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Introduction by the Organizers

This workshop will concentrate on several aspects of the theory of automorphic
forms, with an emphasis on the different recent approaches towards the Lang-
lands functoriality principle and the Langlands correspondence, on their relative
analogues, and on the relations between those advances and more arithmetic ques-
tions.

The program initiated by Langlands in the 1960’s and 70’s envisions a remark-
able correspondence between the infinite-dimensional representation theory of re-
ductive groups and the arithmetic of local and global number fields. It provides a
promising approach to difficult number theoretic questions by bringing to bear the
technical tools of harmonic and functional analysis as well as those of algebraic
geometry that are inherent in representation theory of reductive groups.

While the development of this program has been a massive undertaking over
the intervening half century, we are at present entering a particularly significant
phase in its history. On the one hand, important parts of the theory are now
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being completed, such as the stabilized Arthur-Selberg trace formula, the clas-
sification of automorphic representations of classical groups, description of local
Arthur packets, etc. So it is an ideal moment to survey what has been achieved.
On the other hand, several exciting new directions are rapidly opening up, for ex-
ample, new methods for attacking the problem of general functoriality (“beyond
endoscopy”), a relative version of Langlands correspondence for spherical varieties,
dramatic new results in the function field case, and tantalizing possibilities arising
from Scholze’s revolutionary ideas in p-adic geometry.

This workshop will focus on the following topics where important recent devel-
opments suggest that new progress is now possible.
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Abstracts

Construction of local A-packets

Hiraku Atobe

Fix a p-adic field F with the Weil groupWF . Let G = Sp2n(F ) or G = SO2n+1(F )

be split. We denote by Ĝ = SO2n+1(C) or Ĝ = Sp2n(C) the Langlands dual group
of G. A local A-parameter for G is a homomorphism

ψ : WF × SL2(C)× SL2(C)→ Ĝ

such that ψ(WF ) is bounded and consists of semisimple elements.
Let Irr(unit)(G) be the set of equivalence classes of irreducible smooth (unitary)

representations of G. For any A-parameter ψ for G, Arthur [1, Theorem 2.2.1]
defined a finite multi-set Πψ over Irrunit(G), which called the (local) A-packet
associated with ψ. Arthur’s multiplicity formula [1, Theorem 1.5.2] (together with
the generalized Ramanujan conjecture) says that the local A-packets classify the
local components of discrete spectrum of square-integrable automorphic forms.

In [2], as a refinement of Mœglin’s construction (see [5]), we construct Πψ
explicitly. To do this, we consider the following filtration of A-parameters:

(discrete L-parameters) ⊂ (non-negative DDR)

⊂ (of good parity)

⊂ (general).

Here, we say that ψ is of good parity if it is a sum of irreducible self-dual repre-
sentations of the same type as ψ.

To state our main results, we recall some basic notations. A segment is a set
[x, y]ρ = {ρ| · |

x, ρ| · |x−1, . . . , ρ| · |y} with an irreducible unitary cuspidal represen-
tation ρ of some GLd(F ), and x, y ∈ R with x − y ∈ Z≥0. It gives an essentially
discrete series representation

∆ρ[x, y] = soc(ρ| · |x × · · · × ρ| · |y)

of GLd(x−y+1)(F ), which is called the Steinberg representation.
The Langlands classification says that any irreducible representation π of G is

a unique irreducible subrepresentation of ∆ρ1 [x1, y1]×· · ·×∆ρr [xr, yr]⋊π0, where

• ρi is an irreducible unitary cuspidal representation of some GLdi(F );
• x1 + y1 ≤ · · · ≤ xr + yr < 0;
• π0 is an irreducible tempered representation of a classical group G0 of the
same type as G.

In this case, we write

π = L(∆ρ1 [x1, y1], . . . ,∆ρr [xr, yr];π0),

and call (∆ρ1 [x1, y1], . . . ,∆ρr [xr, yr];π0) the Langlands data for π.
We define our parameters.
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Definition 1.1.

(1) An extended segment is a triple ([A,B]ρ, l, η), where
• [A,B]ρ = {ρ| · |

A, . . . , ρ| · |B} is a segment;

• l ∈ Z with 0 ≤ l ≤ b
2 , where b := #[A,B]ρ = A−B + 1;

• η ∈ {±1}.
(2) An extended multi-segment for G is an equivalence class of multi-sets of

extended segments

E =
⋃

ρ

{([Ai, Bi]ρ, li, ηi)}i∈(Iρ,>)

such that
• ρ runs over the set of equivalence classes of irreducible self-dual cus-
pidal representations of several GLd(F );
• Iρ is a totally ordered finite set with a fixed order > which is called
admissible;
• Ai +Bi ≥ 0 for all ρ and i ∈ Iρ;
• as a representation of WF × SL2(C)× SL2(C),

ψE :=
⊕

ρ

⊕

i∈Iρ

ρ⊠ Sai ⊠ Sbi

is an A-parameter for G of good parity, where ai := Ai +Bi + 1 and
bi := Ai −Bi + 1;
• a sign condition

∏

ρ

∏

i∈Iρ

(−1)[
bi
2 ]+liηbii = 1

holds.
(3) Two extended segments ([A,B]ρ, l, η) and ([A′, B′]ρ′ , l

′, η′) are equivalent
if
• [A,B]ρ = [A′, B′]ρ′ ;
• l = l′; and
• η = η′ whenever l = l′ < b

2 .
Similarly,
E = ∪ρ{([Ai, Bi]ρ, li, ηi)}i∈(Iρ,>) and E

′ = ∪ρ{([A
′
i, B

′
i]ρ, l

′
i, η

′
i)}i∈(Iρ,>) are

equivalent if ([Ai, Bi]ρ, li, ηi) and ([A′
i, B

′
i]ρ, l

′
i, η

′
i) are equivalent for all ρ

and i ∈ Iρ.

For an extended multi-segment E = ∪ρ{([Ai, Bi]ρ, li, ηi)}i∈(Iρ,>) for G, we can
define a representation π(E) of G. It is irreducible or zero. Moreover, if π(E) 6= 0,
one can compute the Langlands data for π(E).

The first main theorem, which is a refinement of Mœglin’s construction of A-
packets of good parity, is as follows:

Theorem 1.2 ([2, Theorem 1.2]). For an A-parameter ψ = ⊕ρ(⊕i∈Iρρ⊠Sai⊠Sbi)
for G of good parity, fixing a “very admissible” order > on Iρ, we have

Πψ =
{
π(E)

∣∣ supp(E) = ∪ρ{[Ai, Bi]ρ}i∈(Iρ,>)

}
\ {0},
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where Ai = (ai + bi)/2− 1, Bi = (ai − bi)/2, and supp(E) = ∪ρ{[Ai, Bi]ρ}i∈(Iρ,>)

if E = ∪ρ{([Ai, Bi]ρ, li, ηi)}i∈(Iρ,>).

By refining Xu’s algorithm [6], we obtain the following.

Theorem 1.3 ([2, Theorem 1.4]). We have a combinatorial criterion for π(E) 6= 0.
In particular, we can compute the cardinality |Πψ| for any A-parameter ψ of good
parity.

Aubert [4] defined an involution π 7→ π̂ on Irr(G). We call π̂ the Aubert dual of
π. It is known by Xu [5] that for ψ = ⊕ρ(⊕i∈Iρρ ⊠ Sai ⊠ Sbi) of good parity, we
have

{π̂ | π ∈ Πψ} = Πψ̂,

where ψ̂ = ⊕ρ(⊕i∈Iρρ⊠ Sbi ⊠ Sai). In [3], the author and Mı́nguez established an
algorithm to compute π̂ for any π ∈ Irr(G), but it is hard to carry out. We give a
more efficient formula for π̂ when π = π(E).

Theorem 1.4. Let E = ∪ρ{([Ai, Bi]ρ, li, ηi)}i∈(Iρ,>) be an extended multi-segment
for G. Suppose that > on Iρ is very admissible, i.e., Bi < Bj =⇒ i < j. Define

δ, αi, βi and Ê = ∪ρ{([Ai,−Bi]ρ, l̂i, η̂i)}i∈(Iρ,>̂) as follows.

• δ ∈ {0, 1/2} with Bi ≡ δ mod Z;
• αi =

∑
j∈Iρ,j<i

(Aj +Bj + 1) and βi =
∑

j∈Iρ,j>i
(Aj −Bj + 1);

• i>̂j ⇐⇒ i < j;

• l̂i = li + Bi + δ(−1)αiηi and η̂i = (−1)αi+βi+2δηi. Here, if δ = 1/2 and
2li = Ai −Bi + 1, we regard ηi = −(−1)

αi .

Then π̂(E) ∼= π(Ê).
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On the formal degree conjecture for classical groups

Raphaël Beuzart-Plessis

Let F be a local field of characteristic zero and ψ : F → C× be a continuous non-
trivial unitary character. Let H be a connected semisimple group defined over F
and set H = H(F ). To each discrete series σ of H , we can associate its formal
degree dH(σ) ∈ R>0 characterized by the relation

∫

H

〈σ(h)u, u∨〉〈v, σ∨(h)v∨〉dψh = dH(σ)−1〈u, v∨〉〈v, u∨〉

for every u, v ∈ σ and u∨, v∨ ∈ σ∨ (the smooth contragredient of σ). Here the
Haar measure dψh = |ωH |ψ is given, through the choice of the ψ-delf-dual Haar
measure in local coordinates and following a construction of Weil [19, §2.2], by an
invariant volume form ωH on HF (the base-change of H to an algebraic closure
of F ) that we choose to be the pull-back of an invariant everywhere nonzero form
ωZ on the split form HZ of H over Z by an isomorphism

ι : HF ≃ HZ × F .

(This actually only characterize ωH up to some root of unity but the measure dψh
doesn’t see this ambiguity).

A conjecture due to Hiraga-Ichino-Ikeda (the so-called formal degree conjecture)
[7] predicts a formula for dH(σ) in terms of data associated to σ by the local
Langlands correspondence (LLC). For simplicity, we assume that H admits a pure
inner which is quasi-split (this is always the case for the so-called classical groups:
symplectic, unitary and special orthogonal groups). Then the LLC, in its most
recent formulation due to Vogan [18], is supposed to attach to every admissible
irreducible representation σ of H two kinds of invariants: first a L-parameter
φσ : W ′

F →
LH (where W ′

F stands for the Weil group or the Weil-Deligne group
of the field F depending on whether it is Archimedean or not) and secondly an
irreducible representation ρσ of the finite component group Sσ := π0(CentĤ(φσ)).
Actually, the representation ρσ is supposed to depend on the auxilliary choice
of a Whittaker datum (of a quasi-split pure inner form of H) but only up to a
twist (see [4, §9]) and in particular its dimension dim(ρσ) ought to be completely

canonical. Let AdH denote the adjoint representation of LH on Lie(Ĥ). Then,
we can associate to representation AdH ◦ φσ of W ′

F its γ-factor:

γ(s, σ,AdH) := ǫ(s, AdH ◦ φσ, ψ)
L(1− s, AdH ◦ φσ)

L(s, AdH ◦ φσ)
.

One basic expectation of the local Langlands correspondence is that σ is a discrete
series if and only if φσ is a discrete L-parameter that is to say the centralizer
CentĤ(φσ) is finite. This last condition implies that the γ-factor γ(s, σ,AdH) is
regular and nonzero at s = 0. We can now state the formal degree conjecture of
Hiraga-Ichino-Ikeda [7]:
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Conjecture 1.1 (Hiraga-Ichino-Ikeda). For every discrete series σ of H, we have

dH(σ) =
dim(ρσ)

|Sσ|
|γ(0, σ, AdH)|.

As already explained above, it is expected that dim(ρσ) does not depend on
the choice of a Whittaker datum needed to normalize the LLC. Moreover, if H is
a classical group (in the sense given above), Sσ is abelian and therefore we always
have dim(ρσ) = 1.

The above conjecture is actually pleasantly aligned with another conjecture of
Langlands on the normalization of standard intertwining operators [11, Appendix
II] and the two can be combined to give a, conjectural, formula for the Plancherel
density µH(σ) of H . Recall that this density is the unique (up to modification on
a measure-zero subset) measurable function on the tempered dual Temp(H) of H
such that for every test function f ∈ C∞

c (H) we have

(1) f(1) =

∫

Temp(H)

Θσ(f)µH(σ)dσ.

Here Θσ stands for the distribution-character of σ and dσ is some “elementary”
measure on Temp(H) coming, by twisting, from normalized Haar measures on the
tori of unitary unramified characters of the Levi subgroups of H (this measure
actually implicitely depends on the choice of ψ, see [2, §2.7] for details). When
σ is a discrete series, we simply have µH(σ) = dH(σ) whereas for a tempered
representation σ in generic position, which is parabolically induced σ = IHL (τ)
from a discrete series τ of a Levi L of H , µH(σ) can be written as the product of
the formal degree of τ with a certain (scalar) composition of standard intertwin-
ing operators. Then, combining Langlands expected normalization of those [11,
Appendix II] with Conjecture 1.1 (for all Levi subgroups of H), we arrive at the
following prediction:

Conjecture 1.2 (Hiraga-Ichino-Ikeda, Langlands). For almost all σ ∈ Temp(H),
we have

dH(σ) =
dim(ρσ)

|Sσ|
|γ∗(0, σ, AdH)|

where

γ∗(0, σ, AdH) = lim
s→0

γ(s,1F , ψ)
−nσγ(s, σ,AdH), nσ = ords=0γ(s, σ,AdH)

is the first non-zero term in the Laurent expansion of γ(s, σ,AdH) at s = 0 (suit-
ably normalized).

In the Archimedean case, both Conjectures 1.1 and 1.2 are known thanks to
the work of Harish-Chandra [6] on discrete series and of Knapp and Stein [10]
on intertwining operators. Although the LLC has not yet been established for all
p-adic groups, there has been a lot of partial results in the direction of Conjecture
1.1 among which we can cite:

• The case of H = PGLn (or more generally GLn) can be settled using
works of Silberger and Zink [17]. Other proofs have been provided by
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Hiraga-Ichino-Ikeda [7, §4] (using Shahidi’s γ-factors) and Ichino-Lapid-
Mao [8, §2] (using Rankin-Selberg γ-factors). Once combined with the
work of Shahidi [15], this also gives a proof of Conjecture 1.2 in this case.
• For the Steinberg representation, Conjecture 1.1 has been verified by Hi-
raga, Ichino and Ikeda [7, §3.3].
• The case of odd special orthogonal groups is proven in [8] by Ichino, Lapid
and Mao.
• In [2], I’ve established Conjecture 1.1 for unitary groups. Subsequently,
Morimoto [12] gave another proof for unitary groups of even rank following
the method of Ichino-Lapid-Mao.
• Using’s Kaletha parameterization [9], David Schwein [14] was recently able
to verify Conjecture 1.1 for all regular supercuspidal representations. This
result was subsequently extended by Kazuma Ohara [13] to all the so-called
non-singular supercuspidal representations.
• In [3], Feng, Opdam and Solleveld have established the formal degree
conjecture for unipotent supercuspidal representations.

In a work in progress, I have obtained the following new cases of Conjectures
1.1 and 1.2.

Theorem 1.3. Conjectures 1.1 and 1.2 hold whenever H is a symplectic or an
even special orthogonal group.

This theorem is based on the version of LLC for those groups due to Arthur
[1]. We can remark that for even special orthogonal groups, the work of Arthur
only gives a weak form of the correspondence where everything is determined up
to the outer automorphism coming from conjugation by the corresponding full
orthogonal group. However, it is easy to see that Conjecture 1.1 is insensible to
this undeterminacy. Moreover, the work of Arthur [1] contains a proof of Langlands
conjecture on the normalization of standard intertwining operators. Thus, for the
groups considered we know a priori that Conjecture 1.1 implies Conjecture 1.2 but
nevertheless both results are actually established at the same time. Finally, the
basic idea of the proof goes back to an argument already developed in the original
paper of Hiraga-Ichino-Ikeda [7, §7] in the context of stable discrete series of even
unitary groups and uses in a new way the Goldberg-Shahidi’s method [16], [5] of
computing residues of certain intertwining operators.

Actually, the proof of Theorem 1.3 is based on the spectral expansion of certain
(singular) orbital integrals on twisted general linear groups. More precisely, assume
for simplicity that H is split from now on and let V be an N -dimensional vector
space over F where

N =

{
2n+ 1 if H = Sp(2n),
2n if H = SO(2n).

Set M = GL(V ), A = Z(M) (the center of M) and M̃ = Isom(V, V ∗) the space

of linear isomorphisms of V with its dual. Then, M̃ can be naturaly identified
with the set of nondegenerate bilinear forms on V and moreover it is a twisted
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space under M (in the sense of Labesse; i.e. it is both a left and a right M -

torsor). Let γ ∈ M̃ be a nondegenerate bilinear form that can be written as a
sum of a symplectic form of maximal rank and a quadratic form of rank one. Let

f̃ ∈ C∞
c (A\M̃) and let

O(γ, f̃) =

∫

AMγ\M

f̃(m−1γm)dm

be the integral orbital over the conjugacy class of γ (where Mγ stands for the
centralizer of γ).

