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Abstract. The series of Oberwolfach meetings on ‘Explicit methods in num-
ber theory’ brings together people attacking key problems in number theory
via techniques involving concrete or computable descriptions. Here, number
theory is interpreted broadly, including algebraic and analytic number theory,
Galois theory and inverse Galois problems, arithmetic of curves and higher-
dimensional varieties, zeta and L-functions and their special values, modular
forms and functions.

The 2021 meeting featured a seven-lecture minicourse on the distribution
of class groups and Selmer groups. The other talks covered a broad range
of topics in number theory ranging, for instance, from deterministic integer

factorisation to the inverse Galois problem, rational points, and integrality of
instanton numbers.
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Introduction by the Organizers

The workshop Explicit Methods in Number Theory, organised by Karim Belabas
(Bordeaux), Bjorn Poonen (Cambridge, MA), and Fernando Rodriguez Villegas
(Trieste) was run in a hybrid format due to the COVID 19 pandemic, with 14
participants at the institute and 42 participating remotely via Zoom from many
time zones in Europe, the US, and Oceania. This workshop is part of a long-
standing series of meetings whose goal is to present new methods and results on
concrete aspects of number theory. In several cases, this included algorithmic and
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experimental work, but the emphasis is on the implications for number theory.
Ten previous workshops on the topic have been held in Oberwolfach since 1999.

The programme consisted of a seven-lecture minicourse on arithmetic statistics
for class groups and Selmer groups, and twenty-two standalone lectures by par-
ticipants. Contributions ranging from deterministic integer factorisation to the
inverse Galois problem, rational points, and integrality of instanton numbers were
presented, for example. Those participating remotely socialized through events
hosted on the wonder.me platform.

Arithmetic statistics concerns itself with the distribution of arithmetic objects in
a family, ordered by some natural invariant. These include class groups of number
fields ordered by discriminants, and Selmer groups attached to elliptic curves or-
dered by the size of a Weierstrass equation or to twists of a fixed curve. Both are
finite, effectively computable, abelian groups classifying global obstructions and
are critical to understanding arithmetic problems like solving Diophantine equa-
tions or, equivalently, finding rational points on varieties. For instance, Selmer
groups are related to the existence of rational points on elliptic curves and allow
one to prove the weak Mordell–Weil theorem.

Starting from the “Cohen–Lenstra heuristics” (1983), proposing a probabilistic
model for the average behavior of class groups of quadratic fields, major conjectures
provide models for various such distributions and allow numerical predictions.
Since class groups and Selmer groups are finite abelian groups, one can write them
as the direct product of their p-Sylow subgroups and study the distribution of such
p-components, for instance, by computing their moments. The minicourse was
centered on Alexander Smith’s proofs that the 2-parts of quadratic class groups
and Selmer groups attached to twists of certain elliptic curves indeed followed
the conjectured distribution. One striking consequence (obtained by Koymans
and Pagano) concerns the distribution of discriminants d such that the negative
Pell equation x2 − dy2 = −1 has a solution in integers x and y (Stevenhagen’s
conjecture).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Problems, Conjectures and Theorems in Arithmetic Statistics

Manjul Bhargava

We give an overview of some of the problems, conjectures, and known theorems
(and of some of the motivations, assumptions, and methods behind them) in the
subject of arithmetic statistics, with a focus on those relating to the distribu-
tion of class groups and Selmer groups. In particular, we describe the Cohen–
Lenstra heuristics for class groups (and their extensions due to Gerth, Martinet,
Malle, Karman, Bartel–Lenstra, and others) and the Poonen–Rains and B.–Kane–
Lenstra–Poonen–Rains heuristics for Selmer groups, and the various results in the
directions of these heuristics in works due to Davenport–Heilbronn, B., Fouvry–
Klüners, Klagsbrun, Ho–Shankar–Varma, B.–Hanke–Shankar, Smith, Yu, Achter–
Pries, Hall, Ellenberg–Venkatesh–Westerland, Heath-Brown, Swinnerton-Dyer,
Kane, Klagsbrun–Mazur–Rubin, B.–Shankar, B.–Ho, B.–Gross, Shankar–Wang,
Thorne, Romano–Thorne, Alpöge, B.–Shankar–Swaminathan, Milovic, Smith,
Chan–Koymans–Milovic–Pagano, Koymans–Pagano, Landesman, Feng–Landes-
man–Rains, Boston–Bush–Hajir, Liu–Wood–Zureick-Brown, Dummit–Voight, B.–
Varma, Bartel–Lenstra, Wang–Wood, Sawin, and more (as time permits). Many
of the works described in this survey will be expanded upon in forthcoming lectures
of this workshop.

Statistics of the Galois module structure of Mordell-Weil groups

Alex Bartel

(joint work with Adam Morgan)

The following question seems very natural, but has, to our knowledge, not been
considered until now. Fix a number field K, an elliptic curve E/K, a finite group
G, and a finitely generated Q[G]-module V . By the Jordan–Zassenhaus theorem,
there are only finitely many isomorphism classes of finitely generated full rank
Z[G]-lattices inside V . More precisely, there is a finite set L of Z-free Z[G]-modules
such that every Z[G]-module L satisfying Q⊗ZL ∼=Q[G] V is isomorphic to a unique
element of L. Let (F, ι) run over all pairs consisting of a Galois extension F of K
an isomorphism ι between its Galois group and G, satisfying Q⊗Z E(F ) ∼=Q[G] V ,
where we may view E(F ) as a Z[G]-module via the isomorphism ι. Then how
often is E(F )/E(F )tors isomorphic to any given lattice in L? Of course, to make
this question precise, we should order the family of pairs (F, ι) in some reasonable
way, e.g. by the ideal norm of the discriminant of F/K, or of the product of primes
of K that ramify in F (and the answer may well depend on the ordering).

In this project we consider the following special case: take K = Q, G to be
cyclic of order 2, E/Q to be an elliptic curve of rank 1, and V to be free of rank
1 over Q[G]. In plain terms, we are letting F run over all quadratic number fields
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over which E has rank 2. Each such F is isomorphic to Q(
√
d) for a unique square-

free integer d, and we can just order our family by |d|. It is not hard to see that
L then consists of two elements: a free Z[G]-module of rank 1, which we will just
abbreviate to Z[G], and a direct sum of two submodules of Z-rank 1, which we
denote by 1⊕ sign.

For technical reasons, we also assume that E/Q has full rational 2-torsion and
no cyclic 4 isogeny. Our first, perhaps at first surprising, result is the following.

Theorem 1. The proportion among fields F as just described of those for which
one has E(F )/E(F )tors ∼= Z[G] is asymptotically 0.

It turns that there is a local obstruction to E(F )/E(F )tors being isomorphic to
Z[G]: it can only happen if d is not divisible by any primes from a certain positive
density set. We therefore modify the question, by restricting the family to only
those F that, in addition to the constraint that the rank of E(F ) be 2, also satisfy
the appropriate local conditions.

In that restricted family, we give a precise conjecture for the proportions with
which Z[G] and 1 ⊕ sign occur as E(F )/E(F )tors, which we both conjecture to
be positive. Our conjecture is closely analogous to Stevenhagen’s heuristic on the
solubility of the negative Pell equation. It can be summarised as follows:

• Let δ : E(Q) → H1(Q, E[2]) be the coboundary map associated with the
multiplication-by-2 Kummer sequence on E. Then the local conditions
on d ensure that there is a Mordell–Weil generator P of E(Q) such that

δ(P ) ∈ H1(Q, E[2]) ∼= H1(Q, Ed[2]) is contained in Sel2(Ed/Q).
• We show that E(F )/E(F )tors ∼= Z[G] if and only if there is a Mordell–Weil

generator P of E(Q) such that δ(P ) ∈ Sel2(Ed/Q) is also the image of a
Mordell–Weil generator of Ed(Q) under the “twisted” coboundary map δd.

• We determine the proportions pr with which one has

dimF2
(Sel2(Ed/Q)/δd(Ed[2])) = r

as d runs through our (thin!) family.
• We then conjecture that δ(P ) is a uniformly “random” non-trivial element
in that F2-vector space. This leads to the prediction that the proportion
in the restricted family with which one has E(F )/E(F )tors ∼= Z[G] is

asymptotically
∑

r

pr
2r − 1

.

Remark 1. There is a lot of prior work on distributions of 2-Selmer groups in
quadratic twist families, but there are additional subtleties that we have to beware
of in our particular families: they are “thin” families, and by the first bullet
point above, they are presisely rigged in such a way as to throw off the 2-Selmer
distribution.

Remark 2. Somewhat surprisingly, our conjectured proportions turn out to be
rational numbers, in contrast to the proportion in Stevenhagen’s heuristic.
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Graded Lie Algebras and Selmer Groups

Jack A. Thorne

Bhargava and Shankar have proved that the average size of the m-Selmer group of
an elliptic curve over Q (these curves being ordered by the height of the coefficients
in a defining Weierstrass equation) is equal to σ1(m) =

∑
k|m k for each m =

2, 3, 4, 5 [1–4]. In each case they introduce a pair (G, V ) consisting of a reductive
group G and a representation V , both defined over Z. They relate the relevant
Selmer groups to the set G(Z)\V (Z) of integral orbits and then use the geometry
of numbers to get information about the number of orbits of bounded height,
therefore about the average size of the Selmer group of an elliptic curve.

Gross observed that the pairs (G, V ) appearing in the papers can all be seen
as arising from stably graded Lie algebras [5]. A graded Lie algebra is a pair
(g, θ), consisting of a Lie algebra g (say semisimple over Q) and homomorphism
θ : µm → Aut(g). The homomorphism θ determines a grading g = ⊕i∈Z/mZ gi;
then g0 ≤ g is a Lie subalgebra which acts on g1. Integrating g0 to a reductive
group G0, we get a pair (G0, g1). The grading (g, θ) is said to be stable if moreover
there are stable vectors, i.e. elements in g1 with closed orbit and finite stabiliser
under the action of G0.

It is therefore natural to wonder whether stably graded Lie algebras can be used
to study the Selmer groups of other families of abelian varieties. Stably graded
Lie algebras have been classified by Reeder, Levy, Yu, and Gross [6]. A variety
of techniques have now been developed that can be used to prove theorems about
Selmer groups using these stably graded Lie algebras. These include theorems
concerning the average size of the 2-Selmer group of a Jacobian of a hyperelliptic
curve of arbitrary genus [7–9], the 3-Selmer group of the Jacobian of a genus 2
curve [10], the 2-Selmer group of the Jacobian of a non-hyperelliptic curves of
genus 3 [11], and the 2-Selmer groups of a family of (non-principally polarized)
Prym abelian surfaces [12].

The techniques developed by Bhargava and Shankar to study the geometry of
numbers generalise well to the context of an arbitrary stably graded Lie algebra
(g, θ). More challenging is to find the relation between the rational and (in par-
ticular) integral orbits in (G0, g1) and the Selmer groups of a family of abelian
varieties. When g is simply laced, the family of abelian varieties seems to be, in
examples, the family of Jacobians of a versal deformation of a plane curve with
a unique simple singularity. This is in particular the case for the (unique) stable
Z/2Z-grading of such an algebra [13]. When g is not simply laced, one expects to
find a family of Pryms associated to a curves ‘with fixed symmetries’ (cf. [12]).

The most general construction available of rational orbits from rational points
of Jacobians relies upon the existence of an interesting functor from root lattices,
enriched with the data of a finite Heisenberg group, to graded Lie algebras [15].
The most general construction available of integral orbit representatives for Selmer
group elements (see [11]) relies upon the observation that the compactified Jaco-
bian of a versal Gm-deformation of a reduced plane curve is absolutely smooth
(i.e. smooth over Q, if not over the base of the deformation) [14].
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Several tantalising directions remain to be explored. For example, if (g, θ) is a
stably Z/2Z-graded Lie algebra and G is a simply connected algebraic group with
Lie algebra g, one can consider the action of G0 = Gθ=1 on the algebraic variety
G1 = {g ∈ G | θ(g) = g−1}. The geometric invariant theory of the pair (G0, G1)
has been studied by Richardson [17], and is very much analogous to the geometric
invariant theory of the pair (G0, g1). Moreover, there is a relation between Selmer
groups and rational orbits generalising that for the pair (G0, g1) [16]. We await
a theory of the geometry of numbers of such pairs (G0, G1) sufficient for further
applications to arithmetic statistics.
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2-descent for Bloch–Kato Selmer groups

Netan Dogra

LetX/Q be a hyperelliptic curve of genus g given by y2 = f(x), where f ∈ Q[x] is a
separable polynomial. Poonen and Schaefer [PS] showed how to relate the 2-Selmer
group of the Jacobian J of X to the arithmetic of the étale algebra Q[x]/(f(x)).
One application of this ‘field-theoretic’ characterisation is to bounding the rank r
of the Jacobian. If r < g, the Chabauty–Coleman method can be used to produce
a finite set X(Qp)1 ⊂ X(Qp) of p-adic points containing X(Q).

