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Introduction by the Organizers

The workshop Dynamics of Waves and Patterns, organised by Margaret Beck
(Boston), Martina Chirilus-Bruckner (Leiden), Christian Kuehn (Garching) and
Jens Rademacher (Bremen) was held as a hybrid meeting due to the covid19
pandemic, with 22 participants present in Oberwolfach, and more than 30 online
participants from Europe, the Americas, Japan and Australia.

The workshop topic refers to phenomena that typically arise in the sciences, in
particular fluid mechanics, material science, neuroscience and ecology. The math-
ematical treatment interconnects several areas, ranging from evolution equations
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and functional analysis to dynamical systems, geometry, topology, and stochastic
as well as numerical analysis. The workshop has specifically focussed on the key
areas

• Dynamic stability on extended domains
• Bifurcations of waves and patterns
• Effects of stochastic driving
• Spatio-temporal inhomogeneities

Stability and bifurcations are classical core themes in the field, but have undergone
dramatic developments in recent years. The consideration of stochastic effects is
a rapidly growing area, also beyond the proposed workshop theme, and closely
related to the inclusion of spatio-temporal inhomogeneities, which appears as an
emerging topic.

Due the special pandemic circumstances, we make some comments on organisation
and technical realisation. It is worth noting that for all participants present at
MFO it was the first workshop in presence since one or even two years.

The workshop had to be organized in hybrid format so that we have imple-
mented special measures in order to keep a sense of community. This was partic-
ularly important due to the split of the audience into roughly the same number
of virtual as well as live participants. We have been happy to see that virtual
participation was extremely steady and consistent across the entire week with al-
most all participants being present for all the talks. In addition to the excellent
MFO hybrid setup with cameras and screens, we have conducted discussions on
an online mural board, which were very successful in collecting current and new
directions of the field. Furthermore, we provided the option for online social in-
teraction sessions after the main set of talks (gather.town), which also were well
attended. In summary, we were very positively surprised, how well the hybrid
format worked, although clearly most online participants, who could not attend
due to travel restrictions, did miss the MFO atmosphere considerably.

During the workshop, multiple new directions, collaborations, and very interesting
scientific conversations arose across the entire field of pattern formation in spatial
systems. We believe that we have succeeded as proposed in establishing new com-
ponents into the field such as pattern formation in stochastic partial differential
equations as well as spatio-temporally heterogeneous systems. We consider these
directions as extremely important from a mathematical viewpoint as they can in-
terlink PDE theory much better with stochastic analysis, with non-autonomous
techniques from low-dimensional dynamics and control, as well as with interacting
particle systems creating spatial heterogeneity. Of course, many pattern formation
problems arising in various application areas such as the life science or geophysics,
also have to deal with stochastic perturbations and/or spatio-temporal heterogene-
ity. Building upon the solid core of the field and the newly established directions,
the workshop has helped tremendously to identify future challenges.

More specifically, we summarize the synthesis of the open discussion sessions, which
were wonderfully chaired by Jon Dawes – thanks Jon! Our goal was to identify
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aspects of the field that appear to be currently (still) highly relevant, active or
emerging, that may be further developed to lead to a guideline for students and
early career scientists. Clearly, this was a deeply subjective selection and far from
fully worked out. We have organised the contributions into five themes as follows,
wherein part of the keywords are a mix of aspects that reappeared in the talks of
the workshop and thus may simply reflect the choice of speakers, but that we also
found to be used in new ways:

• Methods. Infinite dimensional invariant manifolds, (geometric) singular
perturbation theory, bifurcations, travelling waves and spatial dynamics,
collective coordinates, functional analytic tools, rigorous as well as struc-
ture preserving numerics.

• Dynamics. Transients, metastability, transitions, localised phenomena,
freak waves.

• Heterogeneity Time-dependence and non-autonomous systems, spatial het-
erogeneity, stochastic dynamics, robustness, control.

• Structure. Agent based modelling, cellular automata, particles, networks
and differential equations arising from graph limit, geometric/manifold
domain effects, cross diffusion.

• Applications/Transfer. Stochastics, data assimilation (slow-fast), machine
learning, climate (examples from different modelling complexity scales),
life sciences esp. pharmacology, communication, critical transitions, epi-
demiology and socio-economic models (and connections to optimal con-
trol).

Acknowledgement: The workshop organizers thank the MFO for the wonderful
hospitality in this pandemic time.
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Abstracts

Approximately invariant manifolds

Dirk Blömker

(joint work with Alexander Schindler)

We follow ideas partially presented in [8] and consider the dynamics along a man-
ifold M of a solution u of a stochastic partial differential equation of the type

(SPDE) ∂tu = Lε(u) + ∂tWǫ,

where Wǫ is a Wiener-process corresponding to small Gaussian noise and Lε a
deterministic drift. Here both might depend on a small parameter ǫ > 0. We
assume that u is a local solution of (SPDE), which is a stochastic process with
continuous paths in a Hilbert-space H that might only exist up to a blow-up time.
Let

M := {uh : h ∈ P}
be a smooth non-degenerate N -dimensional manifold on an open parameter space
P ⊂ RN . Typical examples are travelling waves [6, 7] where M is one dimensional
and given by translations of the front. Other examples are the metastable kink
motion in one-dimensional Allen-Cahn/Cahn-Hilliard equations[2, 5] or the motion
of a single bubble [1, 4]. Here the manifold is parametrised by the position of
the interfaces or the center of the bubble. But there are many more examples
that would fit into this framework, like spiral waves or the motion along a center
manifold close to bifurcation [3].

1. Formal Derivation of the SDE on M. Assuming that we have a well
defined coordinate system where u = uh+ v with v ⊥ M (i.e., 〈v, ∂juh〉 = 0 for all
j = 1, . . . , N) and assuming that h is a diffusion in P we can derive a stochastic
differential equation of the following type:

(SDE) A(h, u)dh = F (h, u)dt+G(h, u)dWǫ

where the matrix A(h, u) ∈ R
N×N is given by A(h, u)i,j = 〈∂juh, ∂iuh〉−〈∂ijuh, v〉,

where we define v = u− uh.

2. Results. The matrix A, as well as the drift F and the diffusion G, are locally
Lipschitz in h and continuous in time, thus we can prove the following:

Theorem 1: Given the solution u and an h(0) ∈ P there is a unique local solution
of (SDE) up to a stopping time where either

• A(h, v)−1 does not exist
• h reaches the boundary of P or ∞ (i.e., the pattern breaks down)
• the solution u fails to exist

Reverting the formal calculation that leads to (SDE) one can prove

Theorem 2: Let u be the solution of (SPDE) as above and h the solution of
(SDE) of the previous theorem such that h(0) ∈ P and v(0) := u(0)− uh(0) ⊥ M
then v(t) := u(t)− uh(t) ⊥ M for all times where h exists.
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Let us remark that initially one can often take a (not necessarily unique) point
of smallest distance to the manifold in order to derive h(0) and v(0).

Let us point out that the invertibility of A is a purely geometric constraint inde-
pendent of the parametrisation of the manifold and the dynamics of the manifold.
Due to the fact that the manifold is non-degenerate one easily observes that the
matrix A is invertible if v is sufficiently small.

3. Stability. If v is sufficiently small (i.e., u close to M) then not only we have
a well defined reduced process h on P but we can also derive a simplified model
from (SDE) by removing the u.

Thus let us look closer on an equation of v in the Stratonovic sense

dv = du− d(uh)

= Lǫ(u
h − v)dt+ ◦dWǫ −

∑

j

∂ju
h ◦ dhj

=
[
Lǫ(u

h) +DLǫ(u
h)v +N(h, v)

]
dt+ ◦dWǫ −

∑

j

∂ju
h ◦ dhj

while the nonlinearity is higher order in v the crucial terms are first the operator
L(uh), which should be small normal to the manifold, and secondly the linearised
operator, which should be stable normal to the manifold. It would be sufficient if
〈Lǫ(u

h), v〉 is smalll and we have good control of the quadratic form 〈DLǫ(u
h)v, v〉

for v ⊥ M and h ∈ P .
One usually expects solutions to be on the order of noise strength divided by

the square root of the linear attraction rate for very long times until either h leaves
P or large deviation effects like nucleation set in.
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Multistability and time-periodic spatial pattern in the
cross-diffusion SKT model

Cinzia Soresina

The Shigesada–Kawasaki–Teramotomodel (SKT) was proposed to account for sta-
ble inhomogeneous steady states exhibiting spatial segregation, which describes a
situation of coexistence of two competing species. Even though the reaction part
does not present the activator-inhibitor structure, the cross-diffusion terms are
the key ingredient for the appearance of spatial patterns. We provide a deeper
understanding of the conditions required on both the cross-diffusion and the re-
action coefficients for non-homogeneous steady states to exist [1], by combining
a detailed linearised with advanced numerical bifurcation methods via the con-
tinuation software pde2path. We study the role of the additional cross-diffusion
term in pattern formation, showing that the cross-diffusion terms have an op-
posite effect. However, the bifurcation structure undergoes major deformations
when the interspecific competition pressure is increased, revealing changes, non
predicted by the linearized analysis, in the type of pitchfork bifurcations on the
homogeneous branch, leading to multistability regions, as well as in the presence
of Hopf bifurcation points. Through weakly nonlinear analysis we can predict the
type of pitchfork bifurcation and the change from super- to sub-critical, leading
to the appearance of a multi-stability region. In the weak-competition case, the
interspecific competition pressure also influences the possible appearance of stable
time-period spatial patterns. In fact, by performing a three-parameter analysis,
we detect the presence of a codimension-3 bifurcation point, at which the bifurca-
tion structure drastically changes. This point is located at the intersection of the
neutral stability curves (curves of pitchfork bifurcation points) related to the 1-
and 2-mode, at which also the Landau coefficient changes sign. When the addi-
tional cross-diffusion coefficient is small, the system presents stable time-periodic
spatial patterns arising through a Hopf bifurcation point. When the additional
cross-diffusion coefficient is increased, we detect Hopf bifurcations in a larger re-
gion of the parameter space, but the time-periodic spatial patterns seem to be
unstable. This can be also studied through center manifold reduction, considering
the reduced and truncated system which describes the PDEs system close to the
degenerate point.

Thanks to its interplay between linearized analysis, weakly nonlinear analysis
and numerical continuation, this work constitutes a step forward in the analytical
understanding of the bifurcation structure of the SKT system, it points out new
interesting aspects and opens several different questions that can be addressed in
future works.

A stronger characterisation of the doubly degenerate point at the critical value
is needed at this point. This would also allow progress in the understanding of
the time-periodic spatial patterns which potentially originate in the vicinity of
the doubly degenerate point. While the analytical approach may be feasible, the
continuation software pde2path is not immediately suited for the detection of
codimension-2 bifurcation points, so this will be a matter of future investigations.
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On the other side, it would also be interesting to investigate how far from the dou-
bly degenerate point and why the Hopf bifurcation point and of the time-periodic
spatial patterns disappear. From the ecological viewpoint, the influence of the
domain size on the type of stable steady and time-periodic patterns is crucial. It
is not clear if the domain size has an influence only on the solution profiles (due to
different unstable modes), or it can even induce major deformations of the bifur-
cation structure. It has also been shown the presence of stable non-homogeneous
solutions outside the parameter region in which the homogeneous state exists (pos-
itive) [4], which constitutes an extremely interesting effect of cross-diffusion not yet
investigated. Another important direction is the study of the strong competition
case. In [1] it has been shown an interesting effect of the additional cross-diffusion
term on the bifurcation structure and the presence of Hopf bifurcation points. Bet-
ter characterization and a deeper investigation would improve the understanding
of this different regime. Note that the derivation of the Stuart–Landau equation
and the weakly nonlinear analysis holds and it can predict the type of pitchfork
bifurcation on the homogeneous branch also in the strong-competition regimes.
Moreover, an extremely interesting and actual research direction is the extension
of cross-diffusion induced instability on networks, that we are currently investigat-
ing [5]. Finally, the same study could be carried out for other quasilinear problems
involving cross-diffusion terms. For instance, it is possible to derive by time-scale
arguments a different type of cross-diffusion in predator–prey systems,[2, 3]. The
linearized analysis already suggests that they do not increase the parameter re-
gion in which patterns appear, but the global influence of these terms cannot be
captured only by the linearized analysis. Taken together, these results will better
clarify the role of cross-diffusion terms as the key ingredients in pattern formation.
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Global dynamics of a nonconservative nonlinear Schrödinger equation

Jonathan Jaquette

(joint work with Jean-Philippe Lessard, Akitoshi Takayasu)

In this talk we discuss the nonlinear Schrödinger equation

iut = △u+ u2, x ∈ T ≡ R/ 2π
ω Z(1)

This NLS does not have gauge invariance, (eiθu)2 6= eiθu2 for generic θ ∈ R, and
it does not admit a natural Hamiltonian structure.

A precursor to (1) can be seen in the work of Masuda [1, 2] who studied the
blowup of solutions to the real PDE ut = △u + u2. By extending solutions
with close-to-constant initial data in the complex plane of time, Masuda was able
to extend past the blowup point and demonstrate a branching singularity. This
approach was continued for non-close-to-constant initial data in the numerical
work [3, 4].

Equation (1) arises from ut = △u + u2 by solving the equation in a purely
imaginary direction of time. From their numerics, Cho et al. conjectured that real
initial data to (1) is globally well posed [3]. For close-to-constant real initial data
this is shown to be the case [5]. When restricting (1) to constant initial data one
obtains the ODE iż = z2, whereby 0 is foliated by homolcinic solutions, with the
exception of some finite time blowup solutions. In fact, these homoclinic solutions
can be robustly extended to an open set.

