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Introduction by the Organizers

The workshop Dynamische Systeme, organised by M.-C. Arnaud (Paris), H. Hofer
(Princeton), M. Hutchings (Berkeley) and V. Kaloshin (Vienna), was well attended
with over 60 participants with broad geographic representation from 15 countries.
The workshop covered a broad range of topics in dynamical systems and related
areas, with a special emphasis on various kinds of spectra and their applications
to dynamics.

Several striking results related to the existence of homoclinic or heteroclinic
tangencies were presented. They concern the local generic existence of wild be-
haviours related to the so-called Newhouse phenomenon, for some rigid dynamics
where it is hard to obtain such results. In particular, S. Biebler showed wild
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behaviour for polynomial Hénon maps in complex dimension equal to 2, and K.
Callis showed similar results for Birkhoff billiards.

Others works were connected with the existence of transveral homoclinic in-
tersections: I. Baldoma and M. Guardia presented works related to the existence
of transversal homoclinic intersections and the existence of chaos for the 3-body
problem. Using an approach coming from finite dimensional dynamical systems,
namely singular perturbations to study certain homoclinic orbits, T. Seara proved
the non-existence of small breathers of non-linear Klein-Gordon PDE.

Other results were presented concerning billiards. S. Zelditch presented a survey
on several open problems for the Laplace spectrum of convex billiards. E. Koud-
jinan proved that non-trival deformations of circular billiards cannot preserve 2
and (2m + 1)-rational caustics. P. Berk explained that translation flows that are
disjoint with their inverse are abundant.

Renormalization techniques were used by several lecturers: C. Ulcigrai pre-
sented the proof of a conjecture on generalized interval exchange transformations
by Marmi-Moussa and Yoccoz in genus two: under a full measure condition C0 lin-
earization is C1. F. Trujillo proved the existence of KAM tori of lower dimension
in a non-convex setting. For flat tangencies of area preserving maps, a non generic
case, Krikorian gave conditions for the existence of KAM curves accumulating a
separatrix. Yi Pan presented reducibility results for quasi-periodic cocycles.

B. Fayad dealt with KAM rigidity of parabolic actions on the torus.
Different speakers discussed Birkhoff sections and their generalizations for con-

tact flows. O. Von Koert proved a generalization of the Poincaré-Birkhoff theorem
for Hamiltonian twist maps of Liouville domains in all dimensions and applied
this to find periodic orbits for the restricted 3-body problem. For Reeb flows in
dimension 3, V. Colin introduced the notion of “broken book decomposition” and
used this to derive general dynamical properties.

Several speakers discussed additional new relations between dynamics and sym-
plectic geometry. A. Abbondandolo explained how Zoll contact forms maximize
the systolic ratio (relating minimal period of Reeb orbits to volume). U. Hryniewicz
presented a characterization of the special three-dimensional contact forms whose
Reeb flow has exactly two periodic orbits. D. Cristofaro-Gardiner discussed how
spectral invariants in periodic Floer homology can be used to resolve the simplicity
conjecture for area-preserving homeomorphisms of the disk, and related questions
for area-preserving homeomorphisms of the two-sphere. S. Seyfaddini showed how
new spectral invariants in Heegaard Floer homology can be used to extend these
results to higher genus surfaces. V. Ramos described how integrability of billiard
dynamics on certain domains leads to new results on the existence or nonexistence
of symplectic embeddings involving Lagrangian products. E. Shelukhin used new
Lagrangian spectral invariants to obtain applications to Poincaré recuurence for
Lagrangian submanifolds of symplectic manifolds. S. Tanny presented new results
on how Hamiltonian spectral invariants behave under composition of maps with
disjoint support. C. Viterbo discussed new results on the completion of the set of
exact Lagrangians in a cotangent bundle with respect to the spectral norm.
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The meeting was held in an informal and stimulating atmosphere, bringing to-
gether the in-person and remote participants. Unfortunately the traditional Wed-
nesday afternoon walk had to be cancelled due to inclement weather.
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Inmaculada Baldomá Barraca (joint with Mar Giralt, Marcel Guardia)
Chaotic phenomena around L3 in the restricted 3-body problem . . . . . . . . 1755

Bassam Fayad (joint with Danijela Damjanovic, Maria Saprykina)
KAM rigidity of commuting parabolic automorphism of the torus . . . . . . 1757

Semyon Dyatlov (joint with Mihajlo Cekić, Benjamin Küster, Gabriel
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Abstracts

A generalization of the Poincaré-Birkhoff fixed point theorem and the
spatial, restricted three-body problem

Otto van Koert

(joint work with Augustin Moreno)

In joint work with Agustin Moreno, we propose a generalization of the Poincaré-
Birkhoff fixed point theorem. This generalization is motivated by a construction
of global hypersurfaces of section in the spatial restricted three-body problem. We
define RTBP as the study of the dynamics of the Hamiltonian

H =
1

2
‖p‖2 + q1p2 − q2p1 −

1− µ

‖q − e‖ − µ

‖q −m‖
on (T ∗R3, dp∧dq), where e = (−µ, 0, 0), and m = (1−µ, 0, 0) for some fixed energy
c. This Hamiltonian has five critical points corresponding to five critical points of
the effective potential

U = − 1− µ

‖q − e‖ − µ

‖q −m‖ − 1

2
(q21 + q22).

We call these points Lagrange points: L1, . . . , L5 ∈ T ∗R3 and order their values
as H(L1) < H(L2) < H(L3) < H(L4) = H(L5) (which can be done for most
mass ratios µ). After regularization of two body collisions (classically done with
Levi-Civita, but Moser regularization generalizes better), one may wonder whether
global (hyper)surfaces of section exist. In the planar problem, global surfaces of
section have been constructed using classical means by Poincaré, Birkhoff, Conley,
and McGehee. More recently, modern symplectic techniques have been applied. In
the classical constructions, the boundary of the global surface of section consists
of the so-called retrograde or prograde (approximately circular) planar periodic
orbits.

To construct a global hypersurface of section in the regularized spatial problem
Sc, we need first of all an invariant set of codimension 2. There is of course an
easy candidate, namely the planar problem, say Pc ⊂ Sc. The complement of Pc
in Sc is foliated by copies of T ∗S2 for c < H(L1), and by copies of T ∗S2♮T ∗S2

for c ∈ (H(L1), H(L2)). Using the geodesic flow on a sphere as inspiration, we
can embed these leaves transverse to the flow, and with an estimate, one can show
that orbits always return. This construction works for a wider class of problems
enjoying similar symmetry properties as RTBP.

This setup motivates a generalization of the Poincaré-Birkhoff fixed point the-
orem. Instead of an annulus, we consider a general Liouville domain (W,λ) (such
as the disk bundle D∗S2 or D∗S2♮D∗S2, but the annulus is also an example). We
define the following version of the twist condition.

Definition 1. A map τ : W →W is a Hamiltonian twist map with respect to
α = λ|∂W if
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• τ is generated by a smooth Hamiltonian H : R×W → R

• XHt
|∂W = htRα for some positive, smooth function h : R× ∂W → R+.

We then have the following theorem.

Theorem 1 (A generalized Poincaré–Birkhoff theorem). Suppose that τ is an
exact symplectomorphism of a connected Liouville domain (W,λ), and let α = λ|B .
Assume the following:

• all fixed points of τ are isolated;
• (Hamiltonian twist map) τ is a Hamiltonian twist map, where the
generating Hamiltonian is at least C2;

• (index-definiteness) If dimW ≥ 4, then assume c1(W )|π2(W ) = 0, and
(∂W,α) is strongly index-definite. In addition,

• (Symplectic homology) SH•(W ) is infinite dimensional.

Then τ has simple interior periodic points of arbitrarily large (integer) period.

Here, strongly index-definite means that there is a global symplectic trivializa-
tion, and c > 0 such that

|µRS(γ|[0,T ], ǫ)| ≥ cT + d

In dimension 2, the condition that SH•(W ) is infinite dimensional just means
that W is not a disk. The Hamiltonian twist condition is used to extend the
Hamiltonians generating τ to admissible Hamiltonian for symplectic homology
with some control on the orbits of the extension.

References

[1] A. Moreno, O. van Koert, A generalized Poincaré-Birkhoff theorem, preprint,
arXiv:2011.06562

[2] A. Moreno, O. van Koert, Global hypersurfaces of section in the spatial restricted three-body
problem, preprint, arXiv:2011.10386

Quantitative conditions for right-handedness of dynamically convex
Reeb flows

Anna Florio

(joint work with Umberto L. Hryniewicz)

In a joint work with Umberto L. Hryniewicz, we establish a quantitative con-
dition to guarantee that a dynamically convex Reeb flow in S3 is right-handed.
In particular, this enables us to provide quite a large class of examples of the
so-called right-handed flows. The notion of right-handedness was introduced by
Étienne Ghys in [2]. Roughly speaking, a flow φt on S3 without rest points is
right-handed if almost all pairs of trajectories link positively. More precisely, let
µ1, µ2 be ergodic φt-invariant probability measures. There can be two cases.

(i) If supp(µ1) = supp(µ2) = γ for some periodic orbit γ, then one says that
µ1, µ2 are positively linked if the transverse rotation number of γ computed
in a Seifert framing is strictly positive.

http://arxiv.org/abs/2011.06562
http://arxiv.org/abs/2011.10386 
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(ii) Otherwise, fix an auxiliary Riemannian metric and consider two recurrent
points p, q, generic for µ1, µ2 respectively, whose orbits are disjoint. Let
{Tn}n, {Sn}n be increasing sequences such that φTn

(p) → p, φSn
(q) → q.

Let αn, respectively βn, be the (unique) shortest geodesic arc connecting
φTn

(p) to p, respectively φSn
(q) to q. Up to C1 perturbations of the paths

αn and βn, we can assume that the loops k(Tn, p) and k(Sn, q), obtained
by concatenating αn with φ[0,Tn](p) and βn with φ[0,Sn](q), are disjoint.
Defining then

ℓ(p, q) = inf
{Tn}n,{Sn}n

lim inf
n→+∞

linking(k(Tn, p), k(Sn, q))

TnSn
,

one says that µ1, µ2 are positively linked if for µ1 × µ2-almost all points
(p, q) it holds ℓ(p, q) > 0.

Definition 1. A flow φt without rest points in S3 is right-handed if every pair of
ergodic φt-invariant probability measures links positively.

Right-handedness has interesting dynamical consequences, in terms of global
surfaces of section and open book decompositions. A global surface of section
(GSS) is a compact, embedded surface Σ such that: (i) ∂Σ is a finite union of
periodic orbits, (ii) the interior of Σ is transverse to the vector field generating
φt, (iii) the trajetory of every point in S3 \ ∂Σ meets infinitely many times in
the future and in the past the interior of Σ. An open book decomposition is then
the given of a pair (∂Σ, π) where ∂Σ is an oriented link, called binding, while
π : S3 \∂Σ → S1 is a fibration of the complement of ∂Σ such that for each θ ∈ S1,
the preimage π−1(θ) is a global surface of section.

In [2], Ghys proved the following result for right-handed flows.

Theorem 1. For a right-handed flow φt, every finite collection of periodic orbits
is the binding of an open book decomposition.

In particular, Ghys’s theorem imposes some restrictions on the periodic orbits
that can be realised by right-handed flows: knots or links that are not fibered, i.e.
whose complement cannot be fibered over S1, cannot be realised.

In our work we look for a numerical condition for right-handedness within the
class of dynamically convex Reeb flows on S3. Such flows were first introduced by
Hofer, Wysocki and Zehnder in [4]. Different interesting examples and applications
lie in this class. Indeed, a Hamiltonian flow restricted to a strictly convex energy
level of R4 and the geodesic flow on S2 with respect to a δ-pinched Riemannian
metric for δ > 1

4 are both dynamically convex Reeb flows (see [4, Theorem 3.4]
and [3]). This notion of dynamically convex Reeb flows is of special interest due
to the following result by Hofer, Wysocki and Zehnder in [4].

Theorem 2. Any dynamically convex Reeb flow admits a disk-like global surface
of section.

In [5], Hryniewicz provides a characterisation of the orbits binding a GSS: any
periodic Reeb orbit γ for a dynamically convex Reeb flow on S3 binds a disk-like
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global surface of section if and only if γ is unknotted and has self-linking number
−1. Our condition is a lower bound on the asymptotic ratio between the amount of
rotation of the linearised flow and the linking number of trajectories with a periodic
orbit that spans a disk-like GSS. More precisely, let γ0 be a periodic Reeb orbit
that binds a disk-like global surface of section. Observe that, since we are in S3, the
contact structure (ξ, dλ) associated to our Reeb flow is trivial and we find a global
symplectic trivialisation σ of (ξ, dλ) with respect to which we can consider the
angular coordinate Θσ(u) of a vector u ∈ ξ. For any x ∈ S3, u ∈ ξx\{0}we consider
then a lift t 7→ Θ̃σ(t;x, u) of the angle coordinate function t 7→ Θσ(Dφt(x)u). For
x ∈ S3 \γ0 and for t > 0 we define a canonical way to obtain a loop k(t;x,Σ) from
the piece of trajectory φ[0,t](x), where Σ is a disk-like global surface of section
spanned by γ0. Thus, the quantity linking(k(t;x,Σ), γ0) can be seen almost as the
number of intersections of φ[0,t](x) with Σ. We can now introduce the following
quantity

κ(γ0) := lim inf
T→+∞

inf
x∈S3\γ0
u∈ξx\{0}

Θ̃σ(T ;x, u)− Θ̃σ(0;x, u)

linking(k(T ;x,Σ), γ0)
.

Our quantitative condition is then the following one.

Theorem 3. Let φt be a dynamically convex Reeb flow on S3. Let γ0 be an
unknotted periodic orbit with self-linkinf number −1. If κ(γ0) > 2π, then the flow
is right-handed.

In the framework of geodesic flows on a Riemannian 2-sphere (S2, g), we can
obtain an explicit interval for the pinching constant where the right-handedness
condition is satisfied.

Theorem 4. Let g be a Riemannian metric on S2 such that δ ≥ 0.7225, where

δ :=
minKg

maxKg
is the pinching constant, with Kg being the Gaussian curvature.

Then the geodesic flow on (S2, g) lifts to a right-handed flow on S3.

In order to prove Theorem 4, we need to verify the quantitative condition given
by Theorem 3 using comparison theorems coming from Riemannian geometry.
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On the algebraic structure of groups of area-preserving
homeomorphisms

Sobhan Seyfaddini

(joint work with Daniel Cristofaro-Gardiner, Vincent Humilière, Cheuk Yu Mak,
Ivan Smith)

The simplicity question. Let (Σ, ω) denote a compact and connected surface,
possibly with boundary, equipped with an area-form. Let Homeo0(Σ, ω) denote
the identity component in the group of homeomorphisms of Σ which preserve
the measure induced by ω and coincide with the identity near the boundary of
Σ, if the boundary is non-empty. We say ϕ ∈ Homeo0(Σ, ω) is a Hamiltonian
homeomorphism if it can be written as a uniform limit of Hamiltonian diffeo-
morphisms. The set of all such homeomorphisms is denoted by Ham(Σ, ω); this
is a normal subgroup of Homeo0(Σ, ω). Hamiltonian homeomorphisms have been
studied extensively in the surface dynamics community; see, for example, [8, 7].1

There exists a homomorphism out of Homeo0(Σ, ω), called the mass-flow ho-
momorphism, introduced by Fathi [3], whose kernel is Ham(Σ, ω). The normal
subgroup Ham(Σ, ω) is proper when Σ is different from the disc or the sphere. In
the 1970s, Fathi asked in [3, Section 7] if Ham(Σ, ω) is a simple group; in higher
dimensions, one can still define mass-flow and Fathi showed [3, Thm. 7.6] that its
kernel is always simple, under a technical assumption on the manifold which al-
ways holds when the manifold is smooth. When Σ is a surface with genus 0, Fathi’s
question was answered in [1, 2]; however, the higher genus case has remained open.

By using our new spectral invariants, we can answer Fathi’s question in full
generality:

Theorem 1. Ham(Σ, ω) is not simple.

Theorem 1 generalizes the aforementioned results of [1, 2] proving this result in
the genus zero case. Our proof is logically independent of these works. To prove
the theorem, following [1, 2] we construct a normal subgroup FHomeo(Σ, ω), called
the group of finite energy homeomorphisms, and we prove that it is proper.
The group FHomeo is inspired by Hofer geometry, and one can define Hofer’s
metric on it, see [2, Sec. 5.3]. For another proof in the genus 0 case, see [11].