The subject of this talk was the problem of carrying out 2-descent to prove
upper bounds on the ranks of certain Bloch–Kato Selmer groups associated to
certain geometric Galois representations of weight < −1. Unlike with abelian
varieties, conjecturally these ranks are, in a certain sense, ‘geometric’ rather than
‘arithmetic’ invariants [BK].

One motivation for this problem comes from the problem of computing the
set of rational points of hyperelliptic curves with r ≥ g. Minhyong Kim has
defined subsets X(Qp)n ⊂ X(Qp) containing X(Q) which are finite whenever r
plus the sum of ranks of certain Bloch–Kato Selmer groups associated to Galois
representations of weight < −1 are less than some constant depending only on g.
The attraction of this approach is that the Bloch–Kato conjectures imply that,
for any r, this inequality is eventually satisfied, and hence X(Qp)n is eventually
finite.

By “2-descent for H1
f (Gal(Q|Q),∧2T2J)” we mean that we want to bound the

rankofH1
f (Gal(Q|Q),∧2T2J)by computing the rank of a subgroup ofH1(Gal(Q|Q),

∧2J [2]). Analogous to the classical case, to do this we relateH1(Gal(Q|Q),∧2J [2])
to the subalgebra of Q[x, y, 1

x−y ]/(f(x), f(y)) fixed by the involution swapping x

and y.
One interesting example where these methods can be applied is the genus 2,

rank 3 curve

(1) C : y2 − y = x5 − x.

In [BMSTT], Bugeaud, Mignotte, Siksek and Tengely determined the integer val-
ued solutions to (1), using a combination of transcendence methods and Mordell–
Weil sieving. Using our 2-descent algorithm we prove rkH1

f (GQ,∧2T2Jac(C)) = 2

and determine C(Q).
The methods used for bounding the rank of H1

f (Gal(Q|Q),∧2T2(J)) have been

applied to verify finiteness ofX(Q2)2 for a large number (> 1000) of the 7224 genus
2 rank 2 curves with a rational Weierstrass point on the LMFDB. By contrast,
only 29 of these curves satisfy the condition ρ(J) > 1 used in [BD] to guarantee
finiteness of X(Qp)2 when r = g.
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Restriction of scalars Chabauty applied to cyclic covers of
P1 r {0, 1,∞}

Nicholas Triantafillou

Let K be a number field, let X/K be a curve with Jacobian J , and let p be a prime
of good reduction for X . Chabauty’s method is a p-adic technique that produces
a finite subset of X(Kp) containing X(K) when rankJ(K) ≤ dim J − 1. Given
a set S of finite places of K not containing p, after replacing J with a suitable
generalized Jacobian, one can also use Chabauty’s method to compute a finite set
containing the OK,S-points on an integral model of an affine curve.

If [K : Q] > 1, one can improve the rank-versus-dimension bound by applying
an analogue of Chabauty’s method to the restriction of scalars ResK/QX . This
approach, called RoS Chabauty, first appears in [3] and is attributed to Wetherell.
RoS Chabauty produces a set X(K⊗Qp)1 of p-adic points containing X(K) which
is ‘expected’ to be finite when rankJ(K) ≤ [K : Q](dim J − 1). Unfortunately,
this expectation fails when a (translate of a) subgroup scheme T ⊂ J with T (K)
of ‘large’ rank intersects ResK/QX in ‘large’ dimension. We call such subgroup
schemes subgroup obstructions. As a concrete example, [3] shows that if X is the
base change of a curve over k ⊂ K for which X(k ⊗ Qp)1 is infinite, the RoS
Chabauty set X(K ⊗ Qp)1 for the base change of X to K will also be infinite.
Similarly, [1] shows that if X(K⊗Qp)1 is infinite and f : Y → X is a nonconstant
map of curves such that the K-points of the Prym variety are p-adically dense in
the Kp-points, Y (K⊗Qp)1 will be infinite. We call a subgroup obstruction defined
by iterating these constructions a BCP obstruction for base change + Prym.

Working in the context of S-integral points on affine curves, we show that when
q is sufficiently large and α ∈ O×

K,S is not a qth power, there are no subgroup

obstructions to RoS Chabauty applied to Xα,q := P1 r {x : xq = α}. Let Jα,q be
the Jacobian of Xα,q. The proof leverages the fact that splitting field of Jα,q is
nonabelian over K to prove a large gap between the rank and dimension of any
subtorus of ResOK/ZJα,q. The case of X1,q is much subtler. When K is totally
real, for large q, one can prove X1,q(OK,S) is finite using classical Chabauty, but
if K contains a CM subfield, there is a BCP obstruction to RoS Chabatuy for
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X1,q. When K does not contain a CM subfield, we show that X1,q has no BCP
obstructions. See [4] for details.

As an application/motivation for our study, we note that the points on the
curves Xα r {0,∞} correspond exactly to the subset of (P1 r {0, 1,∞})(OK,S) in

the same class of O×
K,S modulo qth powers as α−1. Poonen showed that these sets

can be computed using classical Chabauty when K = Q. While Poonen’s results
do not extend beyond K = Q (except for K totally real and α = 1), our work
provides evidence that RoS Chabauty could be used to compute the Xα(OK,S)
when K does not contain a CM subfield. This suggests that RoS Chabauty plus
descent by cyclic covers gives an elementary p-adic algorithm to compute the set
(P1 r {0, 1,∞})(OK,S), or equivalently the set of solutions to the S-unit equation
x+ y = 1 for x, y ∈ O×

K,S .
In future work, we hope to upgrade these results to a proof that RoS Chabauty

and descent can bound the set (P1 r {0, 1,∞})(OK,S) and to combine the p-adic
information from RoS Chabauty with other techniques to improve existing bounds
on the size of this set. It would also be interesting to extend the results presented
here to the case where K contains a CM-subfield, perhaps by performing a further
descent in order to compute (X1,qr{0,∞})(OK,S) and to implement the resulting
algorithm on a computer.
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Primes in very short intervals and arithmetic progressions

Andrew Granville

(joint work with Allysa Lumley)

In 1792 Gauss predicted that “the density of primes around x is about 1
log x”. This

suggests that in an interval of y integers,

(1) π(x+ y)− π(x) = #{Primes p ∈ (x, x + y]} ≈ y

log x
.

There are φ(q) arithmetic progressions a (mod q) with (a, q) = 1. We guess that
the primes are roughly equi-distributed amongst these progressions, so that

π(x; q, a) = #{Primes p ≤ x : p ≡ a (mod q)} ≈ 1

φ(q)

x

log x
.

math.mit.edu/~poonen/papers/siegel_for_Q.pdf
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If x = qy then there are y integers in the progression so we expect

π(qy; q, a) ≈ q

φ(q)

y

log q

when y = qo(1) since then log qy ∼ log q. We simplify by letting q be large and
prime so that q/φ(q) ≈ 1 and so we expect that

(2) π(qy; q, a) ≈ y

log q

which is similar in structure to (1). These estimates make sense once y > (log x)1+η

(or y > (log q)1+η), and heuristics suggest they should hold “100% of the time” in
these ranges.

In this talk we explore two questions: What happens when y is smaller? And
what are the extreme values in these ranges, that is the maximum and minimum
number of primes. We approach these questions through various heuristics and
test our conjectures against computational evidence.

In 1936 Cramér suggested a model based on Gauss’s observation: Let (Bn)n≥3

be independent random variables for which

Prob(Bn = 1) =
1

logn
with Prob(Bn = 0) = 1− 1

logn
.

Then the distribution of π(x) can be modeled by

∑

n≤x

Bn which has expectation

∫ x

3

dt

log t
+O(1)

which is exactly what we expect from Riemann’s zeros, and indeed it suggests an
error term x1/2+o(1) which is equivalent to the Riemann Hypothesis. Similarly one
might hope to model the the distribution of π(X + y)− π(X) by

∑
X<n≤X+y Bn.

This is more-or-less a binomial distribution and suggests that there exists X ∈
(x, 2x] for which π(X + y) − π(X) = y whenever y < (log x)1−ǫ. However this is
clearly nonsense since half the integers in any interval are even. The problem is
that Cramér’s model does not take account of divisibility by small primes, so we
modify it to do so. The idea is to discard any integer which has a prime factor
≤ z (for some well-chosen z ≤ y), and then suitably define the random variables
Bn for those n with no prime factor ≤ z. This modified model does predict the
distribution of primes in arithmetic progressions, as suggested by the Generalized
Riemann Hypothesis, as well as Hardy and Littlewood’s prime k-tuplets conjecture
(neither of which followed from the original Cramér model).

If 0 ≤ a1 < · · · < ak ≤ y are integers then there cannot be infinitely many n
such that

n+ a1, . . . , n+ ak are all prime

if some prime p divides one of the n + ai for every n. If there is no such local
obstruction then a1 < · · · < ak is admissible and Hardy & Littlewood’s Prime
k-tuplets conjecture claims that there are infinitely many such prime k-tuples. We
let S(y) be the largest size k of an admissible set of length y.
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On the basis of some computational evidence, a careful (conjectural) study of
the range of uniformity of the prime k-tuplets conjecture, and a modification of
Cramér’s model, we predict that if y ≤ (1− ǫ) log x then

max
x<X≤2x

π(X + y)− π(X) = S(y),

and if y ≤ (1 − ǫ) log q with q prime then

max
(a,q)=1

π(qy; q, a) = S(y) or S(y) + 1.

We also predict that if p1 = 2 < p2 = 3 < . . . is the sequence of prime numbers
then

max
x<pn≤2x

pn+1 − pn & 2e−γ(log x)2

and that perhaps these are asymptotically equal, though the data is not too con-
vincing. Analogously we predict that if p(q, a) is the least prime ≡ a (mod q)
then

max
(a,q)=1

p(q, a) & 2e−γ(log q)2;

for prime q and that perhaps these are asymptotically equal for almost all q, though
the constant will get as large as 4e−γ for rare q, twice the “typical value”. This
prediction is well backed-up by the data for the primes up to a million.
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Small Galois groups over Q and Q(t)

Tim Dokchitser

The Inverse Galois Problem asks whether every finite group G occurs as a Galois
group over Q, and, stronger, over Q(t) with no constant subfields. The construc-
tive version of this problem also asks to produce polynomials with the right Galois
group. We discuss some old and new methods and new results, including realisa-
tions of some previously unknown groups, and families for all transitive groups of
degree < 16 over Q(t) and all groups of order < 128 over Q.

The algorithms discussed in the talk have been implemented in the Magma
package available from

https://people.maths.bris.ac.uk/~matyd/InvGal/

together with a list of open problems on the computational aspects of the Inverse
Galois Problem.
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2∞-Selmer groups in quadratic twist families

Alexander Smith

In 1979, Goldfeld conjectured the following:

Conjecture 1 ([2]). Given an elliptic curve E/Q with narrow Weierstrass form

y2 = x3 + ax+ b,

and given a nonzero integer d, take Ed to be the elliptic curve over Q with narrow
Weierstrass form

Ed : y2 = x3 + d2ax+ d3b.

This curve is a quadratic twist of E, and is isomorphic to E over Q(
√
d).

Then, for r ≥ 0,

lim
N→∞

#
{
d : 0 < |d| ≤ N and rank(Ed/Q) = r

}

2N
=





1/2 for r = 0

1/2 for r = 1

0 for r ≥ 2.

We make progress on this conjecture by studying 2∞-Selmer groups. For an
elliptic curve E/Q, the 2∞-Selmer group is defined as the kernel

Sel2
∞

E = ker

(
H1(GQ, E[2∞]) →

∏

v

H1(Gv, E[2∞])/Wv

)
.

Here, GQ denotes the absolute Galois group of Q, the product is over all places
v of Q, the group Gv is the absolute Galois group for the local field Qv, and
Wv denotes the Bloch–Kato set of local conditions [1]. Explicitly, Wv the set of
unramified classes at good primes for E besides 2, is 0 at bad primes besides 2,
and is something more complicated at 2.

Define the 2k-Selmer rank r2k(E) to be the maximal integer r so (Z/2kZ)r is

a subgroup of Sel2
∞

(E), and take r2∞(E) to be the limit of the r2k(E). Then
r2∞(E) ≥ rank(E), and it is conjectured that r2∞(E) = rank(E). Our main result
for elliptic curves is the following:

Theorem 2. Take E/Q to be an elliptic curve satisfying one of the technical
conditions enumerated at the start of Section 0.2. Then

lim
N→∞

#
{
d : 0 < |d| ≤ N and r2∞(Ed/Q) = r

}

2N
=






1/2 for r = 0

1/2 for r = 1

0 for r ≥ 2.

0.1. Controlling 2-Selmer ranks. We prove Theorem 2 by finding the distribu-
tion of each 2k-Selmer rank in turn, starting with the 2-Selmer rank. Given two
primes p, q, we define a symbol [p, q] that generalizes the Legendre symbol. We
also define a class [p], which describes the splitting behavior of p in Q(E[2]).

