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Introduction by the Organizers

The workshop Partial Differential Equations, organized by Guido De Philippis
(Courant), Richard Schoen (Irvine) and Felix Schulze (Warwick) was held July
26 - July 30, 2021. The meeting was held in hybrid format, with 13 in person
and 22 virtual participants. Despite the pandemic the in person participants still
had a wide geographic representation. The program consisted of 21 talks, with
an evening talk adjusting to the majority of the time zones of the virtual partic-
ipants and gave sufficient time for discussions among the in person participants.
There were also several informal chats sessions including the in person and virtual
participants.

Following the workshop tradition, a variety of results concerning the interaction
of nonlinear PDE with Geometry have been presented. An application of minimal
surface theory in the classification of sufficiently connected manifolds with positive
scalar curvature was presented, as well as a result showing that the p-widths of a
surface are attained by smooth, immersed geodesics. Furthermore, an approach
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via Morse theory of moduli spaces of Yang-Mills gauge theories to extend the
Bogomolov-Miyaoka-Yau inequality was presented.

Several talks announced advances in the regularity theory for minimal sur-
faces. This included a talk on boundary regularity for area minimizing hypersur-
faces mod(p), the possible degeneration of 7-dimensional minimal hypersurfaces
with bounded index as well as an existence theory for hypersurfaces with pre-
scribed mean curvature using the approach via the Allen-Cahn functional. For
the anisotropic area functional, a proof of the anisotropic Michael-Simon inequal-
ity without using a suitable monotonicity formula was given, as well as a local
regularity result for Lipschitz graphs with Lp-bounded anisotropic mean curva-
ture. Furthermore, an extension of classical symmetry results for smooth minimal
surfaces to the class of Plateau’s surfaces was introduced.

A well established application of non-linear PDE to geometric problems con-
cerns geometric flows. In this context, a construction of a Ricci flow with initial
data only in W 2,2 in four dimensions was presented, as well as an existence the-
ory for Ricci flow on noncompact surfaces with rough initial data together with
applications to the existence of special solutions, including expanding solitons and
breather solutions. In mean curvature flow, advances in the classification of non-
collapsed translators was presented, as well as applications to the structure of
asymptotically conical self-shrinkers and an approximation result for weak solu-
tions with only generic singularities by flows with surgery. For higher non-linear
flows, a classification of translating flows of power-of-Gauss curvature was given.

In the setting of the Monge-Ampère equation, there were two presentations, one
concerning possible singular structure in exterior solutions for the real case, and
for complex Monge-Ampère equations higher order estimates for solutions with
small fibre size.

Other interactions of PDEs with Geometry included a presentation on an ε-
regularity theorem for solutions to the vectorial free boundary problem and the
regularity and structure of bilpschitz, quasiconformal, and Sobolev mappings, in
the sub-Riemannian setting.

A result in the more classical PDE setting demonstrated the approach using
quasiconformal mappings in understanding nodal sets on closed two-dimensional
surfaces and a successful application to a solution to Landis’ conjecture.
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Rigidity, flexibility, and regularity of Sobolev mappings in sub-Riemannian
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1893

Nick Edelen
Degeneration of 7-dimensional minimal hypersurfaces with bounded index 1895



1862 Oberwolfach Report 35/2021

Chao Li (joint with Otis Chodosh, Yevgeny Liokumovich)
Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions 1898

Christos Mantoulidis (joint with Otis Chodosh)
The p-widths of a surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1900

Antonio De Rosa (joint with Riccardo Tione)
Regularity of anisotropic minimal surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 1902

Aleksandr Logunov
Geometry of nodal sets of Laplace eigenfunctions. . . . . . . . . . . . . . . . . . . 1905

Jonas Hirsch (joint with C. De Lellis, A Marches, S. Stuvard and L. Spolaor)
Area minimizing hypersurfaces mod(p): A geometric free
boundary problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1906

Francesco Maggi (joint with Jacob Bernstein)
Symmetry results for Plateau’s surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1909



Partial Differential Equations 1863

Abstracts

Ricci flow of W 2,2 metrics in four dimensions

Miles Simon

(joint work with Tobias Lamm)

In this talk we explain how to construct solutions to Ricci flow and Ricci DeTurck
flow which are instantaneously smooth but whose initial values are (possibly) non-
smooth Riemannian metrics whose components, in smooth coordinates, belong to
certain Sobolev spaces.

For a given smooth Riemannian manifold (M,h), and an interval I ⊆ R, a
smooth family g(t)t∈I of Riemannian metrics on M is a solution to Ricci DeTurck
h Flow if

∂

∂t
gij = gab(h∇a

h∇bgij)− gklgiph
pqRjkql(h)− gklgjph

pqRikql(h)

+ 1
2g

abgpq
(

h∇igpa
h∇jgqb + 2h∇agjp

h∇qgib − 2h∇agjp
h∇bgiq

−2h∇jgpa
h∇bgiq − 2h∇igpa

h∇bgjq
)

,(1)

in the smooth sense onM×I, where here, and in the rest of the paper, h∇ refers to
the covariant derivative with respect to h. A smooth family ℓ(t)t∈I of Riemannian
metrics on M is a solution to Ricci flow if

∂ℓ

∂t
= −2Rc(ℓ)(2)

in the smooth sense on M × I. Ricci DeTurck flow and Ricci flow in the smooth
setting are closely related : given a Ricci DeTurck flow g(t)t∈I on a compact
manifold and an S ∈ I there is a smooth family of diffeomorphisms Φ(t) : M →M,
t ∈ I with Φ(S) = Id such that ℓ(t) = (Φ(t))∗g(t) is a smooth solution to Ricci
flow. The diffeomorphisms Φ(t) solve the following ordinary differential equation:

∂

∂t
Φα(x, t) =V α(Φ(x, t), t), for all (x, t) ∈Mn × I,

Φ(x, S) =x.(3)

where V α(y, t) := −gβγ
(

gΓα
βγ − hΓ

α
βγ

)

(y, t)
There are a number of papers on solutions to Ricci DeTurck flow and Ricci

flow starting from non-smooth Riemannian metric/distance spaces: Given a non-
smooth starting space (M, g0) or (M,d0), it is possible in some settings, to find
smooth solutions g(t)t∈(0,T ) to (1), respectively ℓ(t)t∈(0,T ) to (2) defined for some
T > 0, where the initial values are achieved in some weak sense. Here is a non-
exhaustive list of papers, where examples of this type are constructed : [5, 3,
6, 7, 1, 2, 4]. The initial non-smooth data considered in these papers has certain
structure, which when assumed in the smooth setting, leads to a priori estimates for
solutions, which are then used to construct solutions in the class being considered.
In some papers this initial structure comes from geometric conditions, in others
from regularity conditions on the initial function space of the metric components
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in smooth coordinates. In the second instance, this is usually in the setting, that
one has some C0 control of the metric. That is, the metric is close in the L∞ sense
to the standard euclidean metric in smooth coordinates: (1−ε)δ ≤ g(0) ≤ (1+ε)δ
for a sufficiently small ε. In this talk, the structure of the initial metric g(0)
comes from the assumption, in the four dimensional compact setting, that the
components in coordinates are in W 2,2, and uniformly bounded from above and
below : 1

aδ ≤ g(0) ≤ aδ for some constant c. Closeness of the metric to δ is not
assumed. With this initial structure, we show that a solution to Ricci DeTurck flow
exists. In the non-compact setting, we further require that theW 2,2 norm on balls
of radius one is uniformly small and a uniform bound from above and below in the
L∞ sense, both with respect to a geometrically controlled background metric. We
also investigate the question of how the initial values are achieved, in the metric
and distance sense, as time goes back to zero.

Using this solution g(t)t∈[0,T ) to Ricci DeTurck flow, we consider the Ricci flow
realted solution (Φ(t))∗(g(t))t∈(0,T ) as defined above, where Φ(S) = Id for some
S > 0. The convergence as time goes back to zero in the distance and metric sense
is investigated for this Ricci Flow solution. We require some new estimates on
convergence in the Lp sense for solutions to Ricci flow, in order to show that there
is indeed a limiting weak Riemannian metric, as time approaches to zero. We also
show that the initial metric value of the Ricci flow that is achieved is isometric, in
a weak sense, to the initial value g(0) of the Ricci DeTurck flow solution.

References
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Translating flow of power-of-Gauss curvature

Kyeongsu Choi

(joint work with Beomjun Choi, Soojung Kim)

Closed solutions to the flow by super-affine-critical powers of Gauss curvature
converge to round points, and those solutions to the flow by the affine-critical
power converges to ellipsoids after normalization. However, the flow by sub-affine-
critical powers of Gauss curvature generically develops Type II singularities, and
the translating flows are the Type II singularity models. Thus, the classification of
translators in the sub-affine-critical case is important for the singularity analysis.
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Since the translators are the complete graphs of solutions to the Monge-Ampère
type equation

(1) detD2u = (1 + |Du|2)n+2

2
− 1

2α ,

we can classify the translators by establishing a Liouville type theorem for the
Monge-Ampère equation.

Entire solutions to (1) diverge at infinity and thus its blow-down ū satisfy

(2) detD2ū = |Dū|n+2− 1
α .

Therefore, its convex dual v̄ satisfies

(3) detD2v̄(p) = |p| 1
α
−n−2.

Since the sub-affine-critical power α is less than 1
n+2 , v̄ solves

(4) detD2v̄(p) = |p|β ,
for some β.

In [3], Daskalopoulos and Savin studied asymptotic behaviour of a solution to (4)
near the origin in R2. We can modify their method so that we can show that an
entire solution v̄ in R2 \ {0} must be a homogeneous function. This implies that
the level curves of a translating soliton converges to a closed shrinker to α

1−α -curve
shortening flow after normalization.

On the other hand, Andrews [1] classified every closed shrinker to the α-curve
shortening flow. Therefore, we can find every potential shape of the translator
at infinity. Thus, by using the unstable eigenfunctions of the Jacobi operator of
the shrinkers, we can construct translators slowly converging to the homogeneous
functions with shrinker-level-sets.

Finally, we need to prove that they are the only possible translators to complete
the classification. To this end, we first show that the neutral eigenfunctions and
the unstable eigenfunctions dominate as in [2]. Then, we exclude the neutral
eigenfunctions dominance case by explicit calculations. The unstable eigenfunction
dominance case can be done by the classical stable manifold theory.

References

[1] B. Andrews, Classification of limiting shapes for isotropic curve flows, Journal of the Amer-

ican mathematical society 16 (2003), 443–459.
[2] S. Angenent, P. Daskalopoulos and N. Sesum, Unique asymptotics of ancient convex mean

curvature flow solutions, Journal of Differential Geometr 111 (2019), 381–455.
[3] P. Daskalopoulos and O. Savin, On Monge-Ampère equations with homogenous right-hand

sides, Communications on Pure and Applied Mathematics 62 (2009), 639–676.
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An epsilon-regularity theorem for the solutions of a vectorial free
boundary problem

Bozhidar Velichkov

(joint work with Francesco Paolo Maiale and Giorgio Tortone)

In this talk we consider a free boundary system arising in the study of a class of
shape optimization problems. The problem involves three variables: an open set
Ω ⊂ B1 and two continuous non-negative functions

u : B1 → R and v : B1 → R ,

The functions u and v are harmonic in Ω:

(1) ∆u = ∆v = 0 in Ω,

and satisfy the following overdetermined boundary condition on ∂Ω:

(2) u = v = 0 and
∂u

∂n

∂v

∂n
= 1 on ∂Ω ∩B1.

The domain Ω is also part of the system as we assume that:

(3) Ω := {u > 0} = {v > 0}.
Our main result is an ε-regularity theorem for solutions of the system (1)-(2)-(3).

1. Main theorem, viscosity solutions and flatness

1.1. Viscosity solutions. We assume that the equations (1) holds in the classical
sense, while the boundary condition (2), since we do not assume any a priori
regularity of ∂Ω, holds in the viscosity sense proposed by Caffarelli in [1, 2] for the
classical two-phase problem. Precisely, we say that u and v satisfy (2) if

at any point x0 ∈ ∂Ω ∩B1, at which ∂Ω admits a one-sided tangent ball,

the functions u and v can be expanded as

u(x) = α
(

(x−x0) ·ν
)

+
+ o

(

|x−x0|
)

and v(x) = β
(

(x−x0) ·ν
)

+
+ o

(

|x−x0|
)

,

where ν is a unit vector and α and β are positive real numbers such that αβ = 1.

1.2. Definition of flatness. We adapt the geometric notion of flatness proposed
by De Silva in [4] in the context of the one phase problem:

a function u is flat if its graph is flat.

Precisely, we say that u and v are ε-flat in B1, if there is a unit vector ν ∈ ∂B1

and positive constants α and β such that αβ = 1 and for every x ∈ B1

α
(

x·ν−ε
)

+
≤ u(x) ≤ α

(

x·ν+ε
)

+
and β

(

x·ν−ε
)

+
≤ v(x) ≤ β

(

x·ν+ε
)

+
.

1.3. Main theorem. In [6], we prove the following theorem.

Theorem 1 ([6]). There is a constant ε0 > 0 such that the following holds. Let u
and v be non-negative continuous functions on B1 and Ω ⊂ B1 be an open set. If
u, v and Ω are solutions of (1)-(2)-(3) and if u and v are ε-flat in B1, for some
ε ∈ (0, ε0], then the free boundary ∂Ω is a C1,α-regular manifold in B1/2.
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2. Shape optimization problems

A shape optimization problem is a variational problem of the form

min
{

J(Ω) : Ω ∈ A
}

,

where A is an admissible class of subsets of Rd and J is a given function on A.
The shape functionals are often related to models in Engineering, Mechanics and
Material Sciences; the most studied ones fall in one of the following classes:

spectral functionals and integral functionals.