Theorem 1 ([5]). There exists an open set of complex initial data with summable
Fourier coefficients whose solutions are homoclinic orbits, limiting to 0 in both
forward and backward time.

Note that if there exists some continuous conserved quantity H , it would neces-
sarily be constant on this open set and equal to H(0). Moreover, if H was analytic
then it would have to be globally constant; ie (1) is nonconservative.

Corollary 2 ([5]). The only analytic functionals conserved under (1) are constant.

Indeed, a significant portion of the dynamics can be seen to mimic the spatially
homogeneous dynamics. However this is not the only dynamics possible.

Theorem 3 ([5]). There exist at least two non-trivial equilibria to (1), each of
whose linearization has at least one unstable eigenvalue.

Moreover, due to the rescaling of solutions u(t, x) 7→ n2u(n2t, nx), these two
equilibria generate two infinite families of unstable equilibria. It appears that
as n increases so does the number of unstable eigenvalues in the equilibrium’s
linearization increases. However formalizing this relation, and also classifying all
of the equilibria to (1), remains open.

By way of computer assisted proofs, we are able to demonstrate heteroclinic
orbits to and from these nontrivial equilibria.

Theorem 4 ([5]). For each equilibrium ũ in Theorem 3, there exists a heteroclinic
orbit ua traveling from ũ to 0, and a heteroclinic orbit ub traveling from 0 to ũ.
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The heteroclinic ua is proved using validated numerics. We first develop a high
order approximation of the unstable manifold using the parameterization method
in the case of PDEs (cf [6]). Next we use the validated integrator adapted from [4]
to propagate these solutions forward in time. This is continued until the trajectory
enters an explicit trapping region (an open set) of solutions which converge to 0.
The heteroclinic ub follows from the time reversal symmetry of conjugate solutions.

The unstable manifold of the two nontrivial equilibria in Theorem 3 has complex
dimension of at least 1, and most of those trajectories appear to be heteroclinic
orbits limiting to 0. However numerics suggest there exists an isolated trajectory
in the unstable manifold which grows without bound [7]. In similar equations to
(1) with added dissipation, we prove the existence of unbounded solutions using a
forcing argument from [8]. However this does not distinguish between blowup and
growup, and the forcing argument does not apply to the NLS case of (1).

In addition to the dynamics already demonstrated, one might ask if there exists
any recurrent dynamics? To answer this, we look at the space of initial data with
non-negative Fourier coefficients, which in fact forms an integrable subsystem.

Theorem 5 ([9]). The initial data u0(x) =
∑

n∈N
φne

iωnx, with
∑

n∈N
|φn| < ∞

has a solution to (1) given by

u(t, x) =
∑

n∈N

an(t)e
iωnx(2)

where each function an(t) may be solved for explicitly by quadrature.

While equation (1) does not admit a standard Hamiltonian structure, this in-
tegrable subspace suggests there may exist some singular conserved quantities or
a singular symplectic structure, cf [10, 11]. One may also compare this subsys-
tem to the cubic Szegő equation, another PDE defined on non-negative Fourier
coefficients and shown to be integrable [12].

For examples of solutions in this subspace, consider monochromatic initial data.

Example 6 ([9]). Fix A ∈ C, ω > 0 and initial data u0(x) = Aeiωx. The first few
functions an : R → C in (2) are given as follows

a1(t) = Aeiω
2t

a2(t) =
A2

ω2

(
1

2
e2iω

2t − 1

2
e4iω

2t

)

a3(t) =
A3

ω4

(
1

6
e3iω

2t − 1

4
e5iω

2t +
1

12
e9iω

2t

)

a4(t) =
A4

ω6

(
7e4iω

2t

144
− e6iω

2t

10
+
e8iω

2t

32
+
e10iω

2t

36
− 11e16iω

2t

1440

)

Note that each function an(t) is given by An/ω2(n−1), multiplied by a 2π/ω2

periodic function. Given this geometric scaling, one may expect that if the ratio
is very small then the solution will converge to a periodic orbit, and if the ratio is
very large then the solution will blowup. This is indeed the case.
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Theorem 7 ([9]). Consider the solution from Example 6.

• If A/ω2 < 3 then the solution is periodic with period 2π/ω2.
• If A/ω2 ≥ 6 then the solution blows up in finite time in the L2 norm.

The lower value of 3 was obtained by computer assisted proof, and the upper
value of 6 was obtained with pen-and-paper. Using non-validated numerics we
estimate that the critical dividing line between periodic orbits and blowup is ap-
proximately A/ω2 ≈ 3.37. We also note that the periodic orbits here all have a
fixed frequency which does not depend on their amplitude. This is in fact true for
more general initial data supported on positive Fourier coefficients.

Theorem 8 ([9]). Fix initial data u0(x) =
∑∞

n=1 φne
iωnx. If

∑∞
n=1 |φn| < ω2

4

then the solution is periodic with period 2π/ω2.

In summary, the evolutionary equation (1) supports rich dynamics with varied
behavior. Some trajectories are periodic and others limit to equilibria. Some
solutions have global existence and others blowup in finite time.
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[3] C.H. Cho, H. Okamoto, and M. Shōji, A blow-up problem for a nonlinear heat equation in
the complex plane of time. Japan Journal of Industrial and Applied Mathematics 33, no. 1
(2016), 145-166.

[4] A. Takayasu, J.P. Lessard, J. Jaquette, and H. Okamoto, Rigorous numerics for nonlinear
heat equations in the complex plane of time. arXiv preprint arXiv:1910.12472 (2019).

[5] J. Jaquette, J.P. Lessard, and A. Takayasu, Global dynamics in nonconservative nonlinear
Schrödinger equations. arXiv preprint arXiv:2012.09734 (2020).

[6] C. Reinhardt, and J.D. Mireles James, Fourier-Taylor parameterization of unstable man-
ifolds for parabolic partial differential equations: formalism, implementation and rigorous
validation. Indagationes Mathematicae 30, no. 1 (2019): 39-80.

[7] J. Jaquette, J.P. Lessard, and A. Takayasu, Singularities and heteroclinic connections
in complex-valued evolutionary equations with a quadratic nonlinearity. arXiv preprint
arXiv:2109.00159 (2021).

[8] H. Stuke, Complex time blow-up of the nonlinear heat equation. arXiv preprint
arXiv:1812.10707 (2018).

[9] J. Jaquette, Quasiperiodicity and blowup in integrable subsystems of nonconservative non-
linear Schrödinger equations. arXiv preprint arXiv:2108.00307 (2021).

[10] V. Guillemin, E. Miranda, and A.R. Pires. Symplectic and Poisson geometry on b-manifolds.
Advances in mathematics 264 (2014), 864–896.

[11] R. Braddell, A. Delshams, E. Miranda, C. Oms, and A. Planas. An invitation to singular
symplectic geometry. International Journal of Geometric Methods in Modern Physics 16,
no. supp01 (2019), 1940008.

[12] P. Gérard and S. Grellier, Invariant tori for the cubic Szegö equation. Inventiones mathe-
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The influence of autotoxicity on the dynamics of vegetation spots

Annalisa Iuorio

(joint work with Frits Veerman)

Plant autotoxicity has proved to play an essential role in the behaviour of local
vegetation [1, 2]. We analyse a reaction-diffusion-ODE model describing the inter-
actions between vegetation, water, and autotoxicity originally proposed in [3]. The
presence of autotoxicity is seen to induce movement and deformation of spot pat-
terns in some parameter regimes, a phenomenon which does not occur in classical
biomass-water models (see Figure 1).

Figure 1. Cross section of a single biomass spot in relation to
two main parameters, i.e. plant sensitivity to toxicity (s) and
toxicity decay rate (k). When plants dynamics are assumed to
be decoupled from toxicity (i.e. in the case s = 0, left panel),
a stable isolated vegetation spot has a symmetric distribution of
biomass with a peak in its center. On the other hand, the negative
feedback induced by toxicity (i.e. s 6= 0, in particular s = 0.2 in
the right panel) modifies the shape of the biomass curve within
a continuously moving vegetation spot. The intensity of such
effect is displayed for three levels of k, and the arrow indicates
the direction of the moving biomass front. The top-left corner
of each panel shows the appearence of the corresponding pattern
in 2D.

We aim to analytically quantify this novel feature, by studying travelling wave
solutions in one spatial dimension. In [4], we use geometric singular perturba-
tion theory to prove the existence of symmetric, stationary and non-symmetric,
travelling pulse solutions, by constructing appropriate homoclinic orbits in the
associated 5-dimensional dynamical system. In the singularly perturbed context,
we perform an extensive scaling analysis of the dynamical system, identifying
multiple asymptotic scaling regimes where (travelling) pulses may or may not be
constructed. We discuss the agreement and discrepancy between the analytical
results and numerical simulations. Our findings indicate how the inclusion of an
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additional ODE may significantly influence the properties of classical biomass-
water models of Klausmeier/Gray–Scott type.

Recently, a successful collaboration with Arjen Doelman (U. Leiden) and Paul
Carter (U. Minnesota) has lead to the resolution of the above mentioned dis-
crepancy between numerical and analytical travelling pulses. In particular, the
numerically observed travelling pulse has proved to be, in a certain sense, a per-
turbation of the “regular” planar homoclinic in classical biomass-water models.
Currently, we are working on the stability of such structures using an approach
based on the Evans function.

Our next goals are:

• Perform a thourough bifurcation analysis using the continuation tool AUTO;
• Consider logistic effects in the dynamics of vegetation and explore the
corresponding modifications in the travelling pulse structure;

• Investigate existence and stability of double-scale patterns, where a larger,
stable pattern forms within which another dynamic patterned structure
persists. Such objects are of particular interest as they appear in many
different biological/ecological applications (e.g. mussel beds).
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Localized patterns on graphs: The influence of dimension and
topology on pattern formation

Jason J. Bramburger

(joint work with Björn Sandstede)

The competition between bistable states in nonlinear systems can lead to local-
ized structures with a patterned or activated state inside of a compact spatial
region and a second homogeneous state outside of this compact region. Local-
ized structures of this kind can be found in many applications, including as crime
hotspots, vegetation patterns, and soft matter quasicrystals. They have further
been observed in chemical reactions, supported elastic struts, semiconductors, and
ferrofluids [5, 6]. What has become clear is that the spatial setting in which these
pattern-forming systems are posed upon plays an integral role in determining what
kinds of localized patterns can be observed and how these patterns are arranged in
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parameter space. To better understand this interplay between space and structure
we have elected to investigate spatially-discrete reaction-diffusion equations of the
form

(1) u̇n = d(∆u)n + f(un, µ), n ∈ Λ

where ∆ is a discrete graph Laplacian which encodes the topological organization
of the discrete space, indexed by the countable set Λ. The question then becomes:
for a given pair (Λ,∆), what types of steady-state patterns does (1) exhibit and
what happens to these patterns as we vary the parameter µ ∈ R.

Our investigation of (1) begins by considering the one-dimensional integer lat-
tice Λ = Z with nearest-neighbour interactions: (∆u)n = un+1+un−1−2un for all
n. In this case the existence of steady localized solutions can equivalently be posed
as the existence of homoclinic orbits in a related two-dimensional mapping. Thus,
we are able to extend the methods of [1] to construct these homoclinic orbits using
Lin’s method in the given mapping. Our results have shown that upon varying µ,
these localized structures exhibit a bifurcation scenario known as snaking whereby
unbounded existence curves bounce back and forth between two fixed values of µ
[3]. Moving along this existence curve one sees the region of localization increas-
ing in a regular manner as one rounds the fold bifurcations that mark the left and
right extremities of the curve. A follow-up investigation has shown that localized
states with multiple disjoint regions of localization do not exhibit snaking, but lie
on closed existence curves called isolas [2].

For higher-dimensional lattice structures and/or more complex interactions,
the spatial dynamics perspective of viewing localized patterns of (1) as homo-
clinic orbits of a mapping is lost. In the case of Λ = Z2 and nearest-neighbour
connections in ∆, numerical investigations have shown that the existence curves
are much more complicated than the 1D lattice setting [8] and bear a striking
resemblance to localized planar hexagon patches found in the Swift–Hohenberg
equation [7]. To understand this analytically we can take advantage of the fact
that when d = 0 in (1) the system completely decouples, allowing one to provide
an analytical explanation of the existence curves with Λ = Z2 for 0 < d≪ 1 using
Lyapunov–Schmidt reduction. These investigations have demonstrated that the
dimension of the lattice and the connection topology in ∆ plays a crucial role in
the expected bifurcation diagrams of localized solutions. Then, to better under-
stand the influence of connection topology, we turn to (1) on a finite ring [9]. We
find that on a N element ring with nearest-neighbour coupling leads to existence
curves with 2N folds along the branch, while all-to-all coupling always results in a
closed curve emerging from a homogeneous state with exactly five folds, regardless
of ring size.