Given positive squarefree integers d = p1 . . . pr and d′ = p′1 . . . p
′
r, we find that

the 2-Selmer groups of Ed and Ed′

are isomorphic if [pi] = [p′i] and [pi, pi] = [p′i, p
′
i]

for all i ≤ r, and if [pi, pj ] = [p′i, p
′
j ] for all i < j ≤ r.
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Because of this proposition, it is convenient to restrict our attention to a grid
of twists. Fix r > 0 and classes σ1, . . . , σr, and choose disjoint sets of primes
X1, . . . , Xr so all Xk lie in class σk for k ≤ r. We say d lies in the grid X =∏r

k=1 Xk if d = p1 . . . pr for some p1 ∈ X1, . . . , pr ∈ Xr.
We are also able to generalize the following result of Jutila to our definition of

symbols.

Proposition 3 ([3]). Given disjoint sets X1, X2 of primes, take H1 = max(X1),
H2 = max(X2). Then

∣∣∣∣∣∣

∑

p∈X1

∑

q∈X2

(
p

q

)∣∣∣∣∣∣
= C ·H1H2

(
H

−1/5
1 +H

−1/5
2

)

where C is some absolute constant.

Our approach to controlling 2-Selmer groups is to carve the set of positive
squarefree integers less than a given H into a set of grids with negligible leftovers,
and then to control the 2-Selmer groups on each grid using a combination of our
generalization of Jutila’s proposition and the Chebotarev density theorem.

For any grid X , we can find a lower bound r2,min(X,E) for r2(E) over X .
For some grids and some elliptic curves, this lower bound can be quite large [4].
However, in all cases, we can find an isogenous curve E′ to E so r2,min(X,E′) = 0;
this works just as well with the elliptic curve replaced by an abelian variety. This
trick allows us to prove the following coarse result.

Theorem 4. There is an absolute C > 0 so, for any abelian variety A/Q, we
have

∑

d<H

exp(rank(Ad)) ≤ H · eCg2

for H ≫A 0, where g = dimA.

0.2. Higher Selmer groups. We need a finer result about the 2-Selmer group
to deal with 4-Selmer groups and higher. For elliptic curves, we have such a fine
result if

(1) E(Q)[2] = 0; or
(2) E(Q)[2] ∼= Z/2Z and, writing φ : E → E0 for the unique isogeny of degree

2 over Q, we have

Q(E0[2]) 6= Q and Q(E0[2]) 6= Q(E[2]); or

(3) E(Q)[2] ∼= (Z/2Z)2 and E has no cyclic degree 4 isogeny defined over Q.

We will state our explicit result for the distribution of r2, r4, r8, . . . for curves
obeying the first or third condition here. In the second case, the 2-Selmer group
is large for half of the twists of E, and this complicates the distributional result.
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Definition 5. Given n ≥ j ≥ 0, take

PAlt(j |n)
to be the probability that a a uniformly selected alternating n × n matrix with
entries in F2 has kernel of rank exactly j. We also will define

PAlt(j |∞) =
1

2
lim
n→∞

PAlt(j | 2n+ j)

Theorem 6. Suppose E/Q is an elliptic curve that fits into either the first or
third case mentioned above. Given k ≥ 1 and any sequence of integers

r2 ≥ r4 ≥ · · · ≥ r2k ≥ 0,

we have

lim
N→∞

#{d : 0 < |d| < N, r2(E
d) = r2, . . . r2k(E

d) = r2k}
2N

= PAlt(r2k
∣∣r2k−1 ) · PAlt(r2k−1

∣∣r2k−2) · · · · · PAlt(r4
∣∣r2) · PAlt(r2

∣∣∞).

These statistics correctly suggest that there is an alternating pairing on the
2-Selmer group of E whose kernel K has dimension r4(E); that there is an alter-
nating pairing on K whose kernel has dimension r8(E); etc. These pairings are
instances of the Cassels–Tate pairing. Once the 2-Selmer portion of the above
theorem has been established, the rest is proved by showing that these pairings
are equidistributed among alternating matrices.

Over the set of all twists d < H , it is not meaningful to ask for the Cassels–
Tate pairings of the curves Ed be equidistributed, since we lack a method for
identifying the 2-Selmer groups throughout this family. However, by restricting
our scope to the set of twists in a grid X where all classes and symbols are fixed,
we enter a situation where the 2-Selmer groups are all isomorphic and where it
does make sense to ask if the Cassels–Tate pairings are equidistributed. With
enough assumptions, we are able to prove the equidistribution result, establishing
the theorem.

We finally will mention the exercise that started our sequence of lectures.

Definition 7. Given a group G acting on an abelian group M and a homo-
morphism χ : G → {±1}, there is a unique G-module Mχ and isomorphism
βχ : Mχ → M of abelian groups so

βχ(σm) = χ(σ)σβχ(m)

for all σ in G and m in M . This is known as the quadratic twist of the module
M .

For example, for any nonzero integer d, we may define χd : GQ → {±1} so

χd(σ) = σ(
√
d)/

√
d for all σ ∈ GQ. Choose an elliptic curve E/Q. If we take

M = E
(
Q
)
, then we have

Mχd ∼= Ed
(
Q
)
.



Explicit Methods in Number Theory 1821

Exercise 8. Given n > 1 and H > 0, what is the smallest GQ-module N so that,
for any positive integer d less than H , there is an equivariant embedding

(
1
nZ/Z

)χd →֒ N?

• For n = 2, N = 1
2Z/Z suffices, since χd(σ) ≡ 1 mod 2.

• For n = 3, we can do no better than

N =
(
1
3Z/Z

)
⊕

⊕

d<H
d squarefree

(
1
3Z/Z

)χd ,

which has dimension around 6
π2H . This sort of behavior continues for all

odd n.
• For n = 4, the module

N =
(
1
4Z/Z

)
⊕
⊕

p<H
p prime

(
1
4Z/Z

)χp

suffices. This has dimension around H/ logH by the prime number theo-
rem. Higher powers of two lead to similarly small dimensions for N .

This exercise leads us to the following heuristic for identifying arithmetic-statistical
problems that could plausibly be solved using methods like ours.

Heuristic 9. Given finite GQ modules M1,M2, . . . decorated with some local con-
ditions, we have hope that we can find the distribution of

SelM1, SelM2, . . .

if

log#NH∑
i<H log#Mi

tends to 0, where NH is the minimal GQ module containing M1, . . . ,MH as sub-
quotients.
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Effective height bounds for odd-degree totally real points on
some curves

Levent Alpöge

My talk was on the following theorem.

Theorem. There is a finite-time algorithm (i.e. Turing machine which terminates
on all inputs) which, on input (K,C/K) with K/Q totally real of odd degree and
C/K a smooth projective hyperbolic curve which admits a map defined over K to
a Hilbert modular variety, outputs C(K).

Just for concreteness, what follows is an example application. The relevant fam-
ily of abelian varieties is the hypergeometric family corresponding to the triangle
group ∆(3, 6, 6) (which is, crucially, arithmetic).

Theorem. Let a ∈ Q
×

be totally real of odd degree (e.g. a = 1). Then: there is
a finite-time algorithm which, on input K with K/Q(a) totally real of odd degree,
outputs the finitely many pairs (x, y) with x, y ∈ K and x6 + 4y3 = a2.

In what remains we will describe the argument, keeping the ideas and also the
points which led to the hypotheses on the number fields and curves in considera-
tion, and dropping the usual mass of notation.

Parshin’s reduction of the Mordell conjecture to Shafarevich’s finiteness conjecture
for abelian varieties uses a construction of Kodaira to produce, for a smooth pro-
jective hyperbolic curve C/K, a finite-to-one map C → Ag for some g ∈ Z+ (not
the genus of C/K), without loss of generality defined over K. Letting C/oK be
the minimal proper regular model of C/K, this extends to a map C → Ag defined
over oK,S once S is explicitly sufficiently large, and thus produces a finite-to-one
map C(K) = C(oK,S) → Ag(oK,S), the first equality by compactness (and since S
is explicitly sufficiently large).

Rather than use Kodaira’s family, we begin with curves mapping to a Hilbert
modular variety. Thus the same argument reduces us to considering S-integral K-
points on a Hilbert modular variety, and thus to considering abelian varieties A/K
with o →֒ EndK(A) with rkZ(o) = dimA (“of GL2(o)-type over K”) with good
reduction outside S, treating (o,K, S) as given. To effectivize Faltings’ argument,
we must find all such abelian varieties in finite time.

We do this by using potential modularity and a standard construction of motives
out of automorphic forms. This second point forces us to further impose that K
is totally real of odd degree (the first would only require K CM [1]).

So now let us describe how to find all A/K of GL2(o)-type over K with good
reduction outside S. Let us first explain how to find all such A/K which are mod-
ular over K. This means that one of the degree two L-functions of A (associated
to a λ-adic Tate module Tλ(A)) matches the L-function of a parallel weight two
Hilbert modular eigencuspform, say f . It is standard (and due to Hida [3]) that
there is a quotient of the Jacobian of an explicit Shimura curve (depending on K
and S) which is also of GL2-type over K with a degree two L-function matching
L(s, f). So by Faltings’ proof of the Tate conjecture for endomorphisms of abelian
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varieties it follows that A/K is a K-isogeny factor of an explicit abelian variety
B/K (namely a bounded power of said Jacobian).

But then h(A) is explicitly bounded: B ∼K A × A′ by Poincaré complete
reducibility, whence h(A) + h(A′) = h(A × A′) ≪h(B),[K:Q],dimB 1 by Masser-
Wüstholz [5] (Raynaud’s isogeny estimate would also suffice). But h(A′) ≫
− dimA′ ≥ − dimB by Bost, so h(A) ≪h(B),K,dimB 1.

So it remains to show that, given (o,K, S), we may compute in finite time a
finite set F of odd-degree totally real L/K such that all relevant A/K are modular
over some L ∈ F .

We first effectivize work of Dimitrov [2] to prove that, once Nm p ≫o,K,S 1
(explicit implied constant), the two-dimensional mod-p residual representation as-
sociated to an abelian variety A/K of GL2(o)-type over K with good reduction
outside S has large image (i.e. containing a conjugate of SL2(Fp)). So we may pick
an explicit such p and then produce the explicit finite set of residual representa-
tions that could possibly arise (Hermite-Minkowski finiteness). Writing ρ for one
such, following Taylor’s proof of his potential modularity theorem it remains only

to produce1 a totally real Galois extension L̃/K such that a particular subvariety
of projective space Xρ →֒ PN

/K (a Hilbert modular variety with level structure

depending on ρ and another chosen auxiliary p′ 6= p) has Xρ(L̃) 6= ∅. This can

be done by a finite-time algorithm: as Taylor proves, there is some such L̃/K by
a theorem of Moret-Bailly [6], so therefore e.g. a brute force search through all
totally real points of larger and larger height and degree will terminate in finite
time.

So we produce a finite list of totally real Galois extensions L̃/K such that all

relevant A/K are modular over some L̃/K in our list. Finally, as in Snowden’s

[7], by Langlands’ solvable descent for GL2 [4], if A/K is modular over L̃ then it

is modular over the odd-degree L̃H , where H ⊆ Gal(L̃/K) is a 2-Sylow subgroup
(thus solvable). This produces our desired F and we conclude.
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varieties. Ann. Sci. École Norm. Sup. (4), 38(4):505–551, 2005.
[3] Haruzo Hida. On abelian varieties with complex multiplication as factors of the Jacobians

of Shimura curves. Amer. J. Math., 103(4):727–776, 1981.
[4] Robert P. Langlands. Base change for GL(2), volume 96 of Annals of Mathematics Studies.

Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980.

1We are abbreviating a bit here: this is not quite the setup that arises in Taylor’s argument,
though the differences are immaterial (for example there is a bit more data that goes into defining
Xρ, and it is not quite defined over K but over an explicit finite totally real extension K ′/K
— see Snowden’s [7] (particularly his proof of his Proposition 5.3.1) for the precise construction
which we follow).



1824 Oberwolfach Report 34/2021
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Integral points on punctured curves and punctured abelian varieties

Samir Siksek

1. A conjecture

The talk is intended to give some evidence for the following conjecture.

Conjecture 1 (S.). Let X/Q be a hyperbolic curve, and let X be a model over Z.
Let n ≥ 1. Then

X (OK) = X (Z)

for 100% of primitive number fields K of degree n, when ordered by discriminant.

There are some weak results towards this conjecture for X = P1 − {0, 1,∞}
thanks to the efforts of Triantafillou [5] and others [1], [2], [3]. Our talk is based
on [4] and concerned with punctured curves of genus ≥ 1.

Let C/Q be a smooth projective curve of genus ≥ 1, and let J be the Jacobian
of C. Let Q0 ∈ C(Q), and consider the punctured curve C −Q0. This is a curve
of Euler characteristic 1− 2g < 0 and therefore hyperbolic. It is natural to study
the integral points on X using the Abel–Jacobi map

C → J, Q 7→ [Q−Q0].

