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Abstract. The most challenging problems in science often involve the learn-
ing and accurate computation of high dimensional functions. High-dimen-
sionality is a typical feature for a multitude of problems in various areas of
science. The so-called curse of dimensionality typically negates the use of tra-
ditional numerical techniques for the solution of high-dimensional problems.
Instead, novel theoretical and computational approaches need to be developed
to make them tractable and to capture fine resolutions and relevant features.
Paradoxically, increasing computational power may even serve to heighten
this demand, since the wealth of new computational data itself becomes a
major obstruction. Extracting essential information from complex problem-
inherent structures and developing rigorous models to quantify the quality of
information in a high-dimensional setting pose challenging tasks from both
theoretical and numerical perspective. This has led to the emergence of sev-
eral new computational methodologies, accounting for the fact that by now
well understood methods drawing on spatial localization and mesh-refinement
are in their original form no longer viable. Common to these approaches is
the nonlinearity of the solution method. For certain problem classes, these
methods have drastically advanced the frontiers of computability. The most
visible of these new methods is deep learning. Although the use of deep neu-
ral networks has been extremely successful in certain application areas, their
mathematical understanding is far from complete.

This workshop proposed to deepen the understanding of the underlying
mathematical concepts that drive this new evolution of computational meth-
ods and to promote the exchange of ideas emerging in various disciplines
about how to treat multiscale and high-dimensional problems.
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Introduction by the Organizers

Complex scientific models like climate models, turbulence, fluid structure inter-
action, nanosciences and reliability control, demand finer and finer resolution in
order to increase their reliability. This demand is not simply solved by increasing
computational power. Indeed, higher computability even contributes to the prob-
lem by generating wealthy data sets for which efficient organization principles are
not available. Extracting essential information from complex structures and devel-
oping rigorous models for quantifying the quality of information is an increasingly
important issue. These tasks become even more demanding when the problem
is high dimensional, in the sense that it involves a large number of variables or
parameters.

Inherently high-dimensional problems appear naturally in various scientific dis-
ciplines. Prominent examples of such problems are: (i) PDEs that describe com-
plex processes in computational chemistry and physics, such as the Fokker-Planck
and the Schrödinger equations, (ii) stochastic or parameter-dependent PDEs used
in simulation and optimal control and design, (iii) classification and regression
problems arising in big-data analysis with large number of input/output variables.
While significant advances have been made in “forward problems” trying to exploit
sparsity in effectively recovering high-dimensional functions, corresponding inverse
problems like state- or parameter estimation pose even greater challenges. One
reason is that one usually has to cope with a strong undersampling — a small-data
problem — due to prohibitive cost or severe obstructions to acquiring observation
data. An important issue is to properly formulate corresponding data-assimilation
frameworks and to understand the role of model reduction and sparse recovery in
this context.

The mathematical methods emerging to address these problems try to exploit
in a subtle way the structure of the problem in order to extract the necessary
information. They have several common features including the determination of
whether the underlying objects have a sufficiently small information content to
be computationally tractable, and how this content might be accessible through
certain sparse representations. The numerical methods themselves are typically
highly nonlinear with the ability of separating solution characteristics living on dif-
ferent length scales. Having to deal with the appearance and interaction of local
features at different levels of resolution has, for instance, brought about spatially
adaptive methods as a key methodology that has advanced the frontiers of com-
putability for certain problem classes in numerical analysis. The current state of
signal processing, learning theory, and numerical computation can be viewed as an
evolution from the introduction of multiscale and adaptive methods to the current
high dimensional methods based on concepts such as sparsity, anisotropy, model
reduction, low-rank tensor methods, random projections and neural networks.

Multiscale techniques, such as wavelet decompositions, were introduced to man-
age the interaction of different length scales. In the very spirit of harmonic analysis
they allow one to decompose complex objects into simple building blocks that again
support analyzing multiscale features. Our first Oberwolfach Workshops “Wavelet
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and Multiscale Methods” held in July 2004 and August 2007 served to bring to-
gether the main developers of multiscale decompositions for signal processing with
those using these techniques for numerical methods for PDEs and thus contributed
to the growth of both of these disciplines. While multiscale techniques were first
exploited primarily for treating explicitly given objects, like digital signals and im-
ages or data sets, the use of such concepts proved important for recovering also
implicitly given objects, like solutions of partial differential or boundary integral
equations, as well. The close marriage of discretization, analysis and the solu-
tion process based on adaptive wavelet methods has led to significant theoretical
advances as well as new algorithmic paradigms for linear and nonlinear station-
ary variational problems. Through thresholding, best N -term approximation, and
adaptivity, multiscale techniques from nonlinear approximation theory and har-
monic analysis become practically manageable. They now are a major component
of modern signal processing and modern numerical computation.

Our last three workshops in August 2010 and “Multiscale and High-Dimensional
Problems held in July/August 2013 and March 2017 recognized the increasing de-
mand on finding numerical techniques which apply to high dimensional problems.
They brought together various disciplines where such problems are encountered.
Those workshops not only accelerated the advancement of nonlinear and multi-
scale methodologies but also provided beneficial cross-fertilizations between the
various areas represented in the workshop, see the Oberwolfach Reports 34/2004,
36/2007, 33/2010, 39/2013, 17/2017. Among the several recognizable outcomes
of the workshops were: (i) the emergence of compressed sensing as an exciting
alternative to the traditional sensing-compression paradigm, (ii) fast online com-
putational algorithms based on adaptive partition for mathematical learning, (iii)
clarification of the role of coarsening in adaptive numerical methods for PDEs, (iv)
injection of the notion of sparsity into stochastic models to identify computational
paradigms that are more efficient than Monte Carlo techniques, (v) a coherent
theory to explain why techniques like sparse representation and reduced modeling
work and how they can be improved.

This latest workshop has once again been directed at multi-scale and high di-
mensional problems incorporating the new emerging aspects mentioned above.
It focussed on the interaction of scientists from different disciplines and thereby
resulted in more rapid developments of new methodologies in these various do-
mains. It was also a bridge from theoretical foundations to applications, such
as mechanical engineering, mathematical biology, quantum chemistry, signal and
image processing, complex fluid flows. Examples of conceptual issues that were
addressed in our workshop were:

• adaptive and nonlinear multilevel methods for high-dimensional PDEs, for
parametric PDEs and PDEs with stochastic data;

• multilevel and high-dimensional meshless methods;
• incorporating anisotropy in analysis, estimation, compression and encod-
ing;
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• interaction of different scales and variables under relevant linear and non-
linear mappings;

• convergence theory and analysis for model reduction and low-rank meth-
ods;

• numerical aspects of compressed sensing;
• design and analysis of estimators in high dimensional machine learning;
• solution concepts for problems of high spatial dimension utilizing aniso-
tropy;

• data assimilation and inversion concepts in high dimensional settings;
• tensor structures and tensor sparsity for high dimensional approximation
problems;

• identifying and analyzing model classes for wich deep neural networks
perform well:

• Design and efficacy of learning algorithms

In summary, the conceptual similarities that occur in a variety of application
domains suggested that a wealth of synergies and cross–fertilization should be ex-
ploited. These concepts are in our opinion not only relevant for the development
of efficient solution methods for large scale and inherently high-dimensional prob-
lems but also for the formulation of rigorous mathematical models for quantifying
the extraction of essential information from complex objects in many dimensions.

As in the previous workshops, the proposed participants were experts in areas
like nonlinear approximation theory, statistical learning theory,compressed sens-
ing, tensor approximations, hyperbolic cross approximation, finite elements, spec-
tral methods, harmonic analysis and wavelets, numerical fluid mechanics, inverse
problems, stochastic PDEs, PDE-constrained control problems, or model reduc-
tion.
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Abstracts

The Impact of Artificial Intelligence on Parametric Partial Differential
Equations

Gitta Kutyniok

(joint work with Moritz Geist, Philipp Petersen, Mones Raslan,
Reinhold Schneider)

High-dimensional parametric partial differential equations (PDEs) appear in var-
ious contexts including control and optimization problems, inverse problems, risk
assessment, and uncertainty quantification. In most such scenarios the set of all
admissible solutions associated with the parameter space is inherently low dimen-
sional. This fact forms the foundation for the so-called reduced basis method.

Recently, numerical experiments demonstrated the remarkable efficiency of us-
ing deep neural networks to solve parametric problems. In this talk, after an
introduction into deep learning, we will present a theoretical justification for this
class of approaches. More precisely, we will derive upper bounds on the complexity
of ReLU neural networks approximating the solution maps of parametric PDEs.
In fact, without any knowledge of its concrete shape, we use the inherent low-
dimensionality of the solution manifold to obtain approximation rates which are
significantly superior to those provided by classical approximation results. We use
this low-dimensionality to guarantee the existence of a reduced basis. Then, for
a large variety of parametric PDEs, we construct neural networks that yield ap-
proximations of the parametric maps not suffering from a curse of dimensionality
and essentially only depending on the size of the reduced basis.

Finally, we present a comprehensive numerical study of the effect of approxima-
tion-theoretical results for neural networks on practical learning problems in the
context of parametric partial differential equations. These experiments strongly
support the hypothesis that approximation-theoretical effects heavily influence the
practical behavior of learning problems in numerical analysis.

References
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Gradient Descent for learning Linear Neural Networks: Convergence,
Riemannian Geometry and Implicit Bias

Holger Rauhut

Many recent breakthroughs in applications of machine learning (such as face recog-
nition, autonomous driving, drug design and machine translation) are based on
learning deep neural networks from training examples. Despite these empirical
successes the mathematical understanding of the inner workings of deep learning
is still in its infancy.

One usually adapts deep neural networks by minimizing a non-convex loss func-
tional via (stochastic) gradient methods. Convergence properties are not yet well-
understood in this setting. Moreover, a puzzling observation is that learning neural
networks with a number of parameters exceeding the number of training examples
leads to networks that generalize very well to unseen data although intuition from
classical statistics would rather predict a scenario of overfitting [9]. A current
working hypothesis is that the chosen optimization algorithm has a significant in-
fluence on the selection of the learned network. In fact, in this overparameterized
context there are many global minimizers so that the optimization method induces
an implicit bias on the computed solution. It seems that gradient descent methods
and their stochastic variants favor networks of low complexity (in a suitable sense),
and, hence, appear to be very well suited for large classes of real data.

Initial attempts in understanding these phenomena consider the simplified set-
ting of linear networks, i.e., (deep) factorizations of matrices and revealed a sur-
prising relation to the field of low rank matrix recovery in the sense that gradient
descent favors low rank matrices in certain situations.

Convergence properties of learning linear networks have been studied, e.g., in
[1, 2, 3, 7]. Given pairs (xi, yi) ∈ Rdx × Rdy , i = 1, . . . ,m of input and output
data, one considers learning a linear neural network of the form W =WN · · ·W1,
i.e., a linear function in factorized form with Wi ∈ Rdi×di−1 , d0 = dx, dN = dy,
such that the ℓ2-loss

LN (W1, . . . ,WN ) = L1(WN · · ·W1) =
1

2

m∑

j=1

‖xi−Wyi‖22 =
1

2
‖X−WN · · ·W1Y ‖2F

is minimized. Gradient descent starts with some
−→
W (0) = (W1(0), . . . ,WN (0)) and

computes the iterates

(1)
−→
W (k + 1) =

−→
W (k) + ηk∇LN (

−→
W (k)).