The group FHomeo(Σ, ω) contains the commutator subgroup of Ham(Σ, ω),
hence we learn from our main result that Ham(Σ, ω) is not perfect, either.

Extending the Calabi invariant. One would like to understand more about the
algebraic structure of Ham(Σ, ω) beyond the simplicity question. Recall that
Ham(Σ, ω) denotes the subgroup of Hamiltonian diffeomorphisms and suppose

1We remark that when Σ = S2, Ham is the group of area and orientation preserving homeo-
morphisms, and when Σ = D2, it is the group of area preserving homeomorphisms that are the
identity near the boundary.
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now that the boundary of Σ is non-empty. Then, the group of Hamiltonian dif-
feomorphisms admits a homomorphism

Cal : Ham(Σ, ω) → R,

called the Calabi invariant, defined as follows. Let θ ∈ Ham(Σ, ω). Pick a
Hamiltonian H : [0, 1]×Σ → R, supported in the interior of Σ, such that θ = φ1H .
Then,

Cal(θ) :=

∫ 1

0

∫

Σ

H ω dt.

The above integral does not depend on the choice of H and so Cal(θ) is well-
defined. Moreover, it defines a non-trivial group homomorphism.

A question of Fathi from the 1970s [3, Section 7] asks if Cal admits an extension
to Ham(D,ω). An illuminating discussion by Ghys of this question appears in [6,
Section 2]; it follows from results of Gambaudo-Ghys [5] and Fathi [4] that Calabi
is a topological invariant of Hamiltonian diffeomorphisms, i.e. if f, g ∈ Ham(Σ, ω)
are conjugate by some h ∈ Homeo0(Σ, ω), then Cal(f) = Cal(g). Hence, it seems
natural to try and extend Calabi to Ham(Σ, ω), or at least to a proper normal sub-
group.2 Our proof of Theorem 1 involves constructing an “infinite twist” Hamil-
tonian homeomorphism which, heuristically, has infinite Calabi invariant, so our
interest in what follows will be extending the Calabi homomorphism to a proper
normal subgroup rather than the full group.

There is a later conjecture of Fathi about what an appropriate normal subgroup
for the purpose of extending Calabi might be. In the article [9], Oh and Müller
introduced a normal subgroup Hameo(Σ, ω), called the group of Hameomor-
phisms of Σ; the idea of the definition is that these are elements of Ham(Σ, ω)
that have naturally associated Hamiltonians. The group Hameo(Σ, ω) is contained
in FHomeo(Σ, ω), and so our proof of Theorem 1 shows that it is proper. The afore-
mentioned conjecture of Fathi is that the Calabi invariant admits an extension to
Hameo(Σ, ω) when Σ is the disc; see [10, Conj. 6.1]. We prove this for any Σ with
non-empty boundary.

Theorem 2. The Calabi homomorphism admits an extension to a homomorphism
from the group Hameo(Σ, ω) to the real line.

Theorem 2 implies that Hameo(Σ, ω) is neither simple nor perfect, when ∂Σ 6= ∅;
we do not know whether or not the kernel of Calabi on Hameo is simple.
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Normal forms and sharp systolic inequalities

Alberto Abbondandolo

(joint work with Gabriele Benedetti)

Let α be a contact form on the closed (2n − 1)-dimensional manifold M , i.e. a
1-form such that α ∧ dαn−1 never vanishes. The Reeb vector field of α is the
unique vector field Rα such that ıRα

dα = 0 and ıRα
α = 1. We denote by Tmin(α)

the minimum of all periods of closed orbits of Rα. The systolic ratio of α is the
number

ρ(α) :=
Tmin(α)

n

vol(M,α)
,

where the volume vol(M,α) is defined by integrating α ∧ dαn−1 over M . The
choice of the n-th power here makes this quantity scaling invariant: ρ(cα) = ρ(α)
for every c 6= 0. The systolic ratio of a contact form is a natural generalization
of the systolic ratio in metric geometry, i.e. the ratio between the n-th power of
the length of the shortest closed geodesic on a closed n-dimensional Riemannian
manifold (Q, g) and the Riemannian volume of (Q, g). Indeed, the geodesic flow
of (Q, g) is a Reeb flow on the unit tangent bundle of Q, the length of any closed
geodesic is its period as closed orbit of this flow, and the contact volume of the
unit tangent bundle of Q is, up to a multiplicative constant depending only on n,
the Riemannian volume of (Q, g).

The systolic ratio is a dynamical invariant: Contact forms inducing smoothly
conjugate Reeb flows have the same systolic ratio.

Still borrowing terminology from metric geometry, the contact form α is said
to be Zoll if all its Reeb orbits are closed and have the same minimal period. A
standard example is the contact form defining the Hopf fibration on S2n−1 ⊂ Cn.
The systolic ratio of a Zoll contact form is the inverse of a positive integer N ,
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which is the Euler number of the circle bundle associated to the free circle action
induced by the Zoll Reeb flow. In my talk, I discussed the proof of the following
result obtained in collaboration with Gabriele Benedetti, see [1]:

Theorem. Every Zoll contact form α0 on the closed manifold M has a C3 neigh-
borhood U in the space of contact forms such that

ρ(α) ≤ ρ(α0) ∀α ∈ U ,
with equality holding if and only if α is Zoll. In the latter case, α = c ϕ∗α0 for
some positive number c and some diffeomorphism ϕ : M →M .

Previous results are: An argument based on non-converging normal forms was
used in [4] in order to prove a weaker statement about paths of contact forms
emanating from a Zoll one. The above theorem was proven in the special case
M = S3 in [2] and for arbitrary closed 3-manifolds in [5]. The proofs of the latter
two papers use global surfaces of section and do not extend to higher dimension.
It should also be remarked that the systolic ratio is always unbounded from above
on the space of all contact forms inducing any given contact structure: See [3] for
the case of 3-manifolds and [8] for the general case.

Consequences of the above theorem are:

(i) Sharp local systolic inequalities in metric geometry, see [6]: Zoll Riemannian
and Finsler metrics are local maximizers of the metric systolic ratio.

(ii) Local version of a conjecture of Viterbo, see [9]: Among all convex bodies
of fixed volume in R2n, balls are local maximizers of the symplectic EHZ-
capacity.

(iii) Local non-squeezing in the intermediate dimensions: The volume of any 2k-
dimensional symplectic projection of the image of the unit ball in R2n by
a symplectomorphism that is close to a linear one is not smaller than the
volume of the unit ball in R2k.

The proof of the above theorem is based on a new normal form for contact
forms that are close to Zoll ones:

Normal form. Let α0 be a Zoll contact form on the closed manifold M and let
π :M → B be the circle bundle induced by the corresponding free circle action. For
every contact form α on M which is C2-close to α0 there exists a diffeomorphism
ϕ :M → M such that

ϕ∗α = S ◦ π α0 + η + df,

where S is a smooth real function on B, η is a 1-form such that ıRα0
η = 0, f is a

smooth real function on M , and

(1) ıRα0
dη = F

(
d(S ◦ π)

)
,

for some linear endomorphism F : T ∗M → T ∗M . Moreover, ϕ is close to the
identity and S − 1, η, f , F are suitably small when α is suitably close to α0.

The proof of this normal form uses old ideas of Moser and Weinstein and a
result about normal forms for flows that are close to periodic ones which is due to
Bottkol [7].
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Thanks to (1), S is a variational principle detecting the closed orbits of Rα bi-
furcating from the set B of periodic orbits of Rα0

: If b ∈ B is a critical point of
S, then ϕ(π−1(b)) is a closed orbit of Rα of minimal period T0 · S(b), where T0
denotes the common minimal period of the orbits of Rα0

. In particular,

Tmin(α) ≤ T0min
B

S.

The next ingredient is this identity, which follows from the normal form:

vol(M,α) =

∫

M

p(x, S ◦ π(x))α0 ∧ dαn−1
0 ,

where

p(x, s) = sn +
n−1∑

j=0

pj(x) s
j , with

∫

M

pj α0 ∧ dαn−1
0 = 0,

and ‖pj‖C0 is small when ‖α − α0‖C3 is small. In particular, the function s 7→
p(x, s) is strictly monotonically increasing for s close to 1 and we obtain

vol(M,α) =

∫

M

p(x, S ◦ π(x))α0 ∧ dαn−1
0 ≥

∫

M

p(x,min
B

S)α0 ∧ dαn−1
0

=
(
min
B

S
)n

vol(M,α0) ≥
Tmin(α)

n

T n0
vol(M,α0) =

Tmin(α)
n

ρ(α0)
,

proving the inequality of the Theorem above. In the equality case, S must be
constant and the characterization of α follows.
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Problems in billiard dynamics arising in the inverse spectral problem

Steven Zelditch

(joint work with Hamid Hezari)

The billiard problems of this talk pertain to billiards in bounded smooth plane
domain Ω ⊂ R2. The spectral problem is the classical eigenvalue problem with
Dirichlet or Neumann boundary conditions. The Dirichlet eigenvalue problem is,





∆φj = −λ2jφj ,

φj |∂Ω = 0.

The Dirichlet spectrum is denoted by Sp(Ω) = {λ2j}. The dynamical problems are
essentially the same for Neumann boundary conditions.

The inverse spectral problem is to recover information about Ω from Sp(Ω). In
1965, M. Kac proved that one can ‘hear’ the area |Ω| and perimeter |∂Ω|. What
other geometric invariants of Ω can be deduced from Sp(Ω)? Are they sufficient
to determine Ω up to isometry?

Since the 1970′s, the principal tool for recovering geometric information on
Ω from Sp(Ω) has been the trace of the wave group. Let ∆B

Ω be the (positive)
Laplacian on Ω with boundary condition B on ∂Ω. The trace of the even wave
operator is defined by

wBΩ (t) := Tr cos

(
t
√
∆B

Ω

)
=

∞∑

j=1

cos(tλj).

The sum converges in the sense of tempered distributions. The trace is singular
only at

t ∈ Lsp(Ω) = {L(γ) = Length of γ}
where γ is a closed geodesic (closed billiard trajectory). As this suggests, the sin-
gularities of the wave trace are invariants of periodic orbits of the billiard dynamics
of Ω.

In general, the strategy for determining Ω from Sp(Ω) is to first obtain dy-
namical invariants of the billiard map (lengths of closed orbits, Birkhoff normal
form coefficients at periodic orbits, etc.) and then to reduce the problem to an
inverse problem in dynamical systems. Recently, there has been dramatic progress
in inverse billiard dynamics due to Avila, de -Simoi- Kaloshin [ADK16], Kaloshin-
Sorrentino [KS18] and others, mainly on the Birkhoff problem to determine ellipses
from the unique dynamical properties of their billiard maps. The work [ADK16]
was then used by the authors in [HeZe19] to prove that ellipses of small eccentricity
are uniquely determined by Sp(∆).

Probably the most natural problem is to prove the ‘quantum analogue’ of
Birkhoff’s conjecture that ellipses Ee of any eccentricity e are the unique domains
with integrable billiards.

Conjecture. Ellipses Ee are uniquely determined by Sp(Ee).
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Local versions of the classical dynamical Birkhoff conjecture are proved in [ADK16,
KS18]. But the dynamical and Laplace inverse spectral problems are not the
same. One of the main obstructions is that the wave trace does not determine
useful information when there exists multiplicity in Lsp(Ω), the length spectrum.
That is, when there exist distinct orbits of the same length. In that case, the
wave trace singularity at t = L is a sum over contributions from the different
orbits of length L. Connected 1-parameter families are not a problem but distinct
components are, since they can lead to cancellations in the wave trace. Moreover,
to get explicit formulae, one must assume that the periodic orbits are Bott-Morse
non-degenerate, which is generically true among domains but might possible not
be true within an isospectral class of domains. These problems on cancellations
and degeneracy are unavoidable in inverse Laplace-spectral theory. It is rather
clear that a non-isometric but isospectral domain to an ellipse would have to be
pathological: its wave trace would have large singularities at each length in the
length spectrum of an ellipse, the kind of singularity produced by a smooth 1-
parameter family of orbits, yet it could not arise from a one-parameter family
(else it would be rationally integrable, hence an ellipse). But its periodic orbits
could not be isolated if they produce these large singularities. So, what kind of sets
would periodic orbits of a given length be be? Cantor sets of positive measure?
Could those ever produce the wave trace expansion of an ellipse? In view of the
results of [KS18] it seems that the following conjecture could be accessible:

Conjecture. Ellipses Ee are ∆-spectrally rigid.

In other words, there do not exist non-trivial deformations of Ee by domains
with the same Dirichlet spectra as Ee. Trivial means isometric. In [HZ12], it is
proved that non-trivial isospectral deformations preserving the Z2 ×Z2 symmetry
of the ellipse do not exist. Hence the above Conjecture is to remove the symmetry
assumptions. It is proved in [KS18] that iso-length-spectral deformations do not
exist but the possible multiplicities in the length spectra of the deformed domains
apriori obstruct the application of this result.

It is a reasonably accurate simplification to say that in ∆-inverse spectral theory
we try to determine properties of Ω from oscillatory integrals. For large q, the
contribution to Tr cos t

√
−∆ of q-bounce orbits is essentially the Fourier transform

λ→ t of the (Marvizi-Melrose) integral [MM82],

(1) Iq(λ) :=

∫

∂Ω

eiλψq(x)Aq(λ, x)dx.

One hopes to reduce the inverse spectral problem to recovering ψq from Sp(∆).
Here, ψq(x) : ∂Ω → R is the ‘loop length function’ for Γ(1, q) orbits (winding
number 1, q bounces). Namely it is the length of ‘the’ geodesic loop of winding
number 1 with q bounces that starts and ends at x. The critical points {x ∈ ∂Ω :
dxψq(x) = 0} are precisely the bounce points of a periodic orbit in Γ(1, q). What
we can determine from the spectrum is – at best– the set of critical values of ψq
and integrals (or sums) over the critical points.
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When a domain is ‘nearly circular’, it turns out that for all q ≥ 3, the asymptotic
expansion of Iq(λ) as λ → ∞ is a spectral invariant. In the jargon of inverse
spectral theory, one can ‘hear’ each integral Iq(λ). This was a crucial ingredient in
the inverse result of [HeZe19]. In the case of an ellipse, ψq is a constant function for
each q and that is sufficient to deploy the results of [ADK16]. But the argument
that Iq(λ) is a spectral invariant breaks down. In fact, it is not even clear that ψq
is well-defined where we need it to be: I.e. is there is a unique geodesic loop at x
with winding number 1 and q bounces?

There of course exist domains with ‘messy’ length spectra and ψq functions. It
is a smooth function of one real variable but its critical set could be any closed set.
One of the main problems is to derive information on the critical point structure
of ψq from asymptotics of the integrals Iq(λ). But in bad cases, the contribution
to the wave trace from Γ(1, q) orbits might involve a finite (or, worse) sum of
integrals like I(q, λ) and it is difficult to extract information from the sum.

A conjecture that seems reasonable and not inaccessible is:

Conjecture. One can tell from Sp(Ω) if Ω is convex, at least if Ω is assumed to
be real analytic.

If Ω is convex, the length of its perimeter |∂Ω| is an accumulation point in
Lsp(Ω) from below: there exist sequences of (1, q) orbits whose Lengths approach
|∂Ω| as q → ∞. When Ω is convex, are multiples of |∂Ω| the only possible accu-
mulation points? What if Ω is analytic?

J. De Simoi has recently proved a number of results on accumulation points
in the length spectrum for convex domains. It is plausible that the asymptotic
expansions of Mather and Melrose-Marvizi of the maximal length Lq of Γ(1, q)
orbits can be used to distinguish these accumulation points from the one at |∂Ω|.

The main dynamical invariants one can deduce from Sp(∆) when Lsp(Ω) is
simple is the sequence of Birkhoff normal form invariants around (non-degnerate)
periodic orbits. The question then arises whether one can have two non-isometric
domains with the same length spectrum and the same Birkhoff normal form in-
variants. A local version of this problem is whether there exist two non-isometric
(germs of) domains for which the Birkhoff normal forms around periodic 2-link
orbits (bouncing ball orbits) are the same.

Conjecture. There exist two non-isometric domain (germs) around bouncing ball
orbits for which the Birkhoff normal form of the billiard map around the orbits are
the same.

