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Abstract. The consideration of wave propagation in inhomogeneous media

or the modelling of nonlinear waves often requires the study of wave equations
with low regularity data and/or coefficients. Several Australian-European
collaborations have recently led to deeper analytical understanding of rough
wave equations. This tandem workshop provided a platform for such collab-
orations and brought together early career researchers and leading experts
in harmonic analysis, microlocal analysis and spectral theory. The workshop
focused on collaboration and technical knowledge exchange on topics such as
local smoothing, spectral multipliers, restriction estimates, Hardy spaces for
Fourier integral operators, and nonlinear partial differential equations.
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Introduction by the Organizers

Interactions between harmonic analysis, microlocal analysis and spectral theory
have led to exciting advances on topics such as rough wave equations, oscillatory
integral estimates, local smoothing, and spectral multipliers. Here the additional
flexibility and insight that comes with taking a microlocal perspective on classical
problems allows one to incorporate powerful tools from phase space analysis.

In particular, such tools include invariant spaces for wave and Schrödinger prop-
agators, Hamiltonian flows on phase space and Egorov theorems, (multilinear)
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Fourier integral operators, semiclassical analysis, and refined conditions on oscil-
latory integrals that allow for optimal restriction and extension estimates. On the
other hand, classical tools from probability theory have led to a deeper under-
standing of the quantum separation effect, and adapted Hardy and bmo spaces
continue to be very useful for harmonic analysis on non-doubling manifolds with
ends, and Heisenberg groups. Moreover, results in harmonic and microlocal anal-
ysis have been used to obtain new spectral multiplier theorems, both in concrete
and in abstract settings, and they have found applications to various classes of
nonlinear partial differential equations. Most relevant for this workshop are the
nonlinear wave, Schrödinger, Dirac and Maxwell equations.

The workshop brought together 23 early career researchers and leading experts
working on these topics, 8 of which were physically present at MFO and 15 of which
participated virtually from Australia and New Zealand. This hybrid format led
to new interactions between different areas, both geographically and scientifically.
In particular, due to inherent obstacles coming from the distance between Europe
and Oceania, as well as due to border closures, the MATRIX-MFO collaboration
made for a workshop that would not have been conceivable in another manner.
It also allowed for existing Australian-European collaborations to continue in a
‘research in pairs’ format.

On an organizational level, the time difference between the continents led to
a novel approach, whereby the participants were asked to pre-record their talks
and make them available online. A number of talks were then discussed every
day during the European morning and the late afternoon and evening in Oceania,
around which thematic sessions were organized that involved lively discussions.
Apart from this, time was reserved for collaboration in smaller groups, both in
person and virtually.
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Abstracts

Intersections between microlocal, semiclassical and harmonic analysis

Melissa Tacy

In this talk I will briefly survey the intersection between microlocal, semiclassical
and harmonic analysis and discuss some of the types of problems that benefit from
being viewed as sitting in this intersection.

Microlocal analysis broadly speaking is concerned with the analysis of the local
structure of singularities. In particular microlocal analysis interests itself not only
in the local properties of singularities (such as where their singular support sits)
but also in the directions in which the singularity is ‘felt’. Adding the directional
information makes microlocal analysis the perfect setting to discuss solutions to
evolution equations and associated PDE.

Semiclassical analysis offers a refinement of microlocal analysis by also address-
ing scale. In semiclassical analysis one typically considers scale dependent func-
tions (rather than singularities). However as the semiclassical scale h → 0 these
functions become singular. Therefore semiclassical analysis is an excellent setting
to study singularity formation but it also provides the correct setting to study fine
scale properties of solutions to PDE.

For example consider studying the Lp norms of solutions u to a PDE (or pseudo-
differential equation). Different values of p ‘see’ different features. A common fea-
ture is a local point-like concentration where u(x) is particularly large at one value

of x. Such a feature may be invisible to L2 theory. For instance if |u(x)| ≈ h−
n−1
2

on a hn region (this feature is for example found on zonal spherical harmonics).

The contribution of this feature to the Lp norm of u is h−
n−1
2 h

n
p so in the h→ 0

limit this feature is invisible unless p ≥ 2n
n−1 . Since semiclassical analysis naturally

formulates everything in terms of the semiclassical parameter it provides a suitable
framework for studying these type of problems.

The key ingredients to placing a problem in the semiclassical setting are the
semiclassical Fourier transform Fh and semiclassical pseudodifferential operators
p(x, hD). The semiclassical Fourier transform is given by

Fh[u] =
1

(2πh)n/2

∫
e−

i
h 〈x,ξ〉u(x)dx

with inverse

F−1
h [u] =

1

(2πh)n/2

∫
e

i
h 〈x,ξ〉u(ξ)dξ.

The choice of (2πh)−n/2 as a pre-factor ensures that the semiclassical Fourier
transform is an isometry on L2(Rn). Like the standard Fourier transform differ-
entiation of u corresponds to multiplication of Fh[u], however the scale factor h is
also built it to this relationship. We have that

Fh

[
hDxju

]
= ξjFh[u].
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The definition of a semiclassical pseudodifferential operator is also similar to that
of a standard pseudodifferential operator. The operator p(x, hD) associated with
p(x, ξ) by the left quantisation is

p(x, hD)u =
1

(2πh)n

∫
e

i
h 〈x−y,ξ〉p(x, ξ)u(y)dξdy.

The symbol p(x, ξ) must obey the same type of ‘polynomial like’ bounds as for a
standard pseudodifferential operator but in practice the symbol p(x, ξ) can often
be taken to be compactly supported. For full details on the semiclassical calculus
see for example [16]. Typically we study u that are approximate solutions, quasi-
modes, to a pseudodifferential equation p(x, hD)u = 0. In particular we are often
interested in order h quasimodes. These functions have the property that

||p(x, hD)u||L2 . h ||u||L2 .

Order h quasimodes are particularly convenient for local analysis as localising
near a point x (or localising their semiclassical Fourier transform near a point ξ)
preserves the order h quasimode property.

The ability to study fine scale properties via semiclassical analysis is exactly
what makes this theory so useful in problems arising form harmonic analysis.
Many problems in harmonic analysis are concerned with Lp (or other function
space norms) of solutions to PDE or spectral clusters associated with differential
operators, those associated with the Laplacian often forming the canonical exam-
ples. Questions about spectral clusters can easily be converted to questions about
quasimodes. Here we give an example of the conversion when the underlying op-
erator is the Laplacian on a compact manifold. We denote the eigenfunctions by
φj with eigenvalue λ2j . Then a spectral cluster of window width W is given by

uλ =
∑

λj∈[λ,λ+W ]

cjφj

and the associated cluster projection operator by

Pλ =
∑

λj∈[λ,λ+W ]

Pλj

where Pλj is the projection onto the λj eigenspace. Now let h = λ−1 then

∣∣∣∣(h2∆− 1)uλ
∣∣∣∣
L2 =

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

λj∈[λ,λ+W ]

(hλj + 1)(hλj − 1)φj

∣∣∣∣∣∣

∣∣∣∣∣∣
L2

. hW ||uλ||L2 .

So for instance width one window spectral clusters are in fact order h quasimodes.
A similar calculation show that for any v, Pλv is a quasimode with error hW .
This conversion allows us to see harmonic analysis problems about operators as
semiclassical problems about quasimodes. We can then make use of the consid-
erable technical machinery of semiclassical analysis to examine these functions
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and therefore make conclusion about the mapping properties of the associated
operators.

Below is an (incomplete) list of harmonic analysis type problems successfully
treated through semiclassical techniques.

• Linear or bilinear Lp estimates of order h quasimode (or joint quasimode)
of semiclassical pseudodifferential operators p(x, hD); [15] [9],[6],[12],[13].

• Estimates on the Lp norm of an order h quasimode of a semiclassical
pseudodifferential operator p(x, hD) restricted to lower dimensional sub-
manifold; [10],[8].

• Control of the L2 norm of weighted Cauchy or Neumann data on interior
hypersurfaces or on the boundary; [14], [3], [2], [1], [11].

• Control of the mapping norms of single and double layer operators; [7],[5],
[4].
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Spectral multipliers and wave equation for sub-Laplacians

Alessio Martini

Let L be a sub-Laplacian on a sub-Riemannian manifold of dimension n. It has
been known for a long time that, under fairly general assumptions on the sub-
Laplacian and the underlying sub-Riemannian structure, an operator of the form
F (L) is bounded on Lp (1 < p < ∞) whenever the multiplier F satisfies a scale-
invariant smoothness condition of sufficiently larger order. For example, if L sat-
isfies Gaussian-type heat kernel bounds and the underlying metric-measure space
is doubling, then a Mihlin–Hörmander type multiplier theorem holds for L, where
the required order of differentiability depends on the “homogeneous dimension”
of the underlying geometry, which may be larger than the topological dimension
n. The problem of determining the minimal smoothness assumptions, however,
remains widely open in general, and is intimately connected with that of proving
sharp Lp estimates for the corresponding wave equation. The talk focuses on two
instances of recent progress on this problem.

