we have devised methods of converting a continuous family of singular
Ricci flows into the desired homotopy in Met(M). The first method in [2] is easily
accessible, but can only be used to show Theorem 2 in the case if M 6≈ S3,RP 3.
The second method in [3] is significantly more technical; it employs a new concept
called “partial homotopy” and allows the proof of both Theorems 1, 2.
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Index theory and Gromov’s conjectures on positive scalar curvature

Zhizhang Xie

In the past several years, Gromov has formulated an extensive list of conjectures
and open questions on scalar curvature [2, 3]. This has given rise to new per-
spectives on scalar curvature and inspired a wave of recent activity in this area.
In this talk, I shall present my recent work on a quantitative relative index theo-
rem (Theorem 2) that serves as a conceptual framework for solving some of these
conjectures and open questions.

For example, we answer the following conjecture of Gromov for all dimensions
with a suboptimal constant.

Conjecture 1 (Gromov’s �n inequality, [3, section 3.8]). Let g be a Riemannian
metric on the cube In = [0, 1]n. If Sc(g) ≥ n(n− 1), then

n∑

j=1

1

ℓ2j
≥ n2

4π2
,

where ℓj = dist(∂j− , ∂j+) is the g-distance between the pair of opposite faces ∂j−
and ∂j+ of the cube. Consequently, we have

min
1≤j≤n

dist(∂j− , ∂j+) ≤
2π√
n
.

In fact, our method proves Gromov’s �
n−m inequality conjecture in the spin

case, which is a generalization of Conjecture 1, for all dimensions with a suboptimal
constant (cf. Theorem 3 below).

One of the key ingredients for the proof of Conjecture 1 is the following quan-
titative relative index theorem.

Theorem 2 ([7, Theorem I]). Let Z1 and Z2 be two closed n-dimensional Rie-
mannian manifold and Sj a Euclidean Cℓn-bundle

1 over Zj for j = 1, 2. Suppose

Dj is a Cℓn-linear Dirac-type operator acting on Sj over Zj. Let Z̃j be a Galois

Γ-covering space of Zj and D̃j the lift of Dj. Let Xj be a subset of Zj and X̃j the

preimage of Xj under the covering map Z̃j → Zj. Denote by Nr(Zj\Xj) the open
r-neighborhood of Zj\Xj. Suppose there is r > 0 such that all geometric data on
Nr(Z1\X1) and Nr(Z2\X2) coincide, i.e. there is an orientation preserving Rie-
mannian isometry Φ: Nr(Z1\X1) → Nr(Z2\X2) such that Φ lifts to an isometric
Cℓn-bundle isomorphism Φ: S1|Nr(Z1\X1) → S2|Nr(Z2\X2). Assume that

1Here Cℓn is the real Clifford algebra of Rn. See [4, II.§7 and III. §10] for more details on
Cℓn-vector bundles and the Clifford index of Cℓn-linear Dirac operators.
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(1) there exists σ > 0 such that

Rj(x) ≥
(n− 1)σ2

n

for all x ∈ Xj, where Rj is the curvature term appearing in D2
j = ∇∗∇+

Rj,
(2) and D1 = Φ−1D2Φ on Nr(Z1\X1).

Then there exists a universal constant C > 0 such that if σ · r > C, then we have

IndΓ(D̃1)− IndΓ(D̃2) = 0

in KOn(C
∗
max(Γ;R)), where IndΓ(D̃j) denotes the maximal higher index of D̃j and

C∗
max(Γ;R) is the maximal group C∗-algebra of Γ with real coefficients.

Our numerical estimates show that the universal constant C is ≤ 40.65. As an
application of Theorem 2, we have the following theorem, which proves Gromov’s
�

n−m inequality conjecture in the spin case, a generalization of Conjecture 1, for
all dimensions with a suboptimal constant.

Theorem 3 ([7, Theorem II]). Let X be an n-dimensional compact connected
spin manifold with boundary. Suppose f : X → [−1, 1]m is a smooth map that
sends the boundary of X to the boundary of [−1, 1]m. Let ∂j±, j = 1, . . . ,m, be
the pullbacks of the pairs of the opposite faces of the cube [−1, 1]m. Suppose Y⋔ is
an (n−m)-dimensional closed submanifold (without boundary) in X that satisfies
the following conditions:

(1) π1(Y⋔) → π1(X) is injective;
(2) Y⋔ is the transversal intersection of m orientable hypersurfaces {Yj}1≤j≤m

of X, each of which separates ∂j− from ∂j+;
(3) the higher index IndΓ(DY⋔

) does not vanish in KOn−m(C∗
max(Γ;R)), where

Γ = π1(Y⋔).

If Sc(X) ≥ n(n − 1), then the distances ℓj = dist(∂j−, ∂j+) satisfy the following
inequality:

m∑

j=1

1

ℓ2j
≥ n2

( 8√
3
C + 4π)2

.

where C is the universal constant from Theorem 2.

Subsequently, with Wang and Yu [6], I proved Theorem 3 with the optimal
constant via a different method, hence completely solves Conjecture 1 and its
generalization for spin manifolds in all dimensions. We point out that Cecchini
[1] and Zeidler [8, 9] proved a special case of Theorem 3 when m = 1 with the
optimal constant.

As another application of our quantitative relative index theorem, I proved the
following λ-Lipschitz rigidity result for hemispheres. This answers (asymptoti-
cally) an open question of Gromov on the sharpness of the constant λn for the
λ-Lipschitz rigidity of positive scalar curvature metrics on hemispheres [3, section
3.8].
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Theorem 4 ([7, Theorem V]). Let (X, g0) be the standard unit hemisphere Sn+.
If a Riemannian metric g on X satisfies that

(1) there is a λn-Lipschitz homeomorphism ϕ : (X, g) → (X, g0),
(2) and Sc(g) ≥ n(n− 1) = Sc(g0),

then

λn ≥ (1− sin
π√
n
)

√
1− 8C2

π2n

where C is the universal constant from Theorem 2. Consequently, the lower bound
for λn approaches 1, as n → ∞.

The above theorem is asymptotically optimal in the sense that the lower bound
for λn becomes sharp, as n = dim Sn → ∞. A key geometric concept behind the
proof of Theorem 4 is the following notion of wrapping property for subsets of Sn.

Definition 5 ([7, Definition 1.3]). [Subsets with the wrapping property] A subset
Σ of the standard unit sphere Sn is said to have the wrapping property if for all
sufficiently small ε > 0, the complement of the ε-neighborhood Nε(Σ) of Σ is
path-connected and furthermore there exists a smooth distance-contracting map
Φ: Sn → Sn such that the following are satisfied:

(1a) if n is even, Φ equals the identity map on Nε(Σ);
(1b) if n is odd, Φ equals either the identity map or the antipodal map on each

of the connected components of Nε(Σ);
(2) and the degree deg(Φ) of Φ is not equal to 1.

Roughly speaking, a subset Σ ⊂ Sn has the wrapping property if its geometric
size is “relatively small”. For example, if Σ is contained in a geodesic ball of
radius < π

2 , then Σ has the wrapping property [7, Lemma 5.3]. Moreover, if Σ is
contained in a pair of antipodal geodesic balls of radius < π

6 in an odd dimensional
sphere, then Σ also satisfies the wrapping property [7, Lemma 5.5]. Motivated by
theorems of Llarul [5, theorem A] and Gromov [3, section 3.9], we propose the
following open question.

Open Question (Rigidity for positive scalar curvature metrics on Sn\Σ). Let Σ
be a subset with the wrapping property in the standard unit sphere Sn. Let (X, g0)
be the standard unit sphere Sn minus Σ. If a (possibly incomplete) Riemannian
metric g on X satisfies

(1) g ≥ g0,
(2) and Sc(g) ≥ n(n− 1) = Sc(g0),

then does it imply that g = g0?
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Dominant energy condition and Dirac-Witten operators

Jonathan Glöckle

Energy conditions are a major ingredient for the famous singularity theorems of
General Relativity. In this talk based on [1] we discussed the dominant energy
condition (dec) from the perspective of initial data sets: An embedded spacelike
hypersurface M of a time-oriented Lorentzian manifold (M, g) carries an induced
Riemannian metric g and a second fundamental form k ∈ Γ(T ∗M ⊗ T ∗M) (with
respect to the future unit normal e0 on M). The constraint equations

(1)
2ρ = scalg + tr(k)2 − ‖k‖2

j = div k − dtr(k)

allow to recover certain components of the Einstein curvature Ein of (M, g). By
the Einstein field equations, ρ = Ein(e0, e0) and j = Ein(e0,−) ∈ Ω1(M) can
be given the interpretation of the energy density and the momentum density,
respectively, as experienced by an observer moving e0-direction. The dominant
energy condition for the space-time now implies that ρ ≥ ‖j‖, and thus imposes a
condition on initial data sets (g, k) via (1).

We conjecture that the converse of this is also true in the following sense: Given
an initial data set (M, g, k) subject to ρ ≥ ‖j‖, then M embeds as a spacelike
hypersurface into some time-oriented Lorentzian manifold (M, g) satisfying dec in
such a way that (g, k) is the induced pair on M . Evidence for this is provided in
two cases. Firstly, suppose there is a matter model for which the Cauchy problem
is solved and that satisfies dec. When (M, g, k) extends to an initial data set for the
Cauchy problem with this kind of matter, then the solution of the corresponding
evolution equations yields a space-time (M, g) as desired. In particular, this applies
when (g, k) is a solution of the vacuum constraints ρ = 0 and j = 0. However, in
general it is unclear whether every initial data set (M, g, k) with ρ ≥ ‖j‖ comes
from initial data of such a Cauchy problem with matter. Secondly, when (g, k)
satisfies the strict inequality ρ > ‖j‖ then the required space-time (M, g) also
exists. In this case g = −dt2 + g + 2tk + t2h induces (g, k) on M × {0} and, for a
suitable choice of h, satisfies dec on M × {0} ⊆ M × R in a very strict sense that
is taylored to be an open condition.
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The dominant energy condition ρ ≥ ‖j‖ for initial data sets plays an important
role in the various versions of the positive mass theorem. Here, the strategy is
often to look at the time-symmetric case k = 0 as a first step, where it reduces to
scalg ≥ 0. Motivated by this, we ask whether also other known results for non-
negative (or positive) scalar curvature have a generalization to initial data sets
(g, k) statisfing (strict) dec.

More concretely, there has been recent progress in constructing non-trivial el-
ements in the homotopy groups of the space R>(M) of positive scalar curvature
(psc) metrics on a compact spin manifold M , cf. e. g. [2, 3, 4]. Do these yield
non-trivial elements in the homotopy groups of I>(M), the space of initial data
sets (g, k) subject to the strict dec ρ > ‖j‖?

The first step is to define a suitable comparison map between R>(M) and
I>(M) (for compact M). The main observation here is that for λ ∈ R the pair
(g, λg) satisfies strict dec both in the case where g ∈ R>(M) and λ ∈ R is arbitrary
as well as when g is arbitrary and |λ| is large enough (the lower bound is given in
terms of the minimum of scalg on M). As the space of all metrics is contractible,
this allows to “cone off” the inclusion R>(M) →֒ I>(M), g 7→ (g, 0) both in the
upper region where λ > 0 and in the lower region with λ < 0. Together, this yields
a map from the suspension Φ: Susp(R>(M)) → I>(M). It should be noted that
although writing down such a map explicitly involves a number of choices, its
homotopy class is uniquely defined by the requirement that the upper/lower cone
is closed in the upper/lower region.

The second step consists in constructing an invariant that is able to detect non-
triviality of the induced elements in πk(I>(M)). For this, we note that in all of the
above-mentioned results on R>(M), Hitchin’s α-invariant α-diff : πk(R>(M)) →
KO−n−k−1({pt}) is shown to be non-trivial. For a compact spin manifold M , we
get the following:

Theorem 1. There exists a homomorphism α-diff : πk(I>(M)) → KO−n−k({pt})
such that for all k ≥ 0 the following diagram commutes:

πk(R>(M)) πk+1(Susp(R>(M))) πk+1(I>(M))

KO−n−k−1({∗})
α-diff

Susp Φ∗

α-diff

Recalling that the α-invariant is essentially the index of the family of (Cln-
linear) Dirac operators associated to a family of metrics, the construction of α-diff
relies on identifying an appropriate replacement for the Dirac operator in the
context of initial data sets. This job is done by the Dirac-Witten operator, which
was first introduced by Witten to give his spinorial proof of the positive mass
theorem [5], or rather its Cln,1-linear version. The Dirac-Witten operator D is
a zero-order perturbation of the Dirac operator D on the so-called hypersurface
spinor bundle of M :

D = D − 1

2
tr(k)e0·(2)
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When M is embedded as spacelike hypersurface inM , then the hypersurface spinor
bundle is the restriction of the spinor bundle of M to M and e0· is the involution
defined by Clifford multiplication with the future unit normal on M . Together
with Witten’s remarkable Schrödinger-Lichnerowicz type formula

D
2
= ∇∗∇+

1

2
(ρ− j♯ · e0·)(3)

showing thatD is invertible if (g, k) ∈ I>(M), the comparison formula (2) provides
all the (analytic) properties needed to define α-diff in complete analogy to α-diff.

Whereas higher homotopy groups of I>(M) might mainly be of theoretical
interest, identifying its path-components seems to have more direct applications
to physics. For this reason, we also have a look at the “k = −1”-case of the above
theorem.

Theorem 2. There is a map α-diff : π0(I>(M)) → KO−n({pt}) sending the path
component containing (g,−λg) – relative to the basepoint (g, λg) – to the α-index
α(M). Thereby, g is any metric on M and λ > 0 is large enough so that (g, λg) ∈
I>(M).