Hezari and I have proven that such domains exist ‘formally’ , i.e. we construct
the Taylor expansions of the defining functions of the domains near the endpoints
of the bouncing ball orbit [HeZe21]. It remains to prove that the Taylor series
converge when the domains are real analytic or can be completed to make smooth
domains.
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On the accumulation of separatrices by invariant curves

Raphaël Krikorian

(joint work with Anatole Katok)

Let f be a smooth symplectic diffeomorphism of the plane admitting a (non-
split) separatrix associated to a hyperbolic fixed point. We prove that if f is
a perturbation of the time-1 map of a symplectic autonomous vector field, this
separatrix is accumulated by a positive measure set of invariant circles. On the
other hand, we provide examples of smooth symplectic diffeomorphisms with a
Lyapunov unstable non-split separatrix that are not accumulated by invariant
circles.

A theorem by M.R. Herman,“Herman’s last geometric theorem”, (cf. [3], [4]),
asserts that if a smooth orientation and area preserving diffeomorphism f of the
2-plane admits a KAM circle Σ (by definition, a smooth invariant curve on which
the dynamics of f is conjugated to a Diophantine translation) then this KAM circle
is accumulated by other KAM circles the union of which has positive 2-dimensional
Lebesgue measure in any neighborhood of Σ. In this report we investigate whether
such a phenomenon holds if, instead of being a KAM circle, the invariant set Σ is
a separatrix of a hyperbolic fixed (or periodic) point of f .

The situation we consider is the following. Let f0 be the time-1 map of a smooth
autonomous symplectic vector field X0 of the 2-plane admitting 0 as a hyperbolic
fixed point. We assume that the stable and unstable manifolds of 0 coincide and
form a compact set Σ. We now consider a hamiltonian diffeomorphism f which is
a smooth perturbation of f0 and still admits 0 as a hyperbolic fixed point. It is not
true in general that the stable and unstable manifold of 0 coincide but we assume
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that this is the case. For example we can construct f := fǫ as the time-1 map of a
1-periodic hamiltonian vector field Xǫ(t, ·) = X0(·) +O(ǫ) which is tangent to Σ.

Theorem A. For any r ∈ N∗ there exists ǫr > 0, such that, for any ǫ ∈]− ǫr, ǫr[,
there exists a set of fǫ-invariant C

r KAM-circles accumulating the separatix Σ
and which covers a set of positive Lebesgue measure of R2 in any neighborhood of
Σ.

On the other hand, in the non perturbative case the situation is different.
Let ∆Σ be the bounded connected component of R2 \ Σ.

Theorem B. There exists a smooth symplectic diffeomorphism f : R2 → R2

admitting a separatrix Σ which is included in an open set W of Σ ∪ ∆Σ that
contains no f -invariant circle.

The proofs of Theorems A and B rely on renormalization techniques.
Let us sketch the proof of Theorem A. After performing some Birkhoff Nor-

mal Form and applying a symplectic Sternberg Theorem ([1], [2]), we define a
convenient fundamental domain for the Hamiltonian diffeomorphism fǫ. This fun-
damental domain is an abstract annulus and we consider the first return map of fǫ
in this annulus. After uniformization, this abstract annulus becomes the standard
annulus, and the first return map a diffeomorphism on this annulus (the renormal-
ization of fǫ) that has the intersection property. In the perturbative situation we
are dealing with, one can then apply Moser-Rüssmann’s invariant curve theorem
([5], [6]) and prove the existence of a set of positive measure of KAM circle for
the renormalization of fǫ. One then shows that these curves correspond to KAM
curves for fǫ accumulating the separatrix Σ.
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Chaotic phenomena around L3 in the restricted 3-body problem

Inmaculada Baldomá Barraca

(joint work with Mar Giralt, Marcel Guardia)

The so-called Restricted Planar Circular 3-Body Problem (RPC3BP) is a simpli-
fied configuration of the 3-Body Problem, the motion of three bodies under their
mutual gravitational attraction. We assume that a) one of the bodies (say the
third) has mass zero (Restricted), b) the two first bodies, the primaries, are not
influenced by the massless one and they perform circular motions (Circular), c)
the third body is coplanar with the primaries (Planar).

Normalizing the primaries masses, we set them to 1−µ and µ, with µ ∈
(
0, 12

]
.

Since the primaries follow circular orbits, in rotating coordinates, their positions
can be fixed at (µ, 0) and (µ− 1, 0). Then, the RPC3BP is a 2-degrees of freedom
Hamiltonian system with respect to the autonomous hamiltonian

H(q, p;µ) =
||p||2
2

− qt
(

0 1
−1 0

)
p− (1− µ)

||q − (µ, 0)|| −
µ

||q − (µ− 1, 0)|| .(1)

where (q, p) ∈ R2 × R2 are the position and mo-
menta of the third body.

For µ > 0, it is a well known fact [7] that (1) has
five critical points, usually called Lagrange points.
The three collinear Lagrange points, L1, L2 and
L3, are of center-saddle type whereas, for small µ,
the triangular ones, L4 and L5, are of center-center
type.

On an inertial (non-rotating) system of coordi-
nates, the Lagrange points correspond to periodic
orbits with the same period as the two primaries,
i.e on a 1:1 mean motion resonance.

We focus on the invariant manifolds of L3, the Lagrangian point “at the other
side” of the massive primary, in the perturbative setting 0 < µ ≪ 1. The eigen-
values of L3 are of the form

(2)

{
±√

µ

√
21

8
+O(µ3/2), ±i(1 +O(µ))

}
,

as µ → 0 and therefore, due to the different size in the eigenvalues, the system
posseses two time scales, which translates to rapidly rotating dynamics coupled
with a slow hyperbolic behavior around the critical point L3.
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The one dimensional unstable and stable invariant
manifolds have two branches each which are sy-
metric with respect to Φ(q, p) = (q1,−q2,−p1, p2).
Then we only need to focus in (for instance) the
branches W u,+,W s,+. In the figure, the projection
of the stable and unstable manifolds of L3 on the
q-plane.

The invariant manifolds associated to L3 (more
precisely its center-stable and center-unstable in-
variant manifolds) play an important role in the
dynamics of the RPC3BP since they act as bound-

aries of effective stability of the stability domains around L4 and L5 (see [6]).
Moreover, being far from collision, the dynamics close to the Lagrange point L3

and its invariant manifolds for small µ are rather similar to that of other mean
motion resonances which play an important role in creating instabilities in the
Solar system, see [4].

Over the past years, one of the main focus of study of the dynamics “close” to
L3 and its invariant manifolds has been the so called “horseshoe-shaped orbits”
which are quasi-periodic orbits that encompass the critical points L4, L3 and L5.
The interest on these types of orbits arise when modeling the motion of co-orbital
satellites, the most famous being Saturn’s satellites Janus and Epimetheus, and
near Earth asteroids. Recently, in [5], the authors have proved the existence of
2-dimensional elliptic invariant tori on which the trajectories mimic the motions
followed by Janus and Epimetheus

Rather than looking at stable motions “close
to” L3 as [5], our works ([1, 2]) are a first step
towards a rigourous proof of the existence of in-
stabilities in some instance of the 3-Body Prob-
lem.

Let us be more explicit. Consider the
transversal tridimensional section Σ defined by
Σ = {q1 = 0, q2 > 0 ‖q‖ > 1}. We define
(qu, pu) and (qs, ps) being the first crossing of
W u,+ and W s,+ with Σ respectively.

Then

‖qs − qu‖+ ‖ps − pu‖ = |Θ|µ 1

3 e
− A√

µ
(
1 +O(| log µ|−1)

)

where |Θ| ∼ 1.63 is a Stokes constant which comes from an associated inner
equation and can only be numerically computed whereas A is explicit:

A =

∫ √
2−1

2

0

2

1− x

√
x

3(x+ 1)(1− 4x− 4x2)
dx ∼ 0.177744.

To finish let us to make some comments about our result. This work rules
out the existence of primary homoclinic connections to L3 in the RPC3BP for
0 < µ ≪ 1. However, it does not prevent the existence of multiround homoclinic
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orbits, that is homoclinic orbits which pass close to L3 multiple times. Numerical
evidences, [3], indicate that multi-round homoclinic connections to L3 should exist
for {µk}k∈R satisfying µk → 0 as k → ∞.

From our result, one should expect that there exist Lyapunov periodic orbits
exponentially close to L3 whose (two dimensional) stable and unstable invariant
manifolds intersect transversally. This would create chaotic motions “exponen-
tially close” to L3 and its invariant manifolds.

Finally, the analysis performed in this paper can be seen as a humble first step
towards constructing Arnold diffusion in the 1 : 1 mean motion resonance if one
considers either the Restricted Spatial Circular 3-Body Problem with small µ > 0,
the Restricted Planar Elliptic 3-Body Problem with small µ > 0 and eccentricity
of the primaries e0 > 0, or the planar 3-Body Problem (i.e. all three masses posi-
tive, two small). One should be able to construct orbits with a drastic change in
angular momentum (or inclination in the spatial setting).
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KAM rigidity of commuting parabolic automorphism of the torus

Bassam Fayad

(joint work with Danijela Damjanovic, Maria Saprykina)

This is a report on a joint work with Danijela Damjanovic and Maria Saprykina.
The question we address is whether an affine ergodic Z2-action is locally rigid.

Two famous manifestations of local rigidity are KAM rigidity of Diophantine
torus translations and smooth local rigidity of hyperbolic or partially hyperbolic
higher rank actions.

The paper [DF] extended Damjanovic and Katok’s local rigidity for partially
hyperbolic higher rank affine actions on tori [DK], by showing KAM rigidity of

https://arxiv.org/abs/2107.09942
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affine Z2-actions that have a higher rank linear part except for a rank one factor
that is the Identity.

To complete the study of local rigidity of Zk-actions on the torus one needs to
address the case of affine actions with parabolic generators.

Definition 1. We say that a linear map A ∈ SL(d,Z) is (parabolic) of step n if
(A− Id)n = 0, and (A− Id)n−1 = 0. An affine map a = A+ α, A ∈ SL(d,Z) and
α ∈ Rd, is said to be of step n if A is of step n.

We say that a Z2 affine action by parabolic elements is of step n if all of its
elements are of step at most n.

As shown by A. Katok in [K], the cohomological equation above an individual
parabolic affine action on the torus is stable, under a Diophantine condition on its
translation part. Namely, there is a countable number of invariant distributions
that can be computed as sums of Fourier coefficients (along the dual orbits) that
constitute the only obstructions for the existence of a tame solution with a finite
loss of regularity to the cohomological equation.

However, in the case of step-n, n ≥ 3, the loss of differentiability is comparable
to the order of smoothness considered. This shows that the local rigidity theory
of step-2 parabolic actions should be very special, with much stronger rigidity
features than the general case.

Given an affine map a = A + α, a diffeomorphism of the torus f that is close
to a is of the form A+ α+∆f with ∆f a Zd periodic vector function.

Definition 2 (KAM rigidity of affine actions under volume preserving
perturbations). We say that an affine Z2-action (a, b) = (A+α,B+β) is KAM
rigid under volume preserving perturbations, if there exists u ∈ N and r0 ∈ N and
ε > 0 that satisfy the following :

If r ≥ r0 and (f, g) = (a+∆f, b+∆g) is a smooth volume preserving Z2-action
such that

(1) ‖∆f‖r ≤ ε, ‖∆g‖r ≤ ε,

∫

Td

∆fdλ = 0,

∫

Td

∆gdλ = 0,

then there exists h ∈ Diff ∞
λ (Td) such that ‖h− Id‖r−u ≤ C(a, b)ε and

h ◦ f ◦ h−1 = a, h ◦ g ◦ h−1 = b.

Given an affine Z2-action (a, b) = (A+α,B+ β), every element of the action is
of the form akbl = AkBl + αk,l. The commutation relation may force some of the
coordinates of αk,l to be 0. For some pairs (A,B) this may result in the existence
of an Identity factor for any corresponding affine action (a, b). In this case the
affine action is never ergodic and KAM rigidity fails. An example is given by the
pair A = Id +E21, B = Id +E31 (Ei,j is the matrix with a single nonzero entry 1
at row i and column j).

We show that besides this situation KAM rigidity holds for step-2 actions.

Theorem 1. Given a commuting pair (A,B) of step-2 parabolic matrices, we have
the following dichotomy
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(i) For any choice of (α, β) such that a = A + α and b = B + β commute,
the action of (a, b) has Identity for factor and is thus not ergodic and not
locally rigid.

(ii) For almost every choice of (α, β) such that a = A + α and b = B + β
commute (relative to the Haar measure on the coordinates that do not
vanish because of the commutation relation), the action of (a, b) is ergodic
and KAM-rigid under volume preserving perturbations.

We can give a more precise version of (ii) in which we precise the full measure
Diophantine conditions required on the pair (α, β) to guarantee KAM-rigidity.

The proof is based on a KAM scheme of successive conjugacies that converge
quadratically to the linear model. An important ingredient of the proof is the
cohomological stability above a step-2 parabolic automorphism that was proved
by Katok in [K].

Problem 2. In fact, for Diophantine step-2 maps a, it is very well possible that
if a smooth perturbation of a is C1 conjugated to a, then it is smoothly conjugated
to a.

We do not address this question in this work.
For individual step-n transformations, n ≥ 3, we can expect an absence of local

rigidity even when a C1 conjugacy is supposed to exist with the affine map. Fix
an arbitrary α ∈ R, ᾱ = (α, 0, 0, ), consider the affine map a = A+ ᾱ where

(2) A = Id + E2,1 + E3,2 ∈ SL(3,Z).

We show that

Proposition 1. For any α, r ∈ N and any ε > 0, there exists a function f ∈
C2r(T3,R) such that ‖f‖2r < ε and for which

H ◦A ◦H−1 = A+ (0, 0, f)

for some diffeomorphism H of class Cr−3 such that ‖H − Id‖r−3 < ε while H is
not of class Cr+1.

This proposition indicates that because of the loss of regularity in the cohomo-
logical equation above a step-3 (or higher) transformation, we cannot expect the
same rigidity features for general step-n actions as those of step-2 actions.

However, there are examples of higher step affine actions that are KAM-rigid.
This is the case for some of the actions where one element is step-2. Define for an
example

a(x, y, z, t) = (x + α, y + x, z + y, t+ β)

b(x, y, z, t) = (x, y + α, z + t, t).

We show that

Theorem 3. If α and β are Diophantine, the step-3 action (a, b) is KAM-rigid
among volume preserving perturbations.
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Ruelle zeta at zero for nearly hyperbolic 3-manifolds

Semyon Dyatlov

(joint work with Mihajlo Cekić, Benjamin Küster, Gabriel Paternain)

This talk reports on the recent paper [1]. We consider a negatively curved compact
connected oriented Riemannian 3-manifold (Σ, g) and study the order of vanishing
at 0 of the Ruelle zeta function

(1) ζ(λ) =
∏

ℓ∈LM

(1− e−λℓ), Reλ≫ 1

where LM is the set of lengths of primitive closed geodesics on Σ, taken with
multiplicity. The product (1) converges when Reλ is sufficiently large and it is
known that it continues meromorphically to λ ∈ C.

Denote by m(0) the order of vanishing of ζ at 0, i.e.

λ−m(0)ζ(λ) is holomorphic and nonvanishing at λ = 0.

Then we show the following

Theorem 1. 1. If g is the hyperbolic metric on Σ, then m(0) = 4− 2b1(Σ) where
b1(Σ) is the first Betti number of Σ.

2. If g is a small generic conformal perturbation of the hyperbolic metric, then
m(0) = 4− b1(Σ).

The first part of Theorem 1 is not new – it is due to Fried [3], using the Selberg
trace formula. The second part is where the novelty lies. The proof uses the
microlocal approach to dynamical zeta functions. In this approach the order of
vanishing of ζ at 0 is expressed as

m(0) =
4∑

k=0

(−1)k dimResk,∞0

where Resk,∞0 are the spaces of currents (i.e. distributional differential forms)
defined as follows:

Resk,∞0 := {u ∈ D′(SΣ;Ωk) | WF(u) ⊂ E∗
u, ιXu = 0, ∃ℓ : LℓXu = 0}.

