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Abstract. This small collaborative workshop brought together experts from
the Sino-German project working in the field of advanced numerical methods
for hyperbolic balance laws. These are particularly important for compress-
ible fluid flows and related systems of equations. The investigated numerical
methods were finite volume/finite difference, discontinuous Galerkin methods,
and kinetic-type schemes. We have discussed challenging open mathemati-
cal research problems in this field, such as multidimensional shock waves,
interfaces with different phases or efficient and problem suited adaptive al-
gorithms. Consequently, our main objective was to discuss novel high-order
accurate schemes that reliably approximate underlying physical models and
preserve important physically relevant properties. Theoretical questions con-
cerning the convergence of numerical methods and proper solution concepts
were addressed as well.
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Introduction by the Organizers

Balance laws arise from continuum physics, engineering, chemistry or biology.
Compared to the homogeneous counterpart, that we name conservation laws,
source terms, non-conservative terms or different asymptotic regimes are present
in the mathematical modeling. They account for effects reflecting physical or de-
sired properties of the studied system. Due to the presence of additional terms
standard methods cannot be applied in a straightforward way. Modifications of
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the derived schemes are necessary to capture physically relevant or desired features
and characteristics, such as positivity preservation (preservation of non-negative
water depth), conservation of potential vorticity or enstrophy.

Three years ago a Sino-German group was organized to jointly work on the modern
numerical methods of hyperbolic balance laws and their applications. Although
the outbreak of Covid-19 seriously affects the mutual academic visits between
both sides, collaborations and discussions have been continuing. After the first
workshop held successfully in Beijing in 2019, this second one gathers scholars
from both sides to share research fruits we obtained during the past two years and
look to the near-future collaborations.

We had 20 online speakers coming from 15 top Chinese institutions and universi-
ties. Most of them were young scholars with prospective outlook on modern trends
of numerical methods and their applications. Their topics emphasized the design
and analysis of fundamental algorithms of hyperbolic balance laws in various disci-
plines such as fluid dynamics, astrophysics and radiative transfer, with extensions
to multi-phase flows of real materials and shallow water flows. The technology of
Machine Learning was adopted to understand deep non-equilibrium physics and
fundamental numerical solvers were proposed for real-material application.

On-site we had 9 participants from Germany. Their talks dealt with the multi-
phase flows, hybrid multiscale methods, kinetic schemes and their applications in
chemotaxis, the Riemann problem for two-phase flows, and convergence analysis
of some standard numerical methods via dissipative measure–valued solutions.
On-site talks very well complemented online talks and altogether contributed to
overall success of the collaborative workshop. Several open questions arose during
the discussions and will be investigated in near future. We plan to continue in the
started collaboration and organize next year a followed-up workshop having on-site
participants. This report contains extended abstracts of all speakers illustrating
variety of themes and exciting new developments in numerics of hyperbolic balance
laws.

Acknowledgement: The organizers wish to thank the MFO staff for comfortable,
creative atmosphere and opportunity to realize hybrid workshop in this difficult
time for international collaborative research.
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Abstracts

Hyperbolic Transport across Fluidic Interfaces

Christian Rohde

(joint work with Lars von Wolff)

In this short note we consider a homogenization problem for compressible two-
phase flow at constant temperature in a periodic porous medium. As a mathemat-
ical model we employ a diffuse interface ansatz which relies on an approximation
of the classical Navier-Stokes-Korteweg equations involving hyperbolic first-order
operators [1, 4, 5].

To be precise, let D ⊂ Rd, d ∈ {2, 3}, be a cubic domain that can be periodically
filled with identical cubic cells of side length δ > 0. The porous domain Dδ ⊂ D is
then composed of all these cells, but without a solid grain domain of size (1−φ)δd,
φ ∈ (0, 1), in each cell. Next, we assume that Dδ is filled with a homogeneous
compressible fluid which can appear in a liquid and a vapour phase. For fixed
temperature and density ρ > 0, let p = p(ρ) be the non-monotone (Van-der-
Waals-like) pressure which is related to the Helmholtz free energy W = W (ρ) by
p(ρ) = −W (ρ) + ρW ′(ρ). To introduce the approximation of the classical third-
order Navier-Stokes-Korteweg system we let for a kernel function K : Rd → [0,∞)
the scaled version

Kα(x) = α− d
2K

(√
αx

)
(α > 0)

be given.
With the unknowns density ρα = ρα(t,x) > 0, and velocity field vα = vα(t,x) ∈

Rd the nonlocal approximation writes in the quasi-static regime as

(1)
δ2ραt + ∇ · (ραvα) = 0,

∇ ·
(
ραvα ⊗ vα + pα(ρ

α)I
)
= µ∆vα + αρα∇(Kα ∗ ρα)

in (0, T )×Dδ for T > 0. In (1), µ > 0 denotes the viscosity, and we use pα(ρ) =
p(ρ)+αρ2/2. Furthermore, ∗ stands for a convolution operator, that accounts for
interactions with the solid boundary of Dδ, that is,

(Kα ∗ ρ)(x) :=
∫

Dδ

Kα(x− y)ρ(y) dy +

∫

Rd\Dδ

Kα(x− y)ρs dy.

Here ρs > 0 is assumed to be the constant solid wall density. Initial values for the
density have to be added.

In the limit α → ∞ we recover for appropriate kernel functions the classical
Navier-Stokes-Korteweg ansatz, cf. [4]. Smooth solutions (ρα,vα) of the system
(1) with vanishing velocity on ∂Dδ satisfy the energy inequality

d

dt

∫

Dδ

(
W (ρα(t,x)) +

1

4

∫

Dδ

Kα(x− y)
(
ρα(t,x)− ρα(t,y)

)2
dy

+
1

2

∫

Rd\Dδ

Kα(x− y)
(
ρα(t,x)− ρs

)2
dy +

1

2
ρα(t,x)|vα(t,x)|2

)
dx ≤ 0.
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From this oberservation one can conclude that the evolution of (1) favours a com-
plete wetting of the solid boundary if time tends to infinity.

Theorem 1 ([5]). Let
{
(ρδ,vδ)

}
⊂ C0([0, T );L2(Dδ))×L2(0, T ; (H1

0 (Dδ))
d) be a

family of weak solutions of (1). Choose α > 0 such that p′α > 0 holds.
Then, there exist functions ρ ∈ L2(0, T ;H1(D)) and v ∈ (L2((0, T ) × D))d such
that

(2) ρ̂δ→ρ in L2((0, T )×D) and δ−2ṽδ⇀v in (L2((0, T )×D))d

hold for δ → 0.
The limit functions ρ,v satisfy (in the weak sense)

(3)

θρt = −∇ · (ρv),

v =
α

µ
A
(
ρ∇

((
Kα ∗ ρ− ρ

)
−W ′(ρ)

)) in (0, T )×D.

The (normal) flux across ∂D vanishes.

The functions ρ̂δ and ṽδ in (2) are extensions of ρδ and vδ to the homogenized
domain D; thereby ·̂ denotes extension by 0 and ·̃ extension by the cell mean
value. The entries of the permeability matrix A ∈ R

d×d refer to periodic solutions
of Stokes problems in the cells, see e.g. [2, 5]. The proof of Theorem 1 relies on the
seminal work [2] on the homogenization of the quasi-static Navier-Stokes system
for compressible one-phase flow. This work exploits the monotonicity of the one-
phase pressure function, which is restored in our case for the relaxed pressure
function pα for α big enough. In fact, this property ensures the hyperbolicity of
the first-order operator in (1).

The limit problem (3) is an initial boundary value problem for a nonlocal Cahn-
Hilliard equation governing the evolution of density. This becomes evident when
plugging the Darcy law (3)2 in the mass balance (3)1. For the limit α → ∞ it
is conjectured that solutions of (3) converge to a solution of an initial boundary
problem for the local Cahn-Hilliard-like problem with quadratic mobility, i.e.,

θρt = −∇ · (ρv), v =
1

µ
A
(
ρ∇

(
∆ρ−W ′(ρ)

))
in (0, T )×D.

A rigorous result in this direction for a similar problem can be found in [3].
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Learning Galilean Invariant and Thermodynamically Stable PDEs for
Non-equilibrium Flows

Wen-An Yong

(joint work with Juntao Huang, Zhiting Ma, Yizhou Zhou)

In this talk, I present our recent work [1], where we advocate combining machine
learning with non-equilibrium thermodynamics. The talk starts with a review of
our Conservation-dissipation Formalism (CDF) [2] of irreversible thermodynamics.
By the CDF, irreversible processes are described by systems of first-order partial
differential equations with two freedoms. They are a strictly convex function of the
state variables and a negative-definite matrix depending also on the state variables.
Once the freedoms are determined, the system of PDEs is thermodynamically
stable [3] and, particularly, is symmetrizable hyperbolic. Moreover, it is Galilean
invariant if the negative-definite matrix is taken to be independent of the fluid
velocity.

To show that the freedoms can be determined with machine learning, we take
the one-dimensional non-equilibrium flow governed with the BGK model as exam-
ple. The flow obeys the conservation laws of mass, momentum and energy:

(1)

∂tρ+ ∂x(ρv) = 0,

∂t(ρv) + ∂x(ρv
2 + p) = 0,

∂tE + ∂x(Ev + q + pv) = 0.

Here ρ is the fluid density, v is the velocity, E = ρe+ 1
2ρv

2 is the total energy with
e the specific internal energy, p = 2ρe is the pressure, and q represents the heat
flux. This set of equations are not closed due to the presence of q.

By the CDF framework, we introduce a new variable w, a strictly concave
function s(neq) = s(neq)(w; ε) and a positive function M = M(ρ, e, w; ε), where ε
is the Knudsen number. Then the above equations are closed with

(2) ∂tq + v∂xq +
g

ρ
∂xθ

−1 =
gMq

ρ

with θ = 2e and
g = s(neq)ww (w; ε) < 0.

Here w is related to q = s
(neq)
w (w; ε). Thus, our task becomes to learn the negative

g = g(q; ε) and the positive M =M(ρ, e, q; ε).
Because the training data are known only at discrete space-time points, we

discretize equation (2) as

q
n+1

j = q
n
j −

∆t

2∆x
v
n
j (q

n
j+1 − q

n
j−1)−

∆t

2∆x

gnj

ρnj

(

(θnj+1)
−1

− (θnj−1)
−1

)

+∆t

(

gMq

ρ

n

j

)

,

≡ S [g,M ](V n
j−1, V

n
j , V

n
j+1;∆t,∆x)
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with V = (ρ, v, E, q), where the indices j and n together denote the space-time
point (n∆t, j∆x). Based on this, we define our loss function as the mean squared
error (MSE):

(3) L =
∑

training data

|qn+1
j − S[g,M ](V n

j−1, V
n
j , V

n
j+1; ∆t,∆x)|2.

Note that the equations in (1) do not involve g and M and thereby they are
irrelevant at this point.

With the loss function defined in (3), we design fully-connected neural networks
to approximate the freedoms g and M in (2). To ensure the positivity of M and
−g, the softplus function is added in the output layer.

The training data are generated by numerically solving the BGK model with
smooth initial data. Numerical results indicate that our CDF-based machine learn-
ing model achieves good accuracy in a wide range of Knudsen numbers. It is re-
markable that the learned dynamics can give satisfactory results with randomly
sampled discontinuous initial data although it is trained only with smooth initial
data. Particularly, for the classical Sod’s shock tube problem, our model behaves
much better than the Euler equations.
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Stability analysis and error estimates on the Runge-Kutta
discontinuous Galerkin for linear hyperbolic equations

Qiang Zhang

(joint work with Yuan Xu, Chi-Wang Shu, Xiong Meng, Haijin Wang)

Although the RKDG method is widely used for nonlinear conservation laws, there
are not enough theoretical results to support numerical experiments till now. In
this talk we start the systematical analysis from the RKDG(s, r, k) method for
linear constant-coefficient hyperbolic equation Ut + βUx = 0, where s and r are
respectively the stage number and the accuracy order in time, and k is the degree
of discontinuous finite element space Vh. Denote by un the numerical solution at
tn = nτ , with τ being the time step. One-step marching is usually given in the
Shu-Osher representation:
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• let un,0 = un;
• for ℓ = 0, 1, . . . , s− 1, seek the stage solution un,ℓ+1 ∈ Vh, such that

(un,ℓ+1, v) =
∑

0≤κ≤ℓ

[
cℓκ(u

n,κ, v) + dℓκτH(un,κ, v)
]
, ∀v ∈ Vh;

• let un+1 = un,s;

Here cℓκ and dℓκ are the parameters related to the RK algorithm, and H(·, ·) is
the DG spatial discretization with the upwind-biased numerical flux.