These are initial steps towards a greater understanding of the integral role that
spatial organization can have on pattern formation, and the accessibility of (1)
with d ≈ 0 provides the optimal setting to gain such insight. The aforementioned
investigations have all used regular graph topologies to achieve their results, and
therefore moving forward one wishes to investigate localized pattern formation on
arbitrary or even random graphs. It is likely that completely general statements
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are not accessible, but there are promising avenues to understand patterns on
large, random graphs using graphons. Results in this directions will be reported
by the author soon.
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Traveling pulses with oscillatory tails, figure-eight-like stack of isolas,
and dynamics in heterogeneous media

Yasumasa Nishiura

(joint work with Takeshi Watanabe)

1. Outline

The interplay between 1D traveling pulses with oscillatory tails (TPO) and het-
erogeneities of bump type is studied for a generalized three-component FitzHugh-
Nagumo (GFN) equation. We first present that stationary pulses with oscillatory
tails (SPO) form a “snaky” structure in homogeneous space, then TPO branches
take a form of “figure-eight-like stack of isolas” located adjacent to the snaky
structure of SPO. Here we adopt input resources such as voltage-difference as a
bifurcation parameter. A drift bifurcation from SPO to TPO can be found by in-
troducing another parameter at which these two solution sheets merge. As for the
heterogeneous problem, in contrast to monotone tail case, there appears a nonlocal
interaction between the TPO and the heterogeneity that creates infinitely many
saddle solutions and finitely many stable stationary solutions distributed on the
whole line. The response of TPO shows a variety of dynamics including pinning
and depinning processes in addition to penetration (PEN) and rebound (REB).
Stable/unstable manifolds of these saddles interact with TPO in a complex way,
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which causes a subtle dependence on the initial condition and a difficulty to pre-
dict the behavior after collision even in one-dimensional space. Nevertheless, for
1D case, a systematic global exploration of solution branches induced by hetero-
geneities (heterogeneous-induced-ordered patterns, HIOP for brevity) unveils that
HIOP contains all the asymptotic states after collision so that we can predict the
fate of the solution without solving the PDEs. The reduction method to finite-
dimensional ODEs allow us to clarify the detailed mechanism of the transitions
from PEN to pinning and pinning to REB from dynamical system view point. It
turns out that the basin boundary between two different outputs against the het-
erogeneities forms an infinitely many successive reconnection of heteroclinic orbits
among those saddles as the strength of heterogeneity is increased, which causes
aforementioned subtle dependence of initial condition. For details, see [1].

2. Why three-component system?

We are interested in the interactive dynamics of localized traveling patterns with
other objects such as collision against similar patterns or heterogeneities (or de-
fects) in the media. Three-component system is necessary to ensure the coexis-
tence of stable localized patterns in 2D or 3D. Suppose three components consist
of one activator and two inhibitors, then the first inhibitor controls the width of
front-rear direction and the second one does that of right and left direction. Two-
component system does not support the coexistence of stable traveling patterns
in higher dimensional space, simply because it cannot control the width of right
and left direction and the pattern either elongates or shrinks depending on pa-
rameters. One representative three-component model is GFN system consisting
of one activator and two inhibitors, in which the second inhibitor is responsible
for controlling the shape orthogonal to propagating direction. As a first step, we
investigate one-dimensional case and focus on the collision dynamics against the
heterogeneity of bump type.

3. Why oscillatory tail?

When a localized pattern has an oscillatory tail, then it has a wave-like property,
namely it can interact remotely with other localized patterns and heterogeneities
(or defects) both in attractive and repulsive manners, which makes a sharp contrast
with monotone tail case. The remote interaction causes a variety of coherent
patterns and dynamics such as bound states (or molecules), crystal structure,
various outputs via collision with heterogeneity. The main body of the localized
traveling pattern can be regarded as a particle and we can identify its location and
velocity by measuring the motion of it, which has a great advantage in the sense
that it allows us to reduce the complex PDE dynamics into a finite-dimensional
ODE system with an inhomogeneous term of oscillatory nature.
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4. Figure-eight-like stack of isolas

The set of traveling pulse solutions forms a figure-eight-like stack of isolas with
respect to an appropriate parameter so that there is an admissible region from
one saddle to another saddle in which stable traveling pulse is observed. Such
a structure merges into a solution set of standing pulse that forms a well-known
snakes-and-ladders structure when another parameter tends to a drift bifurcation
point. Loosely speaking, figure-eight-like structure is a kind of imperfection of
snakes-and-ladders one.

5. Oscillatory tail interacts with heterogeneity

Once we introduce a heterogeneity into media, the interaction between traveling
pulses and heterogeneity produces a variety of interesting dynamics including re-
bound, pinning, and even chaotic behavior (see [2, 3, 4]). The goal of my talk is
to clarify the transition mechanism of pinning or depinning process of TPO. Our
strategy is two-fold: HIOP (Heterogeneity-Induced-Ordered-Patterns) approach
and a reduction method to a finite-dimensional system. HIOP is originally an ob-
ject on the whole line and is defined by the set of all solution branches of ordered
patterns caused by the heterogeneity such as unstable standing pulse pinned by its
tail to the heterogeneity. Reduction method works quite well for localized patterns
because of its particle characterization. Oscillatory nature of the tail is encoded in
the existence of infinitely manny critical points in the phase space in the reduced
ODE system.

6. Basin boundary experiences infinitely many reconnections

To answer the question when and how the transition occurs, we need to identify the
basin boundary in the initial space and how it behaves as ε varies. It turns out that,
for each fixed ε, the basin boundary separating two outputs can be characterized by
the stable manifold of the saddle point relevant to the transition. The destination
of time-reversal direction of this stable manifold is one of the critical points for
each fixed ε and the location of this destination moves leftward toward infty as
|ε| is increased so that reconnection occurs infinitely many times before reaching
the transition point at which the pulse orbit coincides with the stable manifold.
For further increase of |ε|, the pulse orbit becomes below the basin boundary and
settles down to another asymptotic state.

7. Sensitive dependence on the initial condition and open questions

The fact that the basin boundary undergoes infinitely many reconnections succes-
sively among relevant critical points just before the transition is a key to under-
stand the sensitive dependence of TPOs on the initial condition. In fact, suppose
that the destination of the basin boundary is a critical point of spiral type, then
it wraps around infinitely many times (in time-reversal direction) so that the final
output becomes very sensitive to the choice of the initial data around the spiral
critical point in any direction of ray. There still remain many open questions, in
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particular, for the dynamics in higher dimensional space. It is possible to reduce
the PDE dynamics to 4D finite-dimensional system for two-dimensional space,
however the basin boundary between two outputs becomes much more compli-
cated than 1D case because the dimension of stable/unstable manifolds of critical
points is increased and the interrelation among them is yet to be investigated.
Moreover the geometry of heterogeneity affects a lot on the propagating behavior
of spots. Nevertheless the analysis for 1D case here sheds a light on some aspect of
the essential properties of the complicated dynamics of localized traveling patterns
with oscillatory tails.
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Diffusive relaxation to equilibria for an extended
reaction-diffusion system

Thierry Gallay

(joint work with Sinǐsa Slijepčević)

We are interested in describing the long-time behavior of solutions to semilinear
parabolic equations on unbounded spatial domains. A paradigmatic example is
the Allen-Cahn equation

(1) ∂tu(x, t) = ∆u(x, t) + u(x, t)− u(x, t)3 , x ∈ R
N , t > 0 ,

which is formally the L2-gradient flow of the energy functional

E =

∫

RN

(1
2
|∇u|2 + V (u)

)
dx , V (u) =

1

4
(1 − u2)2 .

The solutions we consider typically have infinite energy, so that we cannot use E as
a Lyapunov function to prove that all trajectories of the system converge to the set
of equilibria as t→ +∞. Besides, equation (1) has traveling wave solutions which
show that convergence to equilibria cannot hold in the uniform topology associated
with the L∞ norm. In what follows, we investigate the long-time behavior with
respect to the (weaker) topology of uniform convergence on compact sets. Given
a uniformly bounded solution u(x, t) of (1), we thus define the ω-limit set

(2) ω =
{
φ ∈ L∞(RN )

∣∣∣ ∃ tk → ∞ such that u(·, tk)
L∞

loc−−−−→
k→∞

φ
}
.

General arguments show that ω is non-empty and bounded in L∞(RN ), compact
and connected in L∞

loc(R
N ), and fully invariant under the evolution defined by (1).
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Following [10], we say that the solution u is quasiconvergent if ω is contained in
the set of equilibria. As surprising as it may appear, quasiconvergence does not
always hold, even for the solutions of the one-dimensional Allen-Cahn equation.
A counter-example is given by the coarsening dynamics investigated in [3, 9].

The dissipative properties of infinite-energy solutions to (1) can be studied using
the local energy balance

(3) ∂te(t, x) = divxf(t, x)− d(t, x) ,

where e is the energy density, f the energy flux, and d the energy dissipation rate.
For the Allen-Cahn equation, one has

e =
1

2
|∇u|2 + V (u) , f = (∂tu)∇u , d = (∂tu)

2 ,

so that e ≥ 0, d ≥ 0, and |f |2 ≤ Ced for some constant C > 0. Using these
observations, we proved in a previous work [5] that, if N = 1 or 2, all bounded
solutions of (1) on R

N converge in L∞
loc to the set of equilibria for “almost all times”

as t → +∞. In particular, the ω-limit set (2) always contains an equilibrium.
Counter-examples indicate that these conclusions cannot be extended to higher
space dimensions.

In the present talk, we consider reaction-diffusion systems associated with re-
versible chemical reactions of the form

α1A1 + · · ·+ αnAn
k−−⇀↽−−
k′

β1A1 + · · ·+ βnAn ,

where A1, . . . ,An denote the reactant and product species, k, k′ > 0 are the reac-
tion rates, and the nonnegative integers αi, βi (i = 1, . . . , n) are the stoichiometric
coefficients. According to the law of mass action, the concentration ci(x, t) of the
species Ai satisfies the reaction-diffusion equation

(4) ∂tci = di∆ci + (βi − αi)

(
k

n∏

j=1

c
αj

j − k′
n∏

j=1

c
βj

j

)
, i = 1, . . . , n ,

where di > 0 denotes the diffusion coefficient of species Ai, see [7]. It happens
that positive solutions of (4) satisfy the entropy balance (3) with

e(x, t) =

n∑

i=1

φ
(
ci(x, t)

)
, f(x, t) =

n∑

i=1

di log(ci(x, t))∇ci(x, t) ,

d(x, t) =

n∑

i=1

di
|∇ci(x, t)|2
ci(x, t)

+ k log

(
B(x, t)

A(x, t)

)(
B(x, t)−A(x, t)

)
,

where φ(z) = z log(z) − z + 1 and A(x) =
∏
cj(x)

αj , B(x) =
∏
cj(x)

βj . This
gradient structure can be used to prove that all solutions of system (4) in a bounded
domain of RN converge to the global chemical equilibrium as t→ +∞ [1, 2, 4, 8].
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To explore what happens in unbounded domains, we concentrate here on the
simple particular case

ut(x, t) = auxx(x, t) + v(x, t)2 − u(x, t) , x ∈ R ,

vt(x, t) = bvxx(x, t) + 2
(
u(x, t)− v(x, t)2

)
, t > 0 ,

(5)

which corresponds to the (simplistic) reaction A −⇀↽− 2B with rates k = k′ = 1.

The parameters are the diffusion constants a, b, > 0, and a rescaling shows that
the ratio a/b is the only relevant quantity. It is easy to verify that system (5) is
globally well-posed for nonnegative initial data (u0, v0) ∈ L∞(R)2, and that the
corresponding solution satisfies the uniform bound

2‖u(·, t)‖L∞ + ‖v(·, t)‖L∞ ≤ 2‖u0‖L∞ + ‖v0‖L∞ , ∀ t ≥ 0 .

Our main result [6] shows that this solution converges to the manifold of local
chemical equilibria as t→ +∞.

Proposition. The solution of (5) with nonnegative initial data (u0, v0) ∈ L∞(R)2

satisfies, for all t > 0,

‖ux(·, t)‖L∞ + ‖vx(·, t)‖L∞ ≤ C

t1/2
log(2+ t) , ‖u(·, t)− v(·, t)2‖L∞ ≤ C

(1 + t)1/2
,

where the constant only depends on the parameters a, b and on ‖u0‖L∞ , ‖v0‖L∞.

The proof is quite simple in the case of equal diffusivities a = b, because the
quantity w = 2u + v then satisfies the linear heat equation wt = awxx. In the
general case, our argument relies on the local energy balance et = fx − d where

e =
1

2
u2 +

1

6
v3 , f = auux +

b

2
v2vx , d = au2x + bvv2x + ρ2 ,

where the quantity ρ = u − v2 measures the distance to the local chemical equi-
librium. We also exploit the higher-order balance ẽt = f̃x − d̃, where

ẽ =
a+ b

2
u2x + b vv2x +

1

2
ρ2 ,

f̃ = (a+ b)uxut + 2b vvxvt −
b2

3
v3x + b ρρx ,

d̃ = a(a+ b)u2xx + 2b2vv2xx + (1 + 4v)ρ2 + b ρ2x − 2aρuxx + 4bρvvxx .