In joint work with Detlef Müller and Sebastiano Nicolussi Golo [2], we prove
universal necessary conditions for spectral multiplier and wave equation estimates
for sub-Laplacians, only depending on the topological dimension of the underlying
manifold. Namely, we show that the ranges of validity of spectral multiplier esti-
mates of Mihlin–Hörmander type and wave propagator estimates of Miyachi–Peral
type for L cannot be wider than the corresponding ranges for the Laplace opera-
tor on Rn — despite the lack of ellipticity of L. A similar result was previously
known for 2-step structures [1], but the method of proof that we develop in the
new work is substantially different and allows us to tackle the case of arbitrary
step. Specifically, the proof hinges on the construction of a suitable Fourier inte-
gral representation for the wave propagator associated with L, which allows us to
exploit known nondegeneracy properties of the sub-Riemannian geodesic flow.

On the side of sufficient conditions, in joint work with Gian Maria Dall’Ara
[3], we consider the case of Grushin operators L = −∂2x − V (x)∂2y on the plane

R2 = Rx × Ry. Under the sole assumptions that V (−x) ≃ V (x) ≃ xV ′(x) and
|x2V ′′(x)| . V (x) (the assumption on the second derivative V ′′ can actually be
weakened to a Hölder-type condition on V ′), we prove a spectral multiplier theo-
rem of Mihlin–Hörmander type for L, whose smoothness requirement is optimal
and independent of V , and coincides with that for the classical Laplacian on R2.
The independence from V of the smoothness requirement in our multiplier the-
orem is particularly striking, when compared with the classical result obtained
via heat kernel bounds, as the homogeneous dimension associated to L depends
on the degree of polynomial growth of V and can be arbitrarily large. The proof
is fundamentally based on the spectral analysis of one-dimensional Schrödinger
operators with single-well potentials, including universal estimates of eigenvalue
gaps and matrix coefficients of the potential.
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Boundedness of multilinear oscillatory integral operators in local
Hardy spaces

David Rule

(joint work with Aksel Bergfeldt, Salvador Rodriguez-Lopez, Wolfgang Staubach)

In this talk we discuss the global boundedness of multilinear oscillatory integral op-
erators that are connected to nonlinear dispersive equations. These are operators
that take the form

(1) TΦ
σ (f1, . . . , fN )(x) =

∫

RnN

σ(x,Ξ)
N∏

j=1

(
f̂j(ξj)e

ix·ξj
)
eiΦ(Ξ) dΞ,

where σ is a Hörmander class multilinear amplitude, satisfying the bounds

|∂αΞ∂βxσ(x,Ξ)| ≤ Cα,β〈Ξ〉m−|α|

for all multi-indices α and β, and

Φ(Ξ) = ϕ0(ξ1 + · · ·+ ξN ) +

N∑

j=1

ϕj(ξj) (Ξ = (ξ1, . . . , ξN ))

is a combination of phase functions ϕj (j = 0, 1, . . . , N). We study Φ which take
this form as it is this structure that appears in applications, as described in [1].
The assumptions we make on each ϕj depend on the PDE from which the operator
is derived, and is quantified by its order s: For a given s ∈ (0,∞) we assume each
ϕj : R

n → R belongs to C∞(Rn \ {0}) and satisfies

(2) |∂αϕj(ξ)| ≤ cα|ξ|s−|α| for ξ 6= 0 and |α| ≥ 1.

Alternatively, instead of (2), we assume each φj is positively homogeneous of
degree one. This alternative is an stronger assumption corresponding to the case
s = 1, in which case (1) is usually called a Fourier integral operator.

We have proved Hölder-type boundedness results of the operators in (1) in the
local Hardy spaces hp (0 < p < ∞) and related spaces. We define the functions
spaces Xp as

Xp :=





hp if p ≤ 1

Lp if 1 < p <∞
bmo if p = ∞,
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where Lp is the usual Lebesgue space, hp is the local Hardy space, and bmo is the
dual space of h1. The following preliminary results are partially published in [2]
and are partially a work in progress we hope to publish soon. The first preliminary
result concerns Fourier integral operators.

Theorem 1. For integers n,N ≥ 2, let the exponents pj ∈ ( n
n+1 ,∞] (j =

0, . . . , N) satisfy

(3)
1

p0
=

N∑

j=1

1

pj
.

Moreover let

m ≤ −(n− 1)




N∑

j=1

∣∣∣∣
1

pj
− 1

2

∣∣∣∣+
∣∣∣∣
1

p0
− 1

2

∣∣∣∣




and let each phase ϕj being smooth outside the origin and positively homogeneous
of degree one. Then the multilinear operator TΦ

σ extends to a bounded multilinear
operator from Xp1 × . . .×XpN to Xp0 .

The second preliminary result concerns oscillatory integral operators with phases
satisfying (2).

Theorem 2. For integers N,n ≥ 1, and real number s ∈ (0,∞), assume that the
exponents pj ∈ (n/(n+min(1, s)),∞] (j = 0, . . . , N) satisfy (3) and

m ≤ −sn




N∑

j=1

∣∣∣∣
1

pj
− 1

2

∣∣∣∣+
∣∣∣∣
1

p0
− 1

2

∣∣∣∣


 .

Then the multilinear operator TΦ
σ extends to a bounded multilinear operator from

Xp1 × . . . × XpN to Xp0 . Moreover, if the functions ϕj are all in C∞(Rn) (the
Schrödinger-case is an example of such a case), then the ranges of pj’s in the
theorem could be extended to ∈ (0,∞].

In the talk we discuss only the bilinear case, as the methods are the same as
in the general multilinear case, and we look at a couple of details in the proof (in
particular, Lemma 8.1 in [2]). Finally, we discuss how to show that the results are
sharp, at least for some exponents of Xp spaces.
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Nonlinear Dirac Equations

Sebastian Herr

(joint work with Ioan Bejenaru and Timothy Candy)

The talk started with an introduction to the Dirac Equation

−iγµ∂µψ +Mψ = 0,

for spinors ψ : R1+3 → C4 and (rescaled) mass parameter M ∈ R, with Dirac
matrices γµ ∈ C4×4. The dispersive features of its solutions have been analyzed
and the connection to classical topics in harmonic analysis – in particular related
to the Fourier restriction theory – have been described.

Then, nonlinear Dirac Equations have been considered, starting with the Soler
model

(cD) −iγµ∂µψ +Mψ = (ψ†γ0ψ)ψ

and the corresponding initial value problem (IVP). After a discussion of its basic
features, the results from [3, 2, 4] on global well-posedness and scattering have
been summarized as follows:

Theorem 1. Let (d,D) = (2, 2), or (d,D) = (3, 4). For small initial data ψ(0) ∈
H

d−1
2 (Rd;CD) the IVP (cD) is globally well-posed. Given the solution ψ : R1+d →

CD of (cD), there is a solution ψ± of the linear equation −iγµ∂µψ± +Mψ± = 0
satisfying

lim
t→±∞

‖ψ±(t)− ψ(t)‖
H

d−1
2 (Rd;CD)

= 0.

The key ideas of the proof are a construction of microlocal endpoint Strichartz-
and Energy-estimates in adapted coordinate frames, similar to work of Daniel
Tataru on wave maps. These can be used if waves are transversal, otherwise the
null-structure is effective.

Then, the Dirac-Klein-Gordon system

−iγµ∂µψ +Mψ = φψ

∂2t φ−∆φ +m2φ = ψ†γ0ψ
(DKG)

for a spinor ψ : R1+3 → C4 and scalar field φ : R1+3 → R has been considered.
After a short introduction, the results from [1, 7] on global well-posedness and

scattering have been summarized as follows:

Theorem 2. Let M,m > 0. For small initial data

(ψ(0), φ(0), ∂tφ(0)) ∈ Hε(R3;C4)×H
1
2+ε(R3;R)×H− 1

2+ε(R3;R),

either for ε > 0 and 2M > m, or for ε = 0 and additional spherical regularity, the
IVP (DKG) is globally well-posed. For solution (ψ, φ) we have

lim
t→±∞

(ψ± − ψ, φ± − φ, ∂t(φ
± − φ))(t) = 0

for some solution (ψ±, φ±) of the linear problem.
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In the proof, a key idea is to use the bilinear Fourier restriction theory in
the case of transversal wave interactions. More precisely, a version of the bilinear
Fourier restriction estimate for the hyperboloid and transference to function spaces
is required. Some conditional results [6, 5] for large data and open questions have
been briefly discussed, too.
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H. Poincaré Anal. Non Linéaire 35 (2018), 1707–1717.

[6] T. Candy and S. Herr, Conditional large initial data scattering results for the Dirac-Klein-
Gordon system, Forum Math. Sigma 6 (2018), e9, 55 pp.

[7] T. Candy and S. Herr, Transference of bilinear restriction estimates to quadratic variation
norms and the Dirac-Klein-Gordon system, Anal. PDE 11 (2018), 1171–1240.