Generally speaking, it is hard to theoretically investigate their L2-norm stability
performance as either s or r increases. To overcome this difficulity, we introduce
the matrix transferring process that provides a unified framework to get a nice
energy equation. The main development is the temporal differences of stage solu-
tions

(1) Dκ(m)un =
∑

0≤ℓ≤κ

σκℓ(m)un,ℓ, κ = 1, 2, . . . ,ms,

with un,sa+b = un+a,b, where m is the multiple-step number. The combination co-
efficients in (1) solely depend on the time-marching algorithm and are inductively
determined by the kernel relationship

(2) (Dκ(m)un, v) = mτH(Dκ−1(m)un, v), ∀ v ∈ Vh.

Note thar D0u
n = un. The above defintion implies the evolution equation

α0(m)un+m =
∑

0≤i≤ms

αi(m)Di(m)un.

By constantly adopting (2), we can carry out the matrix transferring process for

a
(ℓ)
ij (m) and b

(ℓ)
ij (m), the coefficients in the energy equation

α2
0(m)

[
‖un+m‖2 − ‖un‖2

]
=

∑

0≤i,j≤ms

a
(ℓ)
ij (m)(Di(m)un,Dj(m)un)

+
∑

0≤i,j≤ms

b
(ℓ)
ij (m)τH(Di(m)un,Dj(m)un),

where ℓ = 0, 1, . . . , ζ(m). Note that ζ(m), the termination index, is proved to
be independent of m. The basic purpose in this process is eliminating the lower
order temporal information and transforming them into the spatial information,
as soon as possible. With the help of the fundamental properties of the DG spa-
tial discretization, we can use the final energy equation and perfectly analyze the
L2-norm stability performance. Three typical results are monotonicity stability,
strong boundedness stability and weak stability. The specific definitions and con-
clusions can be found in [1].

As applications and extensions of the above work, we also obtain the optimal
error estimate and superconvergence results, under a mild regularity assumption
on the exact solution that is independent of the stage number. To do that, we

first introduce the well-defined reference functions U
(ℓ)
[σ] (x, t), for ℓ = 0, 1, . . . , s−1,

where the terms involving the time derivatives of order over σ+1 are cut off. Then
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we employ the generalized Gauss-Radau projection Gθ
h and the incomplete correc-

tion function technique, where θ is the upwind-biased parameter in the numerical
flux. The kernel trick now is that the error decomposition at each stage is given
by inserting a function

χn,ℓ = G
θ
hU

(ℓ)
[r] (x, t

n)−
∑

1≤p≤q

(−G
θ
h∂

−1
x )p(G

1

2

h −G
θ
h)︸ ︷︷ ︸

Fp

(−∂x)pU (ℓ)
[min(q,r)](x, t

n) ∈ Vh,

with different integers p and q for different purposes, where G
1/2
h is the local L2-

projection and Fp is the correction operator. By virtue of the above techniques we
can strictly prove [2, 3] that the RKDG method perfectly preserves the optimal
error estimate and superconvergence performance of the semi-discrete method,
and the time discretization solely produces an optimal error order in time. These
theoretical conclusions are supported by the numerical experiments.
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Numerical methods for elastic transmission eigenvalues

Xia Ji

(joint work with J. Sun, Y. Xi)

In this talk, we give two numerical methods for the elastic transmission eigenvalues,
C0IP method and an iteration method basing on the Argyris element.

First, we develop a discontinuous Galerkin method computing a few smallest
elasticity transmission eigenvalues, which are of practical importance in inverse
scattering theory. For high order problems, DG methods are competitive since
they use simple basis functions, the numerical implementation is much easier com-
pared with classical conforming finite element methods. In this talk, we propose
an interior penalty discontinuous Galerkin method using C0 Lagrange elements
(C0IP) for the transmission eigenvalue problem for elastic waves and prove the
optimal convergence. The method is applied to several examples and its effective-
ness is validated.

Second, we develop an effective numerical method to compute real transmission
eigenvalues. Real transmission eigenvalues can be reconstructed from the scattered
waves and used to estimate material property of the elastic body. It is shown that
there exists a countable set of real elastic transmission eigenvalues. The prob-
lem of the existence of complex elastic transmission eigenvalues is largely open.
Unlike the Laplacian eigenvalue problem or the biharmonic eigenvalue problem,
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the transmission eigenvalue problem is nonlinear and non-self-adjoint. To over-
come these difficulties, we reformulate the ETE as a problem to seek the root of
a nonlinear function. Specifically, following the idea of [1] for the acoustic trans-
mission eigenvalue problem, the ETE is first written as a nonlinear fourth order
eigenvalue problem. Then a nonlinear function, whose roots are the real elas-
tic transmission eigenvalues, is constructed. The values of the nonlinear function
are generalized eigenvalues of some self-adjoint coercive fourth order problems,
which can be treated using the classical H2-conforming finite elements. Finally,
the secant method is used to compute the roots of the nonlinear function.

You can refer [2, 3] for details.
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Model order reduction for parametrized evolution equations

Yongjin Zhang

Model order reduction (MOR), also known as model reduction or dimension re-
duction, is a useful tool in handling large-scale computations in science and en-
gineering. MOR aims at constructing a low-cost reduced-order model (ROM),
which can reproduce the main dynamics of the large-scale high-fidelity model.
Various MOR methods have been proposed and successfully applied to different
engineering contexts [1, 2, 3, 4].

In this work, we consider a class of problems described by a parameterized
evolution equations,

(1) ∂tu(t, x;µ) + L(µ)[u(t, x;µ)] = 0, t ∈ (0, T ], x ∈ Ω ⊂ R
d, µ ∈ P ⊂ R

p,

where L(µ)[·] is a spatial differential operator. By applying suitable numerical
discretization methods, e.g., the finite volume method, the fully discrete form can
be written as follows,

(2) A(n)
µ un+1(µ) = B(n)

µ un(µ) + g(un(µ);µ),

where A
(n)
µ , B

(n)
µ ∈ RN×N are the coefficient matrices, and un(µ) ∈ WN ⊂ L2(Ω)

is the numerical solution at time t = tn, and g(·;µ) is a nonlinear operator with
respect to (w.r.t.) un(µ) and/or nonaffine w.r.t. the parameter µ. The resulting
large-scale system in (2) is considered as a full-order model (FOM). Often, the
output

(3) yn(µ) = l(un(µ)),

is the quantity of interest.
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The idea of MOR is that the underlying system of equations are projected
onto a subspace spanned by a small number of properly chosen basis vectors via
Petrov–Galerkin projection. Let V,W ∈ RN×N be the projection matrices, and
ûn(µ) := V unr (µ) be the approximation of un(µ). The resulting ROM

(4) Â(n)
µ un+1

r (µ) = B̂(n)
µ unr (µ) +WT g(V unr (µ);µ)

should be sufficiently accurate for the variations of µ in the whole parameter

domain. Here Â
(n)
µ = WTA

(n)
µ V ∈ RN×N , B̂

(n)
µ = WTB

(n)
µ V ∈ RN×N are the

reduced matrices, and unr (µ) ∈ RN is the vector of unknowns of the ROM. The
goal of MOR is that the ROM is much cheaper to solve compared to the FOM for
any parameter µ, since N ≪ N . However, the evaluation of the nonlinear term
WT g(V unr (µ);µ) still depends on the full dimension N . To reduce the complexity,
the empirical interpolation method (EIM) [5] or its variant can be applied. As a
result, a low dimensional ROM is obtained as

(5) Â(n)
µ un+1

r (µ) = B̂(n)
µ unr (µ) + Ĝβn(µ),

where Â
(n)
µ , B̂

(n)
µ , Ĝ = WTG can be precomputed through an offline-online prece-

dure. Given any feasible parameter value, the output response can be obtained
rapidly because the computation is independent of the dimension N of the original
FOM.

Various methods can be applied to construct the projection matricesW and V .
We now show the construction of the projection matrix V using a greedy algorithm.
Generally, a training set Ptrain with a finite number of parameter samples is chosen
a priori as a surrogate of the admissible parameter space. Assume that ψN (·) is
an error indicator for an approximation by the current RB with dimension N . At
each extension step, a parameter µ⋆, which causes the largest error measured by
the error indicator ψN (·), is chosen from Ptrain to enrich the RB. This process
continues until the accuracy requirement is satisfied, i.e., the error indicator goes
below the user-specified error tolerance.

The indicator ψN (·) plays a key role in the construction process and it determi-
nate the cost of construction of the projection matrix. Many methods have been
proposed for the evaluation of the error indicator for different problems, see, e.g.,
[3]. For parametrized nonlinear evolution equations, an efficient error estimation
is proposed in the vector space for MOR. More details can be found in [8]. For the
number of snapshots is large, the adaptive snapshot selection [7] can be applied to
reduce the cost of basis construction.

Note that the parametric ROM is generated and verified, it can be adopted as a
surrogate model for real-time simulations or in the many-query context. The per-
formance of the parametric ROMs is demonstrated by several numerical examples,
including Burgers’ equations and simulated moving bed chromatography models
in chemical engineering. ROM-based optimization and ROM-based uncertainty
quantification have been explored. Details can be found in [6, 7, 8].
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On the boundary conditions for a linearized hyperbolic moment
system of the Boltzmann equation

Weifeng Zhao

(joint work with Wen-An Yong)

We are interested in the following hyperbolic moment system for the Boltzmann
equation in 1D:

(1)
∂W

∂t
+ A

∂W

∂x
=

1

τ
SW

along with boundary condition (BC)

(2) BW(t, 0) = 0.

Here W := W(t, x) = (ρ, u, θ, f3)
† ∈ R4, ρ, u and θ are the fluid density, velocity

and temperature, respectively, f3 is related to the heat flux, τ is the relaxation
time, which is positive and may go to zero, and A, S,B are three constant matrices
given by

A =




0 ρ0 0 0
θ0/ρ0 0 1 0
0 2θ0 0 6/ρ0
0 0 ρ0θ0/2 0


 , S = diag(0, 0, 0,−1),

B =

(
0 1 0 0
0 0 χρ0

√
θ0 −1

)
.
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In the above matrices, ρ0, θ0 are positive numbers and χ is related to the accommo-
dation coefficient in the Maxwell boundary condition of the Boltzmann equation.
The system (1) is a linearized version of the globally hyperbolic moment system
in [1] and the derivation of the BC (2) can be found in [2].

Actually, (1) is a typical hyperbolic relaxation system since the convective part
is hyperbolic and the denominator τ in the source term may vanish. For this
kind of system, special attention must be paid when imposing BCs. It is observed
in [3] that, for the Jin-Xin relaxation model [5], the usual relaxation stability
conditions and the Kreiss condition [4] are not enough to ensure the existence
of such zero relaxation limit. To remedy this, the so-called generalized Kreiss
condition (GKC) for initial-boundary-value problems was proposed [3]. With this
condition, reduced boundary condition, satisfying the Kreiss condition, is derived
for the corresponding equilibrium system.