This shows in particular that if α(M) 6= 0, then there cannot be a space-
time (M, g) with a foliation M × [−1, 1] → M into spacelike hypersurfaces M ×
{t} such that dec is strictly satisfied on every slice and such that the induced
initial data set on M × {−1} is in the “Big Bang” compontent containing (g, λg)
and the one on M × {1} is in the “Big Crunch” component containing (g,−λg).
There are two drawbacks here: Firstly, we would like to get rid of the strictness
assumption so that one can simply assume (M, g) to satisfy dec. This passage,
which is similar in spirit to the transition from positive to non-negative scalar
curvature performed by Schick-Wraith [6], has been recently discussed in joint
work with Bernd Ammann in [7]. Secondly, precisely in spacelike dimension 3,
which would be most relevant to physics, the target KO-group is zero. This can
be overcome by considering more refined index obstructions to psc that take the
fundamental group into account. Here, in a paper that is about to be finished,
I show that the conclusion about π0(I>(M)) also holds if M satisfies Gromov-
Lawson’s enlargeability obstruction, which includes many examples such as tori or
spin manifolds admitting non-positive sectional curvature.

Nevertheless, the dominant energy condition is far from being understood and
there are many techniques from the study of psc metrics that still await their
counterpart in the setting of initial data sets.
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µ-Bubbles and the Band Width Conjecture

Daniel Räde

1. Summary

This talk is based on the preprint [10]. Let X be a connected smooth compact
(n ≥ 2)-dimensional manifold with boundary ∂X 6= ∅ and let σ > 0 be a positive
real number. By Gromov’s h-principle X admits a Riemannian metric g with
scalar curvature Sc(X, g) ≥ σ.

In case the open manifoldX\∂X does not admit a complete metric with positive
scalar curvature, it is an active field of research to study the geometry of (X, g).
One instance of this is the following conjecture [7, Conjecture 11.12 C] by Gromov:

Conjecture 1. Let Y be a closed smooth manifold of dimension n− 1 6= 4, which
does not admit a metric with positive scalar curvature. If g is a Riemannian metric
on X = Y × [−1, 1] with Sc(V, g) ≥ σ > 0, then

width(X, g) = distg (Y × {−1}, Y × {1}) ≤ 2π

√
n− 1

σn
.

In [7, Section 2] Gromov provided a proof for X = T n−1 × [−1, 1] and related
bands in dimension n ≤ 7. In case Y is a spin manifold Conjecture 1 has been
studied by Zeidler and Cecchini [4, 5, 12, 13]. They showed in particular that it
holds true if the Rosenberg index α(Y ) does not vanish [4, Theorem D].

Remark 2. The case n − 1 = 4 is excluded in Conjecture 1 because of some
counterexamples, which are peculiar to dimension 4. Using Seiberg-Witten theory
one can show that there exists a simply connected spin 4-manifold Y such that Y
does not admit a metric with positive scalar curvature but Y ×S1 does [11, Coun-
terexample 4.16]. Consequently Y × R admits a complete metric with uniformly
positive scalar curvature.

In his survey [8, Section 5.2] Gromov presented an alternative approach towards
Conjecture 1 involving so called µ-bubbles, which in short are hypersurfaces min-
imizing a warped volume functional. His ideas were first made precise by Jintian
Zhu [14] and recently this technique was used by Chodosh and Li [6, Theorem 2]
and Gromov [9, Section 7] to prove that closed aspherical manifolds of dimension
≤ 5 do not admit a metrics with positive scalar curvature.

We denote cn :=
√

n−1
n and use the µ-bubble technique to prove the following:

https://arxiv.org/abs/1607.00657
https://arxiv.org/abs/2103.11032
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Theorem A. Let Y n−1 be a closed connected oriented manifold which does not
admit a metric with positive scalar curvature and n− 1 ∈ {1, 2, 3, 5, 6}. Let g be
a metric on X = Y × [−1, 1] with Sc(X, g) ≥ σ > 0. If the mean curvature of the
boundary satisfies

H(∂−X) ≥ √
σcn tan

(√
σ(2cn)

−1ℓ−
)
and H(∂+X) ≥ −√

σcn tan
(√

σ(2cn)
−1ℓ+

)

for some −π(
√
σ)−1cn < ℓ− < ℓ+ < π(

√
σ)−1cn, then width(X, g) ≤ ℓ+ − ℓ−.

Remark 3. In dimension n − 1 = 4 the result still holds if Y is a closed ori-
ented manifold, which can not be dominated by a psc-manifold, or Y is spin with
nonvanishing Rosenberg index α(Y ). By adapting ideas of Gromov [9] in the lan-
guage of Chodosh and Li [6] we show that this covers the case of closed aspherical
4-manifolds.

As an immediate Corollary to Theorem A we obtain a sharpened version (re-
place ’≤’ by ’<’) of Conjecture 1 in all of the above cases. Our result is inspired
by recent work of Cecchini and Zeidler [5, Theorem 7.6], who observed and quan-
tified the contribution of the mean curvature H(∂±X) in the spin setting. Even
in dimension n − 1 = 4 and if Y is spin our Theorem A generalizes their result
as they are limited to using lower index theory by some technical issues (see [5,
Section 1.4] for a discussion). On the other hand their approach, which uses Dirac
operators with potentials, works in dimensions n > 7, while for µ-bubbles one runs
into problems with singularities.

It is expected, that the band width estimate Theorem A is accompanied by the
following rigidity statement (compare [5, Theorem 9.1]).

Conjecture 4. Let Y be a closed manifold of dimension n − 1 6= 4, which does
not admit a metric with positive scalar curvature. Let g be a Riemannian metric
on X = Y × [−1, 1] and σ > 0. If the following conditions hold:

• Sc(X, g) ≥ σ,
• H(∂−X) ≥ √

σcn tan
(√

σ(2cn)
−1ℓ−

)
and

H(∂+X) ≥ −√
σcn tan

(√
σ(2cn)

−1ℓ+
)
for some −π(

√
σ)−1cn < ℓ− <

ℓ+ < π(
√
σ)−1cn,

• width(X, g) ≥ ℓ+ − ℓ−,

then (X, g) is isometric to a warped product (Y × [ℓ−, ℓ+], ϕ2gY + dt2), where

ϕ(t) = cos

(√
σ

2cn
t

) 2
n

and gY is a Ricci flat metric on Y . In particular equality holds in all three condi-
tions.

We present some progress towards Conjecture 4 in dimension n− 1 ≤ 6. Here
we use ideas from [14, Section 3], where Zhu proves a rigidity result for certain
3-dimensional bands with positive sectional curvature.

If verified in its generality Conjecture 4 would be an instance of a comparison
type theorem involving scalar curvature. To prove it one needs to work out some
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analytical subtleties regarding µ-bubbles. As they are at the center of some new
and exciting developments in the field, this seems like a worthy undertaking.
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Diffeomorphisms and positive (scalar) curvature

Georg Frenck

This talk is about my recent preprint [Fre21]. A video abstract can be found here:
https://www.youtube.com/watch?v=wuaBwTMsqsc.

1. Introduction

Throughout this note, let M be a simply connected closed manifold of dimension
d. The classification of Riemannian metrics on M satisfying a given curvature
condition is a central problem in Riemannian geometry. Of course, open conditions
like positive scalar curvature are preserved under small perturbations of a metric.
Hence there cannot be a unique metric satisfying them. Therefore it is more
reasonable to study uniqueness “up to continuous deformation”, which translates
into the following question:

Is the space of Riemannian metrics on M
satisfying a given curvature condition contractible?

https://www.youtube.com/watch?v=wuaBwTMsqsc
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It has been shown that the space R+(M) of positive scalar curvature metrics has
many nontrivial homotopy groups, see [HSS14] or [BERW17]. One way to obtain
such elements is to consider the action of the diffeomorphism group Diff(M) of M
on R+(M) via pushforward. It has been first observed by Hitchin in [Hit74], that
for every Spin-manifold of dimension d ≡ 0, 1(8), there exists a diffeomorphism f
of M such that f∗g and g are not isotopic for every g ∈ R+(M). His proof works
by constructing an M -bundle over the circle with nontrivial α-invariant, which
obstructs positive scalar curvature on the total space. His result follows from the
following, more general detection principle.

Proposition 1. Let [ft] ∈ πk(Diff(M)) and let g ∈ R+(M). If the total space
of the bundle clutched by [ft] does not admit a metric of positive scalar curvature,
then [f∗

t g] ∈ πk(R+(M)) is nontrivial.

Hitchins result was later generalized by Crowley–Schick and Crowley–Schick–
Steimle [CS13, CSS18]. However, those results only applies, if the total space of
the bundle is of dimension ≡ 1, 2(8), where existence of positive scalar curvature
is obstructed by the α-invariant. The alpha-invariant is also non-zero in dimen-
sions ≡ 0(4), where it agrees with the Â-genus. It has been abstractly shown by
Hanke–Schick–Steimle, that such bundles exists, but until very recently, no ex-
plicit examples were known. One reason is, that there are obstructions to finding
such bundles:

Theorem 2 ([HSS14, Proposition 1.9], [Wie19, Lemma 2.3]). If all rational Pon-
tryagin classes of M are trivial or if k > 2d− 1, then every M -bundle over Sk+1

has vanishing Â-genus.

On the other hand, an explicit example of such a bundle was very recently found
by Krannich–Kupers–Randal-Williams:

Theorem 3 ([KKR21]). There exists an HP2-bundle E → S4 with Â(E) 6= 0.

It turns out, that the methods used in [KKR21] can be applied to quite general
manifolds and we use them to prove the following generalization.

Theorem 4 ([Fre21, Theorem A]).

(1) Let M be a simply connected manifold with at least one non-vanishing
rational Pontryagin class and let k ≤ min(d−1

3 , d−5
2 ). Then there exists an

M -bundle E → Sk+1 with Â(E) 6= 0.
(2) If additionally M admits a Spin-structure and a metric of positive scalar

curvature, then E can be chosen to admit a Spin-structure and there is a
cross-section with trivial normal bundle.

Note, that this theorem is almost optimal, as it precisely excludes the two
obstructions from Theorem 2. The bound on k can be slightly improved if M is

highly connected. Since the Â-genus is an integer-valued invariant, we also deduce
the following corollary:
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Corollary 5. Let M be a simply connected Spin-manifold that has a non-vanishing
rational Pontryagin class and let k be as above. Let furthermore RC(M) ⊂ R+(M)
be a diffeomorphism invariant, non-empty subset. Then

πk(RC(M))⊗Q 6= 0.

The same holds true with M replaced by M#N for any Spin-manifold N of di-
mension d.

Let us conclude by listing examples, to which this corollary applies.

Example 6. (1) The most immediate examples for the subspacesRC(M) are
the spaces positive Ricci and positive sectional curvature. One could also
take any positive lower bounds on scalar, Ricci or sectional curvature. By
a Ricci-flow argument carried out in [FR21, Proposition 3.3], the corollary
also hold for the space of non-negative scalar curvature metrics.

(2) The class of manifolds as in the corollary includes the projective spaces
CP2n+1, HPn and OP2. One can also take Sn ×K (for K a K3-surface)
or Sn × B (for B the Bott manifold) if n ≥ 2. Furthermore, this class is
also closed under products and connected sums with arbitrary manifolds.

2. Outline of the argument

Before we start, let us remark again, that the underlying construction is the same
as in [KKR21]. Instead of constructing an actual fiber bundle they construct a so-
called block bundle. The advantage of working with block bundles is that the k-th

homotopy group πk(hAut(M)/D̃iff(M)) of the classifying space for fiber homotopy
trivial block bundles is isomorphic to the structure set S∂(D

k ×M) from surgery
theory. The latter is accessible through the surgery exact sequence

Lk+d+1(Zπ1M) −→ S∂(D
k ×M) −→ N∂(D

k ×M)
σ−→ Lk+d(Zπ1M)

where N∂ denotes the set of normal invariants. We are interested in the case,
where M is simply connected, so the L-groups are given by 0 on the left and by Z

on the right. Hence, in order to construct an M -bundle it suffices to construct a
normal invariant η with σ(η) = 0. It turns out, that the set of normal invariants is
(rationally) isomorphic to the reduced real K-theory of Sk ∧M+ which allows one
to construct a normal invariant and hence a (fiber homotopy trivial) block bundle
with prescribed Pontryagin classes. Fiber homotopy trivial block bundles over Sk

can (rationally) be given the structure of an actual fiber bundle if k is (roughly)
smaller than d/3 by a classical result of Burghelea–Lashof (cf. [BL82]).

The main work in the present article lies in solving the combinatorial problem
of choosing appropriate normal invariants. This way we can ensure that certain
Pontryagin classes and numbers of the total space of the corresponding block
bundle are zero or nonzero.
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Existence of static vacuum extensions

Lan-Hsuan Huang

(joint work with Zhongshan An)

1. Bartnik’s static extension conjecture

Let n ≥ 3 and (M, g) be an n-dimensional Riemannian manifold. We say that
(M, g) is static vacuum if there is a scalar-valued function u on M satisfying

−uRicg +∇2
gu = 0

∆gu = 0.

Such u is called a static potential. Let the number q ∈ (n−2
2 , n − 2). We say

that (M, g) is asymptotically flat (at the rate q) if there is a compact subset
K ⊂ M such that M \ K is diffeomorphic to Rn \ B1 and that the metric g
has the asymptotics gij = δij + O(|x|−q) with respect to the pull-back Cartesian
coordinates {x1, . . . , xn} on M \K.
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Example 1. The family of (Riemannian) Schwarzschild metrics gm is a family of
asymptotically flat, static vacuum manifolds:

gm =
(
1− 2m

rn−1

)−1
dr2 + r2gSn−1 defined on Rn \B

(2m)
1

n−1
,

with the static potential um =
√
1− 2m

rn−1 , where gSn−1 is the standard metric

on the unit sphere Sn−1. When m = 0, the Schwarzschild metric becomes the
Euclidean metric. When m > 0, the Schwarzschild manifold has an outermost
minimal hypersurface boundary.

The celebrated theorem on Uniqueness of Static Black Holes says that a 3-
dimensional asymptotically flat, static vacuum manifold with minimal surface
boundary is uniquely characterized as a Schwarzschild manifold. In contrast to the
above uniqueness result, Robert Bartnik conjectured the following Plateau-type
problem for static vacuum manifolds [5, Conjecture 7].