It is important here to note that d̃ ≥ 0 and that ẽ ≤ Cd for some constant C > 0.
The existence of such an ordered pair of dissipative structures allows us to go
beyond the general conclusions of [5] and to prove convergence to equilibria for
all times, thus precluding in particular any coarsening-like dynamics. Whether or
not such an approach can be extended to more general reaction-diffusion systems
of the form (4) is the object of current investigation.
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Stability of smooth periodic traveling waves in the
Camassa-Holm equation

Anna Geyer

(joint work with Renan H. Martins, Fábio Natali, Dmitry E. Pelinovsky)

We solve the open problem of spectral stability of smooth periodic waves in the
Camassa–Holm equation,

(1) ut − utxx + 3uux = 2uxuxx + uuxxx

which was derived in [1, 2] and justified in [4, 6] as a model for the propagation
of unidirectional shallow water waves. The key to obtaining this stability result
is that the periodic waves of the Camassa–Holm equation can be characterized by
an alternative Hamiltonian structure,

(2)
dm

dt
= Jm

δE

δm
, Jm = − (m∂x + ∂xm) ,

δE

δm
= u,

where m := u− uxx and

(3) E(m) =
1

2

∫ L

0

(u2x + u2)dx,

which is different from the standard formulation common to the Korteweg-de Vries
equation. The standard formulation has the disadvantage that the period function
is not monotone [5], and the quadratic energy form may have two rather than
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one negative eigenvalues. We prove that the nonstandard formulation has the
advantage that the period function is monotone using a criterion by Chicone [3],
and the quadratic energy form has only one simple negative eigenvalue. We deduce
a precise condition for the spectral and orbital stability of the smooth periodic
travelling waves and show numerically that this condition is satisfied in the open
region where the smooth periodic waves exist.
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Noninvasive control of singular patterns

Frits Veerman

Noninvasive (Pyragas) control aims to control the stability of special solutions
such as periodic orbits, in general n-dimensional dynamical systems by adding a
control term g that vanishes on the ’target’ solution - hence the term ’noninva-
sive’ - but has a nontrivial (local) structure in the neighbourhood of the target
solution, thereby influencing its stability properties. Hence, a suitable choice of
the control term can stabilize the target solution. This approach can also be
applied to infinite-dimensional dynamical systems, such as reaction-diffusion sys-
tems, where stationary patterns are obvious candidates for ’special solutions’ to
be stabilized. For a wide range of patterns in (scalar) reaction-diffusion equa-
tions, Isabelle Schneider (FU Berlin) has shown that a well-chosen combination
of spatio-temporal delay can stabilize said patterns. We show that the techniques
and ideas developed in this scalar setting can be extended to a class of singularly
perturbed reaction diffusion systems, where scale separation plays a key role in the
(constructive) existence and stability analysis of so-called singular patterns. Incor-
porating different strategies (proportional, time-developed) in the existing Evans
function framework, our preliminary results show that single homoclinic singular
pulses can always be stabilized using proportional control, while the efficacy of
time-developed feedback depends on the structure of the pulse spectrum.
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Spectral stability of pattern-forming fronts in the complex
Ginzburg-Landau equation with a quenching mechanism

Björn de Rijk

(joint work with Ryan Goh)

We consider the stability of pattern-forming fronts invading a destabilized ground
state. In spatially homogeneous systems stability of such fronts can only be ob-
tained in exponentially weighted spaces as any perturbation ahead of the front
grows exponentially in time due to the instability of the ground state. On the
other hand, pattern-forming fronts are observed in various spatially inhomoge-
neous settings such as light-sensing reaction-diffusion systems, directional solid-
ification of crystals or ion beam milling. In these settings the unstable state is
only established in the wake of the progressing heterogeneity after which patterns
start to nucleate. Consequently, perturbations cannot grow far ahead of the in-
terface of the pattern-forming front. This begs the question of whether stability
of these quenched fronts can be rigorously established in more natural spaces. In
this talk we present a first step towards answering this question affirmative by
showing the spectral stability of pattern-forming fronts against L2-perturbations
in the spatially inhomogeneous complex Ginzburg-Landau (cGL) equation

(1) At = (1 + iα)Axx + χ(x− ct)A− (1 + iγ)A|A|2, A ∈ C, x, t ∈ R,

posed in one space dimension, with dispersion parameters α, γ ∈ R, and where
χ : R → R, χ(ξ) = −sgn(ξ) is a step-function heterogeneity, traveling with fixed
speed c ∈ R.

Pattern-forming fronts of the form A(x, t) = eiωtAtf(x − ct) in (1) have been
obtained in the regime where the heterogeneity propagates with speed c just below
the linear invasion speed clin of the base state, see [3]. Here, ω ∈ R denotes the
temporal frequency, and Atf(ξ) is the profile function of the front connecting a
periodic wave train at −∞ to the base state A ≡ 0 at +∞. As the free front
solving the associated homogeneous problem with χ ≡ 1 is pulled (i.e. it propagates
with speed clin), the quenched front locks to the interface of the heterogeneity
leaving a long intermediate state of length O(1/

√
clin − c) lying near the unstable

base state. This manifests itself in the spectrum of the linearization of (1) about
the front through the accumulation of eigenvalues onto the absolute spectrum
associated with the unstable base state, cf. [8]. As c ↑ clin the absolute spectrum
stabilizes with the same rate at which eigenvalues accumulate onto it allowing us
to rigorously establish spectral stability of the front. That is, the spectrum is
confined to the left-half plane and touches the imaginary axis only at the origin
as a parabolic curve reflecting the diffusive stability of the periodic wave train
at −∞. In addition, an embedded eigenvalue resides at the origin due to gauge
symmetry. On the other hand, we note that there is no translational eigenvalue
at the origin due to the spatial inhomogeneity in (1).

The presence of unstable absolute spectrum poses a technical challenge as spa-
tial eigenvalues along the intermediate state no longer admit a hyperbolic splitting
and standard tools such as exponential dichotomies are unavailable. Instead, we
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projectivize the linear flow as in [7] and study the associated matrix Riccati equa-
tion describing the dynamics of subspaces on the Grassmannian manifold using the
superposition principle [6], Riemann surface unfolding and the Möbius transform.
Eigenvalues can then be identified as the roots of the meromorphic Riccati-Evans
function [5], and can be located using winding number and parity arguments.

To our knowledge, this is the first rigorous result considering the spectral sta-
bility of quenched pattern-forming fronts. Thereby, it is the important first step
towards addressing nonlinear stability of such fronts. To establish nonlinear sta-
bility of the spectrally stable pattern-forming front in (1) one could try to proceed
as in [1], where, under similar spectral conditions, nonlinear stability of source
defects in the homogeneous cGL equation has been obtained.

We expect our spectral analysis to be prototypical in the sense that similar
mechanisms (i.e. the same subtle dance between accumulating point spectrum
and stabilizing weakly unstable absolute spectrum) will govern the stability of
pattern-forming fronts in other important spatially inhomogeneous models, such as
the Swift-Hohenberg equation, the Cahn-Hilliard equation, and certain reaction-
diffusion systems, where the free invasion front in the associated homogeneous
equation is pulled. However, in such models, periodic patterns are generally not
relative equilibria under the action of a gauge symmetry as in (1) so temporal
dynamics cannot be factored out and pattern-forming front solutions are mod-
ulated traveling waves. This means the associated eigenvalue problem, as well
as the nonlinear existence problem, are infinite-dimensional. One would hope to
perform a center-manifold analysis to reduce the eigenvalue problem down to a
finite-dimensional ODE system whose dynamics resemble the system considered
in this work.

A further subject of future research is to consider the case, where the free in-
vasion front in the associated spatially homogeneous equation is not pulled, but
pushed, i.e. due to nonlinear effects the free front spreads at a speed cp > clin.
Thus, one expects no absolute unstable intermediate state. In fact, preliminary
simulations [2] indicate that stability is governed by a single fold eigenvalue, remi-
niscent of snaking phenomena. A starting point would be to consider the spatially
inhomogeneous cubic-quintic Ginzburg-Landau equation, where pattern-forming
fronts have been obtained in [4] for wave speeds c ≈ cp. We anticipate that the
relative position of the oscillatory eigenvalue with respect to the origin, which dic-
tates the stability of the pattern-forming front, could be rigorously tracked using
parity arguments with the Riccati-Evans function as in the current analysis.
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Existence of Spiral Waves in Oscillatory Media with Nonlocal
Coupling

Gabriela Jaramillo

Systems that can be classified as oscillatory media consist of small oscillating
elements that interact with each other via some form of coupling. In this talk
we will be particularly interested in systems where these interactions are assumed
to be nonlocal. As an example, we consider oscillating chemical reactions that
include a fast component which can be eliminated adiabatically. Consequently,
these reactions can be modeled using integro-differential equations.

Our interest in these systems comes from numerical experiments performed
by Kuramoto and coauthors, which showed that the nonlocal interactions are re-
sponsible for creating new patterns called chimera spirals, [4, 6]. These patterns
resemble an archimedian spiral in the far field, but have a core that is not os-
cillating in synchrony with the rest of the pattern. Understanding why and how
these structure arise provides the motivation for this project. As a first step in
this direction we revisit the existence of spiral waves in the context of oscillatory
systems with nonlocal coupling.

To carry out the analysis we consider an abstract system of integro-differential
equations,

Ut = K ∗ U + F (U ;λ) U ∈ R
2 x = (r, θ) ∈ R

2, λ ∈ R

with nonlinearities, F (U ;λ) that undergo a Hopf bifurcation when λ = 0. For sim-
plicity, we concentrate on the particular case of kernels that have Fourier symbols
of the form, K̂(ξ) = −σ|ξ|2/(1 +D|ξ|2), with ξ ∈ R2.

To prove the existence of spiral waves, we first derive an amplitude equation
which governs the dynamics of rotating wave solutions. We then proceed to prove
the existence of these patterns using this reduced equation. Notice that because we
work with convolution operators, we can no longer use tools from spatial dynamics
to derive a normal form, as is done in [5]. Instead, we use the method of multiple
scales, which assumes that the solution can be written as a regular expansion in
powers of ε ∼

√
λ. Therefore, we also have to prove that this expansion converges,

or equivalent, that the amplitude equation provides valid approximations to the
solutions of the original system.

Because our solutions are periodic in time, we can combine these two steps,
deriving the amplitude equation and proving its validity, using a similar method to
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Lyapunov-Schmidt reduction. This approach consists on carrying out the standard
multiple scale analysis, giving us a hierarchy of equations at different powers of ε.
As is standard, the first and second order equations can easily be solved. However,
in contrast to the traditional method where one derives the amplitude equation at
cubic order as a solvability condition, we gather all cubic and higher order terms
in one equation, which we further split as follows,

L‖U3 = PN(U1, U3; ε, µ),(1)

L⊥U3 = (1− P )N(U1, U3; ε, µ).(2)

The key idea is that one can pick Banach spaces,X,Y and a projection, P : X →
X‖, in such a way that the operator L can be split into an invertible operator,
L⊥ : X⊥ → Y⊥, and a bounded operator, L‖ : X‖ → Y‖. One can then use
equation (2) to solve for the variable U3 in terms of U1 via the implicit function
theorem. Inserting the result into equation (1), and assuming that U3 does not
have a component in the direction of X‖, then gives the amplitude equation

(3) K̃ε,n ∗ w + λw + α|w|2w + O(ε|w|4w) = 0.

We point out three features of the above equation. 1) The convolution kernel

K̃ε,n represents a rescaling of K. 2) The imaginary part of λ is related to the
rotational speed of the wave and is a free parameter that needs to be determined
when solving the equation. 3) To be able to say that solutions to the amplitude
equation provide good approximations to the solutions of the original system, one
has to solve the full equation and include all higher order terms.

We now briefly explain our current efforts for proving the existence of spiral
waves in the supercritical case, i.e λR > 0 and αR < 0. As above, we use methods
from functional analysis to accomplish this. Because formallyK ∼ (1+D∆)−1σ∆,
we may precondition (3) with (1+D∆), and arrive at an equation that resembles
the complex Ginzburg-Landau equation (cGL),

β∆n ∗ w + λw + α|w|2w + Ñ(w, ε) = 0, β = (σ − ε2DλR)− i(ε2DλI).

We can then apply a multiple scale analysis using the same scalings that are
typical for deriving the phase dynamics approximation of the cGL, see [1]. As
above, this is then combined with a modified Lyapunov-Schmidt reduction to
close the argument and prove existence of solutions. The result is once a gain a
hierarchy of equations, with the first equation encapsulating information about
the amplitude of the pattern, and the second equation describing the dynamics of
the phase. Interestingly, we find that the phase dynamics is govern by a viscous
eikonal equation with an inhomogeneity that is a function of the zeroth-order
approximation to the amplitude. This equation is known to provide a model for
the emergence of target patterns in oscillatory media, and has been solved in [2].
Since in the current context, these particular solutions correspond to spiral waves,
we can adapt the results form [2] and derive an approximation for the wavenumber
of spiral waves patterns.
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We have two cases. If σ−ε2λRD > 0, then the wavenumber is well approximated

by k(ε) ∼ 2e−γe

|b| exp(1/a) with a = εa1 + ε2a2 +O(ε3) and

a1 ∼ σ − ε2λRD

λR

(
αI

αR

)2

b ∼ − αI

αR
.

On the other hand, if σ − ε2λRD < 0, then k(ε) ∼ 2e−γe

|b| exp(−1/a) with a =

εa1 + ε2a2 +O(ε3) and

a1 =∼ σ − ε2λRD

λR

(
αI

αR

)2

b ∼ − αI

αR
.

The above results are obtained by matching intermediate and far field approxima-
tions for the phase. This process also selects the value of the free parameter λI .
Figure 1 shows that these results are in qualitative agreement with our numerical
simulations. Notice that for the specified parameter values, the patterns found
correspond to spiral chimeras. Thus, with the method presented here we are able
to prove existence of spiral waves and spiral chimeras at the same time. However,
with our current set up we are not able to distinguish between these two patterns.
We plan to address this in future work.

Figure 1. Simulations of a FH-N system with nonlocal coupling de-

scribed by K̂(ξ) = −σ|ξ|2/(1 + D|ξ|2). All parameters fixed with
σ = 0.1. Pictures correspond to different values of D = 0.5, 1.0, 1.5, 2.0.
For these parameter values our patterns represent spiral chimeras.
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Oscillatory integrators for the Klein–Gordon equation
and related systems

Katharina Schratz

(joint work with Maŕıa Cabrera Calvo)

A novel class of oscillatory low regularity uniformly accurate integrators was re-
cently introduced in [3] for the Klein–Gordon equation

(1)

c−2∂ttz(t, x)−∆z(t, x) + c2z(t, x) = |z(t, x)|2z(t, x),
z(0, x) = z0(x),

∂tz(0, x) = c2z′0(x).