2.1. Spectral functionals. The spectral functionals are functionals of the form

J(Ω) = F (λ1(Ω), . . . , λk(Ω)).

where F : Rk → R is a given function and λ1(Ω), . . . , λk(Ω) are the eigenvalues
of the Dirichlet Laplacian on Ω. The regularity of the optimal sets for spectral
functionals is the question that inspired and motivated most of the research on
another free boundary system, the so-called vectorial problem (see [3, 5, 7]), which
involves vector-valued functions U = (u1, . . . , uk) : B1 → Rk satisfying

(4) ∆U = 0 in Ω := {|U | > 0} ,
k

∑

j=1

|∇uj |2 = 1 on ∂Ω ∩B1.

2.2. Integral functionals. The integral functionals can be written in the form

(5) J(Ω) =

∫

D

j(uΩ, x) dx ,

where j : R×D → R is a given function and uΩ is the solution of

−∆u = f in Ω , u ∈ H1
0 (Ω),

where the right-hand side f : D → R is a given function.

The system (1)-(2)-(3) corresponds to the equation “first variation of J”=0.

Let us formally compute the first variation of J for smooth sets Ω in the case

j(x, u) = −g(x)u.
Given a smooth a compactly supported vector field ξ : Rd → Rd, we consder the
sets Ωt := (Id+ tξ)(Ω) and the solutions ut := uΩt

. The first variation of J is

δJ(Ω)[ξ] :=
d

dt

∣

∣

∣

t=0
J(Ωt),

where u′ is the derivative of ut at t = 0 and solves the PDE

∆u′ = 0 in Ω , u′ = −ξ · ∇uΩ on ∂Ω.

Let now vΩ be the solution of the problem

−∆vΩ = g in Ω , vΩ ∈ H1
0 (Ω).
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We now integrate by parts in Ω, obtaining

−
∫

Ω

u′g(x) dx =

∫

Ω

u′∆vΩ dx = −
∫

Ω

∇u′ · ∇vΩ dx+

∫

∂Ω

u′
∂uΩ
∂n

=

∫

∂Ω

u′
∂uΩ
∂n

.

Since the gradient uΩ = 0 on ∂Ω, we have ξ · ∇uΩ = (ξ · n)(n · ∇uΩ). Thus,

δJ(Ω)[ξ] = −
∫

∂Ω

−∂uΩ
∂n

∂vΩ
∂n

(n · ξ) .

Now, if Ω is a (local) minimizer of J among all sets of fixed Lebesgue measure,
then there is a positive constant c such that the state functions uΩ and vΩ satisfy

∂u

∂n

∂v

∂n
= c on ∂Ω.

3. Final remarks and open questions

3.1. Regularity of the optimal sets. A regularity theorem for the optimal
sets Ω, that minimize the functional (5) among all sets of fixed measure, will
be proved in a subsequent paper. The proof strongly relies on Theorem 1 for
viscosity solution. The main difficulty is in proving that the functions have the
same behavior close to the free boundary (that is, that the optimal sets satisfy
a Boundary Harnack Principle); for the vectorial problem, for instance, this was
done by showing that the optimal domain is NTA (see [7, 3]).

3.2. Free boundary systems. We can write a general free boundary system as

∆u = ∆v = 0 in Ω = {u > 0} = {v > 0} ; G
(∂u

∂n
,
∂u

∂n

)

= 0 on ∂Ω ∩B1.

In the vectorial case G(u, v) = u2+ v2 − 1, while for our system, G(u, v) = uv− 1.
It is not known at the moment if one can prove an epsilon-regularity theorem for

a general function G. For sure, the proofs of Theorem 1 and the epsilon-regularity
theorems for the vectorial case strongly rely on the invariance of the function G.
In the vectorial case the invariance is rotational, while in our case G is invariant
with respect to dilations of the form (u, v) 7→ (tu, 1t v).
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Approximation of mean curvature flow with generic singularities by
smooth flows with surgery

Joshua Daniels-Holgate

Mean curvature flow is the L2-gradient flow for the area functional. In general, the
flow from a hypersurface can develop singularities and there are multiple notions
of weak flow that allow for the continuation of the flow past such singularities.
An alternate approach is to approximate the flow by a piece-wise smooth flow,
known as a mean curvature flow with surgery. The surgery procedure for mean
curvature flow from a 2-convex hypersurface of dimension n ≥ 3 was introduced
by Huisken–Sinestrari in [12], and extended to n = 2 by Huisken–Brendle [1].
Independently, Haslhofer–Kleiner [10] established a surgery procedure that works
for all dimensions n ≥ 2. It shown independently by Lauer [13] and Head [11] that
2-convex flows with surgery converge in the Hausdorff sense to the weak flow as
the surgery parameters are taken to infinity.

The essence of surgery is to ‘cut out’ regions of high curvature that form as the
flow evolves. To be precise, we consider three curvature scales: Htrig > Hneck >
Hth. The flow is stopped when a point in the flow achieves H(x, t) = Htrig.
Necks of curvature Hneck are identified, cut and replaced with caps, and connected
components with H > Hth are then dropped. The flow is then continued from
this new hypersurface. In addition to extending the existence of the flow, this
provides a simple way for topological information to be tracked, as only finitely
many surgeries can occur.

In both methodologies, existence of 2-convex surgery boils down to the clas-
sification of regions of high curvature that develop: a canonical neighbourhood
theorem for 2-convex flow. Such a theorem classifies regions of high curvature,
showing there are always necks on which to perform surgery. Canonical neigh-
bourhoods of neck-pinch singularities for mean curvature flows of dimension n = 2
were established in [4] and for n ≥ 3 in [5], as a corollary to their resolution of
the mean convex neighbourhood conjecture. It is from this result that we can
extend the notion of a flow with surgery to flows with spherical and neck-pinch
singularities.

Spherical and generalised cylindrical singularities were conjectured by Huisken
to be ‘generic’. The pioneering work of Colding–Minicozzi, [6, 7, 8] showed spheri-
cal and generalised cylindrical singularities are the only linearly stable singularity
models. Recently, Chodosh–Choi–Mantoulidis–Schulze, [2, 3], showed that flows
with spherical and neck-pinch singularities occur generically in R4 amoungst initial
conditions with entropy less than that of S1 × R2. Such results provide a strong
motivation for establishing a flow with surgery for such flows.

In [9], we detail the construction of a flow with surgery for unit-regular cyclic
(mod 2) Brakke flows with only spherical and neck-pinch singularities. Further, we
establish a convergence result that relate the behaviour of the flows with surgery
back to the original flow in a smooth sense.
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Theorem 1 (Existence). For any unit-regular, cyclic (mod 2) Brakke flow with
only spherical and neck-pinch singularities starting from a smooth closed hypersur-
face Mn ⊂ Rn+1, there are parameters Hmin,Θ <∞ such that if Hth > Hmin and
Htrig/Hneck, Hneck/Hth > Θ, then there is a smooth flow with surgery with these
parameters that exists until it vanishes completely.

The following result is analogous to that of Lauer and Head [13, 11]

Theorem 2 (Hausdorff Convergence). Taking the limit as Hth → ∞, the surgical
flows converge in the Hausdorff sense to the level set flow from M .

Finally, we improve the convergence result. Such a convergence result shows
makes rigorous the notion of the surgery flows approximating the weak flow.

Theorem 3 (Smooth Convergence). Away from the singular set the convergence
is smooth.

To highlight why existence of a surgical flow is non-trivial consider a hyper-
surface, M , whose mean curvature flow has only spherical and neck-pinch singu-
larities, and a single neck-pinch singularity at the first singular time. With the
canonical neighbourhood theorems of [4, 5] in mind, one can follow the arguments
of [10] to pick surgery parameters suitable for surgical modifications to be made
at some time before the flow become singular. Such a process would construct a
new hypersurface M ′. One immediately runs into a problem: without assuming
global 2-convexity, we do not have any knowledge of how the flow from M ′ will
proceed. In the worst case, it may run into non-generic singularities.

To overcome these difficulties, we develop a technical framework that allows us
to pass to limits locally. In fact, this approach to the problem is such that once
we show existence of a flow with surgery, the convergence results are achieved for
free.

The framework boils down to two ingredients:

(1) Construction of barriers. We show that for any equidistant hypersurfaces
M±ε to the initial condition M , the ‘thick scale’ Hth can be chosen, de-
pending on ε > 0, such that the flow with surgery avoids the flow from
these hypersurfaces. At smooth times, this follows from the standard
avoidance principle for mean curvature flow. At surgery times, we use
the geometric observation that connected components with H > Hth, and
necks with H > Hth are ‘too small’ for the barrier flows to be present
in the interior, and thus surgeries don’t decrease the distance of the flow
with surgery from the barrier flows. This is sufficient to get Hausdorff
convergence. See Lauer [13].

(2) Following paths in the regular set. The connectedness of the regular set
for flows with spherical and neck-pinch singularities was established in [2].
Following paths in regular set contained in a canonical neighbourhood, we
use standard tools of mean curvature flow (namely, psuedolocality, Ecker–
Huisken’s graphical estimate and Haslhofer–Kleiner’s gradient estimate) to
establish convergence of the surgery flows back to the original weak flow
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in a small neighbourhood of the path. Indeed, we show no surgeries can
occur in a neighbourhood of a given regular point provided the surgeries
are done at a sufficiently large scale.

These tools allow us to establish a stability result, showing that the flows with
surgical modifications cannot ‘stray’ to far from the flow we wish to approximate,
allowing for further surgical modifications.
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Some new applications of the MCF to asymptotically conical
self shrinkers

Alexander Mramor

The mean curvature flow (abbreviated MCF) is where one deforms a submanifold
by its mean curvature vector. It is a natural flow to consider applying to problems
in topology concerning spaces of submanifolds (such as the Schoenflies and Smale
conjectures and generalizations thereof) and on the applied side has relations to
material science and computer imaging. As can be seen a number of ways, given
sufficiently regular initial submanifold M0 ⊂ N of an ambient space N the ex-
istence of such a deformation Mt, t > 0 is equivalent to finding a solution to a
nonlinear heat equation; there are many general results which give at least the
short time existence/uniqueness/regularity of the mean curvature flow. However,
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the maximum principle can be used to show that the mean curvature flow in many
cases will develop a singularity by some time T <∞.

There are a number of interrelated notions of weak solutions to the MCF which
can be used to continue the flow through singularities. However, if one wishes to
use the flow to study the initial data (for instance in applications of the flow to
topology) a detailed understanding of the singularities which occur is necessary
because otherwise some relevant information could be “lost” in the singular set.
For example, there are known potential singularity models of nontrivial topology.
To study the singularities, a rescaling procedure is used and when one rescales
about a fixed point one finds a so-called self shrinker Σ ⊂ RN after a suitable
normalization by Husken’s monotonicty formula [7] – these correspond to flows
which move by contractions given by t→ √−tΣ, where t ∈ (−∞, 0).

Outside of some convexity conditions or entropy bounds (in the sense of Colding
and Minicozzi, see [5]), the space of self shrinkers is generally poorly understood
and there are many examples showing the space is complicated. As an aside we
note that a way to avoid dealing with this overabundance of singularity models to
develop the theory of generic mean curvature flow initiated in [5], which roughly
speaking is a program to show that for generic initial data the only shrinkers which
occur are modeled on shrinkers of the form Sk

round × R
n−k
flat (naturally, typically

called generic shrinkers); in [3, 4] this has been developed within the dimensions,
entropy assumptions, and conjectural framework we consider below however there
are cases where one might imaginably need to deal with nongeneric shrinkers as
well, besides the intrinsic interest in their study.

Equivalent to the definition above, they are minimal surfaces in the Gaussian

metric Gij = e
−|x|2

2n δij , which (when they are smooth) implies they satisfy in the

hypersurface case H − x⊥

2 = 0. It turns out that under very broad conditions, self
shrinkers are unstable. This can be seen as a manifestation of the fact that the
Gaussian metric is f -Ricci positive in the sense of Bakry and Emery – such metrics
generally satisfy many of the same properties as true Ricci positive metrics. Hence
in principle they can be perturbed to find a nearby shrinker mean convex surface

(that is, one which satisfies H − x⊥

2 > 0) by the first eigenfunction of the Jacobi
operator. Shrinker mean convexity under some decay assumptions is preserved
under the renormalized MCF, which is related to the regular mean curvature
flow by a coordinate change and is given by deforming the surface by the mean
curvature vector plus the position vector. Mean convex MCFs satisfy very good
properties and these carry over to shrinker mean convex flows (in fact they even
satisfy more), which suggests that it could be profitable to study a self shrinker
by considering the flow of shrinker mean convex perturbations of it. Indeed this
strategy has been applied before in [6, 1, 2] amongst other works and is used to
show the results below, hence the title of this extended abstract.

A (relatively minor) analytic novelty of the flows we use is that singularity
formation is not ruled out by, say, an entropy assumption; we must check a number
of technical properties hold through singular times and because we are most often
in a noncompact setting below these doesn’t immediately follow from off the shelf



Partial Differential Equations 1873

results. The key fact about shrinker mean convex MCFs Mt we leverage (under
some very mild assumptions) is that they must clear out in that in any bounded
region B there is some time T for whichMt∩B = ∅ for t > T . To see this, White in
[16] showed that the nonempty limit of such a flow (in dimensions less than 7) must
be a smooth stable minimal surface, which in our case violates the aforementioned
instability of self shrinkers (it would also violate the Frankel property, another
Ricci positive type property enjoyed by the Gaussian metric). We now state our
first result, shown in [10] which partially extends a previous joint work with S.
Wang [13] to the noncompact setting:

Theorem 1. Let M2 ⊂ R3 be a two-sided, possibly noncompact, self shrinker with
finite topology and no more than one end. Then if M has an asymptotically conical
end or is compact, it is topologically standard.

