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Introduction by the Organizers

The workshop Mathematical Aspects of General Relativity was organised by Carla
Cederbaum (Tübingen), Mihalis Dafermos (Cambridge/Princeton), Jim Isenberg
(Eugene) and Hans Ringström (KTH Stockholm). There were 24 on-site and 30
online participants. There were three overview talks of 80 minutes, four evening
talks of 60 minutes, 19 talks of 45 minutes and seven talks of 20 minutes.

Continuing one of the major themes of this series, the problem of stability
of classical black hole solutions in general relativity remains the focus of much
attention in the field. Recent progress on the topic was surveyed by Holzegel in
an 80 minute overview talk, where he discussed in particular his recent complete
proof, in collaboration with Dafermos, Rodnianski and Taylor, of the full nonlinear
stability of the Schwarzschild family, without symmetry assumptions. This result,
originally announced at the 2018 Oberwolfach meeting (in a talk of Taylor), was
completed in April of the past year, and builds on the previous linear stability of
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Schwarzschild (discussed at the 2015 meeting of this series in a talk of Holzegel).
Extension of this to the Kerr case remains ongoing work of various groups.

In her talk, Teixeira da Costa discussed her recent work, in collaboration with
Shlapentokh-Rothman, on boundedness and decay for the Teukolsky equation on
Kerr spacetimes in the full subextremal range of parameters |a| < M , the key
step for showing the linear stability of these spacetimes, and in addition, her proof
of mode stability for the Teukolsky equation in the extremal case |a| = M . This
extends previous work of Dafermos, Holzegel and Rodnianski and of Ma concerning
the very slowly rotating case |a| ≪ M . On the other hand, Gajic, concerning the
extremal case |a| =M , announced in his talk some fascinating new results showing
a novel azimuthal instability on the event horizon, i.e. an instability for the fixed
azimuthal wave equation with non-zero azimuthal numberm 6= 0, which is stronger
than the Aretakis instability already present for the m = 0 case. This result is
related to various recent heuristics from the physics literature. This gives hope
that a full mathematical understanding of the scalar wave equation, and even the
Teukolsky equation, on extremal Kerr will be obtained by the next meeting in this
series!

The above results all concern stability of vacuum solutions. Turning to elec-
trovacuum, Giorgi discussed in her talk her recent work on the linear stability
of Reissner–Nordström and her ongoing work on the linear stability of the Kerr–
Newman spacetime, in the slowly rotating and small charge case.

Beyond stability per se, it is fundamental to understand finer properties of gravi-
tational radiation from black holes. Three such fundamental issues are those of late
time tails, quasinormal modes and gravitational memory. Kehrberger presented
surprising work which rigorously shows that the failure of peeling at scri, aris-
ing naturally from an argument due to Christodoulou, leads to logarithmic decay
terms in the asymptotic expansion of the decay of radiation along null infinity (the
“tails”). This could have observational consequences. Concerning quasinormal
modes, Petersen presented joint work with Vasy concerning the analyticity prop-
erties of such modes at the event horizon of Kerr and Kerr-de Sitter spacetime.
Bieri presented some new developments in the understanding of Christodoulou
memory and other novel gravitational memory effects.

Another topic of increasing mathematical activity is the analysis of asymptot-
ically anti-de Sitter (AdS) spacetimes. Smulevici and Chatzikaleas in their talks
discussed the problem of time periodic solutions of the Einstein–scalar field sys-
tem with a negative cosmological constant, and recent results they have jointly
obtained for the toy problem of a nonlinear wave equation on a fixed AdS back-
ground. This is related to the instability of pure AdS spacetime itself, continuing
a theme from the 2018 meeting (where such instability results were presented by
Moschidis).

An intriguing phenomenon recently uncovered by Kehle concerning Kerr–AdS
black holes is the relevance of the Diophantine properties of the black hole pa-
rameters to the question of the stability or instability of the black hole interior.
Kehle presented his remarkable recent results on the wave equation on Kerr–AdS,
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showing that blow up or boundedness at the Cauchy horizon is determined by
these Diophantine properties. The unexpected appearance of number theory here
has no analogue in the Λ = 0 or Λ ≥ 0 cases. This work has implications for the
problem of strong cosmic censorship.

Continuing on the topic of black hole interiors, van de Moortel presented his
recent result concerning the breakdown of null singularities in black hole interi-
ors. He shows that for the Einstein-charged scalar field model, in the one-ended
case, under the assumption of spherical symmetry, a null singularity eventually
necessarily gives way to a spacelike singularity (or a (locally) naked singularity
emanating from the centre, but these are presumably non-generic—see below!).
Thus, while part of the singular boundary is generically null, the entirety of it
cannot be. This is in sharp distinction with the two-ended case where the entirety
has been shown to be null for an open set in the moduli space of initial data. It
is an interesting—but quite difficult—problem to understand whether a similar
statement can be made in the gravitational collapse setting for the vacuum case
without symmetry assumptions.

The importance of black holes in the theory rests to a large extent on the ex-
pectation that generically, singularities not “hidden” inside black holes, so-called
“naked singularities”, are in fact unstable, if they exist. Whereas for various
Einstein–matter models under spherical symmetry naked singularities have been
shown by Christodoulou both to exist and to be unstable, for the vacuum equa-
tions (where one cannot impose such symmetry), even existence has up to now been
open. In his talk, Shlapentokh-Rothman presented his joint work with Rodnianski,
part of which has appeared and part of which is upcoming, proving the existence of
naked singularities for the Einstein vacuum equations. Their remarkable construc-
tion gives an unexpected “twist” to the scalar field examples of Christodoulou.

The overview talk by Chruściel on Mathematical General Relativity covered ar-
eas such as Lorentzian geometry, mass, evolution questions and interferometers.
In particular, Chruściel discussed the recent remarkable result that global hyper-
bolicity of non-compact n-dimensional spacetimes with n ≥ 3 is characterised by
compactness of causal diamonds. Graf continued on the Lorentz geometric theme
by describing singularity theorems in C1-regularity.

Huisken gave an overview talk on geometric flows and the mass. In particular,
he discussed recent results on parabolic geometric evolutions equations such as
Ricci flow, mean curvature flow and inverse mean curvature flows. He also gave
applications to asymptotically flat initial data sets and concepts of mass. In a
related talk, Wolff discussed the existence of weak solutions to inverse spacetime
mean curvature flow.

The positive mass theorem is a topic of central importance in the subject, and
it was discussed in several talks. Galloway described a recent result (obtained with
Chruściel) on a positive mass theorem for asymptotically hyperbolic manifolds that
allows for the presence of internal (e.g. black hole) boundaries. Sakovich discussed
how the method of Jang equation reduction, originally devised by Schoen and Yau
to prove the positive mass conjecture for asymptotically Euclidean initial data
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sets, can be adapted to the asymptotically hyperbolic setting, yielding a non-
spinor proof of the positive mass conjecture in certain cases. In a related talk,
Jauregui proposed a definition of total mass for an asymptotically flat 3-manifold,
based on the capacity-volume inequality. He also related this mass to the ADM
mass. Stern discussed a series of results obtained in the last two years concerning
the influence of scalar curvature on the geometry of level sets of harmonic functions
and solutions of other PDE’s on 3-manifolds. These results have applications in
the study of the ADM mass of initial data sets in GR.

Huang (in joint work with Lee) introduced the concept of improvability of the
dominant energy scalar. Moreover, she described how non-improvable initial data
sets without local symmetries must sit inside a null perfect fluid spacetime carrying
a global Killing vector field. She also provided a characterisation of Bartnik mass
minimising initial data sets.

Wang (in joint work with several collaborators) gave a talk showing how the
theory of quasilocal angular momentum and optimal isometric embeddings iden-
tifies a correction term to the classical definition of angular momentum, and leads
to a new definition that is free from supertranslation ambiguity. Reiris described
a classification theorem for the topology and for the orbital type of the null gen-
erators of compact non-degenerate Cauchy horizons of time orientable smooth
vacuum 3 + 1-spacetimes.

In the last year, an important breakthrough in the study of big bang formation
was achieved by Fournodavlos, Rodnianski and Speck. In the physics literature,
there are conjectures identifying a maximal regime for stable big bang formation
in the Einstein vacuum and Einstein-scalar field settings. Speck presented a result
demonstrating that big bang formation is indeed stable in this regime.

A related important result, by Luk and Fournodavlos, admits the specification of
smooth data on the singularity for the vacuum equations in 3+1-dimensions. The
corresponding Kasner asymptotics are not consistent with the expected generic
behaviour, but can be achieved by restricting the degrees of freedom.

Turning to the expanding direction of cosmological spacetimes, Wyatt presented
remarkable recent results obtained with collaborators. One of the results presented
yields future global non-linear stability of solutions to the Einstein-Dust system.
Another result concerns future global existence of solutions to the irrotational
relativistic Euler equations (with a linear equation of state strictly between dust
and a radiation fluid) on an FLRW background expanding linearly. In Minkowski
space, shocks typically form in finite time. However, on cosmological backgrounds
with accelerated expansion, the expansion was, due to previous results, known
to suppress the shock formation (for small initial data). The case considered by
Wyatt is a borderline case: there is expansion, but it is not accelerated, only linear.

Related results were presented by Oliynyk. In particular, he described results for
the relativistic Euler equations on expanding cosmological backgrounds. However,
he focused on an equation of state of the form p = Kρ, where K is a constant
satisfying 1/3 < K < 1/2. Remarkably, he obtains stability results in this regime,
in spite of previous conjectures that this regime should be unstable.
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Luk (in joint work with Huneau) presented a result demonstrating that a class of
small data U(1) symmetric solutions to the Einstein-massless Vlasov system can be
achieved as weak limits of vacuum spacetimes. This constitutes an important step
towards the classification of high-frequency limits of vacuum spacetimes. Previous
results were restricted to the Einstein-null dust setting.

A different perspective on cosmological spacetimes is obtained by making a
priori assumptions and then deducing conclusions concerning the behaviour of
solutions. Recent results of this nature were presented by Lott. Garfinkle gave
a talk on numerical studies of big bang singularities. In particular, he presented
results using scale invariant variables that remain regular in the direction of the
singularity. He also discussed the small scale features called spikes.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Quo Vadis, Mathematical GR?

Piotr T. Chruściel

The last five years proved that Mathematical General Relativity is more lively
than ever. It got itself a Nobel Prize, with help from Roger Penrose. Some long
standing major research problems, namely stability of slowly rotating Kerr black
holes and positivity of mass in all dimensions, have been announced as being
solved [24, 17, 26]. In my talk in Oberwolfach I reported on some progress in the
field, as biased by my research interests, ignoring topics which I expected to be
covered by other speakers.

The topics I discussed will be split into thematic sections, no order of importance
implied.

1. Lorentzian geometry

One of the fundamental notions in Lorentzian geometry is that of global hyperbol-
icity. The standard definition proceeds as follows: A spacetime (M, g) is said to be
globally hyperbolic if it is strongly causal and if for any pair of points p, q ∈M the
causal diamond J+(p)∩J−(q) is compact, if not empty. Recall that strong causal-
ity is defined as the requirement that for every point p and for every neighborhood
O of p there exists a neighborhood U ⊂ O of p such that every inextendible causal
curve in M intersects U in a connected interval.

Lorentzian geometers have been using these notions for more than 60 years by
now without realising, as pointed-out by Hounnonpke and Minguzzi [14], that for
non-compact n-dimensional spacetimes with n ≥ 3, global hyperbolicity is the
same as requiring compactness of causal diamonds. This is a dramatic simplifica-
tion of the notion both at a conceptual level, and in applications.

Further noteworthy developments include proofs of incompleteness theorems
with weaker hypotheses on the metric, see Melanie Graf’s contribution to this
volume.

A milestone in the understanding of the global structure of Lorentzian manifolds
was the paper by Sbierski [22], who showed that the Kruskal-Szekeres manifold is
inextendible in the class of C0 metrics. The result was nicely complemented by
the joint paper of Galloway, Ling and Sbierski [12], who show that globally hyper-
bolic timelike geodesically complete spacetimes are C0 inextendible. One is then
left to wonder about C0-extendibility of several physically significant spacetimes:
Friedman-Lemaitre-Robertson-Walker FLRW metrics? Kerr metric? Partial re-
sults have been obtained, but the arguments used for Schwarzschild do not adapt
in any obvious way to these metrics. As a step towards an answer, Sbierski [23]
introduced a new technique based on holonomy to show that FLRW metrics are
C0,1–indextendible. While the current FLRW-result is not as elegant as the C0-
indextendibility of Schwarzschild, it should be kept in mind that being Lipschitz
is the borderline regularity condition under which many things go wrong with the
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geometry of Lorentzian metrics, or with associated wave equations, and therefore
reference [23] provides highly relevant information.

The interesting questions of C0-inextendibility of the FLRW solutions, or of
Kerr, or of negative-mass Schwarzschild, remain open.

2. Mass

Positive-energy theorems are widely recognised as one of the most remarkable
achievements of mathematical general relativity. They have found applications in
the analysis of the Yamabe problem, or in proofs of uniqueness of asymptotically
flat black holes. Several new positivity proofs for asymptotically flat initial data
sets have been discovered or rediscovered in recent years. Here I would only like to
mention the elegant Green function analysis by Agostiniani, Mazzieri and Oronzio
[1]; further approaches are described in other contributions to this volume.

Some progress has also been made on the understanding of mass for spacetimes
with negative cosmological constant. In this context it is usual to consider space-
times which have a conformal boundary at spacelike infinity à la Penrose. Quite
generally, the mass of a metric is defined relatively to a background metric with a
Killing vector which is timelike near the conformal boundary at infinity. Within
the conformally compactifiable category, the simplest case arises for metrics which
asymptote to metrics of the form

(1) g = V −2dr2 + r2hk , V 2 = r2 + k , k ∈ {0,±1} ,
where hk is an Einstein metric on an (n− 1) dimensional manifold N with scalar
curvature

R(hk) = k(n− 1)(n− 2) .

I will refer to such metrics as asymptotically Birmingham-Kottler (BK) metrics.
There is a whole zoo of such metrics, differing by existence of boundaries or lack
thereof, and by the topology of the conformal boundary at infinity (N, hk). Our
current knowledge of the sign of the mass for such metrics [5, 7, 8, 27, 4, 6, 20, 16]
is summarised in Table 1. The table makes it clear that a considerable amount of
work remains to obtain a complete picture.

3. Evolution questions

As already hinted-to, authors of several key papers in this area will present their
work during this meeting, and there is no point for me to duplicate this. So I will
only mention some results here which will certainly not be discussed in their talks.

3.1. Local existence. The ADM equations have always been at the heart of
most numerical calculations in general relativity, as well as of many theoretical
discussions. Their mathematical status was, and widely remains, rather unsat-
isfactory. There exists a round-about way of solving these equations: first solve
the harmonically-reduced Einstein equations, then make a transformation which
brings the metric into a desired ADM form. A dramatic change in our understand-
ing of this was brought by the work of Fournodavlos and Luk [10], who show that
there exists a directly well-posed formulation of the ADM equations in a Gaussian
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Asymptotically Birmingham-Kottler metrics; mcrit < 0

other conf. infinity

bdry

otherwise

≥ mcrit ??

µ < 0

≥ mcrit [16]

no bdry

∃ m < 0 [6, 20]

≥ mcrit ??

Ricci flat conf. infinity

otherwise

bdry

∃ sols ??

no bdry

≥ mcrit ? [4]

good spin [27, 8]

bdry

≥ 0

no bdry

≥ 0

canonical spherical

bdry

≥ 0 [7]

no bdry

≥ 0 [5]

Table 1. Mass inequalities for asymptotically Birmingham-
Kottler metrics. A double question mark indicates that no re-
sults are available; a single one indicates existence of partial re-
sults. The shorthand “bdry” refers to a black-hole boundary.
“Good spin” denotes a topology where the manifold is spin and
the spin structure admits asymptotic Killing spinors; “∃ sols ??”
indicates that no such vacuum solutions are known other than
the Birmingham-Kottler metrics equipped with the “wrong” spin
structure. The case “other conformal infinity” includes higher
genus topologies when the boundary is two-dimensional, but also
e.g. quotients of spheres in higher dimensions. Finally, µ is the
mass aspect function. The critical value of the mass mcrit, assum-
ing it exists, is expected to depend upon the conformal structure
of the boundary at infinity.

slicing (zero shift and lapse equal to one). The key is a trick, how to handle the
trace of the extrinsic curvature of the metric.

3.2. Stability of de Sitter spacetime, higher dimensional I . One such
result concerns the question of stability of even-dimensional de Sitter spacetime
under small vacuum perturbations. The 3 + 1 dimensional case has been settled
by Friedrich in a landmark paper [11]. This has been followed by an inspired
observation by Anderson [2], that the Fefferman-Graham obstruction tensor can be
used as a tool to prove stability of higher-dimensional de Sitter spacetime with odd
space-dimensions. (An alternative approach can be found in [21].) In a joint paper
with Anderson [3] we used the same idea to construct even-dimensional spacetimes
with vanishing cosmological constant and a smooth conformal completion at null
infinity. An embarassing mistake in the proof of well-posedness of the associated
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evolution equations in [3], relevant both to the stability of de Sitter and to existence
of null infinity, has been pointed-out and corrected in [15].

3.3. Electrically charged Robinson-Trautman solutions. An approach to
the Einstein equations which is very familiar to an Oberwolfach audience is by
solving a Cauchy problem. It is somewhat surprising that the charged Robinson-
Trautman metrics cannot be handled in this way: after introducing an ansatz for
the metric, and solving most of the Einstein-Maxwell equations, one ends up with
a set of coupled equations, one of which is parabolic to the future, the other to the
past [18]. A well posed problem for the linearised equations is obtained by intro-
ducing a spectral projection operator, with solutions determined by the projection
of a set of free data at a characteristic surface u = u−, with the complementing
projection of the free data provided at a characteristic surface u = u+ > u− [9].
The question then arises whether one can prove something similar for the nonlinear
problem.

For definiteness we note that the metric takes the form

(2) ds2 = −
(
−2r

P,u

P
+K − 2

M

r
+
Q2

0

r2

)
du2 − 2dudr +

2r2dζdζ

P 2
,

(quoted from [18], see [25] for a derivation). Here P (u, ζ, ζ) is the dynamical
variable determining the metric of the 2-surface S coordinatised by a complex
coordinate ζ, K = ∆ lnP is the Gauss curvature of the metric

g := 2P−2dζdζ ,

∆ is the Laplace operator of g, Q0 is a nonzero real number and M(u, ζ, ζ) is a
dynamical variable which also enters in the electromagnetic potential A:

A = (M − Q0

r
)du .

The Einstein-Maxwell equations reduce to a pair of equations which involve deriva-
tives up to order four:

(lnP ),u = − 1

4Q2
0

∆M ,(3)

M,u = − 3M

4Q2
0

∆M +
1

4
∆2 lnP − 1

4Q2
0

|dM |2g ,(4)

where | · |g denotes the norm with respect to the metric g.
It turns out that the nonlinear equations with small part-initial-part-final data

can be solved provided a certain functional inequality holds. In order to present
the problem, for definiteness we consider a square torus

S = T
2 := [0, 2π]× [0, 2π]

with the flat metric inherited from R2, and we note that a similar approach applies
to other topologies. An orthonormal basis of L2 consisting of eigenfunctions of the
Laplacian is given by the collection of functions

(5) f~ℓ (~x) =
1

2π
ei

~ℓ~x , ~ℓ ∈ N
2 .
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Let G : R → R be a smooth function with G(0) = 0. We denote by (G ◦ φ)~ℓ
the Fourier coefficients of the composition G ◦ φ,
(6) G ◦ φ(~x) =

∑

~ℓ∈N2

(G ◦ φ)~ℓ f~ℓ (~x) ,

and by φ~ℓ the Fourier coefficients of φ:

(7) φ(~x) =
∑

~ℓ∈N2

φ~ℓ f~ℓ (~x) .

Consider the well known inequality: for s > 1,

(8) ‖G ◦ φ‖Hs(S) ≤ C(‖φ‖L∞(S))‖φ‖Hs(S) ,

where the strictly increasing function C depends upon G and s. After multiplying
the function C by a constant if necesary, (8) is equivalent to

(9)
∑

~ℓ∈N2

(1 + |~ℓ|)2s(G ◦ φ)~ℓ
2 ≤ C(‖φ‖L∞(S))

( ∑

~ℓ∈N2

(1 + |~ℓ|)2sφ2~ℓ
)
.

It turns out the full Einstein-Maxwell equations for Robinson-Trautman metrics
can be solved, at least in the small-data regime, if a variation of this inequality
holds for functions φ which depend upon a time parameter t. We formulate the
desired inequality as a question:

Is it true that, given a smooth function G with a first order zero at the origin
and a real number s > 1, there exists a constant C2 = C2(G, s) such that for all
φ(t) satisfying

(10)
∑

~ℓ∈N2

(1 + |~ℓ|)2s sup
t∈[t−,t+]

φ2~ℓ (t) ≤ 1 .

we have

(11)
∑

~ℓ∈N2

(1 + |~ℓ|)2s sup
t∈[t−,t+]

(G ◦ φ)~ℓ
2(t) ≤ C2

∑

~ℓ∈N2

(1 + |~ℓ|)2s sup
t∈[t−,t+]

φ2~ℓ (t) ?

Note that a direct application of (8) gives a different inequality:

sup
t∈[t−,t+]

( ∑

~ℓ∈N2

(1 + |~ℓ|)2s(G ◦ φ)~ℓ
2
(t)
)

(12)

≤ C( sup
t∈[t−,t+]

‖φ(t)‖L∞(S)) sup
t∈[t−,t+]

( ∑

~ℓ∈N2

(1 + |~ℓ|)2sφ2~ℓ (t)
)
.

Assuming that (11) holds, we have the conditional result [9]:

Theorem 1. Let s, u± ∈ R with s > 1 and u− < u+. If the inequality (11) holds,
there exists a unique smooth solution of the Einstein-Maxwell Robinson-Trautman
equations defined on [u,u+] × T2 with part of sufficiently small spectral data of
(M,P ) prescribed at u−, and the remaining part on u+.

The question then arises, whether (11) holds true.



2172 Oberwolfach Report 40/2021

4. Interferometers

Yet another recent Nobel prize for general relativity was awarded for the first
direct observation of gravitational waves. The detection involved a Michelson
interferometer, which works as follows: a laser sends light to a beam splitter,
the two resulting beams bounce back and forth a few times between mirrors and
interfere at the output port. The freshman calculation is to determine the affine
parameter needed for the roundtrip along the geodesics connecting the (freely
falling) beam splitter and mirrors. A somewhat more sophisticated approach is
to calculate the leading perturbation in an eikonal expansion for the Maxwell
equation. With some hand waving one recovers the geodesic approximation just
described, but one quickly realises that the solutions so obtained are ambiguous
and possibly coordinate dependent. So the question arises, is there a way of
describing this problem which guarantees existence of a unique solution, with an
unambiguous answer for the interference pattern. Note that geometric uniqueness
will also guarantee coordinate independence of the final result.

In [19] we have observed that one can solve uniquely the Maxwell equations by
describing the laser, and the mirrors, as a boundary-value problem for the Maxwell
equations with analytic boundary data given on an infinite timelike hyperplane in
a space-time with an analytic metric

(13) gµν = ηµν + ǫAµν cos(~k~x− ωgt) ,

where ηµν is the Minkowski metric and Aµν is an η-traceless tensor with constant
entries satisfying A0µ = 0 = Aijk

j . Existence of solutions, and analyticity in ǫ is
guaranteed by the Cauchy-Kovalevskaya theorem. Uniqueness within the class of
smooth solutions is guaranteed by a theorem of Holmgren. One can then calculate
explicitly the first term in a (convergent) expansion of the solution in terms of
powers of ǫ, and find that is has a Laurent expansion in terms of ωg/ω, where ωg

is the frequency of the gravitational wave and ω is the frequency of the Maxwell
wave emitted by the laser. It turns out that this is precisely what is needed to
validate the application of eikonal expansions for the problem at hand. One also
shows that those ambiguities which remain do not affect the interference pattern
at the level of accuracy available experimentally.

The above relies heavily on the analyticity of the metric (13), which is a poor
man’s approximation to the physical metric. This last metric has no reason to be
analytic. One is thus led to the question, whether there exists a way to justify
rigorously the results of LIGO-type interferometric experiments without assuming
analyticity?

Acknowledgements Research supported in part by the Austrian Science Fund
(FWF), Project P34274, and by the Vienna University Research Platform TURIS.
Part of this research was performed while the author was visiting the Institute
for Pure and Applied Mathematics (IPAM), which is supported by the National
Science Foundation (Grant No. DMS- DMS-1925919).



Mathematical Aspects of General Relativity 2173

References

[1] V. Agostiniani, L. Mazzieri, and F. Oronzio, A Green’s function proof of the Positive Mass
Theorem, (2021), arXiv:2108.08402 [math.DG].

[2] M.T. Anderson, Existence and stability of even dimensional asymptotically de Sitter spaces,
(2004), arXiv:gr-qc/0408072.
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[4] H. Barzegar, P.T. Chruściel, M. Hörzinger, M. Maliborski, and L. Nguyen, On the en-
ergy of asymptotically Horowitz-Myers metrics, Phys. Rev. D 101 (2019), 024007, 16,
arXiv:1907.04019 [gr-qc].
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Mode stability for the entire Kerr black hole family

Rita Teixeira da Costa

(joint work with Marc Casals)

A major open problem in General Relativity, going back to the work of Regge and
Wheeler [7], is that of black hole stability:

Conjecture 1 (Black hole stability). The Kerr family of black holes, which is
parametrized by M > 0 and |a| ≤ M , is stable, as a family of solutions to the
vacuum Einstein equations, Ric(g) = 0, to perturbations in the initial data.