Possible Exact Egorov theorem on hyperbolic surfaces

Antoine Gansemer

(joint work with Andrew Hassell)

Egorov’s theorem is a well known result in semiclassical analysis. Given a Rie-
mannian manifold (X, g), it is a relation between the quantum evolution of a
system, given by the Schrödinger propagator eitH/h, where 0 < h ≪ 1 is a small
semiclassical parameter which one takes to 0 in the semiclassical limit and H is a
quantisation of the classical Hamiltonian H(x, ξ) ∈ C∞(T ∗X), and the classical
evolution of a system, namely the Hamiltonian flow, the solutions to Hamilton’s
equations,

ẋ =
∂H

∂ξ
ξ̇ = −∂H

∂x

for a given Hamiltonian H(x, ξ). The free Hamiltonian H(x, ξ) = |ξ|2g is often
of interest, it represents the dynamics of a particle on a space with no potential.
The quantisation of |ξ|2g is often chosen as h2∆g. A classical observable is given
by a smooth function on phase space, a(x, ξ) ∈ C∞(T ∗X). A (dense) subspace
of classical observables, called symbols, is associated to a quantum observable,
Oph(a), in a process called quantisation. Oph(a) is an operator on C∞(X) and
is the “quantum observable” of a(x, ξ). It allows a way to measure the “position”
and “momentum” of a wavefunction, generally a wavelike object. Egorov’s theorem
states that the Schrödinger propagator of a quantum observable is approximately
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equal to the quantised observable given by the pullback by classical flow, ϕt. In
other words,

e−ith∆Oph(a)e
ith∆ ≈ Oph(a ◦ ϕt)

with an error which grows in time but small in semiclassical parameter, usually it
is O(h) in some sense. In fact, it holds for much more general Hamiltonians than
just the free Hamiltonian. On flat Rn, or spaces whose universal cover is Rn, there
exists the so-called Weyl quantisation which satisfies an exact version of Egorov’s
theorem:

e−ith∆Opweyl
h (a)eith∆ = Opweyl

h (a ◦ ϕt)

where ϕt : (x, ξ) 7→ (x + 2tξ, ξ) is the Hamiltonian flow associated to the free
Hamiltonian on Rn. We explore the existence of such a quantisation on hyper-
bolic surfaces, which have rather different dynamics. We follow the work of Anan-
tharaman and Zelditch, [1], [2], who explore two families of distributions on T ∗X ,
whereX is a compact hyperbolic surface. One family of distributions is the Wigner
distributions, they are matrix elements of the Zelditch left quantisation (see [3]),
with respect to Laplacian eigenfunctions. Wλj ,λj (a) := 〈Op(a)ϕj , ϕk〉L2(X), where

∆ϕj = −(1/4 + λ2j )ϕj and ∆ϕk = −(1/4 + λ2k)ϕk. The other distribution is the
family of Patterson-Sullivan distributions, PSλj ,λk

, which involve the dynamical
resonances ǫλj , that are eigendistributions of the geodesic flow on the hyperbolic
surface and have certain anisotropic regularity properties. Anantharaman and
Zelditch construct an explicit intertwining operator L between these two distri-
butions such that PSλj ,λk

(La) = Wλj ,λk
(a). We show that a slightly modified

normalisation of these two distributions implies that L is a unitary operator on
L2(T ∗X) with respect to a certain Haar density, (i.e. the density is invariant under
the natural isometry group on X). It is our belief that the intertwining operator
and the family of Patterson-Sullivan distributions may come in useful for defining
a quantisation that satisfies the exact Egorov theorem on hyperbolic surfaces.
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Hardy spaces adapted to Fourier Integral Operators

Andrew Hassell

(joint work with Jan Rozendaal, Pierre Portal)

In this first short talk, I discuss the Hardy spaces Hp
FIO(R

n) adapted to Fourier
Integral Operators introduced first by Hart Smith (but only for p = 1) and then
in full generality by Portal, Rozendaal and myself in 2020.
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The background for this work is the celebrated work of Seeger, Sogge and Stein
[1] on the optimal mapping properties for FIOs of order zero (associated to a
canonical transformation) on standard Sobolev spaces. They showed that such
operators map between Lp-based Sobolev spaces with a loss of (n− 1)|1/2− 1/p|
derivatives, and this loss is sharp. To do this, they employed a second dyadic
decomposition of frequency space, in which dyadic annuli of radius∼ |ξ| are further
decomposed into angular ‘petals’ of angular range ∼ |ξ|−1/2.

Smith [2] then found a function space contained in L1(Rn) invariant under
the action of FIOs of order zero. He did this by building the second dyadic
decomposition into the function space and using the fact that, intuitively, FIOs
essentially ‘permute’ such regions in a measure-preserving way.

Portal, Rozendaal and myself then developed this idea from a slightly different
point of view [3]. We consider a wave packet transform W associated to the
second dyadic decomposition, mapping functions on Rn to R2n, and view functions
on R2n as (potentially) lying in tent spaces T p(S∗Rn) over the cosphere bundle
S∗Rn = Rn×Sn−1. Hp

FIO is then the space of functions that get mapped byW into
the tent space T p(S∗Rn). In this way the generalization to all p ∈ [1,∞] is natural,
and we are able to exploit standard tent space properties such as interpolation and
atomic decompositions.

Our main results are that

• FIOs of order zero are bounded on the spaces Hp
FIO, and

• There are sharp embeddings between standard Sobolev spaces and Hp
FIO,

of the form

W s(p),p(Rn) →֒ Hp
FIO(R

n) →֒W−s(p),p(Rn), s(p) =
n− 1

2

∣∣∣1
2
− 1

p

∣∣∣.

Together, these results allow one to deduce the Seeger-Sogge-Stein result but is in
a sense much more precise.
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Rough wave equations and regularity in L
p and H

p
FIO spaces

Andrew Hassell

(joint work with Jan Rozendaal)

In this second talk, I discuss a recent result [1] proved with Jan Rozendaal on
well-posedness for the rough wave equation in Sobolev spaces Hs,p

FIO over the
Hp

FIO spaces introduced in the first talk, where this space consists of functions
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with s derivatives in Hp
FIO. We typically consider the wave equation with C1,1

coefficients. More precisely, we consider the equation

(1) Lu(t, x) = F (t, x), L = D2
t +

n∑

i,j=1

Diaij(x)Dj , t ∈ R, x ∈ Rn,

with initial conditions

(2) u(0, ·) = f, Dtu(0, ·) = g.

We assume that aij ∈ C1,1 are uniformly elliptic, and that

(3) f ∈ Hs,p
FIO(R

n), g ∈ Hs−1,p
FIO (Rn), F ∈ L1(R;Hs−1,p

FIO (Rn)).

We say that this equation is well-posed if there exists a function

(4) u(t, x) ∈ C(R;Hs,p
FIO(R

n)) ∩ C1(R;Hs−1,p
FIO (Rn)) ∩W 2,1(R;Hs−2,p

FIO (Rn))

satisfying initial conditions (2) and satisfying (1) as an identity in Hs−2,p
FIO (Rn) for

a.e. time t.
For context, we note that a well-posedness statement of this type is not possible

in standard Sobolev spaces W s,p(Rn) for p 6= 2, even for wave equations with
smooth coefficients, due to the loss of derivatives of FIOs of order zero acting
on such spaces, as discussed in the previous talk. However, there is no loss of
derivatives for FIOs of order zero acting on the Hp

FIO scale of spaces, and that
suggests that well-posedness results of this type may be valid on Sobolev spaces
over these spaces.

Our main result is that well-posedness holds in the above sense for suitable p
and s depending on dimension n. More precisely we have well-posedness provided
that

(5)
s(p) :=

n− 1

2

∣∣∣1
2
− 1

p

∣∣∣ < 1/2, and

−1 + s(p) < s < 2− s(p).

In particular, for n = 2 or 3, this permits a full range of exponents p ∈ (1,∞).
The proof proceeds by writing L = L1 + L2, where L1 is a pseudodifferential

operator derived from L by smoothing the coefficients so that only frequencies
less than ∼ |ξ|1/2 are included in the symbol σ(L1)(x, ξ) — a process familiar
from paradifferential theory. We then take an approximate square root b(x,D)
of L1 and construct an accurate parametrix for the first order evolution equation
(Dt + b(x,D))u(t, x) = 0, using the wave packet transform W described in the
previous talk to move to phase space and following the bicharacteristic flow of the
symbol of b on phase space. As for the operator L2, this is in effect a first, not
second, order operator when the coefficients are C1,1. This follows from estimates
due to Rozendaal [2] of rough pseudodifferential operators acting on Hs,p

FIO spaces.
Given this, L2 can be treated similarly to the inhomogeneous term F . We then
employ a standard iterative construction to obtain the exact solution. For this to
work, it is absolutely crucial that there is no loss of derivatives for the solution
operator onHs,p

FIO spaces, as any such loss would accumulate infinitely many times.
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L
p estimates for certain wave equations with Lipschitz coefficients

Pierre Portal

(joint work with Dorothee Frey)

In 1980, Peral and Miyachi proved that the operator (I − ∆)−
α
2 exp(i

√
−∆) is

bounded on Lp(Rd) if and only if α ≥ sp := (d − 1)
∣∣∣ 1p − 1

2

∣∣∣. Their result was

then extended to general Fourier integral operators (FIO) in a celebrated theorem
of Seeger, Sogge, and Stein [4], leading, in particular, to Lp(Rd) well-posedness
results for wave equations with smooth variable coefficients on Rd or driven by
the Laplace-Beltrami operator on a compact manifold. A new approach to these
results has recently been designed in [1], building on groundbreaking work of Smith
[5]. It introduces a scale of Hardy spaces Hp

FIO that are invariant under the action
of FIO, just like standard Hardy spaces Hp(Rd) are invariant under the action of
pseudo-differential operators. These spaces can then be compared to standard
Sobolev spaces through the embedding

W
sp
2 ,p ⊂ Hp

FIO ⊂W− sp
2 ,p,

to recover Peral/Miyachi or Seeger-Sogge-Stein results. This approach has the ad-
vantage that one only needs to loose derivatives once through these embeddings.
Computing with FIO on Hp

FIO itself can be done without loss of derivatives. In
2020, this has been used by Hassell and Rozendaal [2] to prove well posedness of
wave equations with C1,1 coefficients. In this talk, we discussed complementary
joint work with Dorothee Frey [3] focusing on wave equations with C0,1 coefficients
having a specific algebraic structure. It should be noted that, for many reasons,
C1,1 is a natural level of regularity for wave equations, and that Strichartz esti-
mates are known to fail, in general, below this level of regularity.