From a mathematical view point it is also useful to analyze the corresponding
gradient flow

(2)
d

dt

−→
W (t) = −∇LN(−→W (t)).

As shown in [1] the quantity Wj+1(0)
TWj+1(0) − Wj(0)Wj(0)

T of the flow is
constant with respect to time t, In particular, if the initial condition is balanced,
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i.e.,

Wj+1(0)
TWj+1(0) =Wj(0)Wj(0)

T , j = 1, . . . , N − 1,

then the flow is balanced for all times t ≥ 0, i.e.,Wj+1(t)
TWj+1(t) =Wj(t)Wj(t)

T .
In this case, the product W (t) =WN (t) · · ·W1(t) satisfies the equation

(3)
d

dt
W = −

N∑

j=1

(WWT )
N−j
N · ∇WL

1
(
W

)
· (WTW )

j−1

N .

Let Mr be the manifold or matrices W ∈ R
dy×dx of rank r which at W ∈ Mr has

tangent space

TW (Mr) =
{
WA+BW : A ∈ R

dx×dx , B ∈ R
dy×dy} .

It is shown in [2] that the operator

AW (Z) =

N∑

j=1

(WWT )
N−j
N · Z · (WTW )

j−1

N

is self-adjoint from TW (Mr) into TW (Mr), hence, invertible. Denoting its restric-
tion to TW (Mr) by AW the expression

gW (Z1, Z2) = 〈A−1

W (Z1), Z2〉, Z1, Z2 ∈ TW (Mr),

defines a Riemannian metric of class C1. With the corresponding Riemannian
gradient, the flow (3) becomes a Riemannian gradient flow [2].

Extending [3] it is shown in [2] that the gradient flow (2) always converges to
a critical point of LN . Moreover, for almost all initializations the flow converges
to a global minimum of LN – see [2] for the precise statement. These results have
been generalized in [7] to the gradient descent (1) under an upper bound on the
step sizes ηk.

As already mentioned above, in overparameterized settings, where the global
minimizer is not unqiue, it has been observed that gradient descent on linear net-
works favors solutions of low rank, see e.g. [5, 6, 8]. In order to study this phenom-
enon, the dynamics of gradient flow and dynamics for minimizing the functional

KN(WN , . . . ,W1) =
1

2
‖WN · · ·W1 − Ŵ‖2F ,

where Ŵ is a given symmetric matrix, has been analyzed in [4] for the special
identical initializationWj(0) = α Id, where α > 0 is a suitable small constant. For
N ≥ 2 it turns out that the trajectory of the product W (k) = WN (k) · · ·W1(k)

first approaches the best rank one approximation of Ŵ , then the best rank two
approximation and so on. Precise intervals are provided, in which one is close to
a given rank k approximation.

Many open problems remain such as extending the previously mentioned result
to random initializations and to a matrix sensing problem with many global min-
imizers. Of course, a challenging main goal is to develop a rigorous analysis for
the general case of nonlinear neural networks.
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Space-time Methods for Parabolic Evolution Equations

Rob Stevenson

(joint work with W. Dahmen, G. Gantner, R. van Venetië, J. Westerdiep)

Parabolic evolution equations in a simultaneous space-time variational
formulation. Let V,H be separable Hilbert spaces of functions on some “spatial
domain” such that V →֒ H with dense embedding. Identifying H with its dual,
we obtain the Gelfand triple V →֒ H ≃ H ′ →֒ V ′. We use 〈·, ·〉 to denote both the
scalar product on H ×H as well as its unique extension to the duality pairing on
V ′ × V or V × V ′, and denote the norm on H by ‖ · ‖.

For a.e. t ∈ I := (0, T ), let a(t; ·, ·) denote a bilinear form on V × V such that
for any η, ζ ∈ V , t 7→ a(t; η, ζ) is measurable on I, and for a.e. t ∈ I, a(t; ·, ·) is
bounded and coercive.

With A(t) ∈ Lis(V, V ′) defined by (A(t)η)(ζ) := a(t; η, ζ), given a forcing func-
tion g and an initial value u0, we are interested in solving the parabolic initial
value problem of finding u such that

{
du
dt (t) +A(t)u(t) = g(t) (t ∈ I),

u(0) = u0.

In a simultaneous space-time variational formulation, the parabolic PDE reads
as finding u from a suitable space of functions X of time and space that satisfies
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u(0) = u0 and

(Bw)(v) :=

∫

I

〈dwdt (t), v(t)〉 + a(t;w(t), v(t))dt =

∫

I

〈g(t), v(t)〉 dt =: g(v)

for all v from another suitable space of functions Y of time and space.

Theorem 1 (e.g. [2, Ch.XVIII, §3] or [7, Ch. IV, §26]). With X := L2(I;V ) ∩
H1(I;V ′), Y := L2(I;V ), it holds that

(B, γ0) ∈ Lis(X,Y ′ ×H),

with γt : u 7→ u(t, ·) denoting the trace map.

We define A,As ∈ Lis(Y, Y ′), Aa ∈ L(Y, Y ′) by

(Aw)(v) :=

∫

I

a(t;w(t), v(t)) dt, As :=
1
2 (A+A′), Aa := 1

2 (A−A′),

and equip Y with ‘energy’-scalar product 〈·, ·〉Y := (As·)(·), and norm

‖v‖Y :=
√
(Asv)(v).

being equivalent to the standard norm on Y . We equip Y ′ with the resulting dual
norm. We equip X with norm

‖ · ‖X :=
√
‖ · ‖2Y + ‖∂t · ‖2Y ′ + ‖γT · ‖2,

being, thanks to X →֒ C(I;H), equivalent to the standard norm on X .

Minimal residual discretization. Let (Xδ, Y δ)δ∈∆ be a family of closed sub-
spaces of X and Y , respectively. For δ ∈ ∆, let EδX and EδY denote the trivial
embeddings Xδ → X and Y δ → Y . We assume that

Xδ ⊆ Y δ (δ ∈ ∆),(1)

γ∂t∆ := inf
δ∈∆

inf
{w∈Xδ : ∂tEδ

X
w 6=0}

‖EδY
′
∂tE

δ
Xw‖Y δ ′

‖∂tEδXw‖Y ′

> 0.(2)

Our Minimal Residual approximation uδ ∈ Xδ of the solution u ∈ X of (B, γ0)u =
(g, u0) is defined as

(3) uδ := argmin
w∈Xδ

‖EδY
′
(BEδXw − g)‖2Y δ′ + ‖γ0EδXw − u0‖2,

The numerical approximation (3) was proposed in [1], and further investigated in
[5]. So far the analysis of the MR method was restricted to the case that Aa = 0.

Theorem 2 ([6]). Under conditions (1) and (2), and with α := ‖Aa‖L(Y,Y ′) =

ρ(A−1
s AaA

−1
s Aa)

1
2 , the solution uδ ∈ Xδ of (3) exists uniquely, and satisfies

‖u− uδ‖X ≤

√√√√√

(
1+

1
2

(
α2+α

√
α2+4

))

1
2

(
(γ

∂t
∆

)2+α2+1−
√

((γ
∂t
∆

)2+α2+1)2−4(γ
∂t
∆

)2

) inf
w∈Xδ

‖u− w‖X .
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Wavelets-in-time, finite elements-in-space. In [1], (1) and (2) were verified for
(Xδ, Y δ)δ∈∆ being families of pairs ‘full’ and ‘sparse’ tensor products of finite
element spaces in time and space. These families however do not accommodate
local refinements simultaneous in space and time.

To allow for such refinements, in [4] we consider the following setting: Let
Σ = {σλ : λ ∈ ∨Σ} be a wavelet Riesz basis for L2(I), such that {2−|λ|σλ : λ ∈ ∨Σ}
is a Riesz basis Riesz for H1(I). To λ ∈ ∨Σ with |λ| > 0, we associate λ̃ ∈ ∨Σ

with |λ̃| = |λ| − 1 and suppσλ ⊆ suppσλ̃. We denote this parent-child relation by

λ̃ ⊳Σ λ. Let Ψ = {ψλ : λ ∈ ∨Ψ} orthonormal basis for L2(I) such that

span{σλ : |λ| ≤ ℓ} ∪ span{σ′
λ : |λ| ≤ ℓ} ⊆ span{ψµ : |µ| ≤ ℓ}.

Let O be a collection of of finite element spaces in V , closed under taking (finite)
unions, with

inf
W∈O

inf
06=w∈W

sup
06=v∈W

w(v)

‖w‖V ′‖v‖V
> 0

which condition is equivalent to uniform boundedness in V of the H-orthogonal
projector onto W ∈ O. For the model case of H = L2(Ω), V = H1

0 (Ω) and Ω a
polygon, this condition is known to be satisfied for the family of continuous piece-
wise linears, zero on ∂Ω, w.r.t. all conforming triangulations that can be generated
by newest vertex bisection starting from a conforming initial triangulation of Ω
with an assignment of the newest vertices that satisfies a matching condition.

Proposition 3 ([4]). Let Xδ =
∑

λ∈∨Σ
σλ⊗W δ

λ such that λ̃⊳Σλ impliesW δ
λ̃
⊇W δ

λ .

Take Y δ =
∑

µ∈∨Ψ
ψµ ⊗ W̄ δ

µ with W̄ δ
µ =

∑
{λ∈∨Σ : |λ|=|µ|, | suppψµ∩suppσλ|>0}

W δ
λ .

Then (1) and (2) are satisfied.

Furthermore for this family (Xδ, Y δ)δ∈∆, in [4] we show how to apply the system
matrix resulting from the minimal residual discretization in linear complexity,
build optimal preconditioners atX- and Y -side frommultigrid-in-space, and design
a r-linearly convergent adaptive algorithm under a saturation assumption. The
computational cost and memory consumption of this algorithm is proportional
to the dimension of the trial space Xδ. Numerical results with piecewise linear
wavelets-in-time and piecewise linear finite element-in-space show for non-smooth
solutions of the heat equation a considerable speed-up compared to non-adaptive
full and sparse grid discretizations.

Data assimilation for parabolic problems. Let H = L2(Ω) and V = H1
0 (Ω).

Given ∅ 6= ω ⊂ Ω, g ∈ Y ′, f ∈ L2(I × ω), with Γωw := w|I×ω consider the
data-assimilation problem of finding u ∈ X with (B,Γω)u = (g, f). It holds that
(B,Γω) ∈ L(X,Y ′ × L2(I × ω)), but (B,Γω) is not surjective, so data can be
inconsistent, and although (B,Γω) is injective, it holds that ‖w‖X 6. ‖Bw‖Y ′ +
‖Γωw‖L2(I×ω). What does hold is that with Xη := L2((η, T );V ) ∩H1((η, T );V ′),
for any fixed η > 0, ‖w‖Xη

. ‖Bw‖Y ′ + ‖Γωw‖L2(I×ω) (Carleman estimate).
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Theorem 4 ([3]). Assuming infδ∈∆ inf{w∈Xδ : Bw 6=0}
‖Eδ

Y

′

BEδ
Xw‖

Y δ ′

‖BEδ
X
w‖Y ′

> 0, then for

u ∈ X and ε ≥ 0,

uδ := argmin
w∈Xδ

‖EδY
′
BEδXw − g‖2Y δ′ + ‖ΓωEδXw − f‖2L2(I×ω) + ε2‖γ0EδXw‖2L2(Ω),

‖u− uδ‖Xη
. ‖Bu− g‖Y ′ + ‖Γωu− f‖L2(I×ω) + min

w∈Xδ
‖u− w‖X + ε‖γ0u‖L2(Ω).
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Shallow Thoughts on Deep Learning

Ronald A. DeVore

Deep Learning (DL) is very much in the news these days. It has had a myriad of
empirical successes. However, from the viewpoint of a mathematician, the reasons
behind these successes are not clear and a rigorous mathematical theory to certify
the performance of deep learning algorithms is still lacking. Indeed, many of the
components of deep learning algorithms are counter intuitive. One component
usually lacking in DL algorithms is the appearance of a model class assumption
on the function to be learned. In the absence of such knowledge we argue that no
quantitative performance bounds can be derived.