Here we analyze the BC (2) of the system (1) with the theory developed in
[3]. We show that even if the Kreiss condition holds, there exists an exponentially
increasing solution to the initial-boundary-value problem of the moment system.
To clarify this problem, we check the GKC [3]. With the GKC, the stability
of the moment system is proved by using an energy estimate together with the
Laplace transformation. Moreover, under the GKC we derive the reduced BCs
for the corresponding equilibrium system. These reduced BCs are further shown
to satisfy the Kreiss condition. Numerical results verify the convergence of the
solution of the moment system to that of the equilibrium system with the derived
BCs in the relaxation limit. Our analysis indicates that special attention should be
paid when imposing BCs for moment systems and the GKC should be respected
to ensure the zero relaxation limit of the initial-boundary-value problems. These
results are included in our recent paper [2].
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A Molecular–Continuum Multiscale Solver for Liquid–Vapor Flow

Jim Magiera

Phase transition effects play an important role in many natural and technical pro-
cesses, and their mathematical and numerical description poses many challenges.
In this contribution we focus on liquid–vapor flow with sharp and fully resolved
phase boundaries. Our main goal is developing a multiscale interface solver to
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overcome limitations that arise in classical single-scale modeling approaches, see
e.g. [1].

We consider compressible, inviscid, and temperature-dependent liquid–vapor
flow with a sharp interface, which is modeled by the two-phase Euler equations in
a domain Ω ⊂ Rd, d ∈ {1, 2, 3}. They form a free boundary problem for the (d−1)-
dimensional interface Γ(t), that divides Ω into the vapor phase domain Ω+(t) and
the liquid phase domain Ω−(t). Inside these domains we assume that the fluid
states belong only to their respective phase state space P+, P−. In summary, we
have the following problem: find the liquid and vapor density, momentum, and
energy (ρ, ρv, E) : Ω±× (0, tend) → P±, as well as the interface Γ(t), such that the
following system is fulfilled in both the liquid phase domain Ω−(t), as well as the
vapor phase domain Ω+(t):

∂tρ+∇ · (ρv) = 0,

∂t(ρv) +∇ · (ρv ⊗ v + p I) = 0,

∂tE +∇ · ((E + p)v) = 0,

in Ω±(t) for t ∈ (0, tend).(1)

The internal specific energy ε = E
ρ − 1

2‖v‖2, and pressure p are specified by equa-

tions of state, which means we have the relations ε = ε(ρ, T ) and p = p(ρ, T ).
In our application we apply the equation of state presented in [2]. Generally in
two-phase flow applications the pressure p = p(ρ, T ) is non-monotone with respect
to the density ρ > 0, which turns the system (1) into mixed hyperbolic–elliptic
type. The hyperbolicity can be recovered by restricting the fluid states to liquid
and vapor state spaces P−, P+ in which (1) is purely hyperbolic. Both the vapor
and the liquid domain Ω−(t), Ω+(t) are then associated with the respective phase
state space.

The system (1) is discretized by an interface-preserving moving-mesh finite
volume method, which is joint work with Maria Alkämper, and an extension of
the method presented in [3]. Its advantage is that the sharp interface is directly
resolved within the mesh, i.e. the interface is formed by cell surfaces within the
mesh. Not only, as a consequence, no vapor and liquid states are mixed, but also
we are able to model the phase boundary separately by applying a designated
interface solver. Such an interface solver is of the form

R : P− × P+ → P− × P+ × R : (u−, u+) 7→ (u∗−, u
∗
+, s).(2)

For given liquid and vapor initial states u− = (ρ−, ρ−v− · n, E−) ∈ P−, u+ ∈ P+

it solves the microscale Riemann problem in direction n ∈ Sd−1 and extracts the
wave speed s ∈ R of the interface as well as the adjacent wave states u∗− ∈ P−,
u∗+ ∈ P+ at the interface.

According to our two-phase multiscale model the interface solver (2) is realized
by nonequilibrium molecular dynamics, describing the phase boundary dynamics.
For this purpose, particle systems are initialized similar to Riemann initial data,
while reflecting the continuum-scale fluid states u−, u+, such as liquid and vapor
densities, momentum and temperature. By tracking the interface on the particle-
level, we are able to determine the interface speed s, as well as the wave states u∗−,
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u∗+. In this way, we obtain an interface solver (2) that is based on molecular-scale
physics.

However, molecular dynamics simulations are computationally expensive, and
including them directly in the multiscale model framework is computationally
unfeasable. We overcome this problem by using surrogate interface solvers in
place of (2). They are based on constraint-aware neural networks [4], which are
trained on the data originating from the molecular dynamics interface solver.

Furthermore, we demonstrate that the multiscale model can be easily extended
to liquid–vapor flow of more complex fluids and multi-component flow. To this
end, the molecular dynamics are extended to fluid mixtures, and on the continuum
scale we apply the model of [5].

The complete liquid–vapor multiscale model is described in [6].
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Entropy stable adaptive moving mesh schemes for 2D and 3D special
relativistic hydrodynamics

Huazhong Tang

(joint work with Junming Duan)

Relativistic hydrodynamics (RHD) has been widely used in astrophysics & cos-
mology (gravitational collapse theory, neutron star model, galaxy formation etc.),
plasma physics (relativistic fluid is considered as the model of relativistic parti-
cle beam) and nuclear physics (relativistic fluid is used for the analysis of heavy
ion reactions). Relativistic fluid is also a very successful model for describing the
dynamics of multiparticle, relativistic systems.

Adaptive mesh methods have important applications for a variety of physical
and engineering areas such as solid and fluid dynamics, combustion, heat transfer,
material science, etc. The physical phenomena in these areas develop dynami-
cally singular or nearly singular solutions in fairly localized regions, such as shock
waves, boundary layers, detonation waves, etc. The numerical investigation of
these physical problems may require extremely fine meshes over a small portion
of the physical domain to resolve the large solution variations. A powerful and
primary approach to improve our understanding of the physical mechanisms in the
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RHDs is through numerical simulations. Comparing to the non-relativistic case,
the numerical difficulties are coming from strongly nonlinear coupling between the
RHD equations. Its numerical study did not attract considerable attention until
1990s. In mathematics, the entropy condition is needed to single out the unique
physical relevant solution among all the weak solutions. It can also give some kind
of stability

This talk mainly introduces the entropy stable (ES) adaptive moving mesh
schemes for the 2D and 3D special relativistic hydrodynamic (RHD) equations de-
veloped in [2]. They are built on the ES finite volume approximation of the RHD
equations in curvilinear coordinates, the discrete geometric conservation laws, and
the mesh adaptation implemented by iteratively solving the Euler-Lagrange equa-
tions of the mesh adaption functional in the computational domain with suitably
chosen monitor functions. First, a sufficient condition is proved for the two-point
entropy conservative (EC) flux, by mimicking the derivation of the continuous
entropy identity in curvilinear coordinates and using the discrete geometric con-
servation laws given by the conservative metrics method. Based on such sufficient
condition, the EC fluxes for the RHD equations in curvilinear coordinates are
derived and the second-order accurate semi-discrete EC schemes are developed
to satisfy the entropy identity for the given convex entropy pair. They can be
reduced to the EC fluxes and the EC schemes for the RHD equations in Carte-
sian coordinates [5]. Next, the semi-discrete ES schemes satisfying the entropy
inequality are proposed by adding a suitable dissipation term to the EC scheme
and utilizing linear reconstruction with the minmod limiter in the scaled entropy
variables in order to suppress the numerical oscillations of the above EC scheme.
Then, the semi-discrete ES schemes are integrated in time by using the second-
order strong stability preserving explicit Runge-Kutta schemes. Finally, several
numerical results show that our 2D and 3D ES adaptive moving mesh schemes
effectively capture the localized structures, such as sharp transitions or discon-
tinuities, and are more efficient than their counterparts on uniform mesh. The
readers are referred to [2] for details.

By the way, we have developed the high-order accurate entropy stable adaptive
moving mesh finite difference schemes for special relativistic hydrodynamics and
magnetohydrodynamics, see [1]. Moreover, recently, we also constructed the high-
order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal
special relativistic magnetohydrodynamics [4], and the high-order accurate entropy
stable finite difference schemes for the shallow water magnetohydrodynamics [3].
some discussions on entropy stable schemes for scalar hyperbolic conservation law
were given in [6], where we showed that the numerical entropy flux was not unique
in the entropy condition for the given entropy pair; according to Tadmor’s sufficient
condition, the entropy conservative flux for the scalar equation could be uniquely
determined, but the entropy conservative flux for the system could not be uniquely
given; and for the system, the entropy conservative schemes of spatial first order
accuracy could be given. The sufficient condition for numerical viscosity and the
ratio of time and space stepsizes of the explicit entropy stable schemes for the scalar
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equation and the influence of some time discretizations on the entropy conservation
and entropy stability were also discussed there. Our works are partly supported
by the National Numerical Windtunnel project and the Sino-German Cooperation
group project (No. GZ1465).
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Kinetic modeling of gas mixtures

Christian Klingenberg

(joint work with Jeff Haack, Cory Hauck, Marlies Pirner, Sandra Warnecke,
Seok-Bae Yun)

Kinetic models of dilute gases suffer from the disadvantage that the computational
cost is high. One reason for this is the complicated collision term on the right hand
side, that encodes the physics of the problem at hand. Substituting this collision
term by a simplified relaxation term named after Bhatnagar, Gross and Krook, also
called BGK-term, makes this kinetic model computationally much more feasible.
One pays for this by a simplified description of physics. We want to put physics
back into BGK-type models, making sure we still maintain the computational
efficiency of BGK models.

To this end all models we consider are multi-species kinetic models, for example
for two species:

∂tf1 + v · ∇xf1 = Q11(f1, f1) +Q12(f1, f2),

∂tf2 + v · ∇xf2 = Q22(f2, f2) +Q21(f2, f1).
(1)

We first consider multi-species BGK models, see [1]. Here our model describes
the transport of n-species with n BGK-type interaction terms on the right hand
side. These are Maxwellians, where the macroscopic densities, velocities and tem-
peratures have to be chosen such that the conservation properties (and more) hold.
We find a multi-parameter model, which contains many models in the literature
as special cases, e.g. it contains [2].
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Next we consider a model needed for certain plasma flows. In such situations
the collision frequency in the BGK term depends on the microscopic velocity. This
leads to the fundamental issue to show that such a BGK-type model is possible.
This is is dealt with and solved in [3]. There an entropy minimization technique is
used and a proof given that a multi-species velocity dependent collision frequency
BGK model with good physical properties exists.

Finally we consider quantum kinetic phenomena, see [5]. Again we manage to
find BGK-type quantum models with the right physical properties.

All these models can be simulated numerically. To this end we use a numerical
translation of the entropy minimization technique from the theory paper [3]. This
is described in [4].

Next the question of existence of solutions to these various multi-species models
needs to be addressed. Progress has been made in [6] and [7].

Our numerical experiments bear out the efficiency of these models, that actually
manage to model physical situations well.

References

[1] Klingenberg, C., Pirner, M., Puppo, G. A consistent kinetic model for a two component
mixture with an application to plasma, Kinetic and Related Models Vol. 10, No. 2, pp. 445
- 465, (2017)

[2] Bobylev, A. V., Bisi, M., Groppi, M., Spiga, G., Potapenko, I. F. , A general consistent
BGK model for gas mixtures, Kinetic and Related Models, 11.(6), (2018)

[3] J. Haack, C. Hauck, C. Klingenberg, M. Pirner, S. Warnecke, A consistent BGK model with
velocity-dependent collision frequency for gas mixtures, Journal of Statistical Physics, vol.
84, no. 31, (2021)

[4] J. Haack, C. Hauck, C. Klingenberg, M. Pirner, S. Warnecke, Numerical schemes for a
multi-species BGK model with velocity-dependent collision frequency, manuscsript, (2021)

[5] G. Bae, C. Klingenberg, M. Pirner. S. Yun, BGK model of the multi-species Uehling Uhlen-
beck equation, Kinetic and Related Models, 14.(1), (2021)

[6] C. Klingenberg, M. Pirner, Existence, Uniqueness and Positivity of solutions for BGK
models for mixtures, Journal of Differential Equations, 264 (2018)

[7] G. Bae, C. Klingenberg, M. Pirner. S. Yun, Mixture BGK model near a global Maxwellian,
manuscsript, (2021)

Relations of Positivity Preservation to Divergence-Free Magnetic
Field for Ideal Compressible MHD System

Kailiang Wu

(joint work with Chi-Wang Shu)

The density and pressure are positive physical quantities in magnetohydrodynam-
ics (MHD). Design of provably positivity-preserving (PP) numerical schemes for
compressible MHD is highly desirable but remains challenging. The difficulties
mainly arise from the intrinsic complexity of the MHD equations as well as the
unclear relations between the PP property and the divergence-free condition on
the magnetic field.
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This talk introduces some recent efforts on understanding, designing and rigor-
ously analyzing (high-order accurate) PP methods for ideal MHD system. Partic-
ularly, important relations between the PP property and divergence-free magnetic
field are discussed from the numerical level, the PDE level, and the physical level,
respectively.