The idea to show this result is to show that M must be a Heegaard splitting.
Then one may apply Waldhausen’s theorem [15] to see that M is topologically
standard which essentially says that M is embedded in the simplest possible way
(for instance, a standardly embedded torus is isotopic to a tubular neighborhood
of an unknotted circle). To show thatM is a Heegaard splitting we appeal to a “π1
surjectivity criterion” taken from [8, 9], which says essentially that if the universal
cover of either bounded component of R3 by M has connected boundary then
it is a Heegaard splitting. We suppose this doesn’t hold true for some bounded
component and perturb in a shrinker mean convex way and flow into it. By an
intersection number argument we can then show the flow doesn’t clear out, which
gives a contradiction to the previous paragraph.

In the conjectural picture all one ended self shrinkers of finite topology are
asymptotically conical. It is a useful assumption for instance in actually construct-
ing the first eigenfunction to perturb by – see [1], proposition 4.1. In fact this is
part of the reason why we only consider asymptotically conical shrinkers in these
results. Geometrically speaking, the picture in the sketch above is that the flow of
(the perturbation of) M gets “snagged” in case M is knotted/topologically non-
standard. In [11] we used this rough idea along with the eventual star-shapedness
of shrinker mean convex flows to show some unknottedness results in situations
where Waldhausen’s theorem doesn’t apply. Now we state our next result, shown
in [12], where Λk is the Colding-Minicozzi entropy of the round k-sphere:

Theorem 2. Suppose M3 ⊂ R4 is a smooth 2-sided asymptotically conical self
shrinker with entropy less than Λ1 and k ends. Then it is diffeomorphic to S3

with k 3-balls removed and replaced with k copies of S2 ×R+ attached along their
respective boundaries. If k = 1 then M ≃ R3 and in particular this is the case
when λ(M) ≤ Λ2.

This generalizes a previous joint work again with S. Wang in [14], where we
considered closed self shrinkers (in any dimension) under essentially this entropy
bound as well as a result of Bernstein and L. Wang shown in [2] for noncompact
shrinkers in R

4 where they used a stronger bound. The primary difficulty here is
that the link might have nontrivial topology, which because of the noncompactness
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its topology is less amenable to being “detected” by the flow. The most difficult
case is if there is a homotopically nontrivial curve γ in the link which is in fact
homotopically trivial in M . In this case, one can use Dehn’s lemma along with
the entropy assumption to basically show that γ stays homotopically trivial inMt,
which eventually leads to a contradiction to the clearing out property of the flow
for a properly chosen perturbation and subsequent flow.
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Existence of hypersurfaces with prescribed mean curvature

Costante Bellettini

(joint work with Neshan Wickramasekera)

We report on [4], where (largely by PDE methods) we establish:

Theorem 1. Let (N, h) be a compact Riemannian manifold of dimension n+ 1,
n ≥ 2, and let g ≥ 0 be a Lipschitz function on N . There exists an immersed
hypersurface M ⊂ N of class C2 such that (i) M is two sided, i.e. there is a global
choice of unit normal ν, (ii) dimH(M \ M) ≤ n − 7, where dimH denotes the
Hausdorff dimension, (iii) the mean curvature vector of M is given by gν. More
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precisely, M is quasi-embedded, i.e. for every p ∈ M around which M fails to be
embedded, there exists a neighbourhood Nρ(p) ⊂ N such thatM∩Nρ(p) = D1∪D2,
where D1 and D2 are embedded C2 disks lying on one side of each other and
intersecting tangentially (p is contained in the intersection).

Remark 1. M locally satisfies a quasi-linear elliptic PDE, the prescribed mean
curvature (PMC) equation. By Schauder theory, M is then C2,α, for every α ∈
(0, 1); moreover, if g ∈ Ck,α(N) for k ≥ 1, then M is of class Ck+2,α.

Remark 2. When n ≤ 6, M is closed. The failure ofM to be closed can only arise
for n ≥ 7 and is caused by the possible presence of a set of ’singular points’. A
point p is singular ifM fails to be immersed in any neighbourhood of p. (It follows
from the proof that M admits only non-planar tangent cones at singular points.)

The possible presence of a “small” singular set for n ≥ 7 is expected, since such
set appears already for the long-studied class of area-minimisers, as well as in the
previously known case g ≡ 0 (minimal hypersurfaces) of Theorem 1. The possible
singular set (and the closely related lack of curvature estimates) introduces an
extra level of difficulty in the construction of the PMC hypersurface, specifically
in the (essential) development of a suitable regularity and compactness theory.

The case g ≡ 0 of Theorem 1 has a long and fruitful history. It was proved
for n ≤ 5 in the combined works of Almgren [1] and Pitts [8], relying on the
curvature estimates of Schoen–Simon–Yau [11], and in arbitrary dimension thanks
to the regularity and compactness theory developed by Schoen–Simon [10]. The
construction was carried out by means of what is nowadays called the ’Almgren–
Pitts minmax method’. The latter finds the minimal hypersurface as a stationary
point for the area functional (area refers to the n-dimensional measure), through a
mountain pass construction in a suitable space of ’integral varifolds’ (weak notion
of submanfiolds). This method has been further extended and refined in the last
decade (notably starting with the proof of the Willmore conjecture by Marques–
Neves) and has led, among other results, to the establishment of Yau’s conjecture,
stating that a compact Riemannian manifold of dimension between 3 and 7 admits
infinitely many closed minimal hypersurfaces (Marques–Neves, Song). A drawback
of the Almgren–Pitts approach is that the relevant functional, area, is defined
on a non-linear space and does not satisfy a Palais–Smale condition; substantial
technical machinery is required to compensate for that.

A new, more direct proof for the case g ≡ 0 of Theorem 1 has been given
in recent years, by means of what we will refer to as ‘Allen–Cahn minmax’.
This was carried out by Guaraco [6] relying on works by Hutchinson, Tonegawa,
Wickramasekera [7] [12] [13]. The idea is to replace the area functional with
a regularised version Eǫ of it, defined for ǫ > 0 on the Hilbert space W 1,2(N):

Eǫ(u) = 1
2σ

(

∫

N ǫ |∇u|2

2 +
∫

N
W (u)

ǫ

)

, whereW : R → [0,∞) is a C2 ’double well’ po-

tential, i.e. with two nondegenerate global minima at −1 and +1, withW (±1) = 0,
and σ > 0 is a normalising constant (determined by W ). Employing this energy
goes back to a deep insight of De Giorgi, developed by Modica–Mortola and oth-
ers, who realised that “minimisers of Eǫ converge to area-minimisers as ǫ → 0”
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and pioneered the framework known as Γ-convergence. In [7] it is shown that,
more generally, “critical points of Eǫ converge to critical points of area (stationary
integral varifolds) as ǫ→ 0”. In [6] a minmax construction is carried out for Eǫ, for
each ǫ > 0, in W 1,2(N), capitalising on the validity of the Palais–Smale condition
(so a standard mountain pass lemma from classical PDE theory can be brought to
bear); then a suitable limit as ǫ → 0 yields a stationary integral varifold ([7]); its
smooth embeddedness away from a set of dimension ≤ n − 7 is obtained thanks
to the regularity theory in [12], [13].

In [4] we prove Theorem 1, at first for g > 0, g ∈ C1,1(N), by means of an Allen–
Cahn minmax. The (straightforward) starting point is to carry out a classical
mountain pass construction in W 1,2(N), for each ǫ > 0, for the energy Fǫ,g(u) =
Eǫ(u) − 1

2

∫

gu. Unlike in the case g ≡ 0, however, it is not necessarily true that
“critical points of Fǫ,g converge to hypersurfaces with mean curvature g as ǫ→ 0”.
The latter statement is true only if the limit (which is an integral varifold, still by
[7]) appears with multiplicity 1 (a.e.). On the other hand, simple examples show
that critical points of Fǫ,g may converge, as ǫ → 0, to hypersurfaces with (even)
multiplicity higher than 1, and with vanishing mean curvature (i.e. minimal). This
threatens the success of the Allen–Cahn minmax strategy.

We successfully prove the theorem by first showing a regularity result, that
applies to any integral varifold (in any Riemannian manifold of dimension 3 or
higher) that arises as limit (subsequential, as ǫ → 0) of critical points of Fǫ,g

with g > 0, g ∈ C1,1(N), with (locally) equibounded Morse index. This result
proves that the varifold in question is either (i) a minimal hypersurface M0 with
locally constant even multiplicity and with a singular set M0 \M0 of dimension
≤ n − 7; or (ii) a quasi-embedded two-sided hypersurface Mg with multiplicity
1 and mean curvature gν (where ν is a choice of unit normal) and with singular
set Mg \ Mg of dimension ≤ n − 7; or (iii) a union of a minimal hypersurface
as in (i) and a prescribed-mean-curvature hypersurface as in (ii). This regularity
result is based on the regularity and compactness framework that we developed in
[2], [3], combined with Röger–Tonegawa’s work [9] and stardard tools from GMT
and from quasi-linear elliptic PDEs. As a consequence of our regularity result, in
the case g > 0, g ∈ C1,1(N), we may carry out the minmax (leading for each ǫ
to a critical point of Fǫ,g with Morse index ≤ 1), send (subsequentially) ǫ → 0,
and pick Mg to be the desired hypersurface (M in Theorem 1) unless we are in
case (i), that is, unless the integral varifold obtained is a minimal hypersurface
M0 with even multiplicity. If the latter happens, we suitably perturb M0 and use
the resulting hypersurface to build (for each ǫ) a function that we use as initial
data for a negative gradient flow for Fǫ,g. The minmax characterisation ofM0 and
the specific choice of its perturbation guarantee that (a) the flow is mean convex
and thus converges to a stable critical point vǫ of Fǫ,g; (b) any integral varifold
obtained (subsequentially) from vǫ as ǫ→ 0 cannot be completely minimal, hence
(we can apply the regularity result discussed above to this varifold) is of the type
(ii) or (iii) above. We can then select the prescribed-mean-curvature component
of this varifold. This establishes Theorem 1 in the case g > 0, g ∈ C1,1(N).
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Then a (fairly simple) approximation argument (based on C2,α estimates that
appear in the regularity result for g > 0, g ∈ C1,1(N)) leads to Theorem 1 in full.

When g ≡ cnst, Theorem 1 gives the existence of (“closed”) constant-mean-
curvature hypersurfaces for a given value of the mean curvature. When 2 ≤ n ≤ 6
and g ≡ cnst, and when 2 ≤ n ≤ 6 and g : N → R is C∞ and satisfies a constraint
on the set {g = 0}, the Almgren–Pitts minmax method has been employed in [14],
[15] to reach the existence result. The dimensional restriction permits a short-cut
in the relevant regularity/compactness arguments, as curvature estimates ([11])
are available. The extension of the Almgren–Pitts approach of [14] to n ≥ 7 has
been carried out in [5], employing the regularity/compactness theory of [2], [3].
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Morse theory and the Bogomolov–Miyaoka–Yau inequality

Paul M. N. Feehan

(joint work with Thomas G. Leness)

1. Abstract

We review the classical Bogomolov–Miyaoka–Yau inequality for complex surfaces,
summarize prior attempts to prove the inequality for a broader class of four-
dimensional smooth manifolds, and outline our own approach to prove the in-
equality for four-dimensional smooth manifolds of Seiberg–Witten simple type,
which includes symplectic manifolds.

1.1. Bogomolov–Miyaoka–Yau inequality for complex surfaces. We begin
by recalling the well-known

Theorem 1 (Bogomolov–Miyaoka–Yau inequality for complex surfaces of general
type). (See Miyaoka [11, Therem 4] and Yau [17, Theorem 4].) If X is a compact,
complex surface of general type, then

(1) c1(X)2 ≤ 3c2(X).

Theorem 1 was proved by Miyaoka [11] using methods of algebraic geometry
and a weaker version was proved by Bogomolov [1]. Yau proved inequality (1) in
a slightly more restricted setting, using methods of non-linear partial differential
equations to solve an equation of complex Monge–Ampére type.

1.2. Bogomolov–Miyaoka–Yau inequality for four-manifolds. Our submit-
ted monograph [2] contains first steps towards a proof of the

Conjecture 2 (Bogomolov–Miyaoka–Yau inequality for smooth four-dimensional
manifolds with non-zero Seiberg–Witten invariants). If X is a closed, four-dimen-
sional, oriented, smooth manifold with b1(X) = 0, odd b+(X) ≥ 3, and Seiberg–
Witten simple type with a non-zero Seiberg–Witten invariant, then (1) holds.

If X obeys the hypotheses of Conjecture 2, then it has an almost complex
structure J [10] and in the inequality (1), the Chern classes are those of the complex
vector bundle (TX, J). Conjecture 2 is based on [12, Problem 4], though often
stated for four-dimensional, simply connected symplectic manifolds — see Gompf
and Stipsicz [7, Remark 10.2.16 (c)] or Stern [12, Problem 2]. Taubes [14, 15]
proved that four-dimensional, symplectic manifolds have non-zero Seiberg–Witten
invariants, generalizing Witten’s result for Kähler surfaces [16], while Kotschick,
Morgan, and Taubes [9] and Szabó [13] proved existence of four-dimensional, non-
symplectic, smooth manifolds with non-zero Seiberg–Witten invariants.
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1.3. SO(3) monopoles and the Bogomolov–Miyaoka–Yau conjecture. We
shall summarize the approach described in our submitted monograph [2] with
Leness to prove Conjecture 2 and describe some of our results proved in that
monograph.