This talk gives a mathematical view of deep learning algorithms and examines
its main components. We begin by showing that the canonical learning problem
has a theoretical optimal solution described by a certain Chebyshev ball described
by the data and the information provided about the target function. However, it
is highly nontrivial to turn this theoretical solution into a numerical algorithm.

We next discuss possible numerical algorithms that can be employed when a
model class assumption is present. This includes least squares, penalized leased
square, and LASSO algorithms. We then turn to the justification in the DL com-
munity of the absence of such model class assumptions. Here, the rationale is that

https://doi:10.1093/imanum/drz069
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the implementations of numerical optimization procedures such as gradient descent
and stochastic gradient descent implicitly impose a model class assumption.

An important ingredient in deep learning is the employment of neural networks
as the numerical backbone of the algorithm. We discuss the possible advantages of
using neural networks as the approximation tool. Neural networks have expanded
approximation properties. In addition to approximating classical model classes of
functions well, they have the capacity to efficiently approximate classes of func-
tions described by self-similarity and dynamical systems. A point to emphasize
however is that neural network approximation can be very unstable and therefore
implementation must be done with care.

As a final topic of this talk we discuss generalization error and its efficacy
in guaranteeing performance. While, in some settings, generalization error can
provide certifiable guarantees in expectation when using random sampling, these
guarantees fall short of what can be obtained when employing a priori model class
assumptions. We point out the large gap in our understanding on this topic.

On the Universality of Gradient Descent for Neural Network Training
and Global Minimizers in non-convex Compressed Sensing by

meta-learning

Gerrit Welper

Successful neural network training commonly requires a judicious choice of hyper-
parameters and network architecture. Indeed many common neural network com-
ponents such as ReLU activations, skip connections or LSTM units have been
introduced to improve training performance. Likewise, we discuss training results,
which allow the extra flexibility to redesign the network for a class of learning
problems, unlike contemporary training theory, which fixes the network archi-
tecture and provides convergence guarantees in over-parametrized regimes. This
approach yields the following universality result [2]: Assume that there exists a
training algorithm that produces satisfactory weights for a neural network on a
range of learning problems. Then there exists an extension of the network so that
gradient descent training yields the same forward model, as a function. I.e., after
training with the respective methods, for every input both networks produce the
same output, while their internal computations may differ.

Similar to universal approximation theorems, the extended network is hand-
crafted and therefore impractical. Nonetheless, more practical analogues are pro-
vided by neural architecture search and transfer-, multitask- and meta-learning.
In these problems, architectures or a subset of neural network weights are pre-
trained on a class of problems and then fine tuned or specialized to instances of
the problem class. The extended network in the universality result serves as an
idealized candidate of the pre-training outcome, and demonstrates the potential
of the meta-learning approach.

While proving that practical pre-training can achieve similar results than the
idealized extended network is expected to be extremely difficult, we provide some
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proof of principle for simplified non-convex model problems from compressed sens-
ing [1, 3]. To this end, we consider a class of non-convex ℓ0 optimization problems,
which contains some instances that are “easy” and can be solved by the usual ℓ1
relaxation and some instances that are “hard” and cannot be solved by known
efficient algorithms. In addition, we assume that the class instances are related by
some unknown model. Using only samples form the problem class, consisting of
measurement matrices A and right hand sides b for sparse linear systems Ax = b,
but no solutions x, in a pre-learning phase, we uncover the relations of the class
problems. This step is comparable to finding the extended network in the uni-
versaility result above. After pre-training, we can use the class’ structure to solve
every problem in class (with high probabilty), including the “hard” ones for which
we initially had no efficient algorithm. This part is comparable to the gradient
descent training of the extended network on a class instance. In summary, given
samples from a mixture of related “easy” and “hard” problems, we can learn to
solve all problems in class.
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Sampling Rates for ℓ
1-Synthesis

Claire Boyer

(joint work with Jonas Kahn, Maximilian März, Pierre Weiss)

This work investigates the problem of the recovery of a signal x0 ∈ Rn from m
undersampled (m≪ n) noisy sub-Gaussian measurements:

y = Ax0 + e

where y ∈ Rm is the observation vector, A ∈ Rm×n is a sugGaussian matrix, and
e ∈ Rm is a noise vector. While a lot of attention has been given to the analysis
formulation in the literature, we study the synthesis-based sparsity model such
that the signal x0 is assumed to be synthesized by some atoms of a dictionary
D ∈ Rn×d, i.e.

x0 = Dz0

with z0 ∈ Rd the coefficient vector. Solving the l1-synthesis basis pursuit allows
to simultaneously estimate a coefficient representation as follows:

Ẑ := argmin
z∈Rd

‖z‖1 such that

{
y = ADz in the noiseless setting,
‖y −ADz‖2 ≤ η in the noisy one.

https://arxiv.org/abs/2002.00516
https://arxiv.org/abs/2007.13664
https://arxiv.org/abs/2101.08310
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as well as the sought-for signal by applying the dictionary D to the latter set of
solutions:

X̂ := DẐ.

While these programs are pretty well understood in the case whereD is orthogonal,
choosing a redundant dictionary (which would be done in practice) is a different
story. Indeed, due to linear dependencies within redundant dictionary atoms it
might be impossible to identify a specific representation vector, although the actual
signal is still successfully recovered. We study both estimation problems from a
non-uniform, signal-dependent perspective. By utilizing results from linear inverse
problems and convex geometry, we identify the sampling rate describing the phase
transition of both formulations: the phase transition is determined by the Gaussian
width, denoted by ω, of a linearly-transformed polyhedral cone,

m ≥ c · ω2 (DD(‖ · ‖1, zℓ1)) ,
where D(‖ · ‖1, zℓ1) is the descent cone of the ℓ1-norm at a minimal-ℓ1-representer
zℓ1 ∈ argminz{‖z‖1 : x0 = Dz} of the signal x0. We provide a “tight” upper
bound on this Gaussian width, performing a geometric analysis of the thinness of
high-dimensional polyhedral cones with not exponentially many generators. We
believe that such an argument might be of general interest beyond its application
to the synthesis formulation of compressed sensing. Again, ω2 (DD(‖ · ‖1, zℓ1)) is
related to the sparsity of a minimal ℓ1-representation and a further geometrical
parameter (referred to as the circumangle) that measures the narrowness of the
associated cone. An important aspect of this bound is that its computation boils
down to a convex optimization problem, which is numerically tractable. In addi-
tion, it can be evaluated analytically in some situations of interest. This enables
us to demonstrate its usefulness in several examples and to identify non-trivial
situations in which such a result is asymptotically near-optimal.
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A near-optimal Adaptive Stochastic Galerkin Method based on
Multilevel Expansions of Random Fields

Markus Bachmayr

(joint work with Igor Voulis)

We consider elliptic PDEs depending on infinitely many parameters entering into
a parametrized series expansion of the diffusion coefficient. Problems of this type
arise in particular in the deterministic approximation of PDEs with random dif-
fusion coefficients. The variational formulation of the considered affinely param-
eterized elliptic PDEs on a domain D ⊂ Rd reads: u(y) ∈ V := H1

0 (D) such
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that
∫

D

(
θ0 +

∞∑

j=1

yjθj

)
∇u(y) · ∇v dx = f(v), v ∈ V, for y ∈ Y := [−1, 1]N,

where f ∈ V ′, θj ∈ L∞(D) for j ∈ N and θ0 ∈ L∞(D) are such that the problem
is elliptic uniformly in y. For simplicity, we assume the scalar coefficients yj to be
uniformly distributed in [−1, 1], and accordingly study approximation of u in the
Bochner space L2(Y, V, σ) with σ the uniform measure on Y , but other product
measures can be treated in the same manner.

The focus of this work is on adaptive algorithms for computing sparse Legendre
approximations of u. We use the orthonormal basis {Lν}ν∈F of L2(Y, σ), where
Lν(y) =

∏∞
j=1 Lνj (yj) are the product Legendre polynomials and F denotes the

multi-indices in NN
0 of finite support. By truncating the expansion of u with

respect to this orthonormal basis to some F ⊂ F of finite support, we obtain a
semi-discrete approximation

(1) u(y) ≈ uF (y) =
∑

ν∈F
uνLν(y),

where each Legendre coefficient uν is a function in V . In order to obtain a fully dis-
crete, numerically computable approximation, each uν in turn needs to be replaced
by an approximation, which we assume (as in typical approximations by finite el-
ements or wavelets) to be chosen from some finite-dimensional subspace Vν ⊂ V .
The total number of degrees of freedom in such a fully discrete approximation uN
is then N =

∑
ν∈F dim(Vν).

When the functions θj have multilevel structure with a scale parameter ℓ(j) such

that diam supp θj . 2−ℓ(j) for each j ∈ N – for instance, when they correspond to
a suitably rescaled wavelet-type basis – one obtains improved convergence results

for such Legendre expansions. As shown in [4], if for all scales ℓ̂,

(2)
∥∥∥
∑

ℓ(j)=ℓ̂

|θj |
∥∥∥
L∞

. 2−αℓ̂, #{j : ℓ(j) = ℓ̂} . 2dℓ̂,

then best approximations of the form (1) converge as ‖u−uF‖L2(Y,V,σ) . (#F )−s

for any s < α/d. Estimates with natural additional conditions on derivatives
of the θj indicate the potential advantages of using independent adaptive spatial
discretizations for each Legendre coefficient: as shown in [2], for d ≥ 2 and α ∈
(0, 1], with standard adaptive spatial approximations, there exist fully discrete
approximations uN such that ‖u − uN‖L2(Y,V,σ) . N−s for any s < α/d (in the

exceptional case d = 1, this result was shown only for any s < 2
3α). For d ≥ 2,

this result means that compared to semidiscrete approximations, the additional
spatial discretization comes at no additional expense in the convergence rate.

In this work, we address the question whether an adaptive algorithm can be con-
structed that finds such fully discrete approximations at optimal computational
cost, that is, using O(N) operations. It was previously shown in [3] that with
adaptive wavelet schemes for the spatial discretization, one can obtain rates that
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are close to optimal under additional regularity requirements on the basis func-
tions that are used. These requirements, however, are too strong to be practical.
In our new approach, combining adaptive operator compression for the parametric
expansion with spline wavelet tree approximation as in [6] for the spatial coeffi-
cients, we obtain a method converging at optimal rates and requiring O(N logN)
operations, thus achieving near-optimal complexity, under natural assumptions.