We consider wave equations ∂2t u = Lu for L =
∑d

j=1 aj+d∂jaj∂j , where the

coefficients aj ∈ C0,1 and aj+d ∈ C0,1 only depend on the j-th variable. Assuming
that these coefficients are bounded above and below and have bounded deriva-
tives, we construct a scale of Hp

FIO,a spaces that is invariant under the action of

exp(i
√
−L), and still satisfy the Sobolev embedding properties

W
sp
2 ,p ⊂ Hp

FIO,a ⊂W− sp
2 ,p.

This thus proves Peral/Miyachi estimates: (I − L)−
α
2 exp(i

√
−L) ∈ B(Lp) for

α ≥ sp.
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The central idea in [1] is to implement the refined Littlewood-Paley decompo-
sition of [4] through a wave packet transform. Considering two cut-off functions
Ψ, ψ ∈ C∞

c with suppΨ ⊂ [ 14 , 2], one defines

Wσ(f)(x, ω) := ψω,σ(∇)f(x) := Ψ(σω.∇)ψ(σ
1
2ω1.∇)...ψ(σ

1
2ωd−1.∇)f(x),

where (ω, ω1, ..., ωd−1) is an orthonormal basis. This gives an orthogonal decom-
position of L2

‖f‖2L2(Rd) ∼
1∫

0

‖Wσf‖2L2(Rd×Sd−1)

dσ

σ
+

∞∫

1

‖Ψ(σ2∆)f‖2L2(Rd)

dσ

σ
,

which decomposes a function f into pieces that are “asymptotically one dimen-
sional” in the sense that, when their Fourier transform is located within a dyadic
Littlewood-Paley annulus far from 0 (i.e. σ is close to 0), then it is also located in
a narrow slice of the annulus, where the angular part of the momentum is within√
σ of a fixed direction ω. One then defines Hp

FIO by forcing this decomposition
to be unconditional in Lp, using a norm such as

‖ω 7→ [(σ, x) 7→ 1(1,∞)(σ)Ψ(σ2∆)f(x) + 1[0,1](σ)Wσ(f)(x, ω)]‖Lp(Sd−1;Tp,2(Rd)).

To adapt these spaces to the coefficients (aj)j=1,...,2d, we replace the partial
derivatives ∂j in the definition of the wave packet transform by Dirac operators

ej.Da :=

(
0 −aj+d∂j

aj∂j 0

)
.

The algebraic condition on the coefficients guarantees that the square of these
operators (i.e. the generators of one dimensional half-wave groups adapted to the
coefficients in each direction) do commute. This allows us to use Coifman-Weiss’s
transference principle to prove that operators such as

(
exp(i

√
−L)− exp(i

d∑

j=1

ωj

√
(ej .Da)2)

) ∫ 1

0

ψω,σ(Da)
dσ

σ

are bounded on Lp (because they are transferred Fourier multipliers with appropri-
ate symbols), and consequently that exp(i

√
−L) ∈ B(Hp

FIO,a), since the bound-

edness of exp(i
∑d

j=1 ωj

√
(ej .Da)2) on L

p follows from standard one dimensional
results via a bilipschitz change of variables.

To prove the Sobolev embedding properties, one exploits dispersive properties,
expressed as off-diagonal decay with respect to a family of anisotropic distances
associated with the Seeger-Sogge-Stein refinement of the Littlewood-Paley decom-
position. These are estimates of the form: for every M ∈ N, there exists CM > 0
such that for all E,F ⊂ Rd Borel sets, σ ∈ (0, 1) and ω ∈ Sd−1, we have

‖1Eψω,σ(Da)(1F f)‖L2(Rd) ≤ CMσ
− d

2 (1 +
dω(E,F )

σ
)−M‖1Ff‖L1(Rd)
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for all f ∈ L1(Rd), where

dω(x, y) := |〈ω, x− y〉|+
d−1∑

j=1

〈ωj , x− y〉2 ∀x, y ∈ Rd.

Such estimates are precisely what allows us to use techniques designed for parabolic
and elliptic problems (and classical Hardy spaces) in the context of wave equations.
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Spectral multiplier estimates for abstract differential operators

Himani Sharma

For an operator generating a group on Lp spaces transference results give bounds
on the Phillips functional calculus also known as spectral multiplier estimates. In
the talk, we consider specific group generators which are abstraction of first order
differential operators and show similar spectral multiplier estimates assuming only
that the group is bounded on L2 rather than Lp. The motivation behind not
asking for any Lp information on the group is the fact that for a simple differential
operator on L2 it is generally difficult to decide whether or not it generates a
group on Lp. For instance, the first derivative on Lp(R) generates the group of
translations but i times the second derivative generates a group only if p = 2.

We thus start with a self adjoint operator D on L2(Rd;Cn) such that the C0-
group eitD generated by iD has finite propagation speed κD ≤ κ, which happens
if

supp(eitDu) ⊂ Kκ|t| := {x ∈ Rd; dist(x,K) ≤ κ|t|} ∀t ∈ R

whenever supp(u) ⊂ K ⊂ Rd, for some compact set K. For one of our results, we

also assume some Sobolev embedding property, that is, (I +D2)−
1
2 ∈ B(Lp∗ , Lp),

where p∗ = dp
d+p . Under these assumptions we obtain Lp boundedness of opera-

tors a(D) for a ∈ C∞
c . The bound, however, is not optimal but has important

applications in dispersive PDE, where one needs to project precisely on part of
the spectrum, i.e. use a compactly supported a. The key idea is that one can
use off-diagonal arguments that are abstractions of Calderon-Zygmund theoretic
arguments directly on the representation of a(D) as an integral of eitD.

An even better result on the Hardy spaceHp
D associated with D is also obtained

by eliminating the Sobolev embedding assumption. The use of such an adapted
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space is not a problem, as it can be combined with results that identify the range
of values of p for which Hp

D = Lp. One such operator D is the perturbed Hodge-

Dirac operator ΠB =

(
0 −divA
∇ 0

)
(defined in the sense of Frey-McIntosh-Portal

[1]) acting on L2(Rd;C1+d), where A is a real, smooth d× d matrix. In this case
we get Np(ΠB) ⊕Hp

ΠB
= Lp on the range of p for which ΠB Hodge decomposes

Lp(Rd;C1+d) and hence the norm of the operators a(D) on Hp
ΠB

and Lp are
equivalent.

Under the same assumption that iD generates a group with finite propaga-
tion speed we also improve an R-bounded Hörmander calculus result of Kriegler
and Weis—where they only assume that D2 generates an analytic semigroup—by
weakening their technical R-boundedness assumption into a Lp∗ −Lp boundedness
assumption. This proves, in particular, that the square of the above defined Hodge-
Dirac operator has a bounded Hörmander calculus (recovering, in particular, the
result for uniformly elliptic divergence form operators with L∞ coefficients).
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Quantum separation effect for Feynman-Kac semigroup

Adam Sikora

(joint work with Jacek Zienkiewicz)

The quantum tunnelling phenomenon allows a microscopic particle in Schrödinger
mechanics to tunnel through a barrier that it classically could not overcome. It
even allows the particle to pass through the potential barrier, even if its height is in-
finite. The tunnelling phenomenon is easily predicted and explained by Schrödinger
mechanics - the eigenstates of Hamiltonian of the system cannot be localised. In
our project we consider the quantum well and investigate the possibility that the
particle trapped in the well cannot escape, that is the possibility that the barrier
separates two regions. To be more precise, we consider the domain D ⊂ Rd and
its boundary K = ∂D that separates D and its complement Dc. Next, we define
the distance from K by the formula dK(x) = inf{d(x, y) : y ∈ K} and set

Vβ = Cd−β
K

for some β > 0. We investigate the Hamiltonian of the system, that is the operator

HV = ∆− Vβ

initially defined for function belonging to C∞
c (Rd\K). Here ∆ is the positive stan-

dard Laplace operator. Then we consider Feynman-Kac semigroup exp(−tHV )
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generated by the Hamiltonian HVβ
and we denote by pVt (x, y) the corresponding

heat kernel. We address the question for which values of β, exp(−tHVβ
) separates

D and Dc, that is when pVt (x, y) = 0 for x ∈ D and y ∈ Dc. If the domain D has
a smooth boundary, the problem considered by us has been satisfactory resolved
by Wu in [7]. In our study we generalise the results described in [7]. First, the
domains we consider are irregular fractals of some special but still general type in-
cluding van Koch snowflake domain. Second, we study the quantitative estimates
of the tunnelling effect in our setting. We consider cut-off potential and we esti-
mate the rate it suppresses the semigroup kernel pt(x, y) when x, y are separated
by the boundary K = ∂D. The essential difference compared to [7] is that we do
not require smoothness of the considered domain D. Instead we consider only frac-
tal type regularity conditions for K. In order to deal with irregular domains, we
develop a new approach different than in Wu. For the case of separation problem,
it is still an elementary and simple probabilistic argument based on the Paley-
Zygmund inequality and Blumenthal’s zero-one law. It becomes more involved
Brownian paths analysis for the quantitative description of the tunnelling.

