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Introduction by the Organizers

This workshop on Computational Group Theory was the eighth with this title
held at Oberwolfach. It had 55 participants, 26 of whom were able to attend in
person. The remaining 29 virtual participants were in different time zones. We
scheduled the talks in the usual Oberwolfach style, in the morning between 9.30
and 12.30 and in the afternoon between 16.00 and 18.30. To enable discussions
by all participants, including those who missed some of the talks due to time-zone
related issues, we organised some additional review sessions: Zoom questions and
discussions in the lecture hall; software presentations; and individual meetings
using the video conference tool “GatherTown”. While these additional efforts did
not equal the benefits of all participants meeting in person, they did create a
workshop atmosphere that engaged the virtual participants.
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The program consisted of four 50-minute survey talks, eighteen 20-minute research
talks, and some 5-minute short talks. The latter included talks by the five Ober-
wolfach Leibniz Graduate Students, and so allowed these young researchers to
present their research to an international audience.

The four survey talks were invited by the organisers. The first was by Gunter
Malle on Some open problems in finite group representation theory. He gave an
overview of various famous problems and their conjectured solutions, with particu-
lar emphasis on problems where Gerhard Hiss, who retired in July 2021, has made
important contributions. Many of the problems discussed can be approached by
computational means, and their proofs reduce to verification for finite (nearly)
simple groups of Lie type. The second survey was by Claus Fieker and Tommy
Hofmann on What can computational group theory do for number theory? They
gave an overview of the state of the art of the number theory part of the OSCAR
open source computer algebra repository, with a view towards group theoretical
challenges, for instance in the computation of Galois groups of number fields.
The third survey was by Tobias Rossmann on Towards a symbolic enumeration of
orbits. Its focus was symbolically counting parameterised orbit lengths for an im-
portant family of finite p-groups. He showed how this topic connects to other areas
of mathematics including algebra, combinatorics and geometry. The final survey
was by Rebecca Waldecker on Refine, Rip, Repeat – Search in permutation groups.
She outlined the important work by Jeff Leon on backtracking using partitions,
and reported on recent improvements by her and colleagues aimed at computing
rapidly intersections of subgroups and stabilisers of subsets in permutation groups.

The 18 contributed research talks, each 20 minutes long, covered a broad range
of topics. They illustrated how the existing techniques of Computational Group
Theory can be applied in various mathematical areas, and also how powerful al-
gorithms can be developed by applying deep theoretical results.

One prominent theme among these talks was the isomorphism problem for groups
and graphs, and related classification problems. László Babai identified an obstacle
to improving on his outstanding result giving a quasi-polynomial bound for the
cost of graph isomorphism. Other related talks were given by Heiko Dietrich,
Joshua Maglione and Pascal Schweitzer covering practical and theoretical aspects
of this topic, and by the young researchers Tobias Moede and Eileen Pan reporting
on their classification of various classes of groups of “small” order.

Algorithmic problems in combinatorial and geometric group theory also featured
prominently. Martin Bridson presented various computational challenges involv-
ing subdirect products of finitely presented groups. Michael Vaughan-Lee reported
on his construction by machine of p-groups which are the first known counter-
examples of odd order to a long-standing conjecture attributed to Schur that the
exponent of the Schur multiplier of a finite group divides its exponent. Other re-
lated talks were given by Matthew Conder, Laura Ciobanu, Murray Elder, Alexan-
der Hulpke, Alan Reid, and Katrin Tent covering both new algorithms and theo-
retical challenges and new results in the area.
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The development of high-quality algorithms for permutation groups is one of the
long-standing research topics in Computational Group Theory. Young researcher
Mun See Chang reported on progress in addressing one of the significant challenges:
constructing the normaliser of a subgroup of a permutation group. Colva Roney-
Dougal presented important new results on base size and complexity. Other related
talks were given by Leonard Soicher and young researchers Dominik Bernhardt and
Melissa Lee.

The development of algorithms for linear groups and the associated representation
theory is currently one of the most active areas of computational group theory.
Emmanuel Breuillard discussed new approaches towards a quantitative form of
the Tits alternative and ideas towards the determination of explicit generators of
a free subgroup in a linear group. Markus Lohrey presented an algorithm to decide
in polynomial time the subgroup membership problem for GL(2,Z) when certain
encodings of its elements are used. Other related talks were given by Alla Detinko,
Willem de Graaf, Gerhard Hiss, and Derek Holt (the last presenting on behalf of
John Cannon).

The conference also illustrated well the knowledge transfer between different math-
ematical disciplines. In his talk, Ulrich Thiel presented a question motivated by ap-
plications in algebraic geometry; some of the computational group theory experts
readily answered it using GAP. Christopher Voll used Hessian matrices and the
number of torsion points on elliptic curves to explain puzzling observations about
the orders of automorphism groups of a much studied family of finite p-groups.

The two scheduled sessions of 5-minute talks both allowed the young researchers
to present their work and gave more experienced researchers the opportunity to
draw attention to important new results. Frank Lübeck presented his alternative
to Conway polynomials, so allowing consistent computations in significantly larger
fields than previously. John Cannon announced a fast algorithm, available in
Magma, to construct all absolutely irreducible modules for “moderately large”
finite groups in characteristic 0.

The talks, reviews, software and problem sessions were well received by the par-
ticipants. Our schedule left plenty of time for discussions. This was used by many
participants to initiate new projects, develop new research ideas and discuss new
collaborations. The interactions and exchanges of ideas were a major highlight of
the workshop and will no doubt lead to new and interesting projects in computa-
tional group theory.

Acknowledgement: The MFO and the workshop organizers would like to thank
the Simons Foundation for supporting James B. Wilson in the “Simons Visiting
Professors” program at the MFO.
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Condensing the Steinberg module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2075

Summary of the Problem Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2077



Computational Group Theory 2033

Abstracts

Some open problems in the representation theory of finite groups

Gunter Malle

In our talk we gave an overview on some open problems in the representation
theory of finite groups, and more concretely, the representation theory of finite
quasi-simple groups, with an emphasis on exceptional groups of Lie type. We
started out with Alperin’s conjecture that the number of p′-classes of a finite
group G is always at least as large as that of the normaliser of a Sylow p-subgroup
of G. This has recently been proved by Navarro–Tiep in the case p = 2 by refor-
mulating it into the corresponding question on the number of irreducible Brauer
characters. We then stated Alperin’s weight conjecture and reported on recent
progress by An–Hiss–Lübeck for groups of type F4. An important open problem
here is the determination of the radical subgroups of exceptional groups of Lie
type in bad characteristic. We shortly talked about the problem of completing the
determination of the p-blocks of these groups.

We went on to discuss various questions about p-modular decomposition ma-
trices for finite groups of Lie type, ranging from the existence of basic sets, over
uni-triangularity and up to the question of a complete determination, at least for
the series of exceptional groups. We defined the modular Harish-Chandra series of
finite groups with a split BN-pair and reported on the still open problem of their
complete determination for groups of Lie type.

The final problem we mentioned is the proof of gap results for the smallest
dimensions of non-trivial irreducible representations of the finite simple groups;
here the main open case concerns the various series of orthogonal groups, either
in small defining characteristic or for small characteristic of the representation.

Generalizing Polycyclic Presentations

Alexander Hulpke

(joint work with Heiko Dietrich)

Polycyclic presentations (PC presentations) and the associated PCGroups are one
of the success stories of Computational Group Theory. This is because they not
only provide arithmetic for finite solvable groups, but tools – extensions and quo-
tient algorithms –that naturally produce groups in such a representation.

For a generalization to be successful, it similarly needs to provide such con-
structions, since it otherwise often is easiest to remain in the initial representation
a group was given.

We generalize PC presentations through confluent rewriting system, combining
extensions with a wreath product ordering. That is, if G = N.Q and we have
confluent rewriting systems for N and Q, we take the union of the generating sets
and ensure the following:
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• Keep the rules for N .
• For each generator pair n, q add a rule nq → q · nq that reflects the action
of Q-representatives on N .

• Modify Q-rules l → r by an N -“tail”: l → r ·n that describe the cofactors
of the extension structure.

In the practical implementation, we take the solvable radical, represented as a
PCGroup in place of N . We call such a group a “hybrid group”.

This approach yields a natural way to calculate 2-cohomology and extensions:
Given a group Q and a Q-module N (the module structure describes the action
rules), consider the tail values as variables, the confluence condition of overlaps
then yields linear equations in these variables, whose solutions describe the 2-
cocycles, each solution corresponds to the associated extension as hybrid group.

Our first application is a generalization of the p-Quotient algorithm to arbitrary
finite groups. Given a homomorphism ϕ : F → H from a finitely presented group
(of rank k) onto a finite group, we choose an irreducible FpH-moduleM . Building
on work of Gaschütz [4], we define a universal cover C = Mk.H so that every k-
generator extension N.H , with N anM -homogeneous module, must be a quotient
of C. As in the p-quotient algorithm, the maximal lift of ϕ to a larger quotient of
F then is obtained by evaluating relators for F in this cover.

The second application is an enumeration of perfect groups of orders up to
2 · 106 [6], extending, over 30 years later, the list of [5]. This calculation follows
the method used for constructing solvable groups [1]. The required isomorphism
tests become feasible due to improvements of the implementation of [2] in GAP.

The author’s work has been supported in part by the National Science Foun-
dation (DMS-1720146 to A. Hulpke), which is gratefully acknowledged.
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Some comments on group isomorphism

Heiko Dietrich

(joint work with James Wilson)

In this talk we present some new results related to isomorphism testing of groups;
this abstract focuses on the first topic (Cayley table model), and only briefly states
the main results of the other three topics.
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1. Cayley table model (with James Wilson, Colorado State University)

Let n be a positive integer. We consider an n× n table with entries in {1, . . . , n}
as the multiplication table of a binary product where the rows and columns are
both labelled by 1, 2, . . . , n. For a group multiplication we require that the iden-
tity element is denoted “1”, that is, the first row and first column must both be
1, 2, . . . , n; if this is not the case, then we reject the input. For a subset S of posi-
tive integers we are interested in the decision problem S-GroupIso which takes as
input a pair of n×n tables (n ∈ S) with entries in {1, . . . , n} and decides whether
these tables define binary operations of isomorphic groups of order n ∈ S.

Booth [11, p. 132] observed that the complexity of N-GroupIso is polynomial-
time equivalent to the complexity of graph isomorphism. At the time, that com-
plexity was subexponential, but it has since been shown by Babai [1] to be in quasi-
polynomial time with a highly inventive algorithm. Meanwhile Miller [10, 11] cred-
ited Tarjan for observing that N-GroupIso can be decided in quasi-polynomial
time nO(logn) through a brute-force algorithm. Surprisingly, this brute-force com-
plexity has been resilient, and group isomorphism testing seems to be a leading
bottleneck to improving the complexity of graph isomorphism, see Babai [1, Sec-
tion 13.2]. Progress on group isomorphism has since then fragmented into work
on numerous subclasses: For example, work of Kavitha [9] and Babai-Codenotti-
Qiao [2] shows that the difficult instances are groups that admit nontrivial proper
abelian normal subgroups; we refer to [5, Section 1] for more details and references.
In [5], we have proved the following results, Theorems A, B, and C, showing that
group isomorphism testing is “easy” for almost all group orders.

Theorem A. There is a deterministic multi-tape Turing machine that decides in
time O(n2(logn)d) for some constant d whether an n × n table with entries in
{1, . . . , n} describes a group and, if so, returns an injective group homomorphism
{1, . . . , n} → Symn into the group Symn of permutations on {1, . . . , n}.

We note that Rajagopalan-Schulman [12, Theorem 5.2] provide an O(n2 logn)
algorithm for this task, but they cost the binary operation as O(1), which gives
an upper bound of O(n4(log n)2) on a Turing machine model.

Theorem A allows us to prove the following; recall that S ⊂ N is dense if
|S ∩ {1, . . . , n}|/n→ 1 for n→ ∞.

Theorem B. There is a dense subset Υ ⊂ N and a deterministic multi-tape
Turing machine that decides Υ-GroupIso for n ∈ Υ in time O(n2(logn)c) for
some constant c.

We stress that Theorem B should not be misunderstood as saying that group
isomorphism is efficient on most groups, just on most orders. Our set Υ excludes
an important but difficult class of group orders, specifically orders that have a
large power of a prime as a divisor. Theorem B therefore goes some way towards
confirming the expectation that groups of prime power order are the essential
bottleneck to group isomorphism testing.

For the sake of completeness, we provide a description of our set Υ. A prime
p | n is isolated if k = 0 for every prime power qk with qk | n and p | (qk−1). If, in
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addition, p 6| |T | for every non-abelian simple group T of order dividing n, then p is
strongly isolated. We are now in the situation to give the formal definition of Υ; the
proof is based on the Hardy-Ramanujan Theorem and results of Erdős-Pálfy [8].

Theorem C. The set Υ ⊆ N of all n ∈ N that factor as n = ab and satisfying
(1)–(4) is dense:

(1) if p | a is a prime divisor, then p ≤ log logn and, if pe | a, then pe ≤ logn;
(2) if p | b is a prime divisor, then p > log logn and p | n is isolated;
(3) the factor b is square-free;
(4) the factor b has at most 2 log logn prime divisors.

Importantly, we prove in [5, Theorem 2.5] that every group G of order n ∈ Υ
has a unique Hall πlsi(n)-subgroup B, which is cyclic, and a complement of size
(log n)O((log logn)c) for some c; here πlsi(n) is the set of strongly isolated prime
divisors of n that are larger than log logn. This decomposition is the backbone of
our proof of Theorem B. Generalisations of Theorem B to other input models are
considered in [7].

2. Cubefree groups (with James Wilson, Colorado State University)

In [6] we consider group isomorphism for groups of cubefree order in the permu-
tation group input model: here groups of order n are given by a set of O(log n)
generating permutations. Our proof of Theorem D relies on the known structure
theory of groups of cubefree order; we refer to [6] for details and references.

Theorem D. There is a polynomial time algorithm that given finite permutation
groups G and H, decides whether they are cubefree, and if so, decides that G 6∼= H,
or determines an isomorphism G→ H.