Conjecture 2 (Static Extension Conjecture). Let (Ω, g0) be a compact manifold
with scalar curvature Rg0 ≥ 0. Suppose the mean curvature Hg0 is not everywhere
≤ 0 on the boundary Σ. Then there exists a unique asymptotically flat, static
vacuum manifold (M, g) with boundary ∂M ∼= Σ satisfying

g⊺0 = g⊺

Hg0 = Hg
on Σ.

We shall refer to the geometric boundary data (g⊺0 , Hg0) as the Bartnik boundary
data. Let us also remark on the assumption that Hg0 is not everywhere less
or equal to zero. The conjecture would fail without this assumption because if
such extension, if exist, would contain a minimal hypersurface homologous to
the boundary, and thus the extension must be Schwarzschild, which put further
restriction on possible g⊺0 .
There are some progresses toward Conjecture 2 if n = 3 and if (g0, Hg0) is suf-
ficiently close to the induced Bartnik boundary data from the flat metric on a
round sphere; that is, if (g0, Hg0) is sufficiently close to (gS2 , 2). See Miao [7],
Anderson-Khuri [4], and Anderson [3].

In this report, we discuss the results from [1] that confirm existence and local
uniqueness of Conjecture 2 for large classes of boundary data, including those close
to the induced boundary data on either a convex surface or a generic hypersurface
in the Euclidean space.

2. Main results

Let Ω be a bounded open subset in Rn whose boundary Σ = ∂Ω is an embedded
hypersurface in the Euclidean space (Rn, ḡ). Our first main result gives a general
criterion for the existence and local uniqueness of static vacuum pairs.

Theorem 3. Suppose the boundary Σ is static regular in Rn \ Ω. Then there
exist positive constants ǫ0, C such that for each ǫ < ǫ0, if (τ, φ) satisfies ‖(τ, φ) −
(ḡ⊺, Hḡ)‖C2,α(Σ)×C1,α(Σ) < ǫ, then there exists a unique asymptotically flat pair
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(g, u) with ‖(g, u)− (ḡ, 1)‖C2,α
−q

(Rn\Ω) < Cǫ such that (g, u) is a static vacuum pair

in Rn \Ω having the Bartnik boundary data (g⊺, Hg) = (τ, φ) on Σ and satisfying
both the static-harmonic gauge and the orthogonal gauge.

We shall refer the definition of the weighted Hölder spaces C2,α
−q (R

n \ Ω) in
[1]. Note that Conjecture 2 can be formulated as a boundary value problem for a
system of differential equations. In a loose sense, we say that Σ is static regular
in Rn \ Ω if any solution (h, v) (with the suitably fall-off rate at infinity) to the
linearized boundary value problem must satisfy a stronger boundary condition.
(See [1, Definition 2] for a precise definition.) The static regular condition enables
us to show that the linearized boundary value has only “trivial” solutions, i.e.
those arising from diffeomorphisms.

Furthermore, we can show that large classes of hypersurfaces are static regular.
We begin with convex surfaces in R3.

Theorem 4. Let Ω be a bounded open subset in R3 whose boundary Σ = ∂Ω has
positive Gauss curvature. Then Σ is static regular in R3 \ Ω.

We are also able to show that a generic hypersurfaces in Rn is static regular in
the following concrete sense.

Theorem 5. Let t ∈ [−δ, δ] and each Ωt ⊂ Rn be a bounded open subset with
hypersurface boundary Σt = ∂Ωt embedded in Rn. Suppose the boundaries {Σt}
form a smooth generalized foliation. Then there is an open dense subset J ⊂ (−δ, δ)
such that Σt is static regular in Rn \ Ωt for all t ∈ J .

By a dilation argument, the above theorem implies that a round sphere Sn−1

is static regular in Rn \B1.

3. Remarks and open questions

While our proofs heavily use that the background metric is the Euclidean met-
ric, it gives a roadmap to solve Bartnik’s static extension conjecture when the
background metric is a general static vacuum manifold, such as the family of
Schwarzschild manifolds. In forthcoming work [2], we show how to extend Theo-
rem 3 and Theorem 5 to weakly mean-convex hypersurfaces Σ homologous to (but
not intersect with) the minimal boundary of a Schwarzschild manifold. Our results
should give better understanding on the structure of static vacuum manifolds. For
example, as a direct consequence of our results, we can get vast examples of non-
Schwarzschild, asymptotically flat, static vacuum manifolds whose boundary has
constant mean curvature arbitrary close to zero.

Example 6. Given any ǫ > 0, there is an asymptotically flat, static vacuum
manifold (Rn \B1, g) such that the boundary Sn−1 has constant mean curvature
Hg = c with 0 < c < ǫ but g is not isometric to Schwarzschild.

In particular, those examples give an interesting contrast with uniqueness when
Hg = 0 from Uniqueness of Static Black Holes mentioned above.
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One can also consider the “dual” problem to extension question. For a given
Bartnik boundary data, one can ask whether there exists a static vacuum fill-
in, or more generally a nonnegative scalar curvature fill-in. This question has
already be touched upon in the work of Bray and of Jauregui, and there are
known obstructions to existence. The following problem was recently proposed by
Gromov [6, Section 3.12].

Problem 7. Let (Y, h) be a closed (n− 1)-dimensional Riemannian manifold and
φ a smooth function on Y . Find conditions such that, for a given number σ, there
exists a complete n-dimensional Riemannian manifold (X, g) with Rg ≥ σ, ∂X =
Y , and the Bartnik boundary data of g realizes (h, φ); namely, (g⊺, Hg) = (h, φ)
on Σ.
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Kodaira Dimension and the Yamabe Problem, Revisited

Claude LeBrun

(joint work with Michael Albanese)

The Yamabe invariant Y (M) of a smooth compact n-manifold M is the diffeo-
morphism invariant defined by

(1) Y (M) := sup
γ

inf
g∈γ

∫
M sg dµg

[
∫
M

dµg]
n−2
n

where γ varies over all possible conformal classes of Riemannian metrics, and
where sg and dµg respectively denote the scalar curvature and volume measure of
an arbitrary metric g. It is not hard to to show that Y (M) > 0 iff M admits a
metric of scalar curvature s > 0. On the other hand, Y (M) ≥ 0 just means that
M admits a unit-volume metric of scalar curvature s > −ǫ for every ǫ > 0.

When n = 4 and M is the underlying smooth manifold of a compact com-
plex surface (M4, J), Donaldson [6] discovered that certain well-known complex-
analytic invariants are actually diffeomorphism invariants of M , although they
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aren’t homeomorphism invariants. Witten’s introduction [18] of Seiberg-Witten
invariants then seemed to hint that this phenomenon must somehow be closely
tied to the behavior of the scalar curvature.

One such systematic relationship turns out to involve the Kodaira dimension,
a basic complex-analytic invariant of (M4, J) that is defined by

Kod(M,J) = lim sup
j→+∞

log dimH0(M,O(K⊗j))

log j

where K = Λ2,0 is the canonical line bundle of (M,J). For any compact complex
surface, this invariant belongs to {−∞, 0, 1, 2}, because it in fact coincides [3] with
the largest complex dimension of an image of M 99K P[H0(M,O(K⊗j))∗] among
all the “pluricanonical” maps associated with the line bundles K⊗j, j ∈ Z+, albeit
after imposing the idiosyncratic convention that dim∅ := −∞ in this context. For
(M,J) of Kähler type, the speaker previously combined Seiberg-Witten arguments
with constructions of suitable sequences of Riemannian metrics to show [13] that
the Kodaira dimension is related to the Yamabe invariant in the following manner:

Theorem (L ’98). Let M be the underlying smooth 4-manifold of a compact com-
plex surface (M4, J) of Kähler type. Then

Y (M) > 0 ⇐⇒ Kod(M,J) = −∞,

Y (M) = 0 ⇐⇒ Kod(M,J) = 0 or 1,

Y (M) < 0 ⇐⇒ Kod(M,J) = 2.

Here the Kähler-type condition is equivalent [3, 4, 17] to requiring that b1(M) be
even, and this is actually the same [8] as requiring that (M4, J) be deformation-
equivalent to a smooth projective-algebraic variety. Note the that this pattern
does not generalize to higher dimensions, because while the Kodaira dimension
can be defined for compact complex manifolds of any complex dimension, it is not
[5, 12, 15] a diffeomorphism invariant in any complex dimension ≥ 3, and so does
not correlate with the Yamabe invariant in higher dimensions.

However, a curious limitation of the above result is that it only applies when
the first Betti number b1(M) is even. Fortunately, our first new result is an
improvement that does not depend on the parity of the first Betti number:

Theorem A. Let M be the underlying smooth 4-manifold of any compact complex
surface (M4, J) of Kodaira dimension 6= −∞. Then

Y (M) = 0 ⇐⇒ Kod(M,J) = 0 or 1,

Y (M) < 0 ⇐⇒ Kod(M,J) = 2.

One cornerstone of Kodaira’s classification of complex surfaces [3, 9] is the
blow-up operation, which replaces a point of a complex surface Y with a CP1 of
normal bundle O(−1); this then produces a new complex surface M that is diffeo-
morphic to Y#CP2, where CP2 denotes the smooth oriented 4-manifold obtained
by equipping CP2 with the non-standard orientation. Conversely, any complex
surface M containing a CP1 of normal bundle O(−1) can be blown down to pro-
duce a new complex surface Y of which M then becomes the blow-up. While this



Analysis, Geometry and Topology of Positive Scalar Curvature Metrics 1611

blow-down procedure can in principle be iterated, the process necessarily termi-
nates after finitely many steps, because each blow-down decreases b2 by 1. When
a complex surface X cannot be blown down, it is called minimal, and the upshot
is that any complex surface M can be obtained from a minimal complex surface
X by blowing up finitely many times. In this situation, one then says that X is
a minimal model of M . Blowing up or down always leaves the Kodaira dimension
unchanged. Moreover, the minimal model of a complex surface is actually unique
whenever Kod 6= −∞.

Our proof of Theorem A also yields the the following additional new result,
which was previously proved in [11, 13] for b1(M) even:

Theorem B. Let (M,J) be a compact complex surface with Kod 6= −∞, and let
(X, J ′) be its minimal model. Then

Y (M) = Y (X).

In fact, most cases of Theorems A and B were already proved in [13], leaving
only the case of Kod = 1 and b1 odd to be settled. Moreover, even in this out-
standing case, the results of [13] showed that that these remaining manifolds admit
sequences of Riemannian metrics with

∫
s2 dµ → 0, and therefore have Y ≥ 0.

Thus, it only remained to show that properly elliptic complex surface with b1 odd
can never admit Riemannian metrics of positive scalar curvature. The first step
in our proof is to use a covering argument to reduce this claim to the following
narrower assertion:

Lemma. Let Σ denote a compact Riemann surface of genus ≥ 2, and let N → Σ
be a non-trivial circle bundle. Set X = N × S1, and let M = X#kCP2 for some
integer k ≥ 0. Then M does not admit any Riemannian metric g of positive scalar
curvature.

We then give two entirely different proofs [2, 14] of this lemma. Our first proof
is based on the Schoen-Yau stable-minimal-hypersurface method [16], and is pre-
sented in a way that simultaneously implies other relevant results. Our second
proof involves the Seiberg-Witten equations, and so is closer in spirt to the tech-
niques used [11, 13] in the Kähler-type case. Despite a result of Biquard that shows
that these manifolds do not carry any Seiberg-Witten basic classes, an argument
due to Kronheimer [10] shows that controlled perturbations of the Seiberg-Witten
equations nonetheless have solutions on arbitrarily high covers of the manifold, for
specific spinc structures, and this leads to systematic scalar-curvature estimates
downstairs which we codify by introducing the new concept of a mock-monopole

class. Either argument, in conjunction with the results of [13], then implies that
any compact complex surface with b1 odd and Kod = 1 necessarily has Y = 0.

Theorems A and B have been formulated to exclude complex surfaces with
Kod = −∞ and b1 odd. These complex surfaces, which actually all have b1 = 1,
were named surfaces of class VII by Kodaira [9], and inhabit a realm where algebraic
geometry holds no sway. These include the familiar Hopf surfaces, and because
blowing up such an examples turns out to change the Yamabe invariant [7], the
exclusion of class VII in Theorem B is absolutely necessary. On the other hand,
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class-VII surfaces must also be excluded from Theorem A, because while Hopf
surfaces and their blow-ups have Y > 0, the so-called Inoue-Bombieri surfaces
and their blow-ups also belong to class VII, but instead [1, 2] have Y = 0.
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Spaces of metrics with positive scalar curvature on manifolds
with boundary

Christian Bär

(joint work with Bernhard Hanke)

The talk is based on the results in [2]. A video abstract for this paper can be found
at https://vimeo.com/530490182. Throughout let M be an oriented compact
manifold with boundary.

https://vimeo.com/530490182
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1. A nonexistence result

Definition 1. We call a Hermitian vector bundle E over M with connection
admissible if it is isomorphic to the trivial bundle with trivial connection over a
neighborhood of the boundary and it has at least one nontrivial Chern number.

Definition 2. We say that an even-dimensional orientable compact connected
Riemannian manifold M with boundary has infinite K-area if for each ε > 0 there
exists an admissible E whose curvature satifies ‖RE‖ < ε.

This property is independent of the Riemannian metric on M . Changing the
metric changes the definition of the norm of RE but since M is compact, the norms
coming from two different metrics are equivalent.

Definition 3. We say that an orientable compact connected Riemannian manifold
M with boundary has stably infinite K-area if T k×M has infinite K-area for some
k (and hence for all k′ = k + 2ℓ).

Note that this definition is also meaningful for odd-dimensionalM . A large class
of manifolds with stably infinite K-area is given by area-enlargeable manifolds.
The following non-existence and rigidity result goes back to Gromov and Lawson
([6, Thm. 5.8] and [4, Sec. 5 1

4 ]) in the closed case.