Conjecture 1 has recently been shown inside the a = 0 subfamily1 [4]. For at
least the subextremal |a| < M Kerr subfamily, the roadmap set by this monu-
mental work is clear. A resolution to Conjecture 1 must build on a very precise
understanding of the linear stability problem and, in particular, of the so-called
Teukolsky equation,

{
�g +

2s

ρ2
(r −M)∂r +

2s

ρ2

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂t

+
2s

ρ2

[
a(r −M)

∆
+ i

cos θ

sin2 θ

]
∂φ +

s

ρ2
(
1− s cot2 θ

)}
α
[s] = 0

(1)

which, for s = ±2, governs some gauge-invariant curvature quantities at the linear
level. Following earlier works in the a = 0 [3] and s = 0 [2] cases, such an analysis
of (1) was carried out in collaboration with Shlapentokh-Rothman [9]:

Theorem 2 (Stability for the Teukolsky equation). Solutions for (1) arise from
regular, compactly supported initial data remain bounded in time and, in fact, decay
in time at a suitably fast inverse polynomial rate.

The goal of the talk is to expand on what is arguably the most mysterious point
of the proof of Theorem 2: (the proof of) mode stability.

1It is expected that a generic perturbation of an a = 0 black hole would asymptote towards
a member of the Kerr family with a 6= 0. The authors consider initial data on a codimension-3
“submanifold” of the moduli space which is teleologically chosen so that the resulting spacetimes
asymptotes to a member of the a = 0 subfamily.
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Theorem 3 (Mode stability). Take |a| < M . Fix s ∈ 1
2Z, ω 6= 0 with ℑω ≥ 0,

and m− s ∈ Z. Consider a mode solution to (1), i.e.

(2) α
[s](t, r, θ, φ) = e−iωt · eimφ · S[s], aω

mΛ (θ) · (r2 + a2)−1/2∆−|s|/2u[s](r) ,

where Λ is the separation constant between the r and θ variables, and assume u[s](r)
has outgoing boundary conditions as r → ∞ and ingoing boundary conditions as
r → r+. Then, u[s] ≡ 0.

The conclusion holds for |a| =M if ω = am
2M2 is excluded from the statement.

Theorem 3 rules out the existence of separable solutions to (1) which are expo-
nentially growing (ℑω > 0) or bounded in time but non-decaying (ω ∈ R\{0}). Its
quantitative strengthening [8, 10] provides the only known method of obtaining
a Morawetz estimate for a bounded range of frequencies, excluding ω 6= 0, in the
full subextremal black hole range |a| < M .

Theorem 3 would follow easily if one could find a conserved, coercive quantity
for (1). However, on rotating a 6= 0 Kerr, the conserved energy associated to the
stationary Killing field is not coercive if the frequencies are superradiant, i.e. if
ω(ω−mω+) < 0. The redshift effect associated to subextremal black holes is not
sufficient overcome to this lack of coercivity in the full |a| < M range.

Theorem 3 was first shown for |a| < M by Whiting [11] for ℑω > 0. His proof,
as well as those of the following extensions to ω ∈ R\{0} [8] and |a| = M [10],
are based on the same method: one can define an injective integral transformation
which maps u[s](r) to a function ũ(x) solving a new equation which itself admits
a conserved and coercive quantity, i.e. which is modally stable. These classical
proofs mostly rely on lucky guesswork. Such transformations are not guaranteed
to exist nor can the ansatz required be very obviously constrained by the goal
they are meant to achieve. Furthermore, a different spacetime means one must
begin anew: for instance, Whiting’s ansatz breaks down completely in the limit
|a| →M so a very different strategy for the transformation was required to address
extremal Kerr in [10].

The main new result introduced in this talk is a different approach to Theorem 3.
In a seminal paper, Leaver [6] obtains a condition for a frequency triple (ω,m,Λ)
to correspond to a nontrivial mode solution: a continued fraction equation where
each term is explicit in the Kerr black hole parameters, frequency parameters and
s. Our novel contribution is

Theorem 4 (Hidden symmetries). Consider the setup of Theorem 3 with |a| < M .
Define “masses”

(3) m1 = s+ 2iMω , m2 =
2iM2ω − am√

M2 − a2
, m3 = −s+ 2iMω .

Then, Leaver’s condition on the mode solution spectrum of (1) is invariant under
any permutations of (m1,m2,m3).

Theorem 4 was previously conjectured to hold in [1, 5]. While the invariance in
exchangingm1 and m2 is present in the radial ODE for u[s], the symmetries m1 ↔
m3 and m2 ↔ m3 are not symmetries of the ODE; they are symmetries of the
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its point spectrum. Hence, such interchanges lead to new, isospectral, ODEs. For
instance, swapping m1 and m3 yields (1) with s replaced by −s; thus Theorem 4
recovers the Teukolsky–Starobinsky identities. More interestingly, swapping m2

and m3 produces a completely different equation to (1), which is nevertheless
familiar: Whiting’s equation! The upshot is that we are able to reprove Theorem 3
bypassing the classical integral transformation method completely.

Our method is also more flexible to changes in the spacetime. As an example, we
show that a similar statement to Theorem 4, with four “masses”, holds for Kerr-de
Sitter. This allows us to rule out existence of nontrivial mode solutions for some
superradiant frequencies, uniformly in the subextremal black hole parameters.
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Singularity theorems for C1-Lorentzian metrics

Melanie Graf

The classical singularity theorems of S. Hawking and R. Penrose show that a
Lorentzian manifold with a smooth (or at least C2) metric satisfying certain curva-
ture and causality conditions cannot be causal geodesically complete. Since many
physical spacetimes have metrics whose regularity lies significantly below C2 it is
natural to ask whether these theorems continue to hold for lower-regularity metrics
– a question that was already raised in [4, Sec. 8.4] and emphasized in the review
[9] but has proven to be very difficult and only recently begun being rigorously
explored even for metrics that are still C1,1, cf. [5, 6].
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I presented some recent results from [3] concerning proofs of both the Hawking
and the Penrose singularity theorem for C1-Lorentzian metrics – a decisive step
down in regularity from the previous results for C1,1-metrics because (a) the curva-
ture is now merely distributional and no longer locally bounded and (b) geodesics,
defined as solutions of the geodesic equation, will generally be non-unique (we do,
however, still have classical existence of solutions). The proofs required significant
sharpening of earlier estimates for the curvature of approximating smooth metrics,
developing stability properties of long existence times for causal geodesics and, in
case of the Penrose theorem, finding an appropriate formulation of a distributional
version of the null energy condition.

Concretely, the two main results of [3] are:

Theorem 1 (C1 Hawking theorem, [3]). A spacetime with C1-metric is future
timelike geodesically incomplete (i.e., there exists an inextendible future directed
timelike geodesic not defined on all of [0,∞)) if

(i) it satisfies the distributional strong energy condition, i.e., Ric(X ,X ) is a
non-negative distribution for all smooth timelike vector fields X

(ii) there exists a compact smooth spacelike hypersurface Σ in M and
(iii) the future convergence k := g(H, ν) (where ν is the future unit normal to

Σ and H is the mean curvature vector of Σ) is positive

Theorem 2 (C1 Penrose theorem, [3]). A spacetime with C1-metric is future
null geodesically incomplete (i.e., there exists an inextendible future directed null
geodesic not defined on all of [0,∞)) if

(i) it satisfies the distributional null energy condition (a generalization of the
classical null energy condition to this lower regularity; to be defined below),

(ii) there exists a non-compact Cauchy hypersurface in M ,
(iii) and there exists a trapped surface S (i.e., a compact smooth achronal space-

like co-dimension 2 submanifold with past-pointing timelike mean curva-
ture vector field H)

Taking the approximation approach of previous works on low-regularity singu-
larity theorems a step further, the guiding idea for the proof was the following: If
one could prove that assumptions (i)-(iii) and timelike (respectively null) geodesic
completeness are stable (in a suitable topology), then we could aim to approximate
g by suitable smooth metrics gǫ (e.g. via convolution) and for ǫ small enough, the
smooth gǫ would contradict the classical Hawking or Penrose theorem. In trying
to implement this strategy one notices readily that (ii) and (iii) are stable1. Look-
ing at geodesic completeness, it can be shown that both causal and null geodesic

1Conditions (iii) (and (ii) in Hawking’s theorem) are stable under C1
loc

-convergence because
they (at most) involve first derivatives on a compact subset. Stability of global hyperbolic-
ity/Cauchy hypersurfaces is well-known and holds even for merely continuous metrics and does
not require convergence of derivatives (but it does require fast-enough convergence at infinity,
provided by, e.g., C0

fine
-convergence, or alternatively, that one restricts oneself to approximate

only with metrics with narrower lightcones such that any Cauchy hypersurface for the original
metric is also a Cauchy hypersurface for the approximating metrics irrespective of their closeness).
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completeness together with global hyperbolicity are stable under C1
fine-convergence

(cf. [3, Thm. 2.17]). However the proofs of the C1 singularity theorems only need
the following weaker “almost stability” result [3, Prop. 2.11]: Let g, gǫ ∈ C1,
gǫ → g in C1

loc, let K ⊆ TM be compact and assume that all g-geodesics starting
in K are defined on [0,∞). Then for any N ∈ N there exists ǫ0(N,K) such that
for all ǫ ≤ ǫ0(N,K) all gǫ-geodesics starting in K are defined on [0, N ] and the
subset of TM spanned by all their tangent vectors is relatively compact.

To discuss the formulation and “almost stability” of the energy conditions, let us
focus on the null energy condition: Note first that since Ric is a tensor distribution
of first order, one still could formulate a distributional null energy condition by
demanding non-negativity for the Ricci of C1-null vector fields. The problem is
that being null isn’t stable under approximations (being null is almost stable, but
since Ric is no longer locally bounded that isn’t enough). Therefore, we need a
definition which, roughly speaking, demands that Ric is close to non-negative for
vector fields close to being null, leading to the following

Definition 3 (Distributional null energy condition, [3]). For any compact K ⊆M
and any δ > 0 there exists ǫ(δ,K) s.t.

(Ric(X ,X ))|U > −δ (as a distribution on U)

for any (local) smooth vector field X ∈ X(U) (U ⊆ K, open) with ||X ||h = 1
(where h is a fixed Riemannian background metric) and |g(X ,X )| < ǫ(δ,K) on U .

This still reduces to the usual definition if g is C2 (and also to the “a.e. non-
negative for locally Lipschitz null vector fields”-null energy condition for C1,1-
metrics from [6]). The condition ||X ||h = 1 is added to really only pose a restric-
tion on the “almost null directions”: Else all distributions Ricii would be locally
bounded from below irrespective of the causal character of ∂i.

Using well-constructed approximations ǧǫ ≺ g (defined via a standard smoothing-
via-convolution of g with the addition of a small correction term to achieve that
ǧǫ ≺ g, i.e., that ǧǫ ≤ 0 =⇒ g(X,X) < 0) and precise estimates based on
Friedrich’s lemma type arguments, I obtained the following almost stability state-
ment [3, Lem. 5.5]: If a C1-Lorentzian metric g satisfies the distributional null
energy condition, then for any compact K ⊆M , c1, c2 > 0 and δ > 0, there exists
ǫ0 > 0 (depending on K, δ and c1, c2) such that ∀ǫ < ǫ0:
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∀X ∈ TM |K with 0 < c1 ≤ ||X ||h ≤ c2 with ǧǫ(X,X) = 0 :

Ric[ǧǫ](X,X) > −δ
Note that, by standard index form or Raychaudhuri equation methods, for δ

small enough this will imply that ǧǫ-geodesics, satisfying appropriate initial condi-
tions (e.g., null geodesics starting orthogonally to the trapped surface) and whose
tangent vectors remain within the fixed compact set K (the existence of a suitable
such set follows from the “almost stability” of timelike/null geodesic complete-
ness) must encounter a focal point at a parameter less than some explicit constant
depending on the initial convergence and δ. From here on out the contradiction
follows essentially analogously to the classical theorems.

A next significant step would be to obtain singularity theorems based on these
distributional energy conditions also for Lorentzian metrics which are only Lips-
chitz continuous. The importance of this regularity is twofold: On the one hand
it substantially increases the amount of admissible physical examples. On the
other hand, the bulk of causality theory remains valid and geodesics in the sense
of Filippov are now reasonably well understood, see [7], making it a little more
tractable mathematically. However, the estimates used to obtain the almost en-
ergy conditions for the approximating metrics are very sharp, so it remains to be
seen whether there is room for improvement.

Further, there are already Hawking-type singularity theorems available in the
new framework of synthetic Lorentzian geometry, cf. [1, 2], and it would cer-
tainly be worthwhile investigating a) how exactly these theorems relate to the
C1-Hawking theorem and b) what tools/new developments one would need for a
synthetic version of a Penrose-type theorem.
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The characteristic gluing problem of general relativity

Stefan Czimek

(joint work with Stefanos Aretakis and Igor Rodnianski)

In collaboration with Aretakis and Rodnianski, the author initiated in [1] the study
of the characteristic gluing problem of general relativity:

Given two spacelike 2-spheres S1 and S2 in spacetimes (M1,g1) and (M2,g2),
respectively, is it possible to glue (M1,g1) and (M2,g2) along an outgoing null
hypersurface H leading from S1 to S2 (as solution to the Einstein equations)?

In general, there are obstacles to characteristic gluing. First, the Raychauduri
equation implies monoticity properties along null hypersurfaces which act as ob-
struction to gluing general spacetimes. Second, more fundamentally, in [1, 2] an
∞-dimensional space of obstructions to characteristic gluing near Minkowski at
C2-regularity is identified. In [1, 2] it is shown that this obstruction space stems
from conservation laws of the linearized Einstein equations at Minkowski along null
hypersurfaces. Importantly, the obstruction space splits into two components:

(1) An ∞-dimensional space of gauge-dependent conserved charges which can
be adjusted by applying gauge perturbations to the gluing data.

(2) A 10-dimensional space of gauge-invariant conserved charges which can in
general not be adjusted by gauge perturbations.

It is moreover shown that one can glue transversally to the obstruction space by
using the freedom of prescribing the characteristic seed in this gluing problem (see
[1, 2]). In other words, the conservation laws are the only obstacles in this problem
near Minkowski. Concluding the above, the following is a rough summary of the
so-called “codimension-10 characteristic gluing” of [1, 2].

Theorem (Codimension-10 gluing [1, 2]) Assume that the spacetime geometries
around the spheres S1 ⊂ (M1,g1) and S2 ⊂ (M2,g2) are close to the flat ge-
ometries around the round spheres of radius 1 and 2 in Minkowski spacetime,
respectively. Then the following holds.

(1) There exists a perturbation of the sphere S2 to a nearby sphere S′
2 ⊂

(M2,g2) such that one can characteristically glue with C2-regularity from
S1 to S′

2 along a null hypersurface H′
[1,2] up to the 10 gauge-invariant

charges.
(2) Using characteristic gluing, it is possible to construct Cm+2-gluings for any

integer m ≥ 0 along spacelike hypersurfaces – up to the 10-dimensional
space of gauge-invariant charges.

In the characteristic gluing along a null hypersurface H, one can glue higher-
order H-tangential derivatives without further obstruction: The additional obsta-
cles to Cm+2-characteristic gluing are only due to conservation laws for higher
H-transversal derivatives. Moreover, to deduce spacelike gluing result from char-
acteristic gluing, the local existence result [8] for the characteristic Cauchy problem
is used.
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In [1, 3] a geometric characterization of the 10 gauge-invariant charges in terms of
the ADM integrals for energy, linear momentum, angular momentum and center-
of-mass is given. Subsequently, the above characteristic gluing near Minkowski can
be applied to glue asymptotically flat spacetimes to Kerr black hole spacetimes.

Theorem (Gluing to Kerr [1, 3]) Let (M,g) be an asymptotically flat spacetime.
Then the following holds.

(1) There exists a Kerr spacetime (MKerr,gKerr) such that far out in (M,g)
one can characteristically glue (M,g) to (MKerr,gKerr) with C2-regularity.
The Kerr spacetime (MKerr,gKerr) and (M,g) have almost identical ADM
energy, linear momentum, angular momentum and center-of-mass.

(2) Using characteristic gluing, it is possible to construct Cm+2-gluings to Kerr
for any integer m ≥ 0 along spacelike hypersurfaces.

In particular, (2) above provides an alternative proof of the ground-breaking
Corvino-Schoen gluing [6, 7] for spacelike initial data of the Einstein equations.

Another important aspect of characteristic gluing is that due to the transport
nature of the null constraint equations, one can prove localization results. The
following is a simplified version of characteristic localization, we refer to [1] for a
precise statement.

Theorem (Characteristic localization [1, 2]) Let (M,g) be a spacetime, and let
H ⊂ M be a null hypersurface connecting two spheres S1 and S2 in M. Let
K ′ ⊂⊂ K ⊂⊂ S2 be two angular regions. If the induced characteristic data on H
is sufficiently close to the characteristic data on the null hypersurface connecting
the round spheres of radius 1 and 2 in Minkowski, then there exists a localization,
that is, characteristic initial data on H which agrees with the given characteristic
initial data on S1 and in the angular region K ′ along H, and agrees with the trivial
data of the round sphere of radius 2 in Minkowski in the complement of the angular
region K on S2.

It is shown in [1] that the above characteristic localization yields an alternative
proof of the Carlotto-Schoen localization [5] of asymptotically flat spacelike initial
data without loss of decay. This resolves an open problem in this direction, see
Open Problem 3.18 in [4].
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Numerical Simulations of Spacetime Singularities

David Garfinkle

(joint work with Frans Pretorius, Paul Steinhardt, Woei-Chet Lim)

This talks reports on the results of two different projects involving computer sim-
ulations of the approach to spacetime singularities. One[1] involves the so-called
“ekpyrotic” cosmological scenario. The other[2] involves the appearence of small
scale features called “spikes” during the formation of singularities described by the
vacuum Einstein equation.

Starting with the work of Penrose[3] it has been known that spacetime singu-
larities can form in physically realistic situations: notably gravitational collapse
to form a black hole, and the Big Bang at the start of the universe. However, the
Penrose theorem gives very little information about the nature of singularities,
stating only that at least one causal geodesic is incomplete.

To address this issue, Belinskii, Khalatnikov, and Lifschitz[4] (usually known as
BKL) conjectured that (in an appropriate foliation) spacetime singularities have
the property that time derivative terms in the field equations are much larger
than space derivative terms. Thus the dynamics of each spatial point effectively
decouples from those at all other points, and each point is effictively its own
homogeneous spacetime (though a different homogeneous spacetime at each point).
To test the BKL conjecture, Berger and Moncrief[5] began a research program of
performing computer simulations of the approach to spacetime singularities to
see whether the singularities are accurately described by the BKL picture. For
reasons of numerical convenience, most simulations of spacetime singularities are
done for the case where the Cauchy surface is T 3 (thus compact Cauchy surfaces).
Furthermore singularities of the BKL type are all spacelike. Thus this approach
does not address the null singularities that form in asymptotically flat gravitational
collapse.

The simulations reported in this talk use methods introduced by Uggla et al.[6]
Here one uses a tetrad, and the variables evolved are the connection coefficients
of the tetrad divided by the mean curvature. These variables are scale invariant
and remain finite as the singularity is approached. The simulations use a constant
mean curvature foliation and use the logarithm of the mean curvature as a time
coordinate. Thus the singularity is approached in the limit of infinite coordinate
time (though at finite proper time).

One striking feature of the Big Bang is that it is a very special type of singu-
larity: homogeneous, isotropic, with vanishing Weyl tensor. How did our universe
start in this special way? One possible answer (which is quite popular among
cosmologists) is the inflationary scenario:[7] here the universe began with a much
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more general type of singularity, but a subsequent period of exponential expan-
sion drove the universe to a homogeneous, isotropic state. An alternative is the
ekpyrotic scenario:[8] here there is a contracting universe, and the mechanism that
drives the universe to a homogeneous, isotropic state is a scalar field with a po-
tential of the form V (φ) = −V0ecφ where V0 and c are positive constants. To
complete this scenario, one would also need a different mechanism to cause the
universe to “bounce” from a contracting phase to an expanding phase.

For convenience, most treatments of either of these cosmological scenarios use
universes that start off nearly homogeneous and isotropic to begin with. But this
is certainly not adequate to test the contention that this is a robust smoothing
mechanism that works on generic initial conditions. In contrast, we perform nu-
merical simulations[1] using the methods described above of conditions far from
homogeneity and isotropy. We find that with the potential given above these
generic conditions do indeed evolve to approach homogeneity and isotropy as they
approach the singularity. Essentially all the energy contained in the shear and
curvature variables is transferred to the scalar field variable.

From the mathematical point of view, we note that there are proofs of the
stability of Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes with a free
scalar field.[9] We suspect that one could obtain stronger versions of such results
(and that the proof would be easier) in the case where the scalar field has an
ekpyrotic potential. The reason for these expectations is that in the case treated
in [9] the shear variables do not become negligible: they simply do not grow
any faster than the mean curvature. In contrast, our numerical simulations of the
ekpyrotic scenario indicate that as the singularity is approached the shear becomes
negligible compared to the mean curvature.

The simulations of [5], treating spacetimes with two spatial symmetries, found
that at most spatial points the dynamics were as anticipated by BKL. However,
there were isolated points at which narrow features formed, and that these features
became ever narrower as the singularity was approached. These features later came
to be known as “spikes.” In [2] we use a combination of analytic approximation
methods and exact (i.e. without any approximation) numerical simulations of the
vacuum Einstein field equations to elucidate the nature of these spikes. We find
that rather than being an exception to BKL dynamics, spikes are actually a con-
sequence of them. The BKL dynamics at each spatial point is the following: there
are comparatively long “Kasner epochs” in which the behavior is that of a Kas-
ner spacetime. These epochs are punctuated by comparitively short “transitions”
from one Kasner epoch to another. We find that the transitions are driven by a
particular term in the Einstein field equations, and that this term vanishes on sur-
faces of co-dimension one. At these surfaces, spikes form. That is, transitions to
the new Kasner epoch occur away from the surface, while the surface itself is stuck
in the old Kasner epoch. The surfaces of co-dimension one are effectively isolated
points in the case of two spatial symmetries (as in the simulations of [5]), curves
in the case of one spatial symmetry, and two-surfaces in the case of no symmetry.
Our analytic approximation using BKL dynamics yields formulas for the shape
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of the spikes and for the dependence of their width as a function of time. Since
spikes are essentially co-dimension one phenomena (i.e. everything about them
depends only on the spatial varible that is perpendicular distance from the spike
surface) the behavior of the spike is the same regardless of the group of spatial
symmetries. Our numerical simulations show that these analytic appoximations
provide a good description of spike behavior. Furthermore our simulations show
that eventually the spike becomes sufficiently steep that spatial derivative terms
in the field equations, rather than remaining negligible, eventually become suffi-
ciently strong to disrupt the spike and cause it to disappear. Thus our simulations
show that ultimately the spikes are ephemeral.
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Bartnik mass minimizing initial data sets and improvability of the
dominant energy scalar

Lan-Hsuan Huang

(joint work with Dan A. Lee)

In this talk, we introduce the concept of improvability of the dominant energy
scalar, and we derive strong consequences of non-improvability. In particular,
we give an initial data set characterization of a null perfect fluid whose velocity
is parallel to a Killing vector field. Using those main results, we characterize
ADM mass minimizing initial data sets which makes substantial progress toward
Bartnik’s stationary conjecture. Along the way we observe that in dimensions
greater than eight there exist pp-wave counterexamples (without the optimal decay
rate for asymptotically flatness) to the equality case of the spacetime positive mass
theorem. As a consequence, we find counterexamples to Bartnik’s stationary and
strict positivity conjectures in those dimensions.
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Before we describe those main results, we recall some basic definitions. An initial
data set is a triple (U, g, k), where (U, g) is an n-dimensional Riemannian manifold
and k is a symmetric (0, 2)-tensor onM . The Einstein constraint map Φ is defined
by

Φ(g, k) =
(
Rg − |k|2g + (trgk)

2, divgk − d(trgk)
)
=: (2µ, J).

We say that (g, k) is vacuum if µ = 0, J = 0 everywhere in U . More generally, we
define the dominant energy scalar σ(g, k) := µ − |J |g, and the dominant energy
condition says σ(g, k) ≥ 0.

1. An initial data set characterization of a null perfect fluid

We start with a fundamental observation of V. Moncrief that gives an initial data
set characterization of a vacuum spacetime admitting a Killing vector field.

Theorem 1 (Moncrief [5], Cf. [3]). Let (U, g, k) be a vacuum initial data set.
Suppose that there exists a nontrivial lapse-shift pair (f,X) on U solving

DΦ|∗(g,k)(f,X) = 0.(1)

Then (U, g, k) sits inside a vacuum spacetime admitting a unique global Killing
vector field Y such that Y = 2fn+X along U , where n is the future unit normal
to U . A converse statement also holds.

A spacetime (N,g) is a null perfect fluid with velocity v, either future null
or zero, and pressure p if its Einstein tensor G(g) := Ric(g) − 1

2R(g)g can be
expressed as G(g) = pg + v ⊗ v. Note that this class of spacetimes includes (1)
the vacuum spacetimes with a cosmological constant (by letting v = 0 and p =
constant) and (2) the null dust (by letting p identically zero).

Our first result is a generalization of Theorem 1. In particular, it gives an initial
data set characterization of a null perfect fluid whose velocity v is parallel to a
Killing vector Y. Equation (1) for a general non-vacuum setting is replaced by

(⋆)
DΦ

∗

(g,k)(f,X) = 0

2fJ + |J |gX = 0.

The second equation in (⋆) is referred to as the J-null-vector equation for (f,X),
as the corresponding spacetime vector Y = 2fn+X is null. The operator Φ(g,k)

in the first equation of (⋆) is the modified Einstein constraint operator defined
by the author and J. Corvino in [2], in which they study initial data set gluing
satisfying the dominant energy condition. Fix an initial data (g, k), and for an
arbitrary initial data set (γ, τ) we define

Φ(g,k)(γ, τ) := Φ(γ, τ) + (0, 12γ · J)
where J is the one defined from (g, k).