Our algorithm is implemented in GAP. Together with Theorem A, this yields a
polynomial time isomorphism test for cubefree groups in the Cayley table input
model.

3. C-groups (with Darren Low, Monash University)

Motivated by Theorem B we looked at the class of metacyclic groups, specifically,
C-groups: these are groups whose Sylow subgroups are all cyclic. By the classifi-
cation of Hölder-Burnside-Zassenhaus, every C-group is coprime metacyclic, that
is, isomorphic to a semidirect product of coprime cyclic groups. In particular,
every group of squarefree order is a C-group. Inspired by Slattery’s work [13]
on squarefree groups, we devolved practical algorithms for C-groups in [4]: we de-
scribe algorithms for CGroup-by-ID-Construction and ID-of-CGroup functionality.
This provides a practical isomorphism test for C-groups because two C-groups are
isomorphic if and only if they have the same “CGroup-ID”. Our algorithms are
implemented in GAP.
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4. Groups of small order type (with Bettina Eick, TU Braunschweig, and
Eileen Pan, Monash University)

In [3] we describe a new explicit determination of the groups of order n where
n factors into at most four primes: we present tables with explicit group presen-
tations, an enumeration formula, and we describe algorithms for Group-by-ID-
Construction and ID-of-Group functionality. Our algorithms are implemented in
GAP; the implementation also covers groups of order p4q where p and q are distinct
primes. For more details we refer to the abstract of Eileen Pan.
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Residual finiteness and computing with infinite linear groups

Alla Detinko

(joint work with Dane Flannery, Alexander Hulpke)

We report on recent progress in our continuing project aimed at practical compu-
tation with finitely generated linear groups [1]. Special consideration is given to
methods and algorithms exploring the interplay between finitely generated linear
groups and linear algebraic groups, as well as applications of our methodology to
solution of problems via computer-aided experimentation.

https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547
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1. Deciding Zariski density. We designed and implemented a number of de-
terministic and randomized algorithms testing (Zariski) density of a finitely gen-
erated linear group in an ambient algebraic group. This includes algorithms based
on methods developed by I. Rivin. The practicality and efficiency of each algo-
rithm varies depending on the input. Further details and experimental outcomes
are available in [2].

2. Strong approximation algorithms. Finitely generated linear groups are
residually finite, and approximated by linear groups of the same degree over finite
fields. This property enables us to solve a number of fundamental algorithmic
problems based on computing in congruence quotients. If, additionally, the strong
approximation property occurs, then we can avail of our ability to compute the set
Lmax(H) of congruence quotients modulo all maximal ideals of the ground domain.
Using different characterizations of maximal subgroups of SL(n, p), this problem
was solved for finitely generated dense subgroups of SL(n,Q) [2, 3]. Similar re-
sults are available for finitely generated dense subgroups of Sp(n,Q). Particular
consideration was given to the case of special linear groups of prime degree. Here,
efficient techniques based on a step-by-step exclusion of each ‘Aschbacher class’
were obtained [4].

3. The congruence subgroup property and computing. In the class of
groups which satisfy the congruence subgroup property, we developed algorithms
to compute the set L(H) of all congruence quotients of a finitely generated dense
group H . That enables us to efficiently construct the arithmetic closure cl(H)
(in other terms, the extended congruence subgroup) of H [2]. Additionally, cl(H)
provides a tool for solution of further computational problems [2, 4].

4. Applications and computer experimentation. Our algorithms have been
implemented in GAP. Using this implementation, we performed a series of ex-
periments with low dimensional representations of finitely presented groups which
arose in topology, motivated by long-standing open problems in group theory
[2, 3, 4].

Another application is at the interface between differential Galois theory and
theoretical physics. We obtained new experimental results for symplectic mon-
odromy groups of hypergeometric differential equations [5]. These are 2-generator
dense subgroups of Sp(n,Q) containing a transvection. For all 916 symplectic hy-
pergeometric monodromy groups in degree n = 6, we calculated the arithmetic
closure and described related properties of the groups, thus demonstrating the
efficiency of our algorithms.
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Schur’s exponent conjecture

Michael Vaughan-Lee

There is a longstanding conjecture attributed to I. Schur that if G is a finite group
then the exponent of the Schur multiplier M(G) divides the exponent of G. It is
easy enough to show that the conjecture holds true for groups of exponent 2 and
3, but the conjecture was shown to fail for groups of exponent 4 as long ago as
1973. Bayes, Kautsky and Wamsley [1] give an example of a group G of order 268

with exponent 4, where M(G) has exponent 8. However the truth or otherwise of
this conjecture has remained open up till now for groups of odd exponent, and in
particular it has remained open for groups of exponent 5 and exponent 9.

In my paper [3] I give an example of a four generator group G of order 54122 with
exponent 5, where the Schur multiplier M(G) has exponent 25, and an example
of a four generator group A of order 311983 and exponent 9, where the Schur
multiplier M(A) has exponent 27. Very likely the reason that similar examples
have not been found up till now is that computing the Schur multipliers of groups
of this size is right on the edge of what is possible with today’s computers.

For a survey of the history of this problem see [2].
It is easy to compute the Schur multiplier of the largest finite two generator

group of exponent 5, R(2, 5). It is elementary abelian of order 531. Analysis of the
details of the calculation shows that any exponent 5 counterexample to Schur’s
conjecture must have class at least 9. The analysis also shows that if G is an
exponent 5 counterexample to Schur’s conjecture, and if we write G = F/R where
F is free, then there must be an element r ∈ R ∩ F ′ which is not a product of
fifth powers and which is a product of at least two commutators. This led me to
consider the following group

G = 〈a, b, c, d | [b, a] = [d, c], exponent 5, class 9〉.
which has order 54122 and Schur multiplier

M(G) = C25 × C9170
5 .

I also found a similar example of exponent 9.

A = 〈a, b, c, d | a3, b3, c3, d3, [b, a] = [d, c], exponent 9, class 9〉.
This group has order 311983 and Schur multiplier

M(A) = C27 × C25184
3 .

Clearly this basic construction can be “tweaked” in various ways. Let

H(q, c) = 〈a, b, c, d | [b, a] = [d, c], exponent q, class c〉.
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Then the Schur multipliers of H(8, 5), H(16, 6), H(32, 7), H(64, 8) have exponents
16, 32, 64, 128 (respectively).

I conjecture that the Schur multiplier of H(8, 12) has exponent 32, and that the
Schur multiplier of H(7, 13) has exponent 49. But these groups are too big for me
to compute.

Finally, we make the following observation which shows that the exponent of
the Schur multiplier of a finite group of prime power exponent q can be bounded in
terms of the exponent of the Schur multiplier of R(2, q). (For any positive integer
d we let R(d, q) be the largest finite d generator of exponent q.) If M(R(2, q)) has
exponent e then M(R(d, q)) has exponent e for all d ≥ 2, and if G is any finite
group with exponent q then the exponent of M(G) divides qe.
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Global symmetry from local information: The core of the Coset
Intersection problem

László Babai

The Coset Intersection problem takes two subcosets of the symmetric group and
asks if their intersection is non-empty. It is polynomial-time equivalent to other
problems of computational group theory (Luks 1980). We review the core idea,
summarized in the title, of relatively recent progress on the asymptotic worst-case
complexity of this problem.

Normalizers of matrix Lie algebras and applications to
group isomorphism

Joshua Maglione

(joint work with Peter A. Brooksbank, James B. Wilson)

At the heart of testing isomorphism between groups and algebras is the problem of
testing whether two bilinear maps, or more generally tensors, are the same under
change of bases of their coordinates. This is known as the tensor isomorphism
problem, and it generalizes equivalence of matrices by row and column operations.
For example, if G1 and G2 are p-groups of class 2 and exponent p, then their
commutator determines an alternating Fp-bilinear map Gi/Z(Gi) ×Gi/Z(Gi) →
G′

i, and isomorphisms between G1 and G2 determine isomorphisms between their
commutator tensors.

https://arxiv.org/abs/2007.03476
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The strategy we employ to speed up isomorphism testing of groups is to exploit
linear operators of tensors ti : U×V →W determined by the commutator. Each ti
factors through the tensor product U⊗V , which uniquely determines a linear map
fi : U ⊗ V → W . A brute-force approach essentially exhausts GL(U) × GL(V ),
searching for an element mapping ker(f1) to ker(f2). Our approach builds off of
work in [2], where the fundamental idea was to use the associative ring of adjoints
of ti, denoted by Ai, to construct the smaller dimensional vector space U ⊗Ai

V ,
yielding a polynomial-time isomorphism test for groups whose Lie algebras have
genus 2.

We introduce an algorithm to aid in the testing of group isomorphism by reduc-
ing to the problem of constructing normalizers of matrix Lie algebras. We do this
by constructing the derivation algebras and densor subspaces associated to the
tensors. These play a similar role to Ai and U ⊗Ai

V above. The main advantage
to this approach is that all of the associative algebra operators of tensors, like Ai,
embed into the derivation algebra [1], and the densor subspace is, moreover, the
smallest generalized tensor product space [4]. Therefore, we view the derivation
algebra and the densor subspace to be optimal for isomorphism testing. However,
new challenges arise from the representation theory of Lie algebras, which opens
further directions of research.

We prove that there exists a polynomial-time algorithm that, given fully nonde-
generate K-tensors t1 and t2 with K = 6K, derivation algebras of Chevalley type,
and 1-dimension densor subspaces, decides whether t1 and t2 are isomorphic [3].
While computing the normalizer of a matrix Lie algebra is at least as hard as
graph isomorphism [5], we give a family of semisimple algebras for which we can
construct their normalizers in polynomial time.

We believe the hypotheses of our theorem are not the best possible. Even
going through the database of p-groups of order p7, we find commutator tensors
whose derivation algebras have nonabelian simple factors that are not Chevalley
Lie algebras (e.g. Witt Lie algebras). These tensors, therefore, do not satisfy our
hypotheses, but their densor subspace is 1-dimensional, so we would like to take
advantage of such a small subspace. Can we efficiently construct normalizers of the
non-Chevalley simple Lie algebras that arise as derivation algebras? Furthermore,
what kinds of solvable Lie algebras arise in this context? If these can be sensibly
described, can we efficiently construct their normalizers?
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Geometry and representation theory associated to symplectic
reflection groups

Ulrich Thiel

(joint work with Gwyn Bellamy, Johannes Schmitt)

The goal of my talk was to raise awareness of the rich world around symplectic
reflection groups and to give an impression of how (computational) group and rep-
resentation theory can be used to make progress on a seemingly purely geometric
question. For the latter I focused on joint work [2] with Bellamy and Schmitt.

Let V be a symplectic finite-dimensional complex vector space. A symplectic
reflection group is a finite subgroup Γ of symplectic automorphisms of V which is
generated by symplectic reflections, i.e. by elements s ∈ Γ whose fixed space is of
codimension 2 in V .

What does the class of symplectic reflection groups look like? Recall that an
(ordinary) complex reflection group is a finite group W of automorphisms of a
finite-dimensional complex vector space h which is generated by its (ordinary)
reflections, i.e. by elements whose fixed space is of codimension 1 in h. Such groups
were classified up to conjugacy by Shephard and Todd [7], and each naturally
defines a symplectic reflection group: the vector space h ⊕ h∗ carries a natural
symplectic form, and with the induced action on this space the groupW becomes a
symplectic reflection group. Such symplectic reflection groups are called improper.

The proper (i.e. not improper) ones were classified up to conjugacy by Cohen
[5]. They are direct products of symplectically indecomposable groups, and these
split into two classes: the symplectically imprimitive and the symplectically prim-
itive ones; the latter class splits further into the groups which are imprimitive
or primitive in the usual sense. The class of groups which are both symplecti-
cally primitive and complex primitive consists of just 13 groups—they can thus
be considered as the exceptional ones in the classification—all other classes are
infinite.

Note that the class of complex reflection groups contains the class of finite
Coxeter groups (the real reflection groups), and thus the class of Weyl groups (the
rational reflection groups). The idea behind the “spetses” program initiated by
Broué, Malle, and Michel [4] is that it seems there are “fake” algebraic groups
associated not just to Weyl groups but to complex reflection groups in general.
Given that the class of symplectic reflection groups contains the class of complex
reflection groups I find the following question intriguing: do some parts of the
“spetses” program make it to the larger class of symplectic reflection groups?
Surely not everything, maybe nothing—but maybe something!?

Whereas the invariant theory of complex reflection groups is well understood
(the invariant ring is polynomial, the cardinality of a system of fundamental in-
variants and their degrees are known, etc.) this seems to be unexplored territory
for symplectic reflection groups. Even for the improper ones I mostly do not know
much about the invariant theory—I have collected some computational data in [9].
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I think it would be very interesting and helpful to find algorithms tailored to this
special setting to gather more data.

There are not just algebraic questions about the invariant ring C[V ]Γ but geo-
metric ones as well. This comes from the fact that the invariant ring is the coordi-
nate ring of the orbit space V/Γ, which naturally has the structure of an algebraic
variety. If Γ 6= 1, the variety V/Γ always has singularities: it is a classical fact that
if Γ is any finite group of linear automorphisms of a finite-dimensional complex
vector space V then the quotient V/Γ is smooth (i.e. has no singularities) if and
only if Γ is generated by (ordinary) reflections; and a symplectic reflection group
contains no (ordinary) reflections since Sp(V ) ⊆ SL(V ). Now, a natural thing to

do is to find a resolution of V/Γ, i.e. a proper birational map π : X̃ → V/Γ from

a variety X̃ without singularities (the birational means that X̃ is “not too far”
from V/Γ and the proper excludes “useless trivialities” like the inclusion of the
smooth locus). A resolution always exists due to a classical theorem by Hironaka.
But since V carries a symplectic form, it would be better to look for symplectic

resolutions: there should be a symplectic form on X̃ as well and π should be an
isomorphism of symplectic varieties over the smooth locus of V/Γ. Such kind of
resolutions were introduced by Beauville [1], but in this case they are the same as
so-called crepant resolutions which algebraic geometers have been studying inten-
sively in general—especially in light of the minimal model program.