Each space Vν is chosen as the span of a finite subset Sν ⊂ S of a fixed spatial
spline wavelet basis {ψλ}λ∈S , with the additional constraint that each Sν has a
certain tree structure. The original problem for u can be recast as approximating
the corresponding coefficient sequence u = (uν,λ)ν∈F ,λ∈S of u in the product basis
{ψλ⊗Lν}ν∈F ,λ∈S in ℓ2(F ×S). Fully discrete approximations with the additional
tree restriction converge at rate s > 0 if

‖u‖t,s = sup
N∈N0

(N + 1)smin
{
‖u− v‖ℓ2 : suppv ⊆ {(ν, λ) : ν ∈ F, λ ∈ Sν},

Sν ⊂ S tree for ν ∈ F ,
∑

ν

#Sν ≤ N
}
<∞.

We first show that the same rates can be achieved by this more constrained type
of approximation as in the original results of [2].

The adaptive scheme follows the basic strategy of successively refined Galerkin
discretizations of [5, 6]. The core element of the method is a new technique for
approximating full spatial-parametric residuals that makes crucial use both of the
multilevel structure (2) of the parameterization of the random coefficient and of
the piecewise polynomial structure of basis functions. The selection of the most
relevant degrees of freedom from the residual approximations is then done by an
adaptation of the quasi-optimal tree coarsening analyzed in [1]. Our main result
on the new adaptive method is the following.

Theorem. let f ∈ L2(D), let θj ∈ C0,1 for j ∈ N with multiscale structure (2),
let ψλ ∈ H2 for λ ∈ S, and let each of these functions be piecewise polynomial with
respect to a joint sequence of tesselations of D. Let 0 < s < α

d and ‖u‖t,s < ∞.
Then for each ε > 0, the adaptive scheme with appropriately chosen parameters
finds an approximation uk for some k ∈ N with ‖u− uk‖ℓ2 ≤ ε, such that:

(i) There exists C > 0 independent of ε, but depending on s, such that

#suppuk ≤ C ε−
1
s ‖u‖

1
s

t,s.

(ii) The computation can be realized to use a number of operations of order

(# opsuk) . 1 + ε−
1
s ‖u‖

1
s

t,s

(
1 + |log ε|+ log ‖u‖t,s

)
.

Preliminary numerical tests confirm the expected convergence rates, and in
particular they indicate that not only the rates for d ≥ 2, but also the rate of 2

3α
obtained for d = 1 in [2] are sharp and that the for all d, the respective convergence
rates results extend to α > 1.
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Multilevel Approximation of Gaussian Random Fields

Helmut Harbrecht

(joint work with Lukas Herrmann, Kristin Kirchner, Michael Multerer, and
Christoph Schwab)

1. Introduction

Centered Gaussian random fields are uniquely determined by their covariance op-
erator C or their precision operator P = C−1. Throughout this work, we con-
sider Gaussian random fields Z which are generated by a linear colouring (elliptic
pseudo-differential) operator A ∈ OPSr1,0(M) of order r > n/2 via the white noise
driven stochastic (pseudo-) differential equation

AZ = W on M.

Here, M is a smooth domain in R
n or a smooth manifold in R

n+1 and W denotes
the white noise in L2(M). If A : Hr/2(M) → H−r/2(M) is self-adjoint and
positive

〈Aw,w〉 & ‖w‖2r/2 for all w ∈ Hr/2(M) \ {0},
then it holds

C = A−2 ∈ OPS−2r
1,0 and P = A2 ∈ OPS2r

1,0.

Note that this setup includes the Matérn class of covariance operators.
Several methodologies in uncertainty quantification and data assimilation re-

quire the storage of the covariance matrix C or the precision matrix P = C−1

corresponding to an underlying statistical model as well as computations involving
these matrices. Explicit examples include simulations, predictions and Bayesian
or likelihood-based inference in spatial statistics. Here, one of the main compu-
tational challenges is to handle large datasets, as the covariance and precision
matrices C, P are, in general, densely populated and, for this reason, the compu-
tational cost for predictions or inference is cubic in the number of observations.
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2. Wavelet matrix compression

The Schwartz kernel κB of a pseudo-differential operator B ∈ OPSr1,0 is asymp-
totically smooth, meaning that

∣∣∂αx ∂βy κB(x,y)
∣∣ ≤ cα,β‖x− y‖−(n+r+|α|+|β|).

Such an estimate is the key to compress the discretized version of the covariance
or precision operator by means of wavelet matrix compression. In accordance
with [2], by using appropriate wavelet bases, we can represent such operators with
linear cost while preserving discretization error accuracy. Indeed, it is proven in [3]
that the covariance and precision operators, respectively, may be identified with
bi-infinite matrices and finite sections may be diagonally preconditioned rendering
the condition number independent of the dimension N of this section. As an
illustration, we consider the Matérn covariance kernel k1/2(x,y) = exp(−‖x−y‖)
on the boundary curve of a smooth two-dimensional domain. The results for

(periodic) biorthogonal wavelets ψd,d̃ from [1] of order d and with d̃ vanishing

moments are found in Table 1, where we clearly see bounded condition numbers
and asymptotically optimal compression rates.

k1/2
N single-scale nnz ψ(2,4) nnz ψ(2,6) nnz ψ(2,8)

32 2.6 · 103 100 2.4 · 102 100 1.8 · 102 100 6.6 · 102
64 1.1 · 104 80 2.7 · 102 88 1.9 · 102 98 6.7 · 102
128 4.5 · 104 60 3.1 · 102 65 1.9 · 102 71 6.8 · 102
256 1.9 · 105 40 3.4 · 102 42 1.9 · 102 48 6.8 · 102
512 7.6 · 105 25 3.7 · 102 26 1.9 · 102 30 6.8 · 102
1024 3.1 · 106 16 3.9 · 102 16 1.9 · 102 18 6.8 · 102
2048 1.2 · 107 9.4 4.0 · 102 9.0 1.9 · 102 10 6.8 · 102
4096 5.0 · 107 5.0 4.2 · 102 5.0 1.9 · 102 5.7 6.8 · 102

Table 1. Condition numbers and compression rates in case of
the Matérn covariance kernel k1/2. The compression rates validate
the asymptotically linear behaviour. The condition numbers stay
bounded for ψ(2,6) and ψ(2,8), whereas for ψ(2,4) a slight increase
is observed.

Wavelet matrix compression of covariance and precision operators results in
several powerful algorithms like fast sampling, multilevel Monte Carlo oracles for
covariance estimation, and kriging. In particular, it has been observed in [4]
that matrices in wavelet coordinates can directly be inverted by means of nested
dissection. For example, the sparsity pattern of a Gaussian random field in case of
M = S2 can be found in the left plot of Figure 1. When applying nested dissection,
one obtains the reordered sparsity pattern seen in the middle plot, for which the
Cholesky factorization becomes computable and produces nearly no fill-in (right
plot).
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Figure 1. Sparsity pattern of the compressed covariance oper-
ator in wavelet coordinates (left), its nested dissection, “skyline”
reordering (middle), and sparsity pattern of the exact Cholesky
factor (right) of the compressed, reordered covariance matrix for
N = 393216.

3. Samplets

Classically, wavelets are constructed by refinement relations and therefore require
a sequence of nested approximation spaces which are copies of each other, except
for a different scaling. This restricts the concept of wavelets to structured data.
In order to generalize the concepts of wavelet matrix compression to discrete data,
we introduce in [5] the concept of samplets which transfer the construction of
Tausch-White wavelets [6] to the realm of data. This way, we obtain a multilevel
basis which consists of localized and discrete signed measures. Inspired by the
term wavelet, we call such signed measures samplets. Samplets can be constructed
such that their associated measure integrals vanish for polynomial integrands.

When representing discrete data by samplets, then, due to the vanishing mo-
ments, there is a fast decay of the corresponding samplet coefficients with respect
to the support size if the data are smooth. This directly enables data compression,
detection of singularities and adaptivity. Applying samplets to represent covari-
ance matrices and other kernel matrices, as they arise in kernel based learning or
Gaussian process regression, we end up with quasi-sparse matrices. By threshold-
ing small entries, these matrices are compressible to O(N logN) relevant entries,
where N is the number of data points. This feature allows for the use of fill-in
reducing reorderings to obtain a sparse factorization of the compressed matrices.
Besides the comprehensive introduction to samplets and their properties, exten-
sive numerical studies in [5] demonstrate that samplets mark a considerable step
in the direction of making large data sets accessible for analysis.
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DeepOnets: A Machine Learning Framework in Infinite Dimensions

Siddhartha Mishra

A large number of problems involving PDEs are of the many-query type i.e., their
solution requires multiple calls (queries) to an underlying numerical PDE solver,
be it finite difference, finite element, finite volume or spectral. Such many-query
problems arise in uncertainty quantification (UQ), deterministic and Bayesian in-
verse problems, optimal control and PDE constraint optimization. The biggest
challenge in the robust and efficient solution of many-query problems is in the
computational cost. As is well-known, traditional PDE solvers, particularly in
three space dimensions, are very expensive. Hence, multiple calls to such PDE
solvers lead to a prohibitively high computational cost, even on state of the art
HPC platforms.

A possible approach for reducing computational cost is the use of surrogate,
which approximate the data to solution map to high accuracy, but at a very small
fraction of the cost of the underlying PDE solver. Recently, machine learning
algorithms have been proposed in numerous papers as efficient surrogates for many-
query problems in PDEs. In particular, deep neural networks are the most popular
machine learning paradigms in this context.

This emerging paradigm rests on the availability of an efficient finite-dimensional
parametrization of the input space, for instance, based on a Karhunen-Loeve ex-
pansion of the underlying measure. Then, the parameter to solution (or parameter
to observable) map is approximated by a suitably trained deep neural networks.
This approach has been very successful in many different contexts.

However, this approach rests on the assumption that a bespoke parametrization
exists. This is far from the case in many contexts where PDEs arise. The under-
lying measure (a probability measure on a function space) may not be known to
allow for the design of a good parametrization. At best, one can assume that it
is possible to sample from this underlying measure. Moreover, deep neural net-
work based surrogates are resolution dependent as they need to be trained on data
generated by a traditional numerical method at a given resolution. Consequently,
testing the trained network on a finer (or even coarser) resolution can lead to large
errors.
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Given this issues and realizing that most PDE learning tasks involve learning
operators i.e., mappings between two infinite-dimensional Banach spaces, operator
learning becomes an imperative for building surrogates for PDEs. Many different
frameworks for learning operators from data have been proposed recently. In this
talk, we described one class of such operator learning frameworks, namely deep
operator networks or DeepOnets, for short.

We discussed results about DeepOnets that were presented in a recent paper
[1]. In particular, we started with an universal approximation theorem for Deep-
Onets. This theorem states that there exists a DeepOnet that can approximate
any measurable (with respect to an underlying measure on the Banach space), op-
erator mapping one Banach space into another. Thus, DeepOnets have analogous
universal approximation property to deep neural networks for finite-dimensional
functions.