Theorem 1.4. For every f̃ ∈ C∞
c (A\M̃) we have the identity

O(γ, f̃) =

∫

Temp(H)/stab

Θπ̃(f̃)×
2

|S+
σ |
γ∗(0, σ, AdH)dσ

where:

• Temp(H)/stab denotes the quotient of Temp(H) by the relation “being in
the same L-packet” (the “elementary” measure dσ descends to this quo-
tient);
• π is the functorial lift of σ to M and π̃ is the Whittaker-normalized ex-

tension of π to a representation of the twisted space M̃ ;
• Θπ̃ is the distribution-character of the twisted representation π̃;
• S+

σ = π0(CentON (C)(φσ)) if the centralizer of the L-parameter of σ after

composition with the natural embedding Ĥ →֒ ON (C).

Finally, let me comment briefly on the proofs. First, we can deduce Theorem
1.4 from Theorem 1.3 using the twisted endoscopic character relations of [1, §2.2]
and that characterize the L-packets for H . More precisely, these relations are

based on the Langlands-Kottwitz-Shelstad transfer of functions f̃ ∈ C∞
c (A\M̃)→

f ∈ C∞
c (H) defined through certain relations between (stable) orbital integrals.

It can be shown that for such a pair of matching functions, we have

(2) O(γ, f̃) = f(ǫ)

where ǫ = (−1)N ∈ Z(H). On the other hand, the endoscopic relations of Arthur
state that

(3) Θπ̃(f̃) =
|S+
σ |

2|Sσ|

∑

σ→π̃

Θσ(f).

Combining (2) and (3) with the identity of Theorem 1.4, we obtain a spectral ex-
pansion for the Dirac distribution f ∈ C∞

c (H) 7→ f(ǫ) which, when compared with
the Plancherel formula (1), gives the desired formula for the Plancherel density
(that of Conjecture 1.2).

As already mentioned, the proof of Theorem 1.4 is based on a method developed
by Shahidi in [16] that relate the residues of certain intertwining operators to the

twisted orbital integral O(γ, f̃). To be more specific, set W = V ⊕V ∗⊕F that we
equip with the quadratic form q(v, v∗, λ) = 〈v, v∗〉+λ2. Let G = SO(W, q) be the
corresponding (odd) special orthogonal group. Then, the stabilizers P = StabG(V )
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and P = StabG(V
∗) of V and V ∗ respectively in G are opposite maximal parabolic

subgroups with common Levi factor P ∩ P ≃ M . Moreover, we also have an

identification M̃ ≃ NormG(M) \M of the twisted space M̃ with the non-neutral
component of the normalizer of M in G. Let π be a supercuspidal representation

of M which admits an extension π̃ to M̃ . Then, in [16] Shahidi relates the residue
at s = 0 of the standard intertwining operator

M(π, s) : IGP (π ⊗ |det|
s/2)→ IG

P
(π ⊗ |det|s/2)

to the orbital integral O(γ, .) applied to matrix coefficient of π̃. To get Theorem
1.4, we imitate Shahidi’s computation for the (highly non admissible) regular rep-
resentation π = C∞

c (A\M). More precisely, this entails computing in two different
ways the residue

(4) Ress=0

∫

U

fs(u)du

where U is the unipotent radical of P and s 7→ fs ∈ C
∞
c (AU\G, δ

1/2
P |det|

s/2) is
a “nice” holomorphic family of functions (e.g. one given by the Mellin transform

fs(x) =

∫

A

f(ax)δP (a)
−1/2|det a|−s/2da of a test function f ∈ C∞

c (U\G)). On

the one hand, mimicking Shahidi calculation in [16] we can write this residue as

O(γ, fM̃ ) where fM̃ := f0 |M̃∈ C
∞
c (A\M̃). On the other hand, using Shahidi’s

normalization of intertwining operators for generic representations [15] as well as a
long but explicit computation of certain residual distributions very close to that of
[2, §3], we can also show that this residue is equal to the spectral side of Theorem

1.4 applied to the same function fM̃ .
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Character sheaves on loop Lie algebras

Alexis Bouthier

1. Introduction

Let k be an algebraically closed field, G a connected reductive group over k, (B, T )
a Borel pair and W the associated Weyl group. Usual Springer theory constructs
Ad(G)-équivariant perverse sheaves on Lie(G) as well as representations ofW . Let

π : g̃ = {(g, γ) ∈ G/B × g, ad(g)−1γ ∈ Lie(B)} → g,

be the Grothendieck-Springer fibration, which is small, projective and finite etale
of group W above the regular semisimple locus j : grs →֒ g. We consider Sfin =

π∗Qℓ[dim(g̃)] and obtain a perverse sheaf which is the extension of its restriction
to grs and such that End(Sfin) = Qℓ[W ]. In particular, Sfin is equipped with an
action of W . For each irreducible representation V of W , we obtain a V -isotypical
component Sfin,V which is also perverse and Ad(G)-equivariant. These sheaves
are analogs for the Lie algebra of Lusztig’s character sheaves. More generally, to
obtain enough character sheaves, it is important to consider the generalizations
Sfin,L = π∗ L[dim(g̃)] where L is a local system.

In [2], Bouthier, Kazhdan and Varshasky extend this theory in the affine case,
i.e. G is replaced by the loop group G((t)), g by g((t)) and W by the extended

affine Weyl group W̃ = X∗(T ) ⋊ W , where X∗(T ) are the cocharacters of the
maximal torus T . The Grothendieck-Springer fibration is replaced by its affine
analog:

f : C̃ = {(g, γ) ∈ G((t))/I × g((t)), ad(g)−1γ ∈ Lie(I)} → g((t))
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where I is the Iwahori associated to B. As a matter of fact, the fibration factors
through the sub-ind-scheme C of compact elements.

In this context, all the object considered are ind-schemes, so a priori, smallness
or perversity do not make sense. In addition to that, the reduced geometric fibers
are k-schemes locally of finite type whose homology is infinite dimensional. Finally,

as W̃ is now infinite, the coinvariants functor is not exact and one has to consider
derived coinvariants for which it is not clear whether we keep a perverse sheaf.
In [2, Thm. 7.1.4], part of these difficulties are overcome. We have the following
theorem, let denote :

[f ] : [C̃•/G((t))]→ [C•/G((t))],

the induced fibration on G((t))-equivariant objects.

Theorem 1.1. We have the following assertions:

(1) In a reasonable sense, f is a small morphism.
(2) We have a well-defined theory of G((t))-equivariant sheaves on both stacks

of the fibration, equipped with t-structures and cohomological functors, and
the complex S = [f ]!ωC̃•

, where ω
C̃•

is the dualizing sheaf, is perverse
and obtained as the intermediate extension of its restriction to a regular
semisimple locus Crs, above which, up to nilpotents, the fibration is Galois

of group W̃ .

(3) We have that End(S) = Qℓ[W̃ ].

Nevertheless, the second step which consists in considering the isotypical com-
ponents is not studied as well as the necessary finiteness statements. Moreover, as
in the classical case, it is important to consider more general sheaves than ω

C̃•

for
which we have perversity statements.

1.1. Local symmetries and perversity. To be able to compute the derived

coinvariants under W̃ , we need to know how W̃ acts. By analogy with the global
Springer theory, initiated by Yun, which concerns the parabolic Hitchin fibra-
tion fpar : Mpar → Apar, the spherical part, i.e. the action of the subalgebra

Qℓ[X∗(T )]
W of Qℓ[W̃ ] factors through the action of the sheaf of connected compo-

nents π0(P
glob/Apar) of the Picard stack Pglob acting onMpar over Apar. More-

over, by Lusztig [3], we have an a priori different action of W̃ on the homology of
the affine Springer fibers than the one constructed in [2] that we need to compare.

We first construct a local Picard P that acts on C̃ over C and we have the following
theorem [1, 3.3.3, 3.4.2]:

Theorem 1.2. The affineGrothendieck-Springer sheaf S is naturally P-equivariant

and this action commutes with the one of W̃ . Moreover, the action of W̃ , con-
structed by intermediate extension coincides with the one of Lusztig.

At the same time, we take the opportunity to generalize the perversity statement
of [2] for local systems. More specifically, we have an equivalence of étale sheaves

[C̃/G((t))] ∼= [Lie(I)/I]. The stack X = [Lie(I)/I] can be written as a projective
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limit of smooth Artin stacks of finite type X ≃ lim
←−
Xi with smooth transition

morphisms and we consider a category of renormalized local systems :

Locren(X ) ≃ colimf ! Locren(Xi),

with Locren(Xi) = {L⊗Qℓ
ωXi,L ∈ Loc(Y )} ( we show that this definition is

independent of choices). We have the following theorem [1, Thm. 3.2.9]:

Theorem 1.3. The functor [f ]! is left t-exact and for every L∈Locren([̃C•/G((t))]),
[f ]! L is perverse and can be obtained as the intermediate extension of its restriction
to Crs.

1.2. Constructibility. In general the homology of affine Springer fibers is infi-

nite dimensional. Nevertheless, once we take the derived coinvariants under W̃ ,
one expects to obtain constructible perverse sheaves. We thus prove a stronger
finiteness statement before taking the coinvariants [1, Thm. 4.3.15]:

Theorem 1.4. The affine Grothendieck-Springer sheaf S is constructible as a

sheaf of Qℓ[W̃ ]-modules. In particular, for every finite dimensional representation

τ of W̃ , the sheaf Sτ of τ-coinvariants is a constructible sheaf over [C•/G((t))].

Now we have a finiteness statement for the τ -coinvariants, we are interested in
their perversity.

1.3. Homotopy lemma and perversity of coinvariants. In the case of the
global Hitchin fibration, we have by the homotopy lemma that the action of Pglob

on the cohomology sheaves Rifpar∗ Qℓ factors through π0(P
glob). Moreoveor, Yun

defines a morphism of sheaves:

σ : Qℓ[X∗(T )]
W → π0(P

glob)

and shows ([4, Thms. 1, 2 ,3]) that the spherical part of the action of W̃ on the
cohomology with compact support Rifpar∗ Qℓof the Hitchin fibres factors through
σ. He also shows a local statement, but that holds stalks by stalks, that is to say,
for γ ∈ C•(k), we have a local morphism:

(1) σγ : Qℓ[X∗(T )]
W → π0(Pγ)

and again the spherical part acts on Hi
c(f

−1(γ),Qℓ) through σγ . Concerning
homology, one has a weaker statement. In our case, one needs a generalization of
Yun’s result in various directions. First, to compute derived coinvariants, we need
to work with∞-categories and second, we need an homotopy lemma that holds on
the complex rather than on its cohomology sheaves. We thus show an homotopy
statement for the action of a commutative smooth group scheme on a complex,
from which we deduce the following corollary that applies both in the global and
local case [1, Thms. 5.1.5, 5.2.1]:

Theorem 1.5.

(1) The action of Pglob on the complex fpar∗ Qℓ factors through an action of
π0(P

glob/A).
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(2) For every geometric point γ ∈ C•(k), the action of Pγ on RΓ(f−1(γ),
ωXf−1(γ)

) factors through π0(Pγ).

This allows to formulate a conjecture that generalizes Yun’s theorem:

Conjecture 1.6. For every algebraically closed field K and γ ∈ C•(K), the action

fo the spherical part Qℓ[X∗(T )]
W of W̃ on RΓ(f−1(γ), ωf−1(γ)) factors through (1).

Assuming this conjecture, we prove a perversity statement for the coinvariants.
If τ is a finite-dimensional representation that is torsion, i.e. its restriction τ|X∗(T )

is a sum of torsion characters. We prove [1, Thm. 5.3.1]:

Theorem 1.7. Let G be a simply connected group, τ a finite-dimensonal torsion

representation of W̃ , we suppose that 1.6 holds, then the sheaf of τ-coinvariants
Sτ is perverse.

References

[1] A. Bouthier. Faisceaux caractères sur les espaces de lacets d’algèbres de Lie,
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From representations of p-adic groups to congruences of
automorphic forms

Jessica Fintzen

(joint work with Sug Woo Shin)

In the talk I presented new results about the representation theory of p-adic groups
and demonstrated how these can be used to obtain congruences between arbitrary
automorphic forms and automorphic forms which are supercuspidal at p based
on joint work with Sug Woo Shin ([FS21]). I outlined how this simplified earlier
constructions of attaching Galois representations to automorphic representations,
i.e. the global Langlands correspondence, for general linear groups. Since our
results apply to general p-adic groups, they have the potential to become widely
applicable beyond the case of the general linear group.

Let G be a (connected) reductive group over Q such that G(R) is compact
mod center and let A denote the ring of adèles of Q. (Our results work also
over arbitrary (totally real) number fields, but for ease of notation we restricted
our attention to Q for the talk.) Let p be a prime number, Up a compact open

subgroup of
∏

ℓ 6=p

′
G(Qℓ), and Up a compact open subgroup of G(Qp).
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If Λ is a finite free Zp-module with a smooth action of Up, then we write
M(UpU

p,Λ) for the space of Λ-valued functions on G(Q)\G(A)/UpG(R)◦ satisfy-
ing f(gup) = u−1

p .f(g) for g ∈ G(A), up ∈ Up. We write Zp for the free, one-
dimensional Zp-module with trivial Up-action. Then

M(UpU
p,Zp) = {G(Q)\G(A)/UpU

pG(R)◦ → Zp}

is the space of algebraic automorphic forms. For an integer m, we write Am =
Zp[T ]/(1 + T + . . .+ T p

m−1).

Theorem 1.1 ([FS21]). Let p be larger than the Coxeter number of G. Then there
exist explicitly constructed compact open subgroups Up,m ⊂ G(Qp) with a smooth
action of Up,m on Am such that

(1) Up,1 ⊲ Up,2 ⊲ · · · , and {Up,m}m≥1 forms a basis of open neighborhoods of
1 ∈ G(Qp)

(2) M(Up,mU
p,Zp)/(p

m) ≃M(Up,mU
p, Am)/(1−T ) (compatible with the ac-

tion of isomorphic Hecke algebras)

(3) If Π =
∏′
ℓΠℓ⊗Π∞ is an automorphic representation of G(A) contributing

to M(Up,mU
p, Am) ⊗Zp Qp, then Πp is a supercuspidal representation of

G(Qp).

A special case in which G(Qp) = GL2(Qp) is due to Scholze ([Sch18]) and was
generalized by Kegang Liu to the case where G(Qp) = GLn(Qp) ([Liu]) indepen-
dently of our work. Moreover, Raphaël Beuzart-Plessis ([FS21, Appendix D])
discovered an alternative approach that allows to remove the assumption on p for
a bare existence statement without an explicit construction of the compact open
subgroups Up,m with their action on Am. The advantage of our approach is a
precise understanding of the supercuspidal representations occurring as Πp.

Theorem 1.1 is proven using new results about representations of p-adic groups.
More precisely, the following notion forms a key ingredient. Let k be a finite
extension of Qp and let G be a reductive group over k. For an integer n, we call
a pair (U, λ) consisting of a compact, open subgroup U ⊂ G(k) and a smooth
surjectiv group morphisms λ : U ։ Z/pnZ an omni-supercuspidal type (of level
pn) if the following holds: For every nontrivial character χ : Z/pnZ → C∗, every
smooth, irreducible representation π of G(k) that contains χ ◦ λ when restricted
to U is supercuspidal. This definition is designed with the application to Theorem
1.1 in mind. The key ingredient for the proof of Theorem 1.1 is the following
result.

Theorem 1.2 ([FS21]). Let p be larger than the Coxeter number of G. Then there
exists an explicitly constructed sequence {(Um, λm)}m≥1 such that

• (Um, λm) is an omni-supercuspidal type of level pm,
• G ⊃ U1 ⊲ U2 ⊲ · · · , and {Um}m≥1 forms a basis of open neighborhoods of
1.

The proof of Theorem 1.2 combines a variety of different techniques and relies
on the construction of supercuspidal representations by J-K Yu ([Yu01], [Fin]) and
results from [Fin21].
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Twisted GGP problems and conjectures

Wee Teck Gan

(joint work with Benedict Gross, Dipendra Prasad)

In this talk, we explain a twisted version of the basic Fourier-Jacobi case of the
GGP conjecture. When E and K are two étale quadratic algebras over a local
or global field F , one considers a skew-Hermnitian space V relative to E/F , and
let VK be its base change to K, so that VK is a skew-Hermitian space relative to
E⊗K/K. For an irreducible representation Π of U(VK) and a Weil representation
ωV,ψ,µ of U(V ), the twisted GGP problem considers the the branching problem
HomU(V )(Π, ωV,ψ,µ) locally and the corresponding period integral globally. We
formulate precise conjectural answers to this branching problem, both locally and
globally, discuss some evidences for it in low rank and for unitary principal series
representations, and highlight some ongoing work.