This work allowed us to close the gap between the general low regularity framework
introduced in [4] for a class of abstract evolution equations, and the uniformly

accurate approach for highly oscillatory problems with oscillations eic
2ℓt presented

in [1]. Indeed, the leading operator in (1) has the form

〈∇〉2c = c2 −∆

with the full spectrum of low to high frequencies (e.g., in the periodic case (∆)k =
−k2) coupled with a possibly large parameter c. The underlying oscillations

∑

ℓ

eic〈∇〉cℓt

are numerically delicate to tackle, in particular, in non relativistic regimes where
c ≫ 1. The idea of the new class of methods derived in [3] lies in embedding the
dominant oscillations explicitly into the numerical scheme while only approximat-
ing the non oscillatory parts. The latter allows for approximation results that hold
uniformly in c while requiring less regularity than pre-existing methods. In order
to achieve this, in a first step we express (1) as a first order system. Setting

u = z − ic−1〈∇〉−1
c ∂tz, v = z − ic−1〈∇〉−1

c ∂tz,(2)

a simple calculation shows that z = 1
2 (u + v). Furthermore, if we assume that

z(t, x) ∈ R, we have v ≡ u.
A short calculation shows that the corresponding first order system in u reads

i∂tu+ c〈∇〉cu− 1

8
c〈∇〉−1

c

(
u+ u

)3
= 0, u(0) = z(0)− ic−1〈∇〉−1

c ∂tz(0).(3)
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Embedding the dominant oscillations in the iteration of Duhamel’s formula of (3)
into the numerical discretisation leads to the first order low regularity uniformly
accurate scheme ([3])

un+1 = eiτc〈∇〉cun − iτ
1

8
c〈∇〉−1

c eiτc〈∇〉c[3
(
un
)2
ϕ1(−2iτ(c〈∇〉c − c2))un

+ ϕ1(−2iτ(c〈∇〉c + c2))
(
un
)3

+ 3unϕ1(−2iτc〈∇〉c)
(
un
)2
ϕ1(2ic

2τ)
(
un
)3]

,

with

ϕ1(z) =
ez − 1

z
.

A natural question is how one can extend this idea of low regularity approximations
coupled with uniform accuracy to a more general class of Klein–Gordon type sys-
tems, for example coupled Klein–Gordon equations or Klein–Gordon–Schrödinger
systems. Let us consider for instance

(4)

c−2
1 ∂ttz1(t, x)−∆z1(t, x) + c21z1(t, x) = |z2(t, x)|2,
c−2
2 ∂ttz2(t, x)−∆z2(t, x) + c22z2(t, x) = |z1(t, x)|2,

(z1, ∂tz1)(t = 0) = (z01 , c
2
1z

1
1),

(z2, ∂tz2)(t = 0) = (z02 , c
2
2z

1
2).

Similarly, via (2), we may express (4) as a coupled first order system in u1, u2.

Taylor series expansion of the function x 7→
√
1 + x2 gives

c〈∇〉c = c2 − 1

2
∆+O

(
∆α+1

c2α

)
, 0 ≤ α ≤ 1.(5)

This allows the following expansion of the underlying oscillations

e−isc1〈∇〉c1 eisc2〈∇〉c2 = e−is(c21−c22) +O
(

∆2

min{c21, c22}

)
.(6)

Hence, the oscillations only cancel if c1 = c2 holds, and otherwise smooth solutions
are required.

Observation (6) implies that the techniques in [3] are restricted to the case
where we have equal velocity in our system. The same problem arises in the case
of Klein–Gordon–Schrödinger systems, where the central oscillations take the form

∑

ℓ

e−is(c〈∇〉c+ℓ∆)

which, similarly to (4) can not be handled with the proposed techniques in [3]
either, or only by requiring the classical regularity Hr+2, r > d

2 of pre-existing
methods (see, for instance, [2]).

These are open problems and will require novel filtering, cutoff and Fourier
techniques.
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Noisy Waves

Hermen Jan Hupkes

(joint work with C.H.S. Hamster)

We discuss techniques to establish the stability of stochastically forced waves on
timescales that are exponentially long with respect to the noise-strength, for a
general class of reaction-diffusion systems that includes the Nagumo and (diffu-
sive) FitzHugh-Nagumo problems. We point out connections with deterministic
existence and stability analysis that can be used to uncover the stochastic cor-
rections to the speed and shape of the waveprofiles. This talk is based on results
contained in the papers [1, 2, 3, 4]. For an excellent review on the broad topic of
stochastically forced waves we refer to [5].
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Rigorous validated numerics for the study of patterns in the
Phase-Field-Crystal model

Jean-Philippe Lessard

(joint work with Rustum Choksi and Gabriel Martine La Boissonière)

Most metals, ceramics, and minerals are polycrystalline containing crystallines
(grains) of different crystal orientation. The properties of the grain boundaries are
of paramount importance for the macroscopic properties of the material (fracture,
yield stress, coercivity, conductivity). Studying grain boundaries is an active field
both in materials science and in applied mathematics (e.g. Mullins model and
curvature driven motion).

In an attempt to model elasticity in polycrystals and grain growth, the Phase-
Field-Crystal (PFC) model was proposed in 2002 in [1]. In this project, we consider
the simplest two-dimensional model with in mind the study of thin films. Let Ω
be a rectangle in R2 with periodic boundary conditions and consider ψ ∈ H2(Ω)
satisfying the phase constraint 1

|Ω|
∫
Ω ψ = ψ̄. The PFC energy of ψ is defined as

E[ψ] =
1

|Ω|

∫

Ω

1

2

(
(∇2 + q20)ψ

)2
+

1

4

(
ψ2 − β

)2
.

Its associated conservative H−1 gradient flow is known as the PFC equation

(1) ψt = ∇2
((

∇2 + q20
)2
ψ + ψ3 − βψ

)
.

The fixed parameter q0 sets the atomic distance 1/q0, while the active parameters
are β (inversely proportional to temperature), the phase fraction ψ̄ and the size of
Ω. It is worth mentioning that the PFC model can also be derived from Density
Functional Theory (DFT) by keeping only the closest neighbour correlations [2],
which in this case models the close-packing problem. Moreover, it was shown in
[3] that grain size distribution of late time PFC have a remarkable agreement with
experimental data from aluminum thin films. This agreement extends to certain
other geometric metrics, including perimeter.

While existence of solutions of (1) follows from Direct Methods, getting any
rigorous statement about existence of nontrivial critical points and local minimiz-
ers is far from reach using standard PDE/variational methods. In fact, except
for constant (liquid) state, it is very difficult to obtain rigorous results with such
methods (e.g. see [4]). This is where the field of rigorously validated numerics
provides a new tool. The goal of this project is to develop a general computer-
assisted approach to prove (constructively) existence of nontrivial steady states in
the 2D PFC model.

Let Ω = [0, Lx] × [0, Ly] with Lx = 4π√
3
Nx and Ly = 4πNy, where Nx, Ny ∈ N

are the number of atoms lined up in the x, y-axes. The main parameters of the
problem are then (ψ̄, β) and the domain size is given by (Nx, Ny). In order to
break the translational and rotational symmetries of PFC, we impose Neumann
boundary conditions. Let aα be the Fourier coefficients of ψ and let (aα)t be the
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time derivative. Inserting this expansion into the PFC equation results in an infi-
nite system of equations of the form (aα)t = Fα(a) thanks to orthogonality. The
steady states may then be found numerically by solving F (a) = 0 up to some trun-
cation order. The field of rigorous numerics in dynamics (e.g. see [5]) provides
a machinery to prove existence of true zeroes of F close to numerical approxi-
mations. This is done by showing (via functional analytic estimates and interval
arithmetic computations) that a certain Newton-like operator is a contraction on
a ball centered at the approximation. The contraction mapping theorem yields
the wanted true steady state. We applied this machinery (as made explicit in [6]
to prove the existence (and local uniqueness) of several different steady states of
the PFC equation (1). In Figure 1, we provide some examples.

Figure 1. Rigorously validated steady states of the PFC equation (1).

One of the open question remaining from this work concerns the existence of
connecting orbits. In Figure 2, we consider the parameters (ψ̄, β) = (0.07, 0.025),
use the very small domain (Nx, Ny) = (2, 1), and we provide a connection energy
diagram, where arrows represent likely connections (open question).

References

[1] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Modeling elasticity in crystal
growth, Physical Review Letters, vol. 88, p. 245701, 2002.

[2] T. V. Ramakrishnan and M. Yussouff, First-principles order-parameter theory of freezing,
Phys. Rev. B 19, 2775, 1979.

[3] G. Martine La Boissonière, R. Choksi, K. Barmak, and S. Esedoḡlu, Statistics of
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Figure 2. Connection diagram (a) where arrows represent likely con-

nections; the constant state is connected to all others. The vertical

axis gives the ordering in energy while the numbers give the Morse

index. Energy visualization with respect to the unstable directions of

the constant state. This diagram illustrates how the unstable directions

combine to transform the constant state into other lower energy states.

(b) The unstable directions serve as the main axes and the lines repre-

sent different initial perturbations. The length of the lines indicate the

number of PFC steps before the flows becomes close to the connecting

steady states. Colors represent energy (red for high and blue for low

energy).

Bifurcation and stability of frequency combs modeled by the
Lugiato-Lefever equation

Mariana Haragus

(joint work with Lucie Delcey, Mathew A. Johnson, Wesley R. Perkins, and
Björn de Rijk)

We consider the Lugiato-Lefever equation (LLE)

(1) ψt = −iβψxx − (1 + iα)ψ + i|ψ|2ψ + F,

where ψ(x, t) is a complex-valued function depending on a temporal variable t and
a spatial variable x, the parameters α, β are real, and F is a positive constant. This
NLS-type equation with damping, detuning, and driving was derived in nonlinear
optics by Lugiato and Lefever [9]. More recently, LLE was obtained as a model
for frequency combs (optical signals which consist of a superposition of modes
with equally spaced frequencies and are stationary in a suitable reference frame)
generated in whispering-gallery-mode resonators [1]. In this context, ψ(x, t) rep-
resents the field envelope, α the detuning parameter, F the driving term, and β
the dispersion parameter which may be positive (normal dispersion) or negative
(anomalous dispersion).

While extensively studied in the physics literature (e.g., see [2] and the ref-
erences therein), there are relatively few rigorous mathematical studies of this
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equation. The main mathematical questions concern the existence and the stabil-
ity of its steady waves, in particular of solitary and periodic waves. We refer to
[3, 5, 6, 10, 11] for several existence results, mainly based on tools from bifurca-
tion theory, and to [4, 7, 8, 12] for some recent stability results. Here we focus on
periodic waves and the stability results from [3, 4, 7, 8]. We point out that the
stability of solitary waves is a largely open question.

Existence of periodic waves. Local bifurcation theory provides efficient tools
for the study of the existence of periodic waves. The partial differential equa-
tion (1) is treated as an infinite-dimensional dynamical system of the form

(2)
dU

dt
= G(U, β, α, F ),

in which U(t) represents the real and imaginary parts of ψ(·, t). Taking as phase
space for this dynamical system a space consisting of periodic functions, steady
periodic waves of (1) become equilibria of (2). Then starting from simple constant
solutions, which can be explicitly computed, we study their stability and identify
the bifurcation points. The dynamical system being infinite-dimensional, a center
manifold reduction is used for the study of local bifurcations. The resulting re-
duced system is a two-dimensional system of ordinary differential equations which
precisely describes the local dynamics close to bifurcation points. We prove that
a steady bifurcation with O(2) symmetry occurs which, depending upon the val-
ues of the parameters, may be supercritical or subcritical. We construct in this
way many different families of steady periodic waves for (1) which bifurcate from
constant solutions (see [3, 4] for details).

Stability of periodic waves. Stability properties of periodic waves strongly de-
pend upon the class of perturbations: co-periodic perturbations (periodic per-
turbations which have the same period as the wave), subharmonic perturbations
(periodic perturbations with period equal to an integer multiple N of the period
of the wave), or localized perturbations (e.g., integrable on the real line). Notice
that instability for co-periodic or subharmonic perturbations implies instability
for localized perturbations.

It turns out that the bifurcation analysis mentioned above also allows to de-
termine the stability of the bifurcating periodic waves for co-periodic and sub-
harmonic perturbations. It is shown in [4] that the constructed periodic waves
are unstable for subharmonic perturbations with integer multiple N large enough,
and consequently also for localized perturbations, except for one family of periodic
waves which is stable for all subharmonic perturbations, i.e., for all N . We point
out that in these arguments the integer N must be fixed, and that the resulting
stability properties do not hold uniformly in N [7].

These stable periodic waves bifurcate supercritically in the case of anomalous
dispersion, β < 1, for any fixed parameter α < 41/30 and bifurcation parameter
F 2 = F 2

1 + µ, for sufficiently small µ > 0, where F 2
1 = (1 − α)2 + 1, a parameter
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regime already discussed in the original paper by Lugiato and Lefever [9]. Fur-
thermore, it was shown in [3] that for localized perturbations these periodic waves
are diffusively spectrally stable in the sense of the following definition.