However, this result does not provide any quantitative information on the size of
the DeepOnet. In particular, it does not rule out the possibility that the DeepOnet
might suffer from the curse of dimensionality i.e., exponential growth of the size
of the DeepOnet can grow exponentially (or faster) with increasing accuracy. The
main point of the talk and the paper [1] is to prove that DeepOnets can break this
curse of dimensionality for operators that stem from PDEs.

To this end, we presented a detailed and careful analysis of different components
of the DeepOnet approximation error and showed that the total network size
for approximating PDE based Operators only grew polynomially with decreasing
accuracy. This analysis was carried out for four representative examples, that
of a forced pendulum, an elliptic PDE with variable coefficients and for nonlinear
Parabolic Allen-Cahn equations and nonlinear hyperbolic scalar conservation laws.
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A Machine Learning Framework for High-Dimensional Mean Field
Games and Optimal Control

Lars Ruthotto

(joint work with Derek Onken, Samy Wu Fung, Levon Nurbekyan, Xingjian Li,
Stanley Osher)

We consider the numerical solution of Hamilton Jacobi Bellman (HJB) equations
arising in mean field games and optimal control problems whose state space dimen-
sion is in the tens or hundreds. In this setting, most existing numerical methods
that rely on spatial discretization (e.g., using grids or meshes) are affected by the
curse of dimensionality (CoD); i.e., their computational complexity grows expo-
nentially with the state space dimension.
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To mitigate the CoD, our framework parameterizes the value function with a
neural network that is designed specifically to allow accurate and efficient com-
putation of first- and second-order derivative information. We train the neural
network weights by minimizing the objective function of the original problem with
additional penalties that enforce the HJB equations subject to neural ODE con-
straints. In mean field games, those constraints arise from the method of char-
acteristics applied to the continuity equation that describes the evolution of the
population density. Similarly, in general optimal control problems, the neural ODE
constraint arises from Pontryagin’s maximum principle and a closed-loop feedback
form. A key benefit of our framework is that no training data is needed, e.g.,
no numerical solutions to the problem need to be computed before training and -
once trained in an offline setting - the neural network can be evaluated quickly to
produce approximately optimal policies.

We illustrate our approach and its efficacy using several numerical experiments.
To show the framework’s generality, we consider applications such as optimal
transport, deep generative modeling, mean field games for crowd motion, and
multi-agent optimal control.
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Very weak Space-Time Formulations and Fast Solvers

Karsten Urban

(joint work with Davide Palitta, Valeria Simoncini and Julian Henning)

During the last years there has been an increasing interest in space-time methods
for time-dependent partial differential equations (PDEs). This has various aspects
from the analysis concerning well-posedness of evolutionary problems, the con-
struction and analysis of discretizations for determining numerical approximations
up to the development and realization of efficient numerical solvers. Nowadays,
there is a rich literature, a survey goes well beyond this abstract. However, also
the notion space-time is used with different meanings and interpretations in the
literature.

We start by a time-dependent linear PDE and derive a space-time variational
formulation by multiplying with a test function in both space as well as time
variables and integrate over these variables. Depending on the problem at hand,
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one performs integration by parts in order to bring certain derivatives onto the
test functions.

What we are after, is a well-posed variational formulation of the following type:
Given two Hilbert spaces, the trial space X and the test space Y , a bilinear form
b : X × Y → R and a right-hand side f ∈ Y ′ := {ℓ : Y → R, ℓ linear}, one seeks

(1) u ∈ X such that b(u, v) = f(v) for all v ∈ Y.

We are considering three classes of time-dependent PDEs here, namely
• the heat equation: Lu := ut −∆u = f , u(0) = u0,
• the linear transport problem: Lu := ut + β · ∇u = f , u(0) = u0,
• the wave equation: Lu := utt −∆u = f , u(0) = u0, ut(0) = v0,

all on some domain Ω ⊂ R
d in space and some time interval I = (0, T ). We want

to develop formulations of type (1) for these three example classes such that
(a) the problem (1) is well-posed, i.e., existence, uniqueness and stability;
(b) we can construct a Petrov-Galerkin discretization consisting of finite-di-

mensional trial Xδ ⊂ X and test spaces Yδ ⊂ Y such that dimXδ = Nδ <
∞ allowing for uniform stability;

(c) the discrete problem

uδ ∈ Xδ : b(uδ, vδ) = f(vδ) for all vδ ∈ Yδ

is well-posed, converges to u as Nδ → ∞ and can be solved in an efficient
manner, in particular as compared with standard time-marching schemes.

(a) Well-posed operator problem. With decent definitions of X and Y , it is
not difficult to show in all mentioned problem classes that the arising bilinear form
is bounded, i.e., there exists a constant 0 < C <∞ such that

|b(u, v)| ≤ C ‖u‖X ‖v‖Y , u ∈ X, v ∈ Y.

Then, the famous Nečas theorem ensures that (1) admits a unique solution u ∈ X
such that ‖u‖X ≤ c ‖f‖Y ′ if and only if

(i) ∃β > 0 : sup
v∈Y

b(u, v)

‖v‖Y
≥ β ‖u‖X for all u ∈ X (inf-sup stability);

(ii) for any 0 6= v ∈ Y ∃u ∈ X : b(u, v) 6= 0 (injectivity).

Moreover c = β−1.
For the heat equation, well-posedness with β = C = 1 (i.e., optimal stabil-

ity) was shown in [5, 6] for a “standard” space-time variational form. The sit-
uation changes for the linear transport equation. In fact, [2] presents an opti-
mally stable very-weak variational form, i.e., using the bilinear form b(u, v) :=
(u, L∗v)L2(I×Ω) = (u,−vt − β · ∇v)L2(I×Ω), the trial space X := L2(I;L2(Ω)) =
L2(I × Ω) and some non-standard test space Y .

This idea has been extended for the wave equation in [4]. In fact, we set
X := L2(I×Ω), b(u, v) := (u,−vtt+∆v)L2(I×Ω) and Y := clos‖·‖Y

{v ∈ C2(I×Ω) :
v(T ) = vt(T ) = 0, v|∂Ω = 0}. We show that ‖v‖Y := ‖L∗v‖L2(I×Ω) is a norm on
Y due to the following statement.
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Theorem 1. Let u0 ∈ L2(Ω), u1 ∈ H−1(Ω) and f ∈ C([0, T ];H−1(Ω)). Then,
the problem ẅ(t)+Aw(t) = f(t), t ∈ (0, T ), w(0) = u0, ẇ(0) = u1 admits a unique
solution w ∈ C2([0, T ];H−2(Ω)) ∩ C1([0, T ];H−1(Ω)) ∩ C([0, T ], L2(Ω)).

This theorem also ensures well-posedness of the above very-weak variational
formulation for the wave equation, [4].

(b) Petrov-Galerkin discretization. In order to obtain an unconditionally sta-
ble Petrov-Galerkin discretization, we need to verify the LBB condition i.e., the
existence of a constant β > 0 independent of Nδ → ∞ such that

inf
uδ∈Xδ

sup
vδ∈Yδ

b(uδ, vδ)

‖uδ‖X ‖vδ‖Y
≥ β > 0.(1.2)

In order to do so, we follow [1] and start by choosing the test space, here

R∆t := span{̺1, ..., ̺Nt} ⊂ {̺ ∈ H2(I) : ̺(T ) = ˙̺(T ) = 0}
Zh := span{φ1, ..., φNh

} ⊂ H1
0 (Ω) ∩H2(Ω)

and setting Yδ := R∆t ⊗ Zh. Then, defining the non-standard trial space as
Xδ := L∗(Yδ) ensures optimal stability, i.e., β = 1. By non-standard we mean
that Xδ is not a standard spline space, but arises as the image of a spline space
Yδ under the adjoint operator L∗. The advantage of this approach is that inf-sup
stability does not need to be ensured by constructing specific test functions, but
is automatically guaranteed.

(c) Efficient numerical solvers. In all three problem classes, using a space-
time variational form yields a linear system of equations BBBδuuuδ = f

f

fδ, where the
stiffness matrix is a sum of tensor product matrices. For the heat equation, we
have reported in [3] that a matrix-oriented Sylvester-type solver can outperform
standard time-stepping schemes (Crank-Nicolson) in terms of CPU-time.

For the wave equation, the situation is more involved. In fact, the stiffness
matrix takes the form

B

B

Bδ = A∆t ⊗Mh +N∆t ⊗NT
h +NT

∆t ⊗Nh +M∆t ⊗Ah,

where some of the involved matrices are singular. However, constructing a matrix-
oriented low-rank Galerkin projection combined with a rational Krylov subspace
method gives rise to a quite efficient numerical solver. We have observed in several
numerical experiments that this space-time numerical method outperforms the
Crank-Nicolson method1 if the solution has only the minimal regularity, i.e., u ∈
L2(I×Ω), and not more. On the other hand, if the solution admits more regularity,
then the quadratic convergence of the Crank-Nicolson method cannot be reached
by such a low-order2 space-time variational approach. Details can be found in [4].

1Crank-Nicolson for the wave equation is Newmark’s method with β = 1/4 and γ = 1/2.
2Low-order due to the very-weak approach using piecewise constant trial functions.
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Deep Learning in Numerical Analysis

Philipp Grohs

Several research questions that are not answered within the classical framework of
learning theory are approached in the new field of mathematical analysis of deep
learning.
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A Spectral Galerkin Method for the Solution of Reaction-Diffusion
Equations on Metric Graphs

Anna Weller

(joint work with Mark Ainsworth)

The accumulation of intraneuronal tau-tangles is a hallmark of Alzheimer’s Dis-
ease (AD). Tau proteins aggregate in the neurons in form of tangles, affecting
neuronal function and leading to neuronal death. Whereas the tau-tangles in the
brain of AD patients has been known for more than a century, it is a relatively
recent hypothesis that they may travel from one neuron to another, inducing tan-
gles in neighboring neurons in a prion-like fashion. Together with extraneuronal
aggregation of beta-amyloid peptides, tau-tangles are believed to be an important
factor in AD and other neurodegenerative disorders.

A major hurdle in interpretation of in vivo data is the analysis of the complex
interplay between these multiple factors of pathology and the complexity of the
brain network. To this end, it is highly temping to develop a Global Brainsphere
Model for the simulation of AD [3]. Several data have been analyzed in preparation
for this model to investigate, in particular, the evolution and effects of tau-tangles
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[6]. The presumed prion-like spreading mechanism motivates the simulation of tau
as a reaction-diffusion process on the brain network [5]. The numerical solution
of such systems on a continuous interpretation of the network, a metric graph, is
the objective of this work in progress [1].

A combinatorial graph G = (V,E) consists of a vertex set V and a set of edges
E, where an edge eij represents a connection between two vertices vi and vj . This
discrete understanding of a graph can be extended to a continuous metric graph

Γ by identifying each edge eij with an interval [0, ℓij ], where ℓij is the length of
the edge. By this, the graph can be interpreted as topological space. Equipped
with a differential operator H, for example the negative second derivative, these
metric graphs are often referred to as Quantum Graphs [2].

By the spectrum of a quantum graph we understand the spectrum of H on Γ,
determined by the eigenvalue problem

(1)
∂2

∂x2
u(x) = λu(x)

on Γ with Neumann-Kirchhoff boundary conditions

(2)





u(x) is continuous on Γ

∑

e∈Evi

∂u|ij
∂x

∣∣∣
x=0

= 0 for all vi ∈ V.