Our strategy to prove Conjecture 2 uses a new approach to Morse–Bott the-
ory, which we call virtual Morse–Bott theory, that applies to singular analytic
spaces that typically arise in gauge theory — including moduli spaces of SO(3)
monopoles over closed smooth four-manifolds, stable holomorphic pairs of bundles
and sections over closed complex Kähler surfaces, and moduli spaces of Higgs pairs
over closed Riemann surfaces. Such moduli spaces over complex Kähler surfaces
or Riemann surfaces are complex analytic spaces, equipped with Kähler metrics
and Hamiltonian functions for circle actions. When the smooth four-manifold is
almost Hermitian (as are four-manifolds of Seiberg–Witten simple type) — where
the almost complex structure is not necessarily integrable and the fundamental
two-form defined by the almost complex structure and Riemannian metric is not
necessarily closed — one can still show that the moduli space of SO(3) monopoles
is almost Hermitian [4]. Such almost Hermitian moduli spaces are real analytic
spaces and carry a circle action compatible with the almost complex structure and
Riemannian metric and a corresponding Hamiltonian function to which our virtual
Morse–Bott theory applies. Our development of Morse theory extends one due to
Hitchin in his study of the moduli space of Higgs pairs over Riemann surfaces [8].

In [2, Theorem 1], we give an extension of Frankel’s Theorem [6, Section 3] for
Hamiltonian functions for circle actions on complex Kähler manifolds by allowing
smooth almost Hermitian manifolds; this allows us to compute eigenvalues of the
Hessian of the Hamiltonian function in terms of weights of circle actions. We
introduce the concept of a virtual Morse–Bott index for the Hamiltonian function
of a circle action on a complex analytic space. We prove in [3] that positivity of
the virtual Morse–Bott index of a critical point implies that it cannot be a local
minimum.

In [2, Section 1.3], we explain our strategy to use virtual Morse–Bott theory on
moduli spaces of SO(3) monopoles to prove Conjecture 2 by establishing existence
of anti-self-dual Yang–Mills connections on certain complex rank two, Hermitian
vector bundles E over X and which attained (by gradient flow, for example) as
absolute minima of the Hamiltonian function.

Our monograph [2] is a first step towards a proof of Conjecture 2, where we
begin by validating our strategy in the case of complex Kähler surfaces where
Conjecture 2 holds. Our [2, Theorem 5] shows that points in these moduli spaces
are critical points of the Hamiltonian function (the square of the L2 norm of the
spinor section, by analogy with Hitchin’s definition in terms of the Higgs field in [8,
Section 7]) if and only if they represent Seiberg–Witten monopoles or anti-self-dual
connections. Our [2, Theorem 4] shows that one can always choose moduli spaces
of SO(3) monopoles to implement our strategy to prove Conjecture 2. By analogy
with results of Hitchin [8, Proposition 7.1], our [2, Theorem 4] indicates that
the virtual Morse–Bott indices of points representing Seiberg–Witten monopoles
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are positive and thus cannot be local minima while points representing anti-self-
dual connections are absolute minima, where the Hamiltonian function is zero
and their existence is detectable via Morse theory. Our [2, Theorem 6] gives the
virtual Morse–Bott index of the Hamiltonian function for a point represented by a
Seiberg–Witten monopole, computed using the Hirzebruch–Riemann–Roch Index
Theorem.

In our article [4] in preparation, we extend our results in [2] from complex
Kähler surfaces to smooth four-manifolds that have b1 = 0, odd b+ ≥ 3, and
Seiberg–Witten simple type. Additional articles towards a proof of Conjecture 2
are in preparation with Leness and Richard Wentworth.
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Surviving without monotonicity: anisotropic Michael-Simon inequality

Alessandro Pigati

(joint work with Frederick J. Almgren and Guido De Philippis)

While the variational theory for the area functional has by now a huge literature,
with several cornerstone results, much less is known for a simple generalization of
it, called anisotropic energy. Given a Riemannian ambient (Mn+k, g) and a fixed
smooth positive function F on the Grassmannian bundle of n-planes, we define
the anisotropic energy F (Σ) to be

F (Σ) :=

∫

Σ

F (TxΣ) dHn(x),

for any compact n-submanifold Σ ⊂M . Note that, for F = 1, we recover the usual
n-dimensional area. In the sequel, we deal with codimension k = 1 and choose
M = Rn+1, for simplicity. Writing the Grassmannian bundle as Rn+1×Grn(R

n+1),
we also assume that F depends only on the second variable.

The monotonicity formula for the area functional states that, if Σ is minimal,
i.e., critical for the area in Rn+1 \∂Σ (with respect to ambient deformations), then

r 7→ Hn(Σ ∩Br(x))

rn

is increasing for any x 6∈ ∂Σ, on the range r ∈ (0, dist(x, ∂Σ)). More precise
versions allow for an arbitrary mean curvature H , which represents precisely the
first variation of the area (H = 0 in the minimal case), and hold also across the
boundary ∂Σ (which can be regarded as a singular part of the so-called generalized
mean curvature in geometric measure theory).

The monotonicity formula, which also holds for other important functionals
enjoying enough symmetry, such as the Dirichlet energy for maps between Rie-
mannian manifolds, the Yang–Mills energy for connections, etc., is a very basic
tool which is used crucially in the proof of a number of fundamental facts. For
instance, it implies the upper semicontinuity of the support in the limit, for a se-
quence of stationary varifolds (a weak notion of minimal submanifold) assuming
a lower density bound. It also implies the compactness of stationary rectifiable
and integral varifolds (under local bounds on mass and first variation) and the
existence of tangent cones. The first two consequences are particularly important
in soft arguments by compactness and contradiction.

However, for anisotropic energies, it was shown by Allard [1] that we cannot
hope for anything resembling too closely the monotonicity formula for the area.
Given that, we have to look for completely different ways to obtain the aforemen-
tioned facts in the anisotropic setting.

In this talk we discuss the anisotropic version of the Michael–Simon inequality,
which is a more robust fact, usually stated for functions defined on a submanifold.
Namely, given Σn ⊂ Rn+1 and a nonnegative function f : Σ → R, it states that

(

∫

Σ

f
n

n−1

)
n−1

n ≤ C(n)

∫

Σ

(|df |+ f |H |) + C(n)

∫

∂Σ

f



1882 Oberwolfach Report 35/2021

(for n ≥ 2). It resembles the classical Sobolev inequality in the Euclidean space,
except for the extra term involving the mean curvature H of Σ (and the boundary
of Σ, which can be regarded as a singular part of H). Thus, Sobolev’s inequality
holds with a constant independent of Σ, provided we add the term

∫

N
f |H | on the

right-hand side.
As in the case of Sobolev’s inequality (for the exponent p = 1), this inequality

is equivalent to its validity for the special case where f = 1, in which case the
statement becomes

Hn(Σ)
n−1

n ≤ C(n)

∫

Σ

|H |+ C(n)Hn−1(∂Σ).(1)

While the initial proof of the Michael–Simon inequality deduced it from the
monotonicity formula [5], other proofs are available nowadays: we quote, for in-
stance, the work [3], using methods which are connected to optimal transport
ideas.

In turn, using (1), we can recover immediately a lower bound of the form

Hn(Σ ∩Br(x)) ≥ c(n)rn(2)

for a minimal hypersurface Σn ⊂ Rn+1 and a point x ∈ Σ (assuming Br(x) ∩
∂Σ = ∅), by applying (1) to all the truncations Σ ∩ Bs(x) (for 0 < s < r) and
integrating the resulting differential inequality. This argument immediately gives
the upper semicontinuity of the support for sequences of stationary varifolds in
the anisotropic setting.

With slightly more work, using the anisotropic counterpart of the rectifiability
theorem, proved by De Rosa–De Philippis–Ghiraldin [4], and earlier work by Allard
[2], we also recover the compactness of rectifiable and integral varifolds.

Finally, let us mention that the lower area bound (2) is the main missing in-
gredient in order to extend Allard’s small-excess-regularity result for stationary
integral varifolds to the anisotropic situation. It should be noted that the quoted
papers require an ellipticity condition on F , namely (qualitative or quantitative)
strict convexity of F once we identify it with an even function on the sphere Sn

and extend it in a 1-homogeneous way to Rn+1.
Our main result is the following.

Theorem. For n = 2 the Michael–Simon inequality (1) holds, provided that (the
1-homogeneous extension of) F is convex and that F is close to 1 (the area func-
tional) in the C1 topology. More precisely, we have

|V |(R3) ≤ C(F )
√

H2{Θ > 0}|δFV |(R3)(3)

for any rectifiable 2-varifold V in R3 with finite total mass |V |(R3) and finite total
first variation |δFV |(R3) with respect to F . Here Θ denotes the density, which
exists |V |-a.e.; thus, H2{Θ > 0} is the area of the rectifiable set supporting V .

Note that when Θ ≥ 1 a.e. we can bound H2{Θ > 0} ≤ |V |(R3) and deduce
that

|V |(R3)1/2 ≤ C(F )|δFV |(R3),(4)
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which is the same as (1). Compared to (4), inequality (3) is both scale invariant
and homogeneous in V .

This result (actually, the slightly weaker version (4)) was initially proved in
a long set of posthumous notes by Frederick J. Almgren. We are grateful to
his wife, Jean Taylor, for sharing them with me and Guido De Philippis. In
collaboration with him, we greatly simplified his proof (although retaining some
important ideas).

The initial step is to project the situation onto a plane, e.g. span{e1, e2}. On
this plane, identified with R2, the boundedness of the first variation becomes the
fact that

divA ∈ L1, ‖ divA ‖L1 ≤ C(F )|δFV |(R3)

for a suitable matrix A ∈ R2×2 (varying with the point in R2 and supported on
the projection of |V |) which can be assumed to have nonnegative diagonal entries,
after a special change of coordinates (this is where convexity plays a role).

The main difference with respect to Almgren’s presentation is the use of the
following inequality, which is possibly new.

Theorem. Given two vector fields S, T ∈ C∞
c (R2,R2) on the plane, with Sx, T y ≥

0 and det(S, T ) ≥ 0, we have
∫

R2

det(S, T ) ≤ 1

4

∫

R2

| divS |
∫

R2

| div T |.(5)

It is important to note that the nonlinear conditions on S and T cannot be
dropped. Essentially, Sx, T y ≥ 0 guarantees that the integral curves of the vector
fields do not form loops, while det(S, T ) ≥ 0 guarantees that they intersect at most
once. Inequalities like (5) are closely related to the so-called multilinear Kakeya
inequality in harmonic analysis, which is an open problem for non-straight tubes
in dimension higher than two.

The inequality (5) immediately implies the classical isotropic Michael–Simon
inequality for 2-varifolds (in the version (4)), once applied to the rows of A, while
for anisotropic energies some additional ideas are required.
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Singular structures in exterior solutions to the
Monge-Ampère equation

Connor Mooney

The Monge-Ampère equation

(1) detD2u = 1 in Ω ⊂ R
n, u convex

arises in problems involving prescribed Gauss curvature, Kähler geometry, and
optimal transport. Global solutions of (1) are necessarily quadratic polynomials.
This was proven by Jörgens [9] in dimension n = 2, Calabi [4] in dimensions
n ≤ 5, and Pogorelov [16] in all dimensions. The local behavior of solutions to
(1) is delicate. In dimension n = 2 solutions to (1) are smooth and enjoy pure
interior C2 estimates, as in the case of the Laplace equation [7]. This is not true
in higher dimensions. Pogorelov constructed singular solutions to (1) in dimension

n ≥ 3 of the form u(x′, xn) = |x′|2− 2
n f(xn), |xn| < 1, where f is positive, analytic

and uniformly convex [17]. The key feature of this example is the presence of a
line segment in the graph of u. This is in fact the only obstruction to the interior
smoothness of solutions to (1): strictly convex solutions are smooth. The complete
proof of the latter fact has a long history that includes important contributions
from Calabi [4], Pogorelov [17], Cheng-Yau [5], Lions [11], Caffarelli-Nirenberg-
Spruck [3], Evans [6] and Krylov [10].

In applications, the intermediate situation of “exterior solutions” arises, namely:

(2) detD2u = 1 in R
n\Σ, Σ compact.

For example, the potential u of the optimal transport map which takes the uniform
measure plus a sum of M Dirac masses of sizes {ai}Mi=1 centered at points {pi}Mi=1

to the uniform measure (that is, ∇u “spreads” the Dirac masses out in a cost-

minimizing fashion) solves detD2u = 1 +
∑M

i=1 aiδpi
. In this case Σ = {pi}Mi=1.

Another example is motivated by mirror symmetry. The Strominger-Yau-Zaslow
conjecture predicts that certain families of degenerating Calabi-Yau metrics con-
verge to a space whose metric is given by the Hessian of a convex function u that
solves (2), with nonempty Σ. Of particular interest is the case that Σ is a “Y”
shape, see for example the works of Loftin [11] and Loftin-Yau-Zaslow [13].

Central questions about solutions to (2) are: (a) what is the asymptotic behavior
of u at infinity?, and (b) what is the local behavior of u away from Σ? Caffarelli-
Li showed that any solution to (2) is smooth outside the convex hull of Σ, and
is asymptotic to a quadratic polynomial at infinity [2]. This result can be viewed
as a generalization of the Jörgens-Calabi-Pogorelov theorem. The local behavior
remained unclear. For example: Can the optimal transport maps of Dirac masses
have discontinuities away from the masses? Or: Is there a robust method to
generate Monge-Ampère metrics with Y-shaped singular structures? In the talk
we discussed work which answered these questions in the positive [14]:

Theorem 1. Let Ω ⊂ R
n be a compact convex polytope, and let Γk denote its k-

skeleton (that is, the collection of faces of dimension at most k). Assume further
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that n = 3 or n = 4. Then there exists a convex function u : Rn → R such that
Γ1 ⊂ {u = 0}, u ∈ C∞(Rn\Γ1), and

(3) detD2u = 1 +
∑

q∈Γ0

aqδq

in the Alexandrov sense, for some coefficients aq > 0. Furthermore, ∇u is discon-
tinuous on the set of edges Γ1.