Here SΣ is the sphere bundle of (Σ, g), X ∈ C∞(SΣ;T (SΣ)) is the generator
of the geodesic flow, Ωk = ∧kT ∗(SΣ) is the bundle of k-forms, E∗

u = {(x, ξ) ∈
T ∗(SΣ) | ξ ∈ E∗

u(x)} is the subset of T ∗(SΣ) induced by the dual unstable space,
and WF(u) ⊂ T ∗M \ 0 is the wavefront set of a current u, which is a standard
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object in microlocal analysis giving the location of the singularities of u in the
position-frequency space.

The proof of Theorem 1 then proceeds by first obtaining a detailed understand-

ing of the spaces Resk,∞0 and the action of the operator d on them in the hyperbolic
case. The case of perturbations is handled using first order perturbation theory,
where the key ingredient is to show that pushforwards to Σ of certain currents
determined by elements of dRes1,∞0 are nonzero.

Theorem 1 is in contrast with previous result of the speaker and Zworski [2]
which showed that if Σ is a negatively curved surface, then the order of vanishing
m(0) is determined by just the topology of Σ, specifically m(0) = b1(Σ)− 2. In [1]
we conjecture that m(0) = 4− b1(Σ) for a generic negatively curved metric.

References
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Reeb dynamics in dimension 3 and broken book decompositions

Vincent Colin

(joint work with Pierre Dehornoy, Ana Rechtman)

On a closed 3-manifold M , the Giroux correspondence asserts that every contact
structure ξ is carried by some open book decomposition of M : there exists a
Reeb vector field for ξ transverse to the interior of the pages and tangent to the
binding [Gir]. The dynamics of this specific Reeb vector field is then captured by its
first-return map on a page, which is a flux zero area preserving diffeomorphism of a
compact surface, a much simplified data. When one is interested in the dynamics
of a given Reeb vector field this Giroux correspondence is quite unsatisfactory
– though there are ways to transfer some properties of an adapted Reeb vector
field to every other one through contact homology techniques [CH, ACH] – and the
question one can ask is: Is every Reeb vector field adapted to some (rational) open
book decomposition? Equivalently, does every Reeb vector field admit a Birkhoff
section?

We give a positive answer to these questions for the generic class of nondegen-
erate Reeb vector fields and the extended class of broken book decompositions.

Theorem 1. Every nondegenerate Reeb vector field on a 3-manifold is carried by
a broken book decomposition.

A contact form and the corresponding Reeb vector field are nondegenerate if
all the periodic orbits of the Reeb vector field are nondegenerate, namely the
eigenvalues of a Poincaré map along a periodic orbit are all different from one

http://arxiv.org/abs/2009.08558
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(even when the orbit is travelled several times). The nondegeneracy condition is
generic for Reeb vector fields, see for example [CH, Lemma 7.1].

A Birkhoff section of a vector field R on a 3-manifold is a surface with boundary
whose interior is embedded and transverse to R and whose boundary is immersed
and composed of periodic orbits. A Birkhoff section must also intersect all orbits
of R within bounded time, so that there is a well-defined return map in the interior
of the surface. The boundary will be called the binding. These surfaces are also
known as global surfaces of section. A Birkhoff section induces a rational open
book decomposition of the manifold.

Broken book decompositions are generalisations of Birkhoff sections and ratio-
nal open book decompositions, reminiscent of finite energy foliations constructed
by Hofer-Wyszocki-Zehnder for nondegenerate Reeb vector fields on S3 [HWZ]. In
a broken book decomposition we allow the binding to have broken components, in
addition to radial ones modelled on the classical open book case. The complement
of the binding is foliated by surfaces. A radial component of the binding has a
tubular neighborhood in which the pages of the broken book induce a radial foli-
ation by annuli. The foliation in a tubular neighborhood of a broken component
has sectors that are radially foliated by annuli and sectors that are transversally
foliated by hyperbolas.

A broken book decomposition carries, or supports, a Reeb vector field if the
binding is composed of periodic orbits, while the other orbits are transverse to
the foliation given on the complement of the binding by the interior of the pages
(this foliation by relatively compact leaves is usually non trivial, as opposed to the
genuine open book case). In the proof of Theorem 1, we construct a supporting
broken book decomposition for any fixed nondegenerate Reeb vector field on a
3-manifold M from a cover of M by pseudo-holomorphic curves, given by the
non-triviality of the U -map in embedded contact homology. The projected pseudo-
holomorphic curves are then converted into surfaces with boundary whose interiors
are embedded and transverse to the Reeb vector field using a construction of Fried
[Fri]. These surfaces give a complete system of transverse surfaces to the Reeb
vector field, meaning that their union intersects every orbit. The novelty in our
approach is to combine these two known techniques.

We believe that the notion of a (degenerate) broken book decomposition is
interesting in its own right. Near the binding, the broken book foliation looks
like the mapping torus of a transverse invariant foliation of Le Calvez [L] and our
study could also be seen as a first step towards generalising Le Calvez theory to
vector fields in three dimensions.

Weinstein conjectured in 1979 that a Reeb vector field on a closed 3-manifold
always has at least one periodic orbit [Wei]. The conjecture was proved in full
generality by Taubes using Seiberg-Witten Floer homology [Tau]. It is also a
consequence of the U -map property we use here, and it is no surprise that our
result indeed implies the existence of the binding periodic orbits. Taubes’ result
was then improved by Cristofaro-Gardiner and Hutchings [C-GH], who proved
that every Reeb vector field on a closed 3-manifold has at least two periodic orbits,
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following a work of Ginzburg, Hein, Hryniewicz and Macarini on S3 [GHHM]. It
is now moreover conjectured that a Reeb vector field has either two or infinitely
many periodic orbits. The existence of infinitely many periodic orbits has been
established under some hypothesis (see the survey [GG]) and it is known to be
generic [Iri]. We extend a recent result of Cristofaro-Gardiner, Hutchings and
Pomerleano, originally obtained for torsion contact structures ξ (with c1(ξ) ∈
Tor(H2(M,Z))) [C-GHP] and prove the conjecture for nondegenerate Reeb vector
fields.

Theorem 2. If M is a closed oriented 3-manifold that is not the sphere or a
lens space, then every nondegenerate Reeb vector fields on M has infinitely many
simple periodic orbits. In the case of the sphere or a lens space, there are either
two or infinitely many periodic orbits.

We point out that the cases where Reeb vector fields have exactly two nonde-
generate periodic orbits are well-understood: they exist only on the sphere or on
lens spaces, both periodic orbits are elliptic and are the core circles of a genus one
Heegaard splitting of the manifold [HuT]. Also the contact structure has to be
tight, since a nondegenerate Reeb vector field of an overtwisted contact structure
always has a hyperbolic periodic orbit (see for example Theorem 8.9 in [HK]).
A recent work of Cristofaro-Gardiner, Hryniewicz, Hutchings and Liu shows that
when there are exactly two periodic orbits they are in fact nondegenerate, see
[C-GHHL].

Beyond the number of periodic orbits, the study of the topological entropy of
Reeb vector fields started with the works of Macarini and Schlenk [MS] and has
been continued by Alves [ACH, Alv]. We recall that topological entropy measures
the complexity of a flow by computing the growth of the number of “different”
orbits. If this number grows exponentially then the entropy is positive. For flows
in dimension 3, if the topological entropy is positive then the number of periodic
orbits is infinite.

As an application of Theorem 1 we get a result on topological entropy

Theorem 3. If M is a closed oriented 3-manifold that is not a graph manifold,
then every nondegenerate Reeb vector field on M has positive topological entropy.

Theorems 2 and 3 are obtained by analysing the broken binding components
of the broken book decomposition. Indeed, a broken component of the binding
is a hyperbolic periodic orbit and we can prove that there are heteroclinic cycles
between these periodic orbits. If there are no such broken components, then we
have a rational open book decomposition and the results come from an analysis
of its monodromy. In particular, we obtain

Theorem 4. If M is a closed oriented 3-manifold, then every strongly nondegen-
erate Reeb vector fields on M without homoclinic orbits has a Birkhoff section.

A homoclinic orbit is an orbit that is contained in a stable and an unstable
manifold of the same hyperbolic periodic orbit. Equivalently, it is an orbit that is
forward and backward asymptotic to the same hyperbolic periodic orbit.
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A vector field is strongly nondegenerate if it is nondegenerate and the intersections
of the stable and unstable manifolds of the hyperbolic orbits are transverse. A
strongly nondegenerate vector field with a homoclinic orbit has positive topological
entropy, thus Theorem 4 implies that a strongly nondegenerate Reeb vector field
whose topological entropy is zero is carried by a rational open book decomposition.

Our techniques, combined with Fried’s construction [Fri] and Arnaud-Bonatti-
Crovisier’s results [BC, ABC], also allow to establish the existence of a Birkhoff
section for a C1-dense subset of Reeb vector fields.
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[Gir] E. Giroux, Géométrie de contact : de la dimension trois vers les dimensions
supérieures, Proceedings of the ICM, Vol. II (Beijing 2002), Higher Ed. Press, Beijing
(2002), 405–414.

[HK] H. Hofer and M. Kriener, Holomorphic curves in contact dynamics, Notes from 1997
ParkCity Mathematics Institute.

[HWZ] H. Hofer, K. Wysocki, E. Zehnder, Finite energy foliations of tight three-spheres and
Hamiltonian dynamics, Ann. of Math. (2) 157 (2003), no. 1, 125–255.

[HuT] M. Hutchings and C. H. Taubes, The Weinstein conjecture for stable Hamiltonian
structures, Geom. Topol. 13 (2009), 901–941.

[Iri] K. Irie, Dense existence of periodic Reeb orbits and ECH spectral invariants, J. Mod.
Dyn. 9 (20125), 357–363.

[L] P. Le Calvez, Une version feuilletée équivariante du théorème de translation de
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PFH spectral invariants, the simplicity conjecture, and beyond

Daniel Cristofaro-Gardiner

(joint work with Vincent Humiliére, Sobhan Seyfaddini)

In the 60s and 70s, there was a flurry of activity concerning the question of whether
or not various subgroups of homeomorphism groups of manifolds are simple, with
beautiful contributions by Fathi, Kirby, Mather, Thurston, and many others1. A
funnily stubborn case that remained open was the case of area-preserving home-
omorphisms of surfaces. For example, the following question, Question A below,
had remained unsolved. Let Homeoc(D

2, ω) denote the group of area-preserving
homemorphisms of the two-disk, with its standard area form, that are the iden-
tity near the boundary; this is a normal subgroup of the group of area-preserving
homeomorphisms of the two-disk.

Question A: Is Homeoc(D
2, ω) a simple group?

In contrast, for balls of higher dimensions the analogous group is known to be
simple by work of Fathi from the 70s [4]. Over time, it has generally been thought
that the symplectic structure, which is a unique feature of the two-dimensional
case, forces the group to be not simple in contrast to the situation in higher
dimensions. This has been called the “symplectic conjecture”, and it has attracted
considerable interest.

Our main result confirms it.

Theorem A [1]: The group Homeoc(D
2, ω) is not simple.

To prove Theorem A, we significantly develop the theory of what are called
PFH spectral invariants. The PFH spectral invariants are a sequence of num-
bers cd(ϕ) ∈ R associated (after a choice of “reference cycle”) to area-preserving
homeomorphisms or diffeomorphisms of the two-sphere. They were originally de-
fined for diffeomorphisms by Michael Hutchings and one of the results of our
work extends their definition to homeomorphisms. Their definition makes use of a
kind of Floer homology for three-dimensional mapping torii, defined by Hutchings,
called periodic Floer homology. We show that they satisfy various useful prop-
erties. For example, they are continuous with respect to the C0-topology, which
is the key property that we use to show that they can be defined for homeomor-
phisms. They also are Lipschitz with respect to Hofer’s metric, with Lipschitz
constant d.

To state another important property that they satisfy, recall that a compactly
supported area-preserving diffeomorphism ϕ of the two-disc has a well-defined
Calabi invariant defined by writing ϕ as a time-1-map of a Hamiltonian H ,

1For a summary of some of this history, see [1, Sec. 1.1.1].
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normalized to be 0 near the boundary of the disc, and then defining Cal(ϕ) =∫
Hω. This measures the “average rotation” of ϕ and it turns out that it does

not depend on the choice of H . Hutchings has conjectured that the PFH spectral
invariants recover Calabi in their asymptotic limit:

Conjecture A: limd→∞
cd(ϕ)
d = Cal(ϕ).

We prove this for “monotone twist” maps and it is an interesting question
whether it holds more generally. We believe this to be the case.

We can now explain the basic idea behind the proof of Theorem A. We define a
subgroup FHomeo ⊂ Homeoc(D

2, ω) of “finite Hofer energy” homeomorphisms.
These are maps which can be uniformly approximated by diffeomorphisms while
keeping the distance from the identity in Hofer’s metric bounded. It is not too
difficult to show that this is a non-trivial normal subgroup, and the challenge is
to show that it is proper. To do this, we show that a particular kind of “infinite
twist” map, defined by preserving the radius but twisting more and more as one
approaches the origin, is not in FHomeo. The idea is that an infinite twist map
morally has infinite Calabi invariant, and so the PFH spectral invariants grow
super linearly for such a map by Conjecture A. On the other hand, a finite Hofer
energy homeomorphism must have no more than linear growth of its PFH spectral
invariants by the Hofer Lipschitz property mentioned above. The idea of defining
a normal subgroup and showing properness via an infinite twist map was inspired
by the article [7].

Moving forward, PFH spectral invariants have had further uses. In particular,
we used them in [2] to resolve the Kapovich-Polterovich question about the large-
scale geometry of the group of Hamiltonian diffeomorphisms of the two-sphere,
equipped with Hofer’s metric: this question, which was featured as Problem 21 in
the McDuff-Salamon problem list [6, Sec. 14.2], asked whether or not this group
was quasi-isometric to R and we showed that it was not. Simultaneously, this
question was resolved by Polterovich-Shelukhin [8] using a different family of “link
spectral invariants” that built on work of Mak and Smith [5]. We also showed
using PFH spectral invariants that the group of area and orientation preserving
homeomorphisms of the two-sphere is not simple; the two sphere was the last closed
manifold for which the simplicity question for the group of volume preserving
homeomorphisms was not known. The main technical challenges of these works
as far as PFH spectral invariants are concerned is defining invariants that depend
only on the time 1-map and not on the choice of reference cycle.

Returning now to the algebraic structure ofHomeoc(D
2, ω), the following seems

very important.

Question B: Can we understand the quotient of Homeoc(D
2, ω) by FHomeo?

We know by [1] that the quotient is abelian, and our infinite twist generates a
copy of R in it. Polterovich and Shelukhin have shown [8] that this copy of R is
not the entire group, but not much is known beyond that. In a different direction,
it is also natural to try to understand the structure of FHomeo. It contains a
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normal subgroup Hameo whose definition we omit here for brevity. We showed in
[3] that Calabi extends to Hameo2 and in particular FHomeo is not simple.

Question C: Is the kernel of Calabi on Hameo simple?

It would also be interesting to understand the relationship between PFH spec-
tral invariants and the link spectral invariants. It was observed by Polterovich and
Shelukhin [8] that these turn out to agree in certain cases where they can both be
computed.
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Disjointness of translation flows with their inverses

Prsemyslaw Berk

(joint work with Krzysztof Fraczek, Thierry de la Rue)

The problem of existence of isomorphism of a flow with its inverse is a very clas-
sical issue in the theory of dynamical systems. Many classical examples of flows
have the property that they are isomorphic with their inverses. More precisely, if
(X,B, µ, T = {Tt}t∈R) is a measure preserving flow then it is isomorphic with its
inverse iff there exists a measurable map S : X → X such that S∗µ = µ and

S ◦ Tt = T−t ◦ S for every t ∈ R.

One of those classical examples is a linear flow on the torus, where S can be seen
as a rotation by π. This can be generalized to the broader setting of translation
surface. Namely, (M, η) is a translation surface, whereM is a compact topological
surface of genus g ≥ 1 and η is a maximal atlas of charts defined everywhere
minus finite number of points, where each transition map is a translation. Such
translation surfaces can be obtained by glueing parallel sides in a polygon obtained
from d ≥ 2 pairs of identical segments. Then such surface can be parametrized by

2Polterovich-Shelukhin have communicated that they have a proof of this as well.
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the parameters of the sides and the ordering of those sides on the circumference
of the polygon.