Definition. Consider a smooth T -periodic stationary solution φ of (1) and denote
by A[φ] the linear operator given by the linearization of (1) at φ. The periodic so-
lution φ is said to be diffusively spectrally stable provided the following conditions
hold:

(1) the spectrum of the linear operator A[φ] acting in L2(R) satisfies

σL2(R)(A[φ]) ⊂ {λ ∈ C : ℜ(λ) < 0} ∪ {0};
(2) there exists θ > 0 such that for any ξ ∈ [−π/T, π/T ) the real part of the

spectrum of the Bloch operator Aξ[φ] := e−iξxA[φ]eiξx acting in L2(0, T )
satisfies

ℜ
(
σL2

per(0,T )(Aξ[φ])
)
≤ −θξ2;

(3) λ = 0 is a simple eigenvalue of A0[φ] with associated eigenvector the de-
rivative φ′ of the periodic wave.

Nonlinear modulational stability. Nonlinear stability results for co-periodic
and subharmonic perturbations exploit the existence of a spectral gap (the spec-
trum of the linear operatorA[φ] lies in the open left half complex plane at a positive
distance from the imaginary axis except for an eigenvalue at the origin which is
due to the translational invariance of the system). Localized perturbations yield
the absence of a spectral gap, hence requiring substantially different methods of
analysis (with origins in the pioneering work of Schneider in the nineties).

The study of the decay properties of the linear operator A[φ] acting in L2(R),
i.e., linear stability against localized perturbations, is an intermediate step. For
the periodic waves of (1) such estimates were obtained in [7], and then the non-
linear stability analysis was carried out in [8]. The following result holds for any
diffusively spectrally stable steady periodic solution of (1).

Theorem. Suppose φ is a smooth T -periodic steady solution of (1) that is diffu-
sively spectrally stable. Then, there exist constants ε,M > 0 such that, whenever
v0 ∈ L1(R) ∩H4(R) satisfies

E0 := ‖v0‖L1∩H4 < ε,

there exist functions ṽ, γ ∈ C
(
[0,∞), H4(R)

)
∩C1

(
[0,∞), H2(R)

)
, with ṽ(0) = v0

and γ(0) = 0 such that ψ(t) = φ + ṽ(t) is the unique global solution of (1) with
initial condition ψ(0) = φ+ v0, and the inequalities

max {‖ψ(t)− φ‖L2 , ‖γ(t)‖L2} ≤ME0(1 + t)−
1
4 ,

and

max {‖ψ (· − γ(·, t), t)− φ‖L2 , ‖∂xγ(t)‖H3 , ‖∂tγ(t)‖H2} ≤ME0(1 + t)−
3
4 ,

hold for all t ≥ 0.
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We expect that the method used in the proof of this result can be adapted
to establish a nonlinear stability result for subharmonic perturbations which is
uniform in N , as this was done for linear stability in [7].
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Some computer-assisted proofs for waves

Maxime Breden

(joint work with Jan Bouwe van den Berg, Claire Chainais-Hillairet,
Jean-Philippe Lessard, Maxime Murray, Antoine Zurek)

The last decades have seen the development of computer-assisted proofs for dy-
namical systems, which allow the quantitative descriptiveness of numerical simu-
lations to be combined with the guarantees of mathematical proofs [3]. These new
techniques often perfectly complement the set of already existing mathematical
tools that we have at our disposal to study dynamical systems. Indeed, rigorous
numerics and computer-assisted proofs are by design well adapted to treat a given
– non perturbative and non asymptotic – parameter set, in contrast to many pen
and paper techniques (like for instance geometric singular perturbation theory, to
name one which was mentioned regularly during this workshop) which do focus
on regimes where some parameters are very small (or very large).
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There were two other presentations in this workshop, by Jean-Philippe Lessard
and Jonathan Jacquette, which made crucial usage of these computer-assisted tech-
niques to study patterns generated by dynamical systems. Here we complement
these results by giving two examples of situations where wave-like phenomena can
also be rigorously studied with computer assistance.

The first example is the Diffusion Poisson Coupled Model (DPCM), which is a
free boundary problem introduced in the context of the underground storage of
nuclear wastes [1]. The DPCM aims at predicting the corrosion process which
can deteriorate the steel canisters protecting the nuclear wastes, and describes
the evolution of an oxide layer. It consists in drift-diffusion equations for the
involved charge carriers (ferric cations, electrons and oxygen vacancies), which
are coupled via a Poisson equation for the electric potential. Another (highly
nonlinear) coupling is present in the Robin boundary conditions, which describe
the kinetics of the electro-chemical reactions at the boundaries of the oxide layer.
For a complete and precise description of the mathematical model, see e.g. [5] and
the references therein.

The mathematical study of the DPCM has proven very challenging, and the
few existing results can only handle simplified versions of the model, where some
of the couplings are ignored [9]. On the other hand, numerical schemes have been
developed to study the full DPCM, and numerical experiments leading to conclu-
sive comparison with real-life data have been conducted [1, 2]. These simulations
suggest the apparition of a kind of traveling wave solution, or pseudo-stationary
state, where both interfaces of the oxide layer move at a same constant speed, with
a fixed profile for the densities of the charge carrier inside the oxide layer. Such
solutions were investigated both numerically and theoretically in [8], but again
their existence could only be proven for a simplified model.

Using computer-assisted techniques, together with Claire Chainais-Hillairet and
Antoine Zurek we were able to prove the existence of such a pseudo-stationary state
for the full DPCM, for physically relevant parameter values [5]. Besides, thanks
to the constructive nature of these techniques, which give fully explicit and guar-
anteed a posteriori error estimates between a numerically computed approximate
solution and the true solution that is proven to exist, we also obtain a very precise
description of the solution, including a tight and certified enclosure of the speed at
which the oxide layer progresses, which is of course of the uttermost importance
in practice. Another highly relevant issue is that of the stability of the obtained
pseudo-stationary state. Numerical simulations suggest that the validated solution
is indeed stable, and possibly globally attracting (?), but for the moment these
questions remain open.

The second example is concerned with actual traveling waves defined on the whole
real line, as opposed to the pseudo-stationary solutions from the DPCM which live
on a bounded domain, and for which the computer-assisted proof is more akin to
that of a steady state. The model under consideration is the so-called suspension
bridge equation

∂ttu = −∂xxxxu− eu + 1,
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where u = u(t, x) describes the deflection of the roadway from the rest state u = 0
as a function of time t and the spatial variable x representing the direction of
traffic.

When this equation was introduced [10], the existence of a traveling wave solu-
tion with wave speed c was conjectured for every c2 in (0, 2). Many partial answers
to this conjecture were subsequently obtained, including the existence of a travel-
ing wave solution with wave speed c for almost all c2 in (0, 2) [12] and for every
c2 in (0, 0.5516) [11], both using variational methods, as well as the existence of
at least 36 traveling wave solutions with wave speed c = 1.3 [6], this time using
computer-assisted techniques.

Also using computer-assisted techniques, together with Jan Bouwe van den
Berg, Jean-Philippe Lessard and Maxime Murray, we proved in [4] the existence
of a traveling wave solution with wave speed c for all c2 in [0.5, 1.9], which amounts
to proving the existence of a homoclinic orbit for the dynamical system associated
to

u′′′′ + c2u′′ + eu − 1 = 0,

for all c2 in [0.5, 1.9]. One of the main difficulty in carrying out a computer-assisted
proof for such solutions lies in the fact that homoclinic orbits are defined on R,
which is unbounded. In order to circumvent this issue, we first make use of the
parameterization method [7] to compute and rigorously validate local stable and
unstable manifolds at the origin, and then consider a boundary value problem
to connect these two manifolds, the corresponding orbit being now defined on a
bounded interval. This yields a computer-assisted proof of existence of a traveling
wave for a fixed value of c. We then once again use the robustness inherent to these
techniques, which is made explicit via a uniform contraction mapping theorem, in
order to extend the proof to a whole interval of values of c.

It should be noted that our results could in principle be extended to larger
closed interval of values of c2 contained in (0, 2), but definitely not to (0, 2) itself,
because the problem becomes singular at both ends of the interval (0, 2), while the
techniques from [11] happen to work only for c somewhat close to 0. This illus-
trates the aforementioned complementary between computer-assisted techniques
and more classical pen and paper approaches. The only part of the conjecture
that remains open is thus for c2 close to 2.
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Quenched stripes: wavenumber selection and dynamics

Ryan Goh

Quenching mechanisms are a potent tool for controlling and mediating pattern-
forming phenomena in a variety of physical systems. Broadly, an external mecha-
nism spatially progressively moves across a system, bifurcating or exciting pattern-
forming instabilities. By controlling the exact nature of this quenching process,
including its geometry and speed of propagation, one can control the pattern
formed in the wake. While examples of such a mechanism arise in diverse areas
such as chemical precipitation and deposition in the wake of a traveling reaction
front [12], water-jet cutting and etching [5], chemical evaporation and de-wetting
[17, 15], directional quenching of liquid melts [4, 16], and formation of crystalline
latices [2], one physical system which nicely exemplifies a quenching process is the
light-sensitive, diffusion limited, CDIMA reaction [13]. Such a system exhibits a
Turing instability which is suppressed when exposed to high-intensity light. Turn-
ing the light off homogeneously excites unstable modes of all orientations leading
to a disorganized arrangement of locally coherent patterns with defects in between.
If instead a mask is moved across the domain, progressively blocking the light, a
more coherent, and nearly defect-free pattern can be formed [14, 11]. Furthermore,
by changing the mask speed and shape, different striped patterns can be selected.

This talk gives an overview of recent works [1, 3, 7, 6, 9, 10, 8, 18] which study
pattern selection in the wake of quenching processes. To fix the scene, we dis-
cuss results and phenomena in the prototypical two-dimensional Swift-Hohenberg
equation

ut = −(1 + ∆)2u+ µu− u3, u ∈ R, (x, y, t) ∈ R
2 × R+, ∆ = ∂2x + ∂2y .(1)
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Here u is an order parameter which originally represented the perturbation from a
pure conductive state in Rayleigh-Bénard convection, and µ the bifurcation param-
eter controlling the onset of convective roll formation. From a phenomenological
standpoint, this equation is arguably the simplest scalar equation which forms
stable periodic patterns.

A quenching mechanism can be modeled in this setting by replacing µ with a
spatio-temporal heterogeneity

(2) ut = −(1 + ∆)2u+ ρ(x, y, t)u− u3, ρ(x, y, t) =

{
µ, (x, y) ∈ Ωt,

−µ, (x, y) ∈ Ωc
t ,
,

where µ > 0 and Ωt is some time-dependent, and evolving domain, so that u ≡ 0
is Turing unstable in Ωt and stable in its complement. The simplest quenching
mechanism one could study is a planar, or directional, quench where the boundary
∂Ωt is a line which rigidly propagates in the normal direction at a fixed speed c.
In particular, one could set ρ(x, y, t) = −µsgn(x− cxt).

To organize dynamics of patterns in the wake of a directional quench, one con-
siders travelling wave type solutions to (2) of the form u(x, y, t) = v(x−cxt, ky(y−
cyt)), which are 2π-periodic in the second variable and are posed in the horizon-
tal frame moving with the quenching speed cx. In terms of the new variables
x̃ = x − cxt, ỹ = ky(y − cyt), one finds v satisfies a pseudo-elliptic equation on
which we append asymptotic boundary conditions to look for pattern-forming front
solutions

0 = −(1 + ∂2x̃ + k2y∂
2
ỹ)

2v + ρ(x̃)v − v3 + cx (∂x̃ + ky∂ỹ) v, u(x̃, ỹ + 2π) = u(x̃, ỹ)

(3)

lim
x̃→−∞

|v(x̃, ỹ)− up(kxx̃+ ỹ; k)| = 0, lim
x̃→+∞

v(x̃, ỹ) = 0.

(4)

Here k =
√
k2x + k2y gives the bulk wavenuber, kx and ky give the horizontal and

vertical wavenumber respectively of the asymptotic stripe state up(θ; k), which
itself is an equilibria of (1) satisfying the periodic equilibrium equation

0 = −(1 + k2∂2θ )
2up + µup − u3p, up(θ + 2π; k) = up(θ; k).

Solutions of (3) can be coarsely categorized by the parameter set

M := {(cx, ky, kx) : (3) has a solution},
with the geometry of this variety giving insight into the bifurcation structure and
geometry of the solution space. We highlight the results of numerical continuation,
rigorous analysis, as well as formal asymptotic calculations, which describe this
set.

This talk discusses how different approaches, from dynamical systems theory,
functional analysis, and modulational theory, can be used to study stripe for-
mation in various orientation and growth regimes. We also highlight how these
ideas can be applied to other prototypical pattern-forming equations such as the
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anisotropic Swift-Hohenberg equation, a Swift-Hohenberg equation with subcrit-
ical cubic-quintic nonlinearity, the complex Ginzburg-Landau equation, as well a
two-component reaction-diffusion model for the CDIMA system mentioned above.
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Pulse replication and slow absolute spectrum in the
FitzHugh–Nagumo system

Paul Carter

(joint work with Jens D. M. Rademacher, Björn Sandstede)

We consider the FitzHugh–Nagumo equation in the form

ut = uxx + u(u− a)(1− u)− w

wt = ε(u− γw)
(1)

where a < 1/2, 0 < ε≪ 1 and γ > 0 is taken small enough so that (u,w) ≡ (0, 0)
is the only homogeneous equilibrium of (1). The system (1) is a simplified model
of nerve impulse propagation, which is known to admit families of traveling pulse
solutions, which are localized in space and bi-asymptotic to (u,w) = (0, 0). Such
waves are solutions of the slow/fast traveling wave ODE

u′ = v

v′ = cv − u(u− a)(1− u) + w

w′ =
ε

c
(u − γw)

(2)

where ′ = d
dξ and ξ = x+ ct is the traveling wave coordinate with speed c.