We present the first rigorous PP analysis of conservative schemes with the
Lax-Friedrichs (LF) flux for one- and multi-dimensional ideal MHD [1]. The sig-
nificant innovation is the discovery of the theoretical connection between the PP
property and a discrete divergence-free (DDF) condition. This connection is es-
tablished through the generalized LF splitting properties, which are alternatives of
the usually-expected LF splitting property that does not hold for ideal MHD. The
generalized LF splitting properties involve a number of admissible states strongly
coupled by the DDF condition, making their derivation very difficult. We derive
these properties via a novel equivalent form of the admissible state set and an
important inequality, which is skillfully constructed by technical estimates. Rig-
orous PP analysis is then presented for finite volume and discontinuous Galerkin
schemes with the LF flux on uniform Cartesian meshes. In the 1D case, the PP
property is proved for the first-order scheme with proper numerical viscosity, and
also for arbitrarily high-order schemes under conditions accessible by a PP lim-
iter. In the 2D case, we show that the DDF condition is necessary and crucial for
achieving the PP property. It is observed that even slightly violating the proposed
DDF condition may cause failure to preserve the positivity of pressure. We prove
that the 2D LF type scheme with proper numerical viscosity preserves both the
positivity and the DDF condition. Sufficient conditions are derived for 2D PP
high-order schemes, and extension to 3D is discussed.

Unfortunately, the discovered DDF condition relies on certain combination of
the numerical solution information on adjacent cells, so that it could not be nat-
urally enforced by any existing divergence-free techniques that also work in con-
junction with the standard local scaling PP limiter [1]. Therefore, the design
of multidimensional PP schemes for the MHD has challenges essentially different
from the one-dimensional case.

Interestingly, on the other hand, we find in [2] that, at the PDE level, the
preservation of positivity and the divergence-free condition are also inextricably
linked for the ideal MHD system. We observe that, if the divergence-free condition
is violated slightly, then even the exact solution of the conservative MHD system
may fail to be PP [2]. Therefore, before seeking provably PP numerical schemes,
our first task is to reformulate the MHD equations so as to accommodate the PP
property at the PDE level.

We consider a symmetrizable formulation of the MHD equations, which was
proposed by Godunov and numerically solved by Powell by building the divergence-
free condition into the MHD equations via adding a source term. We show that, for
the exact smooth solutions of the symmetrizable MHD equations, the PP property
always holds even if the magnetic field is not divergence-free [3].
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Based on the symmetrizable formulation, we construct provably PP high-order
accurate finite volume and discontinuous Galerkin schemes on rectangular meshes
[2] and general meshes [3] for the multidimensional ideal MHD. The key is to prop-
erly discretize the symmetrizable MHD equations so as to eliminate the influence
of the numerical divergence error on the PP property of the resulting schemes. We
adopt the locally divergence-free finite volume or discontinuous Galerkin elements,
which enforce zero divergence within each cell, and a suitable discretization of the
symmetrization source term, which brings some crucial discrete divergence terms
into our schemes and exactly offsets the influence of the divergence error on the PP
property. Extensive benchmark and challenging numerical tests, including MHD
jets with very high Mach numbers, demonstrate the robustness and effectiveness
of the proposed provably PP high-order schemes [2, 3].

Although not discussed in this talk, our analyses, schemes, and findings have
also been extended to the relativistic MHD system in one and multiple dimensions
[6, 5], with the symmetrizable formulation of the relativistic MHD equations found
in [4].
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On convergence of numerical solutions for the compressible
MHD system

Bangwei She

(joint work with Yang Li)

We study a general convergence theory for the analysis of numerical solutions
to a magnetohydrodynamic system describing the time evolution of compressible,
viscous, electrically conducting fluids in space dimension d (= 2, 3).

First, we introduce the concept of consistent approximation mimicking the pos-
itivity, energy stability, and consistency of a suitable numerical approximation.
Further, we introduce the concept of dissipative weak solution, which is the weak
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limit of the consistent approximation. Here, by “dissipative” we mean that the
energy inequality contains energy defects that control the oscillations in the mo-
mentum equation.

Next, by using the relative energy functional, we prove the dissipative weak–
strong uniqueness principle, meaning that a dissipative weak solution coincides
with a classical solution of the same problem as long as the latter exists. This
indicates that a consistent approximation converges unconditionally to the classical
solution . As a summary, we built a nonlinear variant of the Lax equivalence theory
for the compressible MHD system.

Finally, to show the application of the convergence theory, we propose two nu-
merical methods. We show that the numerical solutions preserve the positivity
of density and stability of the total energy. Then by using the apriori estimates
derived from the energy estimates we prove that the numerical methods are con-
sistent. Consequently, our numerical methods belong to the class of consistent
approximation. Applying the prebuilt convergence theory, we conclude that the
solutions of our numerical methods convergence to i) the dissipative weak solution;
ii) the classical solution as long as the classical solution exists. As a byproduct of
the first convergence, we prove the global in time existence of the dissipative weak
solution.

Keywords: magnetohydrodynamic fluids; stability; convergence; dissipative weak
solution; weak–strong uniqueness; consistent approximation;
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Convergence of the Godunov Method for Multidimensional
Compressible Euler Equations

Yuhuan Yuan

(joint work with Mária Lukáčová-Medvid’ová)

Recently developed concept of dissipative measure-valued (DMV) solution for com-
pressible flows is a suitable tool to describe oscillations and singularities possibly
arising in solutions of multidimensional nonlinear hyperbolic conservation laws,
and Euler equations in particular. Equipped with the concept of DMV solution
introduced in [2] we successfully prove the convergence of the first-order finite
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volume method based on the exact Riemann solver for the complete compressible
Euler equations

∂tU + divxF (U) = 0, (t,x) ∈ (0, T )× Ω,

F = (m,u⊗m+ pI,u(E + p))T

with the equation of state for perfect gas p = (γ − 1)ρe, γ ∈ (1, 2]. The main idea
and process are as follows.

The semi-discrete form of Godunov method can be described as∫

Ω

φ
d

dt
Uh dx−

∑

σ∈Σint

∫

σ

F (URP

σ ) · n[[φ]] dSx = 0.

Here φ is the test function which belongs to the space consisting of piecewise
constant functions, URP

σ is the solution of local Riemann problem at surface σ,
and the notation [[·]] means the jump along the surface. Formulating a physically
reasonable assumption

0 < ρ ≤ ρh, 0 < Eh ≤ E uniformly for h→ 0, t ∈ [0, T ],

we obtain that

• all variables are bounded by some constants which only depend on ρ,E,

which was firstly proved in [1];
• the mathematical entropy Hessian is bounded from below;
• the assumption is equivalent to the strict convexity of the mathematical
entropy;

• the weak BV estimates holds, i.e.,

(1)

∫ τ

0

∑

σ∈Σint

∫

σ

‖[[Uσ]]‖22 dSxdt ≤ C,

which implies

‖U‖L2(0,T ;H1

0
(Ω)) . h−1/2.

On the other hand, we study deeply about our numerical methods, i.e. exact
Riemann problem solver, and obtain

(2) ‖UL −URP

σ ‖ . ‖[[Uh]]‖, ‖UR −URP

σ ‖ . ‖[[Uh]]‖, σ := L|R.

Equipped with the weak BV estimates (1) and the estimates related to Godunov
method (2) we prove the consistency of numerical method, which shows the dis-
tance between our numerical method and the exact system. Passing to the limit
h→ 0, we obtain the main theoretical results:

1. weak convergence
there exists a subsequence of numerical solutions which weakly converges
to a DMV solution of the complete Euler system with zero defects;

2. strong convergence
– if a limit of our numerical scheme is a weak or C1 entropy solution,

then the convergence is also strong;
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– suppose that Euler system admits a strong solution, then our numer-
ical solutions strongly converge to the strong solution as long as the
latter exist;

3. K−convergence
there exists a subsequence of numerical solutions, whose Cesàro average,
first variance and the generated Young measure strongly converge.

Several 2D experiments have been simulated to confirm the results of theoretical
analysis, including the spiral problem and the Richtmyer-Meshkov problem. In the
spiral test, we observe the strong convergence of the numerical solutions, which
is consistent to the strong convergence theory. In the Richtmyer-Meshkov test,
we observe that single numerical solutions do not converge, while the observable
quantities (Cesàro averages and first variance) and Young measure do converge
strongly, which is consistent with the weak convergence and K-convergence theo-
ries.

This research was supported by the German Science Foundation (DFG) under the
project TRR/SFB 146 multiscale simulation methods for soft matter systems, and
the Sino-German (CSC-DAAD) Postdoc Scholarship Program in 2020.
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A characteristic-compression embedded shock wave indicator based on
training an artificial neuron

Yiwei Feng

(joint work with Tiegang Liu)

High-order numerical schemes have been widely applied in simulation of hyperbolic
conservation laws. For a 1D conservation law,

(1)





∂u

∂t
+
∂f(u)

∂x
= 0,

u(x, 0) = u0(x),

(weak) solutions to (1) might evolve into shock discontinuities even under suffi-
ciently smooth initial conditions, Gibbs oscillations appear near the shocks when
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high-order numerical schemes are employed. Therefore, there are two steps needed
between each spatial discretization and temporal iteration,

step-1: detect cells where solution loses regularity (troubled-cells);
step-2: suppress oscillations through correcting high order degrees of freedoms.
There are several classical techniques to treat shock waves, such as total vari-

ation bounded (TVB) limiter, weighted essentially non-oscillatory (WENO) re-
construction, and artificial viscosity technique. The indicators embedded in the
above methods, detect troubled-cells through posterior numerical features of
shocks or oscillations, usually cannot avoid introducing numerical noise such as
extremums and large-gradients, it leads to inefficiency of schemes or even dete-
rioration of accuracy. Therefore, the regularity and resolution of the numerical
solutions depends on the performance of troubled-cell or shock wave indicators.

Recently, artificial intelligence (AI) is applied in scientific computing and ca-
pable to improve efficiency. Deep Ray and Jan. S. Hesthaven first proposed an
artificial neural network (ANN) troubled-cell indicator [1], their ANN indicator
has no parameters to tune and indeed improve the precision of troubled-cell de-
tection. However, classical deep neural networks causes difficulties in explicitly
expressing results and explaining its working mechanism.