For graphs with uniform edge length ℓ, i.e. Equilateral Graphs, there exists a
well known relation between part of the spectrum of Γ and the underlying discrete

graph G, first derived by [4]. Namely, for λ 6=
(
kπ
ℓ

)2
, we have that λ ∈ σ(Γ) if and

only if (1−cos(
√
λ)ℓ) ∈ σ(∆G), where ∆G is the Harmonic Laplacian acting as

(∆Gu)(vi) = u(vi) − 1
deg(vi)

∑
vj∼vi u(vj). We deduce that for an eigenpair (µ, φ)

of ∆G, the following functions defined on each edge

(3) ϕ|ij(x;λk) =
1

sin(
√
λkℓ)

(
φ(vi) sin(

√
λk(ℓ − x)) + φ(vj) sin(

√
λkx)

)

where

(4) λk =

{
1
ℓ (arccos(1− µ) + kπ)2 for k even
1
ℓ (arccos(1− µ)− (k + 1)π)2 for k odd.

are eigenfunctions of Γ. We call these type of eigenfunctions vertex eigenfunc-

tions, as they can be completely determined by the values of the eigenvectors of
a discrete matrix defined on the vertices of G.

For the remaining non-vertex eigenvalues, ϕ|ij in (3) is not well defined. To
construct the corresponding eigenfunctions, we make use of a simple observation
by [2], that the elimination of a vertex of degree two by combining the two adjacent
edges into one edge does not change the solutions of the eigenvalue problem under
the given boundary conditions. This also means that we can add k artificial
vertices of degree two at each edge to create an extended graph Γ̃k with edge

length ℓ̃k = ℓ
k+1 . By this, we can construct the eigenfunctions of λ =

(
kπ
ℓ

)2
by
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applying formula (3) and (4) to the extended graph as ϕ|ij now is well defined on
the edges of the extended graph. Together, we obtain an increasing sequence of
vertex and non-vertex eigenvalues with corresponding eigenfunctions.

We now consider the reaction-diffusion equation

(5)
∂u

∂t
− ∂2u

∂x2
= f(u(x, t))

on a metric graph with Neumann-Kirchhoff boundary conditions (2) and initial
condition u(x, 0) = u0. The weak formulation is given by: Find u ∈ H1(Γ) with

∂

∂t
(u, φ) +

(
∂u

∂x
,
∂φ

∂x

)
= (f(u(x, t)), φ) ,

(u(x, 0), φ) = (u0(x), φ) ∀φ ∈ H1(Γ),

where the inner product is defined by

(u,w)Γ =
∑

e∈E

∫

e

u(x)w(x)dx.

Let now Λk :=
(
kπ
ℓ

)2
and Xk := span{ϕλ : λ ≤ Λk}, where ϕλ is the eigenfunction

to eigenvalue λ. Then, the spectral Galerkin approximation consists of finding
uk ∈ Xk with

(6)
∂

∂t
(uk, ϕλ) +

(
∂uk
∂x

,
∂ϕλ
∂x

)
= (f(uk(x, t)), ϕλ) ∀ϕλ ∈ Xk.

Representing uk as uk =
∑
λ≤Λk

cλϕλ for constants cλ reduces this to the ordinary
differential equation

∂

∂t
(eΛtc) = eΛt(f(u(x, t)),Φ),

whereΛ is a diagonal matrix containing the eigenvalues λ and c a vector containing
the constants cλ. By this, we derived a semidiscretization of a reaction-diffusion
equations on a metric graph which now can be solved by a suitable method for
ordinary differential equations.
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Neural Network Approximation of Functions related to PDEs

Philipp Petersen

(joint work with Andrei Caragea, Fabian Laakmann, Carlo Marcati,
Joost Opschoor, Christoph Schwab, Felix Voigtlaender)

In this talk, we discussed approximation theoretical aspects of the mathemati-
cal theory of deep learning [2]. Concretely, we focus on functions that exhibit
structured singularities.

The first type of singularities that we studied are the following: Let d ∈ N

and let C1 ⊂ L∞([0, 1]d), C2 ⊂ L∞([0, 1]d−1) be two function classes. We study
functions of the form f = f1 + χBf2, where f1, f2 ∈ C1 and B ⊂ [0, 1]d is a set
such that ∂B can locally be parametrised by a function in C2. We call functions of
this form functions with structured singularities of type C1, C2. These functions are
potentially high dimensional functions that are generally not continuous. However,
we expect that these functions can still be very efficiently approximated if the
singularity curve can be properly resolved, which we demonstrate for a number of
examples.

The first result that we presented is that if C1 = Ck([0, 1]d), C2 = Ck([0, 1]d−1),
then for every function f with structured singularities of type C1, C2 and every
ǫ > 0 there exists a neural network Φ satisfying

‖f − Φ‖L2([0,1]d) ≤ ǫ

and Φ has not more than ǫ−2(d−1)/k non-zero entries [7]. This implies that neural
networks can approximate discontinuous functions very efficiently as long as the
singularity curve is sufficiently smooth.

One issue with the result above is that it suffers from the so-called curse of
dimensionality. In this context, we say that an approximation method suffers from
the curse of dimensionality if the approximation rate deteriorates exponentially
with increasing dimensions. However, in practical applications of deep neural
networks the input dimensions are immense and one typically does not observe a
deterioration with higher dimensions.

A famous class of functions for which the curse of dimensionality can be over-
come by approximation through neural networks is the Barron class [1]. These
are functions f : Rd → R such that for a constant c > 0

f(x) = c+

∫

Rd

(ei〈x,ξ〉 − 1)F (ξ)dξ, for x ∈ R
d, where

∫

Rd

|ξ||F (ξ)|dξ <∞.

Functions in the Barron type can be approximated by neural networks with N
neurons to an L2 error of N−1/2 on the unit ball. Interestingly, the approximation
rate, while slow, is independent of the underlying dimension. In [3], we showed
that this result implies that for functions f with structured singularities of type
C1, C2, where C1 contains only constant functions and C2 is the set of functions
of Barron type it holds that there exists a neural network Φ such that for every
probability measure µ

µ({x ∈ R
d : f(x) 6= Φ(x)}) . d3/2N−α/2,
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where α depends on µ, [3]. For measures with bounded densities, we have that
α = 1. As a result, we observe that neural networks have the surprising prop-
erty of approximating without the curse of dimension arbitrarily high dimensional
functions with non-trivial discontinuities.

Another instance of neural networks resolving potentially complicated discon-
tinuities to achieve very high approximation rates of non-smooth functions was
found in the context of transport equations, [4]. We consider parametric transport
equations

∂tu(t, x, η) + V (t, x, η) · ∇xu(t, x, η) = 0,

u(0, x, η) = u0(x),

where t ∈ [0, T ] is a time parameter, x ∈ Rn is a spatial coordinate, and η ∈ [0, 1]D

is a parameter for some n,D ∈ N, and T > 0. The vector field V ∈ Ck([0, T ] ×
Rn× [0, 1]D;Rn) and the initial condition u0 ∈ Cs(Rn;R) are given with s, k ∈ N.
In this case, we can show that the characteristic curves of u are as smooth as the
vector field V . Hence, if u0 is a piecewise smooth function, then it follows by the
method of characteristics that u has structured singularities along smooth curves.

Finally, we studied a slightly different type of structured singularities that arise
as boundary effects in boundary value problems with analytic coefficients. In these
and other related partial differential equations, it can be shown that the solutions
are so-called weighted analytic functions. These functions are analytic in the in-
terior of the domain but exhibit a controlled blow-up in their derivatives close to
the boundary and the corners of the domains. By demonstrating that deep neu-
ral networks can re-approximate hp-finite element methods on general polyhedral
domains, we demonstrate that deep neural networks can again successfully resolve
complex singularities, [6, 5]. In this case, this leads to exponential approximation
rates of non-smooth functions of neural networks with respect to the number of
parameters of the networks.
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Numerical Solution of Hamilton Jacobi Bellman Equation and further
non-linear high dimensional PDE’s

Reinhold Schneider

The Hamilton-Jacobi-Bellman (HJB) equation associated to infinite horizon op-
timal control problems is non linear and suffers from the curse of dimensionality.
Low rank hierarchical tensor product approximations are used to solve the oper-
ator equations resulting from the reduction of the HJB to a sequence of linear,
hyperbolic PDEs.
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Low-Rank Tensor-Based Transport for high-dimensional
Bayesian Inference

Robert Scheichl

(joint work with Karim Anaya-Izquierdo, Tiangang Cui, Sergey Dolgov, Colin
Fox, Lars Grasedyck and Paul Rohrbach)

General multivariate distributions are notoriously expensive to sample from, par-
ticularly the high-dimensional posterior distributions in PDE-constrained inverse
problems. In this talk, I present a joint paper with K. Anaya-Izquierdo, S. Dolgov
and C. Fox [1] on a sampler for arbitrary continuous multivariate distributions.
The approach is based on low-rank surrogates in the tensor-train (TT) format, a
methodology that has been exploited for many years for scalable, high-dimensional
density function approximation in quantum physics and chemistry.

We build upon recent developments of the cross approximation algorithms in
linear algebra to construct a tensor-train approximation to the target probability
density function using a small number of function evaluations [7, 6]. For sufficiently
smooth distributions the storage required for accurate tensor-train approximations
is moderate, scaling linearly with dimension. In turn, the structure of the tensor-
train surrogate allows sampling by an efficient conditional distribution method
since marginal distributions are computable with linear complexity in dimension.
Expected values of non-smooth quantities of interest, with respect to the surrogate
distribution, can be estimated using transformed independent uniformly-random
seeds that provide Monte Carlo quadrature, or transformed points from a quasi-
Monte Carlo lattice to give more efficient quasi-Monte Carlo quadrature. Unbiased
estimates may be calculated by correcting the transformed random seeds using a
Metropolis–Hastings accept/reject step, while the quasi-Monte Carlo quadrature
may be corrected either by a control-variate strategy, or by importance weighting.

We show that the error in the tensor-train approximation propagates linearly
into the Metropolis–Hastings rejection rate and the integrated autocorrelation time
of the resulting Markov chain; thus the integrated autocorrelation time may be
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made arbitrarily close to , implying that, asymptotic in sample size, the cost per
effectively independent sample is one target density evaluation plus the cheap
tensor-train surrogate proposal that has linear cost with dimension.

As an exemplary problem, the methods are demonstrated on a PDE-constrained
inverse diffusion problem. The delayed rejection adaptive Metropolis (DRAM)
algorithm [3] is used as a benchmark. In all computed examples, the importance-
weight corrected quasi-Monte Carlo quadrature performs best, and is more effi-
cient than DRAM by orders of magnitude across a wide range of approximation
accuracies and sample sizes. Indeed, all the methods developed here significantly
outperform DRAM in all computed examples.

In this talk, I will also highlight the link to transport-based sampling algorithms
for high-dimensional distributions, in the spirit of [5], and to normalizing flows [8]
in machine learning. In particular, the method falls square into the category
of Knothe-Rosenblatt rearrangment-based triangular transport maps proposed by
Marzouk, Moshely, Parno and Spantini [4], when the low-rank tensor-train format
is used as the model class for approximating the transport.