An integral point on C −Q0 is sent via the Abel–Jacobi map to an integral point
on J − 0. In view of this we study integral points on abelian varieties punctured
at the origin.

2. A theorem for punctured abelian varieties

Theorem 2 (S.). Let ℓ be a rational prime. Let A be an abelian variety defined
over Q. Suppose that

(i) A(Q) = 0;
(ii) There is p ≡ 1 (mod ℓ) of good reduction for A such that ℓ ∤ #A(Fp).

Then (A− 0)(OK) = ∅ for 100% of cyclic degree ℓ number fields K.

Example 3. Let

C/Q : y2 + (x+ 1)y = x5 − 55x4 − 87x3 − 54x2 − 16x− 2.

This is a curve of genus 2 with LMFDB label 8969.a. We let A = J be the Jacobian
of C. From the LMFDB we learn that A(Q) = 0. We checked that condition (ii) is
satisfied for all primes ℓ with the help of an algorithm of Dieulefait for checking
the surjectivity of mod ℓ representations of genus 2 Jacobians. From the theorem
we have the following conclusions.
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• Fix a prime ℓ. Then (A− 0)(OK) = ∅ for 100% of cyclic degree ℓ number
fields K.

• Fix a prime ℓ. Then (C−∞)(OK) = ∅ for 100% of cyclic degree ℓ number
fields K.
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Low degree points and linear configurations

Borys Kadets

(joint work with Isabel Vogt)

Let k be a number field, and let X/k be a nice (smooth, proper, geometrically
irreducible) algebraic curve. The following natural question is an extension of
Mordell’s conjecture.

Question. Given an integer d and a nice curve X , is the number of degree d
points on X finite or infinite?

If the curve X is fixed and the number d is large, then having a single degree
d point is equivalent to having infinitely many of them (by Riemann-Roch and
Hilbert’s irreducibility). Therefore, the question has an answer in terms of the
index of the curve.

If we think of d as being fixed and allow X to vary, the question has a different
flavor.

Definition. The arithmetic degree of irrationality a.irrkX of a nice curve X over
a number field k is the minimal d such that X has infinitely many points of degree
d.

For example, ifX is a degree d cover of P1, then pulling back rational points from
P1 gives an infinite family of degree d points on X , and so a.irrkX 6 d. Similarly,
the arithmetic irrationality is bounded by d for degree d covers of elliptic curves
of positive rank. Harris and Silverman [3] and Abramovich and Harris [1] showed
that the converse holds for d = 2 and d = 3 respectively, at least after extending
the base field. However Debarre and Fahlaoui [2] showed that for d > 4 curves
can have infinitely many degree d without being low degree covers of P1 or elliptic
curves. The existence of these examples makes analyzing arithmetic irrationality
a challenging problem.
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In a work in progress, joint with Isabel Vogt, we developed a method for an-
alyzing arithmetic irrationality using geometry of subspace configurations. The
methods allow us to prove a number of new results.

Theorem 1 (K. - Vogt). Suppose a. irrX = d. Then one of the following holds:

(1) There exists a covering f : X → Y of degree m > 2 such that a. irrY =
d/m;

(2) The genus of X satisfies g 6
d(d−1)

2 + 1.

Note that in case (1) there is a clear reason for X to have infinitely many
degree d points: they can be obtained as pullbacks of low degree points on Y
under f . Theorem 1 is a generalization of the results of Harris-Silverman [3]
and Abramobich-Harris [1], who handled the cases d = 2 and d = 3 respectively.

Debarre and Fahlaoui [2] proved that for d > 4 there exists curves of genus d(d−1)
2 +

1 that do not have maps of degree less than d to other curves; thus case 2 of
Theorem 1 does occur and the genus bound is optimal.

Theorem 1 is proved by attaching to every curve of arithmetic irrationality d
a certain discrete-geometric invariant: an algebraic family of linear configurations
in projective spaces. By carefully studying the combinatorics and geometry of
these configurations we can shed light on the geometry of low degree points. For
example, this invariant includes a sequence of numbers ri, i = 2, 3, ... which de-
scribe dimensions of the relevant linear spaces. For the purposes of this abstract
the exact definition of ri does not matter, but the usefullness of these invariants
can be demonstrated by the following finer classification of curves of arithmetic
irrationality d.

Theorem 2 (K.-Vogt). Suppose X/k has arithmetic irrationality d. Then one of
the following holds:

(1) r2 = 1 and X is a degree d cover of an elliptic curve of positive rank;
(2) r2 > 2, and there exists a covering f : X → Y of degree m > 2 such that

a. irrY = d/m;
(3) r2 = 2 and X is a curve of Debarre-Fahlaoui type1 (see [2]);

(4) r2 > 2 and the genus of X satisfies g 6
(d−1)(d−2)

2 + 2.

In particular, the construction of Debarre-Fahlaoui [2] can be naturally arrived
at by studying configurational invariants.
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A geometric approach to the Cohen-Lenstra heuristics

Aaron Landesman

It is well known to experts that moduli spaces exist whose integer points parame-
terize n-torsion elements in class groups of quadratic number fields. In particular,
counting points of bounded height on these spaces is tantamount to solving cases
of the Cohen-Lenstra heuristics. We explain why many of these moduli spaces
have the following relatively simple form: They are the quotient of the comple-
ment of a hypersurface in affine space by the action of an algebraic group. We will
also describe how this lets us view n-torsion in class groups of quadratic fields as
n-Selmer groups of singular genus 1 curves.

This investigation is motivated by the Cohen-Lenstra heuristics, which describe
the average number of n-torsion elements in class groups of quadratic number
fields. It is an important open question in arithmetic statistics to count the as-
ymptotic number of these n-torsion elements in quadratic fields.

A simple-to-state consequence of our approach is the following:

Theorem 1 Under the correspondence between quadratic forms and line bundles
on spectra of rings of integers of quadratic fields, a quadratic form q corresponds
to an n-torsion line bundle if and only if there exists a degree n homogeneous
polynomial f :=

∑n
i=0 tix

iyn−i ∈ Z[x, y] whose resultant with q is ±1, where the
resultant is defined below in (1).

In fact, our approach gives a more precise parameterization of n-torsion elements
in quadratic fields, as detailed in [1, Theorem 1.3]. Namely, n-torsion elements in
class groups of varying quadratic extensions of Z are in bijection with Z points of
the quotient stack [U/G], with U and G defined as follows. Consider the affine

space A
3+(n+1)
Z parameterizing the coefficients (a, b, c), (t0, . . . , tn), where a, b, c are

the coefficients of a quadratic form q := ax2 + bxy+ cy2 and ti are the coefficients
of a degree n binary form f :=

∑n
i=0 tix

iyn−i. Then, define U as the complement
of the hypersurface Res(q, f) = 0, where Res(q, f) denotes the resultant given as
the determinant of the matrix

Res(q, f) :=




a 0 · · · 0 t0 0
b a · · · 0 t1 t0

c b
. . . 0 t2 t1

...
...

. . . 0
...

...

0 0
. . . 0 tn−2 tn−3

0 0
. . . a tn−1 tn−2

0 0
. . . b tn tn−1

0 0 · · · c 0 tn




.(1)

The group G is most naturally realized as the automorphism group of the Hirze-
bruch surface ProjP1(OP1(2)⊕OP1(n)). It can also be explicitly described as gen-
erated by the actions of Gm,GL2,G

n−1
a , where λ ∈ Gm acts by sending (q, f) 7→
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(λq, λf), g ∈ GL2 acts by sending (q(x, y), f(x, y)) 7→ 1
det(g) · (q(gx, gy), f(gx, gy))

and (α0, . . . , αn−2) ∈ Gn−1
a sends (q, f) 7→ (q, f +

∑n−2
i=0 αix

iyn−2−iq).
It turns out there is a nearly equivalent description of the above quotient stack,

which we describe next. Let S denote the secant variety to the rational normal
curve in Pn, and let W ⊂ S denote the open subscheme where one removes the
rational normal curve. Then, then [U/G] can be identified with [W/PGL2], acting
as automorphisms of the rational normal curve, see [2, Proposition 6.1.1].

Given the above relatively simple moduli spaces, it is natural to ask whether
there is any way to use them to count n-torsion elements in class groups of qua-
dratic fields.

Question 2 Is it possible to use these moduli spaces to obtain bounds on the
asymptotic number of n-torsion elements in class groups of quadratic fields?

The above moduli spaces are in fact closely connected to Selmer groups of certain
singular genus 1 curves, or equivalently Selmer groups of tori which are the smooth
locus of these singular genus 1 curves. More precisely, suppose we start with a
degree 2 cover g : SpecOK → SpecZ. One can then relate Cl(OK)[n] to the
n-Selmer group of the relative dimension 1 torus g∗Gm/Gm as in [1, Lemma 10.2].

Example 3 In the case that n = 3, the moduli space [U/G] described above
parameterizes G-orbits of pairs (q, f) where q = ax2 + bxy + cy2 and f = t0x

3 +
t1x

2y + t2xy
2 + t3y

3. Associated to this, one can form the singular genus 1 curve
given as the vanishing locus of zq + f = z(ax2 + bxy + cy2) + (t0x

3 + t1x
2y +

t2xy
2 + t3y

3) in P2
[x,y,z]. This is singular at at the point x = y = 0. By chasing

various cohomological exact sequences as in [1, Lemma 10.2], one can relate the
n-Selmer group of the relative Jacobian of this genus 1 curve to the n-torsion in
the class group of the quadratic extension whose discriminant is b2 − 4ac.

The above observation that class groups of quadratic fields can be described in
terms of Selmer groups of 1-dimensional tori suggests the following question.

Question 4 Can one create a unified set of heuristics which govern n-Selmer
groups of (not necessarily proper) algebraic groups that also imply the Cohen-
Lenstra-Martinet heuristics for class groups of number fields?
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On pairs of 17-congruent elliptic curves

Tom Fisher

Elliptic curves E1 and E2 are n-congruent if their n-torsion subgroups E1[n] and
E2[n] are isomorphic as Galois modules. We say that a congruence is trivial if it
is arises from an isogeny (of degree coprime to n). Frey and Mazur conjectured
that for n sufficiently large there are no non-trivial n-congruences between elliptic
curves defined over the rationals. With the aim of refining their conjecture, we
look for examples with n as large as possible, concentrating on the case n is prime.

It is natural to classify congruences not just by their level n, but by their
power k, where an n-congruence has power k if it raises the Weil pairing to the
power k. We write XE(n, k) for the curve parametrising all elliptic curves n-
congruent with power k to a given elliptic curve E, and Z(n, k) for the surface
parametrising all pairs of elliptic curves that are n-congruent with power k. Com-
posing a congruence with multiplication by an integer multiplies k by a square, so
when n is an odd prime, there are just two cases: if k is a quadratic residue mod n
then we say the congruence is symplectic, otherwise it is anti-symplectic.

Equations for XE(7, 1) and XE(7, 3), depending on the coefficients a and b of
a Weierstrass equation for E, were computed by Halberstadt and Kraus [HK] and
Poonen, Schaefer and Stoll [PSS]. From these it follows [C], [F2] that Z(7, 1) is
rational, and Z(7, 3) is birational to the elliptic K3-surface

y2 = x3 + (4T 4 + 4T 3 − 51T 2 − 2T − 50)x2 + (6T + 25)(52T 2 − 4T + 25)x.

Equations for XE(11, 1) and XE(11, 2) were computed by Fisher [F1]. From these
it follows [F2] that Z(11, 1) is birational to the properly elliptic surface

y2+(T 3+T )xy = x3−(4T 5−17T 4+30T 3−18T 2+4)x2+T 2(2T−1)(3T 2−7T+5)2x.

According to Kani and Schanz [KS], the surface Z(11, 2) and all the surfaces
Z(n, k) for n > 13 are surfaces of general type. Equations for Z(11, 2), Z(13, 1)
and Z(13, 2) were computed by Kumar [K] and Fisher [F3]. Each is a double cover
of a rational surface, where the rational surface is the quotient W (n, k) of Z(n, k)
by the involution that swaps over the two elliptic curves.

In [F4] we use invariant-theoretic arguments to compute the surfaces Z(17, k)
and W (17, k) as quotients of X(17)×X(17). In particular we find that W (17, 1)
and W (17, 3) are each birational to the elliptic K3-surface

y2 + (T + 1)(T − 2)xy + T 3y = x3 − x2.