Our motivation is to employ ANNs to propose a shock detector as well, and hope
to overcome issues in traditional deep learning, difficulty in (a) tuning parame-
ters and (b) explication of mechanism. Local mesh-size h and cell-averages of
eigenvalue variable λ̄e among Ie and its neighbors are selected as the input of
ANN to classify the category of Ie (good cell or troubled-cell), as shown in FIG.1,
The selection of eigenvalue variable results in simple artificial neural network (neu-
ron) structures to train for a shock detector, further results in easiness of gener-
alization to system of equations and convenience of exploring the working mech-
anism. The AN structure used on perturbed meshes is shown as in FIG.2, where
hm is the local maximum mesh-size, λ̄L, λ̄R are side-weighted averages of eigen-
values constructed to contain mesh-size of perturbed mesh in advance, the form is
presented with

(2)

λ̄L =
he−1

he−1 + he
λ̄e−1 +

he
he−1 + he

λ̄e,

λ̄R =
he+1

he−1 + he
λ̄e+1 +

he
he−1 + he

λ̄e,

and the oute represents the category of Ie (1 for a troubled-cell and 0 for a good
cell), the learning and training details can be found in [3], the final output of AN is
modified as the following characteristic-based form (3) for explicable mechanism,

(3) õute :=
1

1 + e−[W (λ̄L−λ̄R)−M1hm−M2]
,

with the parameters W = 10,M1 = 12,M2 = 1.
If under some assumption such as sufficiently small mesh-size h, we acquire the

following theorem to describe the property of the the present indicator (3),
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Figure 1. learning task Figure 2. AN structure

Theorem 1. The output of (3) can measure the compression of characteristic
curves, and it satisfies:

(1).õute ≪ 0.5 ⇐⇒ solution in Ie is smooth (including extremums).

(2).õute ≥ 0.5 ⇐⇒ solution in Ie includes a discontinuity with at least M2

W +
O(h) admissible jump values caused by compressing of characteristic curves.

More theoretical remarks and proofs can refer to [2].
The present indicator is then extended to system of equations by nonlinear

characteristic field splitting, and to multi-dimensional meshes through dimen-
sion by dimension, more details and numerical results can refer to [2, 3]. It has
been discovered precise and efficient to detect shock waves through capturing the
compressing of characteristics, and the extended indicator can detect shock
and contact waves precisely and with a rather low numerical noise.
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Measure-valued solutions to the compressible Navier-Stokes equations
with potential temperature transport

Andreas Schömer

(joint work with Mária Lukáčová-Medvid’ová)

To model the fluid flow in meteorological applications one can employ the com-
pressible Navier-Stokes equations with potential temperature transport; see [5],
[6]. Neglecting external forces such as gravity, this system reads

∂t̺+ divx(̺u) = 0,

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺θ) = divx(S(∇xu)),(1)

∂t(̺θ) + divx(̺θu) = 0,
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where ̺, u, and θ stand for the fluid density, the velocity and the potential tem-
perature, respectively. The viscous stress tensor S is given by

S(∇xu) = µ

(
∇xu+ (∇xu)

T − 2

3
divx(u) I

)
+ λdivx(u) I

with the viscosity constants µ > 0, λ ≥ −µ/3. The system is closed by prescribing
the pressure state equation

p(̺θ) = a(̺θ)γ , a > 0,

where γ > 1 is the adiabatic index. Here, the physically relevant values of γ lie
in the interval (1, 5/3]. Unfortunately, weak solutions to (1) are only known to
exist under the assumption γ ≥ 9/5; see [9, Theorem 1]. To obtain better existence
results with respect to γ, we switch to the framework of dissipative measure-valued
solutions (DMV) that is motivated by the concept of Young measures and that has
already proven useful in the context of the compressible Navier-Stokes equations,
where similar problems are encountered.

Within the DMV framework we are able to prove the existence of solutions for
all γ > 1; see [8]. We achieve this goal with the help of a mixed finite element-
finite volume numerical method that is an extension of the method described in
[3, Chapter 7] for the compressible Navier-Stokes equations. The solutions to this
method fulfill

• a discrete energy balance from which we obtain suitable stability estimates ;
• a suitable consistency formulation of (1).

Together, the stability estimates and the consistency formulation imply the con-
vergence of solutions to the method to a DMV solution to (1).

In a second step, we are able to prove DMV-strong uniqueness; see [7]. That
is, we are able to prove the following: If there are a DMV solution and a strong
solution to (1) emanating from the same initial data, then they coincide as long as
the latter exists. The proof of this statement is based on the relative energy method
and is essentially a combination of the proofs of the DMV-strong uniqueness results
for the Euler and the Navier-Stokes equations; see [4, Sections 6.2, 6.3].

Together with the existence result for DMV solutions, the DMV strong unique-
ness principle shows that the DMV framework is a reasonable framework for
the compressible Navier-Stokes equations with potential temperature transport in
which all physically relevant situations (measured by the range of γ) are covered.

Acknowledgements. This work has been funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - Project number 233630050
- TRR 146 as well as by TRR 165 Waves to Weather.
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Approximating viscosity solutions of the Euler equations

Mária Lukáčová-Medviďová

The Euler equations of gas dynamics are an iconic example of hyperbolic conserva-
tion laws. It is a well-known fact that the Euler equations are ill-posed in the class
of weak entropy solutions. Taking this drawback of weak entropy solutions into
account we have introduced a new concept of generalized solutions, the so-called
dissipative weak solutions. Their existence has been shown by the convergence
analysis of suitable, invariant-domain preserving finite volume schemes [1, 2]. In
the case that the strong solution of the Euler equation exists, the dissipative weak
solutions coincide with the strong solution on its life span. Otherwise, in order
to be able to compute/visualize dissipative weak solutions we presented a newly
developed concept of K-convergence and proved the strong convergence of the em-
pirical means of numerical solutions to a dissipative weak solution [3, 4]. The latter
is the expected value of the underlying dissipative measure-valued solutions and
satisfies a weak formulation of the Euler equations modulo the Reynolds defect
measure. In the class of dissipative weak solutions there exists the so-called vis-
cosity solutions that are obtained as vanishing viscosity limits of the Navier-Stokes
system [5].

The main goal of the present contribution was to discuss the question how to
compute efficiently the viscosity solutions of the Euler system. This is a nontrivial
problem since in general the following scenarios are possible.
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• Oscillatory (weak) limit. The generating sequence of solutions of the vis-
cous problem is merely bounded and converges weakly (in the sense of
integral averages). The oscillations of the generating sequence can be de-
scribed by a Young measure. In this case, the limit is not expected to be
a weak solution of the Euler system.

• Statistical (strong) limit. There is a hidden regularizing effect acting in
the vanishing viscosity limit so that the generating sequence is precompact
in the strong Lp−topology. This phenomenon is intimately related to the
celebrated Kolmogorov hypothesis. The generating sequence is precom-
pact but still may admit a non–trivial set of accumulation points. The
convergence is understood in a statistical sense and may be described by a
suitable measure sitting on the set of weak solutions of the Euler system.

• Unconditional (strong) limit. The generating sequence converges strongly
to a single limit. In particular, this is the case when the limit Euler system
admits a (unique) strong solution.

We have presented a numerical method, the so-called viscosity finite volume
method, that is based on the dissipative upwinding in order to approximate the
nonlinear flux terms. Moreover, the viscosity finite volume method has additional
vanishing viscosity terms mimicking the viscosity terms of the compressible Navier-
Stokes equations. We have introduced the concept of the so-called statistical (S)-
convergence that is based on weighted averages of the numerical solutions obtained
on a series of different computational grids. Moreover we have proved that under
some reasonable assumptions our viscosity finite volume solutions (S)-converge
to a viscosity solution of the Euler equations. In consequence, the observable
quantities, such as the mean or variance, strongly converge, see [5]. Theoretical
results were demonstrated by a series of numerical simulations.

Acknowledgements. This work has been done in collaboration with: Eduard
Feireisl (Institute of Mathematics of the Czech Academy of Sciences, Prague),
Hana Mizerová (University in Bratislava), Bangwei She (Institute of Mathematics
of the Czech Academy of Sciences, Prague) and Simon Schneider (Institute of
Mathematics, Mainz University). Partially supported by TRR 146 Multiscale
simulation methods for soft matter systems, TRR 165 Waves to Weather funded
by DFG, by the Gutenberg Research College and the Mainz Institute of Multiscale
Modelling (M3odel).
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High-order MR-WENO schemes for hyperbolic conservation laws on
(un)structured meshes

Jun Zhu

(joint work with Chi-Wang Shu)

In this presentation, a new type of high-order multiresolution weighted essentially
non-oscillatory (WENO) schemes is presented for solving hyperbolic conservation
laws on (un)structured meshes. We only use the information defined on a hierarchy
of nested central spatial stencils and do not introduce any equivalent multiresolu-
tion representation. These new WENO schemes use the same large stencils as the
classical WENO schemes, could obtain the optimal order of accuracy in smooth
regions, and could simultaneously suppress spurious oscillations near strong dis-
continuities. The linear weights of such MR-WENO schemes can be any positive
numbers on the condition that their sum equals one. This is the first time that
a series of unequal-sized hierarchical central spatial stencils are used in designing
high-order WENO schemes. These new MR-WENO schemes are simple to con-
struct and can be easily implemented to arbitrary high order of accuracy and in
higher dimensions. Benchmark examples are given to demonstrate the robustness
and good performance of these new WENO schemes.

High Order Semi-implicit WENO Schemes for All Mach Full Euler
System of Gas Dynamics

Tao Xiong

(joint work with Sebastiano Boscarino, Jing-Mei Qiu and Giovanni Russo)

In computational fluid dynamics (CFD), flows are generally divided into two cat-
egories, which are classified by the dimensionless Mach number. For moderate
to high Mach numbers, compressible effects have to be taken into account, while
for low Mach numbers, flows can be considered to be incompressible or weakly
compressible. However, there are also circumstances in which flows have a wide
range of Mach number, and numerical methods which can be applied for fluid flows
at any speed are desirable. In this work, we consider the compressible full Euler
system in the dimensionless form

(1)





ρt +∇ · (ρu) = 0,

(ρu)t +∇ · (ρu⊗ u) + 1
ε2∇p = 0,

Et +∇ · [(E + p)q] = 0,
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with the ideal EOS for a polytropic gas satisfying

E =
p

γ − 1
+
ε2

2
ρ|u|2,

where ε = u0/
√
p0/ρ0 =

√
γ Ma is proportional to a global Mach number Ma =

u0/c0 with c0 =
√

γρ0

p0

, from the reference values of density ρ0, velocity u0 and

pressure p0. If we consider the following asymptotic expansion ansatz

p(x, t) = p0(x, t) + ε2 p2(x, t) + · · · , u(x, t) = u0(x, t) + εu1(x, t) + · · · ,
as ε→ 0, formally (1) converges to

(2)





∂tρ0 +∇ · (ρ0 u0) = 0

∂t(ρ0u0) +∇ · (ρ0u0 ⊗ u0) +∇p2 = 0,

∇ · u0 = 0,

where p2 = limǫ→0
1
ε2 (p− p0), p0 = Const. and due to ∇ · u0 = 0, p2 satisfies the

elliptic equation

−∇ ·
(

1

ρ0
∇p2

)
= ∇ · ((u0 · ∇)u0).

We design a high order finite difference scheme for (1), which is able to capture
shocks and discontinuities in an essentially non-oscillatory fashion in the com-
pressible regime, meanwhile it is also a good incompressible solver for (2). One
main difficulty is that the eigenvalues of (1), namely the acoustic wave speed, is
inversely proportional to ε, leading to strict stiffness in the incompressible limit.
A key feature to avoid such difficulty is the implicit treatment of acoustic waves,
while material waves are treated explicitly. A 1st order semi-implicit scheme with
WENO reconstruction in space is given as follows:

(3)
Un+1 − Un

∆t
= −∇CW · FE −∇W · FSI

where U = (ρ, ρu, E)T and

FE
.
=




qE

(
qE ⊗ qE

ρE

)
+ pEI

0



, FSI

.
=




0

1− ε2

ε2
pII

EE + pE
ρI

qI



.