The central problem that I mentioned in my talk is: classify all the symplectic
reflection groups Γ ⊂ Sp(V ) for which V/Γ admits a (projective) symplectic res-
olution. Combined research effort over the past 20 years shows that a symplectic
resolution only rarely exists, see [2] for a complete overview including references.
Before [2], the only remaining cases in the classification were the symplectically
primitive but complex imprimitive groups (an infinite class), and 10 among the
exceptional ones. In [2] we proved:

Theorem. If Γ is symplectically primitive but complex imprimitive then for all
but possibly 39 cases the variety V/Γ does not admit a symplectic resolution.

We have thereby finally reduced the classification problem to finitely many open
cases. The proof of this result—like many of the previous results by others—relies
on the combination of the following facts:

(1) The existence of a symplectic resolution of V/Γ is equivalent to the exis-
tence of a smooth Poisson deformation of V/Γ.

(2) All Poisson deformations arise as the centers of certain deformations of
the (non-commutative) skew-group ring C[V ] ⋊ Γ, namely the symplectic
reflection algebras Hc(Γ) by Etingof and Ginzburg [6]. Here, c is a pa-
rameter from a complex vector space of dimension equal to the number of
conjugacy classes of symplectic reflections in Γ.

(3) The Poisson deformation defined by the center of Hc(Γ) is smooth if and
only if the dimension of all simple Hc(Γ)-modules is equal to the order
of Γ.
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This gives us a representation-theoretic tool to attack our seemingly purely geomet-
ric problem: if for any parameter c there is a simple Hc(Γ)-module of dimension
< |Γ|, then V/Γ does not admit a symplectic resolution. In [2] we constructed such
a module for Γ being symplectically primitive but complex imprimitive. The key
idea is as follows. One can find an (ordinary) complex reflection group G0 whose
“doubling” is a subgroup of Γ. The group G0 turns out to be an exceptional group
of rank-2 different from the group G4 in the Shephard–Todd classification, and
for the associated symplectic reflection algebras Hc(G0) one knew already that
simple modules are of dimension < |G0|. We then induced from Hc(G0) to Hc(Γ)
to obtain our module. However, some technical details need to be satisfied for our
construction to work. By theoretical arguments we could show that this works for
all but possibly 73 cases of Γ.

To make the step from 73 down to 39 one needs more precisely knowledge
about the representation theory of Hc(G0). This knowledge came from data that
I computed using my software package Champ [8]. The basic idea behind these
computations is that for (ordinary) complex reflection groups W ⊂ GL(h) the
decomposition h ⊕ h∗ of the space for the associated symplectic reflection group
gives rise to a triangular decomposition of Hc(W ), which then leads to a theory
of standard modules. With some computational techniques that I developed (a
way to lift a submodule found by the MeatAxe in positive characteristic back
to characteristic zero) I was able to decompose the standard modules for many
exceptional W .

I currently have no idea how to get from 39 down to 0. More data about the
simple modules of the symplectic reflection algebras for the exceptional complex
reflection groups G11, G17, G18, G19, and G21 may help but I doubt that this is
computationally accessible. Another possibility may be to try to computationally
construct a module for Hc(Γ), and to this end it may be helpful to find central
elements in Hc(Γ).

I finished my talk by mentioning that we were also able to prove non-existence
of a symplectic resolution for one exceptional symplectic reflection group, namely
the group S2 in Cohen’s notation. We did this by finding a maximal parabolic
subgroup (i.e. the stabilizer of a vector) which was known to not admit a symplectic
resolution—a neat trick that was previously used by others, e.g. [3], as well. I
added that for the other exceptional groups (of rank > 4) we were not able to test
this because we had problems dealing with them computationally. Shortly after
my talk Alexander Hulpke and Eamonn O’Brien pointed out to me that one can
actually handle them. This made us revisit the exceptional groups and we were
eventually able to solve some further cases. The details will be published in an
upcoming paper.
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A possible alternative for Conway polynomials

Frank Lübeck

For any fixed prime p, the Conway polynomials Cp,n(X) ∈ Fp[X ], n ∈ Z>0,
give an explicit construction of an algebraic closure of the prime field Fp with
p elements. The polynomial Cp,n describes the finite field with pn elements as
algebraic extension, and the corresponding generator of this field is a primitive
root, that is of multiplicative order pn − 1.

Conway polynomials are used in various computer algebra packages (GAP,
Magma, Flint, ...) for standardized notations of finite field elements.

These polynomials define a lift homomorphism

F̄×
p →֒ C×,

which is used in (the computation of) mathematical data on modular represen-
tations of finite groups, e.g. for computing values of Brauer characters or for
reductions of ordinary characters modulo p (Modular ATLAS, ATLAS of group
representations, . . . ).

Unfortunately, Conway polynomials are very difficult to compute. The known
ones needed enormous computational resources and some needed for current ap-
plications are impossible to compute in practice.

In my short talk I advertised a new two-step approach to address this (so
allowing far larger finite fields to be handled):

(A) First, an easy to describe and implement construction of the algebraic
closure of finite prime fields (that is, a construction of each finite subfield together
with efficiently computable embeddings).

(B) Second, for each positive integer m, prime to p, a practical construction of
a standardized element of multiplicative order m (in the description from (A)).
The definition also provides a practically computable lift homomorphism.
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Discrete and free groups acting on locally finite trees

Matthew Conder

Let T be a locally finite simplicial tree. Its isometry group Isom(T ) is a topological
group with respect to the topology of pointwise convergence.

In [1], we present an algorithm to decide whether or not a pair of isometries
g1, g2 generate a subgroup G of Isom(T ) which is both discrete and free of rank
two. The algorithm proceeds by replacing either g1 or g2 by g1g2 or g1g

−1
2 until

the sum of translation lengths l(g1)+l(g2) is minimised. Such a ‘minimal’ pair also
generates G and either contains an elliptic isometry (and hence G is either not free
or not discrete) or satisfies the hypotheses of the Ping Pong Lemma (and hence G
is both discrete and free). This method of systematically minimising translation
length was motivated by a ‘trace minimising’ procedure used in [2, Algorithm 2]
to decide if two-generated subgroups of SL2(R) are both discrete and free.

A natural generalisation of this work is to decide whether or not an n-tuple
X = (g1, . . . , gn) of isometries of T generates a subgroup G of Isom(T ) which
is both discrete and free of rank n. Minimising the sum of translation lengths
l(g1)+ · · ·+ l(gn) is not always successful in producing an n-tuple either containing
an elliptic element or satisfying the hypotheses of the Ping Pong Lemma. We
instead aim to minimise the following quantity:

L(X) =
∑

1≤i≤n

l(gi) +
∑

1≤i<j≤n

l(gigj) + l(gig
−1
j ).

We consider performing multiple product replacements simultaneously to reduce
L(X). For j ∈ {1, . . . , n} and S1, S2 ⊆ {1, . . . , n}\{j}, we denote by Xj

S1,S2
the

n-tuple obtained from X by replacing gi 7→ gjgi if i ∈ S1 and gi 7→ gig
−1
j if i ∈ S2.

Note that X and Xj
S1,S2

generate the same subgroup G of Isom(T ).

Definition. An n-tuple X = (g1, . . . , gn) of isometries of T is minimal if L(X) ≤
L(Xj

S1,S2
) for all j ∈ {1, . . . , n} and S1, S2 ⊆ {1, . . . , n}\{j}.

Conjecture. A minimal n-tuple X = (g1, . . . , gn) of isometries of T either con-
tains an elliptic element or satisfies the hypotheses of the Ping Pong Lemma.

We have proved the conjecture for n = 2, 3 and have computational evidence
that it holds for n > 3. Subject to the conjecture, there is an algorithm to decide
whether or not a finitely generated subgroup of Isom(T ) is both discrete and free.

We have implemented this algorithm in Magma for n-generated subgroups of
PSL2(Q) (viewed as subgroups of PSL2(Qp), and hence of the isometry group of the
corresponding Bruhat-Tits tree). It runs efficiently when n, p and the translation
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lengths of the input are all small. For instance, if n = 6, p = 7 and each input
element has translation length at most 20, then the algorithm has a runtime of
approximately 1 minute.
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Saxl graphs of sporadic groups

Melissa Lee

(joint work with Tomasz Popiel)

A base for a permutation group G ≤ Sym(Ω) is a subset of Ω whose pointwise
stabiliser is trivial. The base size of G is the minimal cardinality of a base. If G
has base size 2, then the corresponding Saxl graph Σ(G) has vertex set Ω and two
vertices are adjacent if they form a base for G. A recent conjecture of Burness
and Giudici [1] states that if G is a finite primitive permutation group with base
size 2, then every two vertices in Σ(G) have a common neighbour. We discuss
recent work on this conjecture in [2], where G is an affine group with an almost
quasisimple point stabiliser H such that soc(H/Z(H)) is a sporadic simple group.
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Groups of small order type

Xueyu Eileen Pan

It is a central theme in group theory to classify (finite) groups up to isomorphism.
Of particular interest is the classification of all groups of a given order n; this
has started with the work of Cayley and the introduction of axiomatically defined
groups. Since then a vast amount of literature has emerged, dealing with groups
of special orders or order types (that is, orders that factorise into a particular
form, such as n = pq for distinct primes p and q). This MPhil project aims to
investigate groups whose orders factorise into at most four primes. Theoretical
classifications exist in the literature, but most expositions are lengthy and it is
difficult to extract results. This project elaborates a new self-contained and inde-
pendent determination of the isomorphism class representatives for these groups,
presented in a unified and modern language. Importantly, this project leads to
efficient construction algorithms for these groups, which we have implemented as
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a software package SOTGrps for the computer algebra system GAP. The SOTGrps

package extends the SmallGroups library of GAP and provides an identification
functionality as well as a “construction-by-ID” method; this leads to a dynamic
database of groups (where groups can be efficiently constructed on demand) and a
practical isomorphism test (by comparing group-IDs). The approach used in this
project can be extended to other order types. As an example, new algorithms for
the construction and identification of groups of order p4q are also implemented in
SOTGrps. Some results of this project appear in [1].
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Rewriting systems and what kinds of groups they present

Murray Elder

(joint work with Adam Piggott)

I explain some recent joint work with Adam Piggott about classifying groups
presented by (inverse-closed) finite convergent length-reducing rewriting systems.

Madlener and Otto [1] conjectured that a group is presented by a finite conver-
gent length-reducing rewriting system if and only if it is plain (the free product of
finite and infinite cyclic groups).

We prove that the problem of deciding if an inverse-closed finite convergent
length-reducing rewriting system does not present a plain group is in NP. Our
proof relies on new geometric and algebraic characterisations of groups presented
by such rewriting systems. The related preprint is at https://arxiv.org/abs/
2106.03445
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What can computational group theory do for number theory

Claus Fieker, Tommy Hofmann

In the talk we presented classical as well as more recent applications of computa-
tional group theory to number theory, with a view towards challenges in practice.

Galois groups. One of the classical applications of algorithms for permutation
groups is the computation of Galois groups of rational polynomials using the algo-
rithm of Stauduhar [1] and its generalizations due to Fieker and Jürgen Klüners [2].
For a transitive permutation group G of degree n with subgroup U , the following
problems have to be solved:

(1) Find the maximal transitive subgroups of G.
(2) Find a polynomial f ∈ Z[x1, . . . , xn] such that StabG(f) = U . The poly-

nomial f needs to be a form such that evaluating f at points of Cn is
fast.

(3) Find coset representatives for G/U .
(4) Given an element σ ∈ G, find coset representatives τ of G/U such that

σ ∈ U τ .
(5) Compute and intersect wreath products.

While all current implementations for permutation groups work quite well for small
degrees, computations become challenging for large degrees, with the threshold
depending on the chosen computer algebra system.

Inverse Galois problem for solvable groups. Constructing normal number
fields with solvable Galois group G can be done by translating a normal series of G
with abelian quotients to a corresponding tower of abelian extensions of Q. When
moving up the tower on the number field side, so-called embedding problems have
to be solved, which are intimately connected with exact sequences of the form

(∗) 1 −→ A −→ X −→ G −→ 1,

where X , G are finite groups and A is abelian.

(6) Given X and G, find all possible abelian groups A and actions of G on A
such that the sequence (∗) is exact.

When enumerating possible congruence subgroups for abelian extensions of a
fixed normal number field, the following problem needs to be solved:

(7) Given a finite abelian group A and a finite group G acting on A, deter-
mine all G-invariant subgroups B of A with A/B a p-group of specific
isomorphism class.

If the quotient A/B is an elementary abelian p-group, the classical MeatAxe

can be used to solve this problem. The general case requires an extensions of this
method.
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Norm relations and subfields. Recent work [3] of Jean-François Biasse, Aurel
Page and the authors has shown how to systematically exploit the subfield struc-
ture when solving various computational problems for number fields. In case the
number field is normal with Galois group G, it was shown that this is possible if
there exists a norm relation of the form

d =
∑

1�H≤G

aH NH bH

in Z[G], where H is running over the non-trivial subgroups of G, d ∈ Z, aH , bH ∈
Z[H ] and NH =

∑
g∈H g. Given information on the subgroups of G, the existence,

respectively non-existence, of such a relation can easily be established. A more
challenging problem is the determination of an explicit norm relation or a norm
relation with specific properties:

(8) Given a finite group G find an explicit norm relation. In addition make d
as small as possible or ensure that only normal subgroups, or subgroups
of small index, are involved.
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Magma’s role in identifying all principal congruence link complements

Alan W. Reid

(joint work with Mark D. Baker, Matthias Goerner)

Let d be a square-free positive integer, letOd denote the ring of integers inQ(
√
−d),

and hd denote the class number of Q(
√
−d).

Setting Qd = H3/PSL(2,Od) to be the Bianchi orbifold, it is well-known that
Qd is a finite volume hyperbolic orbifold with hd cusps (see [5, Chapters 8 &
9] for example). A non-compact finite volume hyperbolic 3-manifold X is called
arithmetic if X and Qd are commensurable, that is to say they share a common
finite sheeted cover (see [5, Chapter 8] for more on this).