On the translation surface we consider a translation flow Tt associated to a con-
stant unit vector field. If there exists a Poincaré section such that the first return
map is an interval exchange transformation given by a symmetric permutation,
then such flow is isomorphic to its inverse ant the isomorphism can be seen as a
rotation by π like in the toral case. We say that this is a hyperelliptic case. Our
main result in [1] shows that this is not the case in non-hyperelliptic case.

Theorem 1. In non-hyperellptic case, for Gδ-dense set of translation surfaces,
the vertical flow is disjoint with its inverse. On the other hand for a dense set of
translation surfaces, the vertical flow is isomorphic with its inverse.

We say that two flows (X,B, µ, {Tt}t∈R) and (Y, C, ν, {St}t∈R) are disjoint if for
every measure λ on X × Y such that

• λ projects as µ on X and as ν on Y ;
• λ is invariant under action of the product flow {Tt × St}t∈R

we have λ = µ ⊗ ν. In particular, it is easy to see that disjointness implies non-
isomorphism.

To prove Theorem 1, we consider Gδ and density condition separately. First
we construct locally defined continuous embedding from the space of translation
surfaces into the space of measure preserving flows Flow. Then we use the result of
Danilenko and Rhyzhikov in [2] that the property of being disjoint with its inverse
is typical in Flow. This yields Gδ condition. To prove density, we consider surfaces
with short vertical saddle connections. Then we pass to special representation the
vertical flow and we obtain a special flow over rotation with two extra discontinuity
points. Finally, we prove a criterion on disjointness for special flows which can be
applied in our case.
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Can one-parameter families of 2– and (2m + 1)–periodic billiard
trajectories be co–preserved?

Comlan Edmond Koudjiann

(joint work with Vadim Kaloshin)

Let Ω⊂R2 be a convex domain with sufficiently smooth boundary ∂Ω parametrized
by an arclength s, with corresponding parametrization γ : T := R/ℓZ ∋ s 7→ R2,
ℓ being the length of the boundary ∂Ω. The billiard map, denoted by BΩ, is a
map BΩ : T× (0, π) ∋ (s0, θ0) 7−→ (s1, θ1) ∈ T× (0, π) defined as follows: s1 is the
arclength parameter of the (second) intersection point of ∂Ω with the line passing
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through γ(s0) and making the angle θ0 with the tangent vector γ̇(s0); θ1 is the

angle made by the reflection of the vector
−−−−−−−→
γ(s1)γ(s0) w.r.t the inner–normal to ∂Ω

at γ(s1), and the tangent vector γ̇(s1). Moreover, BΩ can be extended smoothly
to the boundaries T× {0} and T× {π} as the identity.

In this talk, I am interested in convex billiard tables with convex rational caus-
tics.

Definition 1:

• A caustic for BΩ is a curve Γ ⊂ Ω s.t. if a BΩ–trajectory is once tangent
to Γ, then this trajectory stays tangent to Γ after each reflection.

• A caustic Γ is called convex if Γ is a closed curve which bounds a strictly
convex domain.

• A caustic Γ in Ω is called (m,n)–rational integrable convex caustic ((m,n)–
rational caustic for short) if all its BΩ–tangent trajectories are (m,n)–
periodic. An orbit1 {(sk, θk)}k∈N0

of the billiard map is called (m,n)–
periodic if its lift {(s̃k, θk)}k∈N0

to the universal cover R× [0, π] satisfies:
s̃n = s̃0 + nℓ, θn = θ0.

Example 2:

• Any inner–circle in a disc D is a convex caustic for BD and therein exists
a (m,n)–rational caustic for any m ≥ 1, n ≥ 2.

• Any inner–confocal ellipse of an ellipse E is a convex caustic for BE and
therein exists a (m,n)–rational caustic for any m ≥ 1, n ≥ 3.

J. Mather proved that if a convex domain admits a convex caustic then this do-
main must be strictly convex. Moreover, Lazutkin showed that, near the boundary
of a sufficiently smooth, strictly convex billiard table Ω, there exists uncountably
many convex caustics accumulating at the boundary and whose union is a set of
positive measure; in addition, BΩ is conjugated to a rigid motion with irrational
rotation number on each of those convex caustics. One can then naturally wonder
about the rational caustic: Do they exist in general? How many of them should
one expects?

Unlike irrational caustics which tend to be robust under perturbations, rational
caustics tend to be very rigid and can easily be destroyed by perturbations. As
pointed out in Example 2, ellipses (including circles) admits rational caustics
for all (m,n), m ≥ 1 and n ≥ 2, except for n = 2 for ellipses with positive
eccentricities. Thus, one may ask

Question 3 ([2]):Given two suchpairs (m1, n1) and (m2, n2), are they smooth strict-
ly convex domains other than ellipses which admit (simultaneously) a (m1, n1)–
and a (m2, n2)–rational caustics?

In this context, S. Tabachnikov conjectured the following.

Conjecture 4: In a Cr (n = 2, · · · ,∞, w) neighborhood of a circle, there are no
other billiard tables that admit a (1, 2)– and a (1, 3)–rational caustic than circles.

1N0 = N ∪ {0}.
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In this talk, I will answer affirmatively a deformative version of this conjecture.
To this end, we will need the following definitions.

Definition 5:

• We call a deformation of a disc, any 1–parameter family {Ωε}0≤ε<ε0 of
strictly convex planar domains such that Ω0 is a disc.

• We shall say that a deformation {Ωε}0≤ε<ε0 of a disc preserves the (m,n)–
rational caustic if, for any 0 ≤ ε < ε0, BΩε

admits a (m,n)–rational caustic
Cε and Cε = C0 + O(ε).

Then, we proved the following

Theorem 6 (V. Kaloshin & C.E. Koudjinan[1]): Let m ∈ N and {Ωε}0≤ε<ε0
be a deformation of a disc. Assume that:

(i) the map [0, ε0) ∋ ε 7−→ Ωε is C3;

(ii) the boundary ∂Ωε is real–analytic for each ε ∈ [0, ε0);

(iii) the deformation {Ωε}0≤ε<ε0 preserves simultaneously the (1, 2)– and the
(1, 2m+ 1)–rational caustics.

Then, the deformation {Ωε}0≤ε<ε0 is trivial, i.e. Ωε is a disc for each ε ∈ [0, ε0).

Acknowledgement. The author has been supported by the ERC Advanced Grant
SPERIG project no. 885707.
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Oscillatory motions and symbolic dynamics in the three body problem

Marcel Guardia

(joint work with Pau Mart́ın, Tere M. Seara)

The three body problem models the motion of three bodies with masses m0,m1,
m2 > 0 under the Newton gravitational force. It is given by the equations

q̈0 = m1
q1 − q0

‖q1 − q0‖3
+m2

q2 − q0
‖q2 − q0‖3

q̈1 = m0
q0 − q1

‖q0 − q1‖3
+m2

q2 − q1
‖q2 − q1‖3

q̈2 = m0
q0 − q2

‖q0 − q2‖3
+m1

q1 − q2
‖q1 − q2‖3

.

(1)
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We consider two fundamental questions for this classical model: The analysis of the
possible final motions and the existence of chaotic motions (symbolic dynamics).
These questions go back to the first half of the 20th century.

We call final motions to the possible qualitative behaviors that the complete
trajectories of the 3 body problem may possess as time tends to infinity (forward
or backward). The analysis of final motions was proposed by Chazy [2], who
proved that the final motions of the three body problem should fall into one of the
following categories. To describe them, we denote by rk the vector from the point
mass mi to the point mass mj for i 6= k, j 6= k, i < j.

Theorem 1 (Chazy (1922)). Every solution of the three body problem defined for
all (future) time belongs to one of the following seven classes.

• Hyperbolic (H): |ri| → ∞, |ṙi| → ck > 0 as t→ ∞.
• Hyperbolic–Parabolic (HPk): |ri| → ∞, i = 1, 2, 3, |ṙk| → 0, |ṙi| → ci > 0,
i 6= k, as t→ ∞.

• Hyperbolic–Elliptic, (HEk): |ri| → ∞, |ṙi| → ci > 0, i 6= k, as t → ∞,
supt≥t0 |rk| <∞.

• Parabolic-Elliptic (PEk): |ri| → ∞, |ṙi| → 0, i 6= k, as t→ ∞, supt≥t0 |rk|
<∞.

• Parabolic (P): |ri| → ∞, |ṙi| → 0 as t→ ∞.
• Bounded (B): supt≥t0 |ri| <∞.
• Oscillatory (OS): lim supt→∞ supi |ri| = ∞ and lim inft→∞ supi |ri| <∞.

Note that this classification applies both when t → +∞ or t → −∞. To
distinguish both cases we add a superindex + or − to each of the cases, e.g H+

and H−.
At the time of Chazy all types of motions were known to exist except the

oscillatory ones. Their existence was proven later by Sitnikov [3] for the Restricted
3 Body Problem and by Alekseev [1] for the (full) 3 body problem for some choices
of the masses.

We have proven the following result.

Theorem 2. Consider the three body problem with masses m0,m1,m2 > 0 such
that m0 6= m1. Then,

X− ∩ Y + 6= ∅ with X,Y = OS,B,PE3,HE3.

Note that this theorem gives the existence of orbits which are oscillatory in the
past and in the future. It also gives different combinations of past and future final
motions. Indeed, the orbits that we construct have negative energy and are such
that:

• The bodies of masses m0 and m1 perform (approximately) circular mo-
tions. That is, |q0 − q1| is aproximately constant.

• The third body may have radically different behaviors: oscillatory, bound-
ed, hyperbolic or parabolic.

This theorem is a consequence of the following one, which proves the existence
of chaotic dynamics for the 3 Body Problem.
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Theorem 3. Consider the three body problem with masses m0,m1,m2 > 0 such
that m0 6= m1 and denote by Φt its flow. Then, there exists a section Π transverse
to Φt such that the induced Poincaré map

P : U = Ů ⊂ Π → Π

has an invariant set X which is homeomorphic to NZ, the set of sequences of
natural numbers. Moreover, the dynamics P : X → X is topologically conjugated
to the shift

σ : NZ → NZ, (σω)k = ωk+1

The set X is a hyperbolic set once the 3 body problem is reduced by its classical
first integrals and it leads to positive topological entropy. The oscillatory motions
given by Theorem 2 belong also to this invariant set X .
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Absolutely Periodic Orbits in Smooth Convex Billiards

Keagan Callis

We consider a bounded domain Ω ⊂ R2, and the eigenvalue problem for the
laplacian, i.e. solutions φ to ∆φ = λφ for some eigenvalue λ. Then if one considers
all the eigenvalues which admit solutions, {λ1 < λ2 ≤ λ2 ≤ ... ≤ λn ≤ ...} and the
counting function N(λ) = |{λi ≤ λ}|, Weyl was able to prove that the first term
in the asymptotic expansion of N depends only on the area of Ω. For the second
term in the expansion, Weyl conjectured the following:

Conjecture. (Weyl’s Conjecture, [10]) Let Ω ∈ C∞(R2). Then,

N(λ) =
1

4π
Area(Ω)λ+ Cℓ(∂Ω)λ1/2 + o(λ1/2),(1)

where C is a constant and ℓ(∂Ω) is the length of the boundary of Ω.

This was proven by Ivrii in [3], provided Ivrii’s conjecture holds, which states:

Conjecture. (Ivrii’s Conjecture) The set of periodic billiards has measure zero
for all Ω ∈ C∞(R2).

Thus, it makes sense to study the prevalence of periodic orbits in smooth billiard
systems. We note that if one were to find an open set of periodic points in a
billiard system, say of period q, then the differential at a point in this set must be
the identity, i.e. df q(x0) = Id for each x0 in this open set. Following the definition
given in [4], a periodic orbit is called absolutely periodic if it has such a point.
Thus, in [4] there is the following conjecture:
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Conjecture. There are no absolutely periodic orbits for euclidean billiards.

This has been proven in the case of convex domains with analytic boundary [9],
and has been proven in the case of convex domains with smooth boundary up to
periods of period 4 [8]. However, if one were to find such an orbit, it would be
significant progress in a disproof of Ivrii’s conjecture.

In this paper, we detail a proof on the existence of a billiard system exhibiting
an absolutely periodic orbit of order n, or in other words an orbit such that
df q(x0) = Id+F (x0), where F (x0) = 0 up to order n. In fact, we prove that such
domains can always be found close to billiard maps with strictly convex boundaries
in Cr(R2) that exhibit homoclinic tangencies. Our main theorem then is

Theorem 1. For any n ∈ N and any strictly convex Ω ∈ Cr(R2), there exists a

strictly convex boundary Ω̃ ∈ Cr−1(R2) arbitrarily close to Ω in the Cr−1 topology

such that Ω̃ has an absolutely periodic orbit of order n.

To prove this we seek to use the methods from [1] to obatin a similar result
for billiard maps. In their setting, something stronger is proven that involves
what are called Newhouse domains. The notion of Newhouse domains comes from
another area of study - that of homoclinic orbits and their bifurcations. Newhouse
proved in [5], [6], [7], that there exist open sets (Newhouse domains) in which
maps that exhibit homoclinic tangencies are dense. Moreover it was shown that
these domains exist around any map that exhibits a homoclinic tangency.

It was shown in [1] (Theorem 3) that in the Newhouse domains in the space of
area preserving C∞(R2) maps, maps with infinitely many homoclinic tangencies of
all orders are dense. We seek to prove an analogue of their proof by extending the
result to the case of billiard maps, though here we are only interested in obtaining
a map with a single periodic orbit of high order close to our original.

To do this, we follow essentially the same proof as in [1], only in the case of
billiard maps.
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Non existence of small breathers of non-linear Klein-Gordon equations

Tere Seara

(joint work with Otàvio M.L. Gomide, Marcel Guardia, Chongchun Zeng)

Breathers are nontrivial time-periodic and spatially localized solutions of nonlin-
ear dispersive partial differential equations (PDEs). In this work (see full de-
tails and proofs in [1], as well as results about the so-called generalized breathers)
through a bifurcation approach in a singular perturbation framework, we study
the existence/non-existence of small breathers of a class of nonlinear Klein-Gordon
equations:

(1) ∂2t u− ∂2xu+ u− 1

3
u3 − f(u) = 0,

where the nonlinearity f is a real-analytic odd function satisfying f(u) = O(u5).
Let ω > 0. A solution u(x, t) of (1) is a breather of temporal frequency ω if

u(x, t) is 2π
ω -periodic in t and in some appropriate metric

lim
x→±∞

u(x, ·) = 0.

Given σ ∈ (0, 1) we call the breather σ-multi-bump in x in the ℓ1 norm if there
exist x1 < x2 < x3 < x4 < x5 such that

max{‖u(xj1 , ·)‖ℓ1 | j1 ∈ 1, 3, 5} ≤ σmin{‖u(xj2 , ·)‖ℓ1 | j2 ∈ 2, 4}.
We call the breather σ-single-bump if it is not σ-multi-bump.

Theorem 1. Assume f(u) = O(u5) is odd and analytic. Then, there exists Cin ∈
C, which depends on f(·) analytically, such that if Cin 6= 0, then for any σ ∈ (0, 1),
there exists ρ∗ > 0 such that there does not exist any solution u(x, t) to (1) which:

(1) is 2π
ω -periodic in t for some ω > 0,

(2) is σ-single-bump in the ℓ1 norm.
(3) satisfies that, as |x| → +∞,

(2) ‖u(x, ·)‖
H1

t

(
(− π

ω
, π
ω
)
) + ‖∂xu(x, ·)‖

L2
t

(
(− π

ω
, π
ω
)
) → 0,

(4) satisfies

(3) sup
x∈R

‖u(x, ·)‖ℓ1 < min{1, ρ∗ω 1

2 }.