E and SI indicate explicit and semi-implicit treatments respectively. UE =
(ρE , ρEuE , EE)

T = Un and UI = (ρI , ρIuI , EI)
T = Un+1 for first order treat-

ment. ∇CW denotes characteristic-wise WENO reconstruction, and ∇W is the
component-wise WENO reconstruction. ∇CW is important to avoid numerical
oscillations for shock capturing in the high Mach regimes. We also form an elliptic



2302 Oberwolfach Report 41/2021

equation, by substituting qn+1 from the 2nd eqn. of (3) into the 3rd eqn., and
introduce an extra pressure [4]

p2
.
=
pI − p̄E
ǫ2

,

corresponding to the hydrodynamic pressure in the incompressible limit (2). It
satisfies

(4)
ε2

γ − 1
pn+1
2 −∆t2(1 − ε2)∇ ·

(
Hn∇pn+1

2

)
= E∗∗,

where E∗∗ is computed explicitly from known values. To obtain a linear form of
(4), we also used the following EOS to avoid the nonlinearity:

(5) EE =
1

γ − 1
pE + ε2

|qE |2
2ρE

, EI =
1

γ − 1
pI + ε2

|qE |2
2ρE

.

The resulting scheme (3) combined with (4) can be proved to be asymptotic pre-
serving (AP).

High order time discretization can be obtained by using a multi-stage IMEX
Runge-Kutta time discretization [1] for an autonomous system

Ut = H(U,U), U(t0) = U0.

Each stage is performed very similarly to the 1st order semi-implicit scheme.
One and two dimensional numerical tests have verified its high order accuracy,

asymptotic preserving, shock capturing for high Mach regimes and good perfor-
mance for incompressible limit.
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Wave Phenomena in a Non-Strictly Hyperbolic System for
Compressible Two Phase Flows

Ferdinand Thein

(joint work with Michael Dumbser, Evgeniy Romenski)

In several previous works Godunov, Romenski and co-authors proposed a PDE
model derived using fundamental principles, cf. [2, 3]. The governing PDE system
belongs to the class of symmetric hyperbolic thermodynamically compatible sys-
tems (SHTC). Particular results on two fluid models were obtained by Romenski,
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Toro and others [6, 5]. Numerical results for this type of model can exemplary be
found in recent works by Dumbser, Romenski et al. e.g. [1]. However, a distin-
guished analytical treatment is still far from being complete. As a first attempt we
want to discuss the Riemann problem for the homogeneous barotropic (i.e. isen-
tropic or isothermal) two fluid model derived from the SHTC system. The PDE
system for compressible two-phase flows including (hyperbolic) heat conduction
was previously discussed in Romenski et al. [6, 5]. The barotropic subsystem we
want to discuss reads

∂α1ρ

∂t
+
∂α1ρu

∂x
= 0,(1a)

∂α1ρ1
∂t

+
∂α1ρ1u1
∂x

= 0,(1b)

∂ρ

∂t
+
∂ρu

∂x
= 0,(1c)

∂(α1ρ1u1 + α2ρ2u2)

∂t
+
∂
(
α1ρ1u

2
1 + α2ρ2u

2
2 + α1p1(ρ1) + α2p2(ρ2)

)

∂x
= 0,(1d)

∂w

∂t
+

∂

(
1

2
u21 −

1

2
u22 +Ψ1(ρ1)−Ψ2(ρ2)

)

∂x
= 0,(1e)

Here, α1 is the volume fraction of the first phase which is connected with the
volume fraction of the second phase α2 by the saturation law α1 + α2 = 1, ρ
is the mixture mass density which is connected with the phase mass densities
ρ1, ρ2 by the relation ρ = α1ρ1 + α2ρ2. The phase mass fractions are defined as
c1 = α1ρ1/ρ, c2 = α2ρ2/ρ and it is easy to see that c1 + c2 = 1. Eventually,
u = c1u1 + c2u2 is the mixture velocity, w = u1 − u2 is the phase relative velocity.
The equations describe the balance law for the volume fraction, the balance law for
the mass fraction, the conservation of total mass, the total momentum conservation
law, the balance for the relative velocity. For the last equation we introduced

Ψi(ρi) =

{
hi(ρi), isentropic

gi(ρi), isothermal

where hi is the specific enthalpy of the corresponding phase and gi the specific
Gibbs potential, respectively. The total energy inequality for the isentropic case
reads

2∑

i=1

∂αiρi
(
ei +

1
2u

2
i

)

∂t
+
∂αiρiui

(
hi +

1
2u

2
i

)

∂x
≤ 0

and for the isothermal case we have

2∑

i=1

∂αiρi
(
ei − Tsi +

1
2u

2
i

)

∂t
+
∂αiρiui

(
gi +

1
2u

2
i

)

∂x
≤ 0.
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With ei we denote the individual phase specific internal energy and T is the tem-
perature. The system (1) can be written in conservative form. The vector of
conserved quantities is given by

W = (w1, w2, w3, w4, w5)
T ≡ (α1ρ, α1ρ1, ρ, α1ρ1u1 + α2ρ2u2, u1 − u2)

T
.

Using the equations obtained so far we can write the conservative flux as follows
and the system can be written in conservative form

∂

∂t
W +

∂

∂x
F(W) = 0.

The eigenvalues are given by

λ1± = u1 ± a1, λC = u, λ2± = u2 ± a2

with ai being the speed of sound of phase i.
We will present exact relations for the appearing waves and discuss the wave

structure of the solution. Due to the non-strictly hyperbolic character of the
system we also discuss wave interactions barely discussed in the literature. Com-
parisons of numerical and exact solutions will be shown. Further we want to
investigate this model in the context of two phase flows in particular with the
results presented in Hantke, T. [4].
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High order conservative Lagrangian schemes for radiation
hydrodynamics equations in the equilibrium-diffusion limit

Juan Cheng

(joint work with Chi-Wang Shu, Peng Song)

Radiation hydrodynamics (RH) describes the interaction between matter and ra-
diation which affects the thermodynamic states and the dynamic flow character-
istics of the matter-radiation system. Its application areas are mainly in high-
temperature hydrodynamics, including gaseous stars in astrophysics, combustion
phenomena, reentry vehicles fusion physics and inertial confinement fusion (ICF).

In the equilibrium-diffusion limit, the radiation hydrodynamics equations (RHE)
may be written as a hyperbolic system of conservation laws (Euler equations) plus
the term of nonlinear radiative heat transfer. This simplified set of RHE could
be used to describe certain radiation hydrodynamics phenomena, such as stellar
structure, fusion dominated energy sources, a variety of astrophysical settings, and
high-energy-density-physics. Solving RHE, even in the equilibrium-diffusion limit,
is a challenging task due to the following reasons. First, the characteristic time
scales between the radiation and hydrodynamics are different by several orders
of magnitude which often leads to the stability problem. It usually requires the
radiation part to be solved implicitly to guarantee stability. Second, in the fields
such as astrophysics and ICF, RHE usually describes the interaction between ra-
diation and multi-material matter, where the accurate calculation of the material
interfaces is critical. Third, similarly to any advection-dominated problems, high
resolution schemes are needed to accurately resolve shocks. Fourth, high-order
accuracy in time and space is challenging. Although there are many literatures on
high order numerical methods solving either the Euler equations or the radiation
transfer/diffusion equations, their extension to the coupling of radiation and hy-
drodynamics is relatively rare in the existing publications. Fifth, compared with
the pure hydrodynamics equations and the radiative transfer/diffusion equations,
to keep certain physical properties such as conservation and positivity-preserving
for density, internal energy and temperature is more difficult for this kind of cou-
pled equations. In general, it is a significant challenge to design a high order and
robust numerical algorithm to solve such equations.

In this talk, we will discuss the methodology to construct fully explicit and
implicit-explicit (IMEX) high order Lagrangian schemes solving one dimensional
RHE in the equilibrium-diffusion limit respectively, which can be used to simulate
multi-material problems with the coupling of radiation and hydrodynamics. The
schemes are based on the HLLC numerical flux, the essentially non-oscillatory
(ENO) reconstruction for the advection term, ENO reconstruction or high or-
der central reconstruction and interpolation for the radiation diffusion term, the
Newton iteration method (for the IMEX scheme), and the strong stability preserv-
ing (SSP) high order time discretizations. The schemes can maintain conservation
and uniformly high order accuracy both in space and time. The issue of positivity-
preserving for the high order explicit Lagrangian scheme is also discussed. Various
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numerical tests for the high order Lagrangian schemes are provided to demonstrate
the desired properties of the schemes such as high order accuracy, non-oscillation,
and positivity-preserving.
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Stiffened gas approximation and GRP resolution for compressible fluid
flows of real materials

Yue Wang

(joint work with Jiequan Li)

The equation of state (EOS) embodies thermodynamic properties of compressible
fluid materials and usually has very complicated forms in real engineering appli-
cations, subject to the physical requirements of thermodynamics. The complexity
of EOS in form gives rise to the difficulty in analyzing relevant wave patterns.
Concerning the design of numerical algorithms, the complex EOS causes the in-
efficiency of Riemann solvers and even the loss of robustness, which hampers the
development of Godunov-type numerical schemes.

In this paper, a strategy of local stiffened gas approximation is proposed for
real materials. The following family of EOSs is considered

p = p(ρ, e) = κ(ρ)e+ χ(ρ),(1)

where κ(ρ) and χ(ρ) are two given functions of density ρ. Considering EOS as
a part of the dynamical system of fluids, the stiffened gas approximation means
that at each local background state ρ0, the EOS (1) is approximated as

p = p̃(ρ, e) = (γ(ρ0)− 1)ρe− γ(ρ0)p∞(ρ0),(2)

γ(ρ0) = 1 + κ(ρ0)/ρ0, p∞(ρ0) = −χ(ρ0)/γ(ρ0).(3)

As such an approximation is applied to the Riemann problem for compressible
fluid flows of real materials, a new two-material Riemann problem is formulated.
As far as this strategy is applied for Godunov-type numerical schemes, the stiff-
ened gas approximation is made over each control volume and the two-material
Riemann problem is solved at each cell boundary with approximate stiffened gas
EOSs. It turns out that the local Riemann solver at each cell boundary has the
same simplicity as that for polytropic gases. In the meantime, the generalized
Riemann problem (GRP) solver is adopted not only for high resolution purpose
but effective reflection of the local thermodynamics as well. The resulting scheme
is demonstrated to be efficient and robust and numerical examples display the
excellent performance of such an approximation.
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Figure 1. Results of density, velocity, pressure and internal en-
ergy for the Shyue shock tube problem.

Figure 2. Shock-bubble interaction problem at t = 70µs: com-
puted by the Godunov (left) and GRP (right) method with the
stiffened gas approximation (Upper: 1200 × 400 cells; Lower:
2400× 800 cells).
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A positive and asymptotic preserving filtered PN method for the gray
radiative transfer equations

Wenjun Sun

(joint work with Xiaojing Xu, Song Jiang)

In many branches of science and technology, such as high-energy astrophysics,
supernova and inertial/magnetic confinement fusion researches, accurate and ef-
ficient numerical solution of the radiative transfer equations, which describe the
radiation photon transport and energy exchange with the background material,
are required.

The optical thicknesses of background materials have a great impact on the
behavior of radiation transfer. For a material with low opacity, the radiation
propagates in a transparent way, while for a material with high opacity, the radi-
ation behaves like a diffusion process. In order to resolve the kinetic-scale-based
radiative transfer equations in numerical simulations, the spatial mesh size in many
numerical methods usually should be comparable to the photon’s mean-free path,
which is very small in the optically thick regions, leading to huge computational
costs. Therefore, numerical methods should take into account this multi-scale
nature and accurately capture the solution of different optical thickness regimes,
with affordable computational costs.

To this end, one strategy is to design so-called asymptotic preserving (AP)
multi-scale methods to greatly reduce the computational costs, see [2, 6] and
among others. The unified gas kinetic scheme (UGKS) [12, 13], developed re-
cently for rarefied gases, happens to fall into this AP category. Based on the
UGKS framework, an asymptotic preserving scheme has been developed for the
linear radiation equation [6], and then extended to the multi-frequency radiative
transfer equations on both structured and unstructured meshes [9, 10, 11]. The
main idea in UGKS is to couple the photons’ transport process with their collision
process by using a multi-scale flux function obtained from the local (exact) integral
solution of the original transfer equation, thus the constrains on cell size and time
step can be released.