An important class of arithmetic 3-manifolds consists of the congruence man-
ifolds. Recall that a subgroup Γ < PSL(2,Od) is called a congruence subgroup if
there exists an ideal I ⊂ Od so that Γ contains the principal congruence group:

Γ(I) = ker{PSL(2,Od) → PSL(2,Od/I)}.
The largest ideal I for which Γ(I) < Γ is called the level of Γ. A manifold M
is called congruence (resp. principal congruence) if M is isometric to a manifold
H3/Γ where Γ(I) < Γ < PSL(2,Od) (resp. Γ = Γ(I)) for some ideal I.

In an email to the first and third authors in 2009, W. Thurston asked the fol-
lowing question about principal congruence link complements:
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“Although there are infinitely many arithmetic link complements, there are only
finitely many that come from principal congruence subgroups. Some of the exam-
ples known seem to be among the most general (given their volume) for producing
lots of exceptional manifolds by Dehn filling, so I’m curious about the complete
list.”

In this talk, we described some of the computational group theoretic aspects of
our work (particularly the use of Magma [4]) with Baker and Goerner [1], [2], and
[3] that led to the complete enumeration all the principal congruence link comple-
ments in S3, together with their levels. This is summarized in the following result:

Theorem. The following list of 48 pairs (d, I) describes all principal congruence
subgroups Γ(I) < PSL(2,Od) such that H3/Γ(I) is a link complement in S3:

(1) d = 1: I = 〈 2 〉, 〈 2± i 〉, 〈 (1± i)3 〉, 〈 3 〉, 〈 3± i 〉, 〈 3± 2i 〉, 〈 4± i 〉.
(2) d = 2: I = 〈 1±

√
−2 〉, 〈 2 〉, 〈 2±

√
−2 〉, 〈 1± 2

√
−2 〉, 〈 3±

√
−2 〉.

(3) d = 3: I = 〈 2 〉, 〈 3 〉, 〈 (5 ±
√
−3)/2 〉, 〈 3 ±

√
−3 〉, 〈 (7 ±

√
−3)/2 〉,

〈 4±
√
−3 〉, 〈 (9±

√
−3)/2 〉.

(4) d = 5: I = 〈 3, (1±
√
−5) 〉.

(5) d = 7: I = 〈 (1±
√
−7)/2 〉, 〈 2 〉, 〈 (3±

√
−7)/2 〉, 〈 ±

√
−7 〉, 〈 1±

√
−7 〉,

〈 (5 ±
√
−7)/2 〉, 〈 2±

√
−7 〉, 〈 (7±

√
−7)/2 〉, 〈 (1± 3

√
−7)/2 〉.

(6) d = 11: I = 〈 (1±
√
−11)/2 〉, 〈 (3±

√
−11)/2 〉, 〈 (5±

√
−11)/2 〉.

(7) d = 15: I = 〈 2, (1 ±
√
−15)/2 〉, 〈 3, (3 ±

√
−15)/2 〉, 〈 (1 ±

√
−15)/2 〉,

〈 5, (5±
√
−15)/2 〉, 〈 (3±

√
−15)/2 〉.

(8) d = 19: I = 〈 (1±
√
−19)/2 〉.

(9) d = 23: I = 〈 2, (1±
√
−23)/2 〉, 〈 3, (1±

√
−23)/2 〉, 〈 4, (3±

√
−23)/2 〉.

(10) d = 31: I = 〈 2, (1±
√
−31)/2 〉, 〈 4, (1±

√
−31)/2 〉, 〈 5, (3±

√
−31)/2 〉.

(11) d = 47: I = 〈 2, (1±
√
−47)/2 〉, 〈 3, (1±

√
−47)/2 〉, 〈 4, (1±

√
−47)/2 〉.

(12) d = 71: I = 〈 2, (1±
√
−71)/2 〉.
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Weisfeiler-Leman and Group Isomorphism

Pascal Schweitzer

(joint work with Jendrik Brachter)

The complexity of the Group Isomorphism Problem and the computation of normal
forms for finite groups remain unsettled. While numerous practical and sophisti-
cated algorithms have been developed over the years, developing algorithms with
polynomial worst case upper bounds remains a challenge. This is true even for
comparatively benign types of groups, such as nilpotent groups of class 2.

The Weisfeiler-Leman (WL) algorithm is a powerful, efficient combinatorial
algorithm that has been successfully analyzed and applied in the context of the
Graph Isomorphism Problem. There is a fairly natural way to apply it to groups
which is widely unexplored.

I will give an introduction to the WL algorithm and discuss for it various recent
results related to the complexity of the Group Isomorphism Problem. This includes
a systematic study of classic isomorphism invariants, many of which turn out to
be captured by WL. It also includes examples of pairs of non-isomorphic groups
that have the same log(n)-subgroup-profiles distinguished in polynomial time [1].
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Classifying the non-synchronizing primitive permutation groups

Leonard H. Soicher

A permutation group G on a finite set Ω is non-synchronizing if there is a non-
null non-complete graph Γ with vertex-set Ω, such that the clique number and
chromatic number of Γ are equal and G ≤ Aut(Γ).

The study of non-synchronizing permutation groups arose from a problem in the
theory of automata, and turns out to have strong connections to certain problems
in combinatorics, finite geometry, and computation (see [1]). It it easy to see
that, if |Ω| > 2, then an intransitive or imprimitive permutation group on Ω
is non-synchronizing. Hence, the interest is in the non-synchronizing primitive
permutation groups.

I have classified the non-synchronizing primitive permutation groups of degree
up to 464. It turns out that, amongst the 3667 primitive permutation groups
having degree in {2, . . . , 464}, exactly 1093 are non-synchronizing. The main tools
used in the classification were:
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• the GAP system [3], in particular its library of primitive permutation
groups;

• the GAP package GRAPE [5], in particular its clique and proper vertex-
colouring functionality;

• a list maintained of certain known or discovered graphs having primitive
automorphism group and clique number equal to chromatic number;

• an approach due to Peter Cameron for primitive groups of affine type of
prime-squared or prime-cubed degree;

• Theorem 1.4 of [2];
• a new hybrid GAP/GRAPE/C program of the author for computing the
cliques with given vertex-weight sum in a graph whose vertices are weighted
with non-zero d-vectors of non-negative integers, which was used for two
cases, employing parallel computation on the Queen Mary Apocrita HPC
facility [4], supported by QMUL Research-IT.

Details of the computations and classification are available from the author.
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Effective estimate for the joint spectral radius

Emmanuel Breuillard

The joint spectral radius R(S) of a finite set of matrices S ⊂Md×d(R) is a quantity
describing the maximal rate of growth of the product set Sn as n grows. If ‖ · ‖ is
a norm on Rd, inducing an operator norm on Md×d(R) then

R(S) := lim
n→+∞

‖Sn‖ 1
n .

This quantity, which is a conjugation invariant and does not depend on the choice
of norm, was introduced by Rota and Strang [8] in the 60’s and appears naturally
in many contexts, often in applied maths (wavelets, symbolic dynamics, ergodic
optimization, control theory, etc.) where the question of estimating R(S) for a
concrete set S arises [7, 9, 6]. To this end an inequality due to J. Bochi [1] relates
the joint spectral radius to the maximal eigenvalue of short words in S:

(1) R(S) ≤ max
k≤k(d)

[
|λ|, λ eigenvalue of some g ∈ Sk

] 1
k ≤ C(d) ·R(S)

www.gap-system.org
http://doi.org/10.5281/zenodo.438045
https://gap-packages.github.io/grape
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where k(d) and C(d) are constants independent of S. Bochi’s proof was not effec-
tive. We provide a different argument, which gives explicit constants:

Theorem 1. [2, Theorem 5] In (1) one can take C(d) = 1 + ǫ, and k(d) ≪ǫ d
3+ǫ

for any ǫ > 0 (with explicit constants). If R is replaced by an ultrametric complete
valued field, then we have equality, i.e. C(d) = 1, and k(d) ≪ǫ d

1+ǫ.

Part of the motivation comes from the study of quantitative forms of the Tits
alternative, see [5, 3, 4], and the wish to elaborate an algorithm to produce explicit
generators of a free subgroup in the subgroup generated by S. Theorem 1 allows
to produce short words with letters in S admitting a large eigenvalue, which is a
basic step in the proof of the Tits alternative. It also yields an effective (although
still too large) value for the constant N(d) in the following theorem:

Theorem 2 ([4], Corollary 3.6). There is N(d) ∈ N such that if S ⊂ GLd(C) is
a finite symmetric set generating an infinite subgroup, then there is an element of
infinite order in Sk, for some k ≤ N(d).
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Subgroup Membership in GL(2,Z)

Markus Lohrey

The subgroup membership problem (also known as the generalized word problem)
for a group G asks whether for given group elements g0, g1, . . . , gk ∈ G, g0 belongs
to the subgroup 〈g1, . . . , gk〉 generated by g1, . . . , gk. To make this a well-defined
computational problem, one has to fix an input representation for elements of G.
Here, a popular choice is to restrict to finitely generated groups. In this case, group
elements can be encoded by finite words over a finite set of generators. The sub-
group membership problem is one of the best studied problems in computational
group theory.
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For a finitely generated free group the subgroup membership problem can be solved
in polynomial time. This can be shown using Stallings’s folding procedure [4].
Moreover, Grunschlag [1] showed that if G is a finite extension of a group H (with
G and H both finitely generated), then there is a polynomial time reduction from
the subgroup membership problem of G to the subgroup membership problem for
H . As a consequence, the subgroup membership problem for every finitely gener-
ated virtually free group can be solved in polynomial time. One of the best known
examples of a finitely generated virtually free group is the group GL(2,Z). We
therefore obtain a polynomial time algorithm for the subgroup membership prob-
lem of GL(2,Z). But this result assumes that elements of GL(2,Z) are represented
by finite words over some fixed set of generators for GL(2,Z). The more natural
representation of elements of GL(2,Z) are 4-tuples of binary encoded integers that
represent (2 × 2)-matrices. From the above discussion, it is not clear whether for
this input representation the subgroup membership problem for GL(2,Z) is still
solvable in polynomial time. When writing the matrix

(
1 n
0 1

)

as a word over some fixed set of generators, the resulting word must have length
Ω(n), which is exponential in the bit length of n. Hence, one cannot switch in
polynomial time from the representation by matrices with binary encoded integers
to the representation by words over generators. Nevertheless we can prove the
following result:

Theorem 1. The subgroup membership problem for GL(2,Z) can be solved in poly-
nomial time when group elements are represented by matrices with binary encoded
integers.

In order to prove this result, we apply a variant of Stallings’ folding procedure
for compressed words that is motivated by work of Gurevich and Schupp [2]. They
present a polynomial time algorithm for the subgroup membership problem in a
free group F (Σ), where elements of the free group are represented by words of the
form az11 a

z2
2 · · · azkk . Here, the ai are from Σ∪Σ−1, i.e., they are single generators,

and the zi are binary encoded integers. Gurevich and Schupp proceed in [2] by
showing that a similar approach also works for the free product Z/2Z ∗ Z/3Z,
which is isomorphic to the modular group PSL(2,Z). As a corollary, they deduce
that the subgroup membership problem for PSL(2,Z) is decidable in polynomial
time when all matrix entries are encoded in binary notation.

In order to apply the approach of Gurevich and Schupp to related groups such
as GL(2,Z), it turns out to be useful to generalize their folding procedure for com-
pressed words. In our variant of Stalling’s folding we allow edges that are labelled
with powers of the form wz for w a word and z a binary encoded integer. This
leads us to a polynomial time algorithm for the subgroup membership problem in
a free group F (Σ), where elements of F (Σ) are represented by words of the form
wz1

1 w
z2
2 · · ·wzk

k . Here, the zi are (as in [2]) binary encoded integers, but the wi are
arbitrary words over the generating set Σ ∪Σ−1 instead of only single generators.



2056 Oberwolfach Report 38/2021

We call this problem the power-compressed subgroup membership problem for the
free group F (Σ). We then proceed to show that the power-compressed subgroup
membership problem can be also solved in polynomial time for every virtually free
group, by extending the polynomial time reduction from Grunschlag’s work [1] to
the power-compressed setting. As a corollary of this we finally obtain Theorem 1.

We also present another application of our power-compressed folding procedure.
In the finite index problem for a group G the goal is to compute the index (an
element of N ∪ {∞}) of a given finitely generated subgroup of G.

Theorem 2. The finite index problem for finitely generated subgroups of GL(2,Z)
can be decided in polynomial time, when elements of GL(2,Z) are represented by
matrices with binary encoded integers.

An extended abstract of this work appeared in [3].
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Base sizes and complexity

Colva M. Roney-Dougal

(joint work with Veronica Kelsey, Mariapia Mosciatiello)

A base for a permutation group G ≤ Sym(Ω) is a sequence β = (α1, . . . , αk) of
points from Ω such that the pointwise stabiliser

Gα1,...,αk
= 1.

We write b(G) for the size of the smallest base for G. The base β is irredundant if

for all i, the stabiliser Gα1,...,αi
properly contains Gα1,...,αi+1

. We write I(G) for
the size of the largest irredundant base for G. It is easy to use the orbit-stabiliser
theorem to show that

b(G) ≤ I(G) ≤ b(G) logn.

There are many examples of groups (for instance, Sn itself) for which b(G) = I(G).
Similarly, Blaha in [1] proved that for infinitely many n, there exists a subgroup
G of Sn with I(G) ≥ 1

3b(G) logn, so up to constants this upper bound is best
possible.

Bases are crucial data structures when working with permutation groups on a
computer, and so bounds on base size can be used to prove various complexity
bounds within computational group theory. Sims proved (see for example [6])
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that given generators for a permutation group G, an irredundant base for G can
be computed in polynomial time.

A primitive group G ≤ Sym(Ω) is large base if there exist integers ℓ ≥ 1, k ≥ 5
and 1 ≤ m ≤ k/2 such that up to permutation isomorphism

Aℓ
k EG ≤ Sk ≀ Sℓ,

where Ω is all ℓ-tuples of m-subsets of {1, . . . , k}. If ℓ = 1 then these groups are
almost simple, otherwise they are of product action type. As the name suggests,
large base groups can have very large bases, but Liebeck proved in [4] that if
G ≤ Sn is primitive and not large base, then b(G) ≤ 9 logn. Moscatiello and the
author [5] have improved this bound, and shown that if G is not the Mathieu group
M24 in its natural action on 24 points, then b(G) ≤ ⌈logn⌉+1. Furthermore, they
classified the groups for which b(G) > logn+ 1: there is one infinite family, plus
some of the other Mathieu groups.