The constant Cin, known as the Stokes constant in the literature, depends
analytically on f , and we can prove that Cin 6= 0 for generic f . Moreover, Cin

does not depend on ω, therefore just one condition (Cin 6= 0) rules out the existence
of single-bump small amplitude breathers of any frequency.
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Theorem 1 is proved using the spatial dynamics method [2, 3]. Fix ω > 0. Con-
sidering x as the evolutionary variable, given any 2π

ω -periodic-in-t initial values(
u(0, ·), ∂xu(0, ·)

)
, the nonlinear Klein-Gordon equation (1) defines a well-posed

Hamiltonian dynamical system depending on the paramenter ω in appropriate
spaces of 2π

ω -periodic-in-t functions. The trivial state 0 is stationary and breathers
correspond to orbits which converge to 0 as both x → ±∞, that is, homoclinic
orbits to 0 which belong to the intersection between their stable and unstable man-
ifolds. In the spatial dynamics framework of (1), the dimension of the hyperbolic
eigenspace of 0 is finite and increases by 1 as the frequency ω decreases through 1

k .
Therefore, small homoclinics can only apperar when ω crosses these values. We
take 0 < ε0 ≤ 1/2 and consider the intervals:
(4)

Ik(ε0) =

[√
1

k(k + ε20)
,
1

k

)
, k ∈ N Jk(ε0) =

[
1

k + 1
,

√
1

k(k + ε20)

)
, k ∈ N ∪ {0}

Roughly speaking, when ω ∈ Jk(ε0), the hyperbolicity of the linearized (1) at 0
is strong enough to prevent the existence of small homoclinic orbits. In contrast,
when ω decreases through 1

k and enters Ik(ε0), the linearized (1) is weakly hy-
perbolic in the newly generated hyperbolic directions and small homoclinic orbits
may appear through a homoclinic bifurcation.

The following theorem rephrases (and implies) Theorem 1 in terms of invariant
manifolds and is obtained through a careful analysis of the spatial dynamics of
(1) near 0. In the intervals Ik(ε0) it requires the study of the exponentially small
splitting between the stable and unstable manifolds of 0.

Theorem 2. Assume f(u) satisfies te same hypothesis as in Theorem 1. Then
the following statements hold.

(1) There exists ρ∗1 > 0 such that for any ε0 ∈ (0, 1/2], ω ∈ Jk(ε0), k ∈ N∪{0},
if u(x, t) is a 2π

ω -periodic-in-t solution to (1) satisfying (2) as x→ +∞ or
−∞, then

sup
x∈R

‖u(x, ·)‖ℓ1 ≥ ρ∗1 min{1, ε0ω
1

2 }.

(2) There exist ε0,M > 0 such that for ω ∈ Ik(ε0), there exist 2π
ω -periodic and

odd in t solutions u⋆wk(x, t), ⋆ = s, u, to (1) such that
(a) For x ≥ 0 if ⋆ = s and x ≤ 0 if ⋆ = u, they can be approximated as

∥∥∥∥∥
(
1− 1

(kω)2
∂2t
)
((

u⋆wk(x, t)
∂xu

⋆
wk

(x,t)√
kεω

)
−
√
kεω

(
vh(ε

√
kωx)

(vh)′(ε
√
kωx)

)
sin kωt

)∥∥∥∥∥
ℓ1

≤Mk−
3

2 ε3vh(ε
√
kωx), where vh(y) =

2
√
2

cosh y
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(b) They also satisfy:
∥∥∥
(
| − ∂2t − 1| 12 (uuwk − uswk) + i∂x(u

u
wk − uswk)

)
(0, t)− 4

√
2Cine

−
√

2kπ
ε sin 3kωt

∥∥∥
ℓ1

≤ Me−
√

2kπ
ε

1
2 log k − log ε

,

where Cin is the Stokes constant given in Theorem 1.
(3) Suppose Cin 6= 0, then for any σ ∈ (0, 1), if ω ∈ Ik(ε0) then if u(x, t) is a

2π
ω -periodic-in-t solution to (1) satisfying (2) as |x| → ∞ and

sup
x∈R

‖u(x, ·)‖ℓ1 ≤ ρ∗2
√
ω,

then u(x, t) is σ-multi-bump in the ℓ1 norm.

For ω ∈ Jk(ε0), statement (1) implies that all orbits on both the stable and
unstable manifolds of 0 leave a small neighborhood of 0 and therefore there are no
small orbits homoclinic-in-x to 0. For ω ∈ Ik(ε0), statement (2a) indicates that
there two solutions on the (2k + 1)-dimensional stable/unstable manifolds of 0,
both of which are well approximated by the exponentially localized vh(x).

The most significant result is statement (2b), which gives the precise leading

O(e−
√

2kπ
ε ) order term of the splitting between uuwk and uswk.

To obtain the leading order term of the splitting requires to extend suitable
parameterizations of the stable and unstable manifolds of 0 to the complex plane
and use different approximations for these manifolds using a non-linear equation,
known as the inner equation which provides the Stokes coonstant Cin. Here we
stress that the precise exponentially small leading order approximation is obtained
for this problem which has infinitely many oscillatory directions.
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A global rigidity result for Poincaré sections of higher genus flows

Corinna Ulcigrai

(joint work with Selim Ghazouani)

It is well known that (minimal) circle diffeomorphisms T : S1 → S1 arise a
Poincaré first return maps of (minimal) flows (ϕt)t∈R on a torus S, i.e. on a
compact, orientable surface of genus one. Consider now a (smooth) flow (ϕt)t∈R

on a compact, orientable surface S of higher genus g ≥ 2. Notice that in this case
the flow always has fixed points. We will assume that it isminimal in the sense that
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Figure 1. A generalized IET (GIET) and a (standard) IET with
d = 4.

all orbits different than fixed points are dense (this notion is also sometimes called
quasi-minimality). This implies in particular that all fixed points are of saddle-
type. Poincaré first return maps T : I → I of (ϕt)t∈R on a transverse segment
I ⊂ S are one-to-one piecewise diffeomorphisms known as generalized interval
exchange transformations1. More precisely, a map T : I → I is a generalized
interval exchange transformations or, for short, a GIET, if one can partition I
into finitely many intervals I1, . . . , Id so that the restriction Ti of T to Ii, for each
1 ≤ i ≤ d, is a diffeomorphism onto its image which extends to a diffeo of the
closure Ii. We say that T is of class Cr if each Ti is a diffeo of class Cr from Ii
onto its image, see Figure 1 (left).

Linear models for circle diffeomorphisms and for generalized interval exchange
transformations are provided, respectively, by (rigid) circle rotations (i.e. by the
map T0(x) = x + α mod 1 on I = [0, 1]) and by (standard or classical) interval
exchange transformations T0 (or for short, IETs), namely GIETs such that the
derivative T ′

i of each branch is constant and equal to one (so that T0 is a piecewise
isometry, see Figure 1, right). Notice that rigid rotations are IETs with d = 2
branches.

A classical problem in dynamics, which is at the heart of the theory of circle
diffeomorphisms, is to understand when a circle diffeomorphism T is linearizable,
i.e. conjugate to a rigid rotation T0, i.e. when there exists a homeomorphism
h : I → I (called the conjugacy) such that h ◦ T = T0 ◦ h and, if it is linearizable,
what is the regularity of the conjugacy h. The local theory, which treats the
case of circle diffeos T which are C∞-close (or analytically, or Cr close) to a rigid
rotation T0, is the realm of KAM theory. Among the few global results (which
do not assume that T is close to T0), we recall that Denjoy showed that as soon
as a circle diffeo T is sufficiently smooth, for example C2 (but C1 with bounded
variation derivative suffices) and the rotation number γ(T ) of T is irrational, T is

1The adjective generalized is used to distingush them from the more commonly studied (stan-
dard) interval exchange transformations, which are one-to-one piecewise isometries.
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minimal and linearizable (in particular conjugate to the rotationRα with α = γ(T )
equal to the rotation number of T ). A celebrated theorem by Michael Herman [4]
and Jean-Christophe Yoccoz [10] shows furthermore that if T is C∞, under a full
measure condition on the rotation number γ(T ) (which J.C. Yoccoz showed to
coincide with the class of Diophantine numbers), h is C∞.

In analogy with the case of circle diffeos, we say that a GIET T is linearizable
if it is topologically conjugate to a linear model, namely to a (standard) IET T0.
A local theory in higher genus was initiated by the semimal works by Giovanni
Forni first and Stefano Marmi, Pierre Moussa and Jean-Christophe Yoccoz later.
Forni in particular showed that there are obstructions to solve the cohomlological
equation2 (which can be seen as a linearized conjugacy problem and a crucial first
step towards starting a KAM scheme), but that under a finite number of them
(depending on the regularity) it can be solved for almost every T0. A refinement of
this result by Marmi, Moussa and Yoccoz (with an explicit full measure arithmetic
condition on T0 called Roth-type) then led to the proof, by the same authors,
that, for any r ≥ 2, the Cr local conjugacy class of (Roth-type) IETs is a finite
codimension submanifold. They also conjectured that for r = 1 it is a submanifold
of codimension (d− 1)+ (g− 1), where d is the number of exchanged intervals and
g the genus of the surface of which T is a Poincaré section. For special rotation
numbers (namely for IETs of hyperbolic periodic type) this has recently been proved
by Selim Ghazouani [2].

Marmi, Moussa and Yoccoz proposed (also in [9]) a rigidity conjecture for GIETs,
which states that under a full measure condition, the existence of a topological
conjugacy implies automatically that the conjugacy is differentiable (systems with
this property are sometimes known in the one-dimensional dynamics literature as
geometrically rigid), as long as the boundary is the same. Here the boundary B(T )
of a GIET T is a C1-conjugacy invariant which takes values in Rκ (where κ is the
number of saddles of the flow of which T is a Poincaré section), which encodes the
holomomy of the leaves of the flow foliation around each saddle.

In joint work with Selim Ghazouani, we very recently proved this rigidity con-
jecture by Marmi, Moussa-Yoccoz for minimal GIETs of d = 4, 5 intervals, which
correspond to Poincaré sections of flows on surfaces in genus two:

2Let us recall that the cohomological equation is the equation ϕ ◦ T0 − ϕ = ψ, where ψ is a
smooth (or Cr) observable ψ : I → R, T0 an IET and one looks for a smooth (or Cr) solution
ϕ : I → R. When T0 is a rigid rotation Rα, this equation can be solved for almost every α
as long as

∫
ψ dx = 0, namely a non-zero mean is the only obstruction to solvability. Forni

in [1] showed on the other hand that if T0 is a Poincaré section of a genus g flow, there are
finitely many obstructions to solve it, but as long as the linear functionals which describe these
obstructions (called invariant distributions) are zero, then one can find a solution (continuous,
or finite smoothness if one adds more distributions) for almost every IET T0, i.e. for Lebesgue
almost every choice of the lengths.
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Theorem 1 (Ghaozuani-U’, [3]). For a full measure set3 of IETs T0, if T is a
GIET of class C3 with zero boundary B(T ) = 0 which is topologically conjugate
to T0 via a conjugacy h, then it is differentiably conjugate to T0, namely h is a
diffeomorphism of class C1.

We remark that this is a global result that shows in particular that, under a
full measure condition, the C1 conjugacy class coincides with the C0 conjugacy
class. We expect the optimal regularity of h to be C1+α, i.e. the derivative h′ to be
Hölder with some exponent 0 ≤ α ≤ 1 (this is in accordance with results on circle
diffeomorphisms with break points and suggested by results on the regularity of
solutions to the cohomological equation).

As a corollary, we show also that, if S is a surface of genus two and (ϕt)t∈R

has (two) Morse saddles (i.e. the trajectories are level sets of the Morse func-
tion xy = c), then if the foliation given by trajectories of (ϕt)t∈R is linearizable,
i.e. topologically conjugate, in the sense of foliations, to a linear foliation, then
it is also differentiably conjugate. In this setting, indeed, the zero boundary as-
sumption is automatically satisfied by the GIETs which arise as Poincaré sections
(since a Morse saddle has trivial holonomy).

The proof of the theorem is based on renormalization, in the spirit of Sinai-
Khanin [5] and Khanin-Teplisky [6] revisitations of Herman’s theory. The renor-
malization operator R which maps the space of GIETs of d intervals on I = [0, 1]
into itself, is given here by Rauzy-Veech induction, a well-known algorithm which
plays a key role in the ergodic theory of IETs. The iterates Rn(T ), n ∈ N are
obtained by inducing T on a sequence of nested intervals I(n+1) ⊂ I(n) ⊂ I and
normalizing the induced map (which is a GIET of the same number of intervals)
linearly so that it acts again on [0, 1].

At the heart of our rigidity result, there is the following dynamical dichotomy
for renormalization, which we prove in any genus g ≥ 1. Let us say that a GIET is
infinitely renormalizable if the iterates Rn(T ) of T can be defined for any n ∈ N.
Notice that if T is conjugate to a (minimal, or at least Keane) IET, it is infinitely
renormalizable.

Theorem 2 (Ghazouani-U’, dynamical dichotomy [3]). Let T be a GIET of any
number d ≥ 2 of intervals which is infinitely renormalizable. Under a full measure
condition, there exists a sequence (nk)k∈N of return times (depending on T ) such
that the orbit of (Rn(T ))n∈N of T under renormalization satisfies the following
dichotomy:

(1) either (Rn(T ))n∈N is recurrent in the C1-topology along the subsequence
(nk)k∈N, namely there exists a constant C > 0 such that

(1)
1

C
≤ DRnk(T ) ≤ C, for all k ∈ N,

3The notion of full measure (or almost every IET) refers here to the Lebesgue measure on
the space of d-IETs: we say that a result holds for almost every IET if it holds for IETs with
irreducible permutations for Lebesgue almost every choice of the continuity intervals lengths.
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(2) or, the (Rn(T ))n∈N diverges and there exists an affine IET T1 (i.e. a GIET
whose branches have constant slope) so that the derivatives are approxi-
mated in the leading order (see equation (2) below for details) by the slopes
of the iterates of (Rn(T1))n∈N.

The first case is what we call recurrent case of the dichotomy; the bounds
given by (1) are a form of a priori bounds, that guarantee that the geometry does
not degenerate under renormalization. The second case is what we call affine
shadowing. The key quantity that encodes the evolution is the log-average vector
ω(T ), i.e. a vector in Rd whose entries ωi, for 1 ≤ i ≤ d, are ωi = log ρi, where
ρi is the average slope of the ith branch Ti of T , given by ρi = |T (Ii)|/|Ii| (here
|I| denotes the length of the interval I). Notice that if T1 is an affine IET, the

evolution of the log-slopes vectors ω
(n)
1 := ω(Rn(T1)) is linear and governed by a

linear cocycle (the Rauzy-Veech cocycle). In the affine shadowing case, the norm

of the vectors ω
(n)
1 grows exponentially and

(2)
∥∥∥ω(Rn(T ))− ω

(n)
1

∥∥∥ ≤ C
∥∥∥ω(n)

1

∥∥∥
ǫ

, for all ǫ > 0.

In the recurrent case, the presence of a priori bounds (which play the role of
Denjoy-Koksma inequality for circle diffeomorphisms) and the boundary zero as-
sumption allow to prove that, in this case, (Rn(T ))n≥0 converge, in the C1 norm,
to the subspace of IETs exponentially fast (a phenomenon known as exponential
convergence of renormalization) and then conclude, as in the classical Herman’s
theory, that T is C1-conjugate to its linear model.

In the affine shadowing case, we exploit previous work by Marmi, Moussa and
Yoccoz on affine IETs, which in particular shows that in genus two the affine IET
T1 which appears as affine shadow always has wandering intervals4 and conclude,
thanks to the shadowing, that also T has wandering intervals. Under the assump-
tion that T is topologically conjugate to an IET (and hence has no wandering
intervals), this case cannot hence occur. This shows that in genus two, the exis-
tence of a topological conjugacy provides a priori bounds and implies the desired
rigidity.
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Integrable systems and symplectic embeddings

Vinicius Ramos

(joint work with Jean Gutt, Yaron Ostrover, Daniele Sepe, Brayan Ferreira)

Symplectic embeddings have been a central subject in symplectic topology with a
strong link to Reeb dynamics. Sharp embeddings of very simple domains turn out
to be quite difficult to determine. Symplectic capacities are quantitative invariants
providing obstructions to the existence of such embeddings. Calculating them and
determining when they are sharp has been an important topic for over two decades.

In 1989 Ekeland and Hofer [2] defined a sequence of capacities and they com-
puted their values for ellipsoids and polydisks. Their definition uses analytical
methods and a Fadell-Rabinowitz type index, which is quite difficult to compute.
Over the years it was thought that they might be expressed as spectral invariants
coming from Floer theory. But it was not until 2018 that Jean Gutt and Michael
Hutchings were able to define a similar sequence coming from positive S1 equi-
variant symplectic homology, see [4]. They checked that their capacities coincided
with the Ekeland-Hofer capacities for ellipsoids and polydiscs and they were able
to compute them for a large class of toric domains. Using the Morse homology
defined by Abbondandolo and Majer, Jean Gutt and I have been able to prove the
following result.