The UGKS schemes developed in [9, 10, 11] are based on the discrete ordinate
(SN ) method for the angular discretization. They unavoidably suffer from the
ray effects, in particular, when they are used to solve problems involving isolated
sources within optically thin media. It is well-known that the spherical harmonic
(PN ) method [7] can preserve the rotational invariance for transport equations,
thus it is free of ray effects. And also, for smooth solutions, the PN approximation
can achieve spectral convergence. On the other hand, for not sufficiently smooth
solutions, the PN approximation can produce spurious oscillations. This can make
the radiative energy density negative.

In order to reduce the effect of the above oscillatory (Gibbs) phenomena in the
PN approximation, McClarren and Hauck employed filtering techniques to propose
the so-called filtered PN (FPN ) in [4, 5], while in [8] this filtering method was
generalized and a more general framework was given. Although it can significantly
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suppress spurious oscillations, the filtering can also result in a negative numerical
radiative energy density (numerical solution). So, to maintain the positivity of
the numerical solution, Hauck and McClarren introduced the positive PN closures
to develop the so-called PPN method in [1]. But, this method is computationally
much more expensive than the original PN method and the computed solutions
could be quite oscillatory. Recently, through a linear scaling limiter, a much
cheaper positive- and asymptotic-preserving scheme is constructed for the linear
kinetic equation, see [3].

In this talk, inspired by the idea of the linear scaling limiter in [3] and based
on the framework of UGKS in [9, 10, 11] for the radiative transfer equations,
we shall propose a both positive- and asymptotic-preserving FPN scheme for the
nonlinear gray radiative transfer system which is a coupled system of the radiative
transfer and material temperature equations. To our best knowledge, there seems
no such a scheme that preserves the positivity of both radiation energy density and
material temperature for the gray radiative transfer system, and is also asymptotic
preserving simultaneously.
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A unified surface gradient and hydrostatic reconstruction scheme for
shallow water flows

Guoxian Chen

(joint work with Sebastian Noelle)

In this talk we will introduce a new proposed second-order accurate hydrostatic
reconstruction scheme for the Saint-Venant system. Such a scheme needs to over-
come several difficulties: besides the well-known issues of positivity and well-
balancing there is also the difficulty of unphysical reflections from bottom re-
constructions which create artificial steps.

We will first overview the basic properties of both surface gradient method and
hydrostatic reconstruction method. The surface-gradient method (SGM) by Zhou
et al. [2] reconstructs the water surface w instead of water depth h, and hence is
able to preserve the Lake-at-Rest. Unfortunately the water depth, which is now
derived as h = w−b may become negative near wet-dry fronts. This is cured in the
hydrostatic reconstruction method (HRM) by Audusse et al. [3], who reconstruct
and evolve w and h and derive the topography as b = w − h. As a consequence,
the bottom becomes discontinuous at most interfaces and depends on time, even
if the original bottom does not. Due to an ingenious discretization of the singular
source term, the HRM is well-balanced and positivity preserving. Unfortunately,
as observed by Buttinger et al. in [1], the HRM may produce unphysical wave
reflections due to a non-monotone approximation of the bottom.

We address all of these problems at once by changing the logic of the recon-
struction of the bottom, the water depth and the water surface level. Notably, our
bottom reconstruction is continuous across cell interfaces and remains unchanged
during the computation, except if the original topography has a jump, or if a
wet-dry front passes through a cell. Only in these exceptional cases we apply the
new discontinuous bottom approximation and compute the residual via the subcell
hydrostatic reconstruction method. The scheme gives excellent results in one and
two space dimensions. To highlight the novel reconstruction of bottom and water
surface, we call the scheme bottom-surface-gradient method (BSGM) [4].
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Generalized Riemann Problem (GRP) Method for Five Equation
Model of Multiphase Flows

Zhifang Du

Multiphase flow problems arise in studies of astrophysics, deflagration-to-detona-
tion transition (DDT), cavitation flows, etc. A two-velocity, two-pressure model
was proposed for DDT in [2], which is known as the seven-equation model. Noting
that the non-equilibrium assumptions of the seven-equation model is not always
necessary, a variety of simplified models have been proposed and applied.

Based on the seven-equation model, by introducing velocity and pressure equi-
librium assumptions, a five-equation model [5, 7] is obtained, which is known as
the Kapila model. In the Kapila model, in addition to conservation laws of the
fractional mass, the bulk mass, the bulk momentum and the bulk total energy,
the governing equation of the volume fraction, formulated as a transport equation
with a source term, is employed to close the thermodynamic relation. As shown in
[5, 7], the presence of the source term in the volume fraction equation makes the
Kapila model thermodynamically consistent. However, it also inherits the stiffness
of the seven-equation model.

In some studies of interface problems where an interface separates pure fluids,
the source term in the volume fraction equation is dropped to remove the stiffness
[1, 9]. As a result, the application of corresponding numerical schemes is confined
to simulations of interface problems only. For simulations where interfaces and
multiphase mixture zones are simutaneously involved, a numerical scheme for the
complete Kapila model is required [8], which is the topic of the present talk.
The stiffness of the model is handled by the generalized Riemann problem (GRP)
method [4, 6, 3] together with the implicit-explicit time discretization for the source
term.

For two-phase flows in one space dimension, by adding α1ux on both sides of the
volume fraction equation in the Kapila model, rewrite the governing equations as

(1)
∂U

∂t
+
∂F(U)

∂x
= K(U),

where

(2)

U = [ζ1ρ, ρ, ρu, ρv, ρw, ρE, α1]
⊤,

F = [ζ1ρu, ρ, ρu
2 + p, ρuv, ρuw, (ρE + p)u, uα1]

⊤,

K = [0, 0, 0, 0,Kux]
⊤,

and

(3) K = α1 − α1α2
ρ1c1

2 − ρ2c2
2

α2ρ1c12 + α1ρ2c22
.

Here ρk, ck, αk, ζk, and ck are the phasic density, the phasic sound speed, the
volume fraction, the mass fraction, and the phasic sound speed for k = 1, 2.
The volume and mass fractions satisfy that α1 + α2 = 1 and ζ1 + ζ2 = 1. The
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mixture density is given by ρ = α1ρ1 + α2ρ2, and the phasic density is defined as
ρk = ζk

αk
ρ, for k = 1, 2.

On the cell Ij = [xj− 1

2

, xj+ 1

2

], the finite volume discretization of (1) is

(4)
U

n+1

j = U
n

j − ∆t

∆x

(
F

n+ 1

2

j+ 1

2

− F
n+ 1

2

j− 1

2

)

+∆t
[
(1− Cim)K

n
j (ux)

n
j + CimK

n+1
j (ux)

n+1
j

]
,

where ∆x = xj+ 1

2

− xj− 1

2

, ∆t = tn+1 − tn, and

Kn
j = [0, 0, 0, 0,Kn

j ]
⊤, Kn+1

j = [0, 0, 0, 0,Kn+1
j ]⊤.

In order to handle the stiffness of the source term, an implicit-explicit time dis-
cretization is used in (4). By using the Gauss-Green formula, the velocity diver-
gence at tn+1 can be approximated as

(ux)
n+1
j =

ûn+1
j+ 1

2

− ûn+1
j− 1

2

∆x
.

The cell interface value of the velocity is estimated as

ûn+1
j+ 1

2

= un,∗
j+ 1

2

+∆t(ut)
n,∗
j+ 1

2

,

where un,∗
j+ 1

2

is the Riemann solution of the velocity and (ut)
n,∗
j+ 1

2

is the instanta-

neous temporal derivative of the velocity, obtained by the GRP solver [3].
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Riemann problem for Euler equations with singular source terms

Changsheng Yu

(joint work with Tiegang Liu)

This work focuses on the Riemann problem of Euler equations with singular source
terms

(1) ∂tU + ∂xF (U) = δ(x)S,

where

U =



ρ
ρu
E


 , F =




ρu
ρu2 + p
(E + p)u


 , S =



s1
s2
s3


 , δ(x) =

{
0, x < 0

1, x > 0
.

Here, ρ, p and E denote the thermodynamical variables: density, pressure and
total energy, respectively. u is velocity. S is the vector of source term. δ(x) is
the Dirac delta-function. The Dirac function means that the source term is only
distributed at the origin. The value of the source term is determined by the flux
upstream of the origin

S =





diag(k1, k2, k3)F (U−), if u− > 0, u+ > 0

diag(k1, k2, k3)F (U+), if u− < 0, u+ < 0

0, else

where U− = U(0−, t), U+ = U(0+, t), diag(k1, k2, k3) is the diagonal matrix with
constant diagonal element k1, k2 and k3. This work only involves the polytropic
ideal gas.
The Riemann problem is a Cauchy problem of (1) with piecewise constant initial
values. The exact solution on the t-axis is a discontinuity with left-hand state U−

and right-hand state U+, and jump relation is

(2) F (U−) + S(F (U−)) = F (U+)

To select the physical solutions of equation (2), we define an entropy condition
called Monotonicity criterion, whose expression is λk(U−)·λk(U+) ≥ 0, ∀1 ≤ k ≤ 3,
where λk(1 ≤ k ≤ 3) are the eigenvalues of A = ∂F/∂U . Take u− > 0 as
an example and define Γ+ = {U |u − a = 0}. Denote as D(U−, k1, k2, k3) as
the wave curve of the source stationary wave with the left-hand state U− and
parameters k1, k2, k3 in the phase space of density, velocity and pressure and k =
(1 + k1)(1 + k3)/(1 + k2)

2, then it can be proved that

• If k > 1, the curve moves towards the surface Γ+ = {U |u − a = 0}, and
the solution to equilibrium equation (2) may not exist.

• If k < 1, the curve moves away from the surface Γ+ = {U |u− a = 0}, and
the solution to equilibrium equation (2) may not be unique.

• If k = 1, the curve moves parallel to the surface Γ+ = {U |u− a = 0}, and
the solution to equilibrium equation (2) always exists and is unique.
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Definition 1. For the left-hand state U− and the right-hand state U+ of a source
stationary wave, U−(U+) is choked, if ∃1 ≤ k ≤ m,λk(U−) = 0(λk(U+) = 0);
U−(U+) is non-choked, if ∀1 ≤ k ≤ m,λk(U−) 6= 0(λk(U+) 6= 0). The Riemann
solution is called choked if the left-hand state or right-hand state of the source
stationary wave is choked.

The self-similar solutions of Riemann problems have seven different structures,
including two kinds of choked solutions and five kinds of non-choked solutions. By
studying each structure separately, we have the following conclusion

Theorem 1. For the given parameters k1, k2 and k3, the self-similar solution at
intermediate regions of the Riemann problem depends on the initial value contin-
uously.

We use a first-order splitting scheme to simulate the equation (1). The numer-
ical results show that the numerical solution generally agrees well with our exact
solutions, which proves to some extent that the exact solutions we proposed are
correct. Besides, the numerical solutions have overshoots near the origin. There-
fore, we designed an approximate Riemann solver to avoid overshoots. The key
difficulty of the solver lies in how to predict the structure. Our solver is divided
into three steps.

Step1 Predict the direction of the velocity on the t axis based on a classical
Riemann problem.

Step2 Compute the value of k to determine the transformation of the structures.
Step3 Predict the structure and get the approximate states on the t-axis.

It can be proved that the numerical scheme based on our approximate Riemann
solver is well-balanced. Experiments prove that the numerical solution based on
the approximate solver can approximate each wave of the Riemann problem well,
and there are no overshoots near the origin.

A Weakly coupled nonlinear generalized Riemann solver for
compressible 2-D Euler equations

Jin Qi

(joint work with Jiequan Li)

In order to better calculate the numerical flux at the boundary of the 2-D grid,
we presented a Weakly coupled 2-D Generalized Riemann Problem (W2D-GRP).