The generalized Fourier transforms on a basic affine space and the
Whittaker model

Nadya Gurevich

(joint work with David Kazhdan)

Let G be a group of F -points of simply-connected quasi-split group defined over a
local non-archimedean field F . We fix a Borel subgroup B of G and the decompo-
sition B = T · U . The basic affine space X = U\G admits unique (up to a scalar)
G-invariant measure ωX . We define a unitary representation θ of the group G×T
on L2(X,ωX) by:

θ(g, t)f(Uh) = δ
1/2
B (t)f(Ut−1hg)

for the modular character δB. Let W := NG(T )/T be the Weyl group.
For split groups Gelfand and Graev in [1], see also [3],[2], extended the action

of G × T to the representation of G × (T ⋊W ), so that every element w of W
acts on L2(X,ωX) by an operator Φw, called a generalized Fourier transform. We
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extend their construction to quasi-split groups and show that the action of W is
compatible with the Whittaker map, as we describe below.

• We denote by Sc(X) (resp. Sc(T )) the space of smooth functions of com-
pact support.

Fix a non-degenerate character Ψ of U . The Whittaker map

(1) WΨ : Sc(X)→ Sc(T ), WΨ(f)(t) =

∫

U

f(Ut−1n0u)Ψ
−1(u)du

defines an isomorphism Sc(X)U,Ψ ≃ Sc(T ).
• We define an action of W on Sc(T ). For split groups set

w · ϕ(t) = δ
1/2
B (w−1tw · t−1)ϕ(w−1tw).

For quasi-split groups there is a minor twist in this action.
• We define a G× T submodule S0(X) that is dense in L2(X) and put

S0(T ) =WΨ(S0(X)) ≃ S0(X)U,Ψ.

• There is a natural map κΨ : EndG(S0(X)) → EndC(S0(X)U,Ψ) =
EndC(S0(T )) such that for every B ∈ EndG(S0(X)) the following diagram
is commutative.

S0(X) S0(X)

S0(T ) S0(T )

✲
B

❄

WΨ

❄

WΨ

✲
κΨ(B)

We prove that the map κΨ is injective.

With these notations we formulate the main result.

Theorem 1.1. There exists unique family of unitary operators Φw, w ∈ W , on
L2(X,ωX), preserving the space S0(X) and satisfying:

(2)





Φw ◦ θ(g, t) = θ(g, tw) ◦ Φw ∀w ∈W, t ∈ T, g ∈ G
Φw1Φw2 = Φw1w2 ∀w1, w2 ∈ W
κΨ(Φw)(ϕ) = w · ϕ ∀w ∈W, t ∈ T, ϕ ∈ S0(T )

The injectivity of the map κΨ is crucial. First, it implies the uniqueness of
the family {Φw}. Second, it reduces the construction of Φw to the construction
of the operators Φs where s ∈ W is a simple reflection. This in turn reduces the
construction to the quasi-split groups of rank one, i.e. G = SL2 and G = SU3.
In both cases we write the operator Φs explicitly, using the minimal of a group H
containing G×W as a commuting pair.
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Adams’ conjecture on theta correspondence-the discrete diagonal
restriction case

Marcela Hanzer

(joint work with Petar Bakić)

In recent years, there was a significant breakthrough in Langlands program, fa-
cilitated by the work of Arthur ([1]) and others ([2],[3]), where the classification
of the automorphic discrete spectrum of (certain classes of) classical groups is
obtained and this has given rise to the proofs of local Langlands conjecture in
the appropriate situations. Now one can ask how global Arthur parametrization
of automorphic discrete spectrum of the groups involved (and their their local
components) behave under theta correspondence. More precisely, if an automor-
phic representation is given through its Arthur parameter can its global theta lift
(assume that it is defined and automorphic) have a global Arthur parameter of
similar form (prescribed in a certain way prescribed below) to an original one?
And we can pose an analogous question for the local components of those auto-
morphic representations, (i.e. for their local Arthur parameters) and local theta
correspondence. We will be interested here in the local situation. Let us recall of
the main notions we mentioned.

Globally, theta correspondence, gives us, by the integration of automorphic
forms on one group against the theta kernel, one of the few direct ways to con-
struct new automorphic forms (on the other group). We will now explain which
are the two groups appearing in this situation. We will dedicate ourselves here to
the local situation, i.e. to reductive (mostly classical or their covers) groups defined
over p-adic fields, and all the representation we are considering are over the com-
plex numbers. Theta correspondence has its origins in the work of Howe on dual
reductive pairs and of Weil who constructed a unique non-trivial two-fold cover
of a symplectic group (the metaplectic group) and a distinguished representation
of it, the Weil representation. The Weil representation of a metaplectic group is
infinite-dimensional, but small (actually, more precisely, minimal representation)
in terms of Gelfand-Kirillov dimension; we just note that its “minimality” dic-
tates that the branching on the specific subgroups does not behave wildly. The
dual reductive pairs in a symplectic group (i.e. the subgroups which are commu-
tants of each other) can split in the metaplectic cover or they might not. We are
now concerned with the dual reductive pairs (these are the pairs of groups men-
tioned above) consisting of a symplectic group Sp(W ) and O(V ), an orthogonal
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group, and they form a dual reductive pair in the symplectic group Sp(W ⊗ V ).
If the dimension of V is even, both O(V ) and Sp(W ) split in the metaplectic
cover Mp(W ⊗ V ) of Sp(W ⊗ V ) so that their lifts commute in Mp(W ⊗ V ) and
then we can view the metaplectic representation ωψ of Mp(W ⊗ V ) (it depends
on the choice of an additive character ψ) as a representation of Sp(W ) × O(V ).
We denote this kind of a dual reductive pair (G,H) (symmetrically). Having this
in mind, we denote this (restricted) representation of the dual reductive pair as
ωm,n,ψ. Now, for an irreducible representation of π of G, we denote the maximal
π-isotypic quotient of ωm,n,ψ by Θ(π,m) and call it the full theta lift of π to
H. This representation of H, when non-zero, has a unique irreducible quotient,
denoted θ(π,m)—the small theta lift of π. This basic fact, called the Howe dual-
ity conjecture, was first formulated by Howe, proven by Waldspurger (for an odd
residue characteristic) and by Gan and Takeda([4]) in general. The Howe duality
establishes a map π 7→ θ(π) which is called the theta correspondence. The study
of theta correspondence started by Roger Howe, and further developed by Kudla,
Rallis, Moeglin, Vigneras, Waldspurger and many others. In recent years, there
were many significants developments: e.g., the conservation conjecture is proved
by Sun and Zhu ([5]). The research then moved to the determination of the theta
lifts explicitly (i.e. in terms of their Langlands parameters, using the Langlands
classification obtained by Arthur ([1])), firstly for the cases where the lifted repre-
sentation π is of a certain sort (e.g. discrete series and tempered representations
in the works of Muić ([6]), and then for general tempered representations of the
classical dual reductive pairs ([7]). The Langlands parameters of theta lifts of gen-
eral representations of those classical dual pairs are obtained by Bakć and Hanzer
([8]).

In the series of papers (e.g. [9]), Mœglin explicitly constructed members of local
Arthur packets (i.e. irreducible representations which are attached to local Arthur
parameters; so they are local components of the (discrete) automorphic represen-
tations at the p–adic places). On the other hand, in his paper L-functoriality for
Dual Pairs , Asterisque 171-172, 1989, 85-129, J. Adams loosely formulates a con-
jecture regarding representations in local Arthur packets. He predicts that their
theta lifts on the groups of bigger rank are going to be, in certain situations, also
members of Arthur packets of a similar form. There, he is concerned with the
archimedean cases. In her paper Conjecture d’Adams pour la correspondance de
Howe et filtration de Kudla, Arithmetic geometry and automorphic forms, 445–
503, Adv. Lect. Math. (ALM), 19, Int. Press, Somerville, MA, 2011, Mœglin
is concerned with the p–adic case of this conjecture where she made it more pre-
cise. She resolved there the case of discrete series representations. To be able to
roughly explain the Adams conjecture in the p–adic case, let us describe the form
of the local Arthur parameter for a group G, where, for simplicity, we take G to
be p–adic symplectic or even orthogonal. It is an admissible homomorphism (we
will not explain all the relevant properties)

ψ :WF × SL(2,C)× SL(2,C)→ O(l,C),
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which is semisimple (WF is the Weil group of a p–adic field F of characteristic
zero); here O(l,C) is identified with the L–group of G. Assume that π belongs to
the A-packet Πψ; then π = π(ψ, t, η) where are t, η are additional parameters which
are related to the commutator of the image of ψ in O(l,C) and which determine π
uniquely inside Πψ. For an odd positive integer l and appropriate character χ the

parameter ψ̃ = ψ⊕χ⊗S1⊗Sl is an A-parameter of Hl, the other group in a dual
reductive pair. Here Sk denotes the unique algebraic representation of SL(2,C)

of dimension k. Adams conjecture predicts that, for certain t̃, η̃, θ(π) = π(ψ̃, t̃, η̃);
i.e. theta lift of G to Hl is again attached to Arthur parameter of the prescribed
form. We want to know for which l this holds, and if it holds the specific l, how
to find the correct t̃ and η̃.

The answers to these questions bear not only local significance in understanding
of how the local A-packets behave under local theta correspondence, but, because
of the obvious relation with the global situation, we can predict application in
improving our understanding of global theta correspondence. Also, the complete
understanding of this phenomenon will also advance our understanding of the
behavior of general unitary representations under theta correspondence, not only
those representations which are in the Arthur class.

We were able to completely answer the above questions for a wide class of pa-
rameters ψ, the so-called parameters with the discrete diagonal restriction; the
general representations in the Arthur class are the Jacquet modules of the repre-
sentations with the discrete diagonal restriction.
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Around local Langlands correspondences

Michael Harris

(joint work with Böckle, Feng, Khare, and Thorne)

My talk in August was a report on three recent projects related to the construction
of local Langlands correspondences: work in progress with Gan and Sawin on
the one hand, with Böckle, Feng, Khare, and Thorne, on the other hand, and
a paper with Khare and Thorne on the group G2. The results primarily apply
to groups over non-archimedean local fields of positive characteristic and to the
parametrization of representations of these groups by Genestier and Lafforgue.

Let G be a connected reductive group over the non-archimedean local field F ,
with residue field k of characteristic p. Denote by Φ(G/F ) the set of equivalence
classes of Weil-Deligne parameters for G/F and let Π(G/F ) denote the set of
(equivalence classes of) irreducible admissible representations of G(F ), both taken
over a fixed algebraically closed field C of characteristic 0. In its simplest form,
the local Langlands conjecture asserts the existence of a canonical parametrization
of one set by the other set:

Conjecture 1.1.

(a) There is a canonical parametrization

L = LG/F : Π(G/F )→ Φ(G/F ).

(b) For any ϕ ∈ Φ(G/F ), the L-packet Πϕ := Lϕ is finite.
(c) For any ϕ ∈ Φ(G/F ) the L-packet Πϕ is non-empty.

The first part of the talk was a review of the properties expected of any such
correspondence. In general it is not known that this list of desirable properties
suffices to characterize the correspondence. The conjecture is known to hold when
G = GL(n), and in this case the word “canonical” in the above formulation has a
precise meaning. Versions of the conjecture have also been established for classical
groups over p-adic fields. Semisimple parametrizations have been constructed by
means of arithmetic geometry by Genestier and Lafforgue [6], when F = k((t)) is
of positive characteristic, and by Fargues and Scholze [2] for p-adic fields; these
parametrizations satisfy various desirable properties but they are not known to
have properties (b) and (c) above. Kaletha has defined parametrizations for large
classes of supercuspidal representations [8], using the work of J.K. Yu and Fintzen;
these parametrizations also satisfy desirable properties, but it is not known in most
cases that they coincide with those defined by arithmetic geometry.

Say the representation π ∈ Π(G/F ) is pure if all the Frobenius eigenvalues of its
parameter in Φ(G/F ) are Weil q-numbers of the same weight. Assume G is split
semisimple. The main body of the talk was devoted to explaining the following
result with Gan and Sawin:

Theorem 1.2. Let F = k((t)) and let π be a pure supercuspidal representation of
G(F ). Suppose π is compactly induced from a compact open subgroup U ⊂ G(F ).
(For example, if p does not divide the order of the Weyl group W (G), this follows
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from Fintzen’s theorem.) Suppose moreover that q > 3. Then the Genestier-
Lafforgue semisimple parameter Lss(π) is not unramified.

The proof is based on the construction of appropriate Poincaré series, following
a method of Gan and Lomeĺı [5], for the group G over the curve P1. A similar
argument shows that Lss(π) is even wildly ramified if the group U is sufficiently
small.

Using the compatibility of Lss with parabolic induction, we conclude

Corollary 1.3. Assume p does not divide the order of the Weyl group W (G). Let
π be a pure representation of G(F ). Suppose Lss(π) is unramified. Then π is an
irreducible constituent of an unramified principal series.

For general connected reductive groups, we can show

Theorem 1.4. For any supercuspidal π, Lss(π) can be completed (necessarily
uniquely) to a Weil-Deligne parameter (Lss(π), N) that satisfies purity of the mon-
odromy weight filtration.

The talk also reported briefly on applications of automorphy lifting theorems,
in the spirit of the Taylor-Wiles method, to the local Langlands correspondence.
The following result is specific to the split group G2 over a p-adic field:

Theorem 1.5. [7] For F p-adic and G = G2, there is a natural bijection

Lgeneric0 : Πgeneric0 (G2/F )
∼
−→ Φ0(G2/F )

where Πgeneric0 is the set of generic supercuspidals and Φ0 is the set of irreducible
parameters.

Finally, in joint work in progress with Böckle, Feng, Khare, and Thorne, we
prove

Theorem 1.6. Let K be a global function field over a finite field. Let Π be a
cuspidal automorphic representation of G(adK). Suppose the Mumford-Tate group

of Π is Ĝ. Then there is an integer b(Π), depending only on Π, such that, for any
good odd prime ℓ for G such that ℓ > b(Π), and any cyclic extension K ′/K of
degree ℓ, there is an automorphic representation Π′ of G(adK′) such that, at all
unramified places v of K, the representation Π′

v of G(K ′
v) is the base change of

Πv.

When K is a number field, one can prove such a result using the stable trace
formula, but this is not yet available over function fields. Instead the proof is
based on Feng’s construction of cyclic base change for automorphic representations
with coefficients in characteristic ℓ, using Smith theory [3], together with the
automorphy lifting theorems of [1].
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Certain Poisson Summation Formulae on GL1 and Langlands
Automorphic L-functions

Dihua Jiang

(joint work with Zhilin Luo)

Let k be a number field and A be the ring of adeles of k. For simplicity, we may
take G to be a k-split reductive algebraic group, and denote G∨(C) its complex
dual group. Let ρ : G∨(C) → GLn(C) be any finite dimensional representation
of G∨(C). For any σ = ⊗νσν ∈ Acusp(G), the set of equivalence classes of irre-
ducible cuspidal automorphic representations of G(A), R. Langlands ([11]) defines
automorphic L-functions by the following Euler product of the local L-functions:

L(s, σ, ρ) =
∏

ν

L(s, σν , ρ).

When ν is archimedean, the local L-functions L(s, σν , ρ) can be defined via the
Langlands classification ([12]). When ν is finite, they can be defined via the Satake
isomorphism ([14]) when the local components σν are unramified. However, if ν
is finite and σν is ramified, the definition of the local L-function L(s, σν , ρ) can be
regarded as part of the local Langlands conjecture for G over kν , which is known
for many important cases, but is still widely open in general. The recent work
of L. Fargues and P. Scholze ([4]) presents impressive progress towards the local
Langlands conjecture in general.

Langlands proved that the Euler product that defines L(s, σ, ρ) converges ab-
solutely for ℜ(s) sufficiently positive, and made the following conjecture ([11]).

Conjecture 1.1 (L-functions). The automorphic L-function L(s, σ, ρ) has mero-
morphic continuation and satisfies functional equation
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L(s, σ, ρ) = ǫ(s, σ, ρ)L(1 − s, σ̃, ρ)

where σ̃ is the contragredient of σ.

When G = GL1 and σ = χ is a character of the idele class group k×\A×,
Conjecture 1.1 is a classical theory of E. Hecke. In his 1950 Princeton Thesis
([16]), J. Tate proved the meromorphic continuation and functional equation of
the Hecke L-functions L(s, χ) by using the classical Fourier transform and the
associated Poisson summation formula on the quotient k\A. This idea was taken
up by R. Godement and H. Jacquet in their work ([7]), where they established the
meromorphic continuation and functional equation for the standard L-functions
L(s, π) attached to any π ∈ Acusp(GLn), by using the Fourier transform and the
associated Poisson summation formula for Mn(k)\Mn(A). Here Mn denotes the
space of all n × n matrices. Conjecture 1.1 has been studied by the Langlands-
Shahidi method and the Rankin-Selberg method, for many important families of
cases. However, the general situation remains widely open.