The questions concerning separation can be posed for any semigroup of opera-
tors, even without direct relations to Schrödinger mechanics. We mention here [2]
where the authors study similar phenomena for certain types of divergence form
degenerate elliptic operators. The separation phenomenon for semigroups is also
related to the regularity theory for the solutions of Partial Differential Equations
corresponding to their generators which was investigated in [3] and [5]. Essentially
one can say that separation and regularity are mutually excluding properties. In
our study we also discuss a regularity result for integrable potentials, which shows
that the range of β for which we verify separation is optimal.

The estimates we discuss in our note are strictly connected to the boundary
behaviour of the Brownian motion. Motivation for the techniques we use partially
comes from the analysis in [1] and [6]. The detailed discussion of the described
results can be found in [4].
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Sharp L
p estimates for oscillatory integral operators of

arbitrary signature

Marina Iliopoulou

(joint work with Jonathan Hickman)

The restriction problem in harmonic analysis asks for Lp bounds on the Fourier
transform of functions defined on curved surfaces. In this talk, we present im-
proved restriction estimates for hyperbolic paraboloids, that depend on the signa-
ture of the paraboloids. These estimates still hold, and are sharp, in the variable
coefficient regime. This is joint work with Jonathan Hickman.

In particular, we denote by Bd(0, λ) the ball with centre 0 and radius λ in Rd.
For any hypersurface Σ := {(ω,Σ(ω)) : ω ∈ Bn−1(0, 1)} in Rn, with non-vanishing
Gaussian curvature, the extension operator associated to Σ is defined by

Ef(x) =

∫
e2πi〈x,(ω,Σ(ω))〉f(ω)dω, for all f : Bn−1(0, 1) → C and x ∈ Rn.

Let σ be the signature of Σ. We prove that

‖Ef‖Lp(Bn(0,λ)) ≤ cǫ,Σλ
ǫ‖f‖Lp(Bn−1(0,1)) for all λ ≥ 1 and ǫ > 0,

whenever p satisfies

p ≥
{
2 · σ+2(n+1)

σ+2(n−1) , if n is odd

2 · σ+2n+3
σ+2n−1 , if n is even

.

We further prove the same estimates for Hörmander-type operators (with general
phase functions) - in this generality, the above estimates are sharp.

In the talk we discuss the differences between the extention operator and general
Hörmander-type operators, and explain the role of signature in the problem.
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A Transference Principle for Bilinear Restriction Estimates

Timothy Candy

(joint work with Sebastian Herr and Kenji Nakanishi)

This talk describes two recent results. The first is joint work with S. Herr and K.
Nakanishi [3], and gives a fairly general method to show that bilinear restriction
estimates on R4 for free (or homogeneous) Schrödinger waves can be extended
to all elements u ∈ Z, where Z is an (endpoint) inhomogeneous Strichartz space
defined via the norm

‖u‖Z = ‖u‖L∞

t L2
x(R

1+4) + ‖(i∂t +∆)u‖L2
tL

4
x(R

1+4).

In other words, the Banach space Z satisfies a transference principle. The trans-
ference argument described below also works in much greater generality (other
dispersive PDE, general dimensions, multilinear estimates...) but here we sim-
ply illustrate the argument in the bilinear setting for the Schrödinger equation
in 4 dimensions. The second result is a bilinear restriction estimate for wave-
Schrödinger interactions [2]. This bilinear estimate is sharp under a transversality
type assumption. However once this transversality assumption is dropped it is
unclear what the sharp estimates are. This open problem is of particular interest
due to connections with the regularity theory for the Zakharov equation.

In the context of dispersive PDE, the transference principle refers to an ex-
tremely useful property in dispersive PDE which allows us to transfer estimates
from free waves (i.e. homogeneous solutions) to all elements of suitable Banach
space. This Banach space typically contains solutions to a corresponding nonlinear
PDE, and thus the transference principle can be thought of as a way to transfer
estimates for free waves, to estimates for nonlinear waves. The transference prin-
ciple was first observed to hold for Xs,b spaces (or Bourgain spaces/wave-Sobolev
spaces) [4, 7], and under certain conditions also holds in the Up/V p framework
[5]. To illustrate the transference principle in the bilinear setting, consider the
following bilinear restriction estimate.

Theorem 1 (Bilinear Restriction for Paraboloid [9, 8, 1]). Let r > 5
3 and µ ∈ 2Z.

If u = eit∆f and v = eit∆g are free solutions to the Schrödinger equation, then1

‖Pµ(uv)‖L1
tL

r
x(R

1+4) . µ2− 4
r ‖f‖L2(R4)‖g‖L2(R4).

Theorem 1 gives a substantial improvement over the endpoint Strichartz esti-
mate ‖eit∆f‖L2

tL
4
x
. ‖f‖L2, which essentially corresponds to the case r = 2. The

fact that Theorem 1 allows r < 2 is extremely useful, as it shows that the prod-
uct uv decays faster than expected. This additional decay played a key role in
proving global existence for the Zakharov equation [3], a nonlinear coupled wave-
Schrödinger system. However the arguments in [3] required a version of Theorem
1 which applied to nonlinear solutions. More precisely, the following bilinear esti-
mate was needed.

1Here Pµ restricts Fourier support to the set |ξ| ≈ µ.
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Theorem 2 (Inhomogeneous Bilinear Restriction [3]). Let r > 5
3 . Then for any

u, v ∈ Z we have

‖Pµ(uv)‖L1
tL

r
x(R

1+4) . µ2− 4
r ‖u‖Z‖v‖Z .

The standard strategy to obtain Theorem 2 from Theorem 1 would be to apply
a transference principle. This is fairly straightforward in the Xs,b setting, as
elements u ∈ Xs,b can be written as L1 averages of free waves. In other words,
provided b > 1

2 , we can write

u(t, x) =

∫

R

eitτ (eit∆fτ )(x) dτ, with

∫

R

‖fτ‖L2
x
dτ . ‖u‖X0,b

where ‖u‖Xs,b = ‖〈ξ〉s〈i∂t +∆〉bu‖L2
t,x
. It is then straightforward to conclude the

X0,b version of Theorem 2 from Theorem 1. However this argument fails in the
case of the inhomogeneous Strichartz space Z, as it is in general not possible to
write elements u ∈ Z as L1 averages of free waves. Instead, the proof of Theorem
2 proceeds by first extending Theorem 1 to vector valued free Schrödinger waves,
namely

(1)
∥∥∥
(∑

j,k

|eit∆fjeit∆gk|2
) 1

2
∥∥∥
L1

tL
r
x

.
(∑

j

‖fj‖2L2

) 1
2
(∑

k

‖gk‖2L2

) 1
2

.

This improvement follows from a standard randomisation argument, see for in-
stance the discussion in [2]. The equation (1) is the key bilinear restriction input
in the proof of Theorem 2, and the remainder of the proof essentially follows via
the Duhamel formula, the decomposition

∫ t

0

ei(t−s)∆F (s)ds =
∑

λ∈2Z

∑

I,J⊂R intervals
|I|≈|J|≈dist(I,J)≈λ

χI(t)

∫

J

ei(t−s)∆F (s)ds

and an inhomogeneous Strichartz estimate [6]. The vector valued bilinear restric-
tion estimate (1) controls the sum over the intervals I, J , while the inhomogeneous
Strichartz estimate makes it possible to sum over j, see [3, Section 4] for the details.

The second main result we present is the following bilinear restriction estimate
for wave-Schrödinger interactions.

Theorem 3 (Bilinear restriction for wave-Schrödinger interactions [1, 2]). Let
d > 2, 1 6 q, r 6 2 with 1

q + d+1
r < d+1

2 . Let |ξ0| ≈ |η0| ≈ 1 and define

α = | η0

|η0| + 2ξ0|. Assume that

(2)
∣∣∣
( η0
|η0|

+ 2ξ0

)
· η0|η0|

∣∣∣ & α.