Such examples do not exist in dimension n = 2 in view of the purely local regularity
theory [7]. Also, the polytope Ω from Theorem 1 is allowed to be degenerate
(e.g. Γ0 may consist of two points, in which case Ω = Γ1 is a line segment). The
examples are built by solving an obstacle problem for the Monge-Ampère equation
with an obstacle whose graph is a convex polytope, and then taking the Legendre
transform. This approach required developing new tools related to the propagation
of singularities in solutions to the Monge-Ampère equation, as well as the use of
sophisticated regularity results for the case of linear obstacle due to Savin [15].

Theorem 1 opens up several interesting research directions. The first one is:

Problem 1. What happens in dimension n ≥ 5?

In [1], Caffarelli constructed generalizations of the Pogorelov example which solve
(1) near the origin, but whose graphs have flat regions of dimension up to (but
not including) n/2. In view of these examples, we expect that our approach
produces solutions to (2) with Σ again finite and consisting of the vertices of a
convex polytope, such that the solutions are singular on higher-dimensional faces.
Another interesting question is that of stability:

Problem 2. Do the singularities in the examples from Theorem (1) remain after
making small perturbations of the locations and sizes of the Dirac masses?

There are several ways to interpret this problem. One way is to choose a bounded
domain and its image under ∇u, fix these as the initial and target domains of
an optimal transport problem, and then vary the mass sizes and locations. In
[14] the locations of the masses are prescribed, and the mass sizes are determined
by the method of construction. Alternatively, one can remain in the setting of
global exterior solutions. Jin and Xiong have characterized the space of global

solutions to detD2u = 1 +
∑M

i=1 aiδpi
as an explicit orbifold of a certain dimen-

sion, parametrized by the mass locations and sizes [8]. It would be interesting
to investigate the geometry and topology of the set of points that correspond to
solutions that have singular structures:

Problem 3. Determine the geometric properties of the set on the solution orbifold
that corresponds to solutions with singular structures. For example: What is its
dimension? What is its regularity? What are its connectivity properties? Likewise,
find algebro-geometric conditions on the locations and the sizes of the masses that
rule out the existence of singular structures.

In connection with the Strominger-Yau-Zaslow conjecture, it would be very in-
teresting to understand the asymptotic behavior of the Hessians of the examples
from Theorem 1 near the masses:
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Problem 4. Find precise descriptions of the tangent cones to the examples from
[14] at the Dirac masses.

A starting point will be to study the case of two masses (that is, Γ0 consists of
two points) and axisymmetry. The behavior near Y-shaped singular structures is
a more delicate problem.

Finally, the approach in [14], which involves solving an obstacle problem and
taking the Legendre transform, is quite robust. It is natural to ask what happens
when we change the types of obstacle:

Problem 5. Investigate similar questions to those above, but choose obstacles
whose graphs are not necessarily convex polytopes.
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Higher order estimates for complex Monge-Ampère equations with
small fiber size

Valentino Tosatti

(joint work with Hans-Joachim Hein)

Let (X,ω) be a compact Kähler manifold with dimCX = n. A fundamental
theorem of Yau [10] guarantees the existence of a smooth solution of the elliptic
complex Monge-Ampère equation on X , as conjectured by Calabi who had also
proved uniqueness. More precisely, we have:

Theorem 1 (Yau [10]). Let (Xn, ω) be a compact Kähler manifold, and F ∈
C∞(X) be normalized by

∫

X
(eF − 1)ωn = 0. Then there is a unique ϕ ∈ C∞(X)

normalized by
∫

X
ϕωn = 0 such that ω + i∂∂ϕ > 0 (i.e. this defines a new Kähler

metric) and

(1) (ω + i∂∂ϕ)n = eFωn.

In local holomorphic coordinates, (1) is the complex Monge-Ampère equation

det

(

gjk +
∂2ϕ

∂zj∂zk

)

= eF det(gjk).

When X is Calabi-Yau, in the sense that c1(X) = 0 in H2(X,R), then we can
choose F so that Ric(ω) = i∂∂F , and in this case the Kähler metric ω + i∂∂ϕ
provided by Theorem 1 has vanishing Ricci curvature (i.e. it is Ricci-flat).

A natural question, which arose from consideration coming from mirror sym-
metry [3], is to study the behavior of these Ricci-flat metrics in families, when
the total volume of the manifold is shrinking to zero. The following is the pre-
cise setup, which was first studied by Gross-Wilson [3] for elliptically fibered K3
surfaces and by the author [7] in general.

We suppose that Xm+n is a compact Calabi-Yau manifold which admits a
surjective holomorphic map f : X → B with connected fibers onto a compact
Kähler manifold Bm (which may also be allowed to be singular, but we will not
stress this point here), with m,n > 0, and we fix a Ricci-flat Kähler metric ωX

on X , and a Kähler metric ωB on B. Such maps can be thought of as fibrations
with possibly singular fibers, in the sense that if we denote by D ⊂ B the critical
values of f and S = f−1(D), then D,S are proper closed analytic subsets and
f : X\S → B\D is a proper holomorphic submersion, in particular a C∞ fiber
bundle. The smooth fibers Xz = f−1(z), z ∈ B\D, are then Calabi-Yau n-folds,
pairwise diffeomorphic, and S is referred to as the singular fibers of f . Many such
fibrations can be constructed using tools from algebraic geometry.

Given such a fiber structure on X , we can consider Ricci-flat Kähler metrics on
X with small fiber volume. More precisely, for all t ≥ 0 we let ωt be the unique
Ricci-flat Kähler metric on X of the form

ωt = f∗ωB + e−tωX + i∂∂ϕt,

∫

X

ϕtω
m+n
X = 0,
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provided by Theorem 1, which therefore solve the family of complex Monge-
Ampère equations

ωm+n
t = (f∗ωB + e−tωX + i∂∂ϕt)

m+n = cte
−ntωm+n

X ,

where ct are explicit positive constants that are bounded away from 0 and∞ for all
t. The RHS of the PDE is thus of the order of e−nt, and furthermore the reference
metrics f∗ωB + e−tωX are very small in the fiber directions. The ellipticity of the
equation is then degenerating along the fibers, as t → ∞, and one would like to
know how the solutions ϕt (or equivalently the metrics ωt) behave as t→ ∞.

The first result in this direction was:

Theorem 2 (T. [7]). There is ϕ∞ ∈ C∞(B\D) with ω∞ = ωB + i∂∂ϕ∞ > 0
solving the Monge-Ampère equation

(ωB + i∂∂ϕ∞)m = c∞f∗(ω
m+n
X )

(for suitable c∞ ∈ R>0) such that ϕt → f∗ϕ∞ in C1,α
loc (X\S) for α < 1. Further-

more, given any K ⋐ X\S there is C such that on K for all t ≥ 0

C−1(f∗ωB + e−tωX) ≤ ωt ≤ C(f∗ωB + e−tωX).

The main conjecture was then that the convergence in this result can be im-
proved to the smooth topology:

Conjecture 3. In the above setting, as t → ∞ we have that ϕt → f∗ϕ∞ locally
smoothly on X\S. Equivalently, there are uniform a priori estimates

(2) ‖ωt‖Ck(K,ωX) ≤ C,

independent of t, for each K ⋐ X\S and k ≥ 0, where C depends on k,K and the
background data.

This conjecture was proved in [3] for elliptic K3 surfaces when f is generic,
by constructing ωt via a gluing procedure. From the work of [1] one can see that
conjecture 3 holds when S = ∅, i.e. f is a submersion everywhere. This assumption
is however very restrictive, as it implies that f is a holomorphic fiber bundle [9].
In [2, 4] it was shown that the conjecture holds if the smooth fibers Xz are tori (or
finite quotients of tori). However, none of these methods can be applied to solve
the conjecture in general.

In [8] we showed that ωt → f∗ω∞ locally uniformly on X\S, and this was
improved to Cα

loc convergence in [5], where it was also shown that the conjecture
holds whenever all smooth fibers Xz are pairwise biholomorphic. Finally, we have:

Theorem 4 (Hein-T. [6]). Conjecture 3 is true. More precisely, given 0 ≤ j ≤
k, 0 < α < 1 and z ∈ B\D there is a coordinate ball B′ = Br(z) ⊂ B and smooth
functions Gi,p,k, 2 ≤ i ≤ j, 1 ≤ p ≤ Ni,k on f−1(B′) so that there we can write

ωt = f∗ω∞ + e−tωF + γt,0 + γt,2,k + · · ·+ γt,j,k + ηt,j,k,

where ωF = ωX + i∂∂ρ is defined so that its restriction to any smooth fiber is
Ricci-flat, and

γt,0 = i∂∂ψt → 0 in Cj(B′),
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where ψt = ϕt − f∗ϕ∞ − e−tρ and ψt is its fiberwise average w.r.t. ωn
X ,

γt,i,k = i∂∂

Ni,k
∑

p=1

Gt,k(At,i,p,k, Gi,p,k) → 0 in Cj(f−1(B′), ωX),

where Gt,k is a certain approximate Green operator and At,i,p,k are smooth func-
tions on B′ which go to zero in Cj+2(B′), and the remainder ηt,j,k goes to zero in
a “shrinking” Cj norm on f−1(B′).

All objects that appear in this decomposition are also bounded in their corre-
sponding Hölder norms C•,α, α < 1. One can think of this result as an asymptotic
expansion for the Ricci-flat metrics ωt, which however stops at some arbitrarily
chosen level k, and where all the pieces of the expansion have explicit estimates
in Hölder norms. The remainder ηt,j,k is bounded in a much stronger “shrinking”
Cj,α norm on f−1(B′), where the length of derivatives is measured with respect to
the shrinking reference metrics ωref

t = f∗ω∞ + e−tωF instead of the fixed metric
ωX (there is a technicality as to which covariant derivatives and parallel transport
are used, that we gloss over here). The “obstruction functions” Gi,p,k arise as
obstructions to the remainder ηt,i−1,k at the previous step (which by induction is
bounded in shrinking Ci−1,α) being bounded in shrinking Ci,α. Once these are
identified, the functions At,i,p,k on the base can be thought of as the fiberwise L2

component of trg
ref
t ηt,i−1,k onto R.Gi,p,k, while the Green operator Gt,k satisfies

∆gref
t Gt,k(A,G) ≈ AG for A any polynomial on the base of degree < 2k + 2.
When the smooth fibers Xz are tori or are pairwise biholomorphic, the terms

γt,i,k vanish and the remainder decays faster then e−Nt for all N . In general
however, the terms γt,i,k are not zero.
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Non collapsed translators in R4

Or Hershkovits

(joint work with Kyeongsu Choi, Robert Haslhofer)

A hypersurface Mn ⊂ Rn+1 is called a translator if its mean curvature vector
satisfies

(1) H = v⊥

for some 0 6= v ∈ Rn+1. Solutions of (1) correspond to selfsimilarly translating
solutions {Mt =M + tv}t∈R of the mean curvature flow,

(2) (∂tx)
⊥ = H(x).

Translators model the formation of type II singularities under mean curvature
flow, see e.g. [Ham95, HS99, Whi03]. We recall that Huisken and Hamilton
grouped singularities of the mean curvature flow at some time T into type I and
II, depending on whether (T − t)|A|2 stays bounded or not [Hui90, Ham95]. Type
I singularities are modelled on shrinkers, and are easier to analyze than type II
singularities. For example it is known in any dimension that the round cylinders
Rk × Sn−k are the only mean-convex shrinkers [Hui93, Whi03], and also the only
stable shrinkers [CM12]. In an attempt to get a grasp on type II singularities,
translators have received a lot of attention over the last 25 years, but despite these
efforts no general classification result has been obtained for n ≥ 3, not even for
convex graphs.

Whenever a translator appears as a blow-up limit of a compact mean convex
mean curvature flow, it has to be convex and noncollapsed, in the sense of [SW09,
And12, HK17]. More generally, by Ilmanen’s mean-convex neighborhood conjec-
ture [Ilm03], which has been proved recently in the case of neck-singularities in
[CHH18, CHHW19], it is expected even without mean-convexity assumption that
all blowup limits near any cylindrical singularity are ancient noncollapsed flows.

When n = 2, it was shown in [Has15] that Bowl2 - the unique rotationally sym-
metric translating graph (which was constructed by Altschuler-Wu [AW94]) - is
the unique non collapsed translator in R3.

When n = 3, there are two examples of non-collapsed translators that have
been known for quite a while: R × Bowl2 - the product of the line with the 2-
dimensional bowl from from Altschuler-Wu [AW94], and Bowl3 - the 3d round bowl
constructed by Clutterbuck-Schnürer-Schulze [CSS07]. More recently, Hoffman-
Ilmanen-Martin-White [HIMW19a] constructed examples that are not rotationally
symmetric. Specifically, for every triple (k1, k2, k3) of nonnegative numbers with
k1 + k2 + k3 = 1 they proved that there exists at least one unit-speed graphical
translator with tip principal curvatures (k1, k2, k3). Moreover, they showed that
when one takes k1 ≤ k2 = k3 then one always gets a translator that is an en-
tire graph and has circular symmetry in the last two variables. It is not hard
to show that these entire graphical translators are in fact noncollapsed. Hence,
for every k ∈ (0, 13 ) there exists at least one noncollapsed translators Mk ⊂ R4
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that is noncollapsed and circular symmetric and whose principal curvatures at the
tip are (k, 1−k

2 , 1−k
2 ). The HIMW-translators {Mk}k∈(0,1/3) interpolate between

M0 = R× Bowl2 and M1/3 = Bowl3.
In the talk, I described the proof of the following result, which was obtained

jointly with Kyeongsu Choi and Robert Haslhofer

Theorem 1 (classification of noncollapsed translators [CHH21]). Every noncol-
lapsed translator in R4 is, up to rigid motion and scaling,

• either R× Bowl2,
• or the 3d round bowl Bowl3,
• or belongs to the one-parameter family {Mk}k∈(0,1/3) constructed by Hoff-
man-Ilmanen-Martin-White.
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Ricci flow on noncompact surfaces with rough initial data

Peter Topping

(joint work with Hao Yin)

In previous work [1, 5, 6, 4, 7] it has been shown that given any smooth connected
Riemannian surface, there exists a unique Ricci flow evolution for a specific time
interval [0, T ), that is complete for all t ∈ (0, T ).