In 2000, A. Braverman and D. Kazhdan ([1]) proposed that there should exist
a generalized Fourier transform Fρ,ψ on G(A) for any reductive group G defined
over k and any finite dimensional complex representation ρ of the L-group LG;
and if the associated Poisson summation formula could be established, then there
is a hope to prove Conjecture 1.1 for automorphic L-function L(s, π, ρ) attached
to the pair (π, ρ), where π ∈ Acusp(G). In his 2020 paper ([13]), B. C. Ngô
suggests that such generalized Fourier transforms could be put in a framework
that generalizes the classical Hankel transform for harmonic analysis on GL1 and
might be more useful in the trace formula approach to establish the Langlands
conjecture of functoriality beyond the case of endoscopy.

In this talk, I explain my recent work joint with Zhilin Luo ([8] and [9]) on the
possibility that utilizes harmonic analysis on GL1 to understand Conjecture 1.1,
as a vast generalization of the classical work of Tate ([16]).

For any pair (G, ρ) as before, our papers introduce, for any σ ∈ Acusp(G), the
space Sσ,ρ(A

×) of (σ, ρ)-Schwartz functions on A× and the (σ, ρ)-Fourier operator
Fσ,ρ,ψ that takes Sσ,ρ(A

×) to Sσ̃,ρ(A
×), where ψ is a nontrivial character of k\A.

Theorem 1.2. The (σ, ρ)-theta functions

Θσ,ρ(x, φ) :=
∑

α∈k×

φ(αx)

converge absolutely for all φ ∈ Sσ,ρ(A
×).

The key in the GL1-theory developed in [8] and [9] is the following conjecture.

Conjecture 1.3 ((σ, ρ)-Poisson Summation Formula). Given a pair (G, ρ) as
before, for any σ ∈ Acusp(G), there exist nontrivial k×-invariant linear functionals
Eσ,ρ and Eσ̃,ρ on Sσ,ρ(A

×) and Sσ̃,ρ(A
×), respectively, such that the (σ, ρ)-Poisson

Summation Formula:
Eσ,ρ(φ) = Eσ̃,ρ(Fσ,ρ,ψ(φ))

holds for φ ∈ Sσ,ρ(A
×).
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It is expected that the (σ, ρ)-Poisson summation formula on GL1 should be
responsible for Conjecture 1.1 associated the pairs (σ, ρ). It is important to point
out that Conjecture 1.3 holds for (G, ρ) and an irreducible cuspidal automorphic
representation σ of G(A) if the global Langlands functoriality is known for the
pair (G, ρ) and the functorial transfer to GLn of σ is cuspidal.

Theorem 1.4. For G = GLn and any π ∈ Acusp(GLn), the π-theta function

Θπ(x, φ) :=
∑

α∈k×

φ(αx)

with φ ∈ Sπ(A
×) satisfies the following identity

Θπ(x, φ) = Θπ̃(x
−1,Fπ,ψ(φ)).

It is expected that Conjecture 1.3 can be proved directly for a split classical
group G and the standard representation ρ of the complex dual group G∨(C), by
using the doubling method of I. Piatetski-Shapiro and S. Rallis in [5]) and the
recent work of L. Zhang and the authors in [10] and of J. Getz and B. Liu in [6].

As one of the applications of the GL1-theory as developed as above, [9] provides
a spectral interpretation of the critical zeros of the automorphic L-functions L(s, π)
for any π ∈ Acusp(GLn), which is a reformulation of C. Soulé ([15, Theorem 2])
and also that of A. Deitmar ([3]) in the exact adelic framework of A. Connes
in [2]), and can be viewed as an extension of [2, Theorem III-1] from the Hecke
L-functions L(s, χ) to the automorphic L-function L(s, π).
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Lusztig correspondence and exotic Fourier transforms

Emmanuel Letellier

(joint work with Gérard Laumon)

Assume given a connected reductive group G over a finite field Fq with its dual
group G∨ which is also a connected reductive algebraic group over Fq. We will use
the same letter F to denote the Frobenius on G and G∨. Let ℓ be a prime which
does not divide q. Lusztig considered a partition of the set Irr(GF ) of irreducible
Qℓ-characters of the finite group GF

Irr(GF ) =
∐

(s)

EG(s)

where (s) runs over the set of F -stable semisimple conjugacy classes of G∨. We
call EG(s) the Lusztig series of GF corresponding to (s) and we denote by LS(GF )
the set of Lusztig series of GF .

If ρ∨ : G∨ → H∨ is a morphism of algebraic groups defined over Fq, then we have
a map (lifting)

tρ : LS(G
F )→ LS(HF )

given by EG(s) 7→ EH(ρ
∨(s)).

We now consider the case H = GLn with its standard Fq-structure. We let

ψ : Fq → Q
×

ℓ be a non-trivial additive character of Fq and we consider the Fourier
transform

FGLn(f)(x) =
∑

y∈GLFn

ψ
(
Trace(xy)

)
f(y),

for all function f : GLFn → Q
×

ℓ and x ∈ GLFn .
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The gamma function γGLn : Irr(GLFn )→ Qℓ is defined by

FGLn(χ) = γGLn(χ)χ∨

where χ is an irreducible character of GLFn and χ∨ is the dual character.
The function γGLn turns out to be constant on Lusztig series, and so one can

transfer it into a gamma function γGρ : Irr(GF )→ Qℓ defined by

γGρ = cG,GLnγ
GLn ◦ tρ

for some explicit constant cG,GLn . This define an operator FGρ (considered by

Braverman-Kazhdan) on the space of functions on GF that we call the exotic
Fourier transform. More precisely, if we define φGρ : GF → Qℓ by

φGρ (g) =
∑

χ∈Irr(GF )

γGρ (χ)χ(g)χ(1)

then

FGρ (f)(g) =
∑

h∈GF

φGρ (gh)f(h).

Problem: Compute φGρ explicitly and extends FGρ to an involutive operator.

Let T be an F -stable maximal torus of G and let W be the Weyl group of G with
respect to T . Denote by [T/W ] and [G/G] the quotient stacks for the conjugation
actions.

Theorem 1.1 (Laumon-Letellier). (1) There exists a pair of adjoint functors
(R, I) between categories of perverse sheaves

M([T/W ])

I
++

M([G/G])

R

kk

such that R ◦ I ≃ 1.
(2) If moreover G is of type A with connected center then I ◦R ≃ 1.

A similar result for D-modules was obtained by S. Gunningham.

Assume for convenience that ρ∨ restricts to a morphism T∨ → Tn where Tn is
the maximal torus of diagonal matrices. Then we have a morphism ρT : Tn → T
which is W -equivariant. We then obtain a W -equivariant perverse sheaves ΦTρ
on T (assuming that ρT is surjective) by twisting by a sign character the obvious
W -equivariant structure on the proper pushforward along ρT of the Artin-Schreier
sheaf on Tn. This W -equivariant perverse sheaf descends thus to a perverse sheaf

Φ
[T/W ]
ρ on [T/W ].
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Theorem 1.2 (Laumon-Letellier). Assume that ρT is surjective. We have

φGρ = X
I(Φ

[T/W ]
ρ )

where XK means the characteristic function of a complex K equipped with F ∗K ≃
K.

This theorem is a reformulation of a conjecture of Braverman-Kazhdan (2003).

Extending FGρ to an involutive operator ?

Assume that G is of type A and has a connected center and that ρT is surjective.

From Φ
[T/W ]
ρ we define a functor F

[T/W ]
ρ : M([T/W ]) → M([T/W ]) and a

functor F
[G/G]
ρ (which give back FGρ on functions) that makes the right square of

the diagram below commutative

M([An/Ker(ρT )⋊W ])

(involutive)

�� ��

M([T/W ])
j!oo

F [T/W ]
ρ

��

M([G/G])

F [G/G]
ρ

��

Roo

M([An/Ker(ρT )⋊W ])
j∗

//M([T/W ])
I //M([G/G])

where j : [T/W ] → [An/Ker(ρT ) ⋊W ] and where the left vertical arrow arises
from the classical Fourier transform on An

Homological branching: recent results and beyond

Dipendra Prasad

If H is a subgroup of a group G, π1 an irreducible representation of G, one is often
interested in decomposing the representation π1 when restricted to H , called the
branching laws.

However, since π1 restricted to H is usually not semi-simple for non-compactH ,
there is often no meaning to “decomposing the representation” restricted to H , or
a meaning has to be assigned in some precise way, such as the Plancherel decompo-
sition for unitary representations of G restricted to H . For smooth representations
of p-adic groups, the problem most studied is of understanding HomH(π1, π2), for
π2 an irreducible representation ofH . Much less is studied of an apparently similar
looking question about HomH(π2, π1).

The Bernstein decomposition of the smooth category of representations of a
group G, denoted here byM(G), gives a framework to study such questions more
completely, and it seems possible to fully understand the question “how does a
representation of G restrict to H” from this point of view, such as for the GGP
branching problems. We will restrict ourselves in this lecture only to the pair of
groups (G,H) = (GLn+1(F ),GLn(F )), where F is a non-archimedean local field.
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1. First result on the restriction problem

Proposition 1.1. Let π1 be an irreducible generic representation of GLn+1(F ),
and let (M,ρ) be a cuspidal datum for GLn(F ) for which we assume that no
nontrivial element of NG(M)/M preserves ρ up to an unramified twist. It is easy to
see that ρ restricted toM0 is a finite direct sum of irreducible representations, each
appearing with multiplicity 1. Let ρ0 be an irreducible representation of ρ restricted
to M0. Then, the (M,ρ) Bernstein component of π1 restricted to GLn(F ) is the
universal principal series representation:

IndGP 0(ρ0),

where P 0 =M0N .

Proof. By a theorem of Roche, parabolic induction gives an equivalence of cate-
gories. Next, we appeal to the theorem of Aizenbud-Sayag for finite generation,
and the theorem of multiplicity = 1 for generic representations, to complete the
proof of this proposition using the following lemma in Commutative algebra. �

Lemma 1.2. Let R be a reduced Noetherian ring, M a finitely generated module
over R such that for each maximal ideal m of R, M/mM is free of rank 1 over
R/m, then M is free of rank 1 over R.

Conjecture: Suppose π is a tempered representation of GLn+1(F ). Then if the
cuspidal support of π does not contain an unramified character of GL1(F ), or if π
is an essentially discrete series representation, then the Iwahori component of the

restriction of π to GLn(F ) is projective and is ind
GLn(F )
K (St).

Remark 1.3. By a theorem of Chan-Savin, cf. [2], for generic representations π
of GLn+1(F ) which are projective restricted to GLn(F ), classified by Chan in [1],
their restriction to GLn(F ) is independent of π, in particular, it is the same as that
of a cuspidal representation of GLn+1(F ) restricted to GLn(F ), which is answered
by a theorem of Chan-Savin that we discuss next, and which therefore answers the
above conjecture in the affirmative for all such representations of GLn+1(F ).

2. Epilogue

This lecture deals with situations when the restriction problem brings one to a
projective representation inside a particular Bernstein component of the subgroup
H , and one hopes that projective modules of a given rank are all isomorphic,
therefore the restriction problem has as complete an understanding as one might
desire.

At the other extreme is the question of understanding the restriction problem
for an unramified generic representation of GLn+1(F ), and to consider its com-
ponent in the Iwahori block of GLn(F ). In this case, one will not be dealing
with a projective module. How should one ‘model’ the restriction? For example,
is the isomorphism class of this restriction in the Iwahori block independent of
the unramified generic representation chosen? What happens to products of the
Steinbergs?
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p-adic shtukas and Shimura varieties

Michael Rapoport

(joint work with George Pappas)

It is a long-standing problem to construct good p-integral models of Shimura
varieties. After the modular curve, the emphasis has been on constructing such
models in the case when the p-component of the level structure is of parahoric
type. The bulk of the work on this problem has been in the classical case, i.e., for
Shimura varieties of PEL-type. For Shimura varieties of abelian type such models
have been constructed in many cases by Kisin-Pappas [2] and, more generally, by
Kisin-Zhou [3].

It is also a long-standing problem to uniquely characterize these models. In the
tame case, such a characterization is due to G. Pappas [4] who used G-displays.
In the talk I gave a different characterization which works in general. It is based
on Scholze’s theory of diamonds and v-sheaves [6]. It is remarkable that to obtain
a characterization, even for the classical case, one has to use such sophisticated
tools.

1. p-adic shtukas

We recall Scholze’s p-adic analogue of Drinfeld’s notion of a shtuka in the function
field setting.

Definition 1.1 (Scholze). Let S = Spa(R,R+) ∈ PerfFp , and let S♯ be an untilt

of S. A shtuka over S with leg along S♯ is a vector bundle V on the analytic
adic space S × Zp = S × Spa(Zp) = Spa(W (R+)) \ {[̟] = 0} equipped with an
isomorphism

φV : Frob∗S(V)|S×Zp\S♯
∼
−→ V|S×Zp\S♯

which is meromorphic along the closed Cartier divisor S♯ of S × Zp. Here [̟]
denotes the Teichmuller lift of a pseudo-uniformizer of R+.

Note that here S lives in characteristic p but S♯ is mostly in characteristic zero.
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Variants 1.2.
(i) Let G/Zp be a connected smooth group scheme such that its generic fiber G is
a reductive group over Qp. Then there is a notion of a G-shtuka over S with leg
along S♯.
(ii) In the setting of (i), let µ be a conjugacy class of cocharacters of G. Then
there is the notion of a G-shtuka over S with leg along S♯ bounded by µ.
(iii) Recall the diamond functor X 7→ X♦ of Scholze from the category of schemes
over Spec(Zp) or of formal schemes over Spf(Zp) to v-sheaves on PerfFp . There
is the notion of a shtuka over X: roughly speaking, a rule that associates to any
S-valued point (S♯, x) of X♦, where x : S♯ → X is a morphism, a shtuka over S
with leg along S♯.

Examples 1.3.
a) (characteristic 0). Let (G, G, µ) as above such that µ is minuscule. Let E =
E(G,µ) be the corresponding reflex field. Let X/E be a locally noetherian adic
space. Then there is an equivalence between the following two kinds of objects:

(1) A G-shtuka on X bounded by µ
(2) A pair (P,H), where P is a pro-étale G(Zp)-torsor on X♦ and H : P →

Fµ−1 is a G(Zp)-equivariant map into the flag variety attached to (G,µ−1).

b) (characteristic p). Let A be a perfect Fp-algebra essentially of finite type (no
topology on A). Then there is an equivalence between the following two kinds of
objects:

(1) A G-shtuka on Spec(A)
(2) A pair (V, φV), where V is a vector bundle on Spec(W (A)) and φV :

Frob∗(V)[ 1p ]
∼
−→V[ 1p ] is an isomorphism of vector bundles on Spec(W (A)[1p]).

c) Any abelian variety of dimension n over a Zp-scheme X defines a shtuka over

X of rank 2n bounded by the minuscule coweight (1(n), 0(n)) of GL2n.

2. Global Shimura varieties and their p-integral models

Let (G,X) be a Shimura datum, let E be its reflex field and let v be a p-adic place
of E. We denote by Sh(G,X) the corresponding Shimura variety and by Sh(G,X)E
its canonical model over E = Ev. We assume that K ⊂ G(Af) is of the form
K = KpK

p, with Kp = G(Zp), where G is a smooth model of G = G ⊗Q Qp. We
assume that the Q-rank of Zo coincides with the R-rank of Zo. Then there is a
pro-étale G(Zp)-local system PK over ShK(G,X)E obtained by the system of covers

ShK′(G,X)E → ShK(G,X)E,

where K′ = K′
pK

p ⊂ K = KpK
p, with K′

p running over all compact open sub-
groups of Kp = G(Zp). By Liu-Zhu, the pro-étale G(Zp)-local system PK over
ShK(G,X)E is deRham (and bounded by µX). Using the Example a) above, we
obtain a G-shtuka PK,E over ShK(G,X)E with leg bounded by µX . Furthermore,
PK,E are supporting prime-to-p Hecke correspondences, i.e., for g ∈ G(Ap

f ) and K′p

with gK′pg−1 ⊂ Kp, there are compatible isomorphisms [g]∗(PK,E) ≃ PK′,E which
cover the natural morphisms [g] : ShKpK′p(G,X)E → ShKpKp(G,X)E.
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In the next conjecture, there appears the integral model Mint
G,b,µ of the local

Shimura variety ShG,b,µ attached to local Shimura data (G, b, µ), in the sense
of Scholze [6]: the first object is a v-sheaf on PerfFp and the second object is
its generic fiber, a diamond represented by a rigid-analytic variety. The v-sheaf
Mint

G,b,µ represents the functor of G-shtukas bounded by µ equipped with a framing

compatible with b. Scholze conjectures that Mint
G,b,µ is represented by a formal

scheme which is normal and flat locally formally of finite type over Spf(Zp). If
(G, b, µ) is of RZ-type, then Mint

G,b,µ is representable by the corresponding RZ

formal scheme (Scholze [6]).