Theorem 4. Let M be a compact connected spin manifold with boundary. Assume
M has stably infinite K-area. Then each Riemannian metric g on M with scal ≥ 0
and H ≥ 0 is Ricci-flat and satisfies H ≡ 0. In particular, M does not admit a
Riemannian metric with scal > 0 and H ≥ 0.

The same holds for N ×M if N is a closed connected spin manifold with non-
trivial Â-genus.

2. The main deformation result

Given a Riemannian metric g on M we denote by

⊲ scalg : M → R the scalar curvature of g,
⊲ g|∂M ∈ C∞(∂M ; (T ∗M ⊗ T ∗M)|∂M ) the restriction of g to ∂M ,
⊲ g0 ∈ C∞(∂M ;T ∗∂M ⊗ T ∗∂M) the metric induced on ∂M ,
⊲ IIg the second fundamental form of ∂M ⊂ M with respect to the interior
unit normal,

⊲ Hg = 1
n−1 trg(IIg) : ∂M → R the mean curvature of ∂M .

Let R(M) be the space of smooth Riemannian metrics on M with positive scalar
curvature (psc metrics), equipped with the weak C∞-topology.

The condition of having mean convex boundary (H ≥ 0) can be replaced by
other convexity assumptions. The following deformation result allows us to com-
pare those different boundary conditions.

Theorem 5. Let K be a compact Hausdorff space and let

g : K → R(M)
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be continuous. Let k : K → C∞(∂M ;T ∗∂M ⊗ T ∗∂M) be a continuous family of
symmetric (2, 0)-tensor fields satisfying 1

n−1 trg0(k(ξ)) ≤ Hg(ξ) for all ξ ∈ K.
Then for each neighborhood U of ∂M there is a continuous map

f : K × [0, 1] → R(M)

so that the following holds for all ξ ∈ K and s ∈ [0, 1]:

(a) f(ξ, 0) = g(ξ);
(b) f(ξ, s)|∂M = g(ξ)|∂M , in particular f(ξ, s)0 = g(ξ)0;
(c) IIf(ξ,s) = (1− s)IIg(ξ) + sk(ξ), in particular, IIf(ξ,1) = k(ξ);
(d) f(ξ, s) = g(ξ) on M \ U .

The proof uses the flexibility lemma ([1, Thm. 1.2 and Addendum 3.4]) and a
refined deformation analysis. It even holds if we replace the condition scalg > 0
in the definition of R(M) by the lower bound scalg > σ where σ : M → R is any
prescribed continuous function.

3. An application: comparison of different boundary conditions

We denote by RH≥0(M) the subspace of R(M) consisting of all psc metrics for
which the boundary is mean convex. Similar notation is applied to other bound-
ary conditions. By Rdoubl(M) we denote the space of all psc metrics which are
doubling, i.e. which yield a smooth metric after doubling the manifold along the
boundary.

Theorem 5 can now be used to show:

Theorem 6. Each of the inclusions in

RH=0(M)� u

((P
PP

PP
P

R
doubl(M)

� � // R
II=0(M)

)
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PP
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H≥0(M) R

H>0(M)? _oo

RII>0(M)
� � // RII≥0(M)

)
	

66♥♥♥♥♥♥

is a weak homotopy equivalence.

An inclusion being a weak homotopy equivalence means in particular that if the
larger space in nonempty then so is the smaller space. For instance, if M admits
a psc metric with H ≥ 0 then it also admits one which is doubling. For H > 0 is
fact has been shown by Gromov and Lawson in [5, Thm. C.3]

One popular boundary condition is missing here, namely that of having a metric
product structure near the boundary. Indeed, sometimes Rdoubl(M) is nonempty
while M does not carry any psc metric of product type near the boundary. As an
example let M = D2 × T n−2. Giving D2 the metric of a round hemisphere and
T n−2 a flat metric, the product metric on M will be a doubling psc metric.

But M cannot carry a positive scalar curvature metric with product structure
near the boundary. If it did, the boundary would inherit a positive scalar curvature
metric which is impossible since ∂M = T n−1.
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If one modifies the definition of R(M) and additionally requires that the induced
metric on the boundary also has positive scalar curvature, then Theorem 6 still
holds and includes the space of metrics with product structure near the boundary.

There are further applications of Theorem 5, for instance to the discussion of the
counterexample by Brendle, Marques, and Neves ([3]) to the Min-Oo conjecture
and to metrics with mean convex hypersurface singularities.

The homotopy equivalences in Theorem 6 would not be very interesting if the
spaces turned out to always be contractible. But this is not the case.

Theorem 7. For each m ≥ 0 there exists a connected compact spin manifold
M with nonempty boundary such that the m-th homotopy of every space in the
diagram of Theorem 6 contains nontrivial classes.

The proof combines ideas from [7] with Theorem 4.
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Scalar curvature rigidity of Einstein manifolds

Mattias Dahl

(joint work with Klaus Kröncke)

We say that a Riemannian Einstein manifold is scalar curvature rigid if there are
no compactly supported perturbations of the metric which strictly increases the
scalar curvature. From the rigidity parts of the positive mass theorems we know
that for example the Euclidean and hyperbolic spaces are scalar curvature rigid.

A symmetric 2-tensor with vanishing trace and divergence is called a TT-tensor.
The space of compactly supported TT-tensors on M is denoted by TTcs(M). The

Einstein operator ∆E : C∞(S2M) → C∞(S2M) is defined by ∆E = ∇∗∇− 2R̊,

where R̊hij = hklRiklj . An open Einstein manifold (M, g) is called linearly stable
if the number

https://doi.org/10.1002/cpa.21982
https://arxiv.org/abs/2012.09127
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λ1(∆E ,M) = inf
{
(∆Eh, h)L2 | h ∈ TTcs(M), ‖h‖2L2 = 1

}

is non-negative and linearly unstable otherwise.
The goal of this talk was to present the following result from [1].

Theorem 1. Suppose (M, g) is a Riemannian Einstein manifold which is not
locally a warped product. Then (M, g) is scalar curvature rigid if and only if it is
linearly stable.

To prove one of the implications in the Theorem, we prove a stronger statement
on 1-parameter deformations with prescribed scalar curvature and volume form,
and a symmetric two-tensor h prescribed as the first derivative of the deforma-
tion. For an unstable manifold we can choose this deformation to increase scalar
curvature.

Proposition 2. Assume that (M, g) is Einstein and not locally a warped product.
Let ft be a 1-parameter family of smooth functions whose supports are contained in
the relatively compact open set Ω ⊂ M . Assume that h 6= 0 is a smooth TT-tensor
with support in Ω satisfying∫

M

〈∆Eh, h〉div = −2

∫

M

f0 div .

Then there exists a 1-parameter family gt of metrics with g0 = g and d
dtgt|t=0 = h

such that scalgt = scalg + t2

2 ft, div
gt = divg, and gt = g outside of Ω.

The construction of the family gt is made through an Ansatz of the form gt :=

g + tht +
t2

2 kt where ht, kt are families of compactly supported two-tensor with
h0 = h. The freedom to set the trace and the trace-free part of kt indepently is
used to prescribe the scalar curvature and the volume form simultanously. To get
the exact solution for all small t we use an iteration scheme modelled on a proof of
a second order implicit function theorem. Crucial for the construction are results
by Delay [2] which allow us to solve for a compactly supported trace-free part of kt
with second divergence prescribed. To apply these results we need the assumption
that the manifold is not locally a warped product.

To prove the other implication in the Theorem, we use a modified version of the
lambda functional. Let (M, g) be a compact Riemannian manifold with smooth
boundary and let M be the set of smooth metrics on M such that g − g vanishes
to all orders at ∂M . Let C∞(M) be the set of smooth functions on M . For α > 0,
define

Fα : M× C∞(M) → R, Fα(g, f) :=

∫

M

(
scalg + α|∇f |2

)
e−f div,

and

λα(g) := inf

{
Fα(g, f) | f ∈ C∞(M),

∫

M

e−f div = 1

}
.

For closed manifolds and with α = 1, this is the λ-functional introduced by Perel-
man. Computations show that Einstein metrics are critical points of λα with
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respect to volume-preserving deformations. The second order variation of λα at
an Einstein metric with respect to volume-preserving deformations is computed in
terms of ∆E . Using this we can prove the following.

Proposition 3. Let (M, g) be a compact Einstein manifold with boundary and
assume that the first non-zero Neumann eigenvalue of the Laplacian satisfies

µN
1 (M,∆g) >

scalg

n− 1

where n = dimM . Choose α > 0 so small that

(
1− n− 2

n− 1
α

)
µN
1 (M,∆g) >

scalĝ

n− 1
.

Then, if the first Dirichlet eigenvalue of the Einstein operator on TT tensors
satisfies

µD
1 (M,∆g

E |TT ) > 0,

there is a neighbourhood V of g in M such that λα(g̃) ≤ λα(g) for every g̃ ∈ V
with vol(M, g̃) = vol(M, g) and equality holds if and only if g is Einstein.

For closed manifolds, the inequality for the Laplacian eigenvalue is given by the
Lichnerowicz-Obata eigenvalue estimate. The implication in the Theorem follows
since a scalar curvature increasing deformation will increase the value of λα.

Examples of unstable Einstein manifolds can be found among the so called
gravitational instantons. The Riemannian Schwarzschild metric and the Taub-
Bolt metric are complete Ricci-flat unstable manifolds, and the Riemannian AdS
Schwarzschild is a complete negative Einstein unstable manifold. They all have
negative bottom of L2-spectrum of ∆E , which means that ∆E has negative Dirich-
let eigenvalues over sufficiently large precompact open sets Ω. The corresponding
eigensection on such an Ω is automatically a TT -tensor, and we can again use
the results of Delay [2] to find compactly supported TT -tensors with a negative
integral as in the first Proposition. We conclude that these space are not scalar
curvature rigid.
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Lp-stability and positive scalar curvature rigidity of Ricci-flat
ALE manifolds

Klaus Kröncke

(joint work with Oliver Lindblad Petersen)

A complete Riemannian manifold (M, g) is called asymptotically locally Euclidean
(ALE for short) of order τ > 0, if there exists a compact set K ⊂ M , a radius
R > 0 and a diffeomorphism ϕ : M \K → (Rn\BR)/Γ such that |∂k(ϕ∗g−geucl)| =
O(r−τ−k) for all k ∈ N0. Here, Γ ⊂ SO(n) is a discrete subgroup acting freely on
Sn−1.

If Γ is trivial, one recovers the notion of an asymptotically Euclidean (AE)
manifold. Note that Γ has to be trivial if n is odd. If (M, g) is ALE and Ricci-
flat, it is ALE of order n − 1. If in addition, (M, g) is Kähler or if n = 4, it is
ALE of order n. In any case, the fallof rate at infinity is so fast that ADM-mass
vanishes for these manifolds. In particular, any Ricci-flat AE metric is isometric
tl o Euclidean space by the positive mass theorem. Consequently, all non-flat
Ricci-flat ALE manifolds examples occur in even dimensions.

Kronheimers classification of hyperkähler ALE four-manifolds [6] provides a
large list of Ricci-flat ALE manifolds, including flat space and the Eguchi-Hanson
manifold as its simples examples. In higher dimensions, Calabi-Yau non-hyper-
kähler and Spin(7) manifolds of ALE asymptotics were also discovered [3, 4, 5]. All
known Ricci-flat ALE manifolds have special holonomy and thus carry a parallel
spinor. It is a major open problem, whether examples of full holonomy do exist.

We are interested in the dynamical stability of Ricci-flat ALE metrics under the
Ricci flow. The dynamical stability problem for the Ricci flow has been studied
extensively in the case of compact Einstein manifolds over the last two decades and
is well understood by now. Much less is known in the noncompact case, where the
study rather focused on particular examples so far. For a more detailed discussion
on this subject and references, see [8, p. 2].

Up to a gauge term, the linearization of the Ricci curvature is given by the
Lichnerowicz Laplacian ∆L. Motivated by this fact, we call a Ricci-flat manifold

• linearly stable, lf ∆L ≥ 0 in the L2-sense and
• integrable, if every h ∈ kerL2(∆L) is tangent to a family of Ricci-flat met-
rics.

Our approach in proving dynamical stability consists of two main steps. At first,
we consider the linearized version of the problem, i.e. the heat kernel of the Lich-
nerowicz Laplacian. In a second step, we construct a contraction mapping acting
on time-dependent tensor fields whose unique solution is the Ricci(-de Turck) flow.
Thereby, we prove longtime existence and convergence of the Ricci flow at once.
Our result on the linear part of the problem is as follows:

Theorem 1 (Heat kernel estimates [7]). Let (Mn, g) be a Ricci-flat ALE manifold
equipped with a parallel spinor. Let 1 < p ≤ q < ∞, k ∈ N0 and ǫ > 0. Then we
have

(i) kerL2(∆L) ⊂ O(r−n),
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(ii)
∥∥∇k ◦ e−t∆L |ker⊥

∥∥
Lp→Lq ≤

{
C · t−α(p,q,k), if α(p, q, k) < n

2p ,

C(ǫ) · t− n
2p+ǫ, if α(p, q, k) ≥ n

2p ,

(iii)
∥∥DRic ◦ ◦e−t∆L |ker⊥

∥∥
Lp→Lq ≤ C · t−α(p,q,2).

Let us put these results in context: For the solution u of a Laplace-type equation
on an ALE manifold with u → 0 as r → ∞, one has in general the expansion

u = A · r2−n +B(ϕ) · r1−n + C(ϕ) · r−n + ... as r → ∞,(1)

where ϕ denotes the spherical variable. Point (i) states that we can get rid of the
first two terms of this expansion in our setting. For the Euclidean Laplacian, we
have the estimate

∥∥∇k ◦ e−t∆
∥∥
Lp→Lq ≤ Ct−α(p,q,k) for all 1 ≤ p ≤ q ≤ ∞ and

k ∈ N0. Our point (ii) states that this estimate may still hold for more general
elliptic operators and for suitable values of p, q, k on the orthogonal complement
of the kernel. However, the decay rate can not be faster than the threshold rate
n
2p . Therefore, for values of p, q, k with large α(p, q, k), the decay rate will be

slower than in the Euclidean case. In contrast, as (iii) asserts, for some specific
differential operators such as the Frechét derivative of the Ricci tensor DRic, we
always get the same decay rate as in the Euclidean case. The essential reason is
that DRic commutes with ∆L and hence also with its heat flow.