Theorem 2 (Huang-Lee [4, Theorem 6]). Let (U, g, k) be an initial data set.
Assume there exists a nontrivial lapse-shift pair (f,X) on U solving the system (⋆),
and assume that f is nonvanishing1 in U . Then the following holds:

1The condition can be relaxed in the special case that σ(g, k) = 0. See [4, Section 6.2].
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(1) The dominant energy scalar σ(g, k) is constant on U .
(2) (U, g, k) sits inside a spacetime (N,g) that admits a global Killing vector

field Y equal to 2fn + X along U , where n is the future unit normal to

U , and (N,g) is a null perfect fluid with velocity v =

√
|J|

2f Y and pressure

p = − 1
2σ(g, k).

(3) If (g, k) satisfies the dominant energy condition, then g satisfies the space-
time dominant energy condition.

Conversely, let (N,g) be a null perfect fluid spacetime, with velocity v and
pressure p, admitting a global Killing vector field Y. Assume that v = ηY for some
scalar function η. Then p is constant, and for any spacelike hypersurface U with
induced initial data (g, k) and future unit normal n, if we decompose Y = 2fn+X
along U , then the lapse-shift pair (f,X) satisfies the system (⋆).

2. Improvability of the dominant energy scalar

The system (⋆) also arises from a seemly different point of view, relating to the
ADM mass minimizer in the positive mass theorem and Bartnik’s quasi-local mass.

In loose terms, for an initial data set (g, k), we say the dominant energy scalar
σ(g, k) is improvable if for small, compactly supported function u, there exists
compactly supported (h,w) such that the deformed initial data set (g + h, k +w)
satisfies

σ(g + h, k + w) ≥ σ(g, k) + u.

See [4, Definition 2] for a precise definition. The system (⋆) is a significant conse-
quence of non-improvability.

Theorem 3 (Huang-Lee [4, Theorem 5]). Let (Ω, g, k) be an initial data set (with
possibly nonempty boundary). Then either the dominant energy scalar is improv-
able in Int Ω, or else there exists a nontrivial (f,X) on Int Ω satisfying (⋆).

Theorem 3 is the key result. To prove it, we introduce a new infinite-dimensional
family of deformations from the modified constraint operator and show that gener-
ically, the adjoint linearizations of those modified operators are either injective, or
else kernel elements satisfy a null-vector equation.

3. Mass minimizing initial data sets and Bartnik’s conjectures

The most useful situation for improvability of σ(g, k) is used to deform the domi-
nant energy condition to the strict dominant energy condition in a compact subset.
In [4, Section 7.1], we show that an ADM mass minimizing (asymptotically flat)
initial data set (g, k) (among a suitable class of competitive initial data sets) must
have σ(g, k) ≡ 0 and that σ(g, k) is not improvable. There are several outstanding
conjectures on characterizing an ADM mass minimizing initial data set, including
the following one proposed by R. Bartnik in 1989.

Conjecture 4 (Bartnik’s stationary conjecture). Let (Ω0, g0, k0) be a compact
initial data set with smooth boundary, satisfying the dominant energy condition,
and suppose that (M, g, k) is a Bartnik mass minimizer for (Ω0, g0, k0). Then
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(IntM, g, k) sits inside a vacuum spacetime admitting a global timelike Killing vec-
tor field. Or in other words, it sits inside a vacuum (strongly) stationary spacetime.

The above results imply that a Bartnik mass minimizing initial data set is a
spacelike slice in a null dust spacetime having a Killing vector, which is null where
the spacetime is not vacuum. On the other hand, by finding asymptotically flat
spacelike hypersurfaces in a certain class of null dust spacetimes (the pp-waves)
having nonzero, null ADM energy-momentum vector, we get counter-examples to
Bartnik’s stationary conjecture in dimensions greater than eight. Those examples
are also the counter-examples to other closely-related conjectures: the equality
case of the spacetime positive mass theorem without the optimal fall-off rate and
Bartnik’s strict positivity conjecture.

We end this report with another long-standing conjecture of Bartnik. Some
recent progress has been made for the static case (i.e. k ≡ 0) (see [1] and the
references therein), but the general case is still widely open. The Bartnik boundary
data B(g, k) on the boundary Σ of an initial data set (g, k) is defined as

B(g, k) =
(
g|Σ, Hg, (k − (trk)g)(ν, ·)

)

where Hg is the mean curvature and ν is the unit normal vector on Σ.

Conjecture 5 (Bartnik’s stationary vacuum extension conjecture). Let (B3, g0, k0)
be an initial data set satisfying the dominant energy condition. Suppose the expan-
sion θ := Hg0 +trS2k0 on the boundary S2 is not everywhere less or equal to zero.
Then there exists a unique asymptotically flat, stationary vacuum initial data set
(R3 \B3, g, k) such that B(g, k) = B(g0, k0) on S

2.
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The non-linear stability of the Schwarzschild family of black holes

Gustav Holzegel

(joint work with Mihalis Dafermos, Igor Rodnianski, Martin Taylor)

The first part of the talk reviewed recent developments in the study of stabil-
ity of black hole solutions in general relativity focussing on the Einstein vacuum
equations with cosmological constant Λ,

Ric[g] = Λg .(1)

We refer here to [14], [11], [12], [18], [16, 19] and references therein.
The second and main part of the talk restricted to Λ = 0 in (1) and discussed

the dynamics of (1) near the Schwarzschild family of solutions to (1),

gM = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
.(2)

We recall that the nonlinear stability problem is naturally formulated in the con-
text of the Cauchy problem [4] for (1), which associates a unique maximal Cauchy
development, solving (1), to every vacuum initial data set.

Theorem 1 ([12]). For vacuum initial data sets sufficiently close to appropriate
Schwarzschild initial data, the resulting maximal Cauchy development

(i) possesses a complete future null infinity I+ whose past J−(I+) is bounded
to the future by a regular future complete event horizon H+,

(ii) remains globally close to Schwarzschild (2) in its exterior and
(iii) asymptotes back to a member of the Schwarzschild family as a suitable

notion of time goes to infinity,

provided that the initial data set itself lies on a codimension-3 “submanifold” of
the moduli space of vacuum initial data.

We note that the restriction on data is a necessary condition for the asymptotic
stability statement (iii) above. For as is well known, the Schwarzschild family (2)
is contained as the a = 0 subcase of the larger Kerr family gM,a. Outside our
codimension-3 submanifold, one expects solutions to necessarily asymptote to a
Kerr solution with a 6= 0, since the dimension of linearised Kerr solutions fixing
the mass is equal to 3 in our parametrisation.1

Central to the proof of Theorem 1 is the use of a double null gauge to break
the general covariance of (1). We emphasise that both the asymptotically sta-
ble codimension-3 submanifold itself and the double null gauges that we employ
must be constructed “teleologically”, i.e. on the basis of properties of their future
evolution. The same applies to the final mass parameter M of the Schwarzschild
solution gM to which our metric g asymptotically settles down. (Indeed, in general,
the only way to identify data for which (iii) holds, and to moreover determine M ,
is to evolve them towards the future under (1)!) Finally, the event horizon H+ will

1Theorem 1 can be compared with previous work of Klainerman–Szeftel [18], which restricted
to the class of polarised axisymmetric initial data near Schwarzschild. As proven in [12], the
class of [18] is contained as a set of infinite codimension in the codimension-3 set of Theorem 1.
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represent an asymptotic hypersurface of our double null gauge and in particular
is also only determined teleologically.

It is worth remarking that the global closeness of statement (ii) can be expressed
at the top order energy level with respect to the same quantity that measures a
suitable “initial” energy quantity, i.e. without loss of derivatives. In this sense, we
have obtained a true orbital stability statement. As is well known, however, the
supercriticality of the non-linearities of (1) means that the only path to proving
the statements (i) and (ii) is through a full asymptotic stability statement (iii),
and thus one does not expect to be able to obtain a statement involving (i)–(ii)
alone.

The necessary starting point to proving (iii) is a robust approach to linear sta-
bility around the expected asymptotic state. This was provided by our (purely
physical space based) method and framework introduced in [11], where we proved
the linear stability of the Kerr family around Schwarzschild, in double null gauge.
In particular, a corollary of [11] is that the Schwarzschild subfamily is itself linearly
asymptotically stable precisely for data lying on a codimension-3 subspace, which,
unlike the nonlinear setting, can be identified explicitly, as can the final linearised
mass parameter and the location of the event horizon. We note, however, that
the necessity of teleological normalisation of the double null gauge is already a
key difficulty of linear theory. There it can be fully understood by the notion of
(residual) pure gauge solutions, which are infinite dimensional families of explicit
solutions to the linearised system of equations corresponding to infinitesimal diffeo-
morphisms preserving the double null form of the metric. Adding and subtracting
such pure gauge solutions to a reference solution one can teleologically normalise
the solution with respect to asymptotic hypersurfaces like the horizon H+ and
future null infinity I+. A further crucial ingredient of the linear theory in [11]
is to establish decay of two linearised null curvature components, which satisfy a
decoupled wave equation in linear theory (the well-known Teukolsky equation [21])
and are moreover invariant under adding pure gauge solutions. This was achieved
by combining transformations originally discovered by Chandrasekhar [3] in the
context of mode solutions with analytical techniques developed in the last fifteen
years (see [1, 8, 2, 9, 15, 10]) for understanding dispersion of waves outside of black
holes. We note that decay for the Teukolsky equation has recently been obtained
for the entire subextremal range |a| < M of the Kerr family [20].

In addition to the linear theory of [11], the proof of Theorem 1 depends on
many insights developed over the years, starting from the monumental proof of
the stability of Minkowski space [7], for understanding the nonlinearities of (1),
in particular, in the most difficult radiation zone towards null infinity I+, where
null structure (cf. [17]) is paramount. This full understanding of the null structure
elucidated by the geometric gauge used here allows one to understand in our
black hole context subtle non-linear effects associated to radiation, for instance,
Christodoulou memory [5].

We finally comment briefly on the modulation theory required to produce the
codimension-3 family in Theorem 1. We decompose the space of initial data (which
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are prescribed on two characteristic hypersurfaces intersecting in a 2-sphere, see

[6]) into disjoint 3-parameter familiesD = D0+
∑1

m=−1 λmD
Kerr
m , whereD0 varies

over a suitable space. Here DKerr
m essentially prescribes the three ℓ = 1 modes of

the torsion on the sphere of intersection and the vector (λ−1, λ0, λ1) is a measure
of the size of the angular momentum of the data. We prove that given any d ∈ D0

we can find a (λ−1, λ0, λ1) such that the corresponding data set D converges to
Schwarzschild. This is realised by bootstrapping a collection of estimates for the
above 3-parameter family of initial data. The “final” angular momentum of the
solution is measured at the latest asymptotic sphere of the bootstrap region and
the family of data then appropriately restricted in the bootstrap to confine the
future angular momentum vector to a suitably small sphere, whose smallness is
inversely proportional to the Bondi-time along null infinity (consistent with how
all the other modes of the solution decay). In practice it is the topological degree of
the map from the space of λ’s to the space of angular momentum in the future that
is bootstrapped and implies that at every stage of the bootstrap the set of allowed
λ’s contains a tuple (λ−1, λ0, λ1) that gets mapped to zero angular momentum.
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On Strong Cosmic Censorship for Λ < 0

Christoph Kehle

The celebrated Strong Cosmic Censorship conjecture due to Penrose [1] states that
for generic initial data for the Einstein equations

(1) Rµν [g] = Λgµν ,

or more general the Einstein–Maxwell system (or other reasonable matter models)

(2) Rµν [g] = Λgµν + 2

(
Fλ
µFλν − 1

4
gµνFλκF

λκ

)
,∇µFµν = 0,∇[µFνλ],

the corresponding unique maximal solution is inextendible as a suitably regular
Lorentzian manifold. The word ‘generic’ is clearly necessary in the conjecture as
the explicit Kerr–(A/dS) black hole solutions (M, gΛ,M,a) to (1) or the Reissner–
Nordström–(A/dS) black hole solutions (M, gΛ,M,Q) to (2) admit a future bound-
ary (a so-called Cauchy horizon) in the interior of the black hole across which
spacetime is smoothly but non-uniquely extendible (assuming a 6= 0, Q 6= 0, re-
spectively). Thus, a natural starting point to address the issue of regular Cauchy
horizons and the validity of the Strong Cosmic Censorship is to study the problem
around Kerr–(A/dS) or Reissner–Nordström–(A/dS).

In addition to specifying a suitable notion of genericity for the Strong Cosmic
Censorship conjecture, one also has to make precise in which regularity class the
solution is inextendible. The strongest, most definitive resolution of the conjecture
would be a proof of the so-called C0-formulation, where generically, spacetime is
inextendible as a Lorentzian manifold with continuous metric.

In the remarkable work [2] Dafermos–Luk prove that the C0-formulation of the
Strong Cosmic Censorship conjecture is false for Λ = 0 and Λ > 0. They show that
perturbations settling down to Kerr (or Kerr–dS) admit a Cauchy horizon across
which the metric is continuously extendible. Nevertheless, it is still expected that
the weaker H1-formulation of Strong Cosmic Censorship remains true (at least
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for Λ = 0), for which generically the metric is conjectured to be inexendible with
square integrable Christoffel symbols.

Turning now to the case of negative cosmological constant Λ < 0, a first step
in addressing the validity of the C0-formulation of Strong Cosmic Censorship for
Λ < 0 is to consider its linear scalar analog for the conformal wave equation

�gψ − 2

3
Λψ = 0(3)

on Kerr–AdS and Reissner–Nordström–AdS. The linear scalar analog of the C0-
formulation of Strong Cosmic Censorship on the level of (3) states that solutions
to (3) arising from generic initial data on a spacelike hypersurface with reflecting
(Dirichlet or Neumann) boundary conditions at infinity blow up in amplitude
at the Kerr–AdS or Reissner–Nordström–AdS Cauchy horizon. At this point,
we note that the result [2] by Dafermos–Luk on the falsification for the fully
nonlinear C0-formulation of Strong Cosmic Censorship for Λ ≥ 0 was preceded by
the corresponding linear analog on the level of (3) in [3, 4]. A key ingredient to the
proofs in [3, 4] and in [2] is an inverse polynomial (Kerr) or exponential (Kerr–dS)
decay rate of solutions to (3) on the exterior of Kerr or Kerr–dS. For the present
Λ < 0 case, the dynamics on the exterior are radically different from the dynamics
for Λ = 0 and Λ > 0: More precisely, solutions ψ to (3) only decay at a sharp
inverse logarithmic rate [5, 6] for which the methods developed by Dafermos–Luk
manifestly do not apply. This could mean that the linear scalar analog of the
C0-formulation holds true after all for Λ < 0. It however turns out that despite
the slow inverse logarithmic decay on the Reissner–Nordström–AdS exterior, the
linear scalar analog of the C0-formulation is false for Reissner–Nordström–AdS.

Theorem 1 ([7]). Linear perturbations ψ solving (3) on Reissner–Nordström–
AdS and arising from regular Cauchy data posed on a spacelike hypersurface with
Dirichlet boundary conditions at infinity remain uniformly bounded

|ψ| ≤ C(4)

in the black hole interior and extend continuously across the Cauchy horizon.

A key insight in the proof of Theorem 1 is that the following two sources of
instability—which may lead to blow-up in amplitude at the Cauchy horizon—are
decoupled. On the one hand, the reason for the slow decay and the unstable behav-
ior on the exterior is a stable trapping phenomenon. This trapping is associated
with the high frequency part (|ω|, ℓ large) of the solution ψ, while the low fre-
quency part decays superpolynomially. In the black hole interior, however, it was
observed in [8] that low frequencies (|ω| small) measured with respect to the null
generator T = ∂t of the Cauchy horizon may lead to blow-up at the Cauchy hori-
zon due to an interior scattering pole at ω = 0. High frequencies can be controlled
in the interior by suitable energy fluxes on the event horizon. In that sense, for
Reissner–Nordström–AdS, the two sources of instability decouple in Fourier space
which finally led to a falsification of the linear scalar analog of the C0-formulation
of Strong Cosmic Censorship for Reissner–Nordström–AdS. One may still wonder
whether at least the linear scalar analog of the weaker, H1-formulation of Strong
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Cosmic Censorship holds true for Reissner–Nordström–AdS. This question was
answered in the affirmative.

Theorem 2 ([9]). Linear perturbations ψ solving (3) on Reissner–Nordström–
AdS and arising from generic regular Cauchy data posed on a spacelike hypersur-
face with Dirichlet boundary conditions at infinity have infinite local energy along
hypersurfaces intersecting transversally the Cauchy horizon CH, i.e. ψ fails to be
in H1

loc around any point on CH.

Together with Theorem 1, this settles the linear analog of the Strong Cosmic
Censorship conjecture for Reissner–Nordström–AdS.

For Kerr–AdS there is yet another layer of complexity. Due to the angular
rotation of the black hole, a frequency mixing phenomenon occurs and high fre-
quencies on the exterior can at the same time be low frequency if frequency is
measured with respect to the Killing generator of the Kerr–AdS Cauchy horizon
K− = T + ω−Φ. More precisely, as in the case of Reissner–Nordström–AdS, the
slowly decaying high frequency part of the solution is dominated by a quasi-discrete
set of high frequencies, so-called quasimode frequencies, which can be indexed by
ω ∈ (ωm,n,ℓ)n,n,ℓ. On the other hand, the zero frequency interior scattering poles,
which may lead to blow-up in amplitude of ψ at the Cauchy horizon, are located
at the discrete set of frequencies ω = ω−m, where m is the azimuthal number
and ω− is a constant only depending on the black hole parameters mass, angular
momentum and cosmological constant. One may now see, that the frequency de-
coupling phenomenon of Reissner–Nordström–AdS does not extend to Kerr–AdS,
and it is possible that high stably trapped quasimode frequencies ωn,m,ℓ can at the
same time be low frequency measured with respect to the Killing generator of the
Cauchy horizon in the sense that ωn,m,ℓ − ω−m is small. It turns out that generic
solutions to (3) blow up in amplitude at the Cauchy horizon if the above two sets
are sufficiently resonant. This naturally gives rise to a small divisors problem and
a generalized non-Diophantine condition. In particular, this non-Diophantine con-
dition was shown to hold true for a Baire-generic but Lebesgue-exceptional subset
of dimensionless black hole parameters m := M

√
−Λ, a := a

√
−Λ respecting the

Hawking–Reall bound. In order to state the following theorem, we denote with
P ⊂ R2 the set of all dimensionless mass and angular momentum parameters m,
a satisfying the Hawking–Recall bound.

Theorem 3 ([10]). There exists a subset PBlow-up ⊂ P such that the following
is true. Consider a Kerr–AdS black hole with parameters m, a ∈ PBlow-up. Then,
linear perturbations ψ solving (3) and arising from generic regular Cauchy data
posed on a spacelike hypersurface with Dirichlet boundary conditions at infinity
blow up in amplitude at the Cauchy horizon

‖ψ(x)‖L∞(S2) → ∞ as x→ CH.(5)
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Moreover, the set PBlow-up as a subset of P satisfies

• PBlow-up is dense,
• PBlow-up is Baire-generic (of second category),
• PBlow-up is a Lebesgue exceptional set (of Lebesgue measure zero).

We shall complement the above theorem with the following conjecture, which
is motivated by the proof in [10].

Conjecture 4 ([10]). There exists a subset PBounded ⊂ P such that the following
is true. Consider a Kerr–AdS black hole with parameters m, a ∈ PBounded. Then,
linear perturbations ψ solving (3) and arising from regular Cauchy data posed
on a spacelike hypersurface with Dirichlet boundary conditions at infinity remain
uniformly bounded at the Cauchy horizon

|ψ| ≤ C.(6)

Moreover, the set PBounded as a subset of P satisfies

• PBounded is dense,
• PBounded is Lebesgue-generic (of full Lebesgue measure),
• PBounded is a Baire-exceptional (of first category).
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Periodic non-linear waves on an AdS background

Jacques Smulevici

(joint work with Athanasios Chatzikaleas)

The simplest solutions to the Einstein equations Ric(g) = Λg are the Minkowski
space (Λ = 0), the de-Sitter space (Λ > 0) and the Anti-de-Sitter (AdS) space (Λ <
0). While the small data dynamics for Λ ≥ 0 are now very well understood, little is
known rigorously in the Anti-de-Sitter case. One of the first difficulties is the lack
of global hyperbolicity of the AdS space, which forces every dynamical property
of asymptotically AdS spaces to be dependent on a choice of boundary conditions
imposed at infinity. In this setting, two conjectures have been formulated in the
two opposite regimes of reflective and dissipative boundary conditions.

Conjecture 1 (Dafermos-Holzegel, Anderson). The AdS space is unstable for
reflective boundary conditions.

Conjecture 2 (Holzegel-Luk-Smulevici-Warnick). The AdS space is stable for
dissipative boundary conditions.

In the talk, I focused on the case of reflective boundary conditions. The instabil-
ity conjecture was first seriously investigated in the work of Bizón and Rostworoski
[1] for the spherically-symmetric Einstein-Klein-Gordon (EKG) system. They in-
deed verified numerically the presence of the instability and suggested a Fourier
space mechanism as the source of the instability. This pioneering work led to many
important developments, see the review [2]. While there is no rigrorous proof of
the instability in this setting, based on a physical space mechanism, Moschidis
has recently established the instability of the AdS space for various spherically-
symmetric Einstein-matter models [3]. Another important work in this context
is the one of Maliborski and Rostworowski [4] who constructed numerically small
data time-periodic solutions for the EKG system. They also explained how to
construct a formal serie representing their solutions via a Fourier decomposition
and an expansion in terms of the smallness parameter. This shows in particular
that not all data in the neighborhood of AdS are expected to exhibit the insta-
bility mechanism. Despite several subsequent works, see for instance [5], there
are no proof of the existence of such time periodic solutions yet. See however
[6] that rigorously prove the existence of a formal serie in the syle of Maliborski
and Rostworowski and who also derived sharp asymptotics for some of the Fourier
coefficients of the EKG system.

The aim of the talk was to present recent results [12] obtained in collaboration
with Athanasios Chatzikaleas where we prove the existence of such time-periodic
solutions for several semi-linear toy models on either a fixed AdS space or the
Einstein cylinder Rt × S3. The Einstein cylinder appears naturally in this contect
since the AdS is conformal to one-half of the Einstein cylinder, so that conformally
covariant equations on an AdS space can be mapped to the Einstein cylinder,
modulo appropriate boundary conditions. The equations we considered are the
conformal cubic wave equation and the spherical symmetric Yang-Mill equations.
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These equations have been proposed as good toy models for dynamical problems
related to AdS and have been the subject of several previous works, mostly related
to the behaviour of the associated resonance systems [8, 9]. In [10], an approach in
the style of [4] was developped using formal pertubative series. In the same work,
it is observed that small initial data which are proportional to the lowest mode of
the linearized operator lead to time-periodic solutions of the spherically symetric
conformal cubic wave equation. Unfortunately, this simple behaviour does not
generalize to the higher modes, since data initially proportional to any of those
will typically excite all the other modes.

In the talk, I focused on the conformal cubic wave equation on the Einstein
cylinder within spherical symmetry, which reduces to the equation

(1) −∂2t u+
1

sin2(x)
∂x
(
sin2(x)∂xu

)
− u = u3,

where u := u(t, x), x ∈ (0, π). Solutions which are odd with respect to x = π/2
correspond, after a conformal transformation, to solutions to the conformal cubic
wave equation on AdS with Dirichlet boundary condition.

The construction of time-periodic solutions in the presence of confined dynamics
has a long history and is still an active subject of research related to the so-called
KAM theory for PDEs. The starting point is to consider the linear operator

Lu :=
1

sin2(x)
∂x
(
sin2(x)∂xu

)
− u,

acting on its natural domain. This is a self-adjoint operator, with compact resol-
vent, and thus it possess a complete set of orthonormal eigenvectors, denoted en
and corresponding eigenvalues ω2

n. In fact, one has en(x) :=
sinωnx
sin x , and ωn = n+1.

Consider now a formal solution ψ(x) of size ǫ << 1 centered around a one
mode-solution corresponding to the eigenvector eγ and admitting a representation
of the form

ψ(t, x) = ǫ cos τeγ(x) +

∞∑

λ=1

(
∑

m=0

f
(m)
2λ+1(τ)em(x)

)
e2λ+1,

where τ = Ωt and Ω = ωγ + 0(ǫ2) is a pertubation of the original frequency
associated to eγ . After plugging the ansatz into the equations, one obtain an
infinite system of harmonic oscillator equations of the form

d2

dτ2
f
(m)
2λ+1 +

(
ωm

ωγ

)2

f
(m)
2λ+1 = S

(m)
2λ+1,

where the source terms S
(m)
2λ+1 arise from the non-linearity and involves products

of the f coefficients. Depending on the oscillations of the source terms, we may
then obtain periodic solutions to the above odes or solutions growing in time, the
so-called secular terms.

The work [4] consists for instance in fine tuning the initial data to construct
numerical solutions which contains no secular terms. On the other hand, it seems
difficult to then prove a posteriori that the resulting formal serie actually converges
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to a regular solution. Thus, we do not rely on such arguments and instead we use
a theorem of Bambusi and Paleari [11]. Based on this approach, we are able to
prove the following theorem.

Theorem 3. Let eγ be an eigenvector of the linearized operator L. Let s > 3/2.
Then, there exists an uncountable set E containing 0 as an accumulation point,
such that any initial data

u(t = 0) = ǫen, ∂tu(t = 0) = 0,

with ǫ ∈ E, gives rise to a time–periodic solution uǫ to (1) with period 2π
δǫ
, such

that

(1) uǫ ∈ H1([0, 2π/δǫ] ;H
s), and δǫ ≃ 1,

(2) uǫ stays close to the solution to the linearized equation with the same initial
data as above and zero initial velocity.