Conjecture 2.1. Assume that G is a parahoric group scheme. There exists a pro-
system of normal and flat integral models SK over OE with generic fiber ShK(G,X)E,
with finite étale transition maps for varying Kp, with the following properties.

a) For every dvr R of characteristic (0, p) over OE ,

(lim
←−Kp

ShK(G,X)E)(R[1/p]) = (lim
←−Kp

SK)(R).

b) The G-shtuka PK,E extends to a G-shtuka PK on SK.

c) Let k = κ̄E. For x ∈ SK(k), with associated bx ∈ G(Q̆p), there exists an
isomorphism of formal completions

Θx : M̂int
G,bx,µ/x0

∼
−→ ŜK/x ,

such that the pullback shtuka Θ∗
x(PK) coincides with the tautological shtuka

on Mint
G,bx,µ

that arises from Scholze’s definition of Mint
G,bx,µ

as a v-sheaf

moduli space of shtukas. Here x0 denotes the base point of Mint
G,bx,µ

. In

particular, M̂int
G,bx,µ/x0

is representable.

Here the element bx ∈ G(Q̆p) is well-defined up to σ-conjugacy by G(Z̆p), and is
determined by the fiber of PK at x, as follows. The pull-back x∗(PK) is a G-shtuka
over Spec(k), and yields, by Example b) above, a G-torsor Px over Spec(W (k))
with an isomorphism

φPx : Frob
∗(Px)[1/p]

∼
−→ Px[1/p].

The choice of a trivialization of the G-torsor Px then defines bx ∈ G(Q̆p).

Theorem 2.2. Any two such pro-systems of integral models are uniquely isomor-
phic.

The main point in the proof of this theorem is a rigidity property of the iso-
morphisms Θx in (c). One shows that the diamond automorphism group of the
G-shtuka given by the trivial G-torsor and the Frobenius φb = b× Frob has as its

global sections over the completed local ring ÔSK,x only the obvious ones, i.e. the
σ-centralizer group Jb(Qp).

Theorem 2.3. Let (G,X) be of Hodge type. Also exclude the cases p = 2 when
G is an wildly ramified odd unitary group and p = 3 when G is a wildly ramified
triality group. Then the conjecture above holds true.
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The construction of SK is quite straightforward. The Hodge embedding defines
a closed embedding of Shimura varieties into the Siegel type Shimura variety,

ShK(G,X)E →֒ ShK♭(GSp2g, S
±
2g)Q ⊗Q E.

Here, we need to choose the Siegel moduli level structure K♭ so that K = K♭∩G(Af ).
After identifying ShK♭(GSp2g, S

±
2g)Q with the generic fiber of the Siegel moduli

space AK♭ over Z(p), one defines SK as the normalization of the Zariski closure
of ShK(G,X)E inside AK♭ ⊗Z(p)

OE . Then property (a) for the model SK follows
from the Néron-Ogg-Shafarevich criterion of good reduction for abelian varieties.
For property (b), one realizes the G-shtuka PK,E in the generic fiber through some
tensors in the pull-back to SK,E under the Hodge embedding of the shtuka defined
by the Tate module of the universal abelian scheme. Using an analogue for shtukas
of Tate’s theorem on the extension of homomorphisms of p-divisible groups, these
tensors extend over SK. The crux is now to show that these tensors indeed define
a G-shtuka over SK. Here the main tool is the Anschütz theorem [1] that for an
algebraically closed non-archimedean field C of characteristic p, any G-torsor on
the punctured spectrum Spec(W (OC)) \ {s} is trivial. Finally, property (c) comes
down to showing that the pull-back of the G-shtuka PK to the completed local ring

ÔSK,x admits a framing.

Remark 2.4. If the conjecture above holds, we obtain a map

ΥK : SK(k)→ G(Q̆p)/G(Z̆p)σ.

The fibers of this map would give the definition of central leaves for general
Shimura varieties, generalizing the case of Shimura varieties of PEL-type. One
would similarly define Newton strata, resp. EKOR strata, resp. KR strata of
the special fiber.
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[1] J. Anschütz, Extending torsors on the punctured Spec(A inf). preprint, arXiv:1804.06356
[2] M. Kisin, G. Pappas, Integral models of Shimura varieties with parahoric level structure.

Publ. Math. IHES 128 (2018), 121–218.
[3] M. Kisin, R. Zhou, Independence of ℓ for Frobenius conjugacy classes attached to abelian

varieties. preprint, arXiv:2103.09945
[4] G. Pappas, On integral models of Shimura varieties. preprint, arXiv:2003.13040
[5] G. Pappas, M. Rapoport, p-adic shtukas and the theory of global and local Shimura varieties.

preprint, arXiv:2106.08270
[6] P. Scholze, J. Weinstein, Berkeley lectures on p-adic geometry. Ann. of Math. Studies, 207,

Princeton University Press, Princeton, 2020.



2124 Oberwolfach Report 39/2021

Geometric Langlands and Automorphic Forms

Sam Raskin

(joint work with D. Arinkin, D. Gaitsgory, D. Kazhdan, N. Rozenblyum,
and Y. Varshavsky)

1. Introduction

1.1. The aim of this talk is to survey our works [2], [3], and [4], joint with D.
Arinkin, D. Gaitsgory, D. Kazhdan, N. Rozenblyum, and Y. Varshavsky.

Related ideas have been pursued by Zhu [12] and Fargues-Scholze [7].

1.2. Starting point.

1.2.1. Arithmetic Langlands. Let G be a (split, connected) reductive group. Recall
that the Langlands conjectures for G 6= GLn take a subtle, and somewhat unsatis-
fying form. They do not describe any space of automorphic forms, but packets of
automorphic representations. Moreover, these packets should correspond to maps
from the Langlands group LF (F our global field) to the Langlands dual group Ǧ.
Here the Langlands group is an object whose bare existence amounts to the Lang-
lands functoriality conjectures, which is roughly the best conjecture for general
G.

1.2.2. Geometric Langlands. By contrast, the geometric Langlands conjecture of
Beilinson-Drinfeld is expected to work systematically for general reductive G, and
takes a more satisfying form. It asserts:

D(BunG) ≃ IndCohNilp(LocSysǦ).

Here we have:

• X is a smooth projective curve over a field k of characteristic zero, all
implicit in the above.
• BunG is the moduli stack of G-bundles on X .
• LocSysǦ is the moduli stack of de Rham (see below) Ǧ-local systems on
X (see below).
• IndCoh is a variant on QCoh, and the same is true with the subscript Nilp
(though one may refer to [1] for details).

Suffice it to say that there are many compatibilities such an equivalence should
satisfy; see [8] for an overdetermined list.

The analogy is that a category of sheaves on a space should be an analogue of
functions on the Fq-points of the “corresponding” variety. Therefore, D(BunG) is
an analogue of the space of functions on G(Fq(X)\G(A)/G(O)), i.e., the space of
unramified automorphic forms for some function field.

Therefore, the brief motto is that the geometric Langlands conjecture completely
describes some object analogous to automorphic forms, even for general reductive
G.
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1.2.3. Our work. In the above works, we formulate a geometric Langlands conjec-
ture that is reasonable over general fields k and for general sheaf theories. Working
over a field field and with ℓ-adic sheaves, we obtain a conjecture that straddles
the arithmetic and geometric settings. Taking traces of Frobenius, we extract
a meaningful, novel conjecture for unramified automorphic forms over function
fields, refining the usual Langlands conjectures.

We detail this work below.

2. Local systems with restricted variation

One of the main technical accomplishments in our work is the introduction of
moduli spaces of local systems for ℓ-adic sheaves. We begin our survey of this
work here; see also §4.3.2.

2.1. Notation. There are two fields in the story.
First, there is the geometric field k, assumed algebraically closed. The (smooth,

projective, geometrically connected) curveX lives over k, as do G (which lives over
Z, but k is enough here) and BunG. For this talk, one should imagine k = Fq,
with X defined over Fq.

Second, there is the spectral field e of characteristic zero, where coefficients live.
We assume we have a theory Shv(−), which is a sheaf theory for varieties over k,
taking values in e-linear DG categories. Our sheaf categories allow infinite direct
sums, so are more like ind-constructible than constructible. The reader should
imagine e = Qℓ for ℓ ∈ k

× and Shv = ind-constructible ℓ-adic sheaves. The dual
group Ǧ lives over e, as will our moduli space of local systems. All the derived
categories we consider are enriched over e.

(In the de Rham setting, this distinction does not occur: e = k.)
We work in the setting of derived algebraic geometry (over e) without mention;

if the reader is uncomfortable with this, it can largely be ignored with the only
cost that our conjectures lose their validity.

ForX of genus 0, we elide a technical distinction about the non-left completeness
of Lisse(X); we refer to [2] for details.

Finally, we assume that the characteristic of k is greater than the Coxeter
number of G.

2.2. The moduli space.

2.2.1. For us, moduli spaces are prestacks, meaning functors:

AffSchop → Gpd.

We define LocSysrestrǦ to be the prestack over e with S-points the groupoid of right
t-exact symmetric monoidal DG functors:

Rep(Ǧ)→ QCoh(S)⊗ Lisse(X).

Here if S = Spec(A), then the right hand side is the DG category of A-modules in
the category of ind-lisse sheaves on X .
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2.2.2. The first basic geometric result describing LocSysrestrǦ is:

Proposition 2.1. LocSysrestrǦ is the quotient of an ind-affine indscheme by an

action of Ǧ.

In fact, one can say more: each connected component of LocSysrestrǦ is the

quotient by Ǧ of the formal completion of a scheme almost of finite type along a
closed subscheme. This is related to the finite-dimensionality of tangent spaces.
This finer description is key in some technical arguments related to later results.

2.2.3. Examples. We now briefly, and informally, describe some examples of
LocSysrestrǦ . We pretend there is an actual Artin stack LocSystrueǦ of all local
systems; this is the case in the de Rham and Betti settings, where the below
become precise descriptions.

(1) For Ǧ = Gm, LocSysrestrGm
is the disjoint union of the formal completions

of LocSystrueǦ at all its closed points.
(2) For Ga (which of course, is not reductive, but the definition still makes

sense), we have:

LocSysrestrGa
= LocSystrueGa

= C•(X, e)[1].

Here the right hand side is thought of as a stack over e encoding the
cohomology of X ; explicitly, it looks like BGa × H

1(X) × ΩH2(X). In
particular, for genus > 0, there are non-trivial physical directions coming
from H1(X).

For general reductive Ǧ, the result mixes the above two examples. Specifically,
we show that π0(LocSys

restr
Ǧ ) is indexed by possible semi-simplification types of

Ǧ-local systems, and, roughly speaking, looks like the disjoint union of LocSystrueǦ
along the locally closed substacks given by fixed semi-simplification type.

3. Restricted geometric Langlands

3.1. Formulation of the conjecture. We can now briefly state:

Conjecture 3.1 (Restricted geometric Langlands conjecture) In the above setting,
there is a canonical equivalence of DG categories :

ShvNilp(BunG) ≃ IndCohNilp(LocSys
restr
Ǧ ).

Again, there are many compatibilities, generally extracted from following ones
nose in reading [8]: all well-posed statements should still hold.

In the above, ShvNilp indicates sheaves with singular support in the global nilpo-
tent cone. For ℓ-adic sheaves, the relevant singular support theory was developed
by Beilinson in [5].

The formulation of this conjecture follows that of Ben-Zvi–Nadler [6] in the
Betti setting.
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3.1.1. Evidence. The restricted geometric conjecture as formulated above is true
for G = Gm (or any torus). It is also true for arbitrary G and X = P1. Finally, we
show that its truth for char(k) = 0 is equivalent to that of the Beilinson-Drinfeld
conjecture.

Finally, we prove that there is a canonical action of QCoh(LocSysrestrǦ ) on
ShvNilp(BunG) that (informally speaking) refines the action of Hecke functors on
Shv(BunG). The proof uses the same method as the similar Betti result, which is
due to Nadler-Yun [9]. Below, we refer to this action as the spectral decomposition
of ShvNilp(BunG).

4. Automorphic functions

4.1. Setting. In this section, we discuss consequences for unramified automorphic
forms over function fields.

It is now important that k = Fq, e = Qℓ, sheaves are ℓ-adic, and X is defined
over Fq. All Frobenii are geometric, which we consider as a map FrobX : X → X
over Spec(k).

4.2. Categorical traces. DG categories form a symmetric monoidal category, so
it makes sense to speak of dualizability, traces, and other familiar concepts from
linear algebra.

For DG categories of modules over rings, trace constructions have easy explicit
meaning. In particular, this applies for D-modules. However, for DG categories
of ℓ-adic sheaves, the situation is much more difficult; the results we detail below
are quite specific to BunG.

4.3. Arithmetic local systems.

4.3.1. In the above setting, we obtain a “Frobenius” automorphism Frob :
LocSysrestrǦ → LocSysrestrǦ defined by pullback of local systems along FrobX . We

emphasize that this is a map of prestacks over e = Qℓ. For Ga, LocSys
restr
Ga

encodes
the étale cohomology of X , and the resulting automorphism corresponds to the
Frobenius automorphism acting on étale cohomology.

4.3.2. We define:

LocSysarthmǦ
:= (LocSysrestrǦ )Frob=id.

That is, the left hand side parametrizes σ ∈ LocSysrestrǦ plus an isomorphism

Frob∗X(σ) ≃ σ. One should think of LocSysarthmǦ as the moduli of Weil represen-
tations.

We show that, unlike LocSysrestrǦ , LocSysarthmǦ has quite favorable geometric
properties: it is a quasi-compact algebraic stack. From this perspective, elliptic
Langlands parameters correspond to isolated smooth points in LocSysrestrǦ .

Remark 4.3.2.1. Even though LocSysarthmǦ is nicer in many respects than

LocSysrestrǦ , its geometry is more opaque. For instance, what are its connected
components?
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4.3.3. The formalism of traces easily implies:

(1) QCoh(LocSysarthmǦ ) ≃ trQCoh(LocSysrestr
Ǧ

)–mod(Frob
∗).

Informally, the point is that categorical traces relate the the circle S1 = BZ, and
LocSysarthmǦ is by definition the fixed points of a Z-action on LocSysrestrǦ .

4.4. The trace conjecture.

4.4.1. Pull-back along FrobBunG defines an endofunctor (in fact, autoequiva-
lence):

FrobBunG,∗ : ShvNilp(BunG)→ ShvNilp(BunG).

We prove:

Theorem 4.4.1.1 ([4]) There is a canonical isomorphism:

Func(BunG(Fq)) ≃ trShvNilp(BunG)(FrobBunG,∗) ∈ Vecte.

We show that the isomorphism comes from the Grothendieck-Deligne sheaves-
to-functions construction. Our theorem can be imagined as a higher categorical
analogue of their idea, except that their idea is general, and ours is particular to
the automorphic setting.

4.4.2. Using the spectral action from §3.1.1, one can form an enriched trace:

trenhShvNilp(BunG)(FrobBunG,∗) ∈ trQCoh(LocSysrestr
Ǧ

)–mod(Frob
∗) ≃ QCoh(LocSysarthmǦ ).

We refer to the result object as the Drinfeld sheaf Drinf ∈ QCoh(LocSysarthmǦ ).
Its basic property is:

Γ(LocSysarthmǦ ,Drinf) ≃ trShvNilp(BunG)(FrobBunG,∗) ≃ Func(BunG(Fq)).

The resulting action of Fun(LocSysarthmǦ ) on Func(BunG(Fq)) is given by V. Laf-
forgue’s excursion operators in a certain sense.

4.4.3. In some sense, the logic of the previous subsection is misleading.
In point of fact, we prove Theorem 4.4.1.1 by a result of Xue [11], valid for arbi-

trary non-proper curves. Roughly speaking, we deduce a reciprocity law for shtuka
cohomologies from her theorem; this result yields non-obvious isomorphisms be-
tween some shtuka cohomology groups. Our proof of Theorem 4.4.1.1 proceeds by
first calculating trShvNilp(BunG)(FrobBunG,∗) to obtain a certain shtuka cohomol-
ogy group (related to Beilinson’s construction of spectral projectors), and then
applying reciprocity to yield the desired answer.

We say this in fact to highlight: Xue’s theorem and the reciprocity law yield a
direct construction of the Drinfeld sheaf also for non-proper curves; in particular,
it may be constructed directly, without mention of the category ShvNilp(BunG).
It is, of course, desirable to better understand the meaning of this sheaf in the
ramified setting in terms of some automorphic sheaves.
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4.5. Conjectures and speculations.

4.5.1. We make a (quite mild) conjecture:

trIndCohNilp(LocSysrestrǦ
)(Frob

∗)
≃
−→ trIndCoh(LocSysrestr

Ǧ
)(Frob

∗) ≃ Γ(LocSysarthmǦ , ω).

The second isomorphism is a standard calculation. The first should be a general
result related to the contracting property of Frobenius on the spectral nilpotent
cone.

4.5.2. Assuming the above, we obtain:

Conjecture 4.5.1: There is an isomorphism:

Func(BunG(Fq)) ≃ Γ(LocSysarthmǦ , ω).

For instance, the isomorphism should be compatible with Hecke operators.