The assumption of having a parallel spinor appears for the following reason:
Wang [9] constructed an isometric embedding of vector bundles Φ : T ∗M⊙T ∗M →
T ∗M ⊗ S via which ∆L ∼ D2. Here, S is the spinor bundle and D is the twisted
Dirac operator on vector spinors. This has various consequnces: (M, g) is linearly
stable and the identification Φ allows us to deduce (i) by analyzing the terms
in the asymptotic expansion (1) more carefully. Furthermore, it allows us to
compare each covariant derivative ∇k with the respective elliptic operator Dk and
to conclude (ii) from elliptic estimates on weighted Sobolev spaces.

Theorem 2 (Dynamical stability [8]). Let (Mn, ĝ) be a Ricci-flat ALE manifold,
which carries a parallel spinor and is integrable. Then for each q ∈ (1, n) and each
Lq ∩ L∞-neighbourhood U ⊂ M of ĝ in the space of metrics, there exists another
Lq ∩ L∞-neighbourhood V ⊂ U of ĝ with the following property:
For each metric g0 ∈ V on M , the Ricci flow {gt}t≥0 starting at g0 exists for all

time and there is a family of diffeomorphisms {φt}t≥0 such that φ∗
t gt ∈ U for all

t ≥ 0 and φ∗
t gt converges to a Ricci-flat metric h∞ as t → ∞.

Moreover, if g0 − ĝ ∈ Lp for some p ∈ (1, q], there exists a smooth family of
Ricci-flat metrics ht, such that we have the convergence rates

‖ht − h∞‖Ck ≤ C · t1−n
p
+ǫ,(2)

‖φ∗
t gt − ht‖Ck ≤ C · t− n

2p+ǫ,(3)

‖Ricgt‖Ck ≤ C · t− n
2p−1+ǫ, if p < n/2,(4)

where C depends on k ∈ N0 and ǫ > 0.

The proof builds up on a careful analysis of the space of Ricci-flat metrics,
Theorem 1 and an iteration argument. One first proves longtime existence and
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convergence with convergence rates as in (2)–(4) with p replaced by q. If g0 − ĝ ∈
Lp, a bootstrapping argument shows that these estimates can be improved to the
faster rates (2)–(4).

For q ≥ n, the iteration mechanism breaks down. The reason is the failure
of optimal decay rates for the heat flow in Theorem 1 (ii). It is unclear whether
the assertion of the theorem is true or not for q ≥ n. Nevertheless, Theorem 2
is a substantial improvement of a result by Deruelle and the first author [2], who
prove the L2∩L∞-stability of linearly stable and integrable Ricci-flat ALE metrics
without establishing any rate of convergence. Let us also point out that Theorem
2 applies to all known examples of Ricci-flat ALE manifolds. A consequence of
our result is the following rigidity statement:

Theorem 3 (Positive scalar curvature rigidity [8]). Let (Mn, ĝ) be a Ricci-flat
ALE manifold which carries a parallel spinor and is integrable. Then for each
q ∈ (1, n), there exists a Lq ∩ L∞-neighbourhood U of ĝ in the space of metrics
such that any smooth metric g ∈ U on M satisfying

scalg ≥ 0, and ‖g − ĝ‖Lp < ∞
for some p < n/(n− 2) is Ricci-flat.

An analogous result was previously shown by Appleton [1] for Euclidean space
with q = ∞. His result uses the stability of Euclidean space under Ricci flow and
the proof of our result builds up on the same ideas: Under the Ricci flow, the
scalar curvature satisfies the evolution inequality

∂tscalgt +∆gtscalgt = 2|Ricgt |2gt .
Thus if the scalar curvature is initially nonnegative everywhere, the maximum
principle implies that it becomes positive everywhere for any positive time if the
initial metric is not Ricci-flat. Estimates on the scalar heat kernel imply in this
situation that

scalgt = O(t−n/2), but scalgt 6= O(t−n/2+ǫ) as t → ∞.

On the other hand, estimate (4) in Theorem 2 implies that

scalgt = O(t−n/2p−1+ǫ) for every ǫ > 0,

which yields a contradiction, if p < n/(n− 2) and proves the result. Note that at
the end, this builds up on the crucial observation that DRic commmutes with ∆L,
which enables us to prove part (iii) in Theorem 1 (from which in turn we deduce
(4)).
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Pointwise lower scalar curvature bounds for C0 metrics via
regularizing Ricci flow

Paula Burkhardt-Guim

In 2014, Gromov showed the following theorem on uniform limits of metrics sat-
isfying a pointwise lower bound on the scalar curvature; see [4, p.1118] and [1,
Theorem 1]:

Theorem 1. Let M be a smooth manifold and κ : M → R a continuous function
on M . Suppose gi is a sequence of C2 metrics on M that converges locally uni-
formly to a C2 metric g on M . If R(gi) ≥ κ everywhere on M for i = 1, 2 . . .,
then R(g) ≥ κ everywhere on M as well.

Gromov’s proof involves formulating positive scalar curvature as a C0 quantity,
by considering the mean convexity and dihedral angles of small cubes. Bamler
provided an alternative proof of Theorem 1 in [1], which used the evolution of
the scalar curvature under Ricci flow and some results of Koch and Lamm [6]
concerning the Ricci-DeTurck flow for a class of possibly nonsmooth initial data
on Euclidean space.

In light of Bamler’s approach to Theorem 1, it is natural to ask whether it
is possible to use Ricci flow to formulate a generalized definition of lower scalar
curvature bounds for C0 metrics. In [2] we proposed a class of such definitions,
and proved some related results. Generally speaking, the lower scalar curvature
bounds in [2] are determined by using the Ricci flow to “regularize” the singular
metric and then observing the scalar curvature of the flow at small positive times.
Our objective was to formulate the definition such that, for any constant κ, we
would have

(1) Stability under greater-than-second-order perturbation: If g′ and
g′′ are two C0 metrics that agree to greater than second order around
a point x0, i.e. if, for some fixed smooth background metric, we have
|g′(x)−g′′(x)| ≤ cd2+η(x, x0) for some c, η > 0 and all x in a neighborhood
of x0, then g′ should have scalar curvature bounded below by κ in the weak
sense at x0 if and only if g′′ does. Moreover, if g′ and g′′ are C0 metrics on
different manifolds which merely agree to greater than second order under
pullback by a locally defined diffeomorphism, the conclusion should still
hold.
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(2) Preservation of global lower bounds under the Ricci flow: If g is
a C0 metric on a closed manifold that has scalar curvature bounded below
by κ in the weak sense at every point, and g̃t is a regularizing Ricci flow
for g, then g̃t should have scalar curvature bounded below by κ at every
point for all t > 0 for which the flow is defined. This is true for Ricci flows
starting from smooth initial data.

(3) Agreement with the classical notion for C2 metrics: If g is a C2

metric with scalar curvature bounded below by κ at x0 in the weak sense
for C0 metrics, then g should have scalar curvature bounded below by κ
at x0 in the classical sense. Conversely, if g has scalar curvature bounded
below by κ at x0 in the classical sense, then the same should hold in the
weak sense.

We showed that, for C0 initial data, there exists a Ricci flow in the following
sense:

Theorem 2. Let M be a closed manifold and g0 a C0 metric on M . Then there
exists a time-dependent family of smooth metrics (g̃t)t∈(0,T ] and a continuous sur-
jection χ : M → M such that the following are true:

(a) The family (g̃t)t∈(0,T ] is a Ricci flow, and
(b) There exists a smooth family of diffeomorphisms (χt)t∈(0,T ] : M → M

such that

χt
C0

−−−→
t→0

χ and ||(χt)∗g̃t − g0||C0(M) −−−→
t→0

0.

Moreover, for any x ∈ M , diam{χs(x) : s ∈ (0, t]} ≤ C
√
t for some constant

C > 0 independent of x, where the diameter is measured with respect to a fixed
smooth background metric, and any two such families are isometric, in the sense
that if g̃′t is another such family with corresponding continuous surjection χ′, then
there exists a stationary diffeomorphism α : M → M such that α∗g̃t = g̃′t and
χ ◦ α = χ′.

The pair ((g̃t)t∈(0,T ], χ) is called a regularizing Ricci flow for g0.

Definition 3. Let Mn be a closed manifold and g0 a C0 metric on M . For
0 < β < 1/2 we say that g0 has scalar curvature bounded below by κ at x in
the β-weak sense if there exists a regularizing Ricci flow ((g̃t)t∈(0,T ], χ) for g0 such
that, for some point y ∈ M with χ(y) = x, we have

(1) inf
C>0

(
lim inf
tց0

(
inf

Bg̃(t)(y,Ctβ)
Rg̃(·, t)

))
≥ κ,

where Bg̃(t)(y, Ctβ) denotes the ball of radius Ctβ about y, measured with respect

to the metric g̃(t), and Rg̃(·, t) denotes the scalar curvature of g̃t .

Remark 4. In fact, Definition 3 is independent of choice of y, so it is equivalent
to require that (1) hold at y for all y with χ(y) = x. Moreover, the fact that
any two regularizing Ricci flows for g0 are isometric (see Theorem 2) implies that
Definition 3 holds for some regularizing Ricci flow if and only if it holds for all
regularizing Ricci flows for g0.
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It is straightforward to show that Definition 3 satisfies Item 3. Towards Items
1 and 2, we showed:

Theorem 5. Suppose g′ and g′′ are two C0 metrics on closed manifolds M ′ and
M ′′ respectively, and that there is a locally defined diffeomorphism φ : U → V
where U is a neighborhood of x′

0 in M ′ and V is a neighborhood of x′′
0 in M ′′

with φ(x′
0) = x′′

0 . Suppose furthermore that g′ and φ∗g′′ agree to greater than
second order around x′

0, i.e. with respect to some fixed smooth background metric,
|g′(x) − φ∗g′′(x)| ≤ cd2+η(x, x0) for some c, η > 0 and all x in a neighborhood of
x′
0. Then there exist regularizing Ricci flows (g̃′t, χ

′) and (g̃′′t , χ
′′) for g′ and g′′

respectively such that, for 1/(2 + η) < β < 1/2, C > 0, and t sufficiently small
depending on C, β, and η, we have

(2) sup
B(x′

0,Ctβ)

|R(χ′

t)∗g̃
′

t − φ∗R(χ′′

t )∗g̃
′′

t | ≤ ctω,

where ω is some positive exponent, c is a constant that does not depend on t or
C, R(χ′

t)∗g̃
′

t and R(χ′′

t )∗g̃
′′

t denote the scalar curvatures with respect to (χ′
t)∗g̃

′
t and

(χ′′
t )∗g̃

′′
t respectively, and (χ′

t) and (χ′′
t ) are the smooth families of diffeomorphisms

for g̃′t and g̃′′t respectively, whose existence is given by (b) in Theorem 2.
In particular, Definition 3 holds for g′ at x′

0 if and only if it holds for g′′ and
x′′
0 .

Theorem 6. Suppose that g0 is a C0 metric on a closed manifold M , and suppose
there is some β ∈ (0, 1/2) such that g0 has scalar curvature bounded below by κ
in the β-weak sense at all points in M . Suppose also that (g̃(t))t∈(0,T ] is a Ricci
flow starting from g0 in the sense of Theorem 2. Then the scalar curvature of g̃(t),
R(g̃(t)), satisfies R(g̃(t)) ≥ κ everywhere on M , for all t ∈ (0, T ].

We also showed the following:

Theorem 7. Let g be a C0 metric on a closed manifold M which admits a uniform
approximation by C2 metrics gi that have R(gi) ≥ κi, where κi is some sequence
of numbers such that κi −−−→

i→∞
κ for some number κ. Then g admits a uniform

approximation by smooth metrics with scalar curvature bounded below by κ.

Question 8. Is Definition 3 equivalent to Gromov’s polyhedral formulation [4] of
lower scalar curvature bounds for C0 metric, in the case of global or local lower
bounds?

Question 9. For metrics in C0 ∩W 1,n
loc

, is Definition 3 equivalent to the notion
of nonnegative distributional scalar curvature of [7]?

Question 10. Suppose g = gijdx
i ⊗ dxj is a metric on a neighborhood of the

origin in Rn, and that we may write

gij(x) = δij + r2Gij(
x

r
) +O(|x|2+η),

where the Gij are functions on Sn−1 ⊂ Rn satisfying xixjGij(x) = 0. Is there
an explicit characterization of metrics of this form that have nonnegative scalar
curvature at the origin, in the sense of Definition 3?
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Positive mass theorems of ALF and ALG manifolds

Yuguang Shi

(joint work with Peng Liu, Jintian Zhu)

The positive mass theorem (PMT) of asymptotically flat (AF) manifolds is one
of basic results both in geometry of scalar curvature and the General Relativity
(see [15] and references therein). It states that the mass of an AF manifolid
with nonnegative scalar curvature is nonnegetive and vanishes if and only if the
manifold is isometric to the Euclidean space. The philosophy behind PMT is that
the flat Minkowski spacetime R3,1 is a trivial solution of Einstein fields equations,
it is the solution with the least energy among all those with nonnegative energy
density. On the other hand, we do have many nontrivial static solutions of Einstein
fields equations. So, it is natural to ask if there are any other PMT on manifolds
with more general asymptotical structure at the infinity (see [1], [11], [2] and
references therein). From view point of geometry, another motivation to study
PMT on manifolds with general asymptotic structure is to explore the Gromov fill-
in problems (Problem A,B, p.1 in [4], and Section 3.12.1 in [5]), some interesting
works on this fill-in problems on two dimensional case can be find [6], [7], [8],
[9], and [13], [12] for higher dimensional case. Indeed, fill-in problems have deep
relations with PMT on manifolds (see Theorem 1.3, the proof of Theorem 1.4 in
[12]). To state our main result, we need the following

Definition 1. A complete noncompact Riemannian manifold (Mn, g) is ALF with
asymptotic order µ if it satisfies:

• there is a compact set K ⊂ M so that M −K is diffeomorphic to (Rn−1−
Bn−1)× S1, where Bn−1 is the unit ball in Rn−1;

• when n = 3, g = dr2 + β2r2dφ2 + dθ2 + σ on M −K, β ∈ R+, (r, φ) is the
polar coordinates on R2, θ is the standard coordinate on S1, we say g is
of conical type;
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• when n ≥ 4, the metric g has the expression g =
(
1 + m1

2rn−3

) 4
n−3 dx2 +

(
1 + m2

2rn−3

) 4
n−3 dθ2 + σ, σ = o2(r

−µ), µ ≥ n− 3, here m1, m2 are two
constants, we say g is of m1-m2 type;

• Denote r = |x| with the Euclidean norm | · |. The error term σ satisfies

σ = o2(r
−µ) as r → ∞, with µ >

n− 3

2
.