Remark 4. The theorem of Bambusi and Paleari [11] on which the proof of The-
orem (3) requires the existence of a non-degenerate zero for a non-linear operator
obtained by averaging the equation in time along the linear flow and a projection
on the space of initial data. In the simple setting of the spherically symmetric con-
formal cubic wave equation, the operator can be computed explictly and one can
easily verifies that, after a suitable rescaling, any of the eigenvectors en are zeros.
On the other hand, the non-degeneracy condition amount to inverting an infinite
dimensional system of linear equations.
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Some Rigorous Results about the Past and Future Behavior of
Expanding Vacuum Spacetimes

John Lott

Suppose that we have a cosmological spacetime M , i.e. it is globally hyperbolic
with a compact Cauchy hypersurface. I’m interested in expanding vacuum space-
times. By Hawking’s singularity theorem, there is a past singularity. Two basic
questions:
1. What is the behavior as one approaches the past singularity?
2. What is the future behavior?

We will describe some rigorous results from [1, 2, 3]. For concreteness, we assume
here a 3+1 dimensional spacetime, with compact spatial slices. (Some of the
results work in any dimension, and for noncompact spatial slices.) We also assume
a constant mean curvature (CMC) foliation by compact spatial hypersurfaces,
whose mean curvatures H approach −∞ in the past. Define the Hubble time by
t = − 3

H .
Using the foliation, one can write the metric as

g = −L2dt2 + h(t),

where L = L(t) is a function on the 3-manifold X and h(t) is a Riemannian metric
on X . Let K(t) denote the second fundamental form. Let us define a rescaling as
follows. Given s > 0, put

gs = − L2(su) du2 + s−2h(su).

It is isometric to s−2g, and so is also a vacuum solution, with Hubble time u.
Hence we put

Ls(u) =L(su),

hs(u) =s
−2h(su),

Ks(u) =s
−1K(su).

We now define a scale-invariant curvature condition.

Definition 1. A CMC vacuum solution is type-I if |Rm | ≤ Ct−2 as t→ 0.

The first main result characterizes when the t → 0 asymptotics are Milne-like.
Let M be the set of flat Milne spacetimes (0,∞)×H3/Γ.

Theorem 2. [3] If dvolh(t)(x) = O(t3) as t → 0 then the blowup rescalings gs
approach M as s→ 0.

That is, the original spacetime becomes increasing Milne-like, as measured
around the point x, as one approaches the initial singularity.

Next, we characterize Kasner-like asymptotics.

Definition 3. The CMC vacuum solution has asymptotically nonpositive spatial
scalar curvature if lim supt→0 supx∈X t2R(t, x) ≤ 0.
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Definition 4. (Kasner-like solutions)K is the set of type-I CMC vacuum solutions
with R = 0, L = 1

3 and |K|2 = H2.

Theorem 5. [3] Suppose that we have a type-I CMC vacuum solution. Suppose
that it has asymptotically nonpositive spatial scalar curvature. If t−1 dvolh(t)(x) is
(positively) bounded below as t → 0 then the blowup rescalings gs approach K as
s→ 0.

Mixmaster solutions do not quite have the asymptotics of the preceding theo-
rem. Instead, we have the following result.

Theorem 6. [3] Suppose that we have a type-I CMC vacuum solution. Suppose
that it has asymptotically nonpositive spatial scalar curvature. Suppose that for
each β > 0, dvolh(t)(x) fails to be O

(
t1+β

)
as t→ 0. Put τ = log(1/t), so τ → ∞

corresponds to approaching the singularity. Then as τ → ∞, the proportion of
τ-time that the solution spends near K goes to one.

There are related results about the future behavior of an expanding CMC vac-
uum spacetime, where one takes blowdown limits rather than blowup limits [1].
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The stability of charged black holes

Elena Giorgi

One of the fundamental problems in General Relativity is to understand the final
state of evolution of initial data for the Einstein equation. Through gravitational
collapse and dispersion of gravitational waves, the geometry to which solutions to
the Einstein equation are expected to relax outside the event horizon of a black
hole is the one given by the known stationary and axisymmetric explicit solutions:
the Kerr and the Kerr-Newman black hole.

The interaction between gravitational and electromagnetic fields in a spacetime
is governed by the Einstein-Maxwell equation. The Kerr-Newman metric is the
most general known explicit black hole solution to the Einstein-Maxwell equation,
and it is a 3-parameter family which describes the gravitational field around an
isolated rotating charged black hole of mass M , angular momentum Ma and elec-

tric charge Q, within the subextremal range
√
a2 +Q2 < M . The Kerr-Newman

metric generalizes the Reissner-Nordström solution (for a = 0), and also the Kerr
(for Q = 0) and Schwarzschild metric (for Q = a = 0), which are solutions to the
Einstein vacuum equation. As such, the Kerr-Newman spacetime plays a funda-
mental role in describing the final state of evolution in General Relativity.
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As part of the resolution of the description of the final state, we focus on the
issue of stability of the Kerr-Newman black hole, which consists in showing that
solutions to the Einstein equation which are given as small perturbations of the
initial data of such a black hole asymptotically converge in time to a member of the
Kerr-Newman family. The stability of the Kerr-Newman family can be analyzed
at different levels:

(1) the linear stability consists in the analysis of the linearized Einstein-Max-
well equation around the background metric gM,a,Q. It can be further
divided into (a) mode stability, and (b) full linear stability.

(2) the non-linear stability consists in the analysis of the full Einstein-Maxwell
equation for a perturbation of a member of the Kerr-Newman family.

The mode analysis (a) of the Einstein equation consists in analyzing only special
solutions, the so-called mode solutions, which are of the separated form

ψ(r, t, θ, φ) = e−iωteimφR(r)S(θ)(1)

where ω ∈ C is the time frequency, and m is the azimuthal mode. Because of
the integrability of the geodesic flow in the Kerr-Newman metric, functions of the
form (1) are solutions as long as R(r) satisfies a radial ODE and S(θ) satisfies
an angular ODE (which defines spheroidal harmonics Sωmℓ). The mode stability
consists in proving that solutions of the form (1) with finite initial energy do
not exponentially grow in time. The mode stability of Schwarzschild, Reissner-
Nordström and Kerr black hole was obtained as a combination of many results in
black hole perturbation theory by the physics community in the 70s and 80s, see
[10], [13], [1], [2], [11], [12].

Extensive progress has been obtained in the last fifteen years which allowed to
go beyond the mode analysis in Kerr spacetime, tackling the full linear stability
(b) for the linear wave equation. A robust geometric interpretation of the redshift
effect [3], a physical space analysis of the trapping region and the superradiance
[5], a hierarchy of r-weighted decay [4] all contributed to a complete understanding
of the boundedness of solutions to the linear wave equation.

Quite strikingly, the Kerr-Newman solution stands up as genuinely different
from the similar cases of Kerr or Reissner-Nordström, even in the simplest pos-
sible form of stability, i.e. the mode stability as studied by the black hole per-
turbation theory community. As stated by Chandrasekhar in Section 111 of [2],
“the methods that have proved to be so successful in treating the gravitational
perturbations of the Kerr spacetime do not seem to be applicable (nor suscepti-
ble to easy generalizations) for treating the coupled electromagnetic-gravitational
perturbations of the Kerr-Newman spacetime.” The techniques applied in those
early works, which relied on decomposition in frequency modes of perturbations
of the solutions, failed to be extended to the case of Kerr-Newman spacetime.

The Einstein-Maxwell equation governs the interaction between the gravita-
tional radiation, encoded in the left hand side of the equation (i.e. the curvature),
and the electromagnetic radiation, encoded in the right hand side (i.e. the elec-
tromagnetic tensor). From the study of perturbations of Kerr, we know that the
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gravitational and the electromagnetic radiation are transported by a spin-2 field
ψ[2] and a spin-1 ψ[1] respectively. When taken independently, the gravitational
and electromagnetic perturbations of Kerr satisfy the Teukolsky equation [11] for
spin s = ±2 or s = ±1 respectively. On the other hand, when considering coupled
electromagnetic-gravitational perturbations of Kerr-Newman, one should expect
a system of coupled Teukolsky equations, as in the case of Reissner-Nordström
[7] [8]. The issue in the analysis of a coupled system comes from the decomposi-
tion in modes. The mode decomposition of the Teukolsky variables involves the

spin s-weighted spheroidal harmonics S
[s]
mℓ(aω, cos θ) which are eigenfunctions of

the spin s-weighted laplacian. For a = 0, they reduce to the spherical harmonics

S
[s]
mℓ(0, cos θ) = Y

[s]
mℓ(cos θ). Spin-weighted spherical harmonics of different spins

are simply related through the angular operators appearing on the right hand side
of the coupled equations, and have the same eigenvalues. On the other hand, in the
general axisymmetric case, as in Kerr or Kerr-Newman, the spin-weighted spher-
oidal harmonics of different spins are not simply related through those angular
operators.

This in fact explains the “apparent indissolubility of the coupling between
the spin-1 and spin-2 fields” [2] for electromagnetic-gravitational perturbations
of Kerr-Newman, in contrast with Reissner-Nordström or Kerr. In treating the
coupled electromagnetic-gravitational perturbations of Kerr-Newman spacetime,
the decomposition in modes of the equations, which had the objective of simplify-
ing the analysis of the perturbations, actually makes them unsolvable.

Our approach to solve this issue is to abandon the decomposition in modes, and
perform a physical space analysis of the equations. Following the road map that
mathematicians have taken in the last few years in interpreting in physical space
the mode analysis done by the physics community, the Kerr–Newman solution
may be the case where a physical space approach could succeed where the mode
analysis in physics failed. Observe that our proof of boundedness of a general
solution through a physical space analysis will in particular imply the absence of
exponentially growing modes, therefore proving mode stability.

We derived [9] the equations governing the linear stability of Kerr-Newman
spacetime to coupled electromagnetic-gravitational perturbations. The equations
generalize the celebrated Teukolsky equation for curvature perturbations of Kerr,
and the Regge-Wheeler equation for metric perturbations of Reissner-Nordström.
Using a tensorial approach that was applied to Kerr [6], we produce a set of
generalized Regge-Wheeler equations for perturbations of Kerr-Newman, which
are suitable for the study of linearized stability by physical space methods. The
physical space analysis overcomes the issue of coupling of spin-1 and spin-2 fields
and represents the first step towards an analytical proof of the stability of the
Kerr-Newman black hole.
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Naked Singularities for the Einstein Vacuum Equations

Yakov Shlapentokh-Rothman

(joint work with Igor Rodnianski)

The presumed validity of Penrose’s Weak Cosmic Censorship Conjecture [11]
(WCCC) fundamentally undergirds the modern understanding of classical Gen-
eral Relativity in 3 + 1 dimensions:

Conjecture 1 (Weak Cosmic Censorship for the Einstein Vacuum Equations).
For generic Cauchy data which is complete, regular, and asymptotically flat, sin-
gularities in the corresponding maximal development are hidden inside a black
hole.

A singular spacetime which does not contain a black hole is referred to as a
“naked singularity.” A representative Penrose diagram is as follows:
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Here the curves {γi} represent a family of ingoing null geodesics which terminate
within a fixed affine time A > 0 and so that the initial velocity vectors {γ̇i(0)} are
all parallel transports of a fixed null vector along the asymptotically flat initial
cone.

We have stated the conjecture informally here. As with other fundamental ques-
tions in General Relativity (cf. the role of the regularity of Cauchy horizons in the
Strong Cosmic Censorship conjecture [4, 7, 8]), the precise meanings of “regular”
and “generic” are very important and, in principle, may affect the validity of the
conjecture.

Our main source of intuition regarding the WCCC is provided by a sequence of
works by Christodoulou [1, 2, 3] which both established the validity of the analogue
of the WCCC for the spherically symmetric Einstein-scalar field system and showed
that the assumption of genericity was necessary. (In fact, it is primarily due to
these works that is commonly understood that a genericity condition is needed in
the WCCC.)

Theorem 2. There exist naked singularities for spherically symmetric Einstein-
scalar field system! However, generically, naked singularities do not occur.

The naked singularities of Christodoulou are not smooth; the scalar field has a
derivative which is only Hölder continuous. However, the solutions are more reg-
ular than the so-called “solutions of bounded variation” for which Christodoulou
established a well-posedness result in [1], and thus we may consider them as le-
gitimate examples of a naked singularity. (It is nevertheless interesting to find
examples of naked singularities corresponding to smooth initial data.)

Given the existence of Christodoulou’s naked singularities, one is lead to im-
mediately ask about the existence of analogous solutions for the Einstein vacuum
equations. In joint and ongoing work with Igor Rodnianski we show that such
solutions do indeed exist.
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Theorem 3. There exist naked singularities for the Einstein vacuum equations.
Moreover, these solutions may be considered analogous to the solutions of Christo-
doulou.

As with Christodoulou’s solutions, these are not smooth spacetimes; a particu-
lar null derivative of the metric is only Hölder continuous. However, this singular
behavior is compensated by arbitrary regularity in all other directions and one ex-
pects a well-posedness result for the Einstein vacuum equations which encompasses
such data (cf. [9, 10]).

Both Christodoulou’s solutions and our solutions are self-similar. That is, there
exists a vector field K so that LKg = 2g. An important role is played by our pre-
vious work [12] which showed the existence of self-similar solutions which corre-
sponded to the formal expansions of Fefferman–Graham [5, 6]. In suitable double-
null coordinate system the vectorfield K for these solutions satisfies

(1) K = u∂u + v∂v,

and the singularity in the spacetime corresponds, formally, to (u, v) = (0, 0).
However, due to an underlying rigidity for Fefferman–Grahams expansions in

3+1 dimensional spacetimes, we cannot directly use these spacetimes in the proof
of our theorem. Instead, we find a fundamentally new type of self-similarity for
the Einstein vacuum equations where, along the past light cone of the singularity,
the self-similar vectorfield twists relative to the null generators. (In contrast,
Fefferman–Graham spacetimes always have that the self-similar vectorfield is null
along the past light cone of the singularity.) For these new solutions, if we work in
regular double-null coordinates (u, v̂) along the past light cone of the singularity,
the formula (1) must be changed to

(2) K = u∂u + (1− 2κ) v̂∂v̂, |κ| ≪ 1.

The following schematic diagram indicates the twisting of K:

γ

O

Here γ represents an orbit of the self-similar vectorfield, and the straight lines
correspond to the null generators of the cone.

This “twisted” self-similarity requires us to allow for certain derivatives of the
metric along this cone to be very large. A priori, one may be worried that this
largeness will result, in the region exterior to the cone, in the formation of a
trapped surface and hence a black hole. However, we identify a mechanism by
which certain of these twisted self-similar solutions quickly dampen this largeness.
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This damping mechanism allows us to globalize the construction and eventually
show that suitable choices of these twisted self-similar cones may be embedded in
a spacetime representing a naked singularity.
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From vacuum to dust to Vlasov

Jonathan Luk

(joint work with Cécile Huneau)

1. Main result

We present a work in progress concerning the high-frequency limit of vacuum
spacetimes. Specifically, we construct examples of sequences of vacuum spacetimes,
whose limit is a solution to the Einstein–massless Vlasov system (with a non-trivial
Vlasov field). See Section 2 for further background on this problem.

Our setup imposes U(1) symmetry. More precisely, we consider metrics on
M .

=M ×S1, with M
.
= [0, 1]×R2, which are translational invariant along the S1

direction. As is well-known, under this symmetry, the Einstein vacuum equations
(resp., the Einstein–massless Vlasov system) on M reduce to the Eisntein–wave
map system (resp., the Einstein–wave map–massless Vlasov system) on M .
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In what follows, we consider the following form of the Einstein–wave map–massless
Vlasov system on M :

(1)





Rµν(g) = 2∂µφ∂νφ+ 1
2e

−4φ∂µ̟∂ν̟ +
∫
S1
f2
ω∂µuω∂νuω dm(ω),

�gφ+ 1
2e

−4φg−1(d̟, d̟) = 0,
�g̟ − 4g−1(d̟, dφ) = 0,
2g−1(duω, dfω) + (�guω)fω = 0, ∀ω ∈ S1,
g−1(duω, duω) = 0, uω ↾{t=0}= x · ω, ∂tuω ↾{t=0}> 0, ∀ω ∈ S1.

where ω ∈ S1 parametrizes the direction of the Vlasov field (fω, uω), and m(ω)
is a probability measure on S1. (This parametrization of the Vlasov field will be
convenient for the proof; see the parametrix in Section 3 below.)

We will, in addition, impose an elliptic gauge stipulating that g takes the form

g = −n2dt2 +

2∑

i,j=1

δije
2γ(dxi + βidt)(dxj + βjdt)

with constant-t hypersurfaces being maximal (where δij denotes the Kronecker
delta).

The following is our main theorem:

Theorem 1 (Huneau–Luk, to appear). Given a generic, small, localized, smooth
solution (g0, φ0, ̟0, f0, u0,m0) to (1) on M in the elliptic gauge described above,
there exists a sequence of smooth solutions {(gn, φn, ̟n)}∞n=1 to the Einstein–wave
map system (i.e., solutions to (1) with f ≡ 0) on M in the same elliptic gauge
such that

‖gn − g0‖L∞ , ‖φn − φ0‖L∞ , ‖̟n −̟0‖L∞ ≤ λn,

‖∂(gn − g0)‖L4 , ‖∂(φn − φ0)‖L4 , ‖∂(̟n −̟0)‖L4 . | logλn|.
where λn is a decreasing sequence of positive numbers such that λn → 0.

2. Background

• Our result can be viewed in the context of conjectures of Burnett. In [1],
Burnett considered a sequence of vacuum spacetimes {gn}∞n=1 such that
in local coordinates

‖∂i(gn − g0)‖L∞ ≤ λ1−i
n , i = 0, 1.

He conjectured in the forward direction that the limit g0 must be isometric
to a solution to the Einstein–massless Vlasov system, and that, in the re-
verse direction, any solution to the Einstein–massless Vlasov system must
arise as such a limit of vacuum solutions.

• The only general result was obtained by Green–Wald [2], who showed that
the stress–energy–momentum tensor corresponding to the limit spacetime
must be traceless and satisfy the weak energy condition.

• In the case where the high-frequency oscillations are restricted to two
null directions adapted to a system of double null coordinates, a complete



Mathematical Aspects of General Relativity 2207

classification of the limit was achieved in [7] using the local well-posedness
theory for (what the authors called) angularly regular spacetimes in [6].

• Under the U(1) symmetry assumption and the elliptic gauge condition as
in Section 1, the forward direction of a version of Burnett’s conjecture was
established in our previous work [5] (see also [3]).

• As for the reverse direction of Burnett’s conjecture under the same sym-
metry and gauge conditions, a special case of Theorem 1 has been proven
in our earlier work [4]:

Theorem 2. Theorem 1 holds under the following additional assumptions
on (g0, φ0, ̟0, f0, u0,m0):
(1) The solution is, in addition, polarized, i.e., ̟0 ≡ 0.

(2) The measure m(ω) =
∑N

i=1 δωi
(ω) for some ωi ∈ S1, where δωi

(ω) is
the delta measure at ωi.

3. Ideas of the proof

• The strategy of the proof is as the title of the talk: “from vacuum to dust
to Vlasov”, i.e., we make use of the construction in Theorem 2 for which
the effective matter of the limiting spacetime consists of null dust, and
then take the limit as the number of family of dust → ∞.

• Our construction is based on a parametrix as follows. For every ω ∈ S1,
define fφ, f̟ so that f2 = (fφ)2 + 1

4e
−4φ(f̟)2 and

{
2g−1(duω, df

φ
ω ) + (�guω)f

φ
ω + e−4φg−1(d̟, duω)f

φ
ω = 0,

2g−1(duω, df
̟
ω ) + (�guω)f

̟
ω − 4g−1(d̟, duω)f

φ
ω − 4g−1(dφ, duω)f

φ
ω = 0.

Pick {ωA}NA=1 equally-spaced points on S1 so that

N∑

A=1

σ
(N)
A δωA

(ω) → m(ω)

in the weak-* topology (for constants σ
(N)
A ≥ 0,

∑N
A=1 σ

(N)
A = 1). Let

Fφ
A =

√
σ
(N)
A fφ

A, F̟
A =

√
σ
(N)
A f̟

A .

We then construct (φ,̟) by imposing

φ = φ0 +

N∑

A=1

a−1
A λFφ

A cos(
aAuA
λ

) + Eφ,

̟ = ̟0 +

N∑

A=1

a−1
A λF̟

A cos(
aAuA
λ

) + E̟,

for well-chosen constants aA. Here, Eφ and E̟ are error terms.
• The main goal is then to show that as λ → 0, N → ∞ (under a relation

λ
1
10 e4N

2 ≤ 1), the solution exists on the uniform time interval [0, 1]. The
estimates in the existence proof then imply the limiting properties.
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• Compared with [4], the main difficulty is that we only have
∑

A[(Fφ
A)2 +

(F̟
A )2] small, while the ℓ1 norm,

∑
A(Fφ

A + F̟
A ) → ∞ as N → ∞.

• In fact, the lack of a uniformly small ℓ1 bound as indicated above creates
difficulties for local existence even for very short (λ-dependent) time. Such
a local existence problem was solved by Touati in [8].

• One important new ingredient is to construct our parametrix with the
exact eikonal functions corresponding to the vacuum spacetime we are
studying, instead of the eikonal functions of the limit. This allows us to
consider fewer terms in the parametrix compared to our previous work,
though we must now also estimate the eikonal functions.

• An additional challenge, particularly for the wave energy estimates, is the
lack of N -independent L∞ estimates for ∂φ, ∂̟ and ∂g.
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Analyticity of quasinormal modes in the Kerr and
Kerr-de Sitter spacetimes

Oliver L. Petersen

(joint work with András Vasy)

In a recent project with András Vasy, we studied the regularity of quasinormal
modes in the Kerr and Kerr-de Sitter spacetimes [2]. The main result is proven
in a general setting: Let M be a real analytic spacetime and let H ⊂M be a real
analytic non-degenerate Killing horizon, i.e. there is a Killing vector field W such
W |H is lightlike (called the horizon Killing vector field) and the surface gravity is
non-zero. We also assume that

Ric(W |H, X) = 0
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for all X ∈ TH. Analyzing wave equations near the Killing horizon H, one may
first decompose into modes in the symmetry direction, i.e. we assume that

(1) W (u) = −σiu,
for some fixed σ ∈ C, whereW (u) denotes the derivative of u in directionW . One
should think of this as first Fourier transforming in the Killing variable and then
consider the induced σ-dependent equation for each fixed mode. Together with
András Vasy, we have proven:

Theorem 1 (See [2]). Let

P = �+ lower order terms

be a linear wave operator with real analytic coefficients such that

[P,W ] = 0,

i.e. the coefficients commute with W . If smooth function u satisfies (1) near H
and Pu is real analytic near H, then u is real analytic near H.

The proof is based on studying the principal symbol of P , reduced in the W -
direction. We prove that the resulting bicharacteristic flow forms a stable radial
point source/sink structure and we may therefore apply [1].

Quasinormal modes in the Kerr and Kerr-de Sitter spacetime are defined with
respect to the stationary Killing vector field, which in general is not lightlike at
the horizon. The horizon Killing vector field is given in standard Eddington-
Finkelstein coordinates as

(2) W := ∂t +
a

r20 + a2
∂φ

where ∂t is the stationary Killing vector field and ∂φ is the rotational Killing vector
field.

Corollary 1 (See [2]). Let M be the subextremal Kerr(-de Sitter) spacetime, ex-
tended real analytically over the future horizon(s) and let

P = �+ lower order terms

be a linear wave operator with real analytic coefficients, such that

[P, ∂t] = [P, ∂φ] = 0,

i.e. the coefficients commute with ∂t and ∂φ. If u is a smooth function satisfying

∂tu = −iσu,
∂φu = −imu,

for σ ∈ C and m ∈ Z and Pu is real analytic, then u is real analytic.

The idea is to note that u is also a mode with respect to the horizon Killing vector
field (2):

W (u) =

(
∂t +

a

r20 + a2
∂φ

)
u = −i

(
σ +

am

r20 + a2

)

︸ ︷︷ ︸
∈C

u.
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The analyticity near the horizon(s) thus follows by Theorem 1. The analyticity
away from the horizons then follows by standard results.

Corollary 2 (See [2]). Let M be a slowly rotating Kerr-de Sitter spacetime, with
Λ > 0, extended real analytically over the future horizons and let

P = �+ lower order terms

be a linear wave operator with real analytic coefficients, such that

[P, ∂t] = [P, ∂φ] = 0,

i.e. the coefficients commute with ∂t and ∂φ. If u is a smooth function satisfying

∂tu = −iσu,
for σ ∈ C and Pu = 0, then u is real analytic.

To see this, let us first write

u =
∑

m∈Z

e−i(σt+mφ)vσ,m(r, θ).

Each summand satisfies the assumptions in Corollary 1 and is therefore real an-
alytic. We thus have infinitely many linearly independent solutions to the homo-
geneous σ-dependent equation. Now, though the σ-dependent operator is non-
elliptic, Vasy has proven in [3] that it is actually a Fredholm operator, which
implies that the sum is finite. The assertion follows.
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Stabilizing relativistic fluids on slowly expanding spacetimes

Zoe Wyatt

(joint work with David Fajman, Maximilian Ofner)

In this talk, we present recent progress in our understanding of cosmological
spacetimes filled with relativistic fluids. We consider solutions to the Einstein-
relativistic Euler (ErE) system:

(1) Rµν − 1

2
Rgµν + Λgµν = Tµν := (ρ+ p)uµuν + pgµν ∇µTµν = 0,

which describes the dynamical evolution of a spacetime containing a perfect fluid
with pressure p, energy density ρ and 4-velocity vector uµ. Equations (1) are
supplemented by an equation of state. In this talk, we choose the class of linear,
barotropic equations of state, p = Kρ for 0 ≤ K ≤ 1. This contains well-known
fluid models: K = 0, reduces to the Einstein-Dust system and the case K = 1/3
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is the Einstein-radiation fluid system. We also restrict to four-dimensional FLRW
spacetimes of the form

(2)
(
(0,∞)×M,−dt2 + a(t)2 · γ

)
,

whereM is taken to be one of R3, S3,H3 or quotients thereof. We distinguish three
classes of scale factors: ä(t) > 0 are referred to as accelerated expansion, ä(t) < 0
as deccelerated expansion and ä(t) = 0 as linear expansion.