Example 4.5.2.1. For X = P1, one can explicitly verify the above conjecture. Here
BunG(Fq) = Λ̌+ (up to negligable stackyness), while LocSysarthmǦ ≃ Ǧ/Ǧ; the
latter is well-known to have global functions:

Γ(Ť ,O)W = e[Λ̌]W = e[Λ̌] = Func(Λ̌
+).

Finally, we remark that O = ω on LocSysarthmǦ .
One may similarly treat G = Gm explicitly; we omit the details here.
Thea above conjecture describes the space of unramified automorphic functions

in spectral terms. There are no L-packets, or cuspidal/discrete series/temperedness
restrictions, or subtleties about multiplicities.

For now, one can only dream what a generalization of this conjecture might say
in the ramified setting, or over number fields; for some speculations, see [10].
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Categorical Künneth formula for Weil sheaves

Timo Richarz

(joint work with Tamir Hemo, Jakob Scholbach)

Künneth-type formulas relate the cohomology of product spaces to the tensor
product of the cohomology of the single factors. In [3, Section A.2], this is up-
graded to an equivalence of categories in the setting of topological sheaves and
D-modules on varieties in characteristic 0. In characteristic p > 0, such categor-
ical Künneth formulas fail for (pro-)étale sheaves by the example below, in fact
already for étale fundamental groups. This failure can be rectified by introduc-
ing equivariance data under partial Frobenius morphisms [2, Theorem 2.1]. This
is known as Drinfeld’s lemma and a crucial stepping stone in recent approaches
to Langlands parametrizations. When adding such equivariance data in a sheaf-
theoretic context, one arrives at the notion of Weil sheaves. In my talk, I reported
on recent joint work with Tamir Hemo and Jakob Scholbach [4] where we upgrade
Drinfeld’s lemma to a categorical Künneth formula for constructible Weil sheaves.

Main result. Let Fq be a finite field of characteristic p > 0, and fix an al-
gebraic closure F. Let ℓ 6= p be a prime. For a scheme X over Fq, we de-

note by Dcons(X
Weil,Qℓ) the category of Weil sheaves, that is, constructible com-

plexes of Qℓ-sheaves M on XF together with an isomorphism M ∼= φ∗XM where
φX = FrobX × idF is the partial q-Frobenius. The following theorem is referred to
as the categorical Künneth formula (or derived Drinfeld’s lemma):

Theorem. Let X1, X2 be finite type schemes over Fq. Then the external product
functor (M1,M2) 7→M1 ⊠M2 induces an equivalence

(1) Dcons(X
Weil
1 ,Qℓ)⊗Qℓ

Dcons(X
Weil
2 ,Qℓ)

∼=
−→ Dcons(X

Weil
1 ×XWeil

2 ,Qℓ),

where the target is the category of sheaves M on X1,F ×X2,F equipped with com-
muting isomorphisms M ∼= φ∗XiM for i = 1, 2.

So, colloquially speaking, a constructible sheaf on a product of varieties in posi-
tive characteristic equipped with partial Frobenii is generated by external products
of sheaves on the single factors. In [4], we prove variants of the theorem for torsion
coefficients, for integral coefficients, for lisse sheaves and their ind-variants. The
latter variant applies to the cohomology of shtuka spaces when combined with
recent results of Xue [7]. The presence of the partial Frobenii is necessary as the
following example shows:
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Example. Let X1 = X2 = A1
Fq

be the affine line with coordinates denoted by x1
and x2. Then the Artin-Schreier equation

U := {tp − t = x1 · x2} −→ A2
F

defines a finite étale Z/p-cover. LetM ∈ Dlis(A
2
F,Qℓ) be the sheaf associated with

some non-trivial character Z/p→ Q
×

ℓ . For λ, µ ∈ F not differing by a scalar in F×
p ,

the fibers U |{x1=λ}, U |{x1=µ} are not isomorphic over A1
F by Artin-Schreier theory.

Hence, M 6≃ φ∗XiM and one can show thatM 6≃M1⊠M2 for anyMi ∈ D(A1
F,Qℓ).

Roughly, the fully faithfulness of (1) is implied by the Künneth formula for con-
structible Qℓ-sheaves whereas the essential surjectivity relies on Drinfeld’s lemma
as explicated in [5, Theorem 8.1.4] and [6, Lemma 3.3.2] for Qℓ-coefficients. The
tensor product in (1) is induced from Lurie’s tensor product which requires the use
of suitable ∞-categorical enrichments. We use the proétale topology introduced
by Bhatt–Scholze [1] to define the above categories of Weil sheaves.

Categories of constructible sheaves. Let X be a qcqs scheme and Λ a con-
densed ring. Let ΛX = p−1

X Λ be the pullback along the map of proétale sites
pX : Xproét → ∗proét. We denote by D(X,Λ) the derived category of sheaves of
ΛX-modules on Xproét.

Definition. A sheaf M ∈ D(X,Λ) is lisse if it is dualizable for the derived tensor
product ⊗ΛX , and constructible if it is lisse along a constructible stratification.

The resulting full subcategories are denoted by Dlis(X,Λ) ⊂ Dcons(X,Λ). The
definition allows extremely general rings of coefficients including all T1-topological
rings. The following lemma allows for the comparison with the categories of ℓ-adic
sheaves defined by Deligne, Ekedahl and Bhatt–Scholze:

Key lemma. For any w-contractible affine scheme X, there is an equivalence

Dlis(X,Λ)
∼=
−→ PerfΓ(X,Λ), M 7→ RΓ(X,M),

where PerfΓ(X,Λ) is the category of perfect complexes of Γ(X,Λ)-modules.

Proof. As X is w-contractible affine, the functor RΓ(X, -) = Γ(X, -) is monoidal.
So, if M is lisse, the complex RΓ(X,M) is dualizable, hence perfect. For fully
faithfulness, we observe that Hom(M,N) ∼= M∨ ⊗ N by dualizability of M . We
conclude by applying the monoidal functor RΓ(X, -). For essential surjectivity,
pick K ∈ PerfΓ(X,Λ) and define KX := K ⊗Γ(X,Λ) ΛX . Then RΓ(X,KX) ∼= K as

desired. �

Lisse and constructible sheaves start out life in a derived setting. The standard
t-structure on D(X,Λ) restricts to a t-structure on the subcategories whenever
the underlying topological space |X | is Noetherian and the underlying ring Λ∗ =
Γ(∗,Λ) is semi-hereditary. This applies, for example, to algebraic field extensions
E ⊃ Qℓ or their rings of integers OE . For geometrically unibranch schemes X ,
Section 7 of [1] induces an equivalence of categories

(2) Dlis(X,Qℓ)
♥ ∼= RepQℓ(π1(X)),
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where π1(X) denotes the étale fundamental groupoid. For a derived statement in
the spirit of Barwick–Glasman–Haine’s exodromy theorem, the reader is referred
to [4, Appendix A]. The equivalence (2) allows to use Drinfeld’s lemma for étale
covers when proving the essential surjectivity of (1).

We pursue the following site-theoretic approach to Weil sheaves which slightly
differs from earlier work of Lichtenbaum and Geisser on the Weil-étale topology:

Definition. For a scheme X over Fq, the Weil-proétale site XWeil
proét is the site

with objects (U,ϕ) where U ∈ (XF)proét and ϕ : U → U is an endomorphism of F-
schemes covering the partial Frobenius φX , with morphisms given by equivariant
maps and with covers induced from (XF)proét.

We let D(XWeil,Λ) be the resulting derived category. The subcategories of lisse,
respectively constructible sheaves Dlis(X

Weil,Λ) ⊂ Dcons(X
Weil,Λ) are defined as

the dualizable objects, respectively those being dualizable along a constructible
stratification of X .

Proposition. For • ∈ {∅, lis, cons}, pullback of sheaves along the map of sites
(XF)proét → XWeil

proét induces an equivalence

(3) D•(X
Weil,Λ)

∼=
−→ D•(XF,Λ)

φX=id

where the target denotes the homotopy fixed points.

Amongst other things, the proof uses that the projection XF → X induces a
homeomorphism |XF|cons/φX ∼= |X |cons in the constructible topology. We conclude
from (3) that for geometrically unibranch schemes X , the equivalence (2) applied
to XF descends to an equivalence

(4) Dlis(X
Weil,Qℓ)

♥ ∼= RepQℓ(Weil(X)),

where Weil(X) = π1(XF)/φ
Z
X is the Weil groupoid defined by Deligne.

Similarly, for two schemes X1, X2 over Fq, we introduce the site (XWeil
1 ×

XWeil
2 )proét consisting of triples (U,ϕ1, ϕ2) where U ∈ (X1,F × X2,F)proét and

ϕi : U → U covers the partial Frobenius φXi . Following the above recipe, this
allows to define the category of constructible Λ-sheaves on XWeil

1 ×XWeil
2 appear-

ing in the target of (1). The variant of (3) for two factors holds true and relies
on decompositions of partial Frobenius invariant cycles on X1,F × X2,F in terms
of cycles on the single factors. From here, dévissage arguments reduce the fully
faithfulness of (1) to the Künneth formula for ℓ-adic cohomology and the essential
surjectivity to the classical Drinfeld’s lemma.
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A Geometric Approach to the Ramanujan Conjecture for
Automorphic Forms over Function Fields

Will Sawin

(joint work with Nicolas Templier)

In joint work with Nicolas Templier [7], we proved a special case of the Ramanujan
conjecture over function fields. This was done for automorphic representations
that, at one place, satisfy a strong local condition we call monomial geometric
supercuspidal.

Let Fq be a finite field and G a reductive group. Let π be an admissible
irreducible representation of G(Fq((t))). We say that π is monomial geometrically
supercuspidal if there exists an algebraic subgroup H of G[[t]] and character sheaf
L on H such that

(1) π is a quotient of c-Ind
G(Fq((t)))

H(Fq)

(
χL,Fq

)
.

(2) For all e ∈ N and for all parabolic subgroups of GFqe , the Jacquet module

of c-Ind
G(Fqe ((t)))

H(Fqe )

(
χL,Fqe

)
vanishes.

Our main result is that, for G a split semisimple group over a function field
Fq(X) of odd characteristic and π an automorphic representation of G(AF ) which
satisfies the following:

(1) At one place, πv is a monomial geometric supercuspidal representation.
(2) For each e, the cyclic base change Πe of π to Fqe(X) exists. At each

ramified place away from v, the depth of Πev is bounded independently of

e. At v, Πev is a quotient of c-Ind
G(Fqe ((t)))

H(Fqe )

(
χL,Fqe

)
.

is tempered at every unramified place.
This result is mainly novel in the case of G an exceptional group, because

L. Lafforgue [4] established the Ramanujan conjecture for GLr over function fields
(building on earlier work of Drinfeld [3]) and Lomeĺı handled the case of split
classical groups [5].

The methods of proof are novel in every case. The proof in the GLr case [4]
relies on the construction of Langlands parameters from the cohomology of moduli
spaces of shtukas, along the lines of the proof of the classical Ramanujan conjecture
by Deligne [2], and the proof in the classical group case [5] reduces to the GLr
case by endoscopy.

Our proof does not rely on Langlands parameters, shtukas, or any case of func-
toriality aside from cyclic base change. Instead, we study the traces of Hecke
operators on a family of automorphic forms.

We first set up a family of automorphic forms satisfying local conditions. We
can express this family more classically in terms of a space of automorphic forms,

https://arxiv.org/abs/2012.12833
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the space of functions on an adelic double coset space that transform according to
a certain character along a certain group action. We prove a bound for the trace
of a Hecke operator acting on this space by geometry.

Specifically, we fix geometric data defining our family and, using this, express
the adelic double coset space as the Fq-points of a stack BunG(D), and the kernel
of a Hecke operator Tλ as the trace function of a complex of sheaves on BunG(D)×
BunG(D). We prove that this complex is in fact a perverse sheaf by compactifying
the Hecke correspondence and proving a cleanness property. The perversity then
implies a bound for the sum of the square of the trace function of the sheaf,
equivalenty, the integral of the square of the Hecke kernel of Tλ, which equals the
trace of the Hecke operator TλT

∗
λ .

Our bound for the trace of TλT
∗
λ then implies a bound for the eigenvalue of the

Hecke operator Tλ acting on an individual form generating the representation π.
This bound, however, is not strong enough for our purposes. To remedy this, we
fix all the geometric data but then pass from the base finite field Fq to a larger
field Fqe . Since our geometric argument is insensitive to the choice of field, we
obtain the same bound for a larger family of automorphic forms in this setting.
By assumption on cyclic base change, the original form π has a base change Πe
in this new family, so we obtain a bound for the eigenvalue of Tλ on the cyclic
base change. Combining this information for all e, we get a better bound for the
eigenvalue of Tλ on the original π, and this implies Ramanujan.

I close with some questions, mostly on generalizations or strengthenings of this
work.

Question 1: In [7], we showed that the simple supercuspidal representations
constructed by Reeder and Yu [6] as well as many of the toral supercuspidal rep-
resentations constructed by Adler [1] are monomial geometric supercuspidal. How
many of the representations constructed by Yu [8] can be shown to be monomial
geometric supercuspidal?

Question 2: To what extent can one generalize the proof from monomial repre-
sentations to other representations?

Question 3: Can the assumption on cyclic base change be removed or replaced
with other local assumptions by a function field proof of cyclic base change?

Question 4: When, using Hecke operators at ramified places, can one prove
temperedness at ramified placed by this method?
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Relative perversity

Peter Scholze

(joint work with David Hansen)

We observe that for a family of schemes f : X → S of finite presentation, there
is a relative perverse t-structure on ℓ-adic sheaves on X , with relative perversity
equivalent to perversity of the restrictions to all geometric fibres of f .

More precisely, fix a prime ℓ. We assume that all schemes are qcqs, and live over
Z[ 1ℓ ]. Let f : X → S be a morphism of finite presentation between such schemes.

In this note, we will state the results with Qℓ-coefficients, although everything
works similarly for example with Zℓ or Z/ℓn-coefficients. We denote D(X) =
Db
c(X,Qℓ). For technical reasons having to do with this choice of coefficients,

we have to assume that all constructible subsets of S have only finitely many
connected components (without this condition, the theorem is demonstrably false
already for X = S).

Theorem 1.1. There is a (necessarily unique) t-structure (p/SD≤0, p/SD≥0) on
D(X), called the relative perverse t-structure, with the following property:

An object A ∈ D(X) lies in p/SD≤0 (resp. p/SD≥0) if and only if for all geo-
metric points s→ S with fibre Xs = X ×S s, the restriction A|Xs ∈ D(Xs) lies in
pD≤0 (resp. pD≥0), for the usual (absolute) perverse t-structure.

The proof has two ingredients: v-descent, and the theory of nearby cycles.
Roughly speaking, v-descent allows us to reduce to the case that S is the spec-
trum of a valuation ring V , and one can even assume that its fraction field K is
algebraically closed. In that case the theorem is closely related to the t-exactness
properties of nearby cycles, with respect to the perverse t-structure.

Let us first state the result regarding v-descent.

Theorem 1.2 (Bhatt–Mathew [1], Gabber [2]). The association X 7→ D(X)
defines an v-sheaf (even arc-sheaf) of ∞-categories.

A related result of Gabber’s is worth stating separately, as it is about general
étale sheaves (without abelian group structure).

Theorem 1.3 ([2]). Sending any scheme X to the category of étale sheaves on X
defines a stack with respect to universal submersions.1 In particular, sending any

1In [2], Gabber also sketches an extension of this result to the case where one sends X to the
(2, 1)-category of ind-finite étale stacks.
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scheme X to the category of separated étale maps of schemes Y → X defines a
stack with respect to universal submersions, and in particular a v-stack.

This strengthens some previous descent results, notably by Rydh [4], [1, Theo-
rem 5.6].

Using these descent results and some approximation arguments, we can reduce
Theorem 1.1 to the case that S = SpecV where V is a valuation ring with alge-
braically closed fraction field K; one can even assume that V is of rank 1.

In that case, we use the theory of nearby cycles. The following two theorems
are essentially due to Lu–Zheng [3].

Theorem 1.4. Let f : X → S be a map of finite presentation between qcqs
schemes and let A ∈ D(X). The following conditions are equivalent.

(i) The pair (X,A) defines a dualizable object in the symmetric monoidal 2-
category of cohomological correspondences over S.

(ii) The following condition holds after any base change in S. For any geomet-
ric point x→ X mapping to a geometric point s→ S, and a generization
t→ S of s, the map

A|x = RΓ(Xx, A)→ RΓ(Xx ×Ss St, A)

is an isomorphism.
(iii) The following condition holds after any base change in S. For any geomet-

ric point x→ X mapping to a geometric point s→ S, and a generization
t→ S of s, the map

A|x = RΓ(Xx, A)→ RΓ(Xx ×Ss t, A)

is an isomorphism.
(iv) After base change along SpecV → S for any rank 1 valuation ring V

with algebraically closed fraction field K and any geometric point x → X
mapping to the special point of SpecV , the map

A|x = RΓ(Xx, A)→ RΓ(Xx ×SpecV SpecK,A)

is an isomorphism.