Here and in the sequel, the notation σ = os(r
−µ) with s ∈ N+ means

s∑

k=0

rk|∇k
g0σ| = o(r−µ),

where g0 = dx2 + dθ2 and ∇g0 is the covariant derivative with respect to
the metric g0.

Remark 2.

• for n ≥ 4, we may define the total mass of an ALF manifold by the similar
integral formula as that in AF case, and get m(M, g) = (n− 2)m1 +m2 ;

• for n = 3, m(M, g) ≥ 0 if and only if 1− β ≥ 0.

In this talk, we discuss the following main results that were obtained in our
preprint [10].

Theorem 3. For n ≤ 7, let (Mn, g) be an ALF manifold with scalar curvature
Rg ≥ 0 such that the inclusion map π1(M − K) → π1(M) is non-trivial. The
following statement holds:

• If n = 3 and (M, g) is of conical type, then β ≤ 1. If we further have
σ = o4(r

−µ), then equality yields that (M, g) is isometric to R2 × S1.
• If n ≥ 4 and (M, g) is of m1-m2 type with

µ ≥ n−3, i.e, g =
(
1 + m1

2rn−3

) 4
n−3 dx2+

(
1 + m2

rn−3

)2
dθ2+σ, σ = o2(r

−µ),
then m(M, g) ≥ 0. If we further have σ = o4(r

−µ), then equality yields
that (M, g) is isometric to Rn−1 × S1.

Remark 4. The assumption that the inclusion map π1(M −K) → π1(M) is non-
trivial cannot be removed, otherwise there would be a counterexample, see [1] or
[11, Page 953].

As an application of Theorem 3 in fill-in problem when Σ is diffeomorphic to
Sp × S1, we prove

Theorem 5. Let Σ0 be a convex hypersurface or codimension one curve in the
Euclidean space Rn with induced metric, whose total mean or geodesic curvature
is T0. If (Ω, g) is an admissible fill-in of the product manifold Σ0 ×S1(l) such that
the circle component is homotopically non-trivial in Ω, then for n ≤ 6 it holds

(1)

∫

∂Ω

H∂Ω dσg ≤ 2πlT0,
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where H∂Ω is the mean curvature of ∂Ω with respect to the unit outer normal and
dσg is the area element of ∂Ω. If (Ω, g) is an admissible fill-in of Σ0 × S1(l) with
the equality above, then (Ω, g) is flat.

Some similar results for ALG manifolds was also proved in [10].
In fact, PMT for ALF and ALG manifolds deeply related to the following

problem which is far from being solved.

Problem 6. Let M be a smooth manifold admits no metric with positive scalar
curvature(PSC), under what kind of surgery on M , the resulting manifold admits
no PSC metric either?

For surgery on manifolds with PSC metrics see [14], [3].
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Hyperbolic positive energy theorems

Piotr T. Chruściel

(joint work with Erwann Delay and Gregory Galloway)

It is convenient to start this report with a few definitions. We say that a Riemann-
ian manifold (M, g) is conformally compact if there exists a compact manifold with

boundary M̂ such that the following holds: First, we allow M to have a boundary,

which is then necessarily compact. Next, M is the interior of M̂ , whose boundary
is the union of the boundary of M and of a number of new boundary components,
at least one, which form the conformal boundary at infinity. Further, there exists

on M̂ a smooth function Ω ≥ 0 which is positive on M , and which vanishes pre-

cisely on the new boundary components of M̂ , with dΩ nowhere vanishing there.

Finally, the tensor field Ω2g extends to a smooth metric on M̂ .
We will say that a conformally compact manifold (M, g) is asymptotically locally

hyperbolic (ALH) if all sectional curvatures approach minus one as the conformal
boundary at infinity is approached. An ALH metric has an asymptotically hyper-
bolic (AH) component of its boundary at infinity, or an AH end, if the conformal
metric on that component of the boundary is conformal to a round sphere.

A useful global invariant of an ALH-but-not-AH end is its mass m, while for
AH ends we have an energy-momentum vector m ≡ (mµ) [12, 15, 33] (compare [1,
16]). For this one considers metrics g which asymptote, at a suitable rate, to
a background metric g̊. It is assumed that g̊ admits nontrivial static potentials
which, in dimension n, are defined as solutions of the overdetermined system of
equations

(1) D̊iD̊jV =
(
R̊ij −

R̊

n− 1
g̊ij

)
V .

Here D̊ is the covariant derivative of the background metric g̊, while R̊ij is its

Ricci tensor and R̊ is the trace g̊ijR̊ij . To every static potential V and asymptotic
end ∂M one associates a mass m = m(V, ∂M) by the formula [22] (compare [4,
Equation (IV.40)])

m(V, ∂M) = − lim
x→0

∫

{x}×∂M

DjV (Ri
j −

R

n
δij) dσi ,(2)

where Rij is the Ricci tensor of the metric g, R its trace, and we have ignored an
overall dimension-dependent positive multiplicative factor which is often used in
the physics literature. Here ∂M is a component of conformal infinity, and x is a
coordinate near ∂M so that ∂M is given by the equation {x = 0}.

The difference between AH ends and general ALH ends arises from the dimen-
sion of the space of static potentials. Indeed, the AH case is the only one where
this dimension is larger than one. Then g̊ is taken to be the hyperbolic metric,
which can be written as the following metric on Rn:

(3) g̊ =
dr2

1 + r2
+ r2dΩ2

n−1 ,
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where dΩ2
n−1 is the unit round metric on Sn−1. In this coordinate system a basis

of the space of static potentials is provided by the functions

V0 =
√
r2 + 1 , Vi = xi .

One defines the components mµ of the energy-momentum vector m as

(4) mµ := m(Vµ) .

One checks thatm transforms as a Lorentz vector under conformal transformations
of Sn−1, so that its Lorentzian norm is a geometric invariant.

For all remaining ALH ends, the mass is directly an invariant [15].
Strictly speaking, a rescaling of V by a constant is always possible, and a

preferred scale can be set as follows: In AH ends the standard normalisation is the
one just described. In all remaining cases, in any chosen ALH end we can write g̊
as

(5) g̊ = x−2(dx2 + h̊) , h̊(∂x, ·) = 0 ,

with the volume of ∂M , calculated in the metric h̊|x=0, normalised to one. One
then normalises V so that limx→0 xV = 1.

There is a closely related definition of energy-momentum for asymptotically flat
general relativistic initial data sets (M, g,K) which, perhaps somewhat unexpect-
edly, turns out to be relevant for the asymptotically hyperbolic problem at hand,
and which is invoked in Theorem 1 below, we refer the reader to [3, 7] for details.

In the case of spherical conformal infinity, it has been known that m is timelike
future pointing under a spin condition [12, 13, 21, 28, 33], or under restrictive
hypotheses [2, 11]. In my talk in Oberwolfach, summarised here, I reported on
results presented in [9, 10] where it is shown how to remove these hypotheses.

The starting point of the analysis in [9] is the following result:

Theorem 1. Let (M, g) be an asymptotically Euclidean Riemannian manifold,
where M is the union of a compact set and of an asymptotically flat region, of
dimension n ≥ 3. Suppose that the general relativistic initial data set (M, g,K)
possesses a well defined energy-momentum vector m. If the dominant energy con-
dition holds, then m is timelike future pointing or vanishes. Furthermore, in the
last case (M, g,K) arises from a hypersurface in Minkowski spacetime.

A published proof of Theorem 1 in dimensions less than or equal to seven can
be found in [17, 19, 25], building upon [29, 30, 31]. A proof covering all dimensions
is available in preprint form in [27], with the borderline cases covered in [5, 14, 25].
Conjecturally, this result also follows in all dimensions basing on the preprint [32].

In [9] it is shown how Theorem 1, together with the perturbation results in [11]
and the gluing constructions of [8], can be used to remove all unnatural restrictions
in the proof of positivity of asymptotically hyperbolic mass:

Theorem 2. Let (M, g) denote an n-dimensional Riemannian manifold which is
the union of a compact set and an AH end. If the scalar curvature R(g) satisfies
R(g) ≥ −n(n − 1) , then the energy-momentum vector of (M, g) is causal future
pointing, or vanishes.
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The impossibility of a null future pointing energy-momentum vector, under the
hypotheses above, has been established in [24].

Theorem 2 has been generalised in [10] to allow manifolds with several ends,
and with boundaries satisfying an optimal mean-curvature condition:

Theorem 3. Let (M, g) be a conformally compact n-dimensional, 3 ≤ n ≤ 7,
asymptotically locally hyperbolic manifold with boundary. Assume that the scalar
curvature of M satisfies R(g) ≥ −n(n − 1), and that the boundary has mean
curvature H ≤ n−1 with respect to the normal pointing into M . Then, the energy-
momentum vector m of every spherical component of the conformal boundary at
infinity of (M, g) is future causal.

In this theorem neither the boundary ∂M , nor the conformal boundary at
infinity of M , need to be connected. The proof relies heavily on the results of [18],
which assume 3 ≤ n ≤ 7.

The above theorems concern AH ends, and one is led to wonder about properties
of mass for ALH-but-not-AH ends. Here the following is known: First, positiv-
ity is known on manifolds with suitable spin structure [33], or under restrictive
conditions [10, 11], but such (M, g) are scarce. Next, boundaryless conformally
compact examples with negative mass and toroidal infinity are due to Horowitz
and Myers [23]; nontrivial quotients of spheres at infinity with, again, negative
mass have been constructed by Chen and Zhang [6]. Finally, a natural negative
lower bound, together with a Penrose-type inequality (compare [16, 20]), has been
established by Lee and Neves in [26] for a class of three dimensional models with
higher genus conformal infinity.
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Positive Ricci Curvature and Generalized Surgery

Philipp Reiser

Compared to the case of positive scalar curvature, only little is known about
which closed manifolds admit a Riemannian metric of positive Ricci curvature.
A powerful tool to construct metrics of positive scalar curvature is the surgery
theorem of Schoen–Yau [6] and Gromov–Lawson [3] and it is an open question
whether a surgery theorem in the same generality holds for metrics of positive
Ricci curvature. However, under additional assumptions on the metric and the
dimensions involved, similar results for metrics of positive Ricci curvature were
obtained by Perelman [4] and Burdick [1] [2] for connected sums and by Sha–Yang
[7] and Wraith [9] for higher surgeries. In the following we recall these results and
present a generalization of the surgery theorem of Wraith.

To construct metrics of positive Ricci curvature on connected sums, the fol-
lowing notion was introduced by Burdick [1] and is based on work by Perelman
[4].

Definition 1. A metric g on a manifold Mn is called a core metric if it has
positive Ricci curvature and if there exists an embedding ϕ : Dn →֒ M such that

• The restriction of g to ϕ(Sn−1) is isometric to the round metric on Sn−1,
and

• The second fundamental form on ϕ(Sn−1) is positive semi-definite with
respect to the inward normal vector of Sn−1 ⊆ Dn.

A consequence of Perelman’s work now is the following result.

Theorem 2. Let Mn
i , 1 ≤ i ≤ k, be manifolds that admit core metrics. If n ≥ 4

then #k
i=1Mi admits a metric of positive Ricci curvature.

Hence, by the classical theorem of Bonnet–Myers, a closed manifolds that ad-
mits a core metric is simply-connected. It was shown by Burdick [1], [2] that the
following manifolds admit a core metric:

• Sn, if n ≥ 2,
• CPn, HPn and OP 2,
• Mn

1 #Mn
2 if both M1 and M2 admit a core metric and n ≥ 4, and

• total spaces of linear sphere bundles Sp−1 →֒ E −→ Bq if p ≥ 4, q ≥ 3
and B is a compact manifold that admits a core metric.

Since there are no examples known of closed simply-connected manifolds with a
metric of positive Ricci curvature that do not admit a core metric, we can ask the
following question:
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Question 3. Does every closed simply-connected manifold that admits a metric
of positive Ricci curvature also admit a core metric?

For higher surgeries Sha and Yang [7] obtained a surgery theorem, which was
later extended and modified by Wraith [9] and subsequently generalized by the
author [5]. To state it, suppose that

(1) (Mn, gM ) is a Riemannian manifold of positive Ricci curvature,
(2) ι : Sp−1(ρ) × Dq

R(N) →֒ M , n = p + q − 1, is an isometric embedding,
where Sp−1(ρ) denotes the round metric with radius ρ on Sp−1 and Dq

R(N)
denotes the ball of radius R in Sq(N),

(3) Sq−1 →֒ E
π−→ Bp is a linear sphere bundle, where B is a compact manifold

that admits a core metric gB, and
(4) p, q ≥ 3.

Theorem 4 ([5]). Under the assumptions (1)–(4) there exists a constant κ =
κ(p, q, R/N, gB) > 0 such that if ρ

N < κ then the manifold

M̂ = M \ im(ι) ∪∂ π−1(B \ ϕ(Dp))

admits a metric of positive Ricci curvature.