For each prime p < 17, the papers cited above show that there are infinitely
many non-trivial pairs of p-congruent elliptic curves, both symplectic and anti-
symplectic, and with infinitely many pairs of j-invariants. In contrast, searching
for rational points on Z(17, 1) and Z(17, 3), we have only found two non-trivial 17-
congruences: one symplectic and one anti-symplectic. The anti-symplectic pair,
with conductors 3675 and 47775, was previously found by Cremona. The symplec-
tic pair, with conductors 279809270 and 3077901970, is new. We conjecture that
these examples (and their simultaneous quadratic twists) are the only non-trivial
pairs of p-congruent elliptic curves for p > 17.
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A further study of n-congruences for n composite is currently being made by
my PhD student Sam Frengley. In particular he has extended ideas of Halberstadt
[H] and Cremona and Freitas [CF] to give an example of an elliptic curve that is
non-trivially 48-congruent to one of its quadratic twists.

I would like to thank Noam Elkies, Bjorn Poonen, Will Sawin and Michael Stoll
for interesting discussions following my talk relating to the surfaces W (17, 1) and
W (17, 3), and the fact that these surfaces are birational.
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ℓ-adic images of Galois for elliptic curves over Q

Andrew V. Sutherland

(joint work with Jeremy Rouse and David Zureick-Brown)

In joint work with Jeremy Rouse and David Zureick-Brown we obtain a conjec-
turally complete classification of the possible images of ℓ-adic Galois representa-
tions attached to an elliptic curve E/Q without complex multiplication [4]. This
complements prior work of Rouse and Zureick-Brown, who determined the 2-adic
images in [3], and of Sutherland and Zywina, who determined the ℓ-adic images
that arise for infinitely many Q-isomorphism classes of elliptic curves in [5].

We exploit previous results that determine the rational points on several of
the corresponding modular curves that we must consider; this notably includes
the recent work of Balakrishnan et al. who determined the rational points on
the modular curves X+

sp(13), X
+
ns(13), XS4

(13) in [1, 2]. This still leaves several
dozen modular curves whose rational points we must determine in order to obtain
a complete classification, and we introduce a number of new techniques for doing
so.

http://zc231.user.srcf.net/Maths/PhDThesis.pdf
doi: 10.4171/RMI/1269
arXiv:1912.10777 [math.NT]
arXiv:2106.02033 [math.NT]


Explicit Methods in Number Theory 1831

Aside from the ℓ-adic images known to arise for infinitely many Q-isomorphism
classes of elliptic curves E/Q, we find only 22 exceptional images that arise for any
prime ℓ and any non-CM E/Q. We conjecture that this list of exceptional images is
complete, and show that any counterexamples must arise from unexpected rational
points on X+

ns(N) with N = 33, 52, 72, 112 or a prime ℓ ≥ 17, or one of two modular
curves of level 49 and genus 9.

This yields a fast algorithm that takes as input a non-CM elliptic curve E/Q and
outputs an open subgroup of GL2(Zℓ) for each prime ℓ where the representation
ρE,ℓ∞ : GQ → GL2(Zℓ) is nonsurjective. We have applied this algorithm to all of
the non-CM elliptic curves in the LMFDB, as well as the non-CM elliptic curves
in two larger databases that together contain approximately 380 million elliptic
curves over Q. We found no counterexamples to our conjecture.

A key ingredient to our work is a moduli-theoretic approach to counting Fp-
rational points on modular curves XH . This allows us to quickly rule out Q-
rational points on modular curves that have no Fp-rational points for some prime
p 6= ℓ. This applies to 11 of the arithmetically maximal curves we must con-
sider, including one of genus 12 and one of genus 4 whose Jacobian has analytic
rank 4. This point-counting algorithm also allows us to explicitly determine (with
multiplicity) the weight-2 modular forms f whose corresponding modular abelian
varieties Af appear as simple isogeny factors of the Jacobian of XH , and in par-
ticular, to determine its analytic rank. Here we rely on a joint result with John
Voight that generalizes Ribet’s observation that simple abelian varieties attached
to weight-2 newforms on Γ1(N) are of GL2-type; this extends Kolyvagin’s theo-
rem that analytic rank zero implies algebraic rank zero to isogeny factors of the
Jacobian of XH .
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Recent progress on deterministic integer factorisation

David Harvey

(joint work with Markus Hittmeir)

We consider integer factorisation algorithms that are deterministic and whose
time complexity bounds have been rigorously established. These requirements
exclude many well-known factoring algorithms such as the Number Field Sieve
[CP05, §6.2], the Elliptic Curve Method [Len87], rigorous randomised variants of
the class group approach [LP92], and quantum factoring algorithms [Sho94].

Unfortunately, all known rigorous deterministic algorithms for factoring an inte-
ger N run in fully exponential time, i.e., in time NC+o(1) for some C > 0. The first
improvement on the ancient trial division algorithm (C = 1

2 ) was Lehman’s C = 1
3

algorithm [Leh74]. (Is it unclear to this author whether Shanks’ slightly earlier
C = 1

4 algorithm [Sha71] was fully rigorous.) Shortly afterwards, Pollard [Pol74]

and Strassen [Str77] gave two closely related algorithms achieving C = 1
4 = 0.25,

and somewhat later Coppersmith gave yet another algorithm [Cop96] achieving
C = 1

4 .

The exponent remained stuck at C = 1
4 for over 40 years, until the very re-

cent breakthrough of Hittmeir [Hit21], who managed to push the exponent down
to C = 2

9 = 0.222 . . .. The present author [Har20] subsequently simplified and

improved Hittmeir’s algorithm, achieving C = 1
5 = 0.2. Roughly speaking,

the new algorithms combine ideas from Lehman’s and Pollard’s algorithms men-
tioned above. The best current bit-complexity bound, established in joint work of
Hittmeir and the present author [HH21], is

O

(
N1/5(logN)16/5

(log logN)3/5

)
.

It seems likely that the power of logN can be further improved.
We give a brief sketch of the new algorithms. Assume for simplicity the hardest

case, where N is a product of distinct primes p, q ≍ N1/2. Using the theory of
Diophantine approximation, there (usually) exist integers a, b ≪ N1/10 such that

a

b
=

p

q
(1 + ǫ), ǫ ≪ N−1/5.

A brief calculation then shows that

aq + bp− ⌊2
√
abN⌋ = j for some j ≪ N1/5.

Let α ∈ (Z/NZ)∗; then Fermat’s little theorem yields

αaN+b−⌊2
√
abN⌋ ≡ αj (mod p).

This may be regarded as a collision modulo p between two subsets of Z/NZ: the

“giant steps” αaN+b−⌊2
√
abN⌋ ranging over a, b ≪ N1/10, and the “baby steps” αj

ranging over j ≪ N1/5. We now form the polynomial

f(x) =
∏

a,b

(x− αaN+b−⌊2
√
abN⌋) ∈ (Z/NZ)[x],



Explicit Methods in Number Theory 1833

and evaluate it at the points x = αj for j ≪ N1/5. Computing the GCDs of these
values with N enables us to discover the collision alluded to above, provided that
α has sufficiently large multiplicative order. This in turn reveals a and b, and then
immediately p and q.

To turn this sketch into a rigorous algorithm, there are several technical issues
to address, notably, dealing with the parenthetical “usually” in the paragraph
above, and deterministically finding an α of sufficiently large order. Both of these
problems admit satisfactory solutions.
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Quadratic Chabauty for modular curves

Jennifer S. Balakrishnan

The quadratic Chabauty method is the first step of Minhyong Kim’s nonabelian
extension [7–9] of the method of Chabauty–Coleman, which has been used to
determine rational points on certain curves. Recently, quadratic Chabauty has
been developed in a few directions in joint work with A. Besser, N. Dogra, J. S.
Müller, J. Tuitman, and J. Vonk [2–5] and can be applied when the Mordell–Weil
rank r of the Jacobian of the curve is equal to the genus g and the Néron–Severi
rank of the Jacobian. The quadratic Chabauty method produces a finite set of
p-adic points containing X(Q), and this finite set is cut out using double p-adic
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integrals arising as solutions to p-adic differential equations described by p-adic
heights.

In recent joint work with N. Dogra, J. S. Müller, J. Tuitman, and J. Vonk [6],
we have extended the quadratic Chabauty method to consider modular curves that
may have few known rational points or nontrivial local height contributions. We
describe a selection of modular curves where we have used quadratic Chabauty
to determine rational points: certain genus 2 and 3 curves arising from Mazur’s
Program B, including XS4

(13) (the last remaining modular curve of level 13n),
and various genus 2 and 3 curves in the family of Atkin–Lehner quotient curves
X+

0 (ℓ), of prime level ℓ. We also note the recent work of N. Adžaga, V. Arul, L.
Beneish, M. Chen, S. Chidambaram, T. Keller, and B. Wen [1], where they have
determined rational points on the genus 4, 5, and 6 curves in the family X+

0 (ℓ) of
Atkin–Lehner quotient curves of prime level ℓ.
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Idèlic Approach in Enumerating Heisenberg Extensions

Jürgen Klüners

(joint work with Jiuya Wang)

Let ℓ be an odd prime and k be a number field. Let G ≤ Sℓ2 be a transitive
permutation group which can occur as a Galois group of a tower of fields L/F/k,
where the two extensions L/F and F/k are Galois with cyclic group Cℓ. We will
call these groups generalized and twisted Heisenberg groups.

The goal of this talk is to prove the strong Malle conjecture for the asymptotics
of number fields with given Galois group G of the above mentioned type.

Let us first classify the possible Galois groups G. It is easy to see that those
groups are subgroups of the wreath product Cℓ ≀ Cℓ = Cℓ

ℓ ⋊ Cℓ. We denote the
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normal subgroup Cℓ
ℓ by Wℓ which we identify with the Fℓ-vector space F

ℓ
ℓ. Denote

by σ a generator of the quotient Cℓ and consider Wℓ as an Fℓ[H ]-module. In order
to determine all possible groups G it is useful to compute all Fℓ[H ]-submodules
Wd of Wℓ. Since Wℓ consists of one Jordan block, we see that there is exactly one
module Wd of dimension d for all 1 ≤ d ≤ ℓ. This gives rise to an exact sequence
of groups

1 → Wd → G → H = 〈σ〉 → 1.

In case that this sequence is split we call the resulting group H(ℓ, d) generalized
Heisenberg group. Up to isomorphism there is for d < ℓ only one non-split group
H̃(ℓ, d) which we call twisted Heisenberg group. Note that these groups are abelian
for d = 1 and that H(ℓ, 2) is the usual Heisenberg group of order ℓ3.

In order to formulate our main result we introduce the counting function

Nk(G,X) := #{L/k : Gal(L/k) = G,Normk/Q(dL/k) ≤ X}.
Theorem 1. Let k be a number field, ℓ be a prime number, and G = H(ℓ, d) or

G = H̃(ℓ, d) be a transitive subgroup of Sℓ2 . Then the strong Malle conjecture is
true, i.e. there exists a constant c(k,G) > 0 such that

Nk(G,X) ∼ c(k,G)Xa(G) log(X)b(k,G) for X → ∞,

and the constants a(G) and b(k,G) are given as predicted by Malle (see [2, 3]).

We remark that the cases d = 1 (abelian groups) and d = ℓ have been proved
before. In a first step we prove the corresponding statement for a fixed Cℓ-extension
F/k and we denote the corresponding counting function by

NF/k(H,X) := #{L/F : Gal(L/k) = H,Normk/Q(dL/k) ≤ X}.

Theorem 2. Let F/k be a Cℓ-extension and G = H(ℓ, d) or H̃(ℓ, d) for 1 < d < ℓ.
Then

NF/k(G,X) ∼ c(d, F )Xa(G) log(X)b(k,G)−1 for X → ∞.

We derive our main theorem by a summation using the method of Lemke Oliver,
Wang, and Wood [4]. In order to control the constants we bound the ℓ-torsion of
ClF :

Theorem 3 ([1]). Let F/k be an ℓ-group-extension. Then

|ClF [ℓ]| = Oǫ,k(Normk/Q(dF/k)
ǫ) for all ǫ > 0.

An important ingredient of the proof of Theorem 2 is the possibility to compute
the global Galois group of L/k by local computations. Let us denote the idèle
class group of F by CF . Then Cℓ-extensions L/F are in bijection with ρ ∈ C∨

F :=
Hom(CF , Fℓ). It is easy to see that C∨

F is an H-module and this action partitions
CF into the blocks

IF (p) := (F ⊗k kp)
× =

∏

P|p
F×
P for p ∈ P(k).

Therefore the global object ρ ∈ C∨
F can be described by the local objects ρp ∈

IF (p)
∨ for all p ∈ P(k). Note that our Galois group G is determined by d and the
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information if the exact sequence is split or not. The number d is the rank of ρ.
We get:

Theorem 4. For ρ ∈ C∨
F we have

rk(ρ) = max
p∈P(k)

rk(ρp) = max
p∈Sk

rk(ρp),

where Sk := {P ∩ k | P ∈ S} and S ⊆ P(F ) contains all ramified primes of F/k
and it is large enough to generate ClF .