It follows from this, together with the bound I(G) ≤ b(G) logn, that if G is
primitive and not large base then I(G) ≤ 2(logn)2, but recently Gill, Lodà and
Spiga conjectured [2] that for such groups there should exist a constant c such that
I(G) ≤ c logn. In a very recent preprint [3] Kelsey and the author have proved
this conjecture, with c = 5. This bound is correct up to constants, and close to
best possible.

We conclude with an application of this second result. Blaha showed in [1] that
given generators for a subgroup G of Sn, computing a base of size b(G) is NP-hard,
but that in polynomial time the obvious greedy algorithm computes a base of size
O(b(G) log logn). This implies with Liebeck’s result that if G is primitive and not
large base then a base of size O(log n log logn) can be computed in polynomial
time. We now deduce that in polynomial time we can compute a base of size less
than 5 logn.

References

[1] K.D. Blaha, Minimum bases for permutation groups: the greedy approximation, J. Algo-

rithms 13 (1992), no. 2, 297–306.
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Classification of real trivectors in dimension nine

Willem de Graaf

(joint work with Mikhail Borovoi, Hông Vân Lê)

Let F be a field and V = Fn. The elements of
∧3

V are called trivectors of an

n-dimensional space. The group GL(n,C) naturally acts on
∧3

V . The question
is what its orbits are.

In 1978 Vinberg and Elashvili [1] published a classification of the orbits of

SL(9,C) on
∧3

C9. Here we report on our recent classification of the SL(9,R)

orbits on
∧3

R9. The results are contained in the preprints [2] (long version with
full details) and [3] (shorter version intended for publication).

We first say a few words on the set up in [1]. Using Vinberg’s theory of θ-
groups there is a Z/3Z-grading of the simple complex Lie algebra of type E8 by

which we can realize the action of SL(9,C) on
∧3

C9. This provides a Jordan
decomposition of the elements of g1. Accordingly the orbits are divided into three
groups: nilpotent, semisimple and mixed orbits.

In order to classify the real orbits we use Galois cohomology. Let O be an orbit
with a real point y. Then the SL(9,R)-orbits contained in O ∩∧3

R9 correspond
bijectively to the elements of the set H1Cy , where Cy is the stabilizer of y in
SL(9,C).

We use this to classify the real orbits. Each nilpotent orbit has a real represen-
tative. But the semisimple and mixed orbits may not have real points. In both
cases we have developed a method to decide whether a given orbit has a real point
and to find one in the affirmative case. The method for semisimple orbits uses the
H1Γ where Γ is a finite group. The method for the mixed orbits uses the H2Cu,
where u is an element of mixed type.

We encountered some computational problems. The stabilizer Cy is given
by polynomial equations, but we need its structure (for example, its component
group). For this we often used Gröbner bases, using the computer algebra system
Singular. We computed the sets H1Cy by hand, but we are working at an algo-
rithm for that. We used the computer algebra system GAP for working with the
Lie algebra of type E8 and its elements.
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Construction of quasiprimitive permutation groups

Dominik Bernhardt

(joint work with Alice C. Niemeyer, Cheryl E. Praeger)

Finite quasiprimitive permutation groups are transitive permutation groups acting
on a finite set Ω such that each non-trivial, normal subgroup acts transitively on
Ω. Every finite primitive permutation group is a finite quasiprimitive permutation
group, but there are many imprimitive, quasiprimitive permutation groups. In
1993, Cheryl Praeger described in [2] a structure theorem for finite quasiprimitive
permutation groups by analogy to the O’Nan-Scott-Theorem for finite primitive
permutation groups. Coutts, Quick and Roney-Dougal extended various databases
of certain types of primitive permutation groups of small degree to a complete
database of all primitive groups of degree at most 4095, see [1, 3] and references
therein.

In this talk, we present methods to construct finite quasiprimitive, imprimitive
permutation groups, called quimp groups, and as an application present a database
of the quimp groups of degree at most 4095. This extends the database of primitive
groups to a database of all quasiprimitive permutation groups of degree at most
4095.

The classification of quasiprimitive permutation by Cheryl Praeger splits such
groups into 8 distinct classes, 3 of which are always primitive. The remaining 5
cases are almost simple groups (AS type), product action type groups (PA type),
twisted wreath type groups (TW type), simple diagonal type groups (SD type)
and compound diagonal type groups (CD type). Quimp groups of SD and CD type
have degrees larger than 4095 and we only briefly mention methods to construct
them. For the remaining three types, we describe our methods used to construct
these groups.
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The normaliser problem

Mun See Chang

(joint work with Christopher Jefferson, Colva M. Roney-Dougal)

The normaliser problem (Norm) asks for a generating set for NG(H), given gen-
erating sets for subgroups G and H of Sn. Wiebking proved in [8] that, in general,
Norm can be solved in simply exponential time 2O(n), but better bounds exist
by restricting the classes of the input groups G and/or H (see for example [4, 6]).
In particular, if H is primitive, then Norm can be solved in quasipolynomial
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2O(log3 n) [5]. We show that, given subgroups H and G of Sn, in quasipolynomial

time 2O(log3 n), we can decide if NSn
(H) is primitive, and if so output NG(H).

Let Norm-Sym be the problem of computing NSn
(H), given a subgroup H of

Sn. Luks in [3] gives a complexity hierarchy consisting of various combinatorial
and permutation group problems, but we do not yet know where exactly Norm-

Sym sits in the hierarchy. We show that, for a fixed prime p, solving Norm-Sym

for a subgroup H of Spk whose transitive constituents are permutation isomorphic
to Cp is polynomial-time equivalent to computing the monomial automorphism
group of a linear code C ≤ F

k
p. As a corollary, Norm-Sym is at least as hard as

computing the permutation automorphism group of a linear code over F2.
In practice, Norm and Norm-Sym are solved using backtrack search, based

on methods by Leon [2]. Theißen in [7] uses orbital graphs to reduce the search
space. However, we observe that if H acts on each orbit as Cp, orbitals do not
provide useful refinements, and we design a much faster algorithm to compute
normalisers using linear codes. For future work, we are interested in improving
other cases where the normaliser computation is slow, and we aim to implement
these techniques in the graph backtrack framework [1].
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The enumeration of groups of order p
n
q for n ≤ 5

Tobias Moede

(joint work with Bettina Eick)

Let n ≤ 5. We determine functions Nn(p, q) that, evaluated at arbitrary different
primes p and q, yield the number of isomorphism types of groups of order pnq. The
determined functions Nn(p, q) are (generalized) polynomials on residue classes in
p and q.

Our results can be found in [1]. For n ≤ 3 our results agree with [2, 3, 5] up to
some previously known misprints. For n = 4 our results agree with the results
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of [4] with the exception of the number of non-nilpotent groups of order p4q with
normal Sylow q-subgroup. The functions describing groups of order p5q were not
previously known.
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Burnside groups of relatively small odd exponent

Katrin Tent

(joint work with Agatha Atkarskaya, Eliyahu Rips)

In 1902 Burnside asked whether every finitely generated group of finite exponent
is necessarily finite. This question was first answered in the negative in 1964 by
Golod and Shafarevich who constructed an infinite finitely generated torsion group.
However, their example has unbounded exponent raising the question whether the
so-called free Burnside group

B(m,n) = Fm/〈wn : w ∈ Fm〉
of exponent n is finite where Fm is the free group in m generators. For exponent
n = 2, 3, 4 and 6 it is known by work of Burnside, Sanov, and M. Hall that the free
Burnside group is indeed finite for every finite number m of generators. On the
other hand, in 1968 Adian and Novikov gave the first proof that the free Burnside
group B(m,n) is infinite for odd n > 4381. Adian later improved the bound
to odd n > 665 (and fairly recently even announced a proof for odd n > 101).
Together with work of Ivanov in 1992 on the case of even exponent one now
knows that the group B(m,n) is infinite for all m > 1 and all n > 248. The
proofs of Adian and Novikov use a very involved induction process with a long
list of assumptions. Ol’shanski’s more geometric proof in 1982 was important as
it provided a much simplified path, however it applies only for n > 1010. While
arguably the Burnside question has thus long been settled, we believe that it
is indeed important to provide readable and accessible proofs which give useful
lower bounds for the infiniteness of B(m,n), particularly. Not only will it be
useful to have relatively short proofs, but in many cases it is less the result itself
which is needed in applications, but rather the methods that were developed in the
process of proving them. This seems particularly true in the questions surrounding
the Burnside problem. Our proof is based on Rips’ idea to choose a canonical
representative for every coset in B(m,n). This is done inductively using the rank
of a word w ∈ Fm for the induction. Here, we define the rank rk(w) to be at least
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k + 1 if the word w (cyclically) contains a subword of the form v7 for some word
v ∈ Fm with rk(v) ≥ k and we define

Nk = 〈wn : rk(w) ≤ k〉.
The canonical form cank(w) for a word w is a canonical representative for wNk. In
particular, if w,w0 ∈ Fm are such that wNk = w0Nk, then cank(w) = cank(w0).
Furthermore, for any w ∈ Fm, the canonical form stabilizes, i.e. for any w ∈ Fm

there is some k such that cank(w) = canl(w) for all l > k. We define an algorithm
that inductively produces cank(w) for any k. We choose cank(w) to be a relatively
short coset representative. However, we cannot just define cank(w) as the shortest
representative because, intuitively, the canonical form of a relator wn has to be
chosen in such a way that a small change in the word w should result only in a small
change of the canonical form in terms of periodic subwords. This means that we
are looking for a very stable choice of coset representatives. It then follows easily
from the description of the canonical form that every cube-free element of Fm

is already in canonical form. The infiniteness of the Burnside group now follows
immediately from the fact that there are infinitely many cube-free words in two
generators.

For our method to give a relatively short and accessible proof, we currently
need the exponent n to be greater than 297. However, we expect that this can
be much improved. The proof also yields (the previously known result) that the
infinite free Burnside groups are not finitely presented.
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Constructing the absolutely irreducible modules for a finite group

John Cannon

We have developed algorithms that can construct all absolutely irreducible mod-
ules (AIMs) over either a finite field or the complex field for a wide range of
groups. Let G be a finite group and K a field. It is assumed that there are very ef-
ficient methods for splitting a KG-module into irreducibles, testing a KG-module
for irreducibility and determining whether two KG-modules are isomorphic. The
first step is to construct the table of complex characters for G using the method
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described by Bill Unger [3]. The general approach is to use character theory to
identify KG-modules that contain new irreducibles before actually constructing
any modules. These modules are constructed from known KG-modules by opera-
tions such as tensor product, induction, or extension (only in the complex case).

In the modular case it is not assumed that the Brauer characters of G are known
in advance, but as soon as a new irreducible KG-module is found, its Brauer char-
acter is computed. So modules containing new irreducibles are found by applying
the above operations to Brauer characters. The basic AIM algorithm, where K
is a finite field and G is a permutation group, uses the given permutation repre-
sentation to construct a faithful KG-module M and then proceeds by splitting
and tensoring M and selected descendants until all the irreducible modules have
been found. This is guaranteed to find all irreducibles by the Burnside-Steinberg-
Brauer theorem. Recent development of fast algorithms for constructing a faithful
permutation representation of a finite matrix group extends the application of this
permutation group algorithm to finite matrix groups over any ring. The algorithm
can cope with very large groups, of order up to 109 at least, and large numbers of
AIMs. See [1] for details.

An algorithm for complex AIMs developed by Allan Steel is based on techniques
originally developed in his PhD thesis [2]. First, the absolutely irreducible KG-
modules of moderate dimension (typically under 500 over Q or under 50 over a
non-trivial number field) are constructed using a Meataxe-type algorithm using
condensation to split suitable permutation or induced KG-modules. Next, for
each missing KG-module for which its restriction to some maximal subgroup H
is known (by character theory) to be also absolutely irreducible, the appropriate
KH-module is constructed recursively and then extended to the desired KG-
module. Finally, a hybrid method is used to construct any missingKG-modules: in
each case a theoretically defined KG-module is conjugated by modular techniques
to construct an actual KG-module whose restriction to a maximal subgroup H
equals a compact KH-module which has been recursively constructed; this makes
possible the practical computation of large-dimensionKG-modules over non-trivial
number fields such that the resulting matrices have small entries. For example, the
72 absolutely irreducible KG-modules for PSL(3, 8) are computed in two hours,
including dimension-511 modules written over a number field of degree 18.

The correctness of the KG-modules obtained by either method can be tested by
checking that they satisfy the relations of a (strong) presentation for G. Their
characters can also be compared with those in the character table of G.
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Towards a symbolic enumeration of orbits

Tobias Rossmann

Let Un be the group scheme of upper unitriangular n× n matrices. Let G 6 Un

be a unipotent group scheme. Let O be a compact discrete valuation ring with
maximal ideal P. This talk was devoted to the enumeration of the orbits of
G(O/Pm) on its natural module and to the enumeration of the conjugacy classes
of G(O/Pm).

Restricting attention to unipotent groups provides us with a rich structure.
Suppose that G is fixed and that the residue characteristic of O is sufficiently
large. For the enumeration of linear orbits, we can then assume that G is an
abelian group scheme attached to a module of matrices. For the enumeration of
conjugacy classes, we can assume that G is obtained from an alternating bilinear
map by a variant of the classical Baer correspondence. In either case, our counting
problem is naturally related to the study of rank loci within modules of matrices;
apart from classical constructions, this builds upon work of O’Brien and Voll [6].

Enumerating matrices of given rank is known to be a geometrically “wild”
problem [1]. This has interesting consequences for the enumeration of orbits. For
example, one can construct explicit examples of G 6 Un such that the total
number of orbits of G(Fq) on Fn

q is a polynomial in q, but such that the number

of orbits of G(Fq) of size qi (for a suitable fixed i) is not PORC as q ranges
over primes. (For an example, combine [3, §1.7] and [8, §4].) Beyond explicit
constructions, by combining [1] and [9], one can show that there exist examples of
this type in which the non-PORC behaviour is arbitrarily wild in a precise sense.