∂W

∂t
+
∂F(W)

∂x
+
∂G(W)

∂y
= 0,

W(x, y, 0) =




WL + x

(
∂W
∂x

)
L
+ y

(
∂W
∂y

)
L
, x < 0,

WR + x
(
∂W
∂x

)
R
+ y

(
∂W
∂y

)
R
, x > 0.

(1)

And then a weakly coupled nonlinear 2-D generalized Riemann problem solver
(Figure 1) is developed to analytically approximate W2D-GRP, which extends the



Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws 2315

GRP method [3, 4] to a genuine 2-D Riemann solver of second order accuracy
both in space and time. Different from the local 1-D GRP [1, 5], the tangential
items in W2D-GRP solver are calculated with outer-normal items at the same
time. Different from the multi-dimensional nodal Riemann solvers [2, 6, 7], the
W2D-GRP solver is only used to determine the solution of 2-D Euler equations at
the cell boundaries. The new solver is suitable for arbitrarily moving grids or any
discrete framework, and can be extended to unstructured and body-fitting grids.

Figure 1. The wave configurations of W2D-GRP

Numerical examples of 2-D Riemann problems are tested to illustrate the advanced
performance of the method, as can be seen in Figure 2.

Acknowledgement. Thanks a lot to Professor Ben-Artzi for his helpful sugges-
tions and discussions.
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Figure 2. Comparison of 1-D GRP solver and W2D-GRP solver
in 2-D Riemann problems. Left: P1D-GRP. Right: W2D-GRP.

Inverse problems for kinetic equations - an application to chemotaxis

Kathrin Hellmuth

(joint work with Christian Klingenberg, Qin Li, Min Tang)

The experimental setup and research questions regarding an inverse problem in a
kinetic chemotaxis equation are motivated and explained.

When studying phenomena in nature, kinetic equations are used in various con-
texts in which the velocity of particles determines their propagation. Typical ex-
amples are the radiative transfer equation describing the propagation of photons
or the Boltzmann equation for gas molecules. They thus serve as an intermedi-
ate between the microscopic (single particle) and the macroscopic description. In
an environment without a force field, a kinetic equation typically consists of a
transport term on the left and a relaxation term K[f ] on the right hand side

∂tf(x, t, v) + v · ∇xf(x, t, v) = K[f ](x, t, v)

where f is the distribution of particles with velocity v at time t at location x. The
relaxation term describes the events that might happen while the particles are
transported such as absorption and scattering of photons, collision of particles,
emission etc. The inverse problem now aims for reconstructing (parts of) the
relaxation term from data observed in experiments.
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This framework is applied to the chemotaxis equation

∂tf(x, t, v) + v · ∇xf(x, t, v) =

∫

V

K(x, t, v, v′)f(x, t, v′)−K(x, t, v′, v)f(x, t, v)dv′

(1)

describing the propagation of bacteria density f(x, t, v) in a surrounding with a
chemical substance. The chemical gradient driving the movement is encoded in
the tumbling kernel K(x, t, v, v′) that measures the proportion of bacteria chang-
ing from velocity v′ to v at (x, t) by so-called tumbling. Note that the chemical
concentration is given and independent of the bacteria density in this model, un-
like e.g. in [2]. This is closer to real experimental setups. The inverse problem
thus consists of determining the unknown tumbling kernel K by experimental
measurements.

Experimental setup. At the beginning of an experiment, bacteria are placed
in the environment. This corresponds to imposing an initial condition to the
chemotaxis equation (1)

f(x, t = 0, v) = f0(x, v).

Afterwards, the bacteria have some time T to move within the environment, i.e.
the bacteria density is propagated from t = 0 to T by the chemotaxis equation
(1). At time T , the concentration of bacteria f(x, T, v) is measured.

Obtaining velocity dependent measurements, however, is computationally costly,
since single cell trajectories have to be recorded over some time interval, see e.g.
[5]. We thus model our measurements to be the velocity averaged bacteria density∫
V
f(x, T, v) dv, which can be obtained by one single measurement in T e.g. by

optical density techniques [6]. It is measured by some test function χ in space:

G(K) =

∫

Rd

∫

V

f(x, T, v) dv χ(x) dx,

where the dependency on K is derived from the evolutionary process of f .
Several measurements can be obtained from one experimental setup by vary-

ing the measurement time T and/or location χ. This can be done for a row of
experiments in which the initial condition f0 is varied for each experiment.

Inverse problem. Hence, the inverse problem consists of reconstructing the tum-
bling kernel K from knowledge of the map

Λ : f0 7→ G(K),

where G now summarizes all measurements obtained from the experiment with
initial condition f0.

Research questions. We are currently studying the reconstructability of the to-
tal tumbling kernel rate L(x, v, t) =

∫
V K(x, t, v′, v) dv′ for a simplified equation

(1) with right hand side −Lf . On a theoretical level we assume knowledge on
the full map Λ. Measurements G are assumed to encode information of the bac-
teria density in full space-time (x, t). A challenge appearing in this framework is
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the reconstruction of the velocity dependency of L by velocity independent mea-
surements. An approach that might help bridging this difficulty is the singular
decomposition technique as used in [4]. This would also motivate the choice of
spacial test functions ψ and initial conditions f0 for experiments.

Furthermore, we considered the relation of the kinetic inverse problem to the
corresponding inverse problem for the macroscopic Keller-Segel equation, which is
the macroscopic scaling limit of the chemotaxis equation, see e.g. [2]. In a Bayesian
setting, we showed well-posedness of both inverse problems and established the
convergence of the Bayesian solutions under certain conditions [1] by adapting
techniques from [3] to our situation.

Future work might include similar considerations for the non Bayesian inverse
problems and numerical implementation of the inverse problems in order to process
real data and confirm theoretical results.

With this work, we hope to contribute to the understanding of kinetic inverse
problems and their relation to the corresponding macroscopic inverse problems.
This might lead to a new form of regularization for ill-posed macroscopic inverse
problems such as the Calderon problem.
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Sparse Grid Discontinuous Galerkin Methods for the
Vlasov-Maxwell System

Zhanjing Tao

(joint work with Wei Guo, Yingda Cheng)

The Vlasov-Maxwell (VM) system is a fundamental model in plasma physics for
describing the dynamics of collisionless magnetized plasmas, which finds diverse
applications in science and engineering, including thermo-nuclear fusion, satellite
amplifiers, high-power microwave generation, to name a few. The dimensionless
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form of the VM system is

∂tf + ξ · ∇xf + (E+ ξ ×B) · ∇ξf = 0 ,

∂E

∂t
= ∇x ×B− J,

∂B

∂t
= −∇x ×E ,

∇x ·E = ρ− ρi, ∇x ·B = 0 ,

f(x, ξ, 0) = f0(x, ξ), E(x, 0) = E0(x), B(x, 0) = B0(x),

with

ρ(x, t) =

∫

Ωξ

f(x, ξ, t)dξ, J(x, t) =

∫

Ωξ

f(x, ξ, t)ξdξ ,

where the equations are defined on Ω = Ωx × Ωξ. x ∈ Ωx denotes position in
physical space, and ξ ∈ Ωξ, which is the velocity space. Here f(x, ξ, t) ≥ 0 is the
distribution function of electrons at position x with velocity ξ at time t, E(x, t) is
the electric field, B(x, t) is the magnetic field, ρ(x, t) is the electron charge density,
and J(x, t) is the current density. The charge density of background ions is denoted
by ρi, which is chosen to satisfy total charge neutrality,

∫
Ωx

(ρ(x, t)− ρi) dx = 0.

The simulations of VM systems are quite challenging. Particle-in-cell (PIC)
methods have long been very popular numerical tools, mainly because they can
generate reasonable results with relatively low computational cost. However, as a
Monte-Carlo type approach, the PIC methods are known to suffer from the sta-

tistical noise, which is O(N− 1

2 ) with N being the number of sampling particles.
In recent years, there has been growing interest in deterministic simulations of the
Vlasov equation. In the deterministic framework, the schemes are free of statis-
tical noise and hence able to generate highly accurate results in phase space. We
are interested in a class of successful deterministic Vlasov solvers based on the dis-
continuous Galerkin (DG) finite element discretization, because of not only their
provable convergence and accommodation for adaptivity and parallel implementa-
tions, but also their excellent conservation property and superior performance in
long time wave-like simulations. Those distinguishing properties of DG methods
are very much desired for the VM simulations, and they have been previously em-
ployed to solve VM system [3, 2] and the relativistic VM system [9]. However, due
to the curse of dimensionality, traditional deterministic approaches including the
DG methods are not competitive for high dimensional Vlasov simulations, even
with the aid of high performance computing systems.

To break the curse of dimensionality, we will focus on the sparse grid approach.
The sparse grid method [1, 4] has long been an effective numerical tool to reduce
the degrees of freedom for high-dimensional grid based methods. In [8, 5], a class of
sparse grid DG schemes were proposed for solving high-dimensional partial differ-
ential equations (PDEs) based on a novel sparse DG finite element approximation
space. Such a sparse grid space can be regarded as a proper truncation of the
standard tenor approximation space, which reduces degrees of freedom of from
O(h−d) to O(h−1| log2 h|d−1), where h is the uniform mesh size in each direction
and d is the dimension of the problem. Motivated by the development of sparse
grid DG method [5] and the adaptive multiresolution DG method [6] for transport
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equations, it is of interest to develop sparse grid DG methods for solving the VM
system [7]. The proposed methods are well suited for VM simulations, due to their
ability to handle high dimensional convection dominated problems, the ability to
capture the main structures of the solution with feasible computational resource
and the overall good performance in conservation of physical quantities in long
time simulations.
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Applications of the projection technique for two open problems

Gonglin Yuan

(joint work with Xiaoliang Wang, Zhou Sheng)

There are two open problems for nonconvex functions under the weak Wolfe-Powell
(WWP) line search technique in unconstrained optimization problems:

f(xk + αkdk) ≤ fk + δαkg
T
k dk

and

g(xk + αkdk)
T dk ≥ σgTk dk,

wherewhere gk = ∇f(xk) is the gradient of the function f(x) at point xk, δ ∈
(0, 1/2), and σ ∈ (δ, 1). The first one is the global convergence of the Polak-
Ribière-Polyak (PRP) conjugate gradient algorithm [1, 2]:

βPRP
k =

gTk+1(gk+1 − gk)

‖gk‖2
,

where gk+1 = ∇f(xk+1) and ‖ · ‖ is the Euclidean norm, and the second one is
the global convergence of the BFGS (Broyden, Fletcher, Goldfarb, and Shanno)
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quasi-Newton method: (Broyden [3], Fletcher [4], Goldfarb [5], and Shanno [6])
quasi-Newton formula is

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+
yky

T
k

sTk yk
.

where Bk the update matrix in the kth iteration, sk = xk+1 − xk, and yk =
gk+1 − gk. Many scholars have proven that these two problems do not converge,
even if an exact line search is used. Two circle counterexamples were proposed to
generate the nonconvergence of the PRP algorithm for the nonconvex functions
under the exact line search (see [7, 8] in detail), which inspired us to define a
new technique to jump out of the circle point and obtain the global convergence.
Thus, a new PRP conjugate gradient algorithm is designed by the following steps.
(i) The current point xk is defined, and a parabolic surface Pk is designed; (ii)
an assistant point κk is defined by the PRP formula based on xk; (iii) κk is
projected onto the parabolic surface Pk to generate the next point xk+1; (iv)
the presented PRP conjugate gradient algorithm has the global convergence for
nonconvex functions with the WWP line search; (v) a similar technique is used for
the BFGS quasi-Newton method to get a new BFGS algorithm and establish its
global convergence; and (vi) The numerical results show that the given algorithms
are more competitive than those of other similar algorithms. And the well-known
hydrologic engineering application problem called parameter estimation problem
of nonlinear Muskingum model is also done by the proposed algorithms.
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