If f, g ∈ L2(Rd) with supp f̂ ⊂ {|ξ−ξ0| ≪ α} and supp ĝ ⊂ {|ξ| ≈ 1,∠(ξ, η0) ≪ α},
then we have

‖eit∆feit|∇|g‖Lq
tL

r
x(R

1+d) . αd− d
r− 2

q ‖f‖L2(Rd)‖g‖L2(Rd).
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This result is sharp in the sense that the range q, r, and the dependence on α
cannot be improved. However it is interesting to understand what estimates of
this form are possible when the transversality assumption (2) is dropped. This
is of particular interest in view of the fact that dealing with a wave-Schrödinger
product is one of the main difficulties in studying the Zakharov system. Following
the discussion in [2], we give counterexamples that may provide some guide as to
the possible range of the exponents q, r when the assumption (2) fails.
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BMO spaces associated to operators with generalised Poisson bounds
on non-doubling manifolds with ends

Xuan Thinh Duong

(joint work with Peng Chen, Ji Li, Liang Song, Lixin Yan)

The space BMO of functions of bounded mean oscillation on Rn, which was orig-
inally introduced by John and Nirenberg [5] has been very useful in the study of
partial differential equations. The BMO space was identified as the dual space of
the classical Hardy space H1 in the celebrated work by Fefferman and Stein [4].
Since then the BMO function space and its predual H1 are considered as the nat-
ural substitutions for the Lebesgue spaces L∞ and L1 respectively in the study of
singular integrals. The BMO space and Hardy space have been extended from the
space Rn to the case of spaces of homogeneous type (X, d, µ), i.e. the underlying
measure µ satisfies the doubling (volume) property. For a singular integral opera-
tor T which is bounded on L2(X) with a doubling space X , a sufficient condition
for T to be bounded from H1(X) to L1(X), and from L∞(X) into BMO(X) is
that the associated kernel of T satisfies the (integral) Hörmander condition with
respect to variable x and y, respectively.
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If the underlying space X does not satisfy the doubling condition but its volume
growth is at most polynomial, then many classical results of harmonic analysis
on doubling spaces are still true by the works of Nazarov, Treil, Volberg, Tolsa
and others [6], [7]. For these non-homogenous spaces, regularized BMO spaces
were introduced by Tolsa [7]; however, for an L2 bounded singular operator T to
be bounded from L∞ to the regularized BMO space, strong conditions on the
associated kernel of T are required, for example the Hörmander condition is not
sufficient for that purpose.

We aim to study singular integrals with rough kernels i.e. the associated kernels
do not satisfy the Hörmander condition, acting on non-homogeneous spaces. Our
model of the underlying space is a non-doubling manifold with ends M = R

n♯Rm

where R
n = Rn × Sm−n for m > n ≥ 3. We say that an operator L has a

generalised Poisson kernel if
√
L generates a semigroup e−t

√
L whose kernel pt(x, y)

has an upper bound similar to the kernel of e−t
√
∆ where ∆ is the Laplace-Beltrami

operator on M . An example for operators with generalised Gaussian bounds is
the Schrödinger operator L = ∆+V where V is an arbitrary non-negative locally
integrable potential. We note that without further condition on the potential
V , then the kernel pt(x, y) can be discontinuous, hence the associated kernels of
certain standard singular integrals like Lis, s ∈ R are rough and do not satisfy the
Hörmander condition, see for example [1].

In this talk, our aim is to introduce the BMO space BMOL(M) associated to
operators with generalised Poisson bounds (see [2, 3] for the setting of doubling
spaces) which serves as an appropriate setting for certain singular integrals with
rough kernels to be bounded from L∞(M) into this new BMOL(M). On our
BMOL(M) spaces, we show that the John-Nirenberg inequality holds and we show
an interpolation theorem for a holomorphic family of operators which interpolates
between Lq(M) and BMOL(M). As an application, we show that the holomorphic

functional calculusm(
√
L) is bounded from L∞(M) into BMOL(M), and bounded

on Lp(M) for 1 < p <∞.
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Local smoothing and Hardy spaces for Fourier integral operators

Jan Rozendaal

This presentation concerns the local smoothing conjecture for the Euclidean wave
equation on Rn. The phenomenon of local smoothing revolves around determining,
for each 1 < p <∞, the minimal s ∈ R for which there exists a C ≥ 0 such that

(1)
( ∫ 1

0

‖eit
√
−∆f‖pLp(Rn)dt

)1/p

≤ C‖f‖W s,p(Rn)

for all f ∈ W s,p(Rn). The optimal fixed-time estimates for the half-wave propa-

gator eit
√
−∆ imply that one may let s = 2s(p), where

s(p) =
n− 1

2

∣∣∣1
2
− 1

p

∣∣∣.

This estimate is sharp for 1 < p ≤ 2, but it can be improved for p > 2. In fact,
the local smoothing conjecture, as originally formulated by Sogge in [6], stipulates
that (1) should hold with s = σ(p) + ε for each ε > 0, where σ(p) = 0 for
2 < p ≤ 2n/(n− 1), and σ(p) = 2s(p)− 1/p for p > 2n/(n− 1).

Although the local smoothing conjecture is still open in full generality, there
are many partial results available, and the conjecture was proved by Guth, Wang
and Zhang [2] for n = 2. For the purposes of the present article, however, it is
relevant to highlight the article [1] by Bourgain and Demeter. Building on work
by Wolff [7], they showed that (1) holds with s = σ(p)+ε for p ≥ 2(n+1)/(n−1),
by proving the ℓ2 decoupling conjecture. More precisely, one has

(2)
( ∫ 1

0

‖eit
√
−∆f‖pLp(Rn)dt

)1/p

≤ C‖f‖Wd(p)+ε,p(Rn)

for s = d(p) + ε, where

d(p) :=

{
2s(p)− 1

p if p ≥ 2(n+1)
n−1 ,

s(p) if 2 ≤ p < 2(n+1)
n−1 .

Main results. The local smoothing conjecture is sharp, in the sense that (1)
does not hold for s < σ(p). Nonetheless, in [4] we have obtained improved local
smoothing estimates for p ≥ 2(n + 1)/(n − 1), by working with a different space
of initial data in (2). Our main result, formulated in terms of the Sobolev spaces
Hs,p

FIO(R
n) = 〈D〉−sHp

FIO(R
n) over the Hardy spaces for Fourier integral operators

Hp
FIO(R

n), is as follows.

Theorem 1. Let p ∈ (2,∞) and ε > 0. Then there exists a C > 0 such that

(3)
(∫ 1

0

‖eit
√
−∆f‖pLp(Rn)dt

)1/p

≤ C‖f‖Hd(p)−s(p)+ε,p
FIO (Rn)

for all f ∈ Hd(p)−s(p)+ε,p
FIO (Rn).
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The Hardy space H1
FIO(R

n) for Fourier integral operators (FIOs) was intro-
duced by Smith in [5], and his construction was extended by Hassell, Portal and
the author [3] to a scale (Hp

FIO(R
n))1≤p≤∞ of invariant spaces for Fourier inte-

gral operators. More precisely, Hp
FIO(R

n) is invariant under FIOs of order zero
which have a compactly supported Schwartz kernel and are associated with a local
canonical graph, and one has

(4) W s(p),p(Rn) ⊆ Hp
FIO(R

n) ⊆W−s(p),p(Rn)

for 1 < p < ∞, with the natural modifications involving the local Hardy space
H1(Rn) for p = 1, and bmo(Rn) for p = ∞. In particular,

(5) W d(p)+ε,p(Rn) ⊆ Hd(p)−s(p)+ε,p
FIO (Rn) ⊆W d(p)−2s(p)+ε,p(Rn)

for 2 < p < ∞, and (3) recovers (2). However, since the exponents in (4) and (5)
are sharp, (3) is in fact a strict improvement of (2). And since d(p) = σ(p) for
p ≥ 2(n + 1)/(n − 1), Theorem 1 improves upon the local smoothing conjecture
for such p. Also note that

d(p)− s(p) = 0 = σ(p) for 2 < p ≤ 2
n

n− 1
,

and

d(p)− s(p) = 0 < 2s(p)− 1

p
= σ(p) < d(p) for 2

n

n− 1
< p < 2

n+ 1

n− 1
.

Hence the sharpness of the embeddings in (5) implies that, for 2 < p < 2(n +
1)/(n− 1), (3) neither follows from the local smoothing conjecture nor implies it.
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Improved discrete restriction for the parabola

Po-Lam Yung

(joint work with Shaoming Guo, Zane Kun Li)

It was noted that Fourier decoupling inequalities played a key role in the recent ad-
vances regarding the local smoothing conjecture for the wave equation (c.f. Bour-
gain and Demeter [2]). In fact, examples that almost extremizes Fourier decoupling
inequalities for the sphere provide initial data that motivates the numerology in
the local smoothing conjecture, although it was also explained that Kakeya type
phenomenon from incidence geometry produces examples for the local smoothing
conjecture that are worse by a logarithm.

The talk then turned to another recent progress about Fourier decoupling, this
time for the parabola in the plane. Guth, Maldague and Wang [4] proved an
improved decoupling inequality for the parabola in R2: they showed that there
exists some finite constant A, so that if R ≫ 1 and {θ} is a family of finitely
overlapping rectangles of dimensions R−1/2×R−1 that cover an R−1 neighborhood
of the unit parabola {(ξ, ξ2) : |ξ| ≤ 1}, then whenever {fθ} is a family of Schwartz

functions indexed by {θ} so that f̂θ is supported in θ for every θ, and f =
∑

θ fθ,
one has

(1)

∫

R2

|f |6 . (logR)6A
(∑

θ

‖fθ‖2L∞(R2)

)2
∫

R2

|f |2.