Theorem 1 (Gutt–R. [5]). For any star-shaped domain X ⊂ R2n the Ekeland–
Hofer and the Gutt–Hutchings capacities coincide.

Toric domains are generalizations of ellipsoids and polydiscs and many sym-
plectic embedding problems for these domains have been understood, particularly
in dimension 4. A different class of domains for which not much was known are
Lagrangian products. Given open sets K,L ⊂ Rn, their Lagrangian product is the
cartesian productK×L ⊂ Rnx×Rny, where we endow R2n with the symplectic form
ω0 =

∑
i dxi ∧ dyi. These domains are related to billiard dynamics and convex

geometry as explained in [1]. The integrability of some billiard systems implies
that many lagrangian products are symplectomorphic to toric domains.
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Theorem 2 (R. [8]). The Lagrangian bidisc D2 × D2 is symplectomorphic to a
concave toric domain XΩ where Ω ⊂ R2

≥0 is the relatively open set bounded by the
coordinate axes and the curve

(1) 2
(√

1− v2 + v(π − arccos v),
√

1− v2 − v arccos v
)
, for v ∈ [−1, 1].

Using the same integrable system, we were able to deform D2 ×D2 and prove
the following result.

Theorem 3 (Ostrover–R. [6]). Denote the lagrangian ℓp-sum of two discs by

D2 ⊕p D2 = {(q1, p1, q2, p2) ∈ R4 | (q21 + q22)
p/2 + (p21 + p2)

q/2 < 1}.
Then D2 ⊕p D2 is symplectomorphic to a convex or a concave toric domain, if
p ∈ [1, 2] or p ∈ [2,∞), respectively.

Using the one-dimensional billiard system, in joint work with Sepe, we found
a large family of lagrangian products which are also symplectomophic to toric
domains.

Theorem 4 (R.–Sepe [9]). Let Ω ⊂ Rn be a star-shaped open set such that

(x, y) ∈ Ω ⇒ [−|x|, |x|]× [−|y|, |y|] ⊂ Ω.

Then the lagrangian product [0, 1]n × Ω is symplectomorphic to X2Ω∩R≥0
.

The idea of using integrable systems to find hidden toric domains has proven
very fruitful, although the details vary widely from a situation to another. Recently
we have been able to show the following results.

Theorem 5 (Ostrover–R.–Sepe [7]). Let T be a triangle with angles (π/3, π/3, π/3),
(π/4, π/4, π/2) or (π/6, π/3, π/2). Then the lagrangian product of T and a subset
Ω ⊂ R2 with a similar symmetry is symplectomorphic to a toric domain. In par-
ticular, the lagrangian product of an equilateral triangle and its related regular
hexagon is a symplectic ball.

Theorem 6 (Ferreira–R. [3]). The disc bundles of the punctured sphere D∗(S2 \
{p}) and the hemisphere D∗(S2

+) are symplectomorphic to the symplectic polydisc
P (2π, 2π) and the ball B4(2π), respectively. Moreover, the Gromov widths of D∗S2

and D∗RP 2 are 2π.

The results above show that the integrability of a billiard system on a certain
table with the standard reflection law gives rise to a family of symplectomor-
phisms of lagrangian products of this table and a sufficiently symmetric subset.
That implies that many lagrangian products which correspond to non-integrable
Minkowski billiards are still toric domains. One is then led to ask the following
question.

Question 7. For which domains K,L ⊂ Rn is the lagrangian product K × L a
toric domain and how is the integrability of the corresponding Minkowski billiard
system related to that?
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Asymptotic Hofer geometry and Lagrangian Poincaré recurrence

Egor Shelukhin

(joint work with Leonid Polterovich)

Poincaré recurrence is a classical phenomenon of measure-preserving dynamics in
a finite-measure space introduced in [12]. It was inspired by the work of Poincaré
on the three-body problem and implies the following weaker statement on the
return times of a positive-measure subset to itself. A stronger version of this kind
of statement appears in [1].

Theorem 1. Let (X,µ) be a finite-measure space and let A ⊂ X be a positive
measure subspace. Set a = µ(A)/µ(X) > 0. Let φ : X → X be an invertible
measure-preserving transformation. Then there exists an increasing sequence k =
{ki}i≥1 of natural numbers of density d(k) = limm→∞

1
m#{ki | ki ≤ m} at least a

such that for all i ≥ 1,
φki(A) ∩A 6= ∅.

Inspired by the fact that Poincaré’s work pertained to classical mechanics, and
by the paradigm of symplectic packing obstructions [6, 11, 2], which are stronger
than simply volume-preserving ones, it is natural to ask whether a similar type of
result could hold for symplectically rigid subsets of measure zero. A prototypical
example of such a rigid set is a Lagrangian submanifold of a symplectic manifold,
especially a Lagrangian torus. This leads to the symplectic packing question and
the symplectic Poincaré recurrence question [5]. We formulate both for Lagrangian
submanifolds. Suppose that (M,ω) is a closed symplectic manifold and L ⊂ M
is a displaceable closed Lagrangian submanifold. That is, there is a Hamiltonian
diffeomorphism φ ∈ Ham(M,ω) of M such that φ(L) ∩ L = ∅. Note that without
this assumption both questions below have trivial answers.
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Question 2 (Lagrangian packing). Let the Lagrangian packing number k(L) ∈
N∪ {∞} be the supremum of natural numbers k such that there exist Hamiltonian
diffeomorphisms φ1, . . . , φk ∈ Ham(M,ω) such that L1 = φ1(L), . . . , Lk = φk(L)
are pair-wise disjoint. Is k(L) <∞?

Question 3 (Lagrangian Poincaré recurrence). Let φ ∈ Ham(M,ω) be a Hamil-
tonian diffeomorphism. Does there exist a symplectic invariant a(L) > 0 of L such
that there exists a sequence k = {ki}i≥1 of natural numbers of (lower) asymptotic

density d(k) = lim infm→∞
1
m#{ki | ki ≤ m} at least a(L) satisfying for all i ≥ 1,

φki (L) ∩ L 6= ∅?
I have presented results on these questions obtained jointly with Leonid Poltero-

vich in [14]. I have first explained how a positive answer to the first question yields
a positive answer to the second question with a(L) = 1/k(L). Both questions, as
well as this implication, apply for arbitrary subsets of M of course. However,
they are most interesting for measure-zero subsets. Subsequently, I introduced a
symplectic invariant α(A) ∈ [0, 1] of a compact subset A ⊂M based on asymptotic
Hofer geometry, lower bounds on which allow us to prove upper bounds on k(A).

The invariant α is defined as follows. Let ν : H̃am(M,ω) → R≥0 be the Hofer
pseudo-norm [7, 13, 9] on the universal cover of the Hamiltonian group Ham(M,ω)

of (M,ω). The asymptotic Hofer norm ν : H̃am(M,ω) → R≥0 is defined as ν(ψ) =

limm→∞
1
mν(ψ

m) for ψ ∈ H̃am(M,ω). Set ψf = [{φtf}t∈[0,1]] ∈ H̃am(M,ω) for the

class of the Hamiltonian isotopy generated by a function f ∈ C∞(M ;R). Ordering
open neighborhoods U of A by inverse inclusion, set

α(A) = lim
U⊃A

sup{ν(ψf ) | f ∈ C∞(M ;R), |f |C0 = 1, supp(f) ⊂ U, f |A ≡ 1}.

In view of a classical argument of Sikorav [16, 8] we obtain the following.

Proposition 2. The packing number of A satisfies

k(A) ≤
⌊ 1

α(A)

⌋
,

where the right hand side is by convention ∞ if α(A) = 0.

Finally, we prove by introducing and using Lagrangian spectral invariants for
(symmetric) product Lagrangian submanifolds in symmetric product orbifolds (in-
spired by [10]), the following result.

Theorem 4. Let L0 ⊂ S2 be the boundary of a disk of area B ∈ (1/k, 1/(k+ 1)),
k ≥ 2, where the total area of S2 is 1. Let S be the equator in a sphere S2(2b) of

total area 2b. Suppose that b ∈ (0, (k+1)B−1
k−1 ). Then L = L0×S in M = S2×S2(2b)

satisfies α(L) = 1/k and k(L) = k.

This is the first example known to date of a positive answer to either one of
the questions above, as stated. In the case of certain compact symplectic four-
manifolds with non-empty boundary, a similar result via different methods is work
in progress by Dimitroglou-Rizell and Opshtein. A positive answer to a version of
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Question 3 with the lower bound depending also on φ was proved by Ginzburg and
Gürel [4] for a special class of Hamiltonian diffeomorphisms of CPn, the so-called
pseudo-rotations. Finally, the same result with volume-preserving diffeomorphisms
instead of symplectomorphisms is false: there exists a volume-preserving diffeo-
morphism φ of M such that {φi(L)}i∈N are all disjoint.

Further applications of the methods.

The method of [14] (Lagrangian spectral invariants in symmetric products) used for
Lagrangian Poincare recurrence, has numerous additional applications to geometry
and dynamics of Hamiltonian diffeomorphisms on surfaces (see [14], as well as [3]
and forthcoming paper [15]). Our current impression is that the merit of the
orbifold setting (as in [10, 14]) is that it extends to dimension 4 and it would be
very interesting to extend it to higher dimensions.
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Contact three-manifolds with exactly two simple Reeb orbits

Umberto Hryniewicz

(joint work with Daniel Cristofaro-Gardiner, Michael Hutchings, Hui Liu)

The goal of this talk is to present a description of Reeb flows on closed 3-manifolds
with precisely two periodic orbits, which is as complete as possible in a very precise
sense to be described. This is in parallel to what happens for area-preserving
pseudo-rotations of the 2-disk: there are a number of common features shared
by all such disk-maps, but their dynamics can be quite different, ranging from
integrable situations to cases where the Lebesgue measure is ergodic [1].

Our characterization theorem is particularly motivated by the conjecture that
every Reeb flow on a closed 3-manifold must have two or infinitely many periodic
orbits. One may not necessarily learn too much about the structure of a specific
Reeb flow in dimension three from knowing that it has infinitely many periodic
orbits, but our results tell that one does get lots of detailed information about
such a flow in the case of two periodic orbits. In any case, if this conjecture is
true then we are compelled to understand the very special case of two periodic
orbits. The main step is to show that a contact form with exactly two periodic
Reeb orbits has the property that both closed orbits are irrationally elliptic.

The proof combines the powerful ECH volume formula from [3] with a study of
the behavior of the ECH index under non-degenerate perturbations of the contact
form which is based on [2]. As a consequence, the ambient contact 3-manifold is a
standard lens space, the contact form is dynamically convex, the Reeb flow admits
rational disk-like global surfaces of section, and the dynamics are described by a
pseudo-rotation of the 2-disk. Hence, the analogy to pseudo-rotations is not only
heuristic: we establish it in a mathematically rigorous way. Moreover, the periods
and rotation numbers of the closed orbits satisfy the same relations as in the case
of (quotients of) irrational ellipsoids. In the case of S3 the transverse knot-type of
the periodic orbits is fully determined, in the case of lens spaces there is a weaker
characterization of the transverse knot type.
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Surviving lower dimensional tori from an invariant resonant torus

Frank Trujillo

The classical KAM theory establishes the persistence, under sufficiently small per-
turbations, of most of the n-dimensional invariant tori for non-degenerate inte-
grable Hamiltonians with n degrees of freedom. The surviving tori are those
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carrying a quasi-periodic motion by a Diophantine vector and, in particular, their
restricted dynamics is minimal. On the other hand, such systems also admit n-
dimensional invariant tori whose restricted dynamics is not minimal. These tori,
which we call resonant, are foliated by lower dimensional invariant tori, that is, by
invariant tori whose dimension is smaller than the number of degrees of freedom
of the system. The codimension of these tori is called the number of resonances
of the resonant torus.

In the resonant setting not only the hypotheses of the classical KAM theorem
are not satisfied but, in general, the resonant invariant torus tends to disappear
under small perturbations. Nevertheless, invariant lower dimensional tori, with
the same dynamics as that of the ones in the invariant foliation of the resonant
torus, might still be found in the perturbed system.

Most of the existing results in this direction deal with generic perturbations
and hold for resonant vectors with any number of resonances [7], [5] [3]. However,
similar results for arbitrary perturbations are only available when the resonant
vector has exactly 1 or m− 1 resonances [1], [2], [3], [6], [4].

In this work we present a criterion for the existence of at least one lower dimen-
sional invariant torus, associated to a resonant invariant torus (with any number of
resonances) in the unperturbed system, for a class of near-integrable non-convex
Hamiltonians. Typically, this invariant torus will be of hyperbolic type. As a
particular case of our main result, we obtain the following.

Theorem 1. Let H be a real analytic Hamiltonian over Tdr×Tlr×Bds ×Bls, where
Tmr = ({z ∈ C | |Im(z)| < r}/Z)m and Bms = {z ∈ Cm | |z| < s}, of the form

H(q, x, p, y) = 〈ω, p〉 − 1

2
|p|2 + 1

2
|y|2 + f(q, x, p, y),

with ω ∈ Rd Diophantine. There exists ǫ0 > 0, depending only on r, s, d, l and ω,
such that if

‖f‖∞ < ǫ0,

then H admits an invariant d-dimensional invariant torus, whose restricted dy-
namics is analytically conjugated to a continuous translation by ω.
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Germ-typicality of the Newhouse phenomenon

Pierre Berger

(joint work with Sylvain Crovisier, Enrique Pujals)

A long standing problem is that of ergodicity of a typical dynamical system. This
goes back to the Boltzmann ergodic hypothesis, which has been reformulated in
modern terms by Birkhoff-Koopman (1932) as follows: a typical proper Hamilton-
ian systems is ergodic on a.e. [component of] energy level. Here ergodicity means
that Liouville a.e. point has its orbit which is equidistributed over the Liouville
probability measure.

This was disproved by Kolmogorov in 1954, with the so-called KAM’s theorem.

A topological and weaker version of the Bolzmann ergodic hypothesis, is the quasi-
ergodic hypothesis. It was stated by Poincaré (1892) as the existence of a dense
set of proper Hamiltonian systems which displays a dense orbit at a dense subset
of [components of] energy levels.

This was disproved by Hermann in 1992 [for non-exact symplectic form]

A great idea of Smale was to remove and simplify the structure left invariant
by the system. Namely, he proposed to focus on differentiable systems on low-
dimensional and closed manifolds which does not need to preserve the volume. In
the early 60’s he conjectured the open-density of diffeomorphisms satisfying Axiom
A. One of the numerous properties of Axiom A is the finiteness of topological at-
tractors (and even the finite quasi-ergodicity). Moreover by the works of Sinai and
Bowen-Ruelle, they are finitely ergodic: There is a finite set of probability mea-
sures which model the statistical behavior of the orbits of Leb. a.e. point. Hence
a corollary of Smale’s program would be that any system in an open and dense
set should be finitely ergodic and displays finitely many topological attractors.

The density of Axiom A conjecture was disproved by Abraham-Smale in 1970.
The openness and density of finite ergodicity or quasi-ergodicity was disproved

by Newhouse in 1974.

More precisely Newhouse proved the existence of a locally topologically generic set
(an open set intersected with countably many open-dense sets) formed by smooth
surface diffeomorphisms with the following property. The dynamics displays in-
finitely attracting periodic orbits which accumulate (in law) onto the set of all
invariant measures of a Smale’s horseshoe (a stably embedded Bernoulli shift).
This dynamical property is called the Newhouse phenomenon.

Newhouse phenomenon is perhaps the most complex and rich phenomenon
known in differentiable dynamical systems. Indeed from the topological or statisti-
cal viewpoints, these dynamics are presently extremely far from being understood;
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it is not clear that the current dynamical paradigms would even allow one to state
a description of such dynamics.

Since the early 70’s, the problem of the typicality of the Newhouse phenom-
enon has been fundamental, see for instance [9]. But the notion of topological
genericity is not completely satisfactory as a notion of typicality. For instance,
a surface conservative maps displaying countably many elliptic points with Liou-
ville rotation number is topologically generic, but this property sounds negligible
(the set of real Liouville numbers has Lebesgue measure zero). That is why many
important works and programs [10, 8, 7, 4] wondered if the complement of the
Newhouse phenomenon could be typical in some stronger sense, such as the one
of Kolmogorov (ICM 1964) which involves parameter families.

In 2016, it has been shown that finite ergodicity and quasi-ergodicity is not
typical in the sense of Kolmogorov.