In this talk we discussed to what extent we could broaden this theory to initial
data that was rougher than a smooth surface, insisting always that we are working
on a possibly noncompact underlying space.

Our starting proposal was to consider a Radon measure on a Riemann surface.
The measure can be thought of as a very rough conformal factor on the Riemann
surface. In the talk we showed that this was unreasonably general, by showing that
uniqueness and even existence would fail in this case. In contrast, if we consider
nonatomic measures then a theory can be developed.

Theorem 1 (Main existence theorem, [11]). Suppose M is any (connected, pos-
sibly noncompact) Riemann surface and µ is any nonnegative nontrivial Radon
measure on M that is nonatomic in the sense that

µ({x}) = 0 for all x ∈M.

Define

T :=















µ(M)
4π if M = C ≃ R

2

µ(M)
8π if M = S2

∞ otherwise.

Then there exists a smooth complete conformal Ricci flow g(t) onM , for t ∈ (0, T ),
such that the Riemannian volume measure µg(t) converges weakly to µ as t ց 0.

In the cases that T <∞, as tր T we have

Volg(t)(M) = (1− t
T )µ(M) → 0.

Moreover, if µ has no singular part then µg(t) → µ in L1
loc(M). More generally, if

Ω is the complement of the support of the singular part of µ, then µg(t)xΩ → µxΩ

in L1
loc(Ω).

The proof of the theorem involves an L1 − L∞ smoothing estimate proved in
[10] and a Harnack estimate that was inspired by [2].

Several applications of this new theory were presented. First, we demonstrated
how it leads to a large new class of expanding Ricci solitons that provide an answer
to a number of open problems concerning Ricci solitons in two dimensions. Second,
we used the theory to resolve the problem of whether a smooth Ricci flow that
attains smooth initial data only in the sense of local uniform convergence of the
Riemannian distance must in fact be smooth all the way down to time zero. See,
for example, the discussion in [8]. A counterexample was constructed by evolving
the Radon measure on the plane that is the sum of Lebesgue measure and the
Hausdorff H1 measure restricted to a line.
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Rigidity, flexibility, and regularity of Sobolev mappings in
sub-Riemannian geometry

Bruce Kleiner

(joint work with Stefan Müller, László Székelyhidi, Xiangdong Xie)

The lecture covered results from a series of recent papers on geometric mapping
theory in Euclidean space and Carnot groups; these were motivated by geometric
group theory, analysis on metric spaces, differential geometry, and PDEs.

The first results concern rigidity of product structure in R
n. A mapping f :

X1×X2 → Y1×Y2 between product sets splits (or preserves product structure) if
it is of the form f(x1, x2) = (f1(x1), f2(x2) for some mappings fi : Xi → Yi, after
possibly reindexing the factors Y1, Y2.

Theorem 1 (K-Müller-Szekelyhidi-Xie). If n ≥ 2 and f : Ω → Rn × Rn is a

W 1,2
loc -mapping such that Df(x) is split and bijective for a.e. x ∈ Ω, then f is

split.

The exponent 2 is sharp:

Theorem 2 (KMSX). For every 1 ≤ p < 2 there is a W 1,p
loc -mapping

f : Rn × R
n → R

n × R
n

such that Df(x) is split and bijective for a.e. x ∈ Ω, but f is not split.
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The assertion in Theorem 1 is false when n = 2 because of the map R2 → R2

which folds along the diagonal line {x1 = x2}. In fact, there are even bilipschitz
counterexamples:

Theorem 3 (KMSX). There is a bilipschitz homeomorphism f : R×R → R×R

such that

• Df(x) is split and bijective for a.e. x.
• f is not split.
• f is area preserving: detDf(x) = 1 for a.e. x.
• There is a null set N such that Df(x) takes only five values for x 6∈ N .

The remaining results are joint with Stefan Müller and Xiangdong Xie, and are
concerned with bilipschitz, quasiconformal, and Sobolev mappings in the Carnot
group setting. Such mappings have been studied since the 1970s, and arise, for
example, in geometric group theory as boundary homeomorphisms associated with
bilipschitz mappings X → X ′ between negatively curved manifolds, or as blow-
downs of quasi-isometries between finitely generated nilpotent groups. Since the
work of Pansu on rigidity in 1989, they have been of interest to a broader commu-
nity of differential geometers, people working on analysis in metric spaces, and on
PDEs.

In what follows, all Carnot groups will be equipped with their Carnot-Caratheo-
dory (i.e. sub-Riemannian) distance.

Theorem 4. Let H be the Heisenberg group and U1, U2 ⊂ H be connected open
subsets. Suppose

f : U1 × U2 → U ′ ⊂ H×H

is a quasisymmetric homeomorphism. Then f is split.

The same holds more generally for a W 1,3
loc -mapping provided the horizontal

differential dHf is nonsingular almost everywhere. We do not know the optimal
Sobolev exponent for rigidity. This is a special case of a general result for maps
between products of Carnot groups.

Theorem 5. Let HC
n be the nth complex Heisenberg group.

• (Hypoellipticity) Any quasisymmetric homeomorphism HC
n ⊃ U → U ′ ⊂

HC
n is locally holomorphic or antiholomorphic.

• Any globally defined quasisymmetric homeomorphism HC
n → HC

n is affine.

Reimann-Ricci proved the first assertion above, assuming f is C2. The regu-
larity result only requires that f ∈W 1,2n+1

loc , and nondegeneracy of the horizontal
differential dHf almost everywhere.

Theorem 6. If G is a nonrigid Carnot group (in the sense of Ottazzi-Warhurst)
other than Rn or a Heisenberg group, and f : G ⊃ U → U ′ ⊂ G is quasisymmetric,
then f ∈W 1,∞

loc , and is locally bilipschitz. If U = G, then f is bilipschitz.

The starting point for our results is theorem about Pansu pullback – the pull-
back of differential forms using the Pansu differential. Although Pansu pullback
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need not commute with the exterior derivative even for smooth contact diffeomor-
phisms, a partial analog does hold.

The lecture also mentioned:

• Applications to quasiregular mappings in Carnot groups.
• Sobolev mappings induce a chain mapping on Rumin complexes, in the
setting of contact manifolds.

• A rigidity result characterizing Sobolev mappings N ⊃ U → N where
N ⊂ GL(n,R) is the Carnot group of upper triangular matrices with 1s
on the diagonal.

Degeneration of 7-dimensional minimal hypersurfaces with
bounded index

Nick Edelen

An n-dimensional area-minimizing hypersurfaceMn will in general have a (n−7)-
dimensional singular set singM ≡M \M (M denoting set-theoretic closure), which
is countably (n− 7)-rectifiable with locally-finite (n− 7)-area [10], [7]. The same
regularity holds ifM is locally stable for the area-functional [12], [14], provided one
knows a priori that Hn−1(M \M) = 0 (often satisfied for reasons of orientability or
minimization). Any M with finite index, such as those arising from minimization
or min-max procedures, is locally stable.

When n = 7 the singular set is discrete, with a priori bounds on the number of
singular points in terms of the area of M [7]. Every tangent cone to M is stable
and smooth (away from 0), and near each singular point deep work of [1], [9]
showed that M is a C1 perturbation of its tangent cone. The quadratic “Simons’
cones1” C3,3, C2,4, C1,5 ⊂ R8 are all examples of smooth, stable cones. No other
such cones in R

8 are known. Except for the question of classifying the tangent
cones themselves, the aforementioned results give us a very precise picture of the
small-scale behavior of any particular M7.

In this talk we are interested in moduli spaces of 7D stable minimal hypersur-
faces, which requires knowledge of how uniform the regular and singular structure
are. For example, can arbitrarily bad topology, geometry, or singular set collapse
along a sequence into a singular limit? Precisely, we are led to the following
question:

Question 1. Let gi → g be a sequence of metrics on B1(0) ⊂ R8 converging in
C3, and M7

i be a sequence of stable embedded minimal hypersurfaces in (B1, gi)
with discrete singular set, which converge as varifolds in B1 to some minimal
cone C ⊂ (B1, g). What can be said about the Mi in B1/2? What if instead
supi index(Mi) <∞?

1Given integers p, q ∈ N, the quadratic hypercone Cp,q := {(x, y) ∈ Rp+1 × Rq+1 : p|x|2 =
q|y|2} is always stationary and smooth.
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An instructive example: [3], [6] showed that one can foliate R8 \C3,3 by a family
of smooth, area-minimizing hypersurfaces ∪λ6=0Sλ asymptotic to C3,3, which in
fact are all dilations of each other. If one takes λ → 0, the Sλ converges to C3,3,
but the geometry/topology/singular set changes in the limit. Therefore, even in
the nicest possible singular setting, different regular structures can “collapse” into
singularities of the limit. In general, by blowing-up along the sequence Mi, one
would expect the geometry of Mi to be modelled on entire, locally-stable minimal
hypersurfaces in R8 asymptotic to C.

When n ≥ 8, there is essentially no hope to answer Question 1 in the class
of smooth metrics. [11] has constructed remarkable examples of stable minimal
hypersurfaces M8 ⊂ (R9, g), such that g is smoothly close to geucl, M is varifold
close to C3,3 ×R, and singM is any preassigned closed subset of {0}×R. On the
other hand, when n ≤ 6, then C is necessarily a plane-with-multiplicity, and the
sheeting theorem of [12] imply Mi are all graphs (for i >> 1). Even when the Mi

are only locally stable, but with a priori bounded index, then [4] have shown Mi

have controlled geometry/topology
We prove the following answer to Question 1.

Theorem 1. In the setup of Question 1, then after passing to a subsequence, all
the Mi admit a “cone decomposition,” and we can a radius r ∈ (3/4, 1) and bi-
Lipschitz maps φi : Br → Br, so that φi(M1 ∩Br) =Mi ∩Br, φi : Br \ singM1 →
Br \ singMi are C

2 diffeomorphisms, and Lip(φi) ≤ C independent of i.

A “cone decomposition,” analogous to the “bubble trees” of [13], [8], is a quan-
titative decomposition of Mi into a collection of annular cone regions, wherein Mi

is a small perturbation of some smooth stable hypercone, and a collection of balls,
wherein the curvature of Mi is controlled. The main consequence of Theorem 1 is
the following finiteness theorem.

Corollary 2. Let (N8, g) be a closed, 8-dimensional Riemannian manifold with
C3 metric g, and take Λ, I ≥ 0. There is a number K(N, g, I,Λ) so that every
C2, closed, embedded minimal hypersurface M ⊂ (N, g) having H7(M) ≤ Λ and
index(M) ≤ I fits into one of at most K diffeomorphism classes. If M instead
M \ M is discrete, then M fits into one of at most K bi-Lipschitz equivalence
classes.

The main difficulty in proving Theorem 1, and the key difference from other
finitness results like [5], [4], is that we do not have any classification of tangent
cones C beyond being smooth and stable. In particular, we cannot assume C is
“integrable through rotations,” and have to allow for the possibility that C could
“rotate” through a pathological family of smooth, stable minimal hypercones. In
higher codimension there are examples of this behavior. We must use very heavily
the analytic nature of C, in form of the Lojasiewicz-Simon inequality [9].

We use analyticity in two ways. First, the Lojasiewicz-Simon inequality com-
bined with standard compactness/regularity theory implies that the set of densities

{

θC(0, 1) ≡
H7(C ∩B1)

ω7
: C ⊂ R

8 smooth, stable

}



Partial Differential Equations 1897

forms a discrete set 1 = θ1 < θ2 < . . .. We can therefore induct on the density
θk as follows: If one performs a blow-up procedure on the Mi as indicated above,
then one obtains an entire stable minimal surface M ′ ⊂ R8 asymptotic to some
cone C with θC(0) = θk. By choosing the blow-up scale well, one can assume M ′

is not itself a cone, and therefore by monotonicity any singular point of M ′ has
density ≤ θk−1 < θk. One can then perform a secondary blow-up at each singular
point of M ′, obtaining surfaces M ′′ asymptotic to a cone with density ≤ θk−1.
After a finite number of iterative blow-ups, one will exhaust all possible densities,
and get a smooth surface asymptotic to a non-flat cone, much like the foliation Sλ.

The second point we use analyticity is in controlling the annular “cone regions,”
where each Mi look close to a fixed cone. In the blow-up argument above, one
can only pass information between finitely-many scales, and so one is left with
the possibility that as the radius r decreases M looks like a “rotating” family of
cones, e.g. Mi ∩ ∂Br ≈ Clog r/σ ∩ ∂Br for some family of smooth cones {Ct}t∈R,
σ ∈ R small, and r ∈ [ρi, R]. This becomes a problem because, although the
Mi ∩BR \Bρi

are all diffeomorphic, we lose control over how these annular pieces
are glued into other parts of Mi. Imagine if Ct ∩ B1 where a genus two surface
which as t increased rotated one handle, and kept the other fixed. By rotating
more and more, one obtains gluing maps which are not isotopic to each other,
and have uncontrolled C1 norm. To deal with this, we adapt the decay-growth
estimates of [9] to show that, a posteriori, the cones cannot rotate in cone regions.
We must relax the original assumptions of [9], which required a sharp lower bound
θMi

(0, ρi) ≥ θC(0), to allow instead for θMi
(0, ρi) ≥ θC(0)− δ.
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Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions

Chao Li

(joint work with Otis Chodosh, Yevgeny Liokumovich)

We are concerned here with the problem of classification of manifolds admitting
positive scalar curvature (PSC). For closed (compact, no boundary) 2- and 3-
manifolds this problem is completely resolved, namely the sphere and projective
plane are the only closed surfaces admitting positive scalar curvature and a 3-
manifold admits positive scalar curvature if and only if it has no aspherical factors
in its prime decomposition. In particular, a 3-manifold admitting positive scalar
curvature has a finite cover diffeomorphic to S3 or to a connected sum of finitely
many S2 × S1.