This in turn allowed them to conclude that if u(x, t) is the solution to the periodic
Schrödinger equation on T = R/Z with initial data h, i.e.

u(x, t) =
∑

n∈Z

ĥ(n)e2πi(nx+n2t),

then there exists a finite constant A so that whenever ĥ(n) = 0 for all |n| > M ,
one has

(2) ‖u‖L6(T2) . (logM)A‖h‖L2(T).

The idea of Guth, Maldague and Wang is that to estimate
∫
R2 |f |6 in (1) one

should exploit efficiently what one knows at L4. For instance, a classical estimate
of Fefferman and Cordoba says that

(3)

∫

R2

|f |4 .

∫

R2

|g|2, g :=
∑

θ

|fθ|2.

One may pigeonhole so that all non-zero ‖fθ‖L∞(R2) are comparable to each other.
If it holds true that

(4)

∫

R2

g2 /

∫

R2

∑

θ

|fθ|4,
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then we obtain the desired bound by noting that
∫

R2

|f |6 ≤ ‖f‖2L∞(R2)

∫

R2

|f |4
(3)

. ‖f‖2L∞(R2)

∫

R2

g2
(4)

/ ‖f‖2L∞(R2)

∫

R2

∑

θ

|fθ|4

.
(∑

θ

‖fθ‖L∞(R2)

)2

sup
θ

‖fθ‖2L∞(R2)

∫

R2

∑

θ

|fθ|2

.
(∑

θ

‖fθ‖2L∞(R2)

)2
∫

R2

|f |2.

The problem is that (4) is not always true. Roughly speaking, (4) holds only when
g =

∑
θ |fθ|2 is a sum of functions that are (almost) orthogonal to each other.

At this stage it is advantageous to introduce an intermediate scale R∗, satisfying
R1/2 < R∗ < R. One covers an R−1

∗ neighborhood of the unit parabola by finitely

overlapping rectangles {τ} of dimensions R
−1/2
∗ ×R−1

∗ , and write

g∗ :=
∑

τ

|fτ |2, fτ :=
∑

θ⊂τ

fθ.

On one hand g is essentially the low frequency part of g∗: essentially

ĝ(ξ) = 1|ξ|≤R−1/2 ĝ∗(ξ).

On the other hand, the high frequency part of g∗ is a sum of functions that are

suitably orthogonal to each other, and hence a version of (4) holds: if ghigh∗ is the
inverse Fourier transform of 1|ξ|>R−1/2 ĝ∗(ξ), then

(5)

∫

R2

|ghigh∗ |2 . (R/R∗)
1/2

∫

R2

∑

τ

|fτ |4.

One wants to keep R/R∗ small in the last estimate. Thus one is led to introducing
many more intermediate scales and appealing to induction on scales. This allows
one to systematically exploit gains in (5), and eventually proves (1).

Chasing through the proof of Guth, Maldague and Wang, one would get a
constant A in (2) that is at least 30. In joint work with Shaoming Guo and Zane
Kun Li [3], we sharpened this bound for A, and showed that one can indeed take
A to be 2 + ε for any ε > 0. We did that by using Fourier decoupling for the
parabola in Q2

p (where Qp is the p-adic field) instead of over R2. This is possible
because the Lebesgue exponent 6 is an even integer, and advantageous because
the uncertainty principle for the Fourier transform over the p-adic fields is much
cleaner than the one over R. We also additionally used a Whitney decomposition
to bilinearize, that saved us some powers of log. A counter-example of Bourgain
[1] showed that A has to be at least 1/6. The value A = 1/6 seems out of reach of
our current methods.
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Pointwise decay in time of solutions to energy critical nonlinear
Schrödinger and wave equations

Zihua Guo

(joint work with Chunyan Huang, Liang Song)

Consider the nonlinear Schrödinger equation
{
i∂tu+∆u = λ|u|4u, (x, t) ∈ R3,

u(x, 0) = u0(x).
(1)

It is well-known that the linear solutions of Schrödinger equation satisfy the fol-
lowing dispersive estimates

(2) ‖eit∆u0‖L∞

x
≤ C|t|−3/2‖u0‖L1

x
.

It is natural to ask whether one can obtain global solutions to (1) with the same
time decay

(3) ‖u(t)‖L∞

x
≤ C|t|−3/2.

It is well-known that (1) is energy critical. Global well-posedness and scattering
theory were extensively studied in last two decades (see [2]). A global solution of
(1) scatters in the energy space means there exists φ± ∈ H1 such that

lim
t→±∞

‖u(t)− eit∆φ±‖H1 = 0.(4)

Even if we have scattering, to get pointwise-in-time decay (3) is not trivial. On one
hand, pointwise-in-time decay is not expected if assuming data only inH1(R3). On
the other hand, assuming u0 ∈ L1 one cannot ensure the scattering state φ± ∈ L1.
Thus it requires extra effort. Recently, by contradiction argument Fan and Zhao
[1] proved that scattering solution of (1) satisfies (3) assuming u0 ∈ L1 ∩ Hk for
some k. We give a direct and simpler proof of their result. Our main ingredient
is the boundedness for Schrödinger propagator in Hardy space. Our argument
gives a quantitative bound and also works for energy-critical wave equation. More
precisely, we prove:

Assume f ∈ H3 ∩ L1(R3). Then

‖u(t, x)‖L∞

x
≤ C|t|−3/2.

Moreover, φ+ ∈ H3 ∩ L1 such that

lim
t→∞

‖u(t)− eit∆φ+‖H3 = 0, ‖u(t)− eit∆φ+‖L∞ ≤ C|t|−3.
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Conversely, for any φ+ ∈ H3 ∩ L1, there exists u ∈ CtH
3 such that

lim
t→∞

‖u(t)− eit∆φ+H3 = 0, ‖u(t)− eit∆φ+‖L∞ ≤ C|t|−3.

The main ingredient in the proof is the following result due to Miyachi [3]:

‖eit∆f‖h1 ≤C(1 + |t|)n/2‖(1−∆)n/2f‖h1,

where h1 is the local Hardy space.
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Quasilinear Maxwell equations

Robert Schippa

(joint work with Roland Schnaubelt)

The system of Maxwell equations in media in the absence of currents are given by

(1)





∂tD = ∇×H, ∇ ·D = ρe x = (t, x′) ∈ R× R3,
∂tB = −∇× E, ∇ · B = 0,
E(0, ·) = E0, B(0, ·) = B0,

where (E,D) : R×R3 → R3×R3 are referred to as electric and displacement field
and (B,H) : R× R3 → R3 × R3 as magnetic and magnetizing field.
These equations have to be supplemented with material laws linking, e.g., E with
D and H with B. Here we consider the pointwise constitutive relations

D(x) = ε(x)E(x), ε : R× R3 → R3×3,

B(x) = µ(x)H(x), µ : R× R3 → R3×3.

ε and µ are required to be symmetric and uniformly positive-definite. As an
intermediate step to consider interface problems, we consider ε ∈ Cs(R × R3),
µ ∈ Cs(R × R3) with 0 < s ≤ 2. If εj3 = ε3j = 0 for j ∈ {1, 2}, if E0, B0 = H0,
and ρe in (1) only depend on (x, y) ∈ R2, and if the components E03, H01 and
H02 vanish, then the solutions (E,H) to (1) have the same properties. Hence, the
resulting Maxwell system in two spatial dimensions is given by

(2)





∂tD = ∇⊥H, ∇ ·D = ρe,

∂tH = −∇× E,

D(0, ·) = D0, H(0, ·) = H0.
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In the above display we have D,E : R×R2 → R2 and H, ρe : R×R2 → R. In this
case ε : R× R2 → R2×2, µ : R× R2 → R. The relation with wave equations with
rough coefficients becomes evident after considering ∂2tH :

∂2tH = (∂1(ε22∂1)− ∂2(ε12∂1)− ∂1(ε21∂2) + ∂2(ε11∂2))H.

(εij) denotes the components of ε−1. Tataru proved sharp Strichartz estimates
for wave equations with Cs-coefficients in a series of papers (see [3] and references
therein) by using the FBI transform, which is defined by

Tλf(z) = Cdλ
3d
4

∫

Rd

e−
λ
2 (y−z)2f(y)dy z = x− iξ ∈ T ∗Rd.

The idea is to conjugate a pseudo-differential operator with rough x-dependence
to a multiplication operator in phase space with an error estimate in L2

Φ. Tataru
proved for a ∈ C1

xC
∞
c (Rd × Rd) with aλ(x, ξ) = a(x, ξ/λ) precisely

‖Tλ(aλ(x,D))− a(x, ξ)Tλ‖L2
Φ
≤ Cλ−

1
2 .

We denote the Maxwell operator in two dimensions by

P (x,D) =




∂t 0 −∂2
0 ∂t ∂1

−∂2(ε11·) + ∂1(ε12·) ∂1(ε22·)− ∂2(ε21·) ∂t


 .

The principal symbol is given by

p(x, ξ) =




iξ0 0 −iξ2
0 iξ0 iξ1

−iξ2ε11(x) + iξ1ε12(x) iξ1ε22(x) − iξ2ε12(x) iξ0


 .