This theorem can be applied whenever M itself is a linear sphere bundle over a
compact manifold with a metric of positive Ricci curvature and ι is the embedding
of a normal neighborhood of a fiber sphere. By using a submersion metric with
totally geodesic and round fibers, we can always achieve that the inequality ρ

N < κ
is satisfied by shrinking the fibers.

The metric on M̂ in the theorem coincides outside a neighborhood of the gluing
area with a submersion metric on E with totally geodesic and round fibers of
radius r and with a scalar multiple of the metric gM on M . In particular, we can
again apply the theorem to the embedding of a normal neighborhood of a fiber
sphere of E in M̂ , provided r is sufficiently small. By making use of this property
we can prove the following.

Corollary 5 ([5]). Let S2 →֒ E → Bq be a linear S2-bundle. If B is compact and
admits a core metric then E admits a core metric, provided q ≥ 4.

Concrete applications can be given in dimension 6. Gromov and Lawson [3]
showed that every closed simply-connected 6-manifold admits a metric of positive
scalar curvature. Hence, we can ask the following question:

Question 6. Does every closed simply-connected 6-manifold admit a metric of
positive Ricci curvature?

An answer to this question, however, seems to be out of reach at the moment,
since, on the one hand, there is no obstruction known for the existence of metrics
of positive Ricci curvature on closed simply-connected manifolds that does not
already hold for metrics of positive scalar curvature. On the other hand, only few
examples of closed simply-connected 6-manifolds that admit a metric of positive
Ricci curvature are known. In particular, the only such manifolds with b2 > 3 are
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connected sums of linear sphere bundles over S2 or S3 or have the structure of a
linear S2-bundle over a 4-manifold, see [5, Section 5.2] for an overview.

By performing iterated surgeries, combined with the classification results of
Wall [8], we can construct new examples as follows.

Theorem 7 ([5]). Let M be a closed simply-connected spin 6-manifold with torsion-
free homology and let (x1, . . . , xk) be a basis of H2(M) such that

(1) x2
i xj = xix

2
j for all i, j and x2

i xj = 0 if |i− j| ≥ 2,

(2) xixjxk = 0 for all i 6= j 6= k 6= i, and
(3) p1(M) ∪ xi = 4x3

i for all i.

Then M admits a core metric.

Note that, by [8], assumption (3) always holds mod 24.
In the non-spin case we also obtain many new examples of manifolds with metrics of
positive Ricci curvature. In fact, by performing generalized surgeries using linear
S2-bundles over CP 2, we obtain infinitely many new examples, both spin and
non-spin, with arbitrarily large second Betti number, that are not diffeomorphic
to any connected sum of the known examples of 6-manifolds admitting a metric
of positive Ricci curvature, see [5].
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A positive mass theorem for Riemannian spin manifolds with
compact boundary

Simone Cecchini

(joint work with Rudolf Zeidler)

This talk is a report on joint work in progress with Rudolf Zeidler.
There are two main techniques to study metrics of positive scalar curvature, the

Dirac operator method and the minimal hypersurface method. Both techniques
have restrictions, the Dirac operator method requiring the manifold to be spin and
the minimal hypersurface method requiring the dimension of the manifold to be
at most 8, due to singularities occurring in higher dimension. This dimensional
restriction has been recently removed by Schoen and Yau, at least in certain ge-
ometrically relevant situations; see [18, Theorem 2.6]. One main achievement of
the study of metrics of positive scalar curvature is the positive mass theorem. For
the notion of asymptotically flat metric and the definition of ADM mass, we refer
to [10, § 3.1].

Theorem 1. Let (M, g) be an asymptotically flat Riemannian manifold with
scalg ≥ 0. Then the ADM mass of (M, g) is nonnegative. Furthermore, if the
mass is zero, then M is isometric to Rn.

Remark 2. This theorem was proved by Schoen and Yau [16, 17] in dimension
≤ 7 using the minimal hypersurface method. Witten [20] used the Dirac operator
method to extend Theorem 1 to every dimension, under the assumption that the
manifold is spin. Schoen and Yau [18] refined the minimal hypersurface method
and removed the spin assumption. A different approach to the higher dimensional
case has been proposed by Lohkamp [12, 13].

In this talk, we discuss whether the positive mass theorem can be localized to
a single asymptotically flat end. More precisely, we discuss the following question.

Question 3. Let (M, g) be a complete Riemannian manifold with scalg ≥ 0. Sup-
pose E is an asymptotically flat end of M . Can E have negative ADM mass?

This question has been recently addressed by Lesourd, Unger and Yau [11]
using the µ-bubble technique. This is a localization technique for the minimal
hypersurface method due to Gromov [5, 6, 8]. It has recently led to substantial
results in the study of metrics of positive scalar curvature [3, 4, 7, 14, 15, 23, 24].

Let us now state the results of Lesourd, Unger and Yau. For the notion of
point of incompleteness and asymptotically Schwarzschild end, we refer to [11,
§1, Definitions and conventions].

Theorem 4 (Lesourd-Unger-Yau, [11] Theorem 1.6). Let (Mn, g), 3 ≤ n ≤ 7,
be an asymptotically Schwarzschild manifold, not assumed to be complete or have
nonnegative scalar curvature everywhere. Let U1 and U2 be neighborhoods of in-
finity with U2 ⊂ U1 and let D be a positive constant. Moreover, suppose that

(1) g has no point of incompleteness in the D-neighborhood of U1,
(2) scalg ≥ 0 in the D-neighborhood of U1, and
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(3) the scalar curvature satisfies

scalg >
32

D

(
8

D
+

1

distg(U2, ∂U1)

)

on U1 \ U2.

Then the ADM mass is nonnegative.

Remark 5. Let us now explain the relationship between Theorem 4 and Ques-
tion 3. Suppose (M, g) is a complete Riemannian manifold of nonnegative scalar
curvature and suppose E ⊂ M is an asymptotically Schwarzschild end with nega-
tive mass. Using [11, Lemma 5.1], the scalar curvature of g can be taken strictly
positive on E . Therefore, we can choose neighborhoods of infinity U1 and U2 in E
such that scalg is uniformly positive in U1 \ U2 and, since M is complete, we can
pick D large enough such that the hypotheses of Theorem 4 are satisfied. This
implies the following consequence.

Theorem 6 (Lesourd-Unger-Yau, [11] Theorem 1.2). Let (Mn, g), with 3 ≤ n ≤ 7,
be a complete noncompact Riemannian manifold with nonnegative scalar curvature.
Suppose E ⊂ M is an asymptotically Schwarzschild end. Then the ADM mass of
E is nonnegative.

Our main result consists in extending Theorem 4 to the spin setting using the
Dirac operator method. More precisely, we use potentials to localize the Wit-
ten proof of the positive mass theorem; see [20]. Localization techniques with
Dirac operators have been successfully used to address questions recently raised
by Gromov about metrics of positive scalar curvature; see [1, 2, 9, 19, 21, 22].

Let us now formulate our results. Note that in Theorem 4, outside the D-
neighbor-hood of U2, there are no assumptions of completeness or nonnegativity
of the metric g. This suggests to study the following question.

Question 7. Let X be an asymptotically flat Riemannian manifold with compact
boundary and nonnegative scalar curvature. Is it possible to give metric conditions,
in terms of a positive lower bound of the scalar curvature in a certain region and
of the distance between this region and ∂X, in such a way that the ADM mass of
X must be nonnegative?

Note that we do not make any assumption on the metric at the boundary.
Instead, we follow the point of view recently proposed by Gromov in the study
of metrics of positive scalar curvature on manifolds with boundary and formulate
metric conditions in terms of the lower bound of the scalar curvature in a certain
region and of the distance between this region and the boundary. Our main result
extends Theorem 4 to the spin setting, without dimensional restrictions.

Theorem 8 (C.-Zeidler). Let (X, g) be an asymptotically flat spin manifold with
compact boundary whose scalar curvature is nonnegative. Let Σ ⊂ X◦ be a closed
separating hypersurface with associated partition X− ∪Σ X+, where X− is an
asymptotically flat manifold with boundary ∂X− = Σ and where X+ is a compact
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manifold with boundary ∂X+ = Σ ⊔ ∂X. Let Nδ(Σ) ⊂ X− be a collar neighbor-
hood of Σ of width δ. Suppose that scalg ≥ κ0 > 0 on Nδ(Σ). Then there exists a
constant Λ > 0, depending only on δ and κ0, such that, if distg(Σ, ∂X) ≥ Λ, then
the ADM mass of each end of X is nonnegative.

Remark 9. The collar neighborhood Nδ(Σ) can be replaced by a “separating
band” of width δ, that is, a compact manifold Y with boundary ∂Y = Σ1 ⊔ Σ
sitting inside X− such that distg(Σ1,Σ) = δ.

Remark 10. One can ask what happens when the upper bound Λ is not achieved,
that is, when distg(Σ, ∂X) < Λ. Using the techniques developed in [2], it is possible
to refine Theorem 8 and obtain metric inequalities relating Λ to κ0, δ and the mean
curvature of ∂X .

In the case of a complete spin manifold with an asymptotically Schwarzschild
end, using [11, Lemma 5.1] in a similar fashion as in Remark 5, from Theorem 8
we deduce the following consequence.

Theorem 11 (C.-Zeidler). Let (Mn, g) be a complete noncompact Riemannian
spin manifold with nonnegative scalar curvature. Suppose E ⊂ M is an asymptot-
ically Schwarzschild end. Then the ADM mass of E is nonnegative.
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Metrics with λ1(−∆ + kR) ≥ 0 and flexibility in the Riemannian
Penrose Inequality

Christos Mantoulidis

(joint work with Chao Li)

In all that follows, M denotes a closed n-dimensional manifold and Met(M) de-
notes the space of smooth Riemannian metrics on M . For k ∈ (0,∞), we define

M≥0
k (M) := {g ∈ Met(M) : λ1(−∆g + kRg) ≥ 0},

where λ1(−∆g + kRg) is the first eigenvalue of the operator −∆g + kRg on M ,
and Rg is the scalar curvature of g. We also define

M≥0
∞ (M) := {g ∈ Met(M) : Rg ≥ 0}.

Finally, we define M>0
k (M), k ∈ (0,∞], as above with all “≥” replaced by “>.”

Note that, for 0 < k < k′ ≤ ∞,

M>0
k′ (M) ⊂ M≥0

k′ (M)
∩ ∩

M>0
k (M) ⊂ M≥0

k (M).

These spaces are not generally encountered in the literature in this level of gen-
erality, so some remarks are in order about their actual geometric significance.
This is discussed extensively in our paper [10]. For the purpose of this brief re-
port, we simply highlight that for k = 1

2 these spaces encode apparent horizons in
time-symmetric initial data sets to Einstein’s equations with the dominant energy
condition, and that M>0

k (M) 6= ∅ for k = n−1
4(n−2) if n ≥ 3 and M is topologically

PSC (i.e., its Yamabe constant is positive).
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Our starting point was a generalization of a theorem of Codá Marques [12], who
proved that the ultimate space in the filtration has a connected moduli space, i.e.,

M>0
∞ (M)/Diff+(M) is path-connected,

when M is a closed orientable 3-manifold. We proved:

Theorem 1. Let M be a closed orientable topologically PSC 3-manifold. Then,
M>0

k (M)/Diff+(M), M≥0
k (M)/Diff+(M) are path-connected for all k ∈ [ 14 ,∞].

To prove Theorem 1 we needed a suitable generalization of the Gromov–Lawson
surgery process [8] (cf. Schoen–Yau’s [13]) from M>0

∞ (M) to M>0
k (M). Such a

surgery was first carried out by Bär–Dahl in [3, Theorem 3.1], and we give a full
independent proof of it with some added details in an appendix to our paper.

The recent breakthrough of Bamler–Kleiner [4] on the path-connectedness of
M>0

∞ (M) implies the following two companion results when used in conjunction
with Theorem 1 and, separately, the conformal method:

Theorem 2. Let M be a closed orientable topologically PSC 3-manifold. Then,

M>0
k (M) and M≥0

k (M) are path-connected for all k ∈ [ 14 ,∞].

Theorem 3. Let M be a closed orientable topologically PSC 3-manifold. Then,

M>0
1/8(M) is contractible and M≥0

1/8(M) is weakly contractible.

Our main application of these results is to the computation of the Bartnik mass
of apparent horizons, and its generalization due to Bray. For n-dimensional closed
orientable (Mn, g), the apparent horizon Bartnik mass is defined as

mB(M, g,H = 0) = inf{mADM (M,g) : (M,g) ∈ EB(M, g,H = 0)},
where EB(M, g,H = 0) is the set of complete, connected, asymptotically flat
(M,g) with nonnegative scalar curvature, no closed interior minimal hypersur-
faces, and minimal (H = 0) boundary isometric to (M, g). Such (M,g) are initial
data sets for solutions of Einstein’s equations with the dominant energy condi-
tion, and mADM (M,g) is the ADM mass of the initial data set [2, 1]. Using a
rearrangement trick of Schoen–Yau and a delicate splitting theorem of Galloway,
it follows that:

EB(M, g,H = 0) 6= ∅ =⇒ M is topologically PSC, g ∈ M≥0
1/2(M).

Thus, we are precisely in the context studied by Theorems 1, 2, 3.
There exists a nontrivial lower bound for mB(M, g,H = 0) by Bray [6] and

Bray–Lee’s [5] Riemannian Penrose Inequality, which says:

(M,g) ∈ EB(M, g,H = 0) =⇒ mADM (M,g) ≥ 1
2 (σ

−1
n volg(M))(n−1)/n,

when 2 ≤ n ≤ 6 and σn is the volume of the standard round Sn; see also Huisken–
Ilmanen [9] in case n = 2 and M is connected. Thus of course

mB(M, g,H = 0) ≥ 1
2 (σ

−1
n volg(M))(n−1)/n,

We computed the left hand side to be a topological invariant when n = 3 and M
is connected. (When n = 2, this is due to M.–Schoen [11], Chau–Martens [7].)
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Theorem 5. For a closed connected topologically PSC 3-manifold M , either:

• EB(M, g,H = 0) = ∅
• EB(M, g,H = 0) 6= ∅ and mB(M, g,H = 0) = cB(M) volg(M)2/3,

for all g ∈ M≥0
1/2(M). Here, cB(M) is a topological constant and cB(S

3) = 1
2σ

−2/3
3 .