It is a long standing challenge to seek analogous classification results in higher
dimensions. In particular, Schoen-Yau in [8] made the following conjecture:

Conjecture 1. Let n ≥ 4, Mn be a closed smooth aspherical manifold. Then M
does not admit any Riemannian metric of positive scalar curvature.

A stronger formulation in terms of metric geometry was also conjectured by
Gromov in [5]. As pointed out by Rosenberg in [6, Theorem 3.5], Conjecture 1 is
also closely related to a (still widely open) strong form of the Novikov conjecture:
if a certain form of the Novikov conjecture holds, then Conjecture 1 holds.

In a joint work with Chodosh, the author proved Conjecture 1 in 4 and 5
dimensions.

Theorem 2 ([2]). Let n ∈ {4, 5}, and Mn a closed smooth aspherical manifold
of dimension n. Then any Riemannian metric on M with nonnegative scalar
curvature is flat.

A key step in the proof of Theorem 2 is a certain homological filling estimate,
which we describe here. (This is inspired by a paper of Schoen-Yau [7].) Given
(Mn, g) as in Theorem 2 and suppose, for the sake of contradiction, that Rg ≥ 1,
then there exists a large constant L = L(M, g), such that the following holds:

any (n − 2)-cycle Γ in the universal cover M̃ can be realized as ∂Σ, where Σ is
an (n − 1)-chain such that it is contained in an L tubular neighborhood of Γ.
It is worth noting that Schoen-Yau [7] proved this estimate when n = 3 with
L = 2π. Any further extension of such an estimate to high dimensions will deduce
Conjecture 1 in such dimensions.

Inspired by an ongoing project of Alpert-Balitsky-Guth [1], Chodosh, Lioku-
movich and the author extended Theorem 2 to a positive result.
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Theorem 3 ([3]). Suppose that N is a closed smooth n-manifold admitting a
metric of positive scalar curvature and

• n = 4 and π2(N) = 0, or
• n = 5 and π2(N) = π3(N) = 0.

Then a finite cover N̂ of N is homotopy equivalent to Sn or connected sums of
Sn−1 × S1.

Some remarks are in order. First, recall that a closedNn is aspherical if πj(N) =
0 for all j ≥ 2. Thus Theorem 3 is a generalization of Theorem 2. Second, the
conditions that π2(N) = 0 when n = 4 (π3(N) = 0 when n = 5) are necessary:

compare to the product metric on T 2 × Sn−2. Third, if n = 4 and N̂ is homotopy
equivalent to S4 or S3 × S1, or if n = 5 (with no further restriction on the
homotopy type), then homotopy equivalence in the conclusion can be upgraded to
homeomorphism [4]. However, the approach does not seem possible to conclude
diffeomorphism types (in contrast to the case of dimension three).

There is also a more general mapping version of Theorem 3.

Theorem 4 ([3]). Suppose that N is a closed smooth orientable n-manifold with
a metric of positive scalar curvature and there exists a non-zero degree map f :
N → X, to a manifold X satisfying

• n = 4 and π2(X) = 0, or
• n = 5 and π2(X) = π3(X) = 0.

Then a finite cover X̂ of X is homotopy equivalent to Sn or connected sums of
Sn−1 × S1.

In particular, this implies that if n ∈ {4, 5}, f : N → X is a non-zero degree
map to an aspherical manifold X , then N does not admit any Riemannian metric
with positive scalar curvature.
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The p-widths of a surface

Christos Mantoulidis

(joint work with Otis Chodosh)

Fix a closed Riemannian manifold (Mn+1, g). The p-widths of (M, g), denoted
ωp(M, g) ∈ (0,∞) for p ∈ N∗, are a geometric nonlinear analogue of the spectrum
of its Laplace–Beltrami operator. They are obtained by replacing the Rayleigh
quotient of the Laplace–Beltrami operator along families of scalar-valued func-
tions on M with the n-dimensional area along sweepouts of M of (possibly sin-
gular) hypersurfaces. They were introduced by Gromov [Gro88, Gro03, Gro09],
studied further by Guth [Gut09], and have played a central and exciting role in
minimal surface theory when combined with the Almgren–Pitts–Marques–Neves
Morse theory program for the area functional. We invite the reader to refer to
[Gro88] for the analogy between the Laplace spectrum and the volume spectrum,
and to [MN21] for a thorough overview of the importance of this analogy in mini-
mal surface theory.

Let us recall the main existence theorem for p-widths. By the combined work
of Almgren–Pitts, Schoen–Simon, Marques–Neves, and Li, it is known that in am-
bient dimensions n + 1 ≥ 3 every p-width is attained as the area of a smoothly
embedded minimal hypersurface Σp whose singular set Σ̄p \ Σp has dimension
≤ n− 7, whose connected components may contribute to area with different mul-
tiplicities, and whose total Morse index (discounting multiplicities) is bounded by
p. That is:

Theorem 1 ([Pit81, SS81, MN16, Li20]). Let (Mn+1, g) be a closed Riemannian
manifold with n + 1 ≥ 3. For every p ∈ N∗, there exists a smoothly embedded
minimal hypersurface Σp ⊂M , with Σ̄p \Σp of Hausdorff dimension ≤ n− 7 and
components Σp,1, . . . ,Σp,N(p) ⊂ Σp, such that

ωp(M, g) =

N(p)
∑

j=1

mj · areag(Σp,j),

where mj ∈ N∗ for all j ∈ {1, . . . , N(p)} and ind(Σp) ≤ p.

Note that, when 3 ≤ n+ 1 ≤ 7, Σp is necessarily smoothly embedded. On the
other hand, in the case of a two-dimensional Riemannian manifold (n + 1 = 2),
min-max methods not only need not produce embedded geodesics (see [Aie19] for
examples of immersed geodesics being produced), but in full generality they could
a priori produce geodesic nets as opposed to (immersed) geodesics (see [MN16,
Remark 1.1]).

Our first main result shows that the min-max methods described above can be
guaranteed to produce (immersed) geodesics regardless of the number of param-
eters. Throughout the paper, a geodesic is said to be primitive if it is connected
and traversed with multiplicity one.

Theorem 2. Let (M2, g) be a closed Riemannian manifold. For every p ∈ N
∗,

there exists a σp ⊂M consisting of primitive closed geodesics σp,1, . . . , σp,N(p) ⊂ σp
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such that

ωp(M, g) =

N(p)
∑

j=1

mj · lengthg(σp,j),

where mj ∈ N∗ for all j ∈ {1, . . . , N(p)}.
The existence of immersed geodesics representing the p-widths was previously

known for p = 1 by Calabi–Cao [CC92] and for p ∈ {1, . . . , 8} and nearly round
metrics on S2 by Aiex [Aie19].

Our second main result is a computation of the full p-width spectrum of the
round two-sphere. (To this point there had not been a single (Mn, g), n ≥ 2, for
which the areas ωp(M, g) (let alone the surfaces Σp) are known for all p ∈ N

∗, not
even in the two-dimensional case. For comparison, the spectrum of the Laplacian
is completely determined for a large class of Riemannian manifolds.)

Theorem 3. Let g0 denote the unit round metric on S2. For every p ∈ N∗,

ωp(S
2, g0) = 2π⌊√p⌋,

and is attained by a sweepout constructed out of homogeneous polynomials. The
corresponding σp is a union of ⌊√p⌋ great circles (repetitions allowed).

One application of Theorem 3 concerns Weyl law for the p-widths. Recall that
the Laplacian spectrum (denoted by λp(M, g)) of a closed Riemannian (n + 1)-
manifiold satisfies the celebrated Weyl law

lim
p→∞

λp(M, g)p−
2

n+1 = 4π2 vol(B)−
2

n+1 vol(M, g)−
2

n+1

showing that the high-frequency behavior of the spectrum is universal in a certain
sense. Liokumovich–Marques–Neves have recently proven [LMN18] that the p-
widths satisfy the following Weyl-type law

(1) lim
p→∞

ωp(M, g)p−
1

n+1 = a(n) vol(M, g)
n

n+1

for some constant a(n) > 0. This result has had important implications for exis-
tence of minimal hypersurfaces, cf. [IMN18]. However, the constant a(n) has not
been determined for any dimension n (see [LMN18, §1.5]). This is in contrast with
the classical Weyl law, where one can use e.g. the (explicitly known) spectrum of a
cube to compute the constant in a straightforward manner. Our full computation
of the p-widths of the round two-sphere in Theorem 3 readily implies:

Corollary 4. When n = 1, the constant in (1) satisfies a(1) =
√
π.

This settles the “simplest case” of the first question in [LMN18, §1.5].
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Regularity of anisotropic minimal surfaces

Antonio De Rosa

(joint work with Riccardo Tione)

A celebrated theorem of W. Allard [1] states that, given a rectifiable m-varifold
V in RN with density greater or equal than 1 and generalized mean curvature
bounded in Lp(‖V ‖) with p > m, then V is regular around x ∈ RN provided x has
density ratio sufficiently close to 1. The proof deeply relies on the monotonicity
formula of the density ratio, which is strictly related to the special symmetries of
the area functional, [2]. Hence, it is a hard and widely open question whether this
result holds for anisotropic energies, [7, Question 1], i.e. assuming an Lp bound
on the anisotropic mean curvature with respect to functionals of the form

ΣΨ(V ) :=

∫

Γ

Ψ(TzΓ)θ(z)dHm(z), where V = (Γ, θ) is a rectifiable m-varifold.

To the best of our knowledge, the only available result is the regularity for codi-
mension one varifolds with bounded generalized Ψ-mean curvature [3], under a
density lower bound assumption.

In joint work with R. Tione [14], we provide an affirmative answer to the ques-
tion above in any dimension and codimension in the case the varifold V is associ-
ated to a Lipschitz graph, solving the open question [7, Question 5] for graphs:

Theorem 1 [14]. Let Ψ ∈ C2 be a functional satisfying (USAC), let p > m and
consider an open, bounded set Ω ⊂ Rm. Let u ∈ Lip(Ω,Rn) be a map whose
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graph Γu induces a varifold with Ψ-mean curvature in Lp in Ω× Rn. Then there
exists α > 0 and an open set Ω0 of full measure in Ω such that u ∈ C1,α(Ω0,R

n).

As mentioned above, our proof cannot rely on the monotonicity formula. Hence,
we are not able to extend it to general rectifiable varifolds. Instead, we introduce
a novel ellipticity condition (USAC), which allows us to obtain a Caccioppoli
inequality, giving an answer to [7, Question 6]. (USAC) reveals to be useful to
tackle another open problem in the literature: providing non-trivial examples of
anisotropic energies in general codimension satisfying the atomic condition (AC).
The classical Almgren ellipticity (AE), ([5, IV.1(7)] or [4, 1.6(2)]), allowed F.
J. Almgren to prove regularity for minimizers of anisotropic energies, [4]. Very
recently, an ongoing interest on the anisotropic Plateau problem has lead to a
series of results [8, 9, 11, 12, 16, 17]. In particular, in joint work with G. De
Philippis and F. Ghiraldin [10], we introduced (AC) and proved it to be necessary
and sufficient for the validity of the rectifiability of varifolds whose anisotropic first
variation is a Radon measure. In codimension one and in dimension one, we proved
that (AC) is equivalent to the strict convexity of the integrand, [10]. However, in
general codimension, characterizing (AC) in terms of more classical conditions
(such as (AE), policonvexity, or others) remains an open problem, [10, Page 2].
In joint work with S. Kolasiński [13], we have recently obtained one implication,
proving that (AC) implies (AE). However, in general codimension there were no
examples of anisotropic energies (besides the area functional) satisfying (AC). We
address this question with R. Tione [14] proving the following:

Theorem 2 [14]. Integrands Ψ in a C2 neighborhood of the area functional satisfy
(USAC); (USAC) implies (AC).

Hence, the anisotropic energies in a C2-neighborhood of the area are the first
functionals in the literature in general codimension to justify the regularity theory
developed in [10]. In particular, we deduce the rectifiability of varifolds with locally
bounded anisotropic first variation for a C2 neighborhood of the area functional.

(AC) can be relaxed to a condition (AC1), which is equivalent to the rectifiabil-
ity of the mass of varifolds whose anisotropic first variation is a Radon measure, [6].
In codimension one, the convexity of the integrand implies (AC1), [6]. However,
in general codimension, there are no non-trivial examples of anisotropic energies
satisfying (AC1). We address this problem with R. Tione [14] by proving:

Theorem 3 [14]. Integrands Ψ in a C1 neighborhood of the area functional satisfy
(AC1).

Theorem 3 implies that, in codimension one, (AC1) is a strictly weaker notion
than convexity of the integrand. This shows that the result of [6, Page 656, point
(b)] is indeed optimal. We also find a class of integrands on G(4, 2) (lp-norms)
satisfying (AC1), which are not C1-close to the area.

There are profound connections between anisotropic geometric variational prob-
lems and questions arising in the study of polyconvex energies, see [15, Page 229].
This link was investigated in [7, 18]. In particular, there is a canonical way to
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associate a function FΨ : Rn×m → R to an integrand Ψ defined on G(N,m), in
such a way that a Lipschitz graph [Γu] is stationary for ΣΨ if and only if u is
critical for outer and inner variations for the energy

EFΨ
(u) =

∫

Ω

FΨ(Du(x))dx.