We use this information to enumerate all ρ with rk(ρ) ≤ d. Note that Sk is a
finite set. We fix one inert prime ideal p0 ∈ P(k). The extension is non-split if
the corresponding Frobenius element lifts to an element of order ℓ2 which can be
easily checked.
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p-integrality of instanton numbers

Frits Beukers

(joint work with Masha Vlasenko)

The motivation for this subject comes from the striking paper of Candelas, De la
Ossa, Green and Parkes [5] in the study of mirrorsymmetry of quintic threefolds
from 1991. Our short story starts with the differential operator

L = −θ4 + 55t(θ + 1/5)(θ + 2/5)(θ+ 3/5)(θ + 4/5),

where θ denotes t d
dt . The unique holomorphic solution to L(y) = 0 is of hyperge-

ometric type and given by

F0 :=
∑

n≥0

(5n)!

(n!)5
tn.

The equation L(y) = 0 has a unique basis of solutions of the form

y0 = F0, y1 = F0 log t+ F1, y2 =
1

2
F0 log

2 t+ F1 log t+ F2,

y3 =
1

6
F0 log

3 t+
1

2
F1 log

2 t+ F2 log t+ F3,

where F0 is given above and F1, F2, F3 ∈ tQ[[t]]. Straightforward computation
shows that the coefficients of F1 are certainly not integral. The surprise is that
q := t exp(F1/F0) ∈ tZ[[t]]. The function q(t) is called the canonical coordinate.
It is a power series in t. The inverse power series t(q) is called the mirror map.
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Using this inverse series one can rewrite the solutions yi as power series in q. In
particular,

y1/y0 = log q, y2/y0 =
1

2
log2 q + V (q)

for some V (q) ∈ qQ[[q]]. Let θq = q d
dq . Then K(q) := 1+θ2qV is called the Yukawa

coupling for reasons coming from theoretical physics. In [5] the Yukawa coupling
is expanded as

K(q) = 1 +
∑

n≥1

Anq
n

1− qn
.

Motivated by arguments that come from mirrorsymmetry, Candelas et al conjec-
tured that the numbers an = 5An/n

3 are integers which are equal to the (virtual)
number of degree n rational curves on a generic quintic threefold in P3. This is
predicted by mirror-symmetry theory from theoretical physics. The numbers an
are called instanton numbers. In particular their integrality has been an intriguing
riddle.

It turns out that integrality of instanton numbers also occurs experimentally
for a large number of related fourth order differential equation. With this in mind,
Almkvist, Van Enckevort, Van Straten and Zudilin [1] compiled a large collection
of so-called Calabi-Yau equations, which display instanton numbers which are
presumably p-integral for almost all primes p. It is suspected that all equations in
this list arise as Picard-Fuchs equations corresponding to a one parameter family
of Calabi-Yau threefolds. The quintic example of Candelas et al certainly belongs
to this class. For more background we like to refer to the excellent paper [6].

One of the approaches to p-integrality is to use Dwork’s methods in p-adic
cohomology. This was started by Jan Stienstra [8] with partial success and later
Kontsevich, Schwarz and Vologodsky [7],[9] laid out the ideas for a more complete
approach. Unfortunately it is hard to find a account of their work which does not
depend on certain assumptions.

In our work on so-called Dwork crystals, [2],[3],[4] we obtained as by-product an
approach which yields p-integrality for almost all primes p of instanton numbers
for a limited number of differential equations, including the quintic example. The
advantage of our method is its explicitness, using only p-adic expansions of rational
functions. Unfortunately this explicitness also sets limitations on the generality of
our results. The actual results will appear on arXiv in September 2021.
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Stable and regular models for Xns(p) and X+
ns(p)

Bas Edixhoven

(joint work with Pierre Parent)

Our work on stable models of the modular curves in the title, over suitable ex-
tensions of Zp, has appeared in [3]. This talk reported on our work on regular
models, over the maximal unramified extension Zunr

p of Zp. These results are still
being written up, and at this moment we are not yet completely happy with all
proofs and computations. The details will appear later.

Let p ≥ 3 be a prime number. Let Y (p) be the modular curve over Q defined
by the property that for every Q-algebra A the set Y (p)(A) of A-valued points of
Y (p) is the set of isomorphism classes of (E/A,ϕ) with E and elliptic curve over A
and φ an isomorphism of A-group schemes from (Z/pZ)2A to E[p]. Then Y (p) is a
smooth affine curve over Q. Its compactification is denoted X(p).

The groupG := GL2(Fp) acts on X(p), and for each subgroupH of G we denote
the quotient by X(H). Let Γns(p) be a cyclic subgroup of G of order p2 − 1, and
Γ+
ns(p) its normaliser in G (unique up to conjugation). Then Xns(p) is X(Γns(p))

and X+
ns(p) is X(Γ+

ns(p)).
A well-known problem is to determine X(Γ+

ns(p))(Q). For p = 13 this was done
in [1], using the quadratic Chabauty method. For applying this method, or its
geometric variant of [2], one needs information on how X(Γ+

ns(p)) extends as a
curve over Z. Over Z[1/p] it extends as a smooth projective curve. A stable model

over Zunr
p [π], with π(p2−1)/2, is decribed in [3]. The intertia group µ(p2−1)/2 acts

on it, compatibly with its action on Zunr
p [π]. We get a regular model over Zunr

p by
taking the quotient, and resolving its singularities. A curious, but not unexpected
fact (by analogy with the split Cartan case), is that all irreducible components
of the special fibre whose multiplicities are greater than 1 can be successively
contracted, so that the minimal regular model has reduced special fibre.
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Separation of periods of quartic surfaces

Emre Can Sertöz

(joint work with Pierre Lairez)

Kontsevich–Zagier periods form a natural number system that extends the alge-
braic numbers by adding constants coming from geometry and physics. Because
there are countably many periods, one would expect to be able to compute effec-
tively in this number system. This would require an effective height function and
the ability to separate periods of bounded height, neither of which are currently
possible.

Jointly with Pierre Lairez (Inria, France) we determined an explicit height func-
tion to separate periods of quartic surfaces [LS20]. More precisely, given a smooth
quartic surface X = Z(f) ⊂ P3 with 2-holomorphic differential ωf and two topo-
logical cycles γ1, γ2 ∈ H2(X(C),Z) we would like to check for the equality

(1)

∫

γ1

ωf
?
=

∫

γ2

ωf .

Equivalently, we need to check if the period of γ = γ1 − γ2 vanishes,

(2)

∫

γ1−γ2

ωf
?
= 0.

Let ∆(γ) = (h · γ)2 − 4γ2 be the discriminant of γ where h ∈ H2(X,Z) is the
hyperplane class. Then, we give an effective bound ε(f,∆(γ)) > 0 such that

(3)

∫

γ

ωf = 0 or

∣∣∣∣
∫

γ

ωf

∣∣∣∣ > ε(f,∆(γ)).

By Lefschetz theorem on (1, 1)-cycles, the period
∫
γ ωf vanishes precisely when

γ is represented by algebraic curves on X . Moreover, the existence of an algebraic
cycle of discriminant ∆ on X is an algebraic criterion on the coefficients of the
polynomial f . That is, there is a (Noether–Lefschetz) polynomial p∆ on the space
of quartics so that p∆(f) = 0 precisely when X admits an algebraic cycle of
discriminant ∆.

To get bounds on the period integrals, we determined a height bound on the
coefficients of p∆ in terms of ∆. We used relative Hilbert schemes and their
explicit representation, combined with the theory of heights of multi-projective
varieties [DKS13], to bound the height of p∆.

Our methods also give bounds on the degrees of p∆ that are exponential in ∆.
From the work of Maulik and Pandharipande [MP13], we know that deg p∆ grows
at most polynomially in ∆. We suspect that using modular forms as in [Kud03]
one might be able to improve our height bounds for p∆. This would make the
separation bounds ε(f,∆) not only effective but useful for practical computations
to check the equality of periods by approximation only.



1840 Oberwolfach Report 34/2021

References

[DKS13] C.D’Andrea, T Krick, and M. Sombra, “Heights of varieties in multiprojective spaces

and arithmetic Nullstellensätze,” Ann. Sci. Éc. Norm. Supér., vol. 46, no. 4, pp. 549-
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The negative Pell equation

Peter Koymans

(joint work with Carlo Pagano)

For fixed squarefree d > 0, consider the equation

Cd : x2 − dy2 = 1 to be solved in x, y ∈ Z.

The curve Cd is known as Pell’s equation and already appears as the final part of
Archimedes’ cattle problem. Systematic study of Pell’s equation was undertaken
by the Indian mathematicians Brahmagupta and Bhaskara II. Their work led to
an algorithm to find non-trivial integral solutions of the above equation.
Here we are interested in the negative Pell equation, which is

x2 − dy2 = −1 to be solved in x, y ∈ Z.(1)

It is not hard to see that the negative Pell equation is not always soluble over Z.
In fact, it follows from the Hasse–Minkowski theorem that

x2 − dy2 = −1 is soluble with x, y ∈ Q ⇐⇒ d ∈ D,

where D is the set of squarefree integers satisfying p | d ⇒ p 6≡ 3 mod 4. Here
we shall be concerned with the following question: how often is the negative Pell
equation soluble? More precisely, writing D− for the set of squarefree integers d
for which equation (1) is soluble, what is the density

lim
X→∞

#{d ∈ D− : d ≤ X}
#{d ∈ D : d ≤ X} ,

if it exists. Nagell conjectured in the 1930s that the above limit exists and lies in
the open interval (0, 1). This was refined by Stevenhagen [11], who conjectured
that

lim
X→∞

#{d ∈ D− : d ≤ X}
#{d ∈ D : d ≤ X} = 1− α, α =

∏

j odd

(1 − 2−j) ≈ 0.41942.

https://doi.org/10/gbdc5k
https://arxiv.org/abs/2011.12316
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Fouvry and Klüners [3] made substantial progress towards Stevenhagen’s conjec-
ture by proving that

α ≤ lim inf
X→∞

#{d ∈ D− : d ≤ X}
#{d ∈ D : d ≤ X} ≤ lim sup

X→∞

#{d ∈ D− : d ≤ X}
#{d ∈ D : d ≤ X} ≤ 2

3
.

The lower bound was further improved by Fouvry and Klüners [4] to 5α/4. These
works rely on an estimation of certain character sums with some of the key ideas
going back to Heath-Brown [6]. The lower bound was improved once more in [1]
building on ideas of Smith [9].

From now on we write Cl+(K) for the narrow class group of a number field
K. A classical criterion for the solubility of equation (1) is that the element

(
√
d) is trivial in Cl+(Q(

√
d)). Since the element (

√
d) is 2-torsion, we proceed

by studying the 2-part of the class group Cl+(Q(
√
d))[2∞]. The p-parts of class

groups are conjecturally well-understood thanks to the work of Cohen–Lenstra [2]
for odd p, which was adapted to the case p = 2 by Gerth [5]. Recently, Smith [10]
showed that Gerth’s modification of the Cohen–Lenstra conjectures is correct.

Theorem 1 (Smith, 2017). We have for all finite, abelian 2-groups A

|{K im. quadr. : |DK | ≤ X, 2Cl(K)[2∞] ∼= A}|
|{K im. quadr. : |DK | ≤ X}| =

∏∞
i=1(1− 2−i)

|Aut(A)| .

We adapt Smith’s work to the family of real quadratic fields Q(
√
d) with d ∈ D.

Since

#{d ∈ D : d ≤ X} ∼ C · X√
logX

by classical work of Landau, one sees that we are in a thin subfamily of all real
quadratic fields. This subfamily is particularly difficult, since D ends up in the
error term when one would naively adapt Smith’s work.

To overcome these issues, we develop two novel reflection principles that re-
place Smith’s key algebraic result [10, Theorem 2.8]. These reflection principles
use earlier ideas of the authors [7], which describes the maximal unramified multi-
quadratic extension of a multiquadratic extension of Q. An application of Hilbert
reciprocity then gives the first reflection principle. A slightly weaker version of
this reflection principle can already be found in [8].

The second reflection principle is more specific to the Pell family. This reflection
principle ultimately also follows from an application of Hilbert reciprocity in a
multiquadratic extension of Q, but uses in an essential way that the ramified
primes in this multiquadratic extension are all 1 modulo 4. The 2-cocycle to
which we apply Hilbert’s reciprocity is also of a more complicated nature. Once
these obstacles are overcome, the rest of the proof is a relatively straightforward
adaptation of Smith’s work. This leads to the following result

Theorem 2 (K.-Pagano, 2021). We have

lim
X→∞

#{d ∈ D− : d ≤ X}
#{d ∈ D : d ≤ X} = 1− α,

i.e. Stevenhagen’s conjecture is true.
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Abelian varieties over F2 of prescribed order

Kiran S. Kedlaya

We study the question: under what conditions, and in what ways, can a given
positive integer m occur as the order of the group of Fq-rational points of an
abelian variety A over Fq? Recall that this order equals P (1) where P is the
Weil polynomial associated to A (the characteristic polynomial of Frobenius on
the ℓ-adic Tate module for any prime ℓ ∤ q); by this plus the Honda–Tate theorem,
we can answer the original question via existence/nonexistence results about Weil
polynomials.