In the region a ≈ 0, near the boundary between excitable and oscillatory dy-
namics in (1), these traveling pulses can exhibit a variety of replication phenomena.
In particular, upon parameter continuation in the parameters (a, c), a single trav-
eling pulse can grow into a double pulse via a series of folds in parameter space
along a so-called homoclinic banana [4], in a phenomenon we refer to as paramet-
ric pulse replication; see Fig. 1. The secondary pulse grows from the tail of the
primary pulse in a manner resembling a canard explosion [2, 3] in the traveling
wave ODE (2). This replication event appears to guide the time dynamics in the
PDE (1): when taking one of the traveling pulses near the first fold along the
transition and using this as initial data for a direct simulation in (1), one observes
temporal pulse replication events in which the pulse grows additional pulses in its
wake as time evolves; see Fig. 2.

This motivates us to consider the temporal stability of the intermediate trav-
eling pulses along the single-to-double pulse transition which occurs along the
homoclinic banana. Numerical spectral computations show that while the single
pulse is initially stable, as it passes through each successive fold along the transi-
tion, eigenvalues accumulate on the positive real axis until approximately halfway
through the transition, after which all such eigenvalues move into the left half
plane except for one; see Fig. 1. In [1], we show that this phenomenon is due to a
novel mechanism for eigenvalue accumulation in multiple timescale systems, which
we call the slow absolute spectrum.

In order to understand this accumulation of eigenvalues, we consider the eigen-
value problem obtained by linearizing (1) in a co-moving frame about the traveling
pulse. This eigenvalue problem inherits the slow/fast structure of (2). The trav-
eling pulses are built from perturbations of orbits obtained by gluing portions of
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unstable transitional pulse (6 positive eigenvalues)

L 2

a x

x Re λ

Im

Re λ

Im

stable 1-pulse

||   ||.

Figure 1. (Left) Bifurcation diagram of the 1-to-2-pulse tran-
sition obtained by continuing in the parameters (a, c) in (2) for
fixed ε = 0.01, γ = 2. Red crosses denote fold points, and the
number of unstable PDE eigenvalues is given for profiles along
the transition marked with a colored bullet/shape. (Right) Sam-
ple solution profiles (u blue, w red) and their spectra.

the critical manifold M = {v = 0, w = u(u − a)(1 − u)} with fast jumps between
the different branches of M [3]. One finds that pulses along the first part of the
transition spend increasing (spatial) times along a portion of M which exhibits
absolute spectrum relative to the asymptotic rest state; that is, when viewed as
equilibria, for values of the temporal eigenvalue parameter λ on a interval of the
positive real axis, the points along this portion of M have a different Morse index
from that of the asymptotic rest state in any exponentially weighted space. This
can lead to an accumulation of eigenvalues, much like that which can arise with
pulses which contain a long plateau state, created at T-points [6, 7]. Along the
second part of the transition, the length of the trajectory near this portion of the
slow manifold decreases, and thus so does the number of accumulating eigenvalues.

We show that this accumulation phenomenon is generic in eigenvalue problems
exhibiting an appropriate slow/fast structure, and we validate our hypotheses
for (1). The general result is obtained through the use of slowly varying coeffi-
cients and exponential trichotomies to obtain a reduced eigenvalue problem on an
appropriate center subspace. The eigenvalues are shown to accumulate at a rate
O(ε−1). The above results reported on here have appeared in [1].

This work leaves a number of open directions. We anticipate that the slow
absolute spectrum phenomenon can be further generalized and linked to interesting
dynamics in related settings. Additionally, the link between the temporal pulse
replication in (1) and the eigenvalue accumulation associated with the homoclinic
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Figure 2. (Left) Spacetime plot of u-profile in (1) exhibiting
temporal pulse adding for fixed a = −0.0295, ε = 0.015. (Right)
Shown are homoclinic bananas obtained by numerical continua-
tion in (a, c) for fixed ε = 0.015, γ = 2. The upper left corner
of each banana contains a parametric transition from a spectrally
stable n-pulse to an unstable (n+ 1)-pulse.

banana(s) which describe the parametric pulse replication between traveling n-to-
(n + 1) pulses (see Fig 2) has not been established. We are currently exploring
this by attempting to obtain a description of the possible reduced dynamics on an
invariant manifold describing the temporal pulse adding transitions. Furthermore,
simulations suggest that a variety of other replication phenomena are present in the
traveling wave ODE, such as homoclinic bananas which connectm and n pulses for
different values of m,n, as well as pulse-adding behavior generated by successive
canard explosions of periodic wave trains in (2). These phenomena exhibit fold-
alignment behavior associated with pulse adding/splitting in other systems [5];
also see Fig 2. These topics are the subject of ongoing and future work.
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Many-spike limit for pattern formation

Theodore Kolokolnikov

In the first part of the talk, we consider a highly symmetric configuration of N
spikes whose locations are located at the vertices of a regular N -gon inside ei-
ther a unit disk or an annulus. We call such configuration a ring of spikes. For
the Schnakenberg model, the ring radius is characterized in terms of the modified
Green’s function. For a disk, we find that a ring of 9 or more spikes is always
unstable with respect to small eigenvalues. Conversely, a ring of 8 or less spikes
is stable inside a disk provided that the feed-rate A is sufficiently large. More
generally, for sufficiently high feed-rate, a ring of N spikes can be stabilized pro-
vided that the annulus is thin enough. As A is decreased, we show that the ring
is destabilized due to small eigenvalues first, and then due to large eigenvalues,
although both of the thresholds are separated by an asymptotically small amount.
For a ring of 8 spikes inside a disk, the instability appears to be supercritical,
and deforms the ring into a square-like configuration. For less than 8 spikes, this
instability is subcritical and results in spike death.

In the second part of the talk, we study the Gierer-Meinhardt model with
heterogeneous precursor gradient in 1 and 2 dimensions. We derive the effective
spike density in the limit spikes. This density is shown to be a solution of a
separable ODE. In 2D, it involves infinite lattice sums over hexagonal lattices.
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Spatially localized time-periodic solutions of semilinear wave equations

Wolfgang Reichel

(joint work with Andreas Hirsch, Simon Kohler)

We consider the semilinear wave equation

(1) V (x)utt −∆u = Γ(x)|u|p−1u in R
N × R

and we aim at proving the existence of spatially localized, time-periodic solutions
(breathers) – which rarely occur in semilinear wave equations. Due to non-constant
coefficients the linear wave operator has a space-dependent finite speed of prop-
agation. We consider cases where V is strictly positive or where it may change
sign. The latter typically arises when considering travelling waves with speed c of
a semilinear wave equation in RN+1 × R since then V (x) =W (x)− c−2.
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We are particularly motivated by an example from [1] where the special case of

V (x)utt − uxx + q(x)u = ±u3 in R× R

is considered with q(x) = (q0 − ǫ2)V (x), a very specific 1-periodic function V (x),
and a very specific value of q0. For small ǫ > 0 the existence of small breathers of
size ǫ is proven. The result was obtained by spatial dynamics and center-manifold
reduction.

In our approach [3, 4] we use a variational method to establish the existence of
breathers for a variety of examples. Finding the temporal period T = 2π

ω is part
of the problem. Starting with the decomposition

u(x, t) = (Sû)(x, t) :=
∑

k∈Zodd

uk(x)e
ikωt, uk = u−k

with û = (uk)k∈Zodd
, the wave operator L = V (x)∂2t −∆ accordingly splits into a

family of Schrödinger operators (Lk)k∈Zodd
, Lk = −∆− k2ω2V (x) with spectrum

σ(Lk). Our key assumption (which will be verified in the examples) is that

dist(0, σ(Lk)) = O(|k|γ) as |k| → ∞

for some γ > 0, i.e., 0 lies in a spectral gap of Lk which grows in size as k increases.
The key assumption can only be verified when k 6= 0 and when V 6≡ const. In order
to overcome the first difficulty (k 6= 0) we restrict to T/2-antiperiodic functions
(i.e., k ∈ Zodd).

We find breathers variationally as critical points of an energy functional. Using
the bilinear form bLk

of the operator Lk and the abbreviation D = RN × (0, T )
the energy functional takes the form

J(u) =

∫

D

|∇u|2 − V (x)u2t d(x, t)−
2

p+ 1

∫

D

Γ(x)|u|p+1 d(x, t)

=
∑

k∈Zodd

bLk
(uk, uk)−

2

p+ 1

∫

D

Γ(x)|u|p+1 d(x, t)

= ‖û+‖2 − ‖û−‖2 − 2

p+ 1

∫

D

Γ(x)|Sû|p+1 d(x, t).

Here we have used the fact that the spectral projections of Lk onto the positive
and negative spectral subspaces of dom(bk) = H1(RN ) give rise to the splitting
dom(bk) = H1(RN ) = H+

k ⊕H−
k . Using functional calculus to define |Lk| and its

bilinear form b|Lk| this allows us to describe the domain of J as all functions Sû
with û in

H =
{
û : ‖û‖2 :=

∑

k∈Zodd

b|Lk|(uk, uk) <∞, uk = u−k

}
.

The splitting dom(bk) = H1(RN ) = H+
k ⊕ H−

k extends to H = H+ ⊕ H− with
corresponding notation û± ∈ H±. The splitting of the domain of J also suggests
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how to obtain breathers as critical points (saddle points) of J . The critical level
is described as

c = inf
û+∈H+

‖û+‖=1

sup
t>0

û−∈H−

J(tû+ + û−).

At this point at least three issues arise which need to be tackled:

(A) When is the key assumption dist(0, σ(Lk)) = O(|k|γ) fulfilled and for which
γ > 0?

(B) For which p∗ is there a continuous, locally compact embedding S : H →
Lp+1(D) for all 1 ≤ p < p∗?

(C) Is c attained?

Without going into details of how (A)-(C) can be achieved we give a short
account of our results.

V , Γ are 2π-periodic in x, cf. [3]. Breathers exist in the following cases:

(1) V (x) = α+ βδ2πper(x), β > 32α > 0, ω = 1
4
√
α
, γ = 2, p∗ = ∞

(2) V (x) = 2π-periodic step function, i.e., 2π-periodic extension of the step

function α1[0,2θπ] + β1[2θπ,2π],
α
β = (1−θ)2

θ2 , 0 < θ ≪ 1
2 , ω = 1

4θ
√
α
, γ = 1,

p∗ = 3,
(3) According to [2] there exist V ∈ Hr

per(R) near V0 ≡ 1 for each r ∈ [1, 32 )

fulfilling the key assumption with γ = (32 − r)− and p∗ = 7−2r
1+2r . Further-

more ω = π(
∫ 2π

0

√
V (x) dx)−1.

V is wave-guide like, cf. [4]. Using the idea that u is the profile of a travelling
wave U(x, xN+1, t) = u(x, t− c−1xN+1) we say that V is wave-guide like if V (x) =
W (x) − c−2 where W (x) represents the profile of a cylindrical wave-guide with
N -dimensional cross-section

W (x) =

{
W0, |x| < R,
W1, |x| > R

and 0 < W1 < c−2 < W0. Here W0 stands for the high refractive index inside the
wave-guide andW1 for the low refractive index outside the wave-guide. In fact, this
is exactly the condition that allows a guided wave propagating periodically in the
xN+1 direction with speed c for the linear wave equation W (x)utt −∆N+1u = 0.
For our nonlinear equation (1) we get that for ω = π

2R (W0 − c−2)−1/2 breathers
exist in the following cases:

(4) n = 1, ∀ compact K ⊂ R: infK Γ > 0, Γ(x) → 0 as |x| → ∞ and p∗ = 3.
(5) n = 1, Γ(x) = const. > 0, R ≫ 1, p∗ = 3.
(6) n = 2, Γ > 0 is radial function and p∗ = 2.

N.B.: case (5) is done with a different variational method (dual variational
method).

Using the above methodology breathers can be shown to exist also in the following
two cases:

(7) For n = 1 on a bounded spatial domain [0, L] with zero Dirichlet boundary
conditions at 0 and L, V (x) ≡ 1, ω = π

2 , p
∗ = ∞.
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(8) If the underlying structure is not the real line but a periodic necklace-
graph with V (x) ≡ 1, ω = π

2 , p
∗ = ∞. For the description of the periodic

necklace graph and some related results cf. [5].

N.B.: For dimension n = 1 we are convinced that in all of the above cases
p∗ = ∞ is the right result for the embedding S : H → Lp+1(D), 1 ≤ p < p∗. We
are currently elaborating details.
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Origin of Jumping Oscillons in an Excitable Reaction-Diffusion System

Hannes Uecker

(joint work with Edgar Knobloch, Arik Yochelis)

Jumping Oscillons (JOs) are spatially localized relative periodic orbits with strong
temporal oscillations that in the lab frame let them disappear and reappear at
shifted spatial locations. Such JOs have been identified by direct numerical sim-
ulations (DNS) in the excitable regime of certain 3-component reaction diffusion
systems of FHN type [YZE06]. In [KUY21] we give a systematic description of
branches of traveling wavetrains (TWs), traveling pulses (TPs), and time mod-
ulated TPs (mTPs) via numerical continuation and bifurcation, using pde2path

[Uec21a]. The JOs are found by continuation of mTPs over long branch segments.
Additionally, the systems supports various (stable) bound states of JOs and TPs.
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Figure 1. Top: samples of 1JO, and of 1P1JO–, 2JO–, and
1P2JO–bound states. Bottom: basic bifurcation diagram of TWs,
TPs (see insets for samples), and 1JOs.