1. Background and Previous Results

Relavistic and non-relativistic fluids are well-known to form shocks in finite time.
This was first observed in the general relativistic context by Oppenheimer and
Snyder when they investigated the collapse of spherically symmetric clouds of
dust. More recently, Christodoulou’s monograph [5] demonstrated that under
a very general equation of state, the constant solutions to the relativistic Euler
equations on a fixed background Minkowski space are unstable, i.e. fluids form
shocks from arbitrarily small initial inhomogeneities in finite time. This suggests
that Minkowski spacetime is unstable as a solution to (1) for a large class of
equations of state.

A powerful dispersive mechanism is clearly required to regularise fluids and to
prevent finite-time shock formation. The prime example comes from cosmological
models exhibiting exponential expansion. For example, a cosmological constant
Λ > 0 generates expansion of the form a(t) ∼ eHt where H =

√
Λ/3. This creates

damping terms in the equations of motion for the fluid, which dilutes the fluid and
causes fluid lines to ‘stretch apart’, thus preventing shock formation. By contrast,
a part of Minkowski spacetime can be considered as a cosmological spacetime with
non-compact slices and no expansion a(t) = 1 in (2).

This stabilising effect was first observed by Brauer, Rendall and Reula [4] who
found, for a slightly simpler Newtonian cosmological model, that the regularising
effect from exponential expansion was strong enough to prevent shock formation for
small inhomogeneities of initially uniformly quiet fluid states. Moving to the fully
coupled Einstein-relativistic Euler system, there has been much research concern-
ing spacetimes undergoing exponential expansion. For example, future stability
under (1) (with Λ strictly positive!) is known to hold for uniformly quiet fluids
on FLRW-spacetimes with underlying spatial manifold M = T3 for the parameter
range 0 ≤ K ≤ 1/3 by the works [8, 9, 10]. We also refer here to the talk by
Oliynyk for his new results concerning the cases 1/3 < K < 1/2.

1.1. Critical Expansion Rates. Interpolating between Minkowski space and
exponentially expanding spacetimes, it is clear that there must be a transition
between shock formation and stability. To investigate the expansion rate for which
this transition occurs, and how it depends on the equation of state, it is useful to
study the stabilisation of fluids on fixed Lorentzian geometries obeying power-law
inflation, where a(t) = tp for p > 0 and (M,γ) = (T3, δ). In this talk, the author
presented the following table which summarises some of the state-of-the art results
concerning linear equation of states p = Kρ:
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Type Power-law rate Range of K Behaviour Reference
Accelerated p > 1 0 < K < 1/3 Stable [11]

Linear p = 1 K = 1/3 Shocks [11]
Linear p = 1 0 < K < 1/3 Stable (irrotational) [6]

Deccelerated p > 1
2 K = 0 Stable [11]

These results suggest that slower speeds of sound reduce the tendency of shock
formation, and for the case of dust, shocks are avoided even in deccelerating space-
times.

2. Main result

The main result presented in this talk is the following:

Theorem 1 (Rough statement, [7]). All four-dimensional FLRW spacetime mod-
els with compact spatial slices and negative spatial Einstein geometry are future
stable solutions of the Einstein-Dust system.

To date, all known future stability results establishing the global existence, reg-
ularity and completeness of solutions for the coupled system (1) concern the regime
of accelerated expansion, and so Theorem 1 initiates the study of the ErE in the
regime of non-accelerated expansion. Such a regime is also relevant in cosmology.
The epoch in the early universe, shortly after a hypothetical inflationary phase, is
expected to not initially have exhibited accelerated expansion.

Comments on the proof. The background geometry studied in Theorem 1 is
that of the Milne model, which is known to be a stable solution solution to the
Einstein vacuum equations [2, 3], with several later extensions including matter
models, e.g. [1]. The standard approach in the literature must be modified, how-
ever, since there are crucial difficulties caused by a regularity problem inherent to
the Einstein-Dust equations. In particular, there appears to be an inconsistency
between the regularity needed to control the fluid velocity, energy density and sec-
ond fundamental form. An approach to circumvent this issue, first introduced by
Hadžić and Speck in [8], is to use a fluid derivative ∂u ∼ uα∇α as a differential op-
erator in the highest-order energies for the perturbations of the metric and second
fundamental form. Several problems still remain, and in this talk we presented
the resolution of one of these issues. In particular, an additional estimate for the
shift is obtained by using a remarkable combination of elliptic equation for the
shift, commutator estimates, the Bianchi identity and the Einstein equations in
the CMCSH gauge.
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3. Future work

There are several avenues for future research, such as extending Theorem 1 to
massive fluid models with 0 < K < 1/3. There is also a need to better understand
the relationship between linear and deccelerating spacetime expansion and fluid
shock formation under the full ErE system.
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Initial data rigidity and the hyperbolic PMT with boundary

Gregory J. Galloway

(joint work with Piotr T. Chrusciel, Michael Eichmair and Abraão Mendes)

Our results involve aspects of marginally outer trapped surfaces. We begin with
some basic definitions. An initial data set (M, g,K) consists of a connected Rie-
mannian manifold (M, g) and a symmetric (0, 2)-tensor field K. The local energy
density µ and the local momentum density J of (M, g,K) are given by

µ =
1

2

(
R− |K|2 + (trK)2

)
and J = div (K − (trK) g) ,

where R is the scalar curvature of (M, g). (M, g,K) is said to satisfy the dominant
energy condition (DEC) provided

µ ≥ | J |.
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Let Σ be a closed two-sided hypersurface in M with unit normal ν; by convention
we refer to ν as outward pointing. The null 2nd fundamental forms χ± of Σ are
defined as,

χ± = K|TΣ ±A

where A is the second fundamental form of Σ withinM . The null expansion scalars
θ+ and θ− of Σ are obtained by tracing the null 2nd fundamental forms,

θ± = trΣ χ
± = trΣ(K)±H

where H is the mean curvature of Σ within M . By our sign conventions, H =
divΣ ν. These quantities take on natural physical/geometric meanings when the
initial data set (M, g,K) is embedded in a spacetime (M̄, ḡ), by which is meant that
M is a spacelike hypersurface in M̄ , with induced metric g and second fundamental
form K.

We say Σ is outer trapped if θ+ < 0. If θ+ ≡ 0 on Σ, we say that Σ is amarginally
outer trapped surface, or MOTS for short. Finally, if Σ is a separating MOTS in
(M, g,K), we say that Σ is weakly outermost if there are no outer trapped surfaces
outside of, and homologous, to Σ.

In the paper [8], with A. Mendes and M. Eichmair, we obtained some ‘initial
data rigidity results’ motivated by the spacetime positive mass theorem. The
following version of this result was obtained by Eichmair, L.-H. Huang, D. A. Lee,
R. Schoen in [9].

Theorem 1. Let (M, g,K) be an n-dimensional asymptotically flat initial data
set with ADM energy-momentum vector (E,P ). Assume that 3 ≤ n ≤ 7. If the
dominant energy condition µ ≥ |J | is satisfied, then E ≥ |P |.

In very broad terms, the proof generalizes to the spacetime setting the proof of
the Riemannian positive mass theorem of Schoen and Yau [17], where now MOTS
play a role analogous to minimal surfaces. (See [13] for the equality case.)

In the arxiv preprint [16], Lohkamp has presented a different proof of this result
(in dimensions ≥ 3). By his approach, the proof reduces to the following result
(see [16, theorem 2]).
Nonexistence of µ− |J | > 0 - islands: Let (M, g,K) be an initial data set that is

isometric to Euclidean space, with K = 0, outside some bounded open set U .

Then one cannot have µ > |J | on U .

In [8, Theorem 1.2] we obtain a ‘rigid version’ of this result. By putting U in
a large box and identifying all but one pair of opposite sides we obtain an initial
data set, still calling it (M, g,K), where M is a compact manifold with boundary
consisting of two flat tori Σ0 and S, which are totally geodesic in (M, g). Moreover,
since K vanishes outside of U , they are MOTS with respect to either choice of
normal; in fact χ± = 0 along each torus. This setting applies in particular to the
following more general setup; see [8, Theorem 1.2].

Theorem 2. Let (M, g,K) be an n-dimensional, 3 ≤ n ≤ 7, compact-with-
boundary initial data set satisfying the DEC. Suppose ∂M can be expressed as
a disjoint union ∂M = Σ0 ⊔ S, such that:
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(i) θ+ ≤ 0 along Σ0 with respect to the normal pointing into M , and θ+ ≥ 0
along S with respect to the normal pointing out of M ,

(ii) Σ0 satisfies the cohomology condition and M satisfies the homotopy con-
dition with respect to Σ0.

Then M ∼= [0, ℓ]×Σ0 (in particular S is connected), and each leaf Σt
∼= {t}×Σ0,

t ∈ [0, ℓ], satisfies: (a) Σt is a MOTS, in fact χ+
Σt

= 0, (b) Σt is a flat torus, and
(c) µ+ J(νt) = 0. In particular, this implies µ = |J |.

The cohomology condition is a specific topological condition which ensures that
Σ0 does not admit a metric of positive scalar curvature. It has been used by Schoen
and Yau in [18, Theorem 5.2]; see also [15, Theorem 2.28] for a nice discussion.
The homotopy condition is a condition slightly more general than assuming the
existence of a retract of M onto Σ0. It implies that Σ0 is connected. A priori, S
is allowed to have multiple components. The proof of Theorem 2 consists of three
elements:

(i) Showing that Σ0 is a weakly outermost MOTS inM . The proof makes essential
use of the cohomology condition and homotopy condition. It also makes use of the
basic existence result for MOTS in dimensions 3 ≤ n ≤ 7 due to Eichmair [6, 7]
(applied to (M, g,−K)). This is where the dimension restriction comes in.

(ii) Using the local rigidity result proved in [10, 11] for weakly outermost MOTS
to obtain a neighborhood U ∼= [0, δ) × Σ0 on which the conclusions (a), (b), and
(c) of the theorem hold.

(iii) Extending U to all of M .

We now briefly describe work with Piotr Chruściel [3] in which Theorem 2 plays
a role in establishing a positive mass theorem for asymptotically hyperbolic man-
ifolds (AH) with boundary. Here, by an AH manifold we mean, roughly, that
(N, h) admits a conformal compactification, with spherical conformal boundary,
such that h approaches the hyperbolic metric at a suitable rate on the confor-
mally compactified end. The PMT result in [3] allows for multiple ends, but, for
simplicity, here we restrict to the case of a single end.

Under appropriate decay conditions, (N, h) admits an invariant, the mass vector
m = (mi), the components of which may be expressed as integrals involving certain
static potentials in hyperbolic space; see [5] for details.

By a very elegant argument, Chruściel and Delay [2] have obtained a general
version of the PMT for AH manifolds, which does not require a spin assumption,
or other restrictive assumptions.

Theorem 3. Let (N, h) be an AH manifold of dimension n. Assume that the
scalar curvature of (N, h) satisfies, R(h) ≥ −n(n− 1). Then, the mass vector m
is future causal or vanishes.

Combining with results of Huang, Jang and Martin [12], in fact m can’t be
future null, and if m = 0 then (N, h) is isometric to hyperbolic space. Interest-
ingly, Chruściel and Delay reduce the proof to an application of the spacetime
asymptotically flat positive mass theorem, including the equality case.
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Using arguments from [2] together with Theorem 2 we have obtained, with Chruściel,
the following extension of Theorem 3 to AH manifolds with boundary.

Theorem 4. Let (N, h) be an n-dimensional, 3 ≤ n ≤ 7, AH manifold with
(compact) boundary. Assume that the scalar curvature of N satisfies R ≥ −n(n−
1), and that the boundary has mean curvature H ≤ n−1 with respect to the normal
pointing into M . Then, the mass vector m is future causal or vanishes.

Examples show that the mean curvature assumption is sharp. A proof in the
spin case in dimensions n ≥ 3 was given by Chruściel and Herzlich [5]. Very recent
work of Huang and Jang [14] shows, too, in this boundary case, that m can’t be
future null, and if m = 0 then (N, h) is isometric to hyperbolic space.

The proof of Theorem 4 is by contradiction. Using Chruściel and Delay’s lo-
calized boundary-connected sum gluing procedure, together with results in [1, 4],
one ultimately obtains an initial data set (M, g,K) satisfying all the assumptions
of Theorem 2. However, owing to the presence of a boundary, S has multiple
components, contradicting the conclusion.
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Dynamically Stable Cosmological Singularities: The
Sub-Critical Regime

Jared Speck

(joint work with Grigorios Fournodavlos, Igor Rodnianski)

1. Introduction and statement of the equations

In this extended abstract, we summarize the results of our recent work [20]. We
proved stable Big Bang formation for solutions arising from open sets of initial
data for the Einstein-scalar field system, where the initial data are prescribed on
the D-dimensional torus TD := [−π, π]D (with the endpoints identified). The
significance of our paper is that the results are sharp, that is, they rigorously
confirm the dynamic stability of the singularity formation in the entire regime
where heuristics in the literature have suggested it might occur.

1.1. The Cauchy problem. The Einstein-scalar field equations are

Ricµν = ∂µψ∂νψ,(1a)

�gψ = 0.(1b)

The fundamental work [9] showed that sufficiently regular initial data for (1a)–
(1b) give rise to a unique (up to diffeomorphism) maximal (classical) globally
hyperbolic development (MGHD for short). While beautiful and conceptually
foundational, [9] does not yield much information about the nature of the MGHD.

1.2. Generalized Kasner solutions. Our main results concern perturbations
of generalized Kasner solutions on (0,∞) × TD, which satisfy the Einstein-scalar
field equations (1a)-(1b) and can be expressed as follows, where (x1, · · · , xD) are
standard coordinates on TD:

g̃ = −dt⊗ dt+ g̃, g̃ :=
∑

I=1,··· ,D

t2q̃IdxI ⊗ dxI , ψ̃ = B̃ log t.(2)

The Kasner exponents {q̃I}I=1,··· ,D and B̃ are constants constrained by

D∑

I=1

q̃I = 1

D∑

I=1

q̃2I = 1− B̃2.(3)
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The first equation in (3) represents a gauge choice corresponding to a foliation by
CMC slices Σt such that the trace of the second fundamental form of Σt is −t−1,
while the second is a consequence of the Hamiltonian constraint.

1.3. Big Bang singularities in Kasner solutions plus some context. Aside
from the exceptional case in which one q̃I is unity and the rest vanish, all general-
ized Kasner solutions exhibit curvature-blowup at t = 0, that is, their Kretschmann
scalars satisfy RiemαµβνRiemαµβν = Ct−4 for some constant C depending on
the {q̃I}I=1,··· ,D. Our main theorem in [20], which we state in a rough form in
the next section, shows that under appropriate assumptions, perturbed solutions
exhibit similar curvature-blowup along an entire spacelike hypersurface.

Let us compare with the “singularity theorems” [21, 22, 28] of Hawking and
Penrose. Their results show that there exist large sets of regular initial data for
various Einstein-matter systems such that the corresponding solutions are causally
geodesically incomplete. In particular, perturbations of the generalized Kasner so-
lutions are guaranteed to be geodesically incomplete to the past. However, these
theorems are “soft” in that they do not reveal the nature of the geodesic incom-
pleteness. In principle, there are many conceivable reasons why a spacetime could
be geodesically incomplete. For example, the breakthrough work of Dafermos–Luk
[15] showed that Kerr Cauchy horizons, which are null, are stable under pertur-
bations of the initial data for the Einstein-vacuum equations. In contrast, for the
solutions covered by our main theorem in [20], we are able to show that the geodesic
incompleteness is tied to curvature-blowup along an entire spacelike hypersurface.

2. Statement of the main theorem

We now provide a rough statement of the main theorem in [20].

Theorem 1 (Stable Big Bang formation (Rough statement)). In 1 + D space-
time dimensions, consider a “background” generalized Kasner solution (2) whose
exponents satisfy (3) and the “sub-criticality condition”

max
I,J,B=1,··· ,D

I<J

{q̃I + q̃J − q̃B} < 1.(4)

It can be shown that there exist generalized Kasner solutions satisfying (3) and

(4) in the presence of a scalar field when D ≥ 3 and in vacuum (i.e., with B̃ = 0
in (2)) when D ≥ 10. Then such generalized Kasner solutions are dynamically
stable under perturbations – without symmetry – of their initial data near their Big
Bang singularities, as solutions to the Einstein-scalar field equations in the case

D ≥ 3, and, when B̃ = 0, as solutions to the Einstein-vacuum equations in the
case D ≥ 10. Moreover, in 1+ 3 spacetime dimensions, all Kasner solutions with

B̃ = 0 are dynamically stable solutions to the Einstein-vacuum equations under
perturbations – with polarized U(1) symmetry – near their Big Bang singularities,
even though they all violate the condition (4).

More precisely, under the above assumptions, sufficiently regular perturbations
of the Kasner initial data on Σ1 := {1} × TD give rise to maximal developments
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that terminate in a Big Bang singularity to the past; the spacetime solutions in
the past of Σ1 are foliated by spacelike hypersurfaces Σt that are equal to the
level sets of a time function t verifying the CMC condition trk = −t−1, and
RiemαµβνRiemαµβν blows up monotonically like Ct−4 as t ↓ 0.

In addition, the perturbed solutions exhibit Asymptotically Velocity Term

Dominated (AVTD) behavior near the singularity. Roughly, this means that in
our gauge, the spatial derivative terms in Einstein’s equations become negligible
compared to the time derivative terms as t ↓ 0. Finally, as a consequence of the
AVTD behavior, various t-rescaled solution variables have regular limits as t ↓ 0.

It is an outstanding open problem to understand how general small perturba-
tions (e.g., without symmetry) of generalized Kasner solutions behave when the
sub-criticality condition (4) fails. As of present, there are no rigorous results. The
heuristic arguments given in the influential physics paper [8] suggest that when (4)
fails to hold, solutions without symmetry might exhibit wild oscillatory behavior
that is qualitatively very different than the monotonic AVTD behavior exhibited
by the solutions in Theorem 1.

3. Some prior results

We now discuss some prior results. There are many contributions to the subject
of singularity formation in general relativity, and we do not attempt to give an ex-
haustive list. The significance of the sub-criticality condition (4) was understood
at a heuristic level in the influential physics papers [6, 7, 17, 26]. See also [16].
There are many prior works in which authors constructed – without proving sta-
bility – interesting families of solutions that exhibit Kasner-like singularities. See,
for example, [2, 3, 5, 10, 16, 18, 19, 23, 24, 25, 27, 29, 39]. There are prior works
that have shown stable spacelike singularity formation with AVTD behavior for
cosmological (i.e., with compact spatial slices) solutions under symmetry assump-
tions such that the problem reduces to the study of ODEs or 1 + 1-dimensional
PDEs; see, for example, [4, 13, 14, 30, 31, 32, 33, 34]. See also [1, 11, 12] for related
spacelike singularity formation results inside black holes with symmetry.

We gave the first proofs of stable curvature-blowup for cosmological solutions
without symmetry assumptions in [35, 36, 37, 38]. Those results treated the case
in which the spatial manifold is T3 or S3 and there is approximate spatial isotropy,
which in the T3 case means that q̃1, q̃2, q̃3 ≈ 1/3. These works rely on CMC fo-
liations and transported spatial coordinates. The new ingredient in [20] is an
orthonormal frame {eI}I=1,··· ,D constructed via Fermi–Walker transport. The
key point is that the structure coefficients SIJB := g([eI , eJ ], eB) solve an ap-

proximately diagonal system ∂tSIJB = − (q̃I+q̃J−q̃B)
t SIJB + · · · , where · · · denotes

“PDE error terms” that we control with energy and elliptic estimates. The sub-
criticality condition (4) allows one to integrate this equation and conclude that
the blowup-rate of maxI,J,B=1,··· ,DI<J |SIJB| as t ↓ 0 is no larger than1 t−q, where

1In reality, to close our bootstrap argument, we have to redefine q so that it is slightly larger
than LHS (4) (though still less than 1).
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the constant q := maxI,J,B=1,··· ,DI<J{q̃I + q̃J − q̃B} is the quantity on LHS (4)
– and thus q < 1. This is the main new ingredient that allows us to prove stable
curvature-blowup and AVTD behavior for solutions that exhibit substantial spatial
anisotropy – at the limit of what the known heuristics suggest to be tractable.
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Geometric flows and the concept of mass in General Relativity -
an overview

Gerhard Huisken

Several nonlinear, parabolic geometric evolution equations have had an impact in
studying concepts such as mass and center of mass in General Relativity. The
lecture attempts to review recent developments and new directions of research.
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The Ricci flow of Riemannian metrics

d

dt
gij = −2Ric(g)ij

on an asymptotically flat Riemannian 3-manifold (M3, g) is known to preserve
the ADM-mass of the 3-manifold in view of the asymptotic decay conditions on
the metric and the parabolic regularity properties of the flow. Since the scalar
cirvature R(g) satisfies the parabolic equation

d

dt
R = ∆gR+ 2|Ric|2,

it also provides an easy proof of the rigidtiy case of the positive mass theorem
(PMT), namely that either the initial (M3, g) was isometric to Euclidean space or
R > 0 for allt > 0. The recent proof of the PMT by Li [8] exploits an interesting
relation to Perelman’s W-functional. The Hamilton-Perelman surgery construc-
tion was carried out by Johne [7] to an extended Ricci flow system that includes
static metrics such as Schwarzschild amongst it’s fixed points. It would be inter-
esting to study this system with respect to boundary conditions that prescribe
induced metric and mean curvature, as they appear in the static metric conjecture
due to Bartnik, compare e.g. [9]. Another interesting challenge might be to find
extended parabolic systems for full initial data sets (M3, g,K including the 2nd
fundamental form K w.r.t. a Lorentzian ambient metric.

The evolution of hypersurfaces by mean curvature flow d
dtF = −Hν can be used

to sweep out the exterior region of an asymptotically flat manifold. In [3] Brendle-
Huisken showed that starting e.g. from large coordinate spheres solutions of mean
curvature flow exist that are interrupted by finitely many surgeries and converge
smoothly to the outermost horizon, which is known to be a weakly stable minimal
surface. In the limit of small surgery parameters this solution with surgeries
converges to the level-set solution of MCF which is known to be smooth for a.e.
time in this dimension due to the work of White [12]. Using MCF and inverse
mean curvature flow it can be shown (see e.g. [6] and [5]) that the ADM-mass
can be characterised as an asymptotic deficit miso of volume in comparison with
Euclidean space in the isoperimetric problem:

miso = lim sup
|∂Ω|→∞

2

|∂Ω|
(
V ol(Ω)− 1

6π1/2
|∂Ω|

)

The assumption R(g) ≥ 0 of the PMT is also related to the isoperimetric problem
in the sense that at a smooth point p ∈ (Mn, g) we see by Taylor expansion that

V ol(Br(p)− ciso(n)|∂Br(p)|
n

n−1 = c(n)R(p)rn+2 +O(rn+3).

Setting

θ(p) := lim inf
r→0

(
V ol(Br(p))− ciso(n)|∂Br(p)|

n
n−1

)

r(n+2)
,

we may conjecture that there is a PMT for C0-metrics that takes the form:

If θ(p) ≥ 0 ∀ p ∈ (Mn, g), then miso(M
n, g) ≥ 0,
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where ciso(n) is the Euclidean isoperimetric constant and miso is defined in ana-
logue to the 3d-case. Such a strong version of PMT seems possible also in view
of recent insights by Gromov [4] and Bamler [1] on C0 convergence properties of
metrics with non-negative scalar curvature, see also the overview article of Basilio-
Sormani [2] and the result of Simon [11] on short time existence of Ricci-DeTurck
flow for C0 initial metrics.

Finally the lecture discusses anisotropic extensions inverse mean curvature flow
d
dtF = 1

H ν, where weak solutions on a manifold (Mn+1, g) can be defined by using
a variational principle in the product space Mn × R, see the construction of null
inverse mean curvature flow by Moore in [10]. Joint work with M. Wolff on a flow
along inverse space-time mean curvature was discussed in a separate lecture, see
the corresponding abstract in this workshop report.
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On the evolution of hypersurfaces along their inverse spacetime
mean curvature

Markus Wolff

(joint work with Gerhard Huisken)

We consider a new inverse curvature flow of hypersurfaces bounding a region of an
asymptotically flat Riemannian manifold (M, g,K), additionally equipped with
a symmetric, bilinear (0, 2)-tensor K. Such manifolds arise naturally as Initial
Data to the Einstein Equations in Lorentzian manifolds (L, h) modelling isolated
gravitating systems such as black holes, stars or galaxies. In time-symmetry,
K ≡ 0, Huisken–Ilmanen [2] were able to give a proof of the Riemannian version
of the Penrose Inequality using a weak notion of inverse mean curvature flow

d

d t
F =

1

H
ν,

where H denotes the mean curvature, and ν the unit normal. Further regularity
properties were established in [3].

For general Initial Data, Cederbaum–Sakovich [1] proposed a foliation by sur-

faces of constant spacetime mean curvature (STCMC), H :=
√
H2 − P 2 = const.,

as a defintion of center of mass in asymptotically flat Initial Data sets (M, g,K)
with nonvanishing ADM-energy EADM 6= 0, where P := trΣK is the trace of K
along a hypersurface Σ. If (M, g,K) indeed arises as a spacelike hypersurface in
a Lorentzian manifold (L, h), then H corresponds to the Lorentzian length of the

mean curvature vector ~H of Σ as a codimension-2 surface in (L, h). In this sense,
H is in fact a Lorentz invariant quantity.