More precisely, I showed in [1, 2] the existence of an open set of finite differentiable
families of dynamics in which a topologically generic family displays the Newhouse
phenomenon at every parameter.

Now a natural question is whether Newhouse phenomenon is locally typical.

Typicality’s notions Open Kolmogorov typ. Topo. gen. Density

Finite ergocity No [5] No [1, 2] No [5] ?

Newhouse phen. locally ? locally ? locally Yes [5] locally Yes [5]

In the presented work, with Crovisier and Pujals we showed that the Newhouse
phenomenon is typical according to the following notion inspired by Kolmogorov
idea and subsequent developments:

Definition 1 (Germ-typicality). A behavior B is Cr-germ-typical in an open set
U of Cr-self-maps of a manifold M , if there exist a topologically generic set R in

the space of Cr-families f̂ = (fa)a∈R of maps in U and a locally constant function

δ : R → (0,+∞) such that for every f̂ ∈ R and for all |a| < δ(f̂), the map fa
presents the behavior B.

Interestingly, the two known obstructions to robust finite ergodicity, KAM and
Newhouse phenomena, appear nearby (very simple) configurations. KAM phe-
nomenon appears robustly when the dynamics displays a twisted invariant torus.
Newhouse’s phenomenon is topologically generic nearby dynamics which displays
an area contracting homoclinic tangency [6]. In a similar way, we show that the
germ typicality of the Newhouse phenomenon occurs nearby any system displaying
a simple configuration that we call a bicycle:

Definition 2. A local diffeomorphism displays a bicycle if one of its saddle points
has a homoclinic tangency and a heterocycle. A saddle point P displays a heterocy-
cle if Wu(P ) contains a projectively hyperbolic source S and if the strong unstable
manifold Wuu(S) intersects W s(P ). The bicycle is dissipative if the dynamics
contracts area along the orbit of P .

The main theorem of the presented work is the following:
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Theorem 1 ([3]). For every 2 ≤ r < ∞ and for every local Cr-diffeomorphism
of a surface f ∈ Diffrloc(M) which displays a dissipative bicycle, there exists a
(non empty) open set Ur ⊂ Diffrloc(U,M) whose closure contains f and where the
Newhouse phenomenon is Cr-germ-typical.

Acknowledgement. The author has been partially supported by the ERC project
818737 Emergence of wild differentiable dynamical systems.
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Poisson brackets of partitions of unity and Floer theory

Shira Tanny

In [2], Entov and Polterovich discovered a surprising relation between the Poisson
bracket and the notion of displaceability, which can be thought of as a symplectic
“small scale”. Recall that the Poisson bracket of a pair of Hamiltonians F,G :

M × [0, 1] → R is defined by {F,G}(x) := d
dt

∣∣∣
t=0

G ◦ ϕtF (x). A subset U of M is

called displaceable if there exists a Hamiltonian H such that ϕ1
H(Ū)∩ Ū = ∅. For

a displaceable subset U ⊂ M , its displacement energy e(U) is the infimum of the
Hofer norm over Hamiltonians whose time-1 flow map displaces U .

On a closed connected symplectic manifold (M,ω), consider a finite open cover
U := {Ui}i∈I by displaceable sets. The non-displaceable fiber theorem [2] implies
that any subordinate partition of unity F = {fi}i∈I cannot be Poisson commuting,
namely there exist i, j such that {fi, fj} 6≡ 0. The Poisson bracket invariant, which
was introduced by Polterovich in [6], measures this non-commutativity:

(1) pb(U) := inf
F

max
|xi|,|yj|≤1

∥∥∥
{∑

i∈I
xifi,

∑

j∈I
yjfj

}∥∥∥.
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Here the infimum is taken over all partitions of unity F subordinate to U . In
[7], Polterovich explained the relation of this invariant to operational quantum
mechanics and conjectured a lower bound for pb(U) in terms of the maximal dis-
placement energy of a set from U :

Conjecture (Polterovich). Let (M,ω) be a closed symplectic manifold, and let
U = {Ui}i∈I be an open cover of M by displaceable sets. Then, there exists a
constant C = C(M,ω) > 0 depending only on the symplectic manifold, such that

(2) pb(U) · e(U) ≥ C,

where e(U) := maxi∈I e(Ui) and e(Ui) is the displacement energy of Ui.

This conjecture was proved in dimension 2 by Buhovsky-Logunov-T. [1], using
geometric and combinatorial arguments. In higher dimensions Polterovich’s onjec-
ture is still open, and the current approace towards it relies on Floer theory and
spectral invariants. The spectral invariant c(F ) of a Hamiltonian F measures the
smallest action level in which the fundamental class appears in Floer homology
constructed with respect to F . Entov-Polterovich-Zapolsky [3] and Polterovich
[7] provided a method to produce lower bounds for pb(U) out of upper bounds
for spectral invariants of Hamiltonians supported in disjoint unions of sets from
the cover U . Motivated by this approach, Seyfaddini [8] and Ishikawa [5] proved
upper bounds for spectral invariants of Hamiltonians supported in certain dis-
joint domains. More recently, Humilière-Le Roux-Seyfaddini [4] proved that if
π2(M) = 0 and F,G are Hamiltonians supported in certain disjoint domains, then
c(F +G) = max{c(F ), c(G)}. They also gave a counter example for this statement
on the sphere S2. It turns out that an inequality, which is sufficient from a Poisson
bracket point of view, holds in a more general setting. For example, an inequality
holds if the domains are ”far enough” from each other:

Definition 1. Let U ⊂ M be the image of an embedding ψ of a nice star shaped
domain in R2n. We say that U is σ-extendable if ψ extends to

√
1 + σ · ψ−1U .

Denote by (1 + σ) · U := ψ(
√
1 + σ · ψ−1U) the extension of U in M .

Theorem 1. Assume that (M,ω) is rational, namely ω(π2(M)) = κZ, and

• Ui are σi-extendable embeddings of nice star shaped domains such that the
extensions {(1 + σi) · Ui} are disjoint,

• supp(Fi) ⊂ Ui and c(Fi) < min{κ, σi · Tmin(∂Ui)}.

Then, c(
∑

i Fi) ≤ maxi c(Fi).

Another example is if the boundary of U is Zoll of certain period:
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Theorem 2. Assume that (M,ω) is rational, namely ω(π2(M)) = κZ, and

• Ui are disjoint embeddings of star shaped domains whose bounaries are
Zoll: all periodic orbits have period Ti, and Ti|κ,

• supp(Fi) ⊂ Ui and c(Fi) < Ti.

Then, c(
∑

i Fi) ≤ maxi c(Fi).

Lastly, on monotone manifolds an inequality holds for convex domains that are
“not too big”. The size of the domain is measured by the maximal action-index
ration of a closed Reeb orbit:

Definition 2. Let U be the image of a nice star shaped domain. We define

C(U) := sup

{
2T (γ)

CZ(γ)− n+ 1
: γ ∈ P(∂U)

}
,

where T (γ) is the period and CZ(γ) is the Conley-Zehnder index.

Theorem 3. Assume that (M,ω) is monotone, namely ω = κc1 on π2(M),
dimM > 2, and

• Ui are embeddings of strictly convex domains,
• if κ > 0 then Ui satisfy C(Ui) ≤ κ.

Then, for every Fi supported in Ui respectively, c(
∑
i Fi) ≤ maxi c(Fi).
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Wild holomorphic dynamics

Sébastien Biebler

(joint work with Pierre Berger)

In the 60s, in a mathematical optimistic movement aiming to describe a typical
dynamical system, Smale conjectured the density of uniform hyperbolicity in the
space of Cr-diffeomorphisms f of a compact manifold M . In the 70s, Newhouse
discovered an extremely complicated new phenomenon, resulting in an obstruction
to Smale’s conjecture. Specifically, he proved the following result:

Theorem (Newhouse [N, N2]). For any surface S, there exists a nonempty open
set U of C2-diffeomorphisms of S such that any f in a Baire generic subset of U
has infinitely many attracting periodic points.

Dynamics with infinitely many attracting periodic points are particularly inter-
esting since one can not hope to describe them satisfactorily from an ergodic point
of view with finitely many invariant probability measures. It is therefore natural
to try to generalize the Newhouse phenomenon to other settings.

In holomorphic dynamics, polynomial automorphisms form a natural class of
maps to investigate the existence of the Newhouse phenomenon. A polynomial
automorphism of Ck, k ≥ 2, is a bijection of Ck such that both f and f−1 have
polynomial coordinates. In the 90s, Buzzard [Bu] showed that there exist New-
house domains in the family of polynomial automorphisms of C2 of degree d when
d is large enough. In higher dimension, we have the following result:

Theorem (Biebler [Bi]). For any integer d ≥ 2, there exists a nonempty open
set U of polynomial automorphisms of C3 of degree d such that any f in a Baire
generic subset of U has infinitely many attracting periodic points.

Examples of applications of the Newhouse phenomenon include the existence
of generic sets of diffeomorphisms displaying a superexponential growth of the
number of isolated periodic points by Kaloshin [K], the density of universal maps
in any Newhouse domain in the family of area-preserving two-dimensional maps by
Gonshenko, Shilnikov and Turaev [GST] and the density of finitely differentiable
maps having a wandering domain in any Newhouse domain by Kiriki and Soma
[KS].

A new application deals with wandering Fatou components in complex dynam-
ics. It is classical that for any holomorphic map f acting on a complex manifold
M , one can write M as the disjoint union of the Fatou set, where the dynamics
is locally normal, and its complement, the Julia set, where it is chaotic. A Fatou
component is a connected component of the Fatou set, and it is wandering if it is
not preperiodic. The dynamics on wandering components can be very complicated,
and thus the question of their existence is crucial.

A celebrated theorem of Sullivan [S] states that any rational map of the Rie-
mann sphere does not have a wandering Fatou component. On the contrary, in
higher dimension, examples of wandering Fatou components have been found for
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transcendental maps of C2 by Fornæss and Sibony [FS] and for holomorphic en-
domorphisms of P2(C) by Astorg, Buff, Dujardin, Peters and Raissy [ABDPR].
Recently, for polynomial automorphisms of C2, it has been shown that:

Theorem (Berger, Biebler [BB]). There exists a locally dense set of parameters
(pi, b) ∈ R6 such that the following polynomial automorphism has a wandering
Fatou component C:

fp : (z, w) ∈ C2 7→ (z6 +

4∑

i=0

pi · zi − w, b · z) ∈ C2 .

Moreover for every z ∈ C, the sequence of empirical measures

en :=
1

n

n∑

i=1

δfi
p(z)

does not converge. The set of accumulation points of (en)n has a covering number
N (η) at scale η for the Wasserstein distance which is superpolynomial (and even
stretched exponential):

lim inf
η→0

log logN (η)

− log η
> 0 .

The statistical behavior of the wandering component is therefore very difficult
to describe. The proof of this theorem is based on the Newhouse phenomenon
and uses in particular renormalization techniques introduced in [Be]. This also
generalizes the work of Kiriki and Soma to the C∞ and analytic cases.
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Support of elements in the Humilière completion, γ-coisotropic
subsets and inverse reduction inequalities

Claude Viterbo

Except when explicitly mentioned all results here will appear in [9].

1. Support of elements in the Humilière completion and

γ-coisotropic subsets

Let (M,ω = dλ) be an exact symplectic manifold. In [1], V. Humilière defined
the completion for the spectral norm γ of the set of compact supported Hamil-
tonian maps and the set of exact Lagrangians. We denote these completions by

Ĥamc(M,ω) and L̂(M,ω), and shall only deal with the case M = T ∗N . Our first

goal is to define the support of an element L ∈ L̂(M,ω). We first set the following

Definition 1. We shall say that x /∈ supp(L) if for all neighbourhoods U of x,
and all Hamiltonian maps supported in U we have γ(ϕ(L), L) = 0.

The first question is to try to understand what are the properties of the support.
For this we need another definition, that coincides with the one in [6] except that
we replace the Hofer distance by the γ-distance.

Definition 2. We shall say that a set V is not γ-coisotropic at z ∈ V if for all
neighbourhoods U of z, and ball B(z, η) ⊂ U there is a sequence ϕj of Hamiltonian
maps supported in U , such that γ − limϕj = Id and ϕj(V ) ∩B(z, η) = 0.

Our first result is

Proposition 3. Let L ∈ L̂(T ∗M). Then supp(L) is γ-coisotropic.

It is not hard to check that a smooth submanifold is γ-coisotropic if and only if
it is coisotropic in the usual sense (i.e. (TzV )ω ⊂ TzV ). It is also not hard to check
that being γ-coisotropic is a property invariant by symplectic homeomorphism (or
more generally a homeomorphism preserving γ). Finally we prove in [3]

Proposition 4. The singular support of a sheaf F ∈ Db(N) is γ-coisotropic in
T ∗N .

This is more precise than the definition of involutivity in [4], which is moreover
only invariant by C1 symplectic maps.

Returning to supports of Lagrangians, we see that such a support cannot have
topological dimension less than n = dim(N). However it can be arbitrarily large:
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Proposition 5 (Existence of Peano Lagrangians). There exists L ∈ L̂(T ∗M) such
that supp(L) contains a symplectic image of

[0, 1]n × [0, 1]r = {(q1, ..., qn, p1, ...pr, 0, ...0) | ∀j|qj | ≤ 1, |pj | ≤ 1} .

However when supp(L) is minimal, we expect that in some sense L coin-
cides with supp(L). For example we can define topological Lagrangians, as el-

ements in L̂(T ∗M) such that supp(L) is a topological n-dimensional submanifold.
This makes sense in particular when supp(L) is a smooth submanifold. Being
coisotropic it must be Lagrangian, and then we may ask whether L = supp(L) ?

We cannot prove this in general, even though we expect it to be true, but it
holds for example if supp(L) = G is a Lie group. A crucial ingredient for the proof
is explained in the next section

2. Inverse reduction inequalities

Let L ∈ T ∗(X×Y ) be an exact Lagrangian, and for x ∈ X , set Lx = (L∩ (T ∗
xX×

T ∗Y ))/T ∗
xX ⊂ T ∗Y . For each x we obtain the reduction Lx of L at x ∈ X .We

then have (see [7])

Proposition 6. We have for all x ∈ X that

γ((L1)x, (L2)x) ≤ γ(L1, L2) .

Now the spectral norm γ is the difference between the two spectral invariants
c+(L1, L2) and c−(L1, L2). Our new result here is

Proposition 7. Assume all Lx are embedded. Then setting d = dim(X) we have

c+(L1, L2) ≤ sup
x
c+((L1)x, (L2)x) + d sup

x
γ(L1)x, (L2)x) .

A consequence of this inverse reduction inequality, related to the previous sec-
tion is

Proposition 8. Let G/H be a homogeneous space, and for g ∈ G let τg the
symplectic map induced by g ∈ G on T ∗(G/H). Then there is a constant C such
that for all L exact Lagrangian in T ∗(G/H) we have

γ(L) ≤ sup
g∈G

γ(τgL,L) .

We also get, as a byproduct of the above Proposition, the following result,
conjectured in [8] and proved first by Shelukhin, and later independently by
Guillermou-Vichery and the author (see [5, 2, 9])

Proposition 9. Let N be a homogeneous space, and DT ∗N be the unit disc bundle
of T ∗N . Then there is a constant C such that for all L, exact Lagrangian in
DT ∗N , we have

γ(L) ≤ C .
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3. Singularities of Hamiltonians

Let H ∈ C0(M \ V ) where V is a compact subset of M . We may ask whether H

defines an element in Ĥamc(M,ω). In other words, let (Hk)k≥1 be a sequence in
C∞(M) converging uniformly on compact subsets in M \ V to H . Let ϕk be the
time one map of Hk. Is it true that ϕk converges for the γ-topology to an element

ϕ ∈ Ĥamc(M,ω) ? Humilière proved in [1] that if dim(V ) < n then this holds.
We extend this as

Proposition 10. Let H and Hk as above. If V is nowhere γ-coisotropic, then

(ϕk)k≥1 converges for the γ-topology to an element ϕ ∈ Ĥamc(M,ω).
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Université Sorbonne
UMR 7586
4 place Jussieu
75252 Paris Cedex 05
FRANCE

Dr. Przemyslaw Berk

Institut für Mathematik
Universität Zürich
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Department of Mathematics and
Statistics
Pavillon André-Aisenstadt
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