Moreover, these conditions are stable under any base change, and can be checked
arc-locally on S.

In particular, this shows that the key to understanding universal local acyclic-
ity is the case where the base is the spectrum of a (rank 1) valuation ring with
algebraically closed fraction field. The key result is the following, which rederives
all the basic properties of the nearby cycles functor.

Theorem 1.5. Let X be a scheme of finite presentation over S = SpecV , where
V is a valuation ring with algebraically closed fraction field K. Let j : XK ⊂ X
be the inclusion of the generic fibre. The restriction functor

j∗ : DULA(X/S)→ D(XK)

is an equivalence, whose inverse is given by Rj∗.
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In particular, the formation of Rj∗ preserves constructibility, and commutes
with any flat base change V → V ′ of valuation rings with algebraically closed
fraction fields, with relative Verdier duality, and satisfies a Künneth formula.

Moreover, relative perversity interacts well with universal local acyclicity. More
precisely:

Theorem 1.6. Relative perverse truncation preserves universal local acyclicity.

By Theorem 1.6, we get in particular a well-behaved abelian category
PervULA(X/S) of relatively perverse universally locally acyclic sheaves over S.
Our final result concerns properties of this abelian category.

Theorem 1.7. Assume that S is connected.

(i) Let s → S be any geometric point, with i = is : Xs → X the inclusion of
the fibre. The restriction functor

i∗ : PervULA(X/S)→ Perv(Xs)

is an exact and faithful functor of abelian categories, and the category
PervULA(X/S) is noetherian and artinian.

(ii) Assume that S is geometrically unibranch; let η = SpecK ⊂ S be the
(necessarily unique) generic point, with j : Xη ⊂ X the inclusion. The
restriction functor

j∗ : PervULA(X/S)→ Perv(Xη)

is exact and fully faithful, and its image is stable under subquotients.

This allows one to recover some results of Gaitsgory, on preservation of universal
local acyclicity under passage to perverse cohomologies, and perverse subquotients.
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Orthogonal root numbers and the refined formal degree conjecture

David Schwein

Let k be a local field. If k is nonarchimedean, let p be its residue characteristic and
let q be the cardinality of the residue field of k. Let G be a reductive k-group, let
G = G(k), and let AG the split component of the center of G. Let Γk be the Galois

group, let Wk be the Weil group, let WDk
def
= Wk × SL2(C) be the Weil-Deligne

group, and let

Lk
def
=

{
WDk if k is nonarchimedean

Wk if k is archimedean
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be the Langlands group. For all local (that is, L-, ε-, and γ-) factors, we use the
additive character of k for which Ok is the largest fractional ideal of k in the kernel
and use the Haar measure on k that assigns volume one to Ok.

Raphaël’s talk introduced us to the following conjecture of Hiraga, Ichino, and
Ikeda.

Conjecture 0.1 ([5, Conjecture 1.4]). Let π be a(n essentially) discrete series
representation of G with extended parameter (ϕ, ρ). Then

d(π, νG) =
dim ρ

|Sϕ|
· |γ(0, ϕ,AdG)|.

Here d(π) is the formal degree of π,

γ(s, ϕ,AdG)
def
= ε(s,AdG ◦ ϕ) ·

L(1− s,AdG ◦ ϕ)

L(s,AdG ◦ ϕ)
,

νG is the measure on G defined in Raphaël’s talk using a volume form on the
Chevalley model of G, and AdG is the adjoint representation of LG on ĝ/ẑΓ.
The precise definitions of ρ and Sϕ are not so important to us; let me say only
that Sϕ is built from the centralizer of ϕ and ρ is a finite-dimensional irreducible
representation of a group similar to Sϕ.

In this talk I’ll explain some of my work on understanding the conjecture more
fully.

1. Refined formal degree

In this section, we assume k is nonarchimedean. Gross and Reeder [3, Section 7]
refined Conjecture 0.1 to remove the absolute value bars and interpret the sign of
the γ-factor. This sign is a quotient of root numbers. Recall that the root number

of a representation ϕ : Wk → GL(V ) is the number ω(ϕ) defined by the formula

ε(s, ϕ) = ω(ϕ)qcond(ϕ)(1/2−s)

where cond(ϕ) is the Artin conductor. The root number has modulus one, and
even better, when ϕ is self-dual, it is a fourth root of unity because

ω(ϕ)2 = (detϕ)(−1).

(Use Artin reciprocity to make sense of the righthand side.) Deligne has given
an interpretation of the sign in terms of Stiefel-Whitney classes. His theorem has
several variations, the simplest of which says that when detϕ = 1, the root number
ω(ϕ) is +1 if and only if ϕ lifts to the spin double-cover Spin(V ) of SO(V ) (and
otherwise the root number is −1).

Since there are good formulas to compute the Artin conductor [19, Chapter VI],
most of the mystery of the ε-factor lies in the root numbers, and these numbers
typically carry deep information. For instance, we saw in Wee Teck’s talk that
symplectic root numbers are expected to carry information about branching prob-
lems for classical groups. In this talk, we will see that orthogonal root numbers
carry information about central characters of irreducible admissible representa-
tions of G.
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The starting point for Gross and Reeder’s refinement is to normalize the Haar
measure so that the Steinberg representation StG has formal degree one. Such a
measure, called the Poincaré measure, had already been studied by Serre [18]. It
satisfies the following properties.

First, for every discrete, cocompact, torsion-free subgroup Λ⊆G, the Euler cha-
racteristic of (the rational group cohomology of) Λ is χ

(
H•(Λ,Q)

)
= vol(Λ\G,µG).

This property was Serre’s motivation.
Second, µG 6= 0 if and only if AG = 1. So we must assume that AG = 1 for µG

to be of interest.
Third, the Poincaré measure is a Haar measure up to sign: specifically,

(−1)r(G)µG is a Haar measure, where r(G) is the split rank of G.
Fourth, d(StG, µG) = (−1)r(G), where StG is the Steinberg representation [6].

Conjecture 1.1 ([3, Conjecture 7.1(5)]). In the setting of Conjecture 0.1, if AG =
1 then

(−1)r(G) deg(π, µG) = ±
dimρ

|S′
ϕ|
·

γ(0,AdG ◦ ϕ)

γ(0,AdG ◦ ϕprin)

with sign ω(AdG ◦ ϕ)/ω(AdG ◦ ϕprin) = ±1.

Here ϕprin is the principal parameter, the parameter whose L-packet contains
the Steinberg representation. This parameter is trivial on Wk and its restriction
to the Deligne SL2 corresponds under the Jacobson-Morozov theorem to the sum

of the Lie algebra elements (for a basis of roots) in any pinning of Ĝ. Let Z be
the center of G.

Conjecture 1.2 ([3, Conjecture 8.3]). In the setting of Conjecture 0.1,

ω(AdG ◦ ϕ)

ω(AdG ◦ ϕprin)
= χϕ(zAdG),

where zAdG ∈ Z is a certain involution to be defined momentarily.

Here χϕ is the character of Z, where Z is the center of G, corresponding to
the parameter ϕ, as originally constructed by Langlands. It is one of Borel’s
desiderata for the local Langlands correspondence [1, III.10] that χϕ, which has a
simple definition via the correspondence for tori, be the central character of the
representations in the L-packet of ϕ.

2. Orthogonal root numbers

Gross and Reeder proved Conjecture 1.2 when G is split (and AG = 1 and k is
nonarchimedean) using an argument in Galois cohomology. I was able to generalize
their theorem by generalizing their proof. This proves Conjecture 1.2 modulo
Borel’s desiderata.

Theorem 2.1 ([17, Theorem A]). Let k be a local field, let r : LG→ O(V ) be an
orthogonal representation, and let ϕ : Lk →

LG be a tempered L-parameter. Then

ω(r ◦ ϕ)

ω(r ◦ ϕprin)
= χϕ(zr).
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Since this theorem lives on the Galois side of the local Langlands correspon-
dence, nothing is lost in assuming that G is quasi-split, and we add this as a
standing hypothesis. Here T is a minimal Levi of G and the element zr ∈ Z is the
involution defined by

zr
def
=

∏

0<̟∈X∗(Z)

̟(−1)dimV̟ ,

where Vϕ is the ̟ weight space for the action of T̂ on V by r.

Remark 2.2. I have not defined the root number of a Weil-Deligne representation.
But such a definition exists, and for orthogonal representations ϕ : WDk → O(V ),

ω(ϕ) = ω(ϕ|Wk
).

In particular, ω(r ◦ ϕprin) = ω(r|Wk
). (Here we use the Weil form of LG.)

The key lemma in the proof of the theorem is the following statement in group
cohomology.

Lemma 2.3. Consider the following commutative diagram, where cG ∈ H2
Borel(

LG,

π1(Ĝ)) and cpin ∈ H2
Borel(O(V ), {±1}) classify the top and bottom group exten-

sions.

1 // π1(Ĝ) //

er

��

Ĝuniv ⋊Wk
// LG //

r

��

1 (cG)

1 // {±1} // Pin(V ) // O(V ) // 1 (cpin).

Then r∗(cpin) = er,∗(cG) · (p
∗r|∗Wk

)(cpin) in H2
Borel(

LG, {±1}) where p : LG → Wk

is projection.

To prove Theorem 2.1, we pull back the conclusion of Lemma 2.3 along ϕ, using
in particular that H2(Wk, {±1}) ≃ Z/2Z. By Deligne’s theorem, the two factors
with cpin become the root numbers (normalized by the determinant) of r ◦ ϕ and
r ◦ ϕprin. To identify ϕ∗er,∗(cG) with χϕ(zr) requires the following computation.

Lemma 2.4. Let T be a k-torus. Then

H2(Wk, X
∗(T )) = Homcts(T

1,C×)

where T 1 ⊆ T is the maximal bounded subgroup of T .

Remark 2.5. In the statement of Lemma 2.3, H•
Borel denotes the Borel coho-

mology groups (sometimes called Moore cohomology), a variant of continuous
group cohomology defined using Borel-measurable cochains. This generalization is
needed because the spin-cover of the orthogonal group does not admit a continuous
set-theoretic section. The theory of Borel cohomology was largely worked out in the
60’s and 70’s by Calvin C. Moore [11, 12, 13, 14], and it would be very interesting
to revisit the subject with modern techniques.



Automorphic Forms, Geometry and Arithmetic 2141

3. Yu supercuspidals

There are several approaches to proving the formal degree conjecture. In Raphaël’s
talk, for instance, we used twisted endoscopy to deduce the conjecture for classical
groups from the conjecture for GLn. Another approach is to compute everything
directly. This approach, while less sophisticated, has the advantage that it pro-
duces explicit formulas for the formal degree, which may be of interest in applica-
tions. In this final section, I want to explain what happens for Yu supercuspidals
[21]. Jessica’s talk reviewed the history of these supercuspidals; in particular, ev-
ery supercuspidal is of the type constructed by Yu if p does not divide the order
of the Weyl group of G [10, 2].

Theorem 3.1 ([16, Theorem A]). Let G be semisimple and let Ψ be a Yu datum
with associated supercuspidal representation π. Then

deg(π, µ) =
dim ρ

[G0
[y] : G

0
y,0+]

expq
1
2

(
dimG+ dimG0

y,0:0+ +
d−1∑

i=0

ri(|Ri+1| − |Ri|)

)
.

The formula of the theorem is rather complicated. I have not defined several of
its constituents because that would require me to explain what a “Yu datum” is.
The main takeaway from the formula is that the formal degree is the product of two
factors, one coming from depth-zero objects and one coming from positive-depth
objects, the latter of which is a power of q. The more “ramified” the representation,
the higher its power of q.

To compute the formal degree, we use a general formula for the formal degree
of a compactly-induced representation:

d(c-IndGK σ, µ) =
dimσ

vol(K,µ)
.

(This is the version of the formula when K is compact-open; in general, one needs
a modification in whichK is open and compact-mod-center.) Both σ andK derive
from the Yu datum. The main difficulty is to compute vol(µ,K).

After Yu’s construction of supercuspidals, a natural next step was to match the
supercuspidals with L-parameters. In a series of recent papers [7, 8, 9], Kaletha
has accomplished this matching in increasing generality for most of Yu’s supercus-
pidals. His most general construction, for the non-singular supercuspidals, matches
those whose L-packet does not contain a discrete series representation, at least if
p does not divide the order of the Weyl group of G.

Corollary 3.2 ([16, Theorem B], [15]). The formal degree conjecture holds for
Kaletha’s non-singular L-packets.

I was able to prove the formal degree conjecture for regular supercuspidals, a
slightly less general class of supercuspidals than the non-singular supercuspidals,
and Ohara generalized this work to the non-singular supercuspidals.



2142 Oberwolfach Report 39/2021

4. Coda: future work

The formal degree conjecture describes the discrete part of the tempered dual,
but the tempered dual is not entirely discrete. Its other components, coming
from parabolic inductions of discrete series of Levi subgroups, are finite-index
orbifold quotients of real compact tori [20]. Inspired by Langlands’s conjecture
on Plancherel measures, Hiraga, Ichino, and Ikeda proposed a description of the
Plancherel measure on these nondiscrete components of the tempered dual [5,
Conjecture 1.4]. I hope to verify their conjecture for the components that come
from the parabolic induction of a non-singular Yu supercuspidal.
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Symmetric Power Functoriality for GL2

Jack A. Thorne

If K is a number field and π is a cuspidal automorphic representation of GLn(AK)
then there is a restricted tensor product decomposition π = ⊗′

vπv, where for each
finite place v of K, πv is an irreducible admissible representation of GLn(Kv) [8].

Langlands’s functoriality conjecture [9] predicts the existence, for any algebraic
representation R : GLn → GLm, of a ‘functorial lift along R’: this should be
another automorphic representation R∗(π) of GLm(AK), characterized by the re-
quirement that the local components R∗(π)v are related, under the local Langlands
correspondence, to the images under R of the Langlands parameters of the local
components πv.

The first non-trivial cases of this conjecture arise when n = 2 where the irre-
ducible representations are given, up to twist, by the symmetric powers Symm :
GL2 → GLm+1 of the standard representation of GL2. The existence of the sym-
metric power lifting has been established when m = 2, 3, or 4 [7, 10, 11].

One can go further for those automorphic representations π of GL2(AK) which
admit associated Galois representations. Indeed, if the Galois representation
ρ : Gal(K/K) → GL2(Qp) is associated to π then the existence of Symm(π)
is equivalent to the automorphy of the symmetric power Galois representation
Symmρ. This point of view has been used by Clozel–Thorne and Dieulefait to
prove the existence of Symm

∗ (π) for most π associated to Hilbert modular forms
for 5 ≤ m ≤ 8 [3, 4, 5, 6].

In 2020, James Newton and I used this point of view to prove the existence
of all symmetric power liftings for those cuspidal automorphic representations of
GL2(AQ) which are regular algebraic (i.e. associated to holomorphic newforms of
weight k ≥ 2) [12, 13]. We first proved the vanishing of the adjoint Bloch–Kato
Selmer group H1

f (K
+, ad Symmρ) for any conjugate self-dual Galois representa-

tion ρ associated to a cuspidal, regular algebraic automorphic representation π of
GL2(AK) (and where K is a CM number field) [14].

We then applied this to prove two general theorems that are applied repeatedly.
The first is a principle of ‘analytic continuation’: for a fixed prime p, integerm ≥ 1,
and unitary group G2 in 2 variables, the existence of the degree m symmetric
power lifting is a property which is ‘constant on irreducible components of the
eigenvariety of G2’. Taking inspiration from [1], we use the vanishing of the adjoint
Bloch–Kato Selmer group to study the immersion of the eigenvariety for an (m+
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1)-variable unitary group in a corresponding moduli space of trianguline Galois
representations.

The second is a kind of ‘functoriality lifting theorem’, which shows (under
some rather general conditions) that the existence of the symmetric power lift-
ing Symm

∗ (π) is a property that can be propagated along congruences modulo p.
This result is proved using a variation on the Taylor–Wiles–Kisin patching method,
in which the vanishing of the adjoint Bloch–Kato Selmer group intervenes to get
control on the generic fibre of a patched pseudodeformation ring.