Motivated by this, we propose a generalization of inverse mean curvature flow
adapted to gneral Inital Data sets (M, g,K), where we deform hypersurfaces pro-
portional to their inverse spacetime mean curvature. In this context, we also want
to mention inverse null mean curvature flow proposed by Moore [4]. Similar to
inverse mean curvature flow, smooth solutions of the parabolic equation

d

d t
F =

1√
H2 − P 2

ν,(1)

develop singularities in a natural way, so we consider a notion of weak solutions,
that allows us to describe the phenomenon of jumps. To develop this notion, we
first transform the above parabolic equation into a weakly elliptic problem for the
time of arrival funcion u : M → R, where we now understand a smooth solution
to inverse spacetime mean curvature flow (STIMCF) as a function u with ∇u 6= 0
satisfying

div

( ∇u
|∇u|

)
−

√√√√|∇u|2 +
((

gij − ∇iu∇ju

|∇u|2

)
Kij

)2

= 0.(2)

Note that, due to the fixed sign on the additional anisotropic term, inverse mean
curvature flow acts as a natural upper barrier to (STIMCF). To allow for jumps,
i.e. open regions where |∇u| = 0 everywhere, we treat (2) as an Euler–Lagrange
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Equation by freezing the lower order terms as a bulk term energy. Roughly speak-
ing, we define weak solutions on a domain Ω as a pair (u, ν) of a Lipschitz function
u and a unit vector field ν, such that u minimizes the anisotropic comparrison
principle

Ju,ν(v) :=

∫

A

|∇v|+ v

√
|∇u|2 + |Pν |2(3)

against any competitor v with {v 6= u} ⊂⊂ A ⊂⊂ Ω, where Pν := trM K−K(ν, ν).

Definition 1. Let (M, g,K) be an asymptotically flat Initial Data set, E0 pre-
compact with C2 boundary. We call a translation invariant pair (U, ν) of a locally
Lipschitz function U and measurable, unit vector field ν on (M \ E0)× R a weak
solution to (STIMCF), if U minimizes JU,ν on (M \ E0)× R, and

- U ≥ 0, U → ∞ as |x| → ∞
- ν = ∇U

|∇U| a.e. outside of jump regions

- in jump regions, ν is normal to a foliation of generalized apparent horizons,
i.e. of hypersurfaces satifying H = 0

The main result presented in the talk is the existence of weak solutions on
maximal Initial Data sets, i.e. where we additionally impose that trM K ≡ 0 on
M .

Theorem 2 (Main theorem). Let (M, g,K) be an asymptotically flat, maximal
initial data set without boundary and n < 7. Then for any nonempty, precompact,
open set E0 ⊂ Mn+1 with C2 boundary, there exists a weak solution of inverse
spacetime mean curvature flow with initial condition E0.

Using the concept of unit normal developped in the notion of weak solutions, we
can furthermore understand the development of jump regions in a precise geometric
way. To this end, we introduce the following outward optimization principle, where
we say a set of finite perimeter E is outward optimizing in Ω (with respect to ν),
if

|∂∗E| ≤ |∂∗F | −
∫

F\E

|Pν |(4)

for any E ⊆ F with F \ E ⊂⊂ A ⊂⊂ Ω. We call E strictly outward optimizing
in Ω, if equality in (4) implies F = E up to a set of measure zero, and define
the strictly outward optimizing hull E′ as the intersection of all strictly outward
optimizing sets containing E. Note that a (strictly) outward optimizing set is
(strictly) outward minimizing with respect to area. Then, if (u, νM ) denotes the
projection of a weak solution (U, ν) constructed in Theorem 2 with νM := πTMν,
and we define Et := {u < t}, E+

t := {u ≤ t}, we find that

- Et is outward optimizing,
- E+

t is locally the strictly outward optimizing hull of Et.

Unlike inverse mean curvature flow, where the hull property of E+
t holds in fact

globally, the phenomenon of cost-free surfaces prevents that E+
t = (Et)

′ in general.
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However, we find that E+
t ⊆ (Et)

′ and (Et)
′ \ E+

t =
⋃
i

Fi with

|∂∗Fi| =
∫

Fi

|Pν |

Fi ⊂ {u = ti} for jump times ti > t.

Sufficiently far out, weak solutions become asymptotically round in the sense that
a rescaling of u converges locally uniformly to the expanding sphere solution of
inverse mean curvature flow in (Rn, δ). In view of the center of mass definition
given by Cederbaum–Sakovich [1] via a foliation of STCMC surfaces, we anticipate
that the level sets of the flow asymptotically align with the foliation and enjoy the
same analytic properties.
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On the topology and geometry of Cauchy horizons in
vacuum spacetimes.

Mart́ın Reiris Ithurralde

(joint work with Ignacio Bustamante)

The occurrence of compact Cauchy horizons in some cosmological spacetimes is
an enigmatic (and conceptually troublesome) phenomenon, but it manifests only
when the spacetimes possess a particular type of symmetry and global structure.
In [1] Isenberg and Moncrief conjectured that non-degenerate1 compact Cauchy
horizons (CH) should always be Killing horizon and began a seminal program to
prove it for analytic spacetimes. Among the many results they showed that, if the
spacetime and the CH (C below) are assumed analytic, then a sufficient condition
for the CH to be Killing is the existence of an analytic, null, and nowhere-zero
vector field X on C, satisfying,
(1) ∇XX = κX,

with κ a non-zero constant (the surface gravity). In their framework, the Einstein
equations and the spacetime analyticity permit extending such an X to a Killing
field on the globally hyperbolic region of the spacetime, proving thus the mentioned
sufficiency (see for instance [6]). Showing the existence of such analytic X on C

1A non-degenerate Cauchy horizon is one having at least one incomplete null generator
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is a separate endeavor. More recently and taking a different avenue, Petersen [2]
and Petersen-Rácz [3] have shown that if the spacetime is smooth (non-necessarily
analytic), then a smooth X on C with the same mentioned property (1) can always
be extended to a Killing field on both sides of C, removing thus the necessity of
analyticity. Finally, and closing the circle, the existence of such smooth vector field
X on smooth CHs was shown by the Reiris and Bustamante in [5] (see also the
preprint by Minguzzi and Gurriaran [7] extending the work [5] to include matter).

As it turns out, it is the presence of the vector field X that makes it possible
not only to show that CHs of smooth spacetimes are Killing but also to provide a
more complete description of their global geometric structure. Presenting that is
the goal of this report.

The following theorem about the topology and the orbital type of the null
generators of compact non-degenerate Cauchy horizons of time orientable smooth
vacuum 3 + 1-spacetimes was proved in [4]:

Theorem 1 (Bustamante-Reiris, ’21). Let C be a smooth compact and non-
degenerate Cauchy horizon on a vacuum time-orientable space time. Then, either,

(i) all generators are closed, or,
(ii) only two generators are closed and any other densely fills a two-torus, or,
(iii) every generator densely fills a two-torus, or,
(iv) every generator densely fills the horizon.

Furthermore, respectively to (i)-(iv), the horizon’s manifold is either:

(i’) a Seifert manifold,
(ii’) a lens space,
(iii) a two-torus bundle over a circle, or,
(iv’) a three-torus.

Examples are known for each category. In the last case (iv), the spacetime
can be shown to be flat Kasner, settling thus a problem posed by Isenberg and
Moncrief for the so called ergodic horizons [6].

The proof of Theorem 1 relies on an observation by Oliver Linblad Petersen,
that a smooth X satisfying (1) is a Killing field for the Riemannian metric on C,
(2) g = h+ ω ⊗ ω,

where h is the degenerate metric induced on C from the spacetime and ω is the
1-form, defined by X as,

(3) ∇YX = ω(Y )X.

The classification of the orbital type of the null generators in Theorem 1 reduces
then to the problem of understanding the orbits of a Killing field on a Riemannian
manifold. In particular, it is a direct consequence of the following general theo-
rem that can be proved by standard methods of isometric actions on Riemannian
manifolds:

Theorem 2. Let (C, g) be a smooth, 3-dimensional, compact and connected Rie-
mannian manifold. Suppose that X is a nowhere vanishing Killing vector field.
Then, either,
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(i) every orbit is closed, or,
(ii) there are only two closed orbits, and every other orbit densely fills an

embedded two-torus, or,
(iii) every orbit densely fills an embedded two-torus, or,
(iv) every orbit is dense in C.

The topological classification in Theorem 1 follows without much effort from
the classification of the orbital types of the null generators.

We believe that Theorem 1 opens the door to provide a full parameterization
of the space of manifolds and data (suitable data) on them, representing all the
possible vacuum, compact, and non-degenerate Cauchy horizons.
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Asymptotically Kasner-like singularities

Grigorios Fournodavlos

(joint work with Jonathan Luk)

100 years ago, E. Kasner discovered [10] the first exact cosmological solutions to
Einstein’s equations in vacuum Ric(g) = 0,

g = −dt2 +
3∑

i=1

t2pi(dxi)2,

3∑

i=1

pi =

3∑

i=1

p2i = 1, (t, x) ∈ (0,+∞)× T
3,

predicting the existence of a striking new phenomenon, namely, the Big Bang
singularity (t = 0). Since then, it has been the object of study in a great deal of
research on general relativity. Nevertheless, the nature of the ‘generic’ Big Bang
singularity is still not fully understood.
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In an influential paper [13], Lifshitz–Khalatnikov considered singular solutions
whose Big Bang singularity is synchronized at t = 0, having the asymptotic profile:

g ∼ −dt2 +
3∑

i=1

t2pi(x)ωi ⊗ ωi, (t, x) ∈ (0, T ]× T
3, T > 0,

3∑

i=1

pi(x) =
3∑

i=1

p2i (x) = 1, pi(x) < 1 ωi =
3∑

j=1

cij(x)dx
j .

(1)

Such singularities are also called (asymptotically) Kasner-like, since along each
past integral curve of ∂t, the metric resembles a specific member of the Kasner
family, as t→ 0+, albeit the Kasner exponents pi(x) and principal 1-forms ωi vary
in x. The main observation in [13] is that the ansatz (1) is inconsistent with the
Einstein vacuum equations, unless the following condition holds:1

ω1 ∧ dω1 = 0, p1(x) < 0.(2)

However, the latter imposes a constraint on the coefficients cij(x), hence, eliminat-
ing one functional degree of freedom.2 They concluded that the class of Kasner-like
singularities (1) must be non-generic (or we could say unstable).

It turns out that general Big Bang singularities in 1+3 vacuum are expected
to be much more complicated than (1). A conjectural picture was set forth by
Belinski–Khalatnikov–Lifshitz [3] for the ‘generic’ situation, where they heuris-
tically described a mechanism that produces infinitely many oscillations as the
singularity is approached. During this process, the solution between two succes-
sive oscillations is modeled by a (different each time) Kasner-like metric (1). To
date, the only rigorous results that capture an oscillatory behavior of this type
are restricted to spatially homogeneous solutions [15]. To make matters worse,
there exist inhomogeneous Big Bang singularities with so called spikes [14], not
predicted by [3], across which the asymptotic behavior of the metric is discontin-
uous, but otherwise Kasner-like, cf. also [8] for a study of “spike oscillations” and
[4] for numerical support. This goes to show that we are still far from a complete
classification of Big Bang singularities.

Nonetheless, the above investigations reveal the importance of Kasner-like sin-
gularities for the understanding of more complicated Big Bangs, since they are the
building blocks of all other scenarios. We should mention that there are regimes
where oscillations/spikes are silenced and Kasner-like singularities are generic, and
moreover stable (see Jared Speck’s abstract), but they do not include 1+3 vacuum.

Our main result provides a general method for constructing smooth solutions
admitting an asymptotically Kasner-like singularity, as t → 0+, which enjoy the
largest number of functional degrees of freedom, while at the same time being

1Due to the algebraic relations satisfied by the Kasner exponents, one of them must be
negative at every spatial point x, say p1(x) < 0.

2In 1+3 vacuum, there are in general four degrees of freedom. For solutions of the form
(1), the asymptotic degrees of freedom correspond to the nine functions pi(x), cij(x). These
are restricted by the two Kasner relations and the asymptotic momentum constraint (three
differential equations), see Theorem 1 (3) and Remark 2, leaving four free functions.
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consistent with heuristic expectations. Specifically, in 1+3 vacuum this amounts
to three free functions, see (2), footnote 2, and Remark 3. Moreover, we give a
simple description of the relevant metrics in a Gaussian time gauge. There is an
abundance of previous results [1, 2, 6, 9, 11], constructing Kasner-like singularities
(also called AVTD), but they are all restricted to symmetries or analyticity.

Theorem 1 (F.-Luk [7]). Let cij , pi : T
3 → R be smooth functions satisfying:

(1)
∑3

i=1 pi(x) =
∑3

i=1 p
2
i (x) = 1, p1(x) < p2(x) < p3(x) < 1,

(2) cij(x) = cji(x), c11(x), c22(x), c33(x) > 0,
(3) The differential constraints3

3∑

ℓ=1

1

2

∂icℓℓ
cℓℓ

(pℓ − pi) +
∑

ℓ>i

∂ℓ(
√
c11c22c33κi

ℓ)√
c11c22c33

= ∂ipi.

Then there exists a smooth solution to the Einstein vacuum equations of the form:

g = −dt2 +
3∑

i,j=1

aij(t, x)t
2max{pi(x),pj(x)}dxidxj , (t, x) ∈ (0, T ]× T

3,(3)

for some T > 0 sufficiently small, where limt→0+ aij(t, x) = cij(x).

Remark 2 (Asymptotic constraints). Condition (2) ensures that (3) is a Lorentzian
metric for sufficiently small T > 0. For technical reasons, we have incorporated
in (1) the condition of distinct Kasner exponents. The differential constraints (3)
on the coefficients cij(x) are in fact induced by the momentum constraint on the
level sets of t, asymptotically as t→ 0+.

Remark 3 (Degrees of freedom). It is easy to see from the form of the met-
ric (3) that the heuristic condition (2) of Lifshitz–Khalatnikov is satisfied. In-

deed, comparing with (1), we find that ω1 =
√
c11(x)dx

1, which obviously satisfies√
c11(x)dx

1 ∧d(
√
c11(x)dx

1) = 0. The rest of the degrees of freedom are retained.
Conditions (1)-(3) leave four free functions among pi(x), cij(x). However, metrics
of the form (3) have an extra residual gauge freedom, namely, a change of coor-
dinates via the rule x̃1 = x1, x̃2 = x2, x̃3 = f(x1, x2, x3), which can be used for
example to set c33(x̃) = 1. Thus, there are in reality three free functions in the
asymptotic data, consistent with the heuristics.

The proof of Theorem 1 has two main steps:
• First, we compute the asymptotic expansion of the metric (3) to all orders,

using the ADM equations

∂tgij = −2gajki
a, ∂tki

j − trkki
j = Ric(g)i

j ,(4)

where gij , kij = gajki
a are the induced first and second fundamental forms of the

level sets of t.

3for κ1
2 = (p1 − p2)

c12
c22

, κ2
3 = (p2 − p3)

c23
c33

, κ1
3 = −κ1

2 c23
c33

+ (p1 − p3)
c13
c33
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• Then, we derive weighted energy estimates for the remainder of a truncated
series, using mainly the second order system of equations satisfied by ki

j :

∂2t ki
j −∆gki

j =−∇i∇jkℓ
ℓ +N (k, ∂tk)i

j .(5)

It is well-known that (4) is not symmetric hyperbolic in a Gaussian time gauge,
hence, this necessitates the use of a modified system for ki

j . Choquet-Bruhat–
Ruggeri [5] derived similar second order systems to (5), in a harmonic time gauge,
demonstrating their hyperbolicity.
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Matter particles, naked singularities, and a weak second
Bianchi identity

Annegret Burtscher

(joint work with Michael K.-H. Kiessling and A. Shadi Tahvildar-Zadeh)

How to best model the motion of particles (massive and charged) in general rel-
ativity? Einstein, Infeld, and Hoffmann [4, 5] determined equations of motion
approximately describing the dynamics of a system of matter particles due to
their gravitational interactions by interpreting them as timelike singularities in
spacetimes. This approach was soon later also extended to charged particles by
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Infeld’s student Wallace [9]. One of the main ingredients to obtain equations of
motion via this approach is that the conservation of the energy-momentum is im-
plied by the twice-contracted second Bianchi identity in concert with the Einstein
equations. A rigorous assessment, however, reveals that for spacetimes with time-
like singularities this idea is not automatically true, and the issue remains how to
handle the singularities correctly (see, e.g., [7] for a discussion of some problems
in the original derivation and [3, 7, 8] for references on alternative approaches).
The key problem is to obtain conditions for the metric tensor of a spacetime with
timelike singularities that guarantee that the second Bianchi identity holds weakly.

In our joint paper [3], presented at the Oberwolfach meeting, the author to-
gether with Michael Kiessling and A. Shadi Tahvildar-Zadeh

(i) identified a class of naked singularities that are suitable from a geometric
perspective,

(ii) obtained a distributional version of the second Bianchi identity for static,
spherically symmetric spacetimes with such a central singularity, and

(iii) investigated for which matter fields this identity holds.

For (i) it turned out to be important to allow only particular kinds of timelike
singularities that can be viewed as interior timelike boundaries of “zero area” with
“regular” boundary data. More precisely, such admissible timelike singularities
are those that restrict to regular zero area singularities with a negative ZAS mass
on spacelike slices in the framework of Bray and Jauregui [1, 2].

Regarding (ii), it is shown that the weak second Bianchi identity, that is,
∫

M

(Rµ
ν − 1

2
Rgµν)∇µψ

νd volg = 0,(1)

where ψ is a vector field of compact support, holds for a large class of static, spher-
ically symmetric spacetimes with a single timelike singularity in the center. The
main technical ingredient here is the use of what we call spatial conformally flat
coordinates that allow for the blow-up of the one-dimensional timelike singularity
to a co-dimension-one regular timelike boundary.

Surprisingly, the well-known Reissner–Weyl–Nordström spacetime of a single
point charge does not belong to the class of spacetimes with admissible time-
like singularities, and indeed it can be shown directly (see [3, Sec. 3.3]) that the
weak second Bianchi identity (1) does not hold (infinite self energies lead to non-
integrable curvature quantities). This was our starting point in (iii) to investigate
alternative electromagnetic theories which admit suitable singularities. Here we
connect the ZAS mass with the (negative) bare mass of central singularity in
charged spacetimes. It turns out that, for instance, Hoffmann’s solution [6] with
negative bare mass in the framework of the Born–Infeld electromagnetic theory is
of this kind. Other theories, such as the Bopp–Landé–Thomas–Podolsky theory
are also being investigated.

While a necessary condition for when the weak second Bianchi identity (1) holds
was not derived, the result obtained in [3] is close to optimal in the restricted
framework of static spherically symmetric spacetimes with timelike singularities.
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We conjecture that the identity holds, in fact, for all spacetimes with admissible
timelike singularities of the kind described in (i).

Our future plans involve the study spacetimes with less symmetries, more com-
plicated singularities and, in particular, two or more point charges. A long-term
goal is to rigorously and consistently formulate a joint initial value problem for
the motion of massive charged particles and the evolution of the electromagnetic
and gravitational fields they generate.
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Level set methods in the study of scalar curvature and initial
data sets in GR

Daniel Stern

(joint work with Hugh Bray, Demetre Kazaras, Marcus Khuri)

The problem of understanding how lower bounds on the scalar curvature Rg of a
Riemannian manifold (Mn, g) interact with the global geometry and topology is
a classical one in Riemannian geometry. In dimension n = 2 (where scalar, Ricci,
and sectional curvature all coincide) the answer has been fairly well-understood
for at least a century. In higher dimension n ≥ 3, progress began in the 1960s
and accelerated in the 1970s and ’80s, beginning with Lichnerowicz’s discovery
[11] of a Bochner-type identity for harmonic spinors involving the scalar curvature
(an observation later extended dramatically and used to great effect by Gromov-
Lawson and others [5, 6, 7]) and taking off with Schoen and Yau’s observations
about the influence of scalar curvature bounds on the geometry and topology of
two-sided stable minimal hypersurfaces [12, 13, 14].
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Together with Huisken and Ilmanen’s inverse mean curvature flow [9] and some in-
put from Ricci flow in dimension three, the spinorial and minimal surface methods
introduced in the ’60s and ’70s remain the primary tools for probing the effects of
scalar curvature bounds. Nonetheless, it is natural to ask how the scalar curvature
interacts with other natural geometric pdes, in the hopes of getting some new infor-
mation. In a recent series of papers, an interesting relationship has been observed
between scalar curvature and (R- or S1-valued) harmonic functions and solutions
of other natural elliptic equations in dimension three–through the geometry and
topology of the level sets–with some intriguing consequences.

In [15], it was shown that the level sets Σt = u−1{t} of the harmonic S1-valued
map u : M → S1 representing any homotopy class [M : S1] in a closed, oriented
3-manifold (M, g) satisfy the identity

∫

S1

2πχ(Σt) ≥
1

2

∫

M

(|du|−1|Hess(u)|2 +Rg|du|),

giving a lower bound on the average Euler characteristic in terms of the scalar
curvature Rg of M . This identity–which can be derived fairly simply via the
Bochner identity, the Gauss equation, the coarea formula, and a little bit of analysis
near the critical points of u–yields a simple new Hodge-theoretic proof that T 3

admits no metric of positive scalar curvature, and, in a straightforward way, allows
one to recover and extend a sharp estimate relating scalar curvature and the
Thurston norm originally obtained by Kronheimer and Mrowka via Seiberg-Witten
techniques [10].

These techniques were extended in the papers [4] and [2] to the settings of com-
pact 3-manifolds with boundary and asymptotically flat 3-manifolds, respectively.
In [2], we consider in particular an end Y of a complete, asymptotically flat three-
manifold, which we require (without loss of generality) to satisfy H2(Y, ∂Y ;Z) = 0,
with boundary ∂Y consisting of minimal spheres. Letting F : Y → R3 be the
harmonic map asymptotic to the linear coordinate functions with homogeneous
Neumann condition ∂F

∂ν |∂Y = 0 (whose existence follows from the techniques of

[1]), it is shown that for any v ∈ S2, the harmonic coordinate u = 〈v, F 〉 satisfies

mADM (Y ) ≥ 1

16π

∫

Y

( |Hess(u)|2
|du| +Rg|du|

)
dvolg .

In particular, the harmonic coordinates provide an S2 of lower bounds for the
ADM mass of Y , yielding a simple new proof of the Riemannian positive mass
theorem in dimension three.

These techniques have since been extended in several interesting directions by
various authors. From the perspective of general relativity, some of the most
interesting developments (at the time of this talk) have been the level set proof of
the spacetime positive mass theorem by Hirsch, Kazaras, and Khuri [8], and the
new proof of the hyperbolic positive mass theorem announced by Bray, Hirsch,
Kazaras, Khuri, and Zhang [3]; though many other fun results have also been
obtained. One expects that still more can be proved by examining the relationship
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between scalar curvature and the level sets of solutions to various other natural
elliptic equations.
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Supertranslation invariant angular momentum in general relativity

Mu-Tao Wang

(joint work with Po-Ning Chen, Jordan Keller, Ye-Kai Wang, Shing-Tung Yau)

The definitions of conserved quantities such as mass and angular momentum have
been among the most difficult problems since the genesis of general relativity. Ac-
cording to Einstein’s equivalence principle, there is no density for gravitation and
no canonical coordinate system for spacetime. The issue is further complicated
by the nonlinear nature of Einstein’s eponymous equation. One of the most im-
portant problems is the definition of angular momentum for a distant observer, or
angular momentum at null infinity. There have been several promising candidates
[2, 11] for the definition of angular momentum at null infinity. Unfortunately, none
of them have been shown to be free of coordinate ambiguities. Such ambiguities
at null infinity are called supertranslations and they belong to the larger BMS
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symmetry group [1, 12]. In particular, the angular momentums recorded by two
distant observers of the same gravitating system may not be the same. According
to Penrose [10], the very concept of angular momentum gets shifted by these super-
translations and “it is hard to see in these circumstances how one can rigorously
discuss such questions as the angular momentum carried away by gravitational
radiation” (page 654 of [10]). In this talk, the speaker presents a new definition of
angular momentum at null infinity that is free of any supertranslation ambiguities
[6, 8]. The definition is derived as the limit of quasilocal angular momentum that
was proposed in [4, 5] and evaluated at null infinity in [9]. Comparing with exist-
ing definitions, the new definition contains an important correction term (that has
never appeared in any previous definitions), which comes from solving the optimal
isometric embedding equation proposed in [13, 14, 3]. The theory also produces a
definition of center of mass at null infinity which is shown to be supertranslation
invariant as well. The results can be extended to the charges of all classical and
extended BMS fields to obtain supertranslation invariant charges for them [7].
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Stability of relativistic fluids on expanding cosmological spacetimes

Todd A. Oliynyk

Relativistic perfect fluids on a spacetime (M, g̃) are governed by the relativistic
Euler equations given by1

∇̃iT̃
ij = 0

where
T̃ ij = (ρ+ p)ṽiṽj + pg̃ij

is the stress energy tensor, ρ is the fluid proper energy density, p is the fluid
pressure, and ṽi is the fluid four-velocity normalized by g̃ij ṽ

iv̄j = −1. Here,
we will focus our attention on Friedmann-Lemâıtre-Robertson-Walker (FLRW)
spacetimes (M, g̃) where

M = (0, 1]× T
3 and g̃ =

1

t2
g

with

g =






−dt⊗ dt+ δIJdx
I ⊗ dxJ (exponential expansion)

− 1

q2t
2
q

dt⊗ dt+ δIJdx
I ⊗ dxJ (power-law expansion, q > 0)

.