In [7, 18], C. De Lellis, G. De Philippis, B. Kirchheim, J. Hirsch and R. Tione
investigated the possibility of constructing a nowhere regular stationary graph for
ΣΨ, exploiting the convex integration techniques introduced by S. Müller and V.
Šverák and L. Székelyhidi in [21, 22]. However they proved that it is impossible to
complete this task using the same strategy of [21, 22]. In particular, they proved
that if the polyconvexity of FΨ complies with the stationarity of u, then one can
exclude a certain type of Young measures, referred to as T ′

N configurations. With
R. Tione [14], we show a much more systematic result in this direction:

Theorem 4 [14]. (AC) excludes non-trivial Young measures in the case of Ψ-
stationary graphs.

Theorem 4 provides an answer to [7, Question 4]. In [19, Question 1], B.
Kirchheim, S. Müller and V. Šverák leave as an open question to find rank-one
convex functions whose differential inclusion associated to critical points (for outer
variations only) supports only trivial Young measures. Theorem 4 provides an
answer in a neighborhood of the area (in arbitrary dimension and codimension),
adding the hypothesis of criticality for inner variations. To conclude, we remark
that Theorem 1 provides partial answers to questions that naturally arose in the
context of quasiconvex energies, [20, Page 65], and [19, Question 2].
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[16] Y. Fang and S. Kolasiński, Existence of solutions to a general geometric elliptic variational
problem, Calc. Var. Partial Differential Equations 57(3) (2018).

[17] J. Harrison and H. Pugh, General methods of elliptic minimization, Calc. Var. Partial
Differential Equations 56(4) (2017).

[18] J. Hirsch and R. Tione, On the constancy theorem for anisotropic energies through differ-
ential inclusions, ArXiv: 2010.14846 (2020).
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Geometry of nodal sets of Laplace eigenfunctions.

Aleksandr Logunov

We will discuss geometrical and analytic properties of zero sets of harmonic func-
tions and eigenfunctions of the Laplace operator. For harmonic functions on the
plane there is an interesting relation between local length of the zero set and the
growth of harmonic functions. The larger the zero set is, the faster the growth of
harmonic function should be and vice versa. Zero sets of Laplace eigenfunctions on
surfaces are unions of smooth curves with equiangular intersections. Topology of
the zero set could be quite complicated, but Yau conjectured that the total length
of the zero set is comparable to the square root of the eigenvalue for all eigenfunc-
tions. We will start with open questions about spherical harmonics and explain
some methods to study nodal sets, which are zero sets of solutions of elliptic PDE.
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Area minimizing hypersurfaces mod(p): A geometric free
boundary problem

Jonas Hirsch

(joint work with C. De Lellis, A Marches, S. Stuvard and L. Spolaor)

In this talk I would like to give an idea of our resent result on the structure of area
minimizing hypersurfaces mod(p), [2].

Motivation: If one considers real soap films one notice that from time to time
one can find configurations where different soap films join on a common piece.
One possibility to allow this kind of phenomenon is to consider flat chains with
coefficients in Zp. For instance for p = 2 one can deal with unoriented surfaces,
for p = 3 one allows triple junctions. Using known results it can be shown that
for p = 3 this common piece is itself nicely regular. It was our aim to investigate
the situation for higher p.

We consider area minimizing m-dimensional currents mod(p) in complete C2 Rie-
mannian manifolds Σ of dimension m + 1. For odd moduli we prove that, away
from a closed rectifiable set of codimension 2, the current in question is, locally, the
union of finitely many smooth minimal hypersurfaces coming together at a com-
mon C1,α boundary of dimension m−1, and the result is optimal. For even p such
structure holds in a neighborhood of any point where at least one tangent cone
has (m− 1)-dimensional spine. These structural results are indeed the byproduct
of a theorem that proves (for any modulus) uniqueness and decay towards such
tangent cones. The underlying strategy of the proof is inspired by the techniques
developed by Simon, [3], in a class of multiplicity one stationary varifolds. The
major difficulty in our setting is produced by the fact that the cones and surfaces
under investigation have arbitrary multiplicities ranging from 1 to ⌊p

2⌋.

Some ideas to the proof. The first step is an analysis of possible tangent cones
C with (m − 1)-dimensional spine. Two elementary facts will play an important
role. First of all, any such C can be described as the union of finitely many, but at
least 3, half-hyperplanes Hi meeting at a common (m− 1)-dimensional subspace
V and counted with appropriate multiplicities κi. Secondly, if the modulus p is
odd, then the angle formed by a pair (Hi,Hj) of consecutive half-hyperplanes is
necessarily smaller than π−ϑ0(p), where ϑ0(p) is a positive geometric constant de-
pending only on p. This is effectively the reason why for odd moduli our conclusion
is stronger.

Now we are able to formulate the most important result of the paper, an Decay
Theorem: It states, roughly speaking, that if the current T is sufficiently close, at a
given scale ρ, to a cone C as above around a point q where T has density at least p

2 ,
at a scale δρ the distance to a suitable cone C′ with the same structure will decay
by a constant factor. This is the counterpart of a similar decay theorem proved
by Simon in his pioneering work on cylindrical tangent cones [3] of multiplicity
1 under the assumption that the cross section satisfies a suitable integrability
condition, which in turn is a far-reaching generalization of the work of Taylor in
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[4] for the specific case of 2-dimensional area-minimizing cones mod 3 in R3 with
1-dimensional spines (to our knowledge, the first theorem of the kind ever proved
in the literature for a “singular cone”).

In order to deal with the fact that the multiplicities are allowed to be larger
than 1 substantial work is needed. To perform our analysis, the theorem is proved
for cones C which in turn are sufficiently close to a fixed reference cone C0. While
C0 is assumed to be area-minimizing mod(p), both C and C′ are not. The Decay
Theorem can be iterate and we obtain as a consequence the mentioned uniqueness
of the tangent cone and that locally we are in the situation of a “classical” geo-
metric free boundary. Hence the main part of our work is devoted to the proof of
the Decay Theorem.

As in many similar regularity proofs (starting from the pioneering work of De
Giorgi [1]) the main argument is a “blow-up” procedure: after scaling, we focus
on a sequence of area-minimizing currents Tk which are close at scale 1 to cones
Ck, which in turn converge to a reference cone C0. Ck and C0 are assumed to
share the same spine V . The distance between Tk and Ck (which is measured
in an L2 sense) is the relevant parameter and will be called excess and denoted
by Ek. The distance between Ck and C0 is not assumed to be related to Ek.
The overall idea is then to approximate the currents Tk and Ck with Lipschitz
graphs over the halfplanes H0,i forming C0, consider the differences between these

graphs, renormalize them by E
− 1

2

k , and study their limits. These are proved to be
harmonic (an idea that dates back to De Giorgi), while the remarkable insight of
Simon’s work [3] is used to prove suitable estimates (and compatibility relations)
at the spine V . The novelty this time is that we need an suitable decay for
“multivalued” harmonic functions. A fundamental realization of Simon is that,
in order to accomplish the above program, one needs to introduce an additional
object, for which we propose the term binding function, and whose role will be
explained in a moment.

As already mentioned, the biggest source of complication is that the multiplici-
ties κ0,i of the halfplanes H0,i forming the support of C0 are typically larger than
1. In particular it is necessary to use κ0,i (not necessarily all distinct) functions to
approximate the portions of the current Tk which are close to H0,i. Likewise, it is
necessary to use κ0,i functions to describe the portions of Ck which are close to
H0,i. Notice that while we know that the number Ni of distinct functions needed
in the representation ranges between 1 and κ0,i and that the multiplicities of the
corresponding graphs are positive integers κi,j which sum up to κ0,i, any choice of
coefficients respecting these conditions is possible, and moreover the choice might
be different for Tk and Ck and depend on k.

In order to produce graphical parametrizations of the current Tk at appropriate
scales, we take advantage of the ǫ-regularity result proved by White in [5], but
we also need to show that each such parametrization is close to one of the linear
functions describing the cone Ck. This major issue is absent in Simon’s work [3]
thanks to the multiplicity one assumption. A large part of our work address it
leading to a the relevant “graphical approximation theorems”.
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First we show how to use [5] to gain a graphical parametrization of T = Tk.
Inspired by [3] we subdivide the support of the current in regions Q of size com-
parable to their distance dQ from the spine of C0. For practical reasons, dQ will
range in a dyadic scale and we will put an order relation on all the regions ac-
cording to whether a region Q′ is lying “above” the region Q. We then apply the
regularity theorem of [5] on any “good” region, i.e. any Q with the property that
at Q and at every region above Q the current T is sufficiently close to C = Ck. A
simple argument (which uses heavily the fact that the codimension of T in Σ is 1),
allows to “patch” together the graphical approximations across different regions
to achieve p =

∑

i κ0,i “sheets” which approximate efficiently the current.
In fact we show that on each region Q each “graphical sheet” of T is close to

some sheet of C: the main ingredient is an appropriate Harnack-type estimate for
solutions of the minimal surface equation. While at this stage the choice might
depend on the region Q, an appropriate selection algorithm allows to bridge across
different regions and show that there is a single sheet of C to which each single
graphical sheet of T is close on every region Q. The latter selection algorithm will
in fact be used again twice later on. An important thing to be noticed is that,
since we use a one-sided excess, there might be some sheets of C which are not
close to any of the graphical sheets of T : this phenomenon, which is not present
in [3], is due to the fact that the multiplicities κ0,i might be higher than 1, and

forces us to introduce an intermediate cone C̃ which consists of those sheets of C
which are close to at least one graphical sheet of T .

We next appropriately modify the key idea of [3] that the remainder in the
classical monotonicity formula can be used to improve the estimates near the
spine of the cone C0. First this is done to estimate the distance of T to suitable
shifted copies of C̃, centered at points of high density of T . It is in this section
that we exploit crucially a reparametrization of the graphical sheets of T over C̃
and, in particular, the fact that C̃ does not contain any “halfspace of C far from
T ”. The mod(p) structure allows us to prove the so-called “no-hole condition”,
namely some point of high density of T must be located close to any point of
the spine of C̃ (which, we recall, is the same as the spine of C and C0). The
latter is combined with the previously established estimates, inspired by Simon,
to prove that, upon subtracting some suitable piecewise constant functions with a
particular cylindrical structure (the binding functions), the graphical sheets enjoy
good estimates close to the spine. However, again caused by multiplicities κ0,i,
unlike in [3], we need to introduce a suitable correction to the binding functions,
and a crucial point is that the size of the latter can be estimated by the product

of the excess E
1
2 = E

1
2

k and the distance of C = Ck to C0.
With the sketched modifications we are able to perform the intended “blow-up”

procedure.
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Symmetry results for Plateau’s surfaces

Francesco Maggi

(joint work with Jacob Bernstein)

Aminimal Plateau’s surface Σ is defined here as a closed subset of R3 such that,
for each point p ∈ Σ, one can find r > 0, α ∈ (0, 1), and a C1,α-diffeomorphism
fp : Br(p) → Br(p), with Dfp(p) a linear isometry, such that fp(Σ ∩ Br(p)) =
K ∩Br(p), where K is either a plane P , a half-plane H , a union Y of three half-
planes meeting along a common line at 120-degrees, or a regular tetrahedral cone
T . Moreover, the interior set Σ of the points p with K = P is assumed to have
vanishing mean curvature – given the C1,α-regularity, at first in distributional
sense, and thus, by elliptic regularity, in the classical, smooth sense.

The above definition captures, in elementary mathematical terms, the content of
the experimental laws of Plateau for soap films at equilibrium. It should be noted
that Plateau also experimented with soap bubbles, where the mean curvature of
the interior set may take different constant values on different connected com-
ponents. Also, the above definition does not include the possibility of “singular
boundary points”, which are indeed physically possible, although (apparently) not
exhaustively described in the physical and mathematical literature.

As shown in the works of Almgren [2] and Taylor [8], minimal Plateau’s surfaces
arise as Almgren minimal sets, i.e., as closed sets locally minimizing the two-
dimensional Hausdorff measure H2 in R3 with respect to local Lipschitz deforma-
tions. Variational characterization of Almgren minimal sets as global minimizers
in suitable variational problems have been first proposed, and then obtained, by
several authors in recent years. Limiting ourselves to the first results concerning
area minimization in codimension one we mention here [4, 5, 6] as entry points in
a vaster literature.

Classical minimal surfaces are often motivated in terms of their application to the
description of soap films. From this viewpoint, given the ubiquity of Y -type and
T -type singularity, we consider the fascinating idea of reviewing classical results
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for smooth minimal surfaces in the physically more relevant context of minimal
Plateau’s surfaces.

In this direction, we consider as a case study a rigidity theorem of Schoen [7] for
catenoids: given two co-axial circles in R3, the only minimal surfaces bounded by
those circles are either catenoids or disks. The expected result in the context of
minimal Plateau’s surfaces should include an additional rigidity case, which will
be present depending on the metric data of the problem (radii of the circles and
their distance), and consists of singular catenoids, i.e. union of two catenoidal
necks and a disk meeting along a common boundary circle of Y -points.

In [3] we obtain the expected extension of Schoen’s rigidity theorem to minimal
Plateau’s surfaces. For reasons whose nature is likely just technical, this is done
under the assumptions that the two circles have the same radii, and under a global
to local topological assumption called “cellular structure” (for each p ∈ Σ there
exists rp > 0 such that R3 \ Σ and Br(p) \ Σ have the same finite number of
connected components if r < rp).

The result is obtained by an original application of the classical moving planes
method introduced by Alexandrov in [1]. Interestingly, Alexandrov’s method has
been concurrently applied in the non–smooth setting of varifold solutions to the
mean curvature flow in [9], and, independently from our work, to the study of
Schoen’s rigidity theorem in the varifold setting, but assuming a priori the absence
of Y -singularities, in [10]. A novel contribution we can offer is the insight that
the application of the moving planes can be compatible with the actual presence
of singularities, while still working as a tool to obtain additional regularity (we
exclude T -type singularities in a situation where they could indeed be possible).
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