Using this point of view (and building on [2]), Howe–Kedlaya [3] recently showed
that every positive integer occurs as the order of some (ordinary) abelian variety
over F2. This work was then extended by van Bommel et al. [1] to show that for
fixed q, every sufficiently large positive integer (in a sense depending on q) occurs as
the order of some (ordinary, geometrically simple, principally polarizable) abelian
variety over F2.

We now restrict to simple abelian varieties, corresponding to irreducible Weil
polynomials. By refining the Weil bound (e.g., see [4]), one can show that for
q > 2, the number of simple abelian varieties over F2 of any fixed order is finite.
However, it has been known since work of Madan–Pal from the 1970s [6] that over
F2 there exist infinitely many simple abelian varieties of order 1.

In response to a question of Kadets, we show in [5] that for every positive
integer m, there exist infinitely many simple abelian varieties over F2 of order m.
The basic approach is constructive: we introduce a modification of the Madan–

Pal construction that, given a monic integer polynomial Q(z) =
∑k

i=0 aiz
i with
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Q(2) = m with all complex roots in the disc |z| ≤
√
2, produces a sequence of

Weil polynomials corresponding to abelian varieties of order m. However, it is
not immediately clear how to add the simplicitly condition to this construction.
We do this by choosing the ai so that some of the resulting Weil polynomials are
nearly irreducible over Q2. For m even we can nearly always do this using the
nonadjacent binary representation (i.e., ai ∈ {0,±1} and no two consecutive ai are
nonzero); for m odd we need a more restricted choice of the ai, whose existence is
established by a short computer calculation.
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The Second Moment of the Size of the 2-Selmer Group of
Elliptic Curves

Ashvin A Swaminathan

(joint work with Manjul Bhargava and Arul Shankar)

Recall that for an elliptic curve E/Q and a prime p, the p-Selmer group Selp(E)
parametrizes isomorphism classes of locally soluble p-coverings of E. A key objec-
tive in arithmetic statistics is to determine the distribution of Selp(E) as E varies
among all elliptic curves over Q. We have the following beautiful conjecture about
this distribution due to Poonen and Rains:

Conjecture 1 ([4, Conjecture 1.1(c)]). Let p be prime. When elliptic curves E/Q
are ordered by height, the mth moment of the size of Selp(E) is

∏m
i=1(p

i + 1).

In the series of papers [1–3], Bhargava and Shankar develop a general technique
for counting integral orbits of coregular representations and use it to verify the
conjecture when m = 1 and n ∈ {2, 3, 5}. The purpose of this talk is to discuss
the particularly difficult case where m = n = 2. Our main result is as follows:

Theorem 2. When elliptic curves over Q are ordered by height, the second mo-
ment of the size of the 2-Selmer group is at most 15.

In fact, we prove that Theorem 2 holds for any subfamily of elliptic curves
defined by very general infinite sets of congruence conditions, and further that the
bound of 15 is tight if one assumes a certain plausible tail estimate.
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A key ingredient in the proof of Theorem 2 is the computation of the average
size of the 2-Selmer group of the Jacobian of locally soluble genus-1 curves:

Theorem 3. When locally soluble genus-1 curves over Q are ordered by height,
the average size of the 2-Selmer group of the Jacobian is at most 6.

We also prove the following generalization of Theorem 3 to even-degree hyper-
elliptic curves of arbitrary genus:

Theorem 4. When hyperelliptic curves (resp., locally soluble hyperelliptic curves)
over Q of degree n ≡ 2 (mod 4) (resp., n ≡ 0 (mod 4)) with squarefree discrimi-
nant are ordered by height, the average size of the 2-Selmer group of the Jacobian
is at most 6.

To prove Theorems 2–4, we apply an enhanced version of the parametrize-and-
count strategy developed by Bhargava and Shankar. This strategy consists of
two pieces: an algebraic piece, in which one parametrizes the objects of interest in
terms of rational orbits of a certain coregular representation and constructs integral
representatives for these orbits; and an analytic piece, in which one combines
geometry-of-numbers and sieve techniques to count these integral representatives.

On the algebraic side, a serious obstacle to parametrizing 2-Selmer groups of
non-monic hyperelliptic curves is that these curves are often insoluble. To deal with
this, we take a hyperelliptic curve of the form C : z2 = f(x, y), where f has even
degree n and leading coefficient f0 6= 0, and we simply manufacture a Q-rational
point by replacing C with the curve C′ : z2 = fmon(x, y) := f−1

0 × f(x, f0y). The
monic (hence, soluble) curve C′ is a twist of C by Q(

√
f0), and so the elements of

Sel2(Jac(C)) can be realized as certain 2-coverings of Jac(C′). This leads to the
following key orbit construction:

Theorem 5. Let A :=
∑n

i=0 xiyn−i, let f be a separable binary form of even
degree n over Z, and suppose C : z2 = f(x, y) is locally soluble if n ≡ 0 (mod 4).
For some integer κ := κ(n) ≥ 1, there is a natural injective map of sets taking
elements of Sel2(Jac(C)) to (SLn/µ2)(Z)-orbits of pairs (A, B) of n-ary quadratic
forms over Z such that det(xA + yB) = fmon(x, κy).

With notation as in Theorem 5, let Rf be the ring of global sections of the
subscheme of P1

Z cut out by f . To prove Theorem 5, we first prove that elements
of Sel2(Jac(C)) correspond to square roots of the ideal class of the inverse different
of Rf . We then apply the following (loosely stated) parametrization result:

Theorem 6 (S., [5, Theorem 1]). Square roots of the class of the inverse different
of Rf naturally give rise to certain SL±

n (Z)-orbits of pairs (A,B) of n-ary quadratic
forms over Z such that det(xA + yB) = ±fmon(x, y).

A key feature of the orbit construction in Theorem 6 is that, at least when n = 4
or when f has squarefree discriminant, the image is defined by certain congruence
conditions modulo the leading coefficient f0 of f , and not some higher power
thereof. An n-ary quadratic form B satisfying these congruence conditions is said
to be special at f0. When f0 is squarefree or when f has squarefree discriminant,
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the condition of being special at f0 is beautifully explicit: namely, B must have
rank ≤ 1 modulo f0.

Combining Theorem 5 with the orbit-counting techniques developed by Bhar-
gava and Shankar immediately yields the following result for families of hyperel-
liptic curves with fixed nonzero leading coefficient:

Theorem 7. When hyperelliptic curves (resp., locally soluble hyperelliptic curves)
over Q of degree n ≡ 2 (mod 4) (resp., n ≡ 0 (mod 4)) with fixed nonzero leading
coefficient are ordered by height, the average size of the 2-Selmer group of the
Jacobian is at most 6.

Having established the parametrization, we must then estimate the number of
orbits having bounded height that arise from 2-Selmer elements. The key difficulty
here is that we must count orbits for a group acting on a family of increasingly
sparse subsets of a lattice. Indeed, taking n = 4 for simplicity and fixing a leading
coefficient f0 6= 0, observe that the set {fmon : f(x, y) = f0x

4 + · · · } has density
f−6
0 in the set of all monic binary quartic forms. Hence, we expect the set of pairs
(A, B) such that det(xA+ yB) = fmon(x, y) for some f(x, y) = f0x

4 + · · · to also
have density around f−6

0 in the set of all (A, B).
The leading coefficient f0 of f grows with the height of f . Concretely, if f has

height X , then the coefficients f0, . . . , f4 of f satisfy the following bounds:

|f0| ≪
X

t4
, |f1| ≪

X

t2
, |f2| ≪ X, |f3| ≪ t2X, |f4| ≪ t4X,

where t ≥ 4
√
3/

√
2 is necessarily ≪ X1/4, for otherwise f0 is forced to be 0. For

simplicity, we assume in what follows that t = 1 (the number of points when t
is large is negligible, and the proof for small t 6= 1 is nearly identical). Then the
monicization fmon has coefficients 1, f1, f0f2, f

2
0f3, f

3
0 f4, which satisfy the bounds

|f1| ≪ X, |f0f2| ≪ X2, |f2
0f3| ≪ X3, |f3

0 f4| ≪ X4.

Therefore, any lift (A, B) such that det(xA+yB) = fmon(x, y) has an (SL4/µ2)(Z)-
translate of the form (A, B′) such that the coefficients b′ij of B′ are all bounded
by some constant times X , multiplied by some cuspidal coefficients that are eas-
ily bounded. Furthermore, the element B′, like f , satisfies congruence conditions
having density approximately f−6

0 (this density is exact when f0 is squarefree).
Our task is now to determine, for each nonzero f0 ≪ X , an asymptotic for the

number of (SL4/µ2)(Z)-orbits on pairs of the form (A, B), where the height of B
is bounded by X and B is special at f0. We must then sum this asymptotic over
f0. Heuristically, the total sum is given by

≍
∑

f0≪X

f−6
0 X10 ≍ X5,

which is exactly what we expect. However, there are several difficulties in turning
this heuristic into a proof. For instance, we need to keep precise control over the
error dependence on both X and f0, particularly when f0 is around the size of X .
We achieve this for squarefree f0 using twisted Poisson summation together with
a computation of the Fourier coefficients of the set of points special at f0 (this
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shows that special points are equidistributed modulo f0). These equidistribution
methods are less readily available when f0 is not squarefree, since the notion of
specialness is rather more complicated in this case. A related issue is that the
fundamental domains in which we count points are quite skewed when f0 is small
relative to X . For forms f with leading coefficient f0, where f0 has large powerful
part or is small relative to X , we simply bound the number of lifts; this suffices
because such f0 appear rarely and hence contribute negligibly to the total.
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Distributions of unramified extensions of global fields

Melanie Matchett Wood

(joint work with Yuan Liu and David Zureick-Brown)

This talk presents the work in [LWZ19]. Every number field K has a maximal
unramified extension Kun, with Galois group Gal(Kun/K) (whose abelianization
is the class group of K). Cohen, Lenstra, and Martinet [CL84,CM90] have given
conjectures of the distribution of the class groups of number fields, and it is natural
to ask then about the distribution Gal(Kun/K).

For this work, we fix a finite group Γ and consider the family of totally real
(split completely at infinity) Γ extensions of Q or Fq(t), ordered by the norm
of the radical of their discriminant. We prove some results about the structure
of Gal(Kun/K) that motivate us to give a conjecture about the distribution of
Gal(Kun/K) in our considered family, which we also conjecture in the function
field analog, where we can prove a result towards our conjectures.

Let K# be the maximal unramified extension ofK that is split completely at all
places of K above ∞ and of order relatively prime to |Γ| and the order of the roots
of unity in our base field (Q or Fq(t)), and also prime to q in the latter case. A Γ-
group is a profinite group with a continuous action of Γ. A Γ-group G is admissible
if it is Γ-generated topologically by the elements {g−1γ(g)|g ∈ G, γ ∈ Γ} and is
of order prime to |Γ|. We show that Gal(K#/K) is an admissible Γ-group. We
construct a group Fn, the free admissible Γ-group on n generators, by taking the
subgroup of the free profinite Γ-group on γxi (for γ ∈ Γ and 1 ≤ i ≤ n) generated
by elements of the form g−1γ(g). Further, we will see that Gal(K#/K) has what
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we call Property E, i.e. for every prime p and every non-split central extension of
Γ-groups

(1) 1 → Z/pZ → G̃ → G → 1,

(where Z/pZ has trivial Γ-action), any Γ-equivariant surjection Gal(K#/K) → G

lifts to a Γ-equivariant surjection Gal(K#/K) → G̃ (as long as p is one of the
primes that could possibly divide Gal(K#/K) by definition). We show that a
quotient of Fn has Property E if and only if it is Fn/[r

−1γ(r)]r∈S,γ∈Γ for some S.
We thus define a random group XΓ,n := Fn/[r

−1γ(r)]r∈S,γ∈Γ, where S is random
from Haar measure on Fn+1

n . We prove that these groups approach a limiting
distribution as n → ∞, and conjecture that this is the distribution of Gal(K#/K)
for our families.

We give theorems in the function field case (as the size of the finite field goes
to infinity) that support these new conjectures. We let DK denote the norm of
the radical of the ideal Disc(K/Fq(t)). Let EΓ(D,Fq(t)) be the set of isomorphism
classes of totally real Γ-extensions of Fq(t) with DK = D. We then have the
following theorem giving the moments of the distribution in a certain limit, and
moreover we show that our conjectured distribution has these same moments.

Theorem 1. Let Γ be a finite group and H be a finite admissible Γ-group. Then,

lim
N→∞

lim
q→∞

(q,|Γ||H|)=1
(q−1,|H|)=1

∑
n≤N

∑
K∈EΓ(qn,Fq(t))

| SurΓ(Gal(K#/K), H)|
∑

n≤N |EΓ(qn,Fq(t))|

=

∫

X

| SurΓ(X,H)|dµΓ(X) = [H : HΓ]−1,

where in the limit q is always a prime power.