It is important to note that, due to our conventions, the future is located in the
direction of decreasing t and future timelike infinity is located at t = 0.

The above FLRW spacetimes having exponential and power-law, with q > 1,
expansion fall within the class of cosmological spacetimes whose expansions is
accelerated. The majority of stability results in the cosmological setting that in-
volve either matter fields on prescribed spacetimes or matter fields coupled to the
Einstein equations have been established under the assumption of accelerated ex-
pansion either explicitly for prescribed spacetimes or implicitly via a homogenous
background solution of the Einstein-matter field equations. For relativistic fluids,
the most comprehensive results have been established on exponentially expanding
FLRW spacetimes with linear equations of state

(1) p = Kρ

where the equation of state parameter K lies in the range

(2) 0 ≤ K ≤ 1

3
.

The first such stability result in this setting was, building on the earlier stability
results for the Einstein-scalar field system [14], obtained for the parameter values
0 < K < 1/3 in the articles [16, 17] where the non-linear stability of FLRW
solutions to the Einstein-Euler equations with a positive cosmological constant
was established. Stability results for the end points K = 1/3 and K = 0 were
established later in [10] and [5], respectively. See also [3, 7, 8, 11] for different

1Our indexing conventions are as follows: lower case Latin letters, e.g. i, j, k, will index
spacetime coordinate indices that run from 0 to 3 while upper case Latin letters, e.g. I, J,K,
will index spatial coordinate indices that run from 1 to 3.
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proofs and perspectives and the articles [6, 9] for related stability results for fluids
with nonlinear equations of state. One of the important aspects of all of these
works is they demonstrate that spacetime expansion can suppress shock formation
in fluids, which was first discovered in the Newtonian cosmological setting [19].
This should be compared to the work of [1] where it is established that arbitrary
small perturbations of a class of homogeneous solutions to the relativistic Euler
equations, for relatively general equations of state, on Minkowski spacetime, which
is a FLRW spacetime with spatial manifold R3 and no expansion, form shocks in
finite time.

The next most well-understood case for relativistic fluids is that of accelerated
(i.e. q > 1) power-law expansion, again for linear equations of state where K
lies in the range (2). On prescribed spacetimes, stability results in this setting
have been established in the articles [18, 20]. We note also the earlier related
work [15] where the non-linear stability of homogenous solutions to the Einstein-
scalar field equations with accelerated power-law expansion was established. For
the borderline case q = 1 that separates accelerated (q > 1) from decelerated
expansion (q < 1), a recent stability result has been obtained in this article [2]
under the assumption that the fluid is irrotational and that 0 < K < 1/3. This
result is of particular interest because stability is known to fail forK = 1/3. Indeed
in [18], it is shown that shocks form in finite time for arbitrary small choices of the
initial data. It is also worthwhile noting that the article [2] provides the first, and
so-far, only nonlinear stability result for the relativistic Euler equations (non-dust,
i.e. K > 0) on spacetimes without accelerated expansion.

For linear equations of states, the parameter K determines the square of the
sound speed, and consequently, it is natural to assume that K satisfies

(3) 0 ≤ K ≤ 1

so that the propagation speed for the fluid is less than or equal to the speed of
light. When the sound speed is equal to the speed of light, that is K = 1, it is well
known that the irrotational relativistic Euler equations coincide, under a change of
variables, with the linear wave equation. In this case, the future global existence
of solutions on exponentially expanding FLRW spacetimes can be inferred from
standard existence results for linear wave equations. However, as shown in the
recent work [4], when coupling to the Einstein equations is considered, the fluid
interpretation of these type of solutions becomes problematic due to the gradient
of the solution to the wave equation becoming spacelike, which ruins the perfect
fluid interpretation of these solutions.

Restricting our attention to linear equations of state, the most interesting ques-
tions that remain regarding the relativistic Euler equations on exponentially ex-
panding spacetimes involve equation of state parameters that lie in the range

(4)
1

3
< K < 1.

We recall that the asymptotic behaviour of relativistic fluids on exponentially
expanding FLRW spacetimes with a linear equation of state for K satisfying (3)
was investigated in the article [13] by Rendall using formal expansions. In that
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article, Rendall observed that the formal expansions can become inconsistent for
K in the range (4) if the leading order term in the expansion of the fluid 3-velocity
vanishes somewhere. In that case, he speculated that inconsistent behaviour in the
expansions could be due to inhomogeneous features developing in the fluid density
that would lead to the density contrast blowing up. This possibility for instability
in solutions to the relativistic Euler equations for the parameter range (4) was also
commented on by Speck in [18, §1.2.3]. There, Speck presents a heuristic analysis
that suggest uninhibited growth should set in for solutions of the relativistic Euler
equations for the parameter values (4).

The arguments presented in the articles [13, 18] certainly have cast doubt on
the possibility of the existence of future global solutions to the relativistic Euler
equations for equation of state parameters in the range (4). However, as we estab-
lished in the article [12], there does, in fact, exist an open set of inhomogeneous
future global solutions to the relativistic Euler equations for K satisfying

1

3
< K <

1

2
.

The existence of these solutions is established under a suitable smallness assump-
tion on the initial data and their asymptotic behaviour is given by

ρ(t, x) =
ρct

2(1+K)
1−K e(1+K)ζ(t,x)

(t2µ + e2(u(t)+w1(t,x)))
1+K

2

,

ṽ0(t, x) = −t1−µ
√
e2(u(t)+w1(t,x)) + t2µ,

ṽ1 = t1−µ

(
eu(t)+w1(t,x)

√
(tµw2(t, x) − tµw3(t, x))2 + (tµw2(t, x) + tµw3(t, x))2 + 1

)
,

ṽ2(t, x) = t1−µ

(
(tµw2(t, x) + tµw3(t, x))e

u(t)+w1(t,x)

√
(tµw2(t, x) − tµw3(t, x))2 + (tµw2(t, x) + tµw3(t, x))2 + 1

)

and

ṽ3(t, x) = t1−µ

(
(tµw2(t, x) − tµw3(t, x))e

u(t)+w1(t,x)

√
(tµw2(t, x) − tµw3(t, x))2 + (tµw2(t, x) + tµw3(t, x))2 + 1

)
,

where

µ = (3K − 1)/(1−K)

and there exists time-independent functions ζ∗, w
∗
I on T3 and a constant u∗ ∈ R3

such that

u(t) = u∗ +O(t2µ), ζ(t, x) = ζ∗(x) + O(tµ−σ), w1(t, x) = w∗
1(x) + O(tµ−σ),

tµw2(t, x) = w∗
2(x) + O(tµ−σ) and tµw3(t, x) = w∗

3(x) + O(tµ−σ)

for σ > 0 that can be chosen as small as we like. We have further established in the
article [12] that under a T2-symmetry assumption, future global existence results
can be obtained for the full range 1/3 < K < 1. It is unclear at the moment if
one should expect that this result should still hold for K satisfying 1/2 ≤ K < 1 if
the T2-symmetry assumption is removed. As a consequence, it is an open problem
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to understand what happens for K satisfying 1/2 < K < 1 in the case of general
initial data.
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On The Asymptotic Behaviour of Gravitational Radiation

Leonhard M. A. Kehrberger

1. Introduction

The goal of this talk is to motivate and discuss some research with the aim of
understanding the asymptotic behaviour of gravitational radiation. Throughout
this talk, we will restrict our analysis to the linear scalar wave equation,

(1) �gφ = 0,

on a fixed Schwarzschild background (MSchw, g) with mass M , however, the gen-
eral ideas exposed here essentially also apply to the Teukolsky equations Tgα[±2] =
0 on Schwarzschild, and, thus, to linearised gravity around Schwarzschild.

2. Motivation: The study of late-time asymptotics

Let’s first talk about a problem that has already received a lot of attention in
the literature—the problem of late-time asymptotics: Given data for (1) on some
asymptotically hyperboloidal hypersurface Σ, one asks what the asymptotics of
the resulting solution φ in a neighbourhood of future timelike infinity i+, and, in
particular, along the event horizon H+ and along future null infinity I+ are. See
the upper half of Figure 1.

There are several reasons why this is an important problem to study, but we
here only name one: In the idealisation of an isolated system, where detection of
gravitational waves takes place at I+, one can hope that we will eventually be
able to measure these asymptotics along I+. Hence, it is important to have a
mathematical prediction on them. Now, the asymptotics along I+ will depend
on the choice of data one makes on Σ—however, a priori, we do not what kind
of data one should assume on Σ! This begs the question: How can we make
physically meaningful predictions on the asymptotics along I+?

Before we tackle this question, let us first discuss a few different choices of initial
data on Σ and how the late-time asymptotics near i+ depend on them:

Case 1: Compactly supported data. Historically, it has typically been as-
sumed that φ|Σ ∈ C∞

c (Σ). Heuristic analyses dating back to Price [12] have then
motivated that, generically, one gets the so-called “Price’s law tails” for the ℓ-th
spherically harmonic mode φℓ (we will always suppress the m-index), namely

(2) φℓ|H+ = C′
ℓv

−2ℓ−3 + . . . , rφℓ|I+ = Cℓu
−2−ℓ + . . . .

In fact, a precise (and more general) version of the above statement has recently
been proven in the works [1, 2, 3] and [7]. The constants C′

ℓ, Cℓ are generically
non-zero and can be computed explicitly as integrals over initial data. However,
within the context of the model of an isolated system, the assumption of compact
support becomes untenable since any such system will generically have radiated for
all times and, therefore, will not have vanishing asymptotics near I+ along any
asymptotically hyperboloidal hypersurface Σ!
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Case 2: Conformally regular/“peeling” data. A choice of initial data
that does not suffer from the above problem, i.e. that does not have vanishing
asymptotics near I+, is that of conformally regular/peeling data, i.e. data that
admit an expansion in powers of the conformal variable x = 1/r. Indeed, it has
been shown in [2] that, roughly speaking, if φ|Σ admits an asymptotic expansion
φ|Σ = A0

r + A1

r2 + A2

r3 + . . . , where the Ai are functions on S2, then the resulting
late-time asymptotics will be one power worse than in eq. (2), namely

(3) φℓ|H+ = C′
ℓv

−2ℓ−2 + . . . , rφℓ|I+ = Cℓu
−1−ℓ + . . . ,

with the Cℓ, C
′
ℓ this time being a linear combination of the ℓ-th projections of

A1, . . . , Aℓ+1. The fact that higher ℓ-modes decay faster can be traced back to
certain conservation laws, which, in Minkowski, i.e. if M = 0, read

(4) ∂u(r
−2ℓ−2(r2∂v)

ℓ+1(rφℓ)) = 0.

The weighted vector field r2∂v provides a measure of the conformal regularity of φ.
Since it introduces an extra weight near I+, one can schematically think that if
one has sufficient conformal regularity, then each commutation with r2∂v in (4)
can be converted into one more power of u-decay along I+.

However, there is again no clear physical motivation for conformally regular
data; the motivation is mainly of historical or of formal nature, going back to
Penrose’s smooth conformal compactification of spacetime [11] and the so-called
“peeling behaviour” of massless radiation [13].

Case 3: Conformally irregular data. Let us now instead assume that the

data are conformally irregular, say, φ|Σ = A0

r + A∗ log r
r2 + . . . . In this case, it was

shown by the author in [9] that

(5) φ0|H+ = C′
0v

−2 log v + . . . , rφ0|I+ = C0u
−1 log u+ . . . .

Similarly, a preliminary analysis suggests that (cf. §1.3 of [10]), for ℓ > 0, rφℓ|I+ =
Cℓu

−1 + . . . etc. (this is work in progress). We want to highlight the following
two points: a) Since one now has finite conformal regularity, the general structure
that higher ℓ-modes decay faster is broken. b) The constants C′

ℓ, Cℓ will depend
entirely on the constant A∗. In other words, A∗, which measures the breakdown
of conformal regularity, determines the leading-order late-time asymptotics!

3. Obtaining a prediction on the asymptotics along Σ

We now sketch a scattering construction which aims to answer the question what
the physically relevant behaviour on Σ (and thus, along I+) is. This construction
is meant to provide a simple model of a system of N infalling masses following
asymptotically Keplerian hyperbolic orbits near i−, with no radiation coming in
from I−, see Figure 1: On I−, we impose vanishing data to capture the no
incoming radiation condition: ∂v(rφ)|I− ≡ 0. The timelike boundary Γ should be
thought of as enclosing the infalling masses (and therefore r|Γ ∼ |u| as u→ −∞),
and we try to “capture the physics” of these masses by imposing boundary data on
Γ that are in accordance with the quadrupole approximation: rφ|Γ = Cin|u|−p+. . .
for some power p as u→ −∞. We will come back to this power below. Taking this
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Figure 1. The upper half of the fig-
ure depicts the problem of late-time
asymptotics discussed in section 2, i.e.
how asymptotics along Σ translate into
asymptotics near i+.
The entire figure depicts the scatter-
ing construction of the present section,
which aims to get a physical prediction
of what the asymptotics along Σ (and
thus, along I+) are.

as a model forN infalling masses from i−, we now sketch how to obtain the relevant
behaviour of φ along Σ. For brevity, we restrict to ℓ = 0. The generalisation of (4)
for M 6= 0 then reads (with ∂vr = −∂ur = 1− 2M/r =: D)

(6) ∂u∂v(rφ0) = −2MD · r−3 · rφ0.
Basic scattering theory ensures the unique existence of a solution to the problem

outlined above, and gives us the preliminary rate |φ0| . r−1/2. Inserting this
bound into (6), and integrating from I−, where ∂v(rφ0) = 0, we then get that
|∂v(rφ0)| . r−3/2. In turn, integrating this from Γ, we obtain that |rφ0(u, v) −
rφ0|Γ| . |u|−1/2, an improvement over the initial bound (that can be traced back to
the good r−3-weight in (6))! One can then inductively repeat the procedure above
to obtain the asymptotic estimate that |rφ0(u, v) − rφ0|Γ| . |u|−p−1. Finally, we
insert this back into (6) and integrate once more from I− to obtain an asymptotic
estimate for ∂v(rφ0) (and thus φ0) near I+. If e.g. p = 1, then, since r ∼ v − u,

(7) ∂v(rφ0)(u, v) =

∫ u

−∞

−2M
Cin

|u′|r3 du′ + · · · = −−2MCin log r

r3
+ . . . .

Let’s now return to the exponent p: The quadrupole approximation for N infalling
masses following asymptotically Keplerian hyperbolic orbits predicts that the en-
ergy loss of gravitational radiation goes like |u|−4 (see e.g. [4]). In the context
of the scalar field, this energy loss is measured by

∫
S2
(r∂uφ)

2. This thus predicts

that |r∂uφ0| ∼ |u|−2, and thus, that |rφ0| ∼ |u|−1. We summarise our findings in:

Theorem 1. [8, 9] The solutions arising from the data setup described above fail
to be conformally regular near I+ (cf. eq. (7)). This failure of conformal regularity
leaves its imprints on the late-time asymptotics near i+: Smoothly extending the
boundary data along Γ to H+, one obtains the late-time tails

(8) φ0|H+ = C′
0v

−3 log v + . . . , rφ0|I+ = C0u
−2 log u+ . . .

for some constants C′
0, C0 that only depend on Cin and M .

A similar statement can be shown for higher ℓ-modes [10], and for solutions
of the Teukolsky equation (upcoming work), where one finds that α[+2] = O(r−4)
near I+ (as opposed to the peeling rate α[+2] = O(r−5)), see also the arguments [4,
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6]. Interestingly, in the latter case, the resulting spacetimes seem to have decay
rates weaker than those of [5]. It will be exciting to investigate this further.
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Time–periodic solutions to toy problems capturing the AdS
(in-)stability

Athanasios Chatzikaleas

(joint work with Jacques Smulevici)

1. Abstract

Motivated by the study of small amplitudes non-linear waves in the Anti-de-Sitter
spacetime and in particular the conjectured existence of periodic in time solutions,
we construct families of arbitrary small time-periodic solutions to the conformal
cubic wave equation and the spherically-symmetric Yang–Mills equations on the
Einstein cylinder R×S3. For the conformal cubic wave equation, we consider both
spherically-symmetric solutions and aspherical solutions with an ansatz relying on
the Hopf fibration of the 3-sphere. In all three cases, the equations reduce to 1+1
semi-linear wave equations.
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Our proof relies on a theorem of Bambusi–Paleari [2] for which the main assump-
tion is the existence of a non-degenerate zero for a non-linear operator associated
with the resonant system. Provided that the Fourier coefficients appearing in the
resonant type system can be computed, the non-degeneracy condition amounts to
solving a infinite dimensional linear system. In the simplest setting of the spheri-
cally symmetric conformal wave equation, the Fourier constants can be computed
explicitly, and we prove that any mode solution of the linearized operator is a
non-degenerate zero. Outside from spherical symmetry, we consider solutions de-
pending on two frequency parameters which are associated with the torii of the
Hopf fibration. We then prove the non-degeneracy condition of the linearized
modes in certain high frequency regimes. The proof relies on the asymptotics of
the eigenfunctions and the Fourier constants which hold in these high frequency
regimes. In the Yang–Mills case, our proof relies in particular on a novel addition–
like formula for the eigenfunctions of the associated linearized system.

2. The models

Specifically, we are interested in the existence of time–periodic solutions to toy
models “capturing” the Anti–de–sitter (AdS) (in-)stability including the conformal
cubic wave equation on the Einstein cylinder,

−∂2t φ(t, ω) + ∆S3φ(t, ω)− φ(t, ω) = |φ(t, ω)|2 φ(t, ω),(1)

for a scalar field φ : R×S3 −→ C with φ = φ(t, ω), and the equivariant Yang–Mills
equation for the SU(2) connection,

−∂2t φ(t, x) + ∂2xxφ(t, x) +
φ(t, x)

sin2(x)
=
φ3(t, x)

sin2(x)
,(2)

for a scalar field φ : R × (0, π) −→ R with φ = φ(t, x), around the static solu-
tions φ0 = 0 and φ0 = 1 respectively. We consider (1) with and without spherical
symmetry. When the spherical symmetry assumption is removed, we find it conve-
nient to introduce Hopf coordinates (η, ξ1, ξ2) instead of the spherical coordinates
(ψ, ϑ, ϕ). These make use of the embedding of S3 →֒ R4 and are given in terms of
the standard Cartesian coordinates (x0, x1, x2, x3) ∈ R4 as follows






x0 = cos ξ1 sin η,

x1 = sin ξ1 sin η,

x2 = cos ξ2 cos η,

x3 = sin ξ2 cos η,

where the new coordinates (η, ξ1, ξ2) vary within the bounded region

(η, ξ1, ξ2) ∈
[
0,
π

2

]
× [0, 2π)× [0, 2π) .

Note that, for any fixed η ∈
(
0, π2

)
, the coordinates (ξ1, ξ2) parametrize the

2−dimensional torus S
1 × S

1 where rings of constant ξ1 and ξ2 form orthogo-
nal grids whereas, for fixed η ∈

{
0, π2

}
, the coordinates (ξ1, ξ2) parametrize the
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unit circle S1 embedded in S3. Furthermore, in these coordinates, the standard
round metric on S3 is given by

h(η, ξ1, ξ2) = dη2 + sin2 η dξ21 + cos2 η dξ22

and the Laplace–Beltrami operator on S3 reads

∆S
3

(η,ξ1,ξ2)
χ = ∂2ηχ+

(
cos η

sin η
− sin η

cos η

)
∂ηχ+

1

sin2 η
∂2ξ1χ+

1

cos2 η
∂2ξ2χ.

Then, the conformal cubic wave equation (1) can be written in Hopf coordinates
as follows

∂2t χ− ∂2ηχ−
(
cos η

sin η
− sin η

cos η

)
∂ηχ− 1

sin2 η
∂2ξ1χ− 1

cos2 η
∂2ξ2χ+ χ = − |χ|2 χ,

(3)

for χ(t, η, ξ1, ξ2) := u(t, ψ, ϑ, ϕ). In principle, the Fourier expansion with respect
to ξ1 and ξ2 of a generic solution χ(t, η, ξ1, ξ2) to (1) may include all possible
admissible frequencies. In the following, we pick a fixed pair of frequencies (µ1, µ2)
and force the Fourier expansion to excite only this particular pair by implementing
the ansatz

χ(t, η, ξ1, ξ2) = u(t, η)eiµ1ξ1eiµ2ξ2 .(4)

This ansatz is proposed by Oleg Evnin [3, 4] and resembles the sectors of constant
µ in Figure 1 in [4]. In general, the pair (µ1, µ2) belongs in Z2. However, notice
that if some of the µ1 or µ2 is strictly negative, then we can change coordinates
ξ1 7−→ −ξ1 and ξ2 7−→ −ξ2 respectively and assume that both µ1 and µ2 strictly
positive. Consequently, without loss of generality, we consider pairs of frequencies
with

(µ1, µ2) ∈ (N ∪ {0})2 .
Now, we substitute the ansatz (4) into (3) and obtain the differential equation

(
∂2t + L

(µ1,µ2)
)
u = f(u),(5)

for a scalar field u : R× (0, π/2) −→ R with u = u(t, η) and

L
(µ1,µ2)u := −∂2ηu−

(
cos η

sin η
− sin η

cos η

)
∂ηu+

(
µ2
1

sin2 η
+

µ2
2

cos2 η
+ 1

)
u, f(u) = −u3.

(6)

We use the abbreviations:

• WS, for the conformal cubic wave equation in spherical symmetry (1),
• WH, for the conformal cubic wave equation out of spherical symmetry in
Hopf coordinates (5)

• YM, for the Yang–Mills equation in spherical symmetry (2)

and study the evolution of the perturbations

u : R× I −→ R, u = u(t, x),
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where

I =





(0, π), for WS

(0, π/2) , for WH

(0, π), for YM

around the static solutions

φ0 =





0, for WS

0, for WH

1, for YM

under the partial differential equations
(
∂2t + L

)
u = f(x, u), (t, x) ∈ R× I(7)

subject to the initial data with zero initial velocity,
{
u0(x) = u(0, x), x ∈ I,

u1(x) = ∂tu(0, x) = 0, x ∈ I.

Here, the linearlized operators and the non–linearities are given respectively by

Lu =






− 1

sin2(x)
∂x
(
sin2(x)∂xu

)
+ u, for WS

−∂2xu−
(
cosx

sinx
− sinx

cosx

)
∂xu+

(
µ2
1

sin2 x
+

µ2
2

cos2 x
+ 1

)
u, for WH

−∂2xu+
2

sin2(x)
u, for YM

(8)

f(x, u) =






−u3, for WS

−u3, for WH

−3u2 + u3

sin2(x)
, for YM

3. Previous result

We initiated our study in [1] where we considered the spherically symmetric con-
formal cubic wave equation (1) and proved the existence of time–periodic solutions
bifurcating from the first eigenmode to the linearized operator. Firstly, we recall
our previous result.

Theorem 1 ([1]). Let {en(ψ) : n ≥ 0} with

en(ψ) :=
1

π
√
2
Un(cos(ψ))

be the set of of all eigenfunctions to the linearized operator for (1) in spherical
symmetry where Un stand for the Chebyshev polynomials of the second kind and
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degree n. Furthermore, pick any parameter ǫ > 0. Then, all small initial data
proportional to the first 1–mode

u(0, ψ) = ǫ · e0(ψ)
evolve into time–periodic solutions to (1) with zero initial velocity ∂tu(0, ·) = 0.

4. Main result

We aim towards extending [1] and establish the following theorem.

Theorem 2 (Chatzikaleas and Smulevici). Let {en(x) : n ≥ 0} with

en(x) :=





NnUn(cos(x)), for WS

Nn(1 − cos(2x))
µ1
2 (1 + cos(2x))

µ2
2 P (µ1,µ2)

n (cos(2x)), for WH

Nn sin
2(x)P

( 3
2 ,

3
2 )

n (cos(x)) for YM

be the set of of all eigenfunctions to the linearized operators (8) where P
(µ1,µ2)
n and

Un stand for the Jacobi polynomials of degree n and parameters (µ1, µ2) and the
Chebyshev polynomials of the second kind of degree n respectively whereas Nn,Nn

and Nn are normalization constants. Furthermore, pick any real number s > 3/2,
any fixed integer γ such that

γ ∈





{0, 1, . . .}, for WS

{0, 1, . . . , 10}, for WH

{0, 1, . . . , 10}, for YM

and a pair of integers (µ1, µ2) with µ1 = µ2 and both sufficiently large. Then,
given any small initial data proportional to the 1–mode eγ(x), there exists a family
{uǫ(t, ·) : ǫ ∈ E} of time–periodic solutions to (7) where E is an uncountable set
that has zero as an accumulation point. In addition,

(1) the period of uǫ(t, ·) is 2π/ωǫ where ǫ 7−→ ωǫ that is monotone, one-to-one
map that stays close to one,

|1− ωǫ| . ǫ.

(2) uǫ ∈ H1([0, 2π/ωǫ] ;H
s)

(3) uǫ stays close to the solution to the linearized equation with the same initial
data as above and zero initial velocity,

sup
t∈R

∥∥uǫ(t, ·)− Φtωǫ (ǫKγeγ)
∥∥
Hs . ǫ2,

where Kγ is a constant.
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Azimuthal instabilities of extremal Kerr black holes

Dejan Gajic

Background. The Kerr spacetimes (MM,a, gM,a) constitute a 2-parameter family
of stationary and axisymmetric solutions to the vacuum Einstein equations

(1) Ric[g] = 0,

and they are moreover expected to exhaust the full set of stationary black hole
solutions to (1). These spacetimes describe a single isolated, asymptotically flat
black hole, where M > 0 can be interpreted as the mass or energy of the black
hole and a ∈ [−M,M ] its specific angular momentum.