The main part of the talk revolved around the enumeration of conjugacy classes
by means of generating functions. Drawing upon work of du Sautoy [4], the class-
counting zeta function of a group scheme G over a ring R is the Dirichlet series

ζccG (s) =
∑

I⊳R

k(G(R/I)) |R/I|−s,

where the sum extends over ideals of finite index of R and k(G) denotes the num-
ber of conjugacy classes of a group G. Given G 6 GLn, the study of ζcc

G⊗O
(s) as O

ranges over compact discrete valuation rings is of particular interest. Henceforth, q
denotes the residue field size of O. In many cases of interest, there are “geometric
formulae” for ζcc

G⊗O
(s) that combine finitely many rational functions in q and q−s

and the numbers of (O/P)-rational points of schemes derived from G. Exclud-
ing small residue characteristics, such formulae have been obtained for Chevalley
groups [2] and for unipotent groups [7] in characteristic zero.

As a tentative definition, by a symbolic computation of k(G(O/Pm)) for fixed
G 6 Un and varying O (of large residue characteristic) and m, we mean the ex-
plicit construction of a geometric formula of the aforementioned type for ζcc

G⊗O
(s).

While possible in principle, this definition leads to theoretical and practical issues.
For example, it seems to be unknown whether equality of two such formulae is even
decidable. In practice, many examples of class-counting (and other) zeta functions
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of interest turn out to be uniform in the sense that given G, there exists a sin-
gle rational function W (X,T ) ∈ Q(X,T ) such that for all O (subject perhaps to
restrictions on its characteristic or residue characteristic), ζcc

G⊗O
(s) = W (q, q−s).

In that case, our problem of symbolically enumerating conjugacy classes is tanta-
mount to computing W (X,T ).

Zeta functions enumerating linear orbits and conjugacy classes of unipotent
groups can be usefully regarded as special cases of ask zeta functions [7]. The
latter functions are obtained by averaging over sizes of kernels within suitable
parameterisations of modules of matrices. This averaging operation is related to
the enumeration of orbits via a Lie-theoretic linearisation of the orbit-counting
lemma. The study of ask zeta functions combines established results from p-adic
integration and algebraic duality operations (“Knuth duality”) [8].

The problem of computing class-counting zeta functions has a particularly sat-
isfactory solution for graphical group schemes. Given a graph Γ with distinct
vertices v1, . . . , vn, the associated graphical group scheme GΓ generalises a num-
ber of constructions in the literature. In particular, for an odd prime p, the group
GΓ(Fp) is the maximal quotient of class at most 2 and exponent dividing p of
the right-angled Artin group 〈x1, . . . , xn | [xi, xj ] = 1 whenever vi 6∼ vj〉. Class-
counting zeta functions associated with graphical group schemes turn out to be
uniform in a very strong sense: given Γ, there exists WΓ(X,T ) ∈ Q(X,T ) such
that for each compact discrete valuation ring O as above, ζcc

GΓ⊗O
(s) =WΓ(q, q

−s);
see [9, Cor. B]. Thanks to a constructive proof, these rational functions can be ex-
plicitly computed, at least for small graphs. They also exhibit a rich combinatorial
structure, in particular for cographs [9, Thms C–D].

The final part of the talk contained a brief overview of some further devel-
opments. Topics discussed included Lins’s work [5] on bivariate conjugacy class
and representation zeta functions, steps [3, Thm E] towards understanding class-
counting zeta functions of group schemes derived from free nilpotent Lie algebras,
and the enumeration of conjugacy classes of graphical groups over finite fields [10].
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Refine, Rip, Repeat - Search in permutation groups

Rebecca Waldecker

Improving backtrack search methods for permutation groups. Let G be
a permutation group on a finite set Ω. There are some problems that frequently
occur and that, currently, cannot be solved in polynomial time. For example:
computing the intersection of two subgroups of G, computing the centraliser or
normaliser of a subgroup, or computing the stabiliser of some combinatorial struc-
ture (e.g. a graph or a partition).

The state of the art is to perform a so-called backtrack search, which is based
on a sophisticated strategy to search for the subgroup in question. This happens
in a systematic way and with pruning techniques that keep the search tree as
small as possible. This method was first described by Sims [12] and was used
to calculate element centralisers and conjugacy classes based on a search method
that uses a base and strong generating set. Then it was extended by Leon [7],
inspired by and building on work by McKay [9] on graphs. The infrastructure
of the search changed from group elements to pairs of ordered partitions, with
techniques to refine the partitions, to split the search and to prune the search
tree. Leon describes how to solve problems like the computation of subgroup
intersections, set stabilisers or subgroup normalisers within his framework. His
methods show bad worst case behaviour, but the existing implementations (in
GAP [1] and Magma [2]) often perform very well in practice. There is not much
hope that problems like subgroup intersection or set stabiliser will ever be solved
in polynomial time, given that these problems are at least as difficult as graph
isomorphism ([11]), which is why we focus on improving backtrack methods and
effective pruning. Theißen demonstrated in his thesis [13] how the performance of
normaliser computation can be improved by using orbital graphs. This inspired us
to systematically use orbital graphs for refinement during a backtrack search with
ordered partitions (joint work with Chris Jefferson and Markus Pfeiffer). Our new
refiners in [4] proved to be very effective for several typical search problems – in
fact our experiments show that performance can be improved by several orders of
magnitude for a range of typical problems. Our results lead to several questions:

(1) Could the search be sped up even more by changing the infrastructure of
the search tree, away from ordered partitions?

(2) As orbital graphs are not always effective for refinement, we might inves-
tigate other types of graphs. But which ones will be most useful and what
are the costs of computing them?

(3) Where are the bottlenecks?
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It came as a surprise that, with the new refinement methods, the search involves
almost no branching anymore and therefore the algorithms spend most of their
time computing stabiliser chains. More substantial progress will therefore depend
on faster calculations for stabiliser chains or on ideas that reduce the number of
stabiliser chains that need to be computed.

Next we worked on changing the search infrastructure from ordered partitions
to stacks of labelled digraphs (joint work with Chris Jefferson, Markus Pfeiffer,
and Wilf Wilson, see [6] and [10]). Instead of a search tree where the nodes are
pairs of ordered partitions of Ω, we now use pairs of stacks of labelled digraphs
with vertex set Ω. One of the advantages is that more information can be used
for refinement simultaneously, and hence the existing, very fast algorithms for the
computation of graph isomorphisms become even more useful. As in [4], the work
in [6] is also accompanied by extensive experiments.

Ongoing and future work. We aim at improving calculations for stabiliser
chains (Chris Jefferson, Ruth Hoffmann and others) because there is now sub-
stantial evidence that this is a new bottleneck. Also, we want to develop a more
conceptual approach to refiners (Chris Jefferson and Wilf Wilson). Therefore, if a
new search infrastructure is designed and if it uses a refining technique, then our
results about the quality of refiners will likely be applicable in this new context.
Indeed, we plan to explore more variety in our backtrack search infrastructure.
Among other things, this is relevant for the calculation of normalisers (Chris Jef-
ferson, Mun See Chang, Wilf Wilson). While the computation of normalisers is
often possible inMagma with impressive speed, there is still room for improvement
in GAP, and we believe that our methods from [6] can be successfully extended
in the direction of faster normaliser calculation. Quite a few examples suggest
that the addition of extra vertices to the graphs that we use, and an appropriate
adaptation of our methods, will lead to substantial improvements. There is also
a direct connection between stabiliser problems and conjugacy problems, another
class of typical problems with many applications. This ties into our work on min-
imal and canonical images ([5]), and there is yet unpublished related work that
will contribute to the new GAP package vole (see [10]).

Finally, I would like to encourage the community to inform me (or Chris Jef-
ferson or Ruth Hoffmann) of examples of hard problems, so that we can challenge
the strength of our methods and begin to create a library of examples (for example
on the website GrpLib, see [10]) against which future developments can be tested.
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Hessian matrices, automorphisms of p-groups, and torsion points of
elliptic curves

Christopher Voll

(joint work with Mima Stanojkovski)

In my talk I reported on [6]. In this paper, we compute the orders of the au-
tomorphism groups of finite p-groups arising naturally via Hessian determinantal
representations of certain elliptic curves defined over number fields. We interpret
these orders in terms of the numbers of 3-torsion points (or flex points) of the
relevant curves over finite fields. Our work greatly generalizes and conceptualizes
previous examples given by du Sautoy and Vaughan-Lee [2]. It explains, in par-
ticular, why the orders arising in these examples vary with the primes in a “wild”,
viz. nonquasipolynomial, manner.

The following is a condensed summary of our main results. Given an elliptic
curve E and n ∈ N, we denote by E[n] the n-torsion points of E and write AutO(E)
for the automorphism group of E.

Theorem 1. Let E be an elliptic curve over Q and let F be a finite field of odd
characteristic p over which E has good reduction. Assume that |E[2](F )| = 4.
Then there exist p-groups G1(F ), G2(F ), and G3(F ) such that the following hold:

(1) each Gi(F ) is a group of order |F |9, exponent p, and nilpotency class 2;
(2) for each i = 1, 2, 3, there exists Ti ≤ E ⋊AutO(E) such that

|Aut(Gi(F ))| = |F |18 · |GL2(F )| · |Ti(F )| · |Gal(F/Fp)|.
Moreover, if δ ∈ F \ {0} is such that E = Eδ is given by y2 = x3 − δx over F ,
then

|Ti(F )| = |Eδ[3](F )| · gcd(|F | − 1, [⌈4/i⌉])
and, for i 6= j, the groups Gi(F ) and Gj(F ) are isomorphic if and only if {i, j} =
{2, 3} and p ≡ 1 mod 4. Any two groups associated with distinct values of δ are
non-isomorphic.

https://arxiv.org/abs/1911.04783
https://peal.github.io/
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We remark that, at least apart from characteristic 3, Theorem 1 covers all elliptic
curves over Q with j-invariant 1728.

We record an arithmetic implication pertaining to groups of the form Gi(Fp)
as p varies over the set of rational primes Π. Recall, e.g. from [1] or [3], that
a set of primes is a Frobenius set if it is a finite Boolean combination of sets of
primes defined by the solvability of polynomial congruences. A function f : Π →
Z is Polynomial On Frobenius Sets (POFS ) if there exist a positive integer N ,
Frobenius sets Π1, . . . ,ΠN partitioning Π, and polynomials f1, . . . , fN ∈ Z[T ] such
that the following holds: p ∈ Πj ⇐⇒ f(p) = fj(p).

Corollary 1. Let δ ∈ Z and consider E = Eδ as in Theorem 1. Let i ∈ {1, 2, 3}
and assume that δ ∈ Z is the square of an integer if i 6= 1. Then the function
p 7→ |Aut(Gi(Fp))| is POFS.

Special groups of the form discussed in Theorem 1 (viz. for E = E1, F = Fp and
i = 1) were studied in [2], mainly with a view towards their immediate descendants,
viz. specific groups of order p10 arising from these groups via the p-group generation
algorithm [4]. The relevant special case of Corollary 1 was known to the authors
of [2]; see (the remarks following) [6, Theorem 1.2]. They also established that,
in the special case they studied, the function in Corollary 1 is not Polynomial On
Residue Classes (PORC ) (or quasi- or pseudo-polynomial, in combinatorialists’
parlance). One of the main contributions of [6] is to connect the variation of
the orders of the relevant automorphism groups with the structure of the group of
3-torsion points E[3] of the elliptic curve E, affording an arithmetic interpretation.

We obtain the groups Gi(F ) in Theorem 1 from the elliptic curve E in two steps.
First we construct three Hessian linear determinantal representations of E, viz.
Hessian 3 × 3-matrices Bi(y1, y2, y3) of linear forms in variables y1, y2, y3 whose
determinants each define E. More precisely, if f is a homogeneous cubic polyno-
mial defining E as projective curve, it is well-known—essentially by work of Hesse
from 1844—that the Hessian equation

αf = Hes(βf +Hes(f))

has exactly three solutions (α, β) ∈ C2, yielding pairwise inequivalent linear sym-
metric determinantal representations of f over the complex numbers C. Here, the
Hessian (polynomial) Hes(g) of a cubic polynomial g is the determinant det(H(g))

of the Hessian matrix H(g) =
(

∂2g
∂yi∂yj

)

ij
associated with g. Each of these three

solutions gives rise to a Hessian matrix Bi.
Second we associate, in case E is defined over Q, with each of the matrices Bi

a 9-dimensional unipotent group scheme Gi = GBi
, each defined over a suitable

finite extension of Q. Informally speaking, the matrices Bi encode the commuta-
tor structures of the resulting groups of rational points. These groups may also
be interpreted as Heisenberg groups over commutative algebras whose structure
constants are encoded in the matrices Bi.

To prove Theorem 1 we determine which automorphisms of the elliptic curve E
are induced by automorphisms of the p-groups Gi(F ). For E = Eδ, we study the
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realisability of translations by 3-torsion points of Eδ by elements of PGL3(F ), viz.
(Aut P2)(F ). We first show that the only translations of Eδ that lift to PGL3(F )
are those coming from 3-torsion points and then see to the actual realisability of
these as linear transformations. A similar phenomenon is discussed in [5, Rem. B]:
under suitable assumptions, translations by n-torsion points of genus one curves
embedded into Pn−1 are induced by linear automorphisms of Pn−1.
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Free group homomorphisms and the Post Correspondence Problem

Laura Ciobanu

(joint work with Alan Logan)

The Post Correspondence Problem (PCP) is a classical problem in computer sci-
ence that can be stated as: is it decidable whether, given two morphisms g and
h between two free monoids A and B, there is any nontrivial x ∈ A such that
g(x) = h(x)? This question can be phrased in terms of equalisers, asked in the
context of free groups F1 and F2, and expanded: if the equaliser Eq(g, h) of g and
h is defined to be the subgroup consisting of all x where g(x) = h(x), that is,

Eq(g, h) = {x ∈ F1 | g(x) = h(x)},
it is natural to wonder not only whether the equaliser is trivial, but what its rank
or basis might be.