As a starting point for a full theoretical analysis, in a recently submitted
preprint with Paul Rohrbach, Sergey Dolgov and Lars Grasedyck [9], we were
able to also give rigorous a priori bounds on the necessary ranks to approximate
general multivariate Gaussian distributions in the functional tensor-train repre-
sentation. It is shown that under suitable conditions on the precision matrix, the
Gaussian density can be approximated to high accuracy without suffering from an
exponential growth of complexity as the dimension increases. In fact, the growth
with the dimension is polylogarithmic. These results provide a rigorous justifica-
tion of the suitability and the limitations of low-rank tensor methods in a simple
but important model case. Numerical experiments confirm that the rank bounds
capture the qualitative behavior of the rank structure when varying the parameters
of the precision matrix and the accuracy of the approximation.

Finally, I will highlight extensions of the approach to tackle more strongly
concentrating probability distributions, as common in Bayesian inverse problems,
via a multi-layered approach. In [2], Tiangang Cui and Sergey Dolgov recently
were able to extend the TT-sampling algorithm to a Deep Inverse Rosenblatt
Transport (DIRT) algorithm that achieves the approximation of the transport in a
convolutional setting with significantly lower rank approximations of the transport
maps between the individual bridging densities.
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Approximation power of neural networks

Josiah Park

(joint work with Ingrid Daubechies, Ronald DeVore, Nadav Dym, Shira
Faigenbaum-Golovin, Shahar Z. Kovalsky, Kung-Ching Lin, Guergana Petrova,

Barak Sober)

In the desire to quantify the success of neural networks in deep learning and other
applications, there is a great interest in understanding which functions are effi-
ciently approximated by the outputs of neural networks. By now, there exists a
variety of results which show that a wide range of functions can be approximated
with sometimes surprising accuracy by these outputs. For example, it is known
that the set of functions that can be approximated with exponential accuracy (in
terms of the number of parameters used) includes, on one hand, very smooth func-
tions such as polynomials and analytic functions (see e.g. [2, 4, 5]) and, on the
other hand, very rough functions such as the Weierstrass function (see e.g. [1, 3]),
which is nowhere differentiable. In this talk, we add to the latter class of rough
functions by showing that it also includes refinable functions. Namely, we show
that refinable functions are approximated by the outputs of deep ReLU networks
with a fixed width and increasing depth with accuracy exponential in terms of their
number of parameters. Our results apply to functions used in the standard con-
struction of wavelets as well as to functions constructed via subdivision algorithms
in Computer Aided Geometric Design.
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Modeling and Learning of X-ray Microscopy Data

Peter Binev

(joint work with Kelsey Larkin, Zineb Saghi, Toby Sanders)

Processing of hyperspectral data, and Energy Dispersive X-ray spectroscopy (EDX)
in particular, is challenging especially in the data-poor situation in which the data
is not enough to recover the complete spectrum. We present a general approach to
processing hyperspectral data that was tested on EDX tomography data. In this
experiment a specimen was observed from 37 different tilt angles α by scanning
it at a rectangular array of positions (x, y) using a focussed electron beam. At
each position p = p(α, x, y) the beam is disturbing the atoms on its way and some
of them loose a lower-orbital electron that is then replaced by a higher-orbital
electron emiting an X-ray which energy is specific for the atom and corresponds
to the difference of the energies required to be at each of the two orbitals. The
spectrum is usually discretized into thousands of energy levels, e.g. D = 4000,

and the EDX data at p is a D-dimensional vector s(p) =
(
st(p)

)D
t=1

∈ ZD+ of
counts of the detected X-rays at each energy level. Typically, only a total of a few
hundreds of X-rays are detected per position p. Therefore, the data is insufficient
to represent phenomena in the entire ZD+ and a reliable processing of it is possible
only if there is a sparse representation of s(p) that contains the information of
interest.

Modeling of EDX data. We consider s(p) as a discretized realization of a
random variable with a probability density function fp(t) = b(t) +

∑n
k=1 akϕk(t)

that is a linear combination of the probability density functions ϕk representing
different emission lines of the atoms contained in the region of the specimen cor-
responding to the position p = p(α, x, y). The background signal b(t) represents
the phenomenon of background radiation that is present in the entire spectrum
and is treated as a noise component with approximately known behavior. The
constants ak depend on the relative concentration of atoms in the region from
the corresponding chemical element and the probability of emitting at the partic-
ular energy line. The random variable related to ϕk has a distribution close to
Gaussian with mean µk and standard deviation σk. It can be approximated as

ϕk(t) =
1√
2π
e
− 1

2
(
t−µk
σk

)2
but more precise calculations require better models. For

example, σk could be replaced with σk+γk(t−µk) especially for low mean energies
µk or ϕk(t) could be a linear combination of two or more Gaussian functions in
case of very close energy lines of the same atom that are better to be modeled
together. The values of µk and σk depend to the nature of the detector and its
calibration and have to be estimated for each particular experiment. Thus, the
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functions ϕk can be considered as known in general but with a few parameters
that have to be adjusted based on the data.

The problem of processing the EDX data is then reduced to solving the inverse
problem of estimating the coefficients ak = ak(p) given s(p). It can be formulated

as learning of the transform T : ZD+ → Rn+ that for a given s finds T (s) ≈
(
ak

)n
k=1

.
The amount of available data determines the precision of the estimates of the
coefficients ak with high probability. The standard approach uses only the top
emission line per chemical element and determines the coefficients ak as the relative
amount of X-rays detected in the discrete energy levels that overlaps with the
interval around µk, e.g. [µk−σk, µk+σk], in which it is most likely that they were
emitted by atoms representing this chemical element. While such an approach
would provide the best estimate for an individual ϕk, it can be argued that a
method using all the emission lines per chemical element should be able to provide
a much better precision estimate. Another line of improvement is to base the
estimates on regression rather than classification used in the standard approach.

Learning of the probability distribution. To approximate the probability
distributions at each position p, we have to approximate the functions ϕk and
estimate the counts qk(p) of the X-rays of s(p) corresponding to each of them
in order to estimate ak(p). The combined EDX spectrum at all positions p =
p(α, x, y) gives the information needed to find all the emission lines contributing
significant amounts of X-rays and to estimate the parameters of the corresponding
functions ϕk, as well as the background signal b. In a small interval I, b = ϕ0

can be approximated by a linear function in absence of significant absorption.
Alternatively, it can be estimated as the difference of the combined spectrum and
its approximation via a linear combination of ϕk, k ∈ J, k > 0 on I, in case some
insignificant sources of X-rays are ignored. The functions ϕk(t) are well localized
and take significant values only in a small interval around µk. However, these
intervals may overlap for different ϕk(t). To simplify the analysis, we can identify
the subintervals I of the (discrete) domain for t that represent groups of ϕk(t)
with overlapping essential intervals. Let us consider one such subinterval I and
assume that the index set J represents the indices k in its group of ϕk(t) together
with the background function b(t) which is denoted also by ϕ0(t) to simplify the
exposition. One way of estimating the counts qk(p) for k ∈ J is to define filters
Λk =

(
λk,t

)
t∈I that are biorthogonal in expectation to the system of

(
ϕk

)
k∈J . In

addition to the biorthogonality condition

〈ϕk,Λℓ〉I :=
∑

t∈I
ϕk(t)λℓ,t = 0 for k 6= ℓ ,

we require
∑

ℓ∈J λℓ,t = 1 for every t ∈ I to conserve the total X-ray count. To in-

crease stability, we choose the filter Λℓ that minimizes
∑
ℓ∈J

∑
t∈I |λℓ,t|2. The im-

mediate estimate of qk(p) is q̃k(p) := 〈s(p),Λℓ〉I . However, due to the small amount
of data these estimates could be very inaccurate and even some of q̃k(p) could be
negative. Our discrete optimization procedure assigns initially a nonnegative inte-
ger value to qk(p) slightly underestimating q̃k(p) if it is positive. Then the values of
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qk(p) for some p are increased by 1 until
∑

k∈J qk(p) =
∑

k∈J q̃k(p) =
∑

t∈I st(p),
as expected. Simultaneously, we also monitor the accumulated values of qk(p) for
large sets of p, e.g. the frames Fα consisting of all p = p(α, x, y) for a fixed α and ar-
bitrary x and y. Then, we require in addition that

∑
p∈Fα

qk(p) < 1+
∑
p∈Fα

q̃k(p).

The process of increasing the values of qk(p) is governed on a priority queue usually
based on the current value of q̃k(p) − qk(p) but may include other criteria. After
the quantities qk(p) are estimated, we combine together the ones corresponding
to the same chemical element to obtain the vector Qz of relative concentrations
Qz(p) of an element z at the position p.

EDX tomography. The goal is to determine the local concentrations of the
chemical elements in the observed specimen. We use regularized minimization
to perform the tomographic reconstruction. Let the volume of the specimen is
divided into voxels v and let assume that cv(z) is the concentration of the element
z at v and c(z) is the vector of all the concentrations in the volume. We define a
matrix A = A(z) with entries Ap,v that are the weights in the linear combination
of c(z) that describes the distribution of the element z in the result obtained at
position p. Then the Ac(z) should fit well Qz. We use the volume based total
variation of c(z) as regularizer and solve

min
c(z)

γ

2
‖Ac(z)−Qz‖22 + ‖c(z)‖TV

using the alternating direction method of multipliers [1] with the openly available
software [3]. The calculation of Ap,v is usually based on the volume of interaction
of the voxel v with the electron beam that represents p. This requires an alignment
of the coordinate systems created for different tilt angles α since after each tilt the
electron microscope has to be re calibrated. We adapt the center-of-mass approach
of [4] for this alignment.

The proposed approach allows additional improvements of the estimates for Qz
that can be realized through the priority queue by iteratively modifying it based
on the mismatches in the current calculation of Ac(z) −Qz. It is also applicable
to the situations of significant absorption of X-rays of higher energies by some of
the atoms of the specimen. Then the matrix A becomes dependent on z and its
entries are modified iteratively accounting for the calculated concentrations of the
atoms on the way between the position of the beam and the EDX detectors.

A detailed description of the proposed methodology for processing hyperspectral
data together with several examples and results is provided in [2].
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Spline Insights to high dimensional Deep Learning Flows over
Rough Boundaries

Richard Baraniuk

Spline functions and operators build a bridge between approximation theory and
deep networks since a large class of deep networks can be written as a composition
of max-affine spline operators.
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The Universal Approximation Theorem for complex-valued
Neural Networks

Felix Voigtlaender

An important question in the theory of neural networks regards universality; that
is, the ability of neural networks to approximate any given continuous function
arbitrarily well (locally uniformly). Here, usually networks of fixed depth but ar-
bitrarily large width are considered. Whether universality holds depends crucially
on the chosen activation function; the question of which activation functions give
rise to universal network classes has received significant interest [2, 3, 4, 8]. The
most general result in this direction, presented in [8], states the following:

Theorem 1. Let σ : R → R be locally bounded and assume that the closure of the
set {x ∈ R : σ discontinuous at x} is a null-set.

Then for each d ∈ N, the set NN d
σ of shallow neural networks with d-dimen-

sional input and activation function σ is universal if and only if σ does not co-
incide (almost everywhere) with a polynomial. Here, universality means that for

each continuous f : Rd → R, there exists a sequence (Ψn)n∈N ⊂ NN d
σ satisfying

Ψn → f with locally uniform convergence.