Our results rely on the explicit description of the geometry of the 2-adic, tame
level 1 eigencurve for GL2(AQ) given by [2], which seems rather special. It remains
an interesting problem to explore the full reach of our methods in the context, for
example, of the symmetric power problem for Hilbert modular forms.
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Irreducible components of affine Deligne–Lusztig varieties

Yihang Zhu

1. Results for affine Deligne–Lusztig varieties

Affine Deligne–Lusztig varieties (ADLV’s) were introduced by M. Rapoport in [16],
motivated by the study of reductions of Shimura varieties. Fix a local field F , with
completed maximal unramified extension F̆ . Let k be the residue field of F̆ , which
is algebraically closed. In this report we only discuss ADLV’s at hyperspecial level.
Thus an ADLV is a geometric object Xµ(b) attached to a triple (G, b, µ), where G

is a (connected) reductive group scheme over OF , b is an element of G(F̆ ), and µ
is a cocharacter of GF up to conjugacy. At the level of k-points, Xµ(b)(k) consists

of g ∈ G(F̆ )/G(OF̆ ) such that the G(OF̆ )-double coset of g−1bσ(g) corresponds

to the conjugacy class of µ under the Cartan decomposition of G(F̆ ). Here σ is

the absolute arithmetic Frobenius in Aut(F̆/F ).
An important fact is that Xµ(b) has the geometric structure of a k-scheme lo-

cally of finite type (resp. a perfect k-scheme locally of perfectly finite type) if F has
equal (resp. mixed) characteristic. The geometric structure comes from the geo-
metric structure of the affine Grassmannian and the Witt vector affine Grassman-
nian (constructed by X. Zhu [21] and Bhatt–Scholze [2]) in the two cases. In the
mixed characteristic setting, the geometry of ADLV’s is closed related to Shimura
varieties via the Rapoport–Zink uniformization (cf. [17, 5, 8]). For instance, infor-
mation about connected components of ADLV’s has played an important role in
the version of Langlands–Rapoport Conjecture proved in [10] and the subsequent
strengthening in [12].1

In this report we present results on the set Σtop(Xµ(b)) of top-dimensional
irreducible components of Xµ(b). (It is conjectured [16, Conj. 5.10] that Xµ(b)
is equidimensional, cf. [6, §3].) The motivation for studying this set comes from
the relation with certain cycles in the basic locus of the special fiber of Shimura
varieties, see for instance [20]. The scheme Xµ(b) is equipped with an action of
Jb(F ), the F -rational points of the Frobenius-centralizer Jb of b. This induces an
action of Jb(F ) on Σtop(Xµ(b)). We are interested in the following two questions.

(1) Classify the Jb(F )-orbits in Σtop(Xµ(b)).
(2) For each Z ∈ Σtop(Xµ(b)), determine the stabilizer of Z in Jb(F ).

For question (i), M. Chen and X. Zhu conjectured a natural bijection between
Jb(F )\Σ

top(Xµ(b)) and the Mirkovic–Vilonen basis MVµ(λb) for the λb-weight

space of the representation of the dual group Ĝ corresponding to µ. Here λb is

a character on a subtorus of Ĝ (which is a maximal torus if GF is split over F )
defined in terms of the two discrete invariants (a la Kottwitz) of the σ-conjugacy

class of b in G(F̆ ) by a simple recipe. In particular, this conjecture gives an
elementary way of computing the cardinality of the finite set Jb(F )\Σ

top(Xµ(b)).

1Strictly speaking, the application to Langlands–Rapoport Conjecture is independent of the
Rapoport–Zink uniformization per se, but it follows the same spirit.
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Special cases of this conjecture were proved in [20, 6, 15] (based on a common idea
of reduction to the superbasic case, which goes back to [3]). The general case was
finally proved in the joint work of R. Zhou and the author, and in the work of
S. Nie using different methods.

Theorem A ([22], [14]). There is a natural bijection Jb(F)\Σ
top(Xµ(b))∼=MVµ(λb).

For question (ii), it was conjectured by X. Zhu that every stabilizer should be
a parahoric subgroup of Jb(F ) of maximal volume. In joint work with X. He and
R. Zhou we confirm this conjecture. Generalizing the results in [1, A.4], we have
a distinguished class of parahoric subgroups of Jb(F ), called very special, which
can be read off from the relative local Dynkin diagram of Jb with the decorating
integers d(v) as in [18, §§1.8, 1.11]. These subgroups are equivalently characterized
as the parahoric subgroups having the maximal volume.

Theorem B ([7]). The stabilizers for the Jb(F )-action on Σtop(Xµ(b)) are all
very special parahoric subgroups of Jb(F ).

For a reductive group H over F with no factors of type C-BCn, very special
parahoric subgroups of H(F ) are unique up to conjugation by Had(F ). In our
current setting of hyperspecial level, Jb never has factors of type C-BCn, so The-
orem B determines the stabilizers up to conjugation by Jad

b (F ). It would be an
interesting problem to determine the stabilizers up to Jb(F )-conjugacy.

2. Application to Shimura varieties

Let (G, X) be a Shimura datum of Hodge type, and let K ⊂ G(Af ) be a compact
open subgroup. Let p > 2 be a prime and assume that K = KpK

p where Kp

is a sufficiently small compact open subgroup of G(Apf ) and Kp = G(Zp) is a

hyperspecial subgroup of G(Qp), where G is a reductive model over Zp of GQp .
By the work of Kisin [9], for any prime v of the reflex field E of (G,X) above p,
there is a smooth canonical integral model SK(G, X) of ShK(G, X) over OE,(v).
The geometric special fiber of SK(G, X) has a Newton stratification indexed by

the Kottwitz set B(GQp , µ) ⊂ G(Q̆p)/σ-conj, where µ is a Hodge cocharacter of
X . The unique basic element [b] of B(GQp , µ) corresponds to a stratum denoted
by ShK,bas. This is a generalization of the supersingular locus in the case of a
modular curve. Define Xµ(b) with respect to G. By a “reduced version” of the
Rapoport–Zink uniformization (see e.g. [20, Cor. 7.2.16]), the perfection of ShK,bas
is isomorphic to

I(Q)\Xµ(b)×G(Apf )/K
p.

Here I is a certain reductive group over Q equipped with isomorphisms ιp : I ⊗Q

Qp ∼= Jb and ι
p : I⊗QA

p
f
∼= G⊗QA

p
f , and the left action of I(Q) on Xµ(b)×G(Apf )

is defined using ιp and ιp. The following result follows from Theorems A and B,
and the equidimensionality proved in [6, Thm. 3.4].



Automorphic Forms, Geometry and Arithmetic 2147

Theorem C ([7]). The set Σ(ShK,bas) of irreducible components of ShK,bas is in
prime-to-p-Hecke-equivariant bijection with

∐

a∈MVµ(λb)

I(Q)\I(Af )/I
a

p I
p,

where Ip = (ιp)−1(Kp) ⊂ I(Apf ) and Iap is a very special parahoric subgroup of

Ip(Qp) for each a.

We refer the reader to [19, 5, 13] for results similar to Theorem C for special cases
of Shimura varieties. For certain arithmetic applications, such as the arithmetic
level raising in [13], Theorem C allows one to interpret functions on Σ(ShK,bas)
as automorphic forms on the group I. The knowledge about Iap is thus crucial in
controlling the level of these automorphic forms.

In [22] and [7] we have also proved generalizations of Theorems A and B beyond
the setting of hyperspecial level, to cases where G is a special parahoric group
scheme over OF and GF is quasi-split but not necessarily unramified over F .
In order to obtain the corresponding generalization of Theorem C, one needs to
generalize the above description of the perfection of ShK,bas in terms of Xµ(b),
where ShK,bas is defined using the Kisin–Pappas integral model [11]. This is done
in [7].

2.1. Some features of the proofs. The key idea in our proof of Theorem A is
to use the Lang–Weil bound to relate point counting on Xµ(b) to the cardinality of
Jb(F )\Σ

top(Xµ(b)). Based on this idea, we show that this cardinality is related to
the asymptotic behavior, as n grows, of a certain twisted orbital integral over the
degree n unramified extension of F . We study the latter using explicit methods
from local harmonic analysis and representation theory, including the base change
fundamental lemma of Clozel and Labesse, and the Kato–Lusztig formula.

In our proof, certain linear combinations of the q-analogue of Kostant partition
functions appear, and it is key to estimate their sizes. It seems reasonable to
expect that a more thorough study of the combinatorial and geometric properties
of these objects could lead to interesting results about ADLV’s.

As a byproduct of our proof of Theorem A, we have the following intermediate
result: In the “essential cases” that one reaches after some reductions steps, the
average of the inverses of the volumes of the stabilizers depends only on b, not
on µ. This result allows one to reduce Theorem B to the statement that there
is at least one top-dimensional irreducible component whose stabilizer is very
special parahoric. We prove the last statement in [7] by an explicit construction,
employing a refinement of the Deligne–Lusztig reduction method in [4],
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Arthur multiplicity formula for unitary and even orthogonal groups
via theta lifts

Jialiang Zou

(joint work with Rui Chen)

Let G be an even orthogonal or unitary group over a number field. Based on
the same method used in [5], we proved the Arthur’s multiplicity formula for the
generic part of the automorphic discrete spectrum of G. Enhancing this method,
we also obtained a description of the full automorphic discrete spectrum of even
orthogonal or unitary groups with Witt index less than or equal to one. The main
idea is to transfer the Arthur’s multiplicity formula for symplectic or quasi-split
unitary groups, which is proved by Arthur [3] and Mok [8], to even orthogonal
or unitary groups by using J.-S. Li’s results [6] on global theta lifts in the stable
range.

Let F be a number field and AF be the Adele of F . Here we shall focus on the
even orthogonal group case to illustrate our results. The unitary group case is
parallel. So from now on G = O(V ) is an even orthogonal group over F . Our
ultimate goal is to study the decomposition of

L2
disc(G) := L2

disc (G(F )\G(AF )) .

The very first step is to decompose L2
disc(G) into a direct sum of different near

equivalent classes. When G is quasi-split, Arthur’s results asserted that each near
equivalent class can be “represented” by an elliptic A-parameter (cf. [2, §6.5]). Our
first theorem generalizes this result of Arthur to the case that G is non-quasi-split:

Theorem 1.1 (Chen-Zou). There exists a decomposition

L2
disc(G) =

⊕

ψ∈Ψell(G)

L2
ψ(G),

where Ψell(G) is the set of elliptic A-parameters for G and L2
ψ(G) is a full near

equivalence class of irreducible representations π in L2
disc(G) represented by ψ.

The main ingredient for proving Theorem 1.1 is J.-S. Li’s results [6] on global
theta lifts in the stable range. Let H be a large symplectic group such that
(G,H) is a reductive dual pair in the stable range. Given an irreducible unitary
representation π = ⊗′πv of G(AF ), we define

θabs(π) = ⊗′θ(πv),

which is an irreducible unitary representation of H(AF ). Here θ(πv) is the local
theta lift of πv to H(Fv). Let

maut(π) =dimHomG(A) (π,A(G)) ;

mdisc(π) =dimHomG(A)

(
π,A2(G)

)
,
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where A(G) (resp. A2(G)) is the space of automorphic forms (resp. square-
integrable automorphic forms) on G. Likewise, one can define the multiplicities
maut(θ

abs(π)) and mdisc(θ
abs(π)). Then J.-S. Li’s results [6] asserted that

mdisc(π) ≤ mdisc(θ
abs(π)) ≤ maut(θ

abs(π)) ≤ maut(π).(1)

These inequalities together with some easy computations at unramified places im-
ply our Theorem 1.1.

To investigate the structure of each near equivalent class L2
ψ(G), we need to

enhance J.-S. Li’s results. We made the following conjecture.

Conjecture 1.2. Let ψ be an elliptic A-parameter of G and π = ⊗′
vπv is a

representation of G(AF ) in the near equivalent class represented by ψ. Then

mdisc(π) = maut(π).

If this conjecture holds, then by (1) we have mdisc(π) = mdisc(θ
abs(π)). With

this equality at hand, we can transfer the Arthur’s multiplicity formula for H to
G. We show that:

Theorem 1.3 (Chen-Zou). Assume that one of the following two conditions holds:

(1) G is any even orthogonal groups and ψ is a generic elliptic A-parameter
for G;

(2) G has Witt index less than or equal to 1 and ψ is any elliptic A-parameter
for G.

Then Conjecture 1.2 holds.

The proof of the first case is similar to [5, Proposition 4.1]. The proof of the
second case involves Mœglin-Waldspurger’s square-integrability criterion and some
knowledges on the Jacquet module of certain unramified representations.

In these two cases, we can write down an elliptic A-parameter θ(ψ) for H in terms
of ψ explicitly. After checking certain compatibility conditions, we can transfer
the Arthur’s multiplicity formula for L2

θ(ψ)(H) to L2
ψ(G) as follows.

• For each place v of F , Arthur has defined the local A-packet

ΠAθ(ψ)v (H) = {σηv |ηv ∈ Ŝθ(ψ)v},

where Sθ(ψ)v is the component group of θ(ψ)v (cf.[3, §1.4]) and σηv is an
unitary representation of Hv of finite length. We set

Πθψv (Gv) =



πηv =

⊕

ℓ∗v(η
′

v)=ηv

θ
(
ση′v

)
|ηv ∈ Ŝψv



 ,

where ℓv : Sψv → Sθ(ψ)v is the natural map between these local component
groups.
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• There is a canonical map between the global and local components groups:

∆ : Sψ −→ Sψ,AF =
∏

v

Sψv .

Let ǫψ be the canonical sign character of Sψ defined by Arthur (cf.[3,

§1.5]). For each η = ⊗′ηv ∈ Ŝψ,AF , we set πη = ⊗′
vπηv .

Theorem 1.4 (Chen-Zou). Assume that one of the two conditions in Theorem
1.3 holds. Then we have:

L2
ψ(G) =

⊕

η∈Ŝψ,AF

mη · πη,

with

mη =

{
1, if ∆∗(η) = ǫψ;

0, otherwise.

However these local packets Πθψv (Gv) are very artificial. So finally to make our
results more convincing, we would like to investigate these local packets.

Theorem 1.5 (Chen-Zou). Let v be a local place of F .

(1) If ψv is generic, then the local packet Πθψv (Gv) coincides with the local

L-packet ΠLψv (Gv) defined in Atobe-Gan [2] and Chen-Zou [4].

(2) If v is non-Archimedean, then the the local packet Πθψv (Gv) is independent
of the choice of H. Moreover, if we further assume that Gv is quasi-split,
then Πθψv (Gv) coincides with the local A-packet ΠAψv (Gv) defined by Arthur

[3] and Atobe-Gan [2].

Remark 1.6.

(1) In [1], Adams has proposed a conjecture on describing the local theta cor-
respondence in terms of local A-parameters. Theorem 1.5 can be regarded
as an refined version of Adams conjecture in the case of stable range: we
not only prove the bijection between packets as (multi) sets, we also show
the consistency of “labellings”.

(2) Mœglin’s work [7] on Adams conjecture already implies the assertion (2) in
the even orthogonal group case (except for the labeling, one also needs B.
Xu’s work [9]). We provide an independent proof to avoid using endoscopic
theory for non-quasi-split groups. Our proof use global methods and the
local intertwining relations.

(3) Recently, Hanzer and Bakić has made some progress on Adams conjec-
ture in non-Archimedean cases. We refer readers to Hanzer’s talk in this
conference on their work.

We end up this extended abstract by the following two questions.

Question 1.7.

(1) Can one prove that Πθψv (Gv) satisfies endoscopy character identities?

(2) Can one prove Theorem 1.5 (2) when v is Archimedean?
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Bijenička cesta 30
10 000 Zagreb
CROATIA

Prof. Dr. Michael Harris

Department of Mathematics
Columbia University
2990 Broadway
New York, NY 10027
UNITED STATES

Anton Hilado

Department of Mathematics and
Statistics
University of Vermont
82 University Place Innovation Hall
Burlington VT 05405
UNITED STATES

Prof. Dr. Atsushi Ichino

Graduate School of Mathematics
Kyoto University
Kitashirakawa, Oiwake-cho, Sakyo-ku
Kyoto 606-8502
JAPAN

Prof. Dr. Dihua Jiang

School of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis MN 55455-0436
UNITED STATES

Dr. Tasho Kaletha

Department of Mathematics
University of Michigan
530 Church Street
Ann Arbor, MI 48109-1043
UNITED STATES

Prof. Dr. Ju-Lee Kim

Department of Mathematics
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139-4307
UNITED STATES

Prof. Dr. Stephen S. Kudla

Department of Mathematics
University of Toronto
40 St. George Street, BA6290
Toronto ON M5S 2E4
CANADA

Dr. Vincent Lafforgue

Institut Fourier
Laboratoire de Mathématiques
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École Polytechnique
91128 Palaiseau
FRANCE

Prof. Dr. Timo Richarz

Fachbereich Mathematik
Technische Universität Darmstadt
Schloßgartenstrasse 7
64289 Darmstadt
GERMANY



2156 Oberwolfach Report 39/2021

Prof. Dr. Yiannis Sakellaridis

Department of Mathematics
The Johns Hopkins University
3400 North Charles Street
Baltimore, MD 21218
UNITED STATES

Dr. Will Sawin

Department of Mathematics
Columbia University
2990 Broadway
New York, NY 10027
UNITED STATES

Prof. Dr. Peter Scholze

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
GERMANY

Dr. David Schwein

Faculty of Mathematics
University of Cambridge
Wilberforce Road
Cambridge CB3 0WA
UNITED KINGDOM

Prof. Dr. Joachim Schwermer

Institut für Mathematik
Universität Wien
Oskar-Morgenstern-Platz 1
1090 Wien
AUSTRIA

Prof. Dr. Birgit Speh

Department of Mathematics
Cornell University
436 Malott Hall
Ithaca, NY 14853-4201
UNITED STATES

Dr. Olivier Täıbi
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