While the PCP for monoids is famously insoluble [5] and acts as a source of
undecidability in many areas of computer science and mathematics, the PCP for
free groups is open, as are the related questions about rank, basis, or further
generalisations. However, in our work we show that there are links and surprising
equivalences between these problems in free groups, and classes of maps for which
we can give complete answers.

1. Marked morphisms

Suppose Σ,∆ are finite sets. A set of words s ⊆ ∆∗ is marked if any two distinct
u, v ∈ s start with a different letter of ∆, which implies |s| ≤ |∆|. A free monoid
morphism f : Σ∗ → ∆∗ is marked if the set f(Σ) is marked. An immersion of
free groups is a morphism f : F (Σ) → F (∆) where the set f(Σ ∪Σ−1) is marked.
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Halava, Hirvensalo and de Wolf [3] showed that PCP (for free monoids) is decidable
for marked morphisms. In [1], inspired by their methods, we were able to obtain
stronger results (Theorem 1) for this kind of map, as well as expand to the world
of free groups (Theorem 2), where we employ ‘finite state automata’-like objects
called Stallings graphs.

Theorem 1. If S is a set of marked morphisms from Σ∗ to ∆∗, then there exists a
finite alphabet ΣS and a marked morphism ψS : Σ∗

S → Σ∗ such that Image(ψS) =
Eq(S). Moreover, for S finite, there exists an algorithm with input S and output
the marked morphism ψS.

Corollary 1. The simultaneous (for a set of morphisms, rather than just a pair)
PCP is decidable for marked morphisms of free monoids.

Theorem 2. If S is a set of immersions from F (Σ) to F (∆), then there exists a
finite alphabet ΣS and an immersion ψS : F (ΣS) → F (Σ) such that Image(ψS) =
Eq(S). Moreover, when S is finite, there exists an algorithm with input S and
output the immersion ψS.

Corollary 2. The simultaneous (for a set of morphisms, rather than just a pair)
PCP is decidable for immersions of free groups.

2. Variations on the PCP

We write PCPI for the PCP with at least one map injective, in which case the
subgroup Eq(g, h) is finitely generated and a finite description relates to bases: The
Basis Problem (BP) takes as input a tuple (Σ,∆, g, h), where g, h : F (Σ) → F (∆),
and outputs a basis for Eq(g, h). In [2] we show that the BP is equivalent to the
Rank Problem (RP), which seeks the number of elements in a basis, and was
asked by Stallings in 1984. Recent results settle the BP for certain classes of free
group maps [1], but despite this progress its solubility remains open in general.
The analogous problem for free monoids, which we call the Algorithmic Equaliser
Problem (AEP) because it aims to describe the equaliser in terms of automata
rather than bases, is insoluble by work of Saarela.

Moreover, in [2] we consider the generalised PCP (GPCP), which is an im-
portant generalisation of the PCP for both free groups and monoids. For group
homomorphisms g, h : F (Σ) → F (∆) and fixed elements u1, u2, v1, v2 of F (∆), the
GPCP asks if, given an 8-tuple (Σ,∆, g, h, u1, u2, v1, v2), there is an x ∈ F (Σ)\{1}
such that u1g(x)u2 = v1h(x)v2. For free monoids, the PCP is equivalent to the
GPCP. The corresponding connection for free groups is more complicated, and
explaining this connection is the main motivation of our work in [2]. In particu-
lar, the GPCP for free groups is known to be undecidable [4, Corollary 4.2] but
this proof does not imply that the PCP for free groups is undecidable (because of
injectivity issues). In [2] we connect the PCP with the GPCP in free groups via a
sequence of implications, and require at least one map to be injective.
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3. Open questions

As mentioned in my lecture, the PCP remains open for free groups, even in the
rank 2 case. The GPCP is also open if we require at least one map to be injective.
There are numerous other problems related to PCP where the decidability status
is not known.

However, in the case where decidability was established, such as for marked
morphisms (in free monoids) and immersions (in free groups), the next step is to
implement the algorithms that solve PCP. At the moment the complexity appears
to be exponential, but there are standard tools, like Stallings foldings, that need
to be widely available and usable in a range of contexts, including PCP. We hope
that we will make progress in this directions in terms of concrete computations.
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Concise presentations and subdirect products of groups

Martin Bridson

It is easy to see that certain groups are finitely presented, for example finite groups,
finitely generated abelian groups, and polycyclic groups. In more geometric set-
tings, finite presentations arise from proper co-compact actions on simply con-
nected manifolds or cell complexes. But in situations where one does not have
an obvious way of constructing a presentation or a proper co-compact action on a
suitable space, determining finite presentation can be a delicate question; SL(d,Z),
mapping class groups of surfaces, and finitely generated metabelian groups provide
instructive examples of how non-obvious presentations might be identified in such
circumstances, while the difficulty of the challenge is illustrated by the fact that
there is no algorithm that can determine which finite subsets of a direct product
of two free groups generate finitely presented subgroups.

The train of ideas that begins with the 1-2-3 Theorem of [1] and culminates
in the VSP Theorem of [3] (recalled below) provides new criteria for recognising
finitely presented groups and constructing finite presentations. The Binary Sub-
group construction described below is an outgrowth of this train of ideas. It relies
on insights that were developed in the quest to understand groups that embed
in direct products of free groups, surface groups and, more generally, residually
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free groups. In a series of papers leading to [2, 3], the structure of such groups
was shown to be determined to a large extent by the finiteness properties of the
group. For the purposes of this talk, the most relevant finiteness property, beyond
finite presentation, is the following: a finitely generated group G is weakly of type
FPk(Z) (abbreviated wFPk) if Hi(G0,Z) is finitely generated for all i ≤ k and all
G0 < G of finite index.

Binary Subgroups: I will concentrate on two particular instances of a general
construction. The construction can be varied, for example, by replacing the bi-
nary expansions of 1, . . . ,m with other sets of m distinct binary expansions. The
finiteness of the resulting group and its co-nilpotency class (the least c such that
γc(F

m) < B) will vary with the sets chosen.
Let F = F (a1, . . . , ar) be a free group of rank r and let Fm be its m-th direct

power. We consider two subgroups B0(m) < B1(m) < Fm. The subgroup B0(m)
is generated by the r⌊1+log2m⌋ elements ai,j defined as follows: consider the array
with m columns and ⌊1 + log2m⌋ rows where column k is the binary expansion
of k, with units at the top; for j = 0, . . . , ⌊log2m⌋ let εj(m) be the word in the
alphabet {0, 1} that is the j-th row; we treat εj(m) as a multi-index and, for each
ai, define ai,j ∈ Fm to be the element obtained by raising ai to this index, with
the convention a1i = ai and a

0
i = 1 (the identity). For example, when m = 18, the

array gives 5r words, including, from row ε1,

ai,1 = (1, ai, ai, 1, 1, ai, ai, 1, 1, ai, ai, 1, 1, ai, ai, 1, 1, ai).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
ε0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
ε1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
ε2 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
ε3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
ε4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Let B1(m) = 〈B0, δ1, . . . , δr〉 < Fm, where δi := (ai, . . . , ai). We use the stan-
dard notation for the lower central series, γ1(G) = G and γc+1(G) = [G, γc(G)].

Theorem 1. For the direct power Fm
r , with r ≥ 2,m ≥ 3,

(1) the rank of B0(m) is r(⌊1 + log2m⌋);
(2) the rank of B1(m) is r(⌊2 + log2m⌋);
(3) B0(m) contains γm−1(F

m);
(4) B1(m) contains γc(F

m), where c = ⌊1 + (m− 1)/2⌋;
(5) B0(m) is finitely presented but not of type wFP3;
(6) if m ≤ 4 then B1(m) = Fm;
(7) if m ≥ 5 then B1(m) is finitely presented, type FP3 but not wFP4;
(8) ∀c ∃ polynomial pc(m) s.t. m > pc(log2m) =⇒ γc(F

m) 6⊆ B1(m).
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Concise Presentations: Zm requiresm generators and n(n−1)/2 = rkH2(Z
n,Z)

relators. But when one removes the homological obstructions to requiring fewer
generators and relators, the improvements are dramatic. Philip Hall initiated
the study of economical generating sets for direct powers of finite perfect groups
and the theory was subsequently developed by Jim Wiegold and others to cover
infinite groups. The statement about the growth of generating sets in the following
theorem is proved in this literature, the statement about relators is new [4]. Here,
d(K) is the minimal number of generators that a group K requires and ρ(K) is
the least number of relators in any presentation.

Theorem 2. Let G be a finitely presented group. If H1G = H2G = 0, then
d(Gm) = O(logm) and ρ(Gm) = O(logm)3.

Theorem 1 allows us to extend the statement about d(Gm) to cover direct
products of distinct groups. The group B in the following theorem is the image of
B0(m) < Fm

r under the obvious epimorphism.

Theorem 3. For all G1, . . . , Gm with d(Gi) ≤ r, let D := G1 × · · · ×Gm. Then

∃B < D with d(B) ≤ r⌊1 + log2m⌋ and γm−1(D) < B.

If the Gi are finitely presented, then so is B.

Corollary 1. For Gi perfect, if d(Gi) ≤ r then d(G1×· · ·×Gm) ≤ r⌊1+ log2m⌋.
Background: The proof of Theorem 1 relies on the following results. Recall that
a limit group is a finitely generated group Λ that is fully residually free: for every
finite X ⊂ Λ there exists a homomorphism φ : Λ → F2 that is injective on X .
Fundamental groups of compact orientable surfaces are limit groups. Recall too
that a subgroup of a direct product is termed a subdirect product if it projects onto
each of the direct factors, and is full if it intersects each factor non-trivially.

Theorem 4 ([2]). Let D = Λ1, . . . ,Λm be product of non-abelian limit groups and
S < D a finitely presented, full sub-direct product. Then

(1) pij(S) < Λi × Λj has finite index for 1 ≤ i < j ≤ m;
(2) for some D0 < D of finite index, γm−1(D0) < S;
(3) [D : S] = ∞ =⇒ S is not of type wFPk, some k ≤ m.

Point (3) was improved by Kochloukova [5] and Kuckuck [6]:

Theorem 5. For 2 ≤ k ≤ m, a full subdirect product of non-abelian limit groups
S < Λ1 × · · · × Λm virtually surjects each k-tuple of factors iff it is wFPk.

The converse to (1) holds in great generality.

Theorem 6 (VSP Theorem [3]). Let S < D := G1 × · · · × Gm be a subdirect
product of finitely presented groups. If S satisfies VSP, that is pij(S) < Gi ×Gj

has finite index for 1 ≤ i < j ≤ m, then

(1) S is finitely presented;
(2) γm−1(D0) < S, some D0 < D of finite index;
(3) S is closed in the profinite topology.
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Moreover, ∃ algorithm that given finite presentations of Gi and a finite set Σ ⊂
G1 × · · · ×Gn will construct finite presentation of S = 〈Σ〉 if S has VSP.

The algorithm alluded to here is explicit and I would be interested in having a
practical implementation of it that covers at least the case where the Gi are free
and surface groups and the projections to pairs are surjective.
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Condensing the Steinberg module

Gerhard Hiss

(joint work with Thomas Breuer, Frank Lübeck and Klaus Lux)

This work is part of the Modular Atlas project, whose aim is the computation of
the Brauer character tables associated to the finite simple groups included in the
Atlas [1], henceforth called the Atlas groups. By an associated Brauer character
table of a simple group G we understand a Brauer character table of the universal
covering group of G (which includes the Brauer character table of G), or of the
automorphism group of G.

A first portion of these tables, comprising all groups up to the sporadic simple
group of McLaughlin, is contained in [4]. Since the publication of this volume,
new tables have been computed, which are available online at

http://www.math.rwth-aachen.de/homes/MOC/.

Currently, there are 13 simple Atlas groups, of which 7 are sporadic groups, for
which not all of the associated Brauer character tables are known.

The work presented here began in 2018. At that time, the smallest non-sporadic
simple Atlas group with an unknown Brauer character table was F4(2), the auto-
morphism group of a simple Lie algebra of type F4 over the field with 2 elements.
This group has a universal covering group 2.F4(2) and an automorphism group
F4(2).2. There are also bicyclic extensions of shape 2.F4(2).2.

Using Steinberg’s tensor product theorem, Veldkamp in [10] determined the
Brauer character table of F4(2) in characteristic 2. In [11], White computed the

https://doi.org/10.1090/proc/13991
http://www.math.rwth-aachen.de/homes/MOC/
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Brauer character tables for blocks of 2.F4(2) with cyclic defect groups. The re-
maining Brauer character tables for 2.F4(2) were established in [3], up to some
unknown parameters in characteristic 3.

This talk reports on the resolution of this open case by condensing the Steinberg
module of F4(2). In [9] Steinberg constructed, for any finite group G with a split
BN -pair of characteristic p and any integral domain Θ, a ΘG-module St, now
called the Steinberg module of G over Θ. This is free as a Θ-module, and its
Θ-rank equals the order of a Sylow p-subgroup of G. An explicit basis of St is
given in [9], as well as formulae for the entries of the matrix which represents, with
respect to this basis, the action of an element of G on St.

Let now G := F4(2) and Θ := F3. We could conclude from our results in [3] that
the knowledge of the composition multiplicities in the Steinberg module St of F3G
would be enough to complete the Brauer character table of the principal 3-block
of G. (The Brauer character tables for the non-principal 3-blocks of 2.G could be
determined by more elementary means.) Now St has dimension 224 = 16 777 216,
which is too large for a direct attack with Richard Parker’s MeatAxe64 [7].

To overcome this difficulty, we used condensation methods. As a condensation
subgroup we took K = Z(UP ), where UP is the unipotent radical of a parabolic
subgroup P of F4(2) of type C3. Now K has order 27, and condensing St with the
trace idempotent ι := 1/|K|∑x∈K x corresponding to K yields the ιF3Gι-module

ιSt of dimension 217 = 131 072, which is feasible for the MeatAxe64. (It is perhaps
worthwhile to remark that an analogous condensation subgroup does not exist for
the groups F4(q) for odd q. If P denotes a parabolic subgroup of F4(q) of type C3

and UP its unipotent radical, then |Z(UP )| = q7 if q is even, and |Z(UP )| = q, if
q is odd.)