Remark. The claim remains true for the set NN d
σ,L of deep neural networks with

fixed number L ∈ N of hidden layers. For sufficiency, this follows since one can
approximate the target function in the first layer and the identity functions in the
subsequent layers. For necessity, one can show that if σ agrees almost everywhere
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with a polynomial p, then every Ψ ∈ NN d
σ,L agrees (almost everywhere) with a

polynomial of fixed degree, depending only on L and the degree of p.

In recent years, due to the impressive empirical success of deep neural networks
in machine learning applications (“Deep Learning”, see [7]), the universality prop-
erties of more special classes of neural networks have been analyzed in detail. For
instance, [14] studies the universality of convolutional neural networks, while [9]
considers so-called residual networks.

In this talk, I presented my recent work [12], in which I completely characterize
those complex activation functions σ : C → C for which the associated network
classes are universal. Such complex-valued neural networks (CVNNs) have received
increased attention in recent years [10, 11, 13]. In particular, CVNNs have em-
pirically been shown to provide increased stability of recurrent neural networks
[13] and to outperform real-valued networks for problems in which the input is
naturally complex-valued [11]. This superior performance is attributed in [11] to
the ability of CVNNs to faithfully handle the phase of complex numbers.

Formally, a complex-valued neural network with activation function σ is a func-
tion

Ψ : Cd → C of the form Ψ = TL ◦ (σ ◦ TL−1) ◦ · · · ◦ (σ ◦ T0),
where L ∈ N denotes the number of hidden layers and each Tℓ : R

Nℓ+1 → RNℓ is
affine-linear (i.e., Tℓ x = Aℓ x+bℓ with Aℓ ∈ RNℓ+1×Nℓ and bℓ ∈ RNℓ+1) and finally
σ acts coordinatewise on vectors. Note that N0 = d and NL+1 = 1. Denoting

by NN d
σ,L the set of complex-valued networks with input dimension d, activation

function σ and L hidden layers, the two main results from [12] state the following:

Theorem 2. [Universal approximation; shallow case; see [12, Theorem 1.3]]
Let σ : C → C be locally bounded and assume that the closure of the set

{z ∈ C : σ discontinuous at z} is a null-set. Let d ∈ N be arbitrary.

The set NN d
σ,1 is universal (in the sense that for any continuous f : Cd → C

there exists a sequence (Ψn)n∈N ⊂ NN d
σ,1 satisfying Ψn → f locally uniformly)

if and only if σ is not almost polyharmonic. Here, we say that σ is almost poly-
harmonic if there exist a smooth function τ : C → C and some m ∈ N satisfying
σ = τ almost everywhere and ∆mτ ≡ 0, with the Laplace operator ∆ on C ∼= R2.

Theorem 3. [Universal approximation; deep case; see [12, Theorem 1.4]]
Let σ : C → C be locally bounded and assume that the closure of the set

{z ∈ C : σ discontinuous at z} is a null-set. Furthermore, assume that none of
the following properties hold:

a) we have σ(z) = p(z, z) for almost all z ∈ C, where p is a complex polynomial
of two variables,

b) we have σ = g almost everywhere or σ = g almost everywhere, where g : C→C

is an entire holomorphic function.

Then, for each L ∈ N≥2 and each d ∈ N, the class NN d
σ,L of deep complex-valued

neural networks with activation function σ and L hidden layers is universal.
Conversely, if σ : C → C is continuous and satisfies a) or b), then NN d

σ,L is
not universal for any d, L ∈ N.
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Remark.

• In dimension d = 1, it is relatively easy to see that continuous functions σ
satisfying conditions a) or b) cannot be universal. Namely, if σ is holomor-
phic or anti-holomorphic, then every function in NN 1

σ,L will be holomorphic
or anti-holomorphic as well, depending on whether L is even or odd. Since
(anti)-holomorphicity is preserved under locally uniform limits, this rules out
universality. Likewise, if σ = p(z, z) is a polynomial, it is straightforward to see
that each Ψ ∈ NN 1

σ,L is of the form Ψ(z) = qΨ(z, z) for a complex polynomial
qΨ of two variables and of degree deg qΨ ≤ N , with N only depending on the
depth L and the degree of p; this again rules out universality.

• If σ is discontinuous but satisfies properties a) or b), the theorem is not sufficient

to decide whether NN d
σ,L is universal or not. This is not a proof artifact; in

fact, [12, Example 4.13] provides an example of such an activation function

for which NN d
σ,L is in fact universal for L ≥ 2. Such activation functions

are somewhat artificial, however: They are discontinuous but agree almost
everywhere with a continuous function; hence, it would be natural to replace
σ with its “continuous version.”

The proofs of Theorems 2 and 3 are based on generalizing the arguments in
[8] to the complex-valued case via the Wirtinger calculus and Weyl’s lemma. For
instance, using the identity ∆ = 4 ∂∂ and elementary properties of the Wirtinger
derivatives ∂ and ∂, one can show that if ∆mσ ≡ 0, then also ∆mΨ ≡ 0 for all
Ψ ∈ NN 1

σ,1. By Weyl’s lemma, this extends to locally uniform limits. Thus, any

f : C → C not satisfying ∆mf ≡ 0 cannot be approximated by elements of NN 1
σ,1.

The universality of complex-valued neural networks has already been studied in
the literature to some extent. However, the paper [12] is the first to provide a com-
prehensive characterization of the class of “universal activation functions.” As a
brief account of the literature, we mention that in [1] it was shown that the acti-
vation function σ defined by σ(z) = 1/

(
1 + exp(−Re(z))

)
+ i/

(
1 + exp(− Im(z))

)

gives rise to a universal class of shallow complex-valued networks. Moreover, the
papers [6, 5] claim to prove universality of complex-valued networks for a variety
of activation functions. However, some of these activation functions are in fact
holomorphic, which shows that the arguments in [6, 5] cannot possibly be correct.
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Supervised Learning for Maps between Banach Spaces

Nikola Kovachki

A general framework for data-driven approximation of input-output maps between
infinite-dimensional spaces is developed. Motivated by the recent successes of neu-
ral networks, the proposed approach uses a combination of ideas from deep learning
and model reduction. This combination results in a neural network approximation
which, in principle, is defined on infinite-dimensional spaces and, in practice, is
robust to the dimension of the finite-dimensional approximations of these spaces
required for computation. For large classes of input-output maps, and suitably
chosen probability measures on the inputs, convergence of the proposed approx-
imation methodology is proved. Numerically, the effectiveness of the method is
demonstrated on classes of parametric PDE problems with applications in reservoir
modeling, the deformation of plastic materials, and the turbulent flow of fluids.
Convergence and robustness of the approximation scheme with respect to the size
of the discretization is established. The method is shown to be faster and more
accurate than many existing algorithms in the literature.
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From linear to nonlinear n-widths: Optimality and Reduced Modelling

Albert Cohen

The concept of n-widths has been introduced by Kolmogorov as a way of measuring
the size of compact sets in terms of their approximability by linear spaces. The
n-width of a compact set K in a Banach space V is defined by

dn(K) := inf
dim(Vn)=n

max
u∈K

min
v∈Vn

‖u− v‖V .

From a numerical perspective, it may be thought as a benchmark for the perfor-
mance of algorithms based on linear approximation. In recent years, this concept
has proved to be highly meaningful for the analysis of reduced modeling strategies
in complex physical problems described by parametric PDE’s.

On the one hand several results have demonstrated that certain families of
parametrized PDE’s have fast decaying n-width, in particular much faster than
the decay that could be predicted from their standard spatial smoothness analysis
in Sobolev spaces. Central to this state of affair is the fact that holomorphic maps
preserve the rate of decay of n-widths : it was proved in [2] that if F is a map
between Banach spaces V1 and V2 that is holomorphic in a neigbourhood of a
compact set K1 ⊂ V1, then with K2 = F (K1) one has

sup
n>0

nsdn(K1)V1
<∞ =⇒ sup

n>0
ntdn(K2)V2

<∞,

for t < s−1. The loss of 1 in the rate may be an artifact of the proof and removing
it is an open problem. This result can be applied to elliptic and parabolic PDEs,
when F is the mapping that takes the diffusion function to the solution.

On the other hand, while the optimal n-width spaces are out of reach, they
can be emulated by a greedy algorithm that iteratively selects u1, . . . , un from the
compact set K and define a reduced basis space Vn = span{u1, . . . , un}. Then
the accuracy σn(K)V := maxu∈K minv∈Vn

‖u− v‖V achieved by these spaces was
proved in [1, 5] to be rate optimal in the sense that

sup
n>0

nsdn(K)V <∞ =⇒ sup
n>0

nsσn(K)V <∞,

and similar results hold for exponential rates.
It is however well-known that linear approximation methods perform poorly for

certain classes of functions that exhibit singularities at arbitrarily points. Such
classes typically occur when considering hyperbolic transport PDE’s with shock
positions that depend on the various parameters (flux, initial condition..). The
linear n-widths of such classes decay poorly. This motivates for the use of non-
linear approximation strategies such as adaptive mesh refinement, best n-term
approximation in a basis or dictionnary, rational fractions, neural networks.

Several attempts have been made to derive notions of n-widths that describe the
optimal performance of nonlinear approximation methods. In particular, manifold
widths are been defined in [6] as
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δn(K)V := inf
E,D

max
u∈K

‖u−D(E(u))‖V ,

where the infimum is taken over all continuous encoding maps E : V → Rn and
decoding maps D : Rn → V . The continuity requirement is critical in order to
avoid space filling manifolds which would make δn(K)V a trivial quantity.

Manifold widths give a satisfactory description of nonlinear approximability for
classical smoothness classes such as Besov spaces in the sense that they indeed
reflect the rate of approximation achieved by methods such as adaptive mesh re-
finement or best n-term wavelet approximation. On the other hand, they do not
reflect the capability of stable algorithms since continuity is a very weak assump-
tion. This has motivated the introduction of stable nonlinear widths δn,L(K)V
that are defined in [3] similarly as δn(K)V , with the additional prescription that
E and D should be Lipschitz continuous which constant bounded by L indepen-
dently of n.

One main result is that when V is a Hilbert space, stable nonlinear widths are
strongly tied to the Kolmogorov entropy numbers εn(K)V that are defined as the
smallest ε > 0 such that K can be covered by 2n balls of radius ε. Indeed, one has

sup
n>0

nsδn,L(K)V <∞ ⇐⇒ sup
n>0

nsεn(K)V <∞.

This tight connection allows one to prove that the stable nonlinear n-widths of
solution manifolds related to transport equations with shocks have fast decay, in
contrast to their linear n-widths. A more general consequence is that if F is a map
between a Banach space V1 and a Hilbert space V2 that is Lipschitz continuous
over of a compact set K1 ⊂ V1, then with K2 = F (K1) one has

sup
n>0

nsδn,L(K1)V1
<∞ =⇒ sup

n>0
nsδn,L(K2)V2

<∞.

In this sense, stable nonlinear widths reflect the potential gain of nonlinear ap-
proximation methods over their linear counterpart for certain classes of PDEs.

On the other hand, recent results from [7, 4] showing that sampling numbers
can be controlled by linear n-widths, and therefore that best linear approximation
performance can be recovered from point value evaluation, do not seem to carry
over to nonlinear widths.
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