Unfortunately, the precise value of the apparent horizon Bartnik mass remains
unknown for:

• disconnected 2- or 3-dimensional M ;
• 3-dimensional M with nontrivial topology;
• all higher dimensional M , except for certain special metrics on M = SSn.

While we do not have satisfactory answers for the Bartnik mass for these bullet
points at this time, we know how to compute a relaxation of Bartnik’s mass due to
Bray [6] in near-complete generality. In this relaxation, the set EBB(M, g,H = 0)
of extensions considered is such that the boundary (M, g) is outer-minimizing
minimal, rather than outermost minimal. The Bartnik–Bray mass mBB(M, g,H =
0) is then defined analogously. We showed:

Theorem 6. Let M be a closed orientable topologically PSC n-manifold with

2 ≤ n ≤ 6. Consider the subset of M≥0
1/2(M) given by:

LinClos[M>0
1/2(M)] := {g ∈ M≥0

1/2(M) : there exists a C1 path

[0, 1) ∋ t 7→ g(t) with g(0) = g and
[
d
dtλ1(−∆g(t) +

1
2Rg(t))

]
t=0

> 0}.
If g ∈ LinClos[M>0

1/2(M)] and EBB(M, g,H = 0) 6= ∅, then

mBB(M, g,H = 0) = 1
2 (σ

−1
n volg(M))(n−1)/n.

We emphasize that M need not be connected and that our computation is valid
as long as a single Bartnik–Bray extension exists. Note that it is known that

M≥0
1/2(M) \ LinClos[M>0

1/2(M)] ⊂ {g ∈ Met(M) : Ricg ≡ 0},
which is empty when n = 2, 3, and small for larger n.
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Topological rigidity and positive scalar curvature

Jian Wang

Scalar curvature is a weak invariant of the local geometry but delicately linked with
the global topology of a smooth manifold. Classically, there are several topological
obstructions for a smooth manifold to have a complete metric with positive scalar
curvature (see [4, 5] and [11, 12, 13, 14]).

A long-standing question was addressed by S.T. Yau in his problem section [15]:

Question 1. [15] Is it possible to classify 3-manifold admitting complete positive
scalar curvature metrics up to diffeomorphisms?

It was done by G. Perelman for the compact case. From his proof for the
celebrated Pioncaré conjecture ([8, 9, 10]), a closed and orientable 3-manifold
admits a metric with positive scalar curvature if and only if it is a connected sum
of spherical 3-manifolds (i.e. a quotient of S3 by a finite subgroup of O(4)) and
some copies of S1 × S2.

However, the topological structure of non-compact 3-manifolds is much more
complicated. The simplest case is that of contractible 3-manifolds, for example,
the Whitehead manifold which is a contractible 3-manifold but not homeomorphic
to R3 (see [19]).

Among the contractible 3-manifolds, R3 is the only one known to carry a com-
plete metric with positive scalar curvature, for example g0, defined by

g0 =

3∑

i=1

dx2
i + (

3∑

i=1

xidxi)
2.

This suggests the following topological rigidity question:

Question 2. Is any complete contractible 3-manifold with positive scalar curvature
homeomorphic to R3?
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Question 2 is deeply linked with the classifying question for (non-compact) 3-
manifolds with positive scalar curvature. It had been intensively studied over
recent decades, leading a series of interesting discoveries (see [5], [11, 12, 13, 14],
[3] and [16, 17, 18]).

In a series of works [16, 17], we established a list of results concerning the non-
existence of complete metrics with positive scalar curvature. One of results give a
definite answer for the Whitehead manifold.

Theorem 3. [16] The Whitehead manifold does not admit a complete metric with
positive scalar curvature.

In [18], we give a full and positive answer to Question 2

Theorem 4. [18]A complete contractible 3-manifold with positive scalar curvature
is homeomorphic to R3.

Theorem 4 was also proved by Gromov-Lawson [5] and Chang-Weinberger-Yu
[3] when the scalar curvature is uniformly positive (i.e. bounded below by a strictly
positive constant). To be precise, M. Gromov and B. Lawson showed that it is
simply-connected at infinity and then one needs the Poincaré conjecture (see [1, 7]).
It also follows with the work [2] of L. Bessières, G. Besson and S. Maillot when
the geometry is bounded.

The proof of Theorem 4 totally depends on the positivity of scalar curvature.
We use a metric deformation due to J. Kazdan [6] to generalize it to the non-
negative scalar curvature case.

Corollary 5. [18] A complete contractible 3-manifold with non-negative scalar
curvature is homeomorphic to R3.
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On the homotopy type of the space of positive scalar curvature metrics

Michael Wiemeler

(joint work with Johannes Ebert)

When studying Riemannian metrics of positive scalar curvature, there are two
basic questions:

(1) Given a closed manifold Md , is there a metric of positive scalar curvature
on Md?

(2) If the answer to the first question is “yes”, what can be said about the
topology of the space R+(Md) of positive scalar curvature metrics on Md?

For simply connected manifolds of dimension d ≥ 5 the first question has the
following answer: If Md is non-spin then it always admits a metric of positive
scalar curvature by results of Gromov and Lawson [2] and Schoen and Yau [7].
For spin manifolds Md, there is an index-theoretic necessary condition for M d to
admit a psc metric. Namely, the â-invariant â(M) ∈ kod has to be trivial (â(M)
only depends on the spin cobordism class [M ] of M). A celebrated result of Stolz
[8] states that this condition is also sufficient, when Md is simply connected and
d ≥ 5. In this talk we discussed the second question. Our first main result is as
follows.

Theorem 1. Let M be a simply connected closed spin manifold of dimension
d ≥ 5. Then if M admits a psc metric, there is a homotopy equivalence

R+(M) ≃ R+(Sd).

Here Sd denotes the d-dimensional sphere with standard smooth structure.

Previously it has been known by results of Chernysh [1] and Walsh [9] that the
homotopy type of R+(M) only depends on the spin bordism type of the simply
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connected spin manifold M . The main technical step in the proof of this result
of Chernysh and Walsh, is to show that the space of positive scalar curvature
metrics on M is homotopy equivalent to the space of such metrics which have
some standard form near a submanifold of codimension at least 3 with trivial
normal bundle.

Recently Kordaß [5] showed that R+(HP 2) ≃ R+(S8). The proof of this result
of Kordaß and of Theorem 1 uses an extension of the above mentioned technical
result of Chernysh to submanifolds with non-trivial normal bundle due to Kordaß.
Using this extension one can show that R+(M) is homotopy equivalent to R+(Sd)
whenever M is spin bordant to a manifold which decomposes as a union of two
disc bundles with fiber dimensions at least 3 and suitable metrics on their common
boundary.

This reduces the proof to finding manifolds which decompose as unions of disc
bundles in those spin bordism classes which contain manifolds with positive scalar
curvature metrics. By a result of Stolz [8] and Kreck–Stolz [6] these bordism classes
can be represented by total spaces of HP 2-bundles with structure group PSp(3),
the isometry group of HP 2 with the Fubini-Study metric. When the structure
group of such a bundle can be reduced to P (Sp(2)× Sp(1)), then the total space
decomposes as a union of two disc bundles of fiber dimension 8 and 4, respectively.
Therefore it suffices to prove that such a reduction of structure group is always
possible up to bordism and we prove this.

This strategy of proof in principle also works for simply connected non-spin
manifolds. For these we have

Theorem 2. Let M be a simply connected closed manifold of dimension d ≥
5 which does not admit a spin structure. Then if d 6= 8, there is a homotopy
equivalence

R+(M) ≃ R+(W d).

If d = 8, there is either a homotopy equivalence R+(M) ≃ R+(W 8) or R+(M) ≃
R+(CP 2 × CP 2).

Here W d is the nontrivial Sd−2-bundle over S2 with structure group SO(d−1).
For certain groups π we also get the uniqueness of the homotopy type of the

space of positive scalar curvature metrics on spin manifolds with fundamental
group π in a given dimension at least five. The set of groups for which this holds
includes finitely generated free abelian groups.

For finite π there are only finitely many homotopy types of the space of positive
scalar curvature metrics on spin manifolds with fundamental group π in a given
dimension at least five.

The above results naturally lead to the following conjecture.

Conjecture 3. Let M and N be two closed d-manifolds, d ≥ 5, with the same
normal 2-type. If both, M and N , admit psc metrics, then R+(M) ≃ R+(N).

Here two manifolds Mi, i = 1, 2, are said to have the same normal 2-type, if
there is a fibration ξ : B → BO such that the classifying maps νi : Mi → BO of
the stable normal bundles lift to maps ν̄i : Mi → B and both ν̄i are 2-connected.
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It has been observed in [3] that the concordance–implies–isotopy conjecture for
psc metrics implies our above conjecture.

The proofs of the above two theorems appeared in the preprint [4].
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How to solve the constraint equations

Romain Gicquaud

Given a manifold M of dimension n, the constraint equations are equations for

pairs (ĝ, K̂), where ĝ is a Riemannian metric and K̂ is a symmetric 2-tensor field
on M , that appear in the study of the Cauchy problem in general relativity.

Indeed, general relativity describes the spacetime as a (n+1)-dimensional man-
ifold M endowed with a Lorentzian metric h (i.e. h has signature (−+ · · ·+)). In
the absence of any other field (matter fields, electromagnetic field...), the Einstein
equation imposes that the metric h is Ricci flat. It can be more or less thought as
a second order hyperbolic equation for h. If M is a spacelike hypersurface lying
in M (meaning that the metric induced by h on M is Riemannian) then one can
think of the induced metric ĝ as the space configuration at some initial time and of

the second fundamental form K̂ as its time derivative. As such, ĝ and K̂ are nat-
ural candidates for the Cauchy data. However, it follows from the Gauss-Codazzi

equations that ĝ and K̂ are related by the following two equations:
{
0 = Scal(ĝ) + (trĝK̂)2 − |K̂|2ĝ
0 = divĝK̂ − d(trĝK̂).

The first equation is called the Hamiltonian constraint and is a scalar equation.
The second one is the momentum constraint and is a vector equation. They form
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together the constraint equations. It is then a celebrated result by Y. Choquet-

Bruhat that, given a triple (M, ĝ, K̂), there exists a unique spacetime (M, h)

solving the Einstein equation with (M, ĝ, K̂) as an embedded hypersurface.
As a consequence, to produce solutions to the Einstein equation, we have to

construct triples (M, ĝ, K̂) solving the constraint equations.
As a simple dimension counting argument shows, these equations are underde-

termined and several methods exist to construct solutions.

There exist mostly two approaches. The first one is gluing two or more solutions.
This method was introduced by J. Corvino and R. Schoen. The second one (his-

torically the first one) is to freeze part of (ĝ, K̂) to get an elliptic system of PDEs.
Several such methods exist. However, due to technical difficulties, studies have
been concentrated on the so called conformal method.

As its name indicates, the method consists in looking at metrics ĝ conformal

to a given g: ĝ = φN−2g, where N − 2 = 4/(n− 2). K̂ then gets decomposed as
follows:

K̂ =
τ

n
ĝ + φ−2(σ + LW )

where τ is a (given) function that corresponds to the mean curvature of the em-

bedding into the spacetime (trace of K̂ with respect to ĝ), σ is a TT-tensor for
g (i.e. σ is trace-free and divergence-free), W is a vector field and LW is the
trace-free part of the Lie derivative of g in the direction of W :

(LW )ij = ∇iWj +∇jWi −
2

n
∇kWkgij ,

∇ being the Levi-Civita connection associated to g. As a consequence, the splitting
is as follows:

• Given data: g, τ , σ.
• Unknown data: φ, W .

The constraint equations then become the following system called the conformal
constraint equations:

(CCE)





0 = −4(n− 1)

n− 2
∆gφ+ Scal(g)φ+

n− 1

n
τ2φN−1 − |σ + LW |2g

φN+1

0 = divgLW − n− 1

n
φNdτ.

The first equation is called the Lichnerowicz equation and is a generalization of
the prescribed scalar curvature equation. Existence and uniqueness of the solution
φ to this equation is completely known (at least on a compact manifold M) and
depends only on the zero set of τ and on whether |σ + LW |2g ≡ 0 or not. The
second equation is called the vector equation. As long as the metric g has no non
zero conformal Killing vector field, it can be solved for a unique W .

Difficulties arise when studying the system (CCE). If τ is a constant (the CMC
case), the vector equation reduces to divgLW = 0 so W ≡ 0 and one is left with
solving the Lichnerowicz equation. Perturbation arguments can be used to address
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the case where dτ is small (near CMC-case). However, for arbitrary τ , little is
known. We discuss the two major approaches:

• The Holst-Nagy-Tsogtgerel–Maxwell method that guarantee the existence
of a solution to (CCE) when g has positive Yamabe invariant and σ is
small enough.

• The Dahl-G.-Humbert method that shows that if a certain equation (called
the limit equation) admits no non-trivial solution, then the set of solutions
to the system (CCE) is non-empty and compact.

Reporter: Georg Frenck
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UFR Sciences et Techniques
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Universitätsstrasse 14
86159 Augsburg
GERMANY

Sven Hirsch

Department of Mathematics
Duke University
P.O.Box 90320
Durham, NC 27708-0320
UNITED STATES

Dr. Lan-Hsuan Huang

Department of Mathematics
University of Connecticut
Storrs, CT 06269-3009
UNITED STATES

Prof. Dr. Bruce Kleiner

Courant Institute of Mathematical
Sciences
New York University
251, Mercer Street
New York, NY 10012-1110
UNITED STATES

Prof. Dr. Klaus Kröncke
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