Let X ⊆ G be such that X contains a set of representatives for the P -P double
cosets in F4(2) as well as a generating set of P modulo K. Then, according to
Noeske’s criterion [6], the condensation algebra ιF3Gι is generated, as an F3-
algebra, by the elements ιxι, x ∈ X . A set X with these properties, containing
eleven non-trivial elements, is easily found using the Chevie system [2], largely
employing Jean Michel’s extensions of Chevie [5]. These are also used to compute
the condensed matrices for these eleven elements, i.e. matrices for the action of
ιxι, x ∈ X on ιSt. One such condensed matrix requires approximately 2.5 GB of
memory.

Richard Parker chopped the condensed module ιSt into smaller modules of
dimensions around 40 000. These remaining modules were chopped using the C-
MeatAxe written by Michael Ringe [8]. This gives a composition series of ιSt as
a ιF3Gι-module. From the bounds on the parameters given in [3] we can easily
check that ι S 6= 0 for every composition factor S of St. Thus the composition
multiplicities in St and in ιSt agree, yielding our result.

As to the Brauer character tables for the groups F4(2).2 and 2.F4(2).2, there
are some open problems which we hope to resolve in the near future.
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Summary of the Problem Session

Laura Ciobanu.
As already mentioned, the PCP remains open for free groups, even in the rank 2
case. The GPCP is also open if we require at least one map to be injective. There
are numerous other problems related to PCP where the decidability status is not
known. However, in the case where decidability was established, such as for marked
morphisms (in free monoids) and immersions (in free groups), the next step is to
implement the algorithms that solve PCP. At the moment the complexity appears
to be exponential, but there are standard tools, like Stallings foldings, that need
to be widely available and usable in a range of contexts, including PCP. We hope
that we will make progress in this directions in terms of concrete computations.

We now list some questions about commutators in linear groups. Suppose G is
an infinite linear group, such as SL(n,Z) or GL(n,Z), n ≥ 2.

Question 1. Is it possible to decide whether given a matrixM in the group G, M
can be written as the commutator of two other matrices in G, that is, M = [A,B],
where A,B ∈ G?

Question 2. If the answer to Question 1 is positive, what it the complexity of
the algorithm and can this be implemented for small n?

The context for Questions 1 and 2 is that there is a nice algorithm for free
groups due to Wicks: an element w over the generators X of a free group F (X)
is the commutator of two other elements in F (X) if and only if the reduced word

https://meataxe64.wordpress.com/
http://www.math.rwth-aachen.de/~MTX/
http://www.math.rwth-aachen.de/~MTX/
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representing w has the form (up to cyclic permutations)

α ◦ β ◦ γ ◦ α−1 ◦ β−1 ◦ γ−1,

where α, β, γ are reduced words over X and ◦ denotes the fact that no cancellation
is possible between neighbouring words.

Thus being able to decide whether a matrix M in a linear group G belongs to
a free subgroup (with known generators) is enough to answer the questions above.
A computational version of the Tits alternative would help with this part, and
this leads to the following.

Question 3. Given a linear groupG and matrixM ∈ G, is it possible to determine
whether M belongs to a (non-trivial) free subgroup of G, and if the answer is
positive, find the basis of this free subgroup.

For n = 2 the matrix groups will be virtually free, that is, they contain a
free subgroup of finite index, and the questions here are known to be decidable.
However, using matrices directly instead of generators for SL(2,Z) or GL(2,Z)
presents an interesting additional challenge. For n ≥ 3 nothing appears to be
known regarding any of the questions.

Finally, Question 1 is known to be undecidable in (examples of) nilpotent groups
of class 2 by work of Roman’kov, so this is a difficult question for arbitrary groups.

Bettina Eick.
The classification of p-groups of maximal class is a long standing problem in
group theory. It was initiated by Blackburn who obtained a full classification
for p ∈ {2, 3}. For primes p ≥ 5 this classification has been investigated in many
publications and it is still widely open.

Leedham-Green & McKay introduced the constructible groups. These form an
large and important subset of the groups of maximal class. Their construction
translates the isomorphism problem for these groups to an interesting problem in
algebraic number theory.

To describe the algebraic number theory setting in detail, write Qp and Zp for
the p-adic rational and integral numbers, respectively, let θ be a primitive p-th root
of unity over Qp and let K = Qp(θ). Let U denote the unit group of the maximal
order of K and let G be the split extension of U by the Galois group of K. Then
there is a full Zp-lattice Γ in the vector space K(p−3)/2 so that the isomorphism
problem for constructible groups translates to the problem of determining orbits
of the infinite group G on the finite quotients (θ − 1)nΓ/(θ − 1)n+eΓ. Details on
the translation can also be found in a recent paper by Dietrich & Eick.

It is an open problem to investigate these orbits by computational methods for
varying n and e. For example, it would be useful to have methods to compute
with algebraic number fields over Qp, their unit groups and Galois groups.

Meinolf Geck and Gunter Malle.
The Cambridge ATLAS and/or the libraries of computer algebra systems like GAP
and Magma contain the character tables of some of the finite Chevalley groups
of exceptional type, like F4(2). Of course, eventually, we would like to construct
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the “generic” character table for the underlying infinite family of groups, i.e., in
this case F4(2

f) for any integer f ≥ 1. The theoretical framework for doing this
is provided by Lusztig’s geometric character theory, developed in the 1980s; see
[3] for a recent survey. Now, certain issues arising in the “generic” context can
be resolved using explicitly computed information for individual members of those
infinite families; see [1], [2] for examples of this procedure. Thus, while posing an
interesting computational challenge in itself, the knowledge of the character tables
of individual groups like F4(2) is also very helpful from a theoretical point of view.
As far as yet unknown character tables of Chevalley groups of exceptional type
are concerned, we find the following numbers for their sizes:

|Irr(F4(3))| = 273, |Irr(E6(3))| = 1269, |Irr(2E6(3))| = 1389,

|Irr(E7(2))| = 531, |Irr(E7(3)sc)| = 5052,

|Irr(E8(2))| = 1156, |Irr(E8(3))| = 12825, |Irr(E8(5))| = 519071.

(This list appears in [3, App. A.3]; it is compiled using Lübeck’s online data [4].)
Thus, it might be within reach to determine the individual character tables of
F4(3) and E7(2) . . .
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Tommy Hofmann.
The following problem makes an appearance when investigating algorithmic ques-
tions related to a theorem of Eichler from number theory. Let G = 〈g1, . . . , gl〉 ≤
GLn(Fq) be a finite matrix group, v ∈ Fn

q and w ∈ G.v an element of the orbit of
v under G. Is there an efficient way to find an element g ∈ G, as a word in the
generators g1, . . . , gl, such that g.v = w? If not, is there an affirmative answer in
the case G = GLn(Fq)? In typical applications n is small and q will be large so
that an orbit enumeration or a naive search is infeasible.

Alexander Hulpke.
I hope this is somewhat a minimal formulation of a problem, which of course has
obvious extensions.

Let G = 〈g1, g2, . . . , gk〉 ≤ SLn(Z). A useful class of homomorphisms defined
on G are congruence homomorphisms. For n ≥ 3 and [SLn(Z) : G] finite, every
homomorphism from G onto a finite group factors through such a congruence
homomorphism, but we do not assume that this index is finite. (In fact, the
reason for the question is an attempt to use noncongruence homomorphisms to
certify infinite index in some cases.)

http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/index.html
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Now let H be a small finite group – already the case of |H | = 2 is interesting.
Suppose someone (an unreliable oracle) gave us a map, defined on the generators
of G, that maps these generators to a generating set of H . Is there any way to
test/verify whether this map extends to a homomorphism? (Of interest is of course
the case when it does not factor through a congruence homomorphism.)

Christopher Jefferson, Rebecca Waldecker, and Mun See Chang.

Question. Let G ≤ Sym(Ω). We say that a vertex and edge coloured graph Γ
with vertex set V ⊇ Ω and edge set E represents G if and only if the automorphism
group Aut(Γ) satisfies:

• Ω is a union of orbits of Aut(Γ), and
• the restriction of Aut(Γ) to Ω is G.

What is the smallest graph (where size is measured as |V |+|E|) which represents
a group G?

Example. Consider the group G = 〈(1, 2, 3), (1, 2), (1, 4)(2, 5)(3, 6)〉. This group
can be represented by the graph with vertex set {1, 2, . . . , 8} and edge set

{{1, 7}, {2, 7}, {3, 7}, {4, 8}, {5, 8}, {6, 8}}.
The automorphism group of this graph is 〈(1, 2, 3), (1, 2), (1, 4)(2, 5)(3, 6)(7, 8)〉.

Background. When solving problems such as group intersection, stabiliser and
normaliser, a standard technique which keeps appearing is approximating permu-
tation groups as the automorphism groups of various combinatorial structures –
where “approximation” means that these automorphism groups are supergroups
of the groups we want to consider.

Leon [4] approximated groups by considering the automorphisms of ordered
partitions.

This was recently extended by approximating permutation groups on a set Ω
with the automorphism group of an edge-labelled directed graph on Ω [3]. Such
an approximation works perfectly if G is 2-closed, because then we just use the
orbital graphs.

The implementation of [3] allows adding extra vertices – these are currently
used in various constructions:

• We can build graphs whose automorphism group is the stabiliser of com-
binatorial objects such as sets of sets, or sets of tuples – in general any
data structure recursively built from sets and tuples.

• The normaliser of a group G stabilises the set of orbital graphs of a group
G. This cannot, in general, be represented as a graph on Ω, so previous
work in this area by Theißen [7] had to find a single orbital graph (or union
of small number of orbital graphs) which is stabilised by the normaliser.
We can instead build a larger graph whose automorphisms are exactly
those permutations which stabilise the set of orbital graphs.
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• Some permutation groups are not 2-closed, but are 2-closed with respect
to a different action. For example, consider the set S of images of the set
{1, 2, 3} under the group G=TransitiveGroup(20,1024). Now |S| = 40,
and the action of G on S is faithful. Furthermore, G is 2-closed with
respect to this action.

We know that for all groups we can built such graphs, but the general con-
struction is O(|G|). We can also produce some lower bounds, for example the
alternating group on n points cannot be represented with a number of extra ver-
tices that is polynomial (in n).

We are interested in a variety of sub-questions, including:

(1) Which classes of groups can be represented with graphs where |V |+ |E| is
O(|Ω|), O(|Ω| log(|Ω|)), or a low-order polynomial in |Ω|?

(2) What methods are used to make such constructions?
(3) How can we quickly find such representations?
(4) Where the group cannot be compactly represented, can low-index super-

groups be represented? For example, in practice we often find that sub-
groups of the alternating group cannot be represented, but index-2 super-
groups can be.
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Tobias Rossmann.
Let Γ be a (finite, simple) graph with distinct vertices v1, . . . , vn. Let p be an odd
prime. Define a p-group

GΓ(Fp) :=
〈
x1, . . . , xn | [xi, xj ] = 1 whenever vi 6∼ vj ,

class ≤ 2, exponent dividing p
〉
;

these groups go by various names in the literature.
What does the ordinary representation theory of GΓ(Fp) look like? In partic-

ular, given Γ and i ≥ 1, how does #{χ ∈ Irr(GΓ(Fp)) : χ(1) = pi} behave as a
function of p?
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This problem is equivalent to counting matrices of given rank in MΓ(Fp) := {A =
[aij ] ∈ Mn(Fp) : A = −A⊤, aij = 0 whenever vi 6∼ vj} as a function of p. It is
known that the number of conjugacy classes of size pi of GΓ(Fp) is given by a
polynomial in p (for fixed Γ and i).

James B. Wilson.
Question. Let K be a field and U1, . . . , Uℓ finite-dimensional K-vector space.
Given t ∈ U1 ⊗ · · · ⊗ Uℓ, decide if there is an n > 4 and a homomorphism ρ :
Alt(n) → GL(U1)× · · · ×GL(Uℓ) such that for each x ∈ Alt(n),

t(ω1 ⊗ · · · ⊗ ωℓ) = t, ρ(x) = (ω1, . . . , ωℓ).

Context. The target of interest is the group

Aut(t) = {(ω1, . . . , ωℓ) ∈ GL(U1)× · · · ×GL(Uℓ) | t(ω1 ⊗ · · · ⊗ ωℓ) = t}.
There are methods to decide if a (quasi-)simple group of Lie type acts, for example
by solving linear equation for the algebra of derivations

Der(t) = {(ω1, . . . , ωℓ) ∈ GL(U1)×· · ·×GL(Uℓ) | 0 = t(ω1⊗· · ·⊗1)+· · ·+t(1⊗· · ·⊗ωℓ)}.
However, there is no apparent tool to distinguish between the action by a solvable
Aut(t) and an alternating action. We would like to know ways to inspect t and
determine if it admits the action by an alternating group.
Question. Compute a tighter lower bound for

Prob(T1, . . . , Tc ∈ Ma×b(K) |
if (F,G) ∈ Ma(K)×Mb(K) where (∀i).(FTi = TiG)

then (∃λ ∈ K)((F,G) = (λIa, λIb))

)

This bound is used to time various randomized isomorphism tests and also in
group enumeration. Its estimates are so far either too small causing for slower
algorithms or large enough but only when the scalars map into a large extension
of K. Tighter bounds over the base field are desired.

Reporter: Joshua Maglione
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Lehrstuhl für Algebra und Zahlentheorie
RWTH Aachen
Pontdriesch 14/16
52062 Aachen
GERMANY

Prof. Dr. Klaus Lux

Department of Mathematics
University of Arizona
617 N. Santa Rita
Tucson AZ 85721-0089
UNITED STATES

Dr. Joshua Maglione

Fakultät für Mathematik
Universität Bielefeld
Postfach 10 01 31
33501 Bielefeld
GERMANY

Prof. Dr. Gunter Malle

Fachbereich Mathematik
Technische Universität Kaiserslautern
Postfach 3049
67653 Kaiserslautern
GERMANY



2086 Oberwolfach Report 38/2021

Dr. Tobias Moede

Institut für Analysis und Algebra
Technische Universität Braunschweig
Universitätsplatz 2
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