In the last decade, there has been significant progress towards understanding
the dynamical stability properties of subextremal Kerr black holes, that is to say,
Kerr spacetimes satisfying the strict inequality |a| < M . From a full understand-
ing of uniform boundedness and decay in the context of the toy model of the linear
wave equation on a subextremal Kerr background [10] (see (2)) to recent nonlinear
stability results in the non- or slowly-rotating setting [9, 15, 16] and many other
foundational results. This talk discusses instead the dynamical properties of ex-
tremal Kerr black holes, which satisfy the equality |a| =M and can be interpreted
as black holes that rotate at the maximally allowed angular velocity.

Even though exactly extremal black holes are special in the set of all Kerr solu-
tions, understanding their dynamics is important to be able to control uniformly
(the open set of) near-extremal black holes and to identify possible observational
signatures in gravitational radiation of (near)-extremality. They moreover play a
special role in the understanding of the weak cosmic censorship conjecture, as they
sit on the threshold between black hole solutions and naked singularities (Kerr
spacetimes with |a| > M), as well as the strong cosmic censorship conjecture, as
the Cauchy horizon in their black hole interiors is expected to be more stable than
in the subextremal case [11, 12, 13].

Main result. I will introduce upcoming work proving the existence of new dy-
namical instabilities of extremal black holes. In particular, I will present the
following main theorem, which can roughly be stated as follows:

Theorem 1. There exists an asymptotic instability for generic solutions to the
linear wave equation on extremal Kerr spacetime backgrounds that originates from
non-axisymmetric azimuthal mode solutions: A) the energy density of waves blows
up in time along the event horizon, and B) the total energy is non-decaying in time
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and moreover concentrates at the event horizon at late times when restricting to
fixed azimuthal modes.

Dynamics of spacetime solutions to (1) are studied in the setting of the ini-
tial value problem in general relativity. In particular, one can take initial data
that are small, suitably localized perturbations of Kerr initial data and study the
corresponding dynamical spacetimes. Due to the wave-like nature of key dynam-
ical quantities for (1), a useful first step towards understanding the dynamics of
Kerr perturbations is to study, using robust methods, the boundedness, decay and
late-time asymptotic properties of the linear wave equation on a Kerr background:

(2) �gM,a
ψ = 0,

where �gM,a
denotes the Laplace–Beltrami operator with respect to the met-

ric gM,a. The instability results in Theorem 1 are obtained in the setting of
(2), by considering moreover fixed azimuthal modes solutions ψm to (2), where
∂ϕψm = imψm, for ∂ϕ the vector field generating axisymmetry of the background
spacetimes.

Boundedness and decay of solutions to (2) in extremal Kerr was first inves-
tigated by Aretakis in [6], who restricted to axisymmetric solutions (azimuthal
modes with m = 0). Aretakis discovered the existence of a conservation law for
ψ0 along the event horizon and showed that it generically results in an asymptotic
horizon instability [7]: |∂2ψ0| blows up in time along the event horizon, but decays
in time outside the horizon.

When m 6= 0, however, this conservation law mechanism for deriving insta-
bilities breaks down. I will show that the stronger instabilities from Theorem 1
follow instead from precise knowledge of the late-time behaviour of ψm along the
event horizon, i.e. the precise nature of late-time inverse polynomial tails in the
dynamics of ψm. Inverse polynomial late-time tails have recently been derived in
the context of subextremal Kerr spacetimes [2, 14, 5] and spherically symmetric
extremal Reissner–Nordström spacetimes [3] and were originally proposed by Price
[17], which is why the corresponding decay rates are also known as “Price’s law”
in the literature.

In this talk, I show how late-time tails for ψm with m 6= 0 take a rather different
form in extremal Kerr, compared to both subextremal Kerr and extremal Reissner–
Nordström, and their existence follows from two main steps:

(1) Weighted integrated energy estimates (“Morawetz estimates”). Controlling
integrals in time of appropriately weighted energies involves quantifying
the geometric phenomena of trapped null geodesics, superradiance (“en-
ergy extraction from the black hole”) and their interaction. When m is
fixed these are decoupled in frequency space. Controlling superradiance
involves in particular quantitative mode stability near the threshold of
superradiance, which was established recently in [18].
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(2) Weighted integrated energy estimates → late-time asymptotics. This step
involves the introduction of a new mechanism to convert irregularity at the
event horizon/slow fall-off in r of initial data to inverse polynomial tails in
the leading-order behaviour in time of ψm and uses the observation that,
even if the original initial data is smooth and compactly supported, the
initial data corresponding to a time integral, which can be thought of as

ψ̃ = −
∫∞

τ ψ dτ̃ , will generically be irregular at the event horizon.

We confirm in particular decay rates in late-time tails that were first suggested
by heuristics in the physics literature: away from the horizon in [1] and along the
horizon in [8] for a restricted class of initial data.

Outlook for the future. In order to understand the complete instability prop-
erties of linear waves on extremal Kerr, one still has to sum over all the azimuthal
numbersm, which requires a better understanding of the coupling between trapped
null geodesics and superradiance in frequency space. Subsequently, it would be
interesting to study the effects of extremal Kerr instabilities on the evolution of
nonlinear wave equations. Using the methods developed in [3, 4], one can more-
over initiate the study of the nonlinear dynamics of non- or slowly-rotating charged
extremal black holes in the setting of (1) coupled to electromagnetic fields, which
feature a milder instability, akin to the axisymmetric instability on extremal Kerr.
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The breakdown of weak null singularities inside black holes

Maxime Van de Moortel

What singularities lie inside a black hole formed in gravitational collapse? In a
local region near time-like infinity, it is known for various models that a generic
black hole has a weakly singular Cauchy horizon. The global structure of the black
hole interior, however, has largely remained unexplored. I will present my recent
proof that, in the spherical collapse of a charged scalar field, the weakly singular
Cauchy horizon breaks down and gives way to a stronger singularity connected to
the center of the collapsed star.

The breakdown result and its context

The recent result of Dafermos–Luk [4] spectacularly established the presence of
a null boundary CHi+ – the Cauchy horizon – in the interior of dynamical black
holes. They also show that CHi+ cannot be a strong singularity (since the metric
is C0-extendible); in fact, it is not known whether CHi+ is singular at all1!

In models of charged spherical collapse, more is known about CHi+ , despite
novel phenomena linked to the presence of matter [5, 6]. Specifically, for black
holes converging to stationarity at the expected rate, the author proved that CHi+

is non-empty and weakly singular [9, 11], i.e. C2-inextendible; a scenario often
dubbed in the literature as mass inflation/blue-shift instability. Previous related
results include the seminal work of Luk–Oh [8]; their streamlined model does
not however allow to study the global aspects of gravitational collapse, due to a
topological restriction imposing time-slices to be two-ended (asymptotically flat).

1Although multiple heuristic arguments, and analogies with rigorous results on spherically
symmetric models strongly suggest that, indeed, CHi+ is weakly singular, see [4] for a discussion.
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Returning to the case of charged spherical gravitational collapse, we now study
the following Einstein–Maxwell–Klein–Gordon equations, with q0 6= 0 and m2 ≥ 0

Ricµν(g)−
1

2
R(g)gµν = gαβFανFβµ − 1

4
FαβFαβgµν

︸ ︷︷ ︸
TEM
µν

+ ℜ(DµφDνφ)−
1

2
(gαβDαφDβφ+m2|φ|2)gµν

︸ ︷︷ ︸
TKG
µν

,

∇µFµν =
q0
2
i(φDνφ− φDνφ), F = dA, Dµ = ∇µ + iq0Aµ,

gµνDµDνφ = m2φ

and consider spherically symmetric, one-ended initial data, as a model of astro-
physical collapse more realistic [3, 7] than the two-ended case, since spacetime
now includes the center Γ of the collapsed star (see Figure 1). This one-endedness
assumption, which can only be considered for charged matter in spherical sym-
metry, is inconsequential to the local dynamics near i+, but crucial to the global
dynamics in a spectacular way (see [2], and Section 1.7 in [10] for discussions).

In this setting, the interior dynamics away from time-like infinity i+ offers a
fundamental problem formulated by Dafermos [3]: can the Cauchy horizon CHi+

go all the way to the center Γ as in Figure 1, and thus “close-off” the spacetime?
This problem was completely solved by the author for the above model in [10]:

Theorem ([10]). The weak null singularity CHi+ necessarily breaks down in grav-
itational collapse, in the sense that the Penrose diagram of Figure 1 is impossible.
Moreover, the breakdown gives rise to the formation of a stronger singularity;
namely the singular center-endpoint bΓ is a Terminal Indecomposable (TIP).

Figure 1. The impossible Penrose diagram if CHi+ is
weakly singular.

Thus, the answer brought in [10] to Dafermos’ question is, perhaps unexpect-
edly, emphatically no! The underlying mechanism is a novel phenomenon dis-
covered in [10] entitled the breakdown of the weak null singularity. The problem
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Figure 2. Generic black hole, resulting from the breakdown the-
orem of [10] and a resolution of the local Weak Cosmic Censor-
ship.

is non-perturbative, and its resolution unexpectedly proceeds by a contradiction
argument. The proof is global and exploits the presence of the center Γ (character-
izing the one-ended collapse) in a crucial way. The analysis is moreover nonlinear
in nature, since it relies on the Einstein null structures (Raychaudhuri equations).

The consequences of breakdown and further problems

An important further problem following our theorem, is to characterize entirely
the singularity at the terminal boundary and, in particular, validate a scenario in
which a strong, space-like singularity S bifurcates from the weaker one CHi+ and
connects to the center Γ as depicted in Figure 2. As it turns out, the theorem from
[10] also provides an (almost) definite answer to the above fundamental problem.

Corollary ([10]). Under the conditions of the above theorem, either:

• the terminal boundary either consists of a bifurcation between a strong
S = {r = 0} and a weakly singular Cauchy horizon CHi+ as in Figure 2.

• Or the center endpoint bΓ is a locally naked singularity.

Non-genericity of locally naked singularities and Weak Cosmic Censor-
ship. Locally naked singularities are known to exist and cannot be excluded in
the analysis of [10] in the above charged model; however, they were shown to be
non-generic in Christodoulou’s celebrated resolution of Weak Cosmic Censorship
[1] in uncharged collapse. To generalize [1] to the charged case does not present
any immediate conceptual issues, contrary to the dynamics of the Cauchy hori-
zon; Thus, the following open problem appears within reach, and would completely
characterize the interior of dynamical black holes in charged spherical collapse.

Open problem. [Local Weak Cosmic Censorship Conjecture] Show that for gener-
ic spacetimes in charged spherical collapse, bΓ is not a locally naked singularity.
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An approach to mass based on capacity

Jeffrey Jauregui

The ADM mass provides a well-defined notion of the total mass of an asymptoti-
cally flat 3-manifold (M, g). However, because its formula depends on derivatives
of g, the ADM mass is challenging to understand in non-smooth spaces and un-
der non-smooth convergence. Interest in mass defined in low regularity springs
from the almost-equality case of the positive mass theorem and from Bartnik’s
mass-minimization problem [1], for example.

In 2006 Huisken proposed a remarkable new paradigm for understanding total
mass based on the isoperimetric behavior of large regions, i.e., by examining the
minimal area configurations for a given volume far out in an asymptotically flat
end [3], [4]. His isoperimetric mass is defined by:

miso(M, g) = sup
{Ki}

lim sup
i→∞

2

|∂Ki|g

(
|Ki| −

1

6
√
π
|∂Ki|3/2

)
,

where the supremum is taken over all exhaustions of M by sequences of compact
sets {Ki}. Here, |Ki| and |∂Ki| denote the volume and perimeter of Ki. Using the
isoperimetric inequality, it is straightforward to check that miso = 0 in Euclidean
space. With more work, it can be shown that miso agrees with the parameter
m in the Schwarzschild manifold of mass m > 0. More generally, as proposed
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by Huisken, it has been established that miso agrees with the ADM mass for
asymptotically flat manifolds of nonnegative scalar curvature (whose boundary, if
nonempty, consists of minimal surfaces). This was carried out by Jauregui and
Lee [7], building on ideas of Huisken, and separately by Chodosh, Eichmair, Shi,
and Yu [2]. Consequently, since miso is defined using only areas and volumes (no
derivatives of g), it is reasonable to interpret miso as a stand-in for the ADM mass
for lower regularity spaces (including, for example, C0 Riemannian manifolds).

Since miso is motivated by the classical isoperimetric inequality in R3, it is
natural to ask if other isoperimetric-type inequalities give any insight into the
ADM mass. We focus on the well-known isocapacitary inequality (also known as
the Poincaré–Faber–Szegö inequality) for a compact region K ⊂ R3, which states:

(1) cap(K) ≥
(
3|K|
4π

)1/3

,

where the capacity cap(K) is defined by minimizing the integral
∫
R3 |∇ϕ|2dV over

all Lipschitz functions that vanish on K and approach 1 at infinity. With some
smoothness on ∂K assumed, equality is only achieved when K is a round ball.
The capacity is defined in a completely analogous way in an asymptotically flat
manifold, although inequality (1) will not generally hold. However, far out in the
asymptotically flat end, the inequality should approximately hold, and it is natural
to ask if the “deficit” carries any information about the total mass. This motivates
our goals, which are to 1) carry out an analog of Huisken’s program, but based
alternatively on the isocapacitary inequality, and 2) identify if such an approach
may have some advantages in low regularity problems.

By considering round balls in Schwarzschild space, one is naturally led to the
following formula to define the “capacity–volume mass” [6]:

mCV (M, g) = sup
{Kj}

lim sup
j→∞

[(
3|Kj|
4π

)1/3

− cap(Kj)

]
.

This formula is of course modeled on Huisken’s definition of miso, but uses only
volumes and capacities in its definition. Likemiso it is immediately clear thatmCV

is a geometric invariant. The easiest example to consider is Euclidean space. By
the isocapacitary inequality, mCV ≤ 0 for R

3. But by considering an exhaustion
by balls, it becomes clear that mCV = 0. It also turns out that mCV produces the
value m in the Schwarzschild manifold of mass m > 0, as will be addressed later.

To call to mCV as a “mass,” it should be possible to show that it agrees with
the ADM mass. We have the following results from [6]. First, a lower bound:

Theorem 1. Let (M3, g) be asymptotically flat with nonnegative scalar curvature
outside of a compact set. Then

mCV (M, g) ≥ mADM (M, g).

Next, we have an upper bound if we restrict to an exhaustion by balls:
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Theorem 2. Let (M3, g) be asymptotically flat with nonnegative scalar curvature,
with ∂M empty or union of minimal surfaces. Then

lim sup
r→∞

[(
3|Br|
4π

)1/3

− cap(Br)

]
≤ mADM (M, g).

Finally, we have an upper bound on mCV for metrics that are harmonically flat
at infinity (HF). This means that outside of a compact set, gij = U4δij at infinity,
where U is a harmonic function approaching 1 at infinity.

Theorem 3. Let (M, g) be a Riemannian 3-manifold that is HF with nonnegative
ADM mass. Then

mCV (M, g) ≤ mADM (M, g).

As a corollary of Theorems 1 and 3 and the positive mass theorem, we have
mCV (M, g) = mADM (M, g) when (M, g) is HF with nonnegative scalar curvature
and empty or minimal boundary. In particular, in the Schwarzschild manifold of
mass m > 0, we have mCV (M, g) = m. (The latter can alternatively be shown
using the fact established in [11] that round balls in positive mass Schwarzschild
minimize capacity for their volume.)

We conjecture thatmCV (M, g) = mADM (M, g) holds for general asymptotically
flat metrics. In light of the above results, a reasonable approach to this would be
to show that minimizers of capacity for a given large volume V approach round
spheres in the AF end as V → ∞. Many such results are known for isoperimetric
regions (we refer to [2] and the references therein).

Now, why might it be advantageous to consider mCV over miso? Both are
particularly well-suited to studying the total mass of AF metrics that are not nec-
essarily smooth (they are possibly the only known candidates), which could arise as
limiting metrics in the problems mentioned in the first paragraph. Little is known
about mass in low regularity, but there have been some results that show how the
mass (particularly miso) behaves under low regularity convergence. We mention
specifically [7] and [8] where it was shown that miso is lower semicontinuous un-
der local C0 convergence and, more generally, under a pointed, volume-preserving
version of Sormani–Wenger intrinsic flat convergence [12], which we will call VF
convergence. VF convergence seems to be well-suited for limiting problems in-
volving nonnegative scalar curvature; see [10] for example.

In this regard, there are some technical reasons why mCV might be more fa-
vorable to work with in lower regularity. First, under VF convergence, boundary
area is lower semicontinuous (i.e., can jump down), which cause the expression
defining miso to “go the wrong way” in the limit. One of the biggest challenges in
[8] was overcoming this difficulty. By contrast, capacity is upper semicontinuous,
which will be shown in [9], so that the expression defining mCV naturally behaves
in a nice way. Second, the capacity of a set is much more stable under boundary
perturbations. This is significant, since the difficulty of controlling boundary area
under perturbations necessitated an additional hypothesis on the limit space in
[8]. While general solutions to problems such as the almost-equality case of the
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positive mass theorem and Bartnik’s mass minimization problem remain out of
reach, we anticipate mCV may be a useful tool in studying them.
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New Structures in Gravitational Radiation

Lydia Bieri

Gravitational radiation has been studied in General Relativity (GR) via various
mathematical methods. Studies of gravitational waves have been devoted mostly
to sources such as binary black hole mergers or neutron star mergers, or generally
sources that are stationary outside of a compact set. These systems are described
by asymptotically-flat manifolds solving the Einstein equations with sufficiently
fast decay of the gravitational field towards Minkowski spacetime far away from
the source. Waves from such sources have been recorded by the LIGO/VIRGO
collaboration since 2015, see [1, 2, 3]. I present new results on gravitational ra-
diation for sources that are not stationary outside of a compact set, but whose
gravitational fields decay more slowly towards infinity [5, 6]. A panorama of new
gravitational effects opens up when delving deeper into these more general space-
times. In particular, whereas the former sources produce memory effects that are
finite and of purely electric parity, the latter in addition generate memory of mag-
netic type, and both types grow. These new effects emerge naturally from the
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Einstein equations both in the Einstein vacuum case and for neutrino radiation.
The latter results are important for sources with extended neutrino halos.

Gravitational waves are predicted to change the spacetime permanently, which
would show in a change of the arrangement of test masses after the wave train
passed. This is the so-called memory effect. This effect was found in a linear theory
in 1974 by Ya. Zel’dovich and B. Polnarev [10]. Then in 1991 D. Christodoulou [8]
derived within the full nonlinear theory such a memory that was much larger than
expected. Together with D. Garfinkle we showed [7] that these are two different
effects sourced by different events. The former is called ordinary memory the latter
null memory. There has been a vast literature on memory effects. See [6] for more
information and further references.

We consider the Einstein vacuum equations

(1) Rµν = 0

(µ, ν = 0, 1, 2, 3) as well as the Einstein-null-fluid equations describing neutrino
radiation in GR

(2) Rµν = 8π Tµν .

As the Tµν for the null fluid is traceless, the Einstein equations for a null fluid
reduce to (2).

We consider various classes of asymptotically-flat spacetimes (M, g) (in 4 space-
time dimensions), which are solutions of the Einstein equations (1) respectively
(2) for the following corresponding classes of initial data.

Definition 1. ((B), [4]) We define an asymptotically flat initial data set to be a
(B) initial data set, if it is an asymptotically flat initial data set (H0, ḡ, k), where
ḡ and k are sufficiently smooth and for which there exists a coordinate system
(x1, x2, x3) in a neighborhood of infinity such that with r = (

∑3
i=1(x

i)2)
1
2 → ∞,

it is:

ḡij = δij + o3 (r−
1
2 )(3)

kij = o2 (r−
3
2 ) .(4)

In [4], weighted Sobolev norms of appropriate energies are controlled, yielding
the most general class of spacetimes for which nonlinear stability has been proven.

Christodoulou-Klainerman (CK) studied data of the following type:

Definition 2. ((CK), [9]) We define a strongly asymptotically flat initial data set
in the sense of [9] and in the following denoted by (CK) initial data set, to be an
initial data set (H, ḡ, k), where ḡ and k are sufficiently smooth and there exists a
coordinate system (x1, x2, x3) defined in a neighborhood of infinity such that, as

r = (
∑3

i=1(x
i)2)

1
2 → ∞, ḡij and kij are:

ḡij = (1 +
2M

r
) δij + o4 (r−

3
2 )(5)

kij = o3 (r−
5
2 ) ,(6)

where M denotes the mass.
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In [9] and [4] proofs of nonlinear stability are established under appropriate small-
ness conditions on the initial data in weighted Sobolev norms. This ensured the
existence of these spacetimes. However, the behavior along null hypersurfaces
towards future null infinity is largely independent from the smallness.

More precisely, consider data of type (B). The proof [4] yielded the most general
class of data for which a nonlinear stability result has been proven. The spacetimes
constructed in [4] exhibit interesting new features that are important also for
large data. It follows easily by a corollary that there exists a complete domain
of dependence of the complement of a sufficiently large compact subset of the
initial hypersurface. Thus, we have a solution spacetime with a portion of future
null infinity corresponding to all values of the retarded time u not greater than a
fixed constant. This provides the solid foundation to investigate the asymptotic
behavior at future null infinity for large data for (B) spacetimes (that is solutions of
(1) with behavior as in definition (B) but with large data), and to prove theorems
on the nature of gravitational radiation. Naturally, our investigations extend to
these spacetimes coupled to neutrinos via a null fluid.

We recall the decomposition of the Weyl tensorW into its electric and magnetic
parts. Contracting W twice with a vectorfield X as follows gives

EX(W )αβ = WµανβX
µXν

MX( ∗W )αβ = ∗WµανβX
µXν with ∗Wαβγδ =

1

2
ǫαβµνW

µν
γδ

EX(W ) and MX( ∗W ) are symmetric, traceless tensors that are orthogonal to
X . Here, we are interested in ρ (electric part) and σ (magnetic part) of the Weyl
curvature. In particular, in a convenient null frame with L an incoming and L an
outgoing null vectorfield these components are given by RLLLL = 4ρ respectively
∗RLLLL = 4σ.

It has been known, that gravitational wave memory from “traditional” sources
(see above) are finite and of electric parity only. Magnetic memory does not occur
for these spacetimes. In [5, 6] I showed that for spacetimes of slow decay (includ-
ing data of type (B)) there exists magnetic-parity memory, and both electric and

magnetic memories diverge at rate
√
|u|. Moreover, a multitude of new structures

contribute to these effects. These spacetimes solve (1) respectively (2) for corre-
sponding classes of initial data. A simplified version of the main theorems can be
summarized and stated as follows:

Theorem 3. ((B) 2020) For classes of solutions of (1) respectively (2) (including
data of type (B)) there exists magnetic memory and electric memory both diverging

at rate
√
|u|. New structures contribute to these effects.

The proof uses the Bianchi equations for ρ and σ. We investigate the behavior
of the main curvature and other geometric quantities at future null infinity. In par-
ticular, we derive dynamical structures that are hidden behind the non-dynamical
components. The former impact gravitational radiation and memory whereas the
latter do not.
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The new results describe gravitational radiation and memory for sources that are
not stationary outside of a compact set, but whose gravitational fields decay more
slowly towards infinity [5, 6]. In particular, these include sources with extended
neutrino halos. Various applications open up.
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Positive mass theorems for asymptotically hyperbolic initial data sets

Anna Sakovich

In this talk, we presented a new proof of the positive mass theorem for asymptot-
ically hyperbolic ”hyperboloidal” initial data sets. The prototype for such initial
data sets is the unit hyperboloid in Minkowski spacetime. In other words, it is
assumed that both the induced metric and the second fundamental form approach
the hyperbolic metric at infinity.

The underlying idea of the proof builds upon the Jang equation reduction
method that was introduced by Schoen and Yau in [3]. The key observation made
in [3] is that the proof of the positive mass theorem for asymptotically Euclidean
initial data sets can be reduced to applying the positive mass theorem for asymp-
totically Euclidean manifolds that was established in [2]. More specifically, it was
shown that given an asymptotically Euclidean initial data set (M, g,K) satisfying
the dominant energy condition, there is a hypersurface Σ ⊂ (M ×R, g + dt2) that
can be equipped with an asymptotically Euclidean metric of nonnegative scalar
curvature whose ADM mass does not exceed the ADM mass of (M, g,K). The
hypersurface Σ arises as a solution of the so-called Jang equation, a quasilinear
elliptic PDE of the form HΣ = trΣK, whereHΣ is the mean curvature of Σ, andK
is assumed to be extended to M ×R by setting K(·, ∂t) = 0. In the case when the



2262 Oberwolfach Report 40/2021

initial data set is asymptotically Euclidean, the existence theory for this equation
was established in [3].

As discussed in the talk, it turns out that the Jang equation reduction method
can be implemented in the setting of asymptotically hyperbolic initial data sets,
yielding a proof of the positive mass theorem. In particular, the Jang equation
can be used to deform an asymptotically hyperbolic initial data set satisfying
the dominant energy condition to an asymptotically Euclidean manifold with ”al-
most nonnegative” scalar curvature, again reducing the proof to the application of
the positive mass theorem for asymptotically Euclidean manifolds. However, the
analysis of the Jang equation in the asymptotically hyperbolic setting poses some
challenges that are not present in the asymptotically Euclidean setting of [3]. Some
of these challenges are related to the fact that the expected asymptotic behaviour
of the solution near infinity is more complicated. To deal with this problem, a
new method for constructing the so-called barrier functions had to be designed,
ensuring the desired asymptotics of the solution. Another difficulty is that the
rescaling technique, which is a commonly used method for proving estimates for
solutions of geometric PDEs in the asymptotically Euclidean setting, does not
work on asymptotically hyperbolic manifolds. This complication was dealt with
by revisiting the Jang equation and rewriting it in terms of the asymptotically
Euclidean data induced on the graphs of the barrier functions, after which the
rescaling argument could be applied.

The presented work is carried out in dimension 3. Please see [1] for further
details.
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Auf der Morgenstelle 10
72076 Tübingen
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