In particular, our distributions abelianize to the Cohen-Lenstra-Martinet dis-
tributions for class groups, and so our function field theorems prove (suitably
modified) versions of the Cohen-Lenstra-Martinet heuristics over function fields
as the size of the finite field goes to infinity. In particular, using the results of
W. Wang and the second author [WW21, Theorem 6.2, Proposition 6.6, Theorem
6.11] that the conjectured distribution of Cohen, Lenstra, and Martinet has these
same moments and that the moments determine a unique distribution, we have
the following corollary.

Corollary 2. Let p ∤ |Γ| be a prime and A a finite Γ-module of order a power of
p such that AΓ = 1. Then

lim
N→∞

lim
q→∞

(q,|Γ|p)=1
(q−1,p)=1

∑
n≤N |{K ∈ EΓ(q

n,Fq(t))|ClOK
[p∞] ≃ A}|

∑
n≤N |EΓ(qn,Fq(t))|

=
c

|A||AutΓ(A)|
,

where c is a constant only depends on Γ and p, and OK is the integral closure of
Fq[t] in K.
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Using the work of Sawin [Saw20] on the non-abelian moment problem, one has
an analogous corollary for Gal(K#/K).
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Presentations of Galois groups of maximal extensions with
restricted ramification

Yuan Liu

In the previous work with Wood and Zureick-Brown [4], we construct a random
group model, which extends the Cohen–Lenstra heuristics and provides a predicted
distribution for a canonical quotient Gal(K#/K) of Galois groups of maximal
unramified extensions of K as K ranges over totally real Γ-extensions of Q = Q
or Fq(t). Let K# denote the maximal unramified extension of K that is split
completely at places of K over infinity and of order relatively prime to the number
of roots of unity in Q, the size of Γ, and charQ. Using the notation of pro-C
completions and free admissible group Fn defined in [4], our conjecture implies a
surprising phenomenon of the structure of Gal(K#/K) that was not known before:
for any finite set C of finite Γ-groups, the followings happen to K with probability
1

(1) the pro-C completion Gal(K#/K)C of the Galois group Gal(K#/K) is a
finite group, and moreover

(2) there exists some finite n such that Gal(K#/K)C is the quotient of FC
n

by [r−1γ(r)]r∈T,γ∈Γ for some subset T of FC
n of cardinality n + 1, where

the symbol [r−1γ(r)]r∈T,γ∈Γ denotes the Γ-closed normal subgroup of FC
n

generated by rγ−1(r) for all r ∈ T and γ ∈ Γ.

The statement in (2) is a very strong condition on Gal(K#/K) because it implies
that the deficiency (i.e. the difference between the minimal number of generators
and the minimal number of relations) of Gal(K#/K) has a bound depending only
on the order of Γ, if Gal(K#/K) is finitely generated.

In [2], we show that the conditions (1) and (2) both hold for all totally real
Γ-extensions K/Q, which strongly supports that the random group model in [4] is
the right object to study.
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Theorem 1. [2] Let Γ, Q, C be as described as above. Then for a Galois extension
K/Q with Galois group Γ that is split completely over ∞, we have the following
isomorphism of Γ-groups

Gal(K#/K)C ≃ FC
n�[r−1γ(r)]r∈T,γ∈Γ

for sufficiently large positive integer n and some set T consisting of n+1 elements
of FC

n .

The proof of the theorem is inspired by work [1] of Koch, which studies the min-
imal numbers of generators and relations for the p-class tower group of a global
field, and by the work [3] of Lubotzky, which establishes a method using group
cohomology to study the deficiency of finitely generated profinite groups. Ex-
plicitly, we first prove a formula relating the deficiency to the Galois cohomology
dimFp

H2(GS(K), A)Γ − dimFp
H1(GS(K), A)Γ for all simple Gal(KS/Q)-module

A, where GS(K) is the Galois group of the maximal unramified-outside-S exten-
sion of K for a finite set S of primes of K. Then we define a group BS(K,A),
which generalizes the group BS(K) in Koch’s work, to bound the dimensions of
cohomology groups.

The methods developed in [2] can apply to many other interesting situations.
First of all, when Γ = 1 and K = Q is a function field, Shusterman [5] showed that
GØ(K) admits a finite presentation in which the number of relations is exactly the
same as the number of generatros (which is called a balanced presentation), and
we prove the following analogous result in the number field case.

Theorem 2. [2] Let K be a number field and S a finite set of places of K. If
GS(K) is topologically generated by n elements, then it admits a finite presentation
with n generators, in which the minimal number of relations is at most [K : Q]+n.

[2] also discusses the following two situations that are not considered in the
conjecture of Liu–Wood–Zureick: 1) letting K varies among Γ-extensions of Q
such that the decomposition subgroup at ∞ is a given Z/2Z-subgroup of Γ; and 2)
allowing groups in the set C to contain groups of order not prime to the number of
roots of unity of Q. In each of these two cases, we use our method to compute an
upper bound for the deficiency of GØ(K) at the pro-C level, and then show why
the conjecture of Liu–Wood–Zureick doesn’t work in these two exceptional cases.
This computation of deficiencies also provides insights of how the random group
model should be modified in these two cases.
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Moments, Measures, and Non-Abelian Cohen-Lenstra

Will Sawin

This talk describes work which is part of the broad program to find the most
general possible version of the Cohen-Lenstra heuristics and to prove this, as much
as possible, in the function field setting. It in particular has relevance to work
of Liu, Wood, and Zurieck-Brown [5] discussed in Wood’s talk in this volume,
allowing us to deduce a stronger statement from their main geometric result.

In their original form [2], the Cohen-Lenstra heuristics predicted the distribution
of the class groups of quadratic fields, i.e. Z/2-extensions of Q. They were quickly
generalized in a number of directions (which this abstract is too short to explain)
In particular, one can, recalling the theorem of class field theory that the class
group is the abelianization of the Galois group of the maximal unramified ex-
tension, attempt to predict the distribution of the Galois group of the maximal
unramified extension, or some more tame quotient like its maximal pro-p quotient.
This direction has been investigated by many authors, e.g. [1].

Even in the original quadratic case [2], the Cohen-Lenstra heuristics can be
stated in two different ways:

(Measure) For G a finite abelian ℓ-group,

lim
X→∞

|{K im. quad. | Disc(K) < X,Cl(K)ℓ ∼= G}|
|{K im. quad. | Disc(K) < X}| =

1

|Aut(G)|
∞∏

k=1

(1− ℓ−k).

(Moments) For H a finite abelian ℓ-group,

lim
X→∞

∑
K im. quad.
Disc(K)<X

|Surj(Cl(K)ℓ, H)|

|{K im. quad. | Disc(K) < X}| = 1.

It is a theorem of Ellenberg, Venkatesh, and Westerland [3, Proposition 8.3]
that (Moments) implies (Measures). This is useful, in their context, because they
prove [3, Theorem 8.8] the analogue of (Moments) in the function field context
in a certain limit, and therefore deduce the analogue of (Measures) statement in
their limit. In attempts to generalize Cohen-Lenstra, a more general implication
from Moments to Measures may be useful if we can calculate the moments in a
function field limit, or more simply if we are able to guess the moments (since they
have simpler formulas, they are likely to be easier to guess correctly), and then
use this to find the correct formula for the measure.

Thus, it would be useful to prove that moment convergence implies measure
convergence in as general a context as possible. In particular, in the non-abelian
context, Liu, Wood, and Zurieck-Brown proved moment convergence [5, Theorem
1.4] (albeit in a more restrictive limit than Ellenberg, Venkatesh, and Westerland)
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and conjectured measure convergence, so it would be useful to prove the implica-
tion in their setting. The main theorem of this work is exactly such a statement.

For Γ a group and S a set of primes, define a Γ-S-group to be a finite group,
with an action of Γ, whose order is a product of powers of primes in S.

Theorem 1. Let Γ be a finite group and S a finite set of primes not dividing |Γ|.
Let µ be a measure on the set of isomorphism classes of finite Γ-S-groups. Let µt

be a sequence of measures on the same set. Assume that, for each finite Γ-S-group
H, we have

lim
t→∞

∫
| SurjΓ(X,H)|dµt(X) =

∫
SurjΓ(X,H)dµ(X).

and ∫
SurjΓ(X,H)dµ(X) = O(|H |O(1))

Then for every finite Γ-S-group H we have

lim
t→∞

µt(H) = µ(H).

This generalizes [1, Theorem 1.4] from the p-group case and [6] (which itself gen-
eralizes [3, Proposition 8.3]) from the abelian case.

The strategy of proof is to reduce the problem to a special case where calcula-
tions can be done explicitly (and in large part were already done in [4, Equation
(22)]). Specifically, noting that we have information about surjections X → H
and would like to understand when X is isomorphic to H , we observe that an
isomorphism is simply a surjection with trivial kernel.

We therefore define from each measure µt in the sequence, and our hopeful limit
µ, a new measure µH

t or µ, where the measure of a groupK is the expectation of the
number of surjections from X to H with kernel K. We observe that the moments
of this new measure can be calculated as linear combinations of the moments of the
original measure. Furthermore, the probability of attaining H under the original
measure is proportional to the probability of attaining the trivial group under the
new measure, so it suffices to calculate only this probability.

Next we observe that, to test whether a group is trivial, it suffices to test
whether its quotient by the intersection of all its maximal proper normal invariant
subgroups is trivial, and so we can replace each group appearing by such a quo-
tient. This quotient is a product of finite simple groups. For powers of a single
finite simple group, we can express the probability that the group is trivial as a
linear combination of the moments by an exact identity, showing that moment con-
vergence implies measure convergence as long as the limits of the moments grow
slowly enough that this linear combination is convergent. We can handle the case
of products of finite simple groups inductively by repeating the case of powers of
a single finite simple group, as long as the number of isomorphism classes of finite
simple groups appearing is bounded. Using our bounds for the moments of the
original measures, we obtain suitable bounds for the moments of the transformed
measures, sufficient to show that the linear combination is indeed convergent.
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Infinite unramified extensions of number fields

Farshid Hajir

(joint work with Christian Maire, Ravi Ramakrishna)

We fix the following notation:

• p ≥ 2 fixed prime
• K/Q of finite degree n, signature (r1, r2), discriminant disc(K)
• The root discriminant of K is rdK := |disc(K)|1/n
• δ = 1 or 0 according as ζp in K or not

• u = r1 + r2 − 1 + δ = the p-rank of the unit group O×
K

• d = dimFp
ClK/ClpK the p-rank of the p-class group of K

• K∅ = maximal unramified p-extension of K
• G∅ = Gal(K∅/K) = p-class tower group of K

The p-class tower group, or “pro-p fundamental group” G∅ is a natural non-
abelian generalization of the p-class group. It was originally thought that all
p-class tower groups are finite. The following effective criterion, due to Golod and
Shafarevich as refined by Gaschutz and Vinberg, showed that this was not the
case: If d ≥ 2 + 2

√
u+ 1, then G∅ is infinite.

Not much is known about the structure of infinite p-class tower groups. For
example, we don’t know a single example of an infinite G∅ for which we have a
presentation. On the computational side, we mention:

Difficult Problem. Give an algorithm for computing G∅. [Say by giving a
presentation of it as a pro-p group].
(Presumably) Less Difficult Problem. Give an algorithm for determining
whether G∅ is finite or not.

In this talk, I discussed three theorems in the spirit of explicit methods in number
theory (see [1] and [2] for more details).
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Theorem A. Suppose d > 2 + 2
√
u+ 1. Then

(1) K admits an infinite unramified p-extension L/K in which all primes
split “almost completely,” (have finite residual degree). In other words,
all Frobenius elements in Gal(L/K) are torsion.

(2) K admits an infinite unramified p-extension M/K such that infinitely
many primes of K split completely in M/K.

Part (2) of the above theorem answers a question from Ihara’s 1983 paper [3]. The
analogue (with the same proof) holds in the function field case as well.

Theorem B. For every prime p ≥ 2, there is a (solvable) finite extension K/Q
unramified outside {p,∞} such that K admits an infinite unramified p-extension.
Thus, there exists a sequence of number fields of p-power discriminant with bounded
root discriminant.

Remark. To replace {p,∞} with {p}, [in other words, to prove this theorem in
the realm of totally real fields], appears to be much more difficult. In particular,
for a small prime p, it is a challenge to locate a totally real number field unramified
outside p in which there are at least two primes above p.

Theorem C.

(1) There is an infinite tower of complex number fields whose root discrimi-
nants are bounded above by 78.5.

(2) There is an infinite tower of totally real number fields whose root discrim-
inants are bounded above by 857.6.

The proofs of all three theorems are based on a variation (“cutting of towers”)
on the standard application of the Golod-Shafarevich criterion for infinitude of a
pro-p group.
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