Small amplitude approximate localised cellular patches

David J.B. Lloyd

(joint work with Daniel J. Hill, Jason Bramburger)

Localised patches of cellular pattern (see Figure 1) have been known to exist in
pattern forming PDE systems for over 20 years where they are numerically found
to emerge from a quiescent background state near a Turing/pattern-forming insta-
bility [5, 9, 10]. However, there is still no mathematical theory for the emergence
of these localised patterns since the spatial dynamics approach [2] does not apply
in this setting due to there being no single unbounded direction. Furthermore,
at a Turing instability of systems posed in dimensions greater than 1, there is a
continua of unstable modes that bifurcate rather than a finite number allowing
the tools of centre-manifold reduction to apply. Formally, one could carry out a
weakly nonlinear, slowly varying amplitude analysis [4] by supposing the cellular
patterns have a certain symmetry but this leads to a system of PDEs that are still
difficult to show if there is a fully localised pulse solution [1].

In this talk, we take the simplest pattern-forming system, the Swift-Hohenberg
equation [12]

ût = − (1 + ∆)
2
û− µû+ γû2 − û3, (r, θ) ∈ R

+ × [0, 2π),(1)

where û = û(r, θ, t), ∆ :=
(
∂rr +

1
r∂r +

1
r2 ∂θθ

)
, 0 < µ ≪ 1 acts as the bifurcation

parameter, and γ ∈ R is a fixed parameter of the system. The Swift-Hohenberg
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(a) (b) (c)

Figure 1. A variety of localised patterns known to exist the
Swift-Hohenberg equation (1) (a) localised cellular hexagon patch
(b) a localised hexagonal cellular patch but with rhombic super
structure and (c) a localised cellular square patch.

equation serves as a prototypical pattern forming system and for purely axisym-
metric patterns it has been shown to be a normal form near a Turing instability
in general reaction-diffusion systems [11]. We investigate stationary patterns and
carry out a finite Fourier decomposition in the angular variable θ of the form

û(r, θ) = u0(r) + 2

N∑

n=1

un(r) cos (2mnθ) ,(2)

where N ∈ N is the truncation order. This decomposition allows us to capture ‘ap-
proximate’ even dihedral lattice patterns, D2m, that are invariant under rotations
of π

m about its centre; i.e., û (r, θ) = û
(
r, θ + π

m

)
. Projecting the Swift-Hohenberg

equation onto each of the Fourier modes we end up with a a finite Galerkin system

0 = Ln(r)un + Fn (û;µ) , ∀n ∈ [0, N ],(3)

where 0 < µ ≪ 1 is the bifurcation parameter, Ln(r) is a non-autonomous linear
differential operator depending on the radial variable r, and Fn is the nonlinearity
of the system.

One can now study (3) using radial centre-manifold theory/analysis to construct
small amplitude bifurcating solutions from un = 0 at µ = 0 [6, 7, 8, 11]. The main
advantage of this approach is that one can now use spatial dynamics to show
the existence of a bifurcating small amplitude localised solution to (3) for any
m. The approach is applicable to more general systems where one can carry out
centre-manifold reduction.

In [3], we discuss the proofs of the following theorems. In order to state our
first theorem for the existence of a small amplitude localised solution in (3), we
need to make the following hypothesis.

Hypothesis 1. Fix m,N ∈ N, and define the vector function Q̃ : RN+1 → R
N+1,

such that

[
Q̃(a)

]
n
:= 2

N−n∑

j=1

cos

(
2mπ(n− j)

3

)
ajan+j +

n∑

j=0

cos

(
2mπ(n+ j)

3

)
ajan−j ,
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for all n ∈ [0, N ], where
[
Q̃(a)

]
n
denotes the n’th element of Q̃(a). Then, there

exists a fixed point a∗ ∈ R
N+1 of Q̃(a), where [a∗]n 6= 0 for all n ∈ [0, N ], such

that the linearisation of Q̃− I about a∗ is invertible.

Theorem 1. Fix m,N ∈ N, γ 6= 0, and assume Hypothesis 1 is met. Then,
there is some µ∗ > 0 such that the truncated Galerkin system (3) has a stationary
localised N -patch solution

un(r) = µ
1
2 an (−1)

mn

√
3

γ
J2mn(r) + O(µ),

for each µ ∈ (0, µ∗), uniformly on bounded intervals r ∈ [0, r0] as µ → 0,

where the coefficients {an}Nn=0 satisfy the matching problem Q̃(a) = a where
a = [a0, . . . , aN ]T .

For small N = 1, 2, 3 and N = 4 for the case m is a multiple of 3, we can
prove that Hypothesis 1 is met. These small N cases provide excellent initial
conditions for numerical continuation algorithms and we are able to find a plethora
of different types of localised patterns for arbitrary lattices. In the case of m = 3
i.e. hexagonal, D6, lattice patterns, we have the following theorem for sufficiently
large Fourier truncations.

Theorem 2. There exists an N0 ≥ 1 such that for all N ≥ N0 there exists a
solution to the fixed point problem in Hypothesis 1, written ã ∈ RN , such that
‖ã− â‖ → 0 and N → ∞, with â = [ā(0), ā(1/N)), . . . , ā((N − 1)/N)] ∈ R

N and
ā(t) ∈ C[0, 1] satisfies

(4) a(t) = 2

∫ 1−t

0

a(s)a(t+ s)ds +

∫ t

0

a(s)a(t− s)ds, t ∈ [0, 1].

This theorem is proved using a combination of a computer-assisted proof for the
existence of a C[0, 1] solution to (4) and then using a Newton-Kantovich theorem
to prove the existence of a discrete solution near to the continuous one.

While this theorem states that the localised solution we find in Theorem 1 goes
to zero as N → ∞, for any finite Fourier truncation one can find a localised D6

lattice pattern numerically. Furthermore, we find numerically that these localised
solutions persist as N → ∞ provided µ > 0. It remains to see if a computer-
assisted proof can prove the existence of a localised hexagonal cellular patch in
the Swift-Hohenberg equation.
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The speed of a random front for stochastic reaction-diffusion
equations with strong noise

Carl Mueller

(joint work with Leonid Mytnik, Lenya Ryzhik)

The KPP equation is one of the most widely studied PDE which exhibits a solution
(u(t, x))t≥0,x∈R converging to a traveling wave:

∂tu = ∂2xu+ u(1− u)

u(0, x) = 1(−∞,0](x).
(1)

To be precise, there exists a function C(t) and a function h(x) such that h(x) → 1
as x → −∞ and h(x) → 0 as x → +∞, such that as t → ∞, u(t, x − C(t))
converges uniformly to h(x). Furthermore,

lim
t→∞

C(t)

t
= 2.

These results have been generalized in many directions, see [9, 10].
Our goal is to study the asymptotic traveling wave speed in the presence of

random noise. A common motivation for (1) involves the spread of an advanta-
geous gene through the population. Here u ∈ [0, 1] represents the fraction of the
local population which has the advantageous gene, and u(1 − u) is a competition
term proportional to the number of interactions between individuals of the two
types. A natural requirement for the noise is that its variance should also be pro-
portional to u(1− u). This leads us to the following equation, in which Ẇ (t, x) is
two-parameter white noise and σ > 0 is a constant.

∂tu = ∂2xu+ u(1− u) + σ
√
u(1− u)Ẇ

u(0, x) = 1(−∞,0](x).
(2)
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In fact, with probability one for all t ≥ 0, the wavefront has a (random) right edge
defined as

R(t) = sup{x ∈ R : u(t, x) > 0}
(see [7], in which the additive term u(1 − u) was replaced by a more general
function f(u) satisfying certain conditions. For simplicity, will will only discuss
f(u) = u(1− u) here. The noise coefficient was also allowed to be more general.)
[7] gave the following asymptotic expansion for R(t) as t → ∞, for small values of
σ:

R(t)

t
= 2− π2| log σ2|−2 +O((log | log σ|)| log σ|−3)

confirming conjectures in [1, 2, 3].
For small values of σ, solutions to the KPP equation with noise can be thought

of as perturbations of solutions to the same equation without noise. But this
intuition fails for large σ. Nevertheless, it was proved in [4] that for all σ ≥ 0 there
exists a nonrandom speed V (σ) such that almost surely

lim
t→∞

R(t)

t
= V (σ)

lim
σ→∞

σ2V (σ) ≥ 2.

Our main result, published in [6], is to prove equality, namely

lim
σ→∞

σ2V (σ) = 2.

The main ingredients in our proof are:

(A) Scaling, where we write v(t, x) = u(2σ−4t, 2σ−2x) and verify that v satisfies

∂tv =
1

2
∂2xv + 2σ−4v(1− v) +

√
v(1 − v)Ẇ

for a different white noise Ẇ (t, x).

(B) Using a Girsanov change of measure to reduce the equation to

∂tv =
1

2
∂2xv +

√
v(1 − v)Ẇ

(C) Using results in [8], which state that the wavefront for solutions to the equation
from part (B) moves like a Brownian motion.

(D) Splitting up time into stages roughly of length σ8, and starting the nth stage
over again with an initial function 1(−∞,nσ4]. This new initial condition is related
to the true solution v by a comparison principle from [5].
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Traveling Fronts in a Model for Social Outbursts

Anna Ghazaryan

(joint work with Marzieh Bakhshi, Vahagn Manukian, Nancy Rodŕıguez)

Social outbursts like civil unrest, protests, and rioting are expressions of objection
towards an idea or action of a government. They often mark dramatic changes in
the course of history. The suitable background for outbursts is the social tension.
Motivated by the data from the 2005 French riots, Berestycki et al, in [2], introduce
a reaction-diffusion model for the dynamics of social unrest u and tension v as
functions of the time τ > 0 and space x ∈ R

n,
{
uτ = d1∆u+ r(v)G(u) − ωu,
vτ = d2∆v + 1− h(u)v.

(1)

The model assumes a nearest neighbor contagion and thus there are the diffusion
terms for u and v with the respective diffusion coefficients, d1, d2 > 0. It is assumed
that in the absence of v the rioting behavior would decrease proportionally to itself,
therefore, ω > 0.

The model takes into account a bandwagon effect (self-excitement) on the level
of unrest that turns on when the social tension is high enough. It is modeled by
a KPP-type function [3] G = u(1 − u). The bandwagon effect is assumed to be
negligible until the social tension v is sufficiently large. The switch mechanism is
modeled by the function

r(v) =
Γ

1 + e−β(v−α)
and h(u) = θ(1 + u)p, (Γ, β > 0).

When p < 0 the model (1) represents the tension-enhancing (cooperative) case
and when p > 0 it describes the tension-inhibitive (activator-inhibitor) case. The
current work is focused on the tension inhibitive case.

As opposed to tension-enhancing case, the tension-inhibitive case results in non-
monotone traveling waves that are a better reflection of the real-life observations.
Non-monotone traveling waves were explored numerically in [8]. Their analytic
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study is in the center of the presentation. More precisely, in [1] we prove the
existence of traveling waves in two sub-regimes of the tension-inhibitive case. For
both sub-regimes, we mainly use Geometric Singular Perturbation theory [4, 6]
applied to the dynamical system that captures traveling wave solutions in (1) as
its heteroclinic orbits.

One of the sub-regimes is when the spatial spreads of the level of unrest and the
social tension are small. In this case, the parameter that sets the timescale over
which the bandwagon effect would be observed, denoted by ω, plays a key role in
the analysis. Specifically, we consider the singular limits as ω → 0 and ω → ∞ to
find the appropriate heteroclinic orbits. We then use the theory of rotated vector
fields [7] for the intermediate values of ω. In the limit as ω → 0 the dynamics of
the system are driven mostly by the dynamics of u. On the other hand, as ω → ∞,
the dynamics of the system are driven by the dynamics of v. This is aligned with
the real-life expectations.

The second sub-regime is when the social tension diffuses at a much slower
rate than the level of unrest. Using Geometric Singular Perturbation theory, the
dynamics in this case can be reduced to an equation for the level of unrest which
in under additional assumptions on β and p is a generalized Fisher-KPP equation.
The heteroclinic orbit in the limiting Fisher-KPP equation is shown to persist in
the perturbed system. Thus, we identify a regime when a traveling wave exists in
the model (1).

Further directions of the research include investigating the stability of the trav-
eling waves in either of the sub-regimes. Moreover, it would be interesting to relate
the stability properties and the speed of propagation of the wave in second sub-
regime to the stability and the speed of propagation of the wave in the limiting
Fisher-KPP equation.
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[8] C. Yang and N. Rodŕıguez, A Numerical Perspective on traveling wave solutions in a system

for rioting activity, Applied Mathematics and Computation, 364(2020), 1–20.

Reporter: Paul Holst



2022 Oberwolfach Report 37/2021

Participants

Prof. Dr. Daniele Avitabile

Department of Mathematics
Vrije University
De Boelelaan 1081 a
1081 HV Amsterdam
NETHERLANDS

Dr. Bente Bakker

Mathematisch Instituut
Universiteit Leiden
Postbus 9512
2300 RA Leiden
NETHERLANDS

Prof. Dr. Margaret Beck

Department of Mathematics and
Statistics
Boston University
111 Cummington Mall
Boston, MA 02215-2411
UNITED STATES

Prof. Dr. Dirk Blömker

Institut für Mathematik
Universität Augsburg
86135 Augsburg
GERMANY

Prof. Dr. Jason Bramburger

University of Washington
Seattle, WA 98105
UNITED STATES

Dr. Maxime Breden
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