Diagonalizing the principal symbol yields

p(x, ξ) = m(x, ξ)d(x, ξ)m−1(x, ξ)

with d(x, ξ) = idiag(ξ0, ξ0 − ‖ξ‖ε′ , ξ0 + ‖ξ‖ε′), which means Maxwell equations
in two dimensions can be diagonalized to two non-degenerate half-wave equations
and one degenerate wave equation. The degeneracy comes from the possibility of
stationary solutions due to large charges. The degenerate component is amelio-
rated in case of small charges as follows from the form of m−1. In [1] we recover
the dispersive properties of wave equations with rough coefficients for solutions to
Maxwell equations with small charges. We supplement the established Strichartz
estimates with examples, which show the derivative loss to be sharp. However,
diagonalizing the principal symbol is not enough: We diagonalize the equation
with pseudo-differential operators

P = MDN + E

with ‖E‖L2→L2 ≤ C and D = diag(∂t, ∂t−iDε′ , ∂t+iDε′) to prove sharp Strichartz
estimates for C2-coefficients. From the analysis follows well-posedness for quasi-
linear Maxwell equations with Kerr nonlinearity

ε = (1 + |E|2)
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in Hs(R2) for s > 11/6. This improves on the energy method, which yields local
well-posedness for s > 2. In [2] the results are partially extended to the three-
dimensional case: For ε(x) = diag(ε1(x), ε1(x), ε2(x)) and µ(x) ≡ 1 the Strichartz
estimates for wave equations with rough coefficients are recovered for solutions
to Maxwell equations with small charges. We apply the Strichartz estimates to
show local well-posedness for Maxwell equations in three dimensions with Kerr
nonlinearity with initial data in Hs(R3), s > 13/6. This improves on the previous
regularity threshold s > 5/2 from the energy method.
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Characterising Hardy Spaces

Michael G. Cowling

(joint work with Peng Chen, Ming-Yi Lee, Ji Li, Alessandro Ottazzi)

In the early 1970s, C. Fefferman and Stein wrote a fundamental paper on Hardy
spaces, in which they characterised Hardy spaces in different ways. Shortly after,
Coifman and Weiss wrote a long paper on the atomic theory of Hardy spaces,
including Hardy spaces on “spaces of homogeneous type”.

A Hardy space H1(Hn) on the Heisenberg group Hn was developed by Christ
and Geller in the 1980s, following earlier work of Folland and Stein. This space
may be described in many ways, much like the Hardy space on Rn. The polydisc
{z ∈ Cn : |zj | < 1} was studied by various authors, including Chang, R. Fefferman,
Gundy and Stein. Again, in this context, there is a theory of Hardy spaces. See
[4] for many references on the development of Hardy spaces.

Nagel, Stein and others (Ricci, Wainger, . . . ) considered boundary behaviour in
domains in Cn. The case of u ∈ H(D), where D is smooth and strictly pseudocon-
vex is well understood. Such domains are modelled on the Heisenberg group, and
“flag geometry” appears. These authors did not develop an appropriate Hardy
space theory, but Stein made several conjectures about what this theory might
look like. Recently, Han, Lu and Sawyer [2] defined a flag Hardy space, in terms
of square functions, and established its interpolation properties.

We have recently developed a complete Hardy space theory on the Heisenberg
group. This has several novel features, as we now explain.

Suppose that we wish to use Hardy spaces in a different context: on the Heisen-
berg group, for instance, or associated to a rough Laplacian. In general contexts,
we have fairly good estimates for heat kernels, hence also for Poisson kernels by
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subordination. For instance, on the Heisenberg group,

(1) |Dαp1(g)| .
1

(1 + |g|2)(Q+1+|α|)/2 ,

where Dα is a left-invariant horizontal differential operator of order |α|, and Q is
the homogeneous dimension. But we do not have an exact formula in terms of
elementary functions. We say that a function that satisfies (1) is Poisson bounded,
and we need a theory that works for general Poisson bounded functions. In the
classical case, this is more general than the original Fefferman–Stein theory. For
maximal functions, Uchiyama [5] has filled the gap, but his arguments do not work
in contexts such as square functions. We need to extend both classical and more
recent arguments.

The basic geometrical objects associated to the Folland–Stein–Christ–Geller
Hardy space are the Korányi balls

B(1)(0, r) :=
{
(z, t) ∈ Cn × R : (|z|4 + t2)1/4 < r

}
,

and their translates. The basic objects in flag geometry are “tubes”, which are
products of these balls with balls

B(2)(0, s) := {t ∈ R : |t| < s}
in the last variable (and their translates).

In classical Hardy space theory, cubes and dyadic decompositions play an im-
portant role. In the Heisenberg group, there is a similar theory, due to Strichartz
and Tyson, where the basic objects are “tiles”, of the form

{(z, t) ∈ Cn × R : z ∈ Q(w, r), f(z) ≤ t < f(z) + s} ,
where Q(w, r) is a dyadic cube in Cn of centre w and side r, and f is a continuous
fractal function. These tiles look like broken wooden sticks. We also stack tiles on
top of each other. These tiles and stacks of tiles are used by Han, Lu and Sawyer.
We use these objects too, to make it easier to compare our work with theirs, but
it would also be possible to use the theory of almost dyadic decompositions due
to Christ [1] and to Hytönen and Kairema [3].

Here is a short version of our main theorem.

Theorem 1. There is a space H1
F (H

n) that may be characterised by:

• an atomic decomposition;
• boundedness of certain singular integrals (Riesz transforms);
• boundedness of certain maximal functions;
• boundedness of certain square functions;
• boundedness of certain Lusin area functions.

We say that f ∈ H1(Hn) if and only if we may write

(2) f =
∑

j∈N

λjaj ,

where all aj are atoms and
∑

j∈N
|λj | <∞. The atomic norm of f is the infimum

of all sums
∑

j∈N
|λj | over representations (2) of f . In turn, each atom a is an L2
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sum of fundamental particles aT , of the form ∆M
(1)∆

N
(2)bT , where ∆(1) and ∆(2) are

sub-Laplacians on Hn and on R, the bT are in the L2 domain of these operators,
and supported in tubes T , and, for all ±1-valued functions σ,

∣∣∣∣
⋃

T∈T

T

∣∣∣∣
1/2∥∥∥∥

∑

T∈T

σT aT

∥∥∥∥
L2(Hn)

≤ 1.

Christ and Geller used Riesz transformations Rj on Hn to characterise their
Hardy space. The singular integral version of flag Hardy space is defined by
requiring that all transforms Rjf and RjHf lie in L1(Hn), where H is the Hilbert
transformation H on R.

Given Poisson bounded functions φ(1) on Hn and φ(2) on R, we define

φr,s = φ(1)r ∗R φ(2)s ,

φ
(1)
r and φ

(2)
s are normalised dilates of φ(1) and φ(2) (here r, s ∈ R+). We then

consider two-parameter extensions of functions f on Hn of the form f ∗ φr,s. We
use these functions to define the other possible Hardy spaces, by estimating them
over “cones”, that is, sets of the form

Γ(z, t, r, s) := (z, t) · B̄(1)(o, αr) · B̄(2)(0, βs).

When φ(1) and φ(2) have integral 1, we take maximal functions over cones, while
when φ(1) and φ(2) have integral 0, we define area functions using integrals over
cones. There are also square functions, and discrete versions of square functions
and area functions. We require that the relevant maximal function, or area func-
tion, or square function, is in L1(Hn).

As suggested above, all these Hardy spaces coincide. They almost coincide with
the space defined by Han, Lu and Sawyer, who required that a discrete square
function is in L1(Hn); however, these authors considered convolutions of the form
φr,s ∗ f rather than f ∗ φr,s, and these convolutions do not fit the Heisenberg
group geometry quite as well. But reflection of functions is isomorphism of our
space with theirs that allows us to conclude from their work that the complex
interpolation space [H1, L2]θ is an Lp space.

Some parts of the proof of our theorem are routine. For example, to show that
if S(f) ∈ L1(Hn), where S(f) is a discrete square function associated to f , then
f has an atomic decomposition, a tent space argument works. One just has to be
a little careful.

Other parts of the generalisation are tricky. To connect maximal functions and
area functions, C. Fefferman and Stein used the Cauchy–Riemann equations in
Rn ×R+. For product Hardy spaces, Merryfield’s lemma is used. Neither of these
is are available in our context, and we need new techniques.

The square and area function characterisations are also complicated: some non-
degeneracy of φ is needed. It would suffice, for instance, to suppose that φ = ∆ψ,
where ψ has integral 1, but this does not describe all φ that characterise H1(Rn).
It is still not entirely clear to us what the right description is in a noncommutative
setting, but it seems to be tied up with the Calderón reproducing formula.
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SWEDEN

Dr. Robert Schippa

Fakultät für Mathematik
Institut für Analysis
Karlsruher Institut für Technologie
(KIT)
Englerstrasse 2
76131 Karlsruhe
GERMANY

Dr. Volker Schlue

School of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010
AUSTRALIA

Himani Sharma

Mathematical Sciences Institute
Australian National University
Canberra ACT 0200
AUSTRALIA

Dr. Adam B. Sikora

Department of Mathematics and
Statistics
Macquarie University
Balaclava Road
Macquarie Park, NSW 2109
AUSTRALIA

Dr. Melissa Tacy

Department of Mathematics
The University of Auckland
Auckland 1052
NEW ZEALAND

Prof. Dr. Po-Lam Yung

Mathematical Sciences Institute
Australian National University
Canberra ACT 2601
AUSTRALIA




