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Introduction by the Organizers

The workshop Homotopical algebra and higher structures, organized by Michael
Batanin (Prague), Andrey Lazarev (Lancaster), Muriel Livernet (Paris) and Mar-
tin Markl (Prague) was a hybrid workshop with 23 participants attending in per-
son, and a further 27 joining online. It represented a geographically broad selection
of pure mathematicians based in Europe, Asia, North and South America, and
Australia. Particular care was taken to promote an appropriate gender balance
among participants and speakers of the workshop.

There were five talks per day; three in the morning and two in the afternoon,
with the exception of Wednesday when, according to a well-established tradition,
participants went on a hike in Black Forest in the afternoon. For many partici-
pants, this was the first live event after a period of one and a half years of lockdown
and online-only events, and there can be no doubt that they felt very happy to
be part of a traditional conference, particularly one held in such a special place as
Oberwolfach.
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One novel feature of the workshop was having a survey talk at the end of each
afternoon session. These talks were technically of unlimited duration (although the
dinner held at 18:30 provided a de facto deadline), and they were solicited by the
organizers from a selection of high-profile experts in the field. Three of these talks
were delivered online and one – in person. The latter was especially interesting to
watch as there were significantly more questions than is usually the case with a
conference talk, and the talk almost morphed into a lively discussion towards the
end. Judging by the reaction from participants, this format was popular, and if we
were to organize another workshop in Oberwolfach (hopefully in a more traditional
format), we would like to repeat this feature.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Derived modular operads and metric ribbon graphs

Clemens Berger

(joint work with Ralph M. Kaufmann)

In this partly expository talk we revisit the known combinatorial models of the
moduli space Mg,n of Riemann surfaces of genus g with n punctures [3, 13] from a
modular operad perspective. We relate the space MRGg,n of metric ribbon graphs
of type (g, n) – known to be equivalent to Mg,n – to some kind of derived modular
operad associated with the cyclic associative operad.

This derived modular operad is the modular envelope of the W -construction
applied to the cyclic associative operad. The framework [4] of Feynman categories
allows us to define in a very explicit manner a W -construction and a modular
(resp. surface-modular) envelope for any cyclic (resp. planar-cyclic) operad. These
newly defined planar-cyclic and surface-modular operads (called non-Σ-cyclic and
non-Σ-modular by Markl [5]) arise by means of a Grothendieck construction for
symmetric monoidal set-valued functors out of Feynman categories, cf. [1].

We also relate our model ofMRGg,n to Igusa’s model [2] (the nerve of a suitably
defined ribbon category of type (g, n)) and mention related combinatorial models
for Riemann surfaces with boundary components marked by finite sets of points.
The latter is done by allowing metric ribbon graphs to have outer flags.

References

[1] C. Berger and R.M. Kaufmann, Comprehensive factorisation systems. Tbilisi Math. J. 10
(2017), no. 3, 255–277.
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[4] R.M. Kaufmann and B.C. Ward, Feynman categories. Asterisque No. 387 (2017).
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Calculus of fractions

Denis-Charles Cisinski

The purpose of abstract homotopy theory is to provide category theoretic construc-
tions which are compatible with suitable notions of weak homotopy equivalences.
One can revisit the concepts that have lead to Quillen’s notion of model category
as devices to compute mapping spaces of localizations in terms of Kan extensions,
which, in turns provide tools to compute (co)limits in localized infinity-categories
as homotopy (co)limits. From there, one can produce a perfect dictionary between
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(co)complete infinity-categories and their models together with a good theory of
derived functors as Kan extensions, revisiting the work of Szumilo, Kapulkin and
Mazel-Gee. Reformulating homotopy theory properly as suggested above, using
mainly the language of Kan extensions is not only a pleasant way to revisit classical
constructions (although that would be good enough), but also a way to internalize
homotopy theory in any higher topos (in fact in any directed type theory). This
will have applications, for instance, to formulate and prove the universal property
of Morel and Voevodsky’s motivic homotopy theory (possibly formulated within
derived geometry), as well as to study condensed/pyknotic mathematics (e.g. one
can see the pro-etale topos of a scheme as a condensed/pyknotic presheaf topos on
the the associated Galois category constructed by Barwick, Glasman and Haine).

Deformation cohomology of tensor categories

Alexei Davydov

Possible monoidal structures on a given tensor category naturally form an object
of an algebro-geometric nature (the moduli space). The tangent space to the
moduli space of tensor structures is computed by the third cohomology of a certain
complex, the deformation complex of the tensor category [4, 7]. The tangent
cones to this moduli space are controlled by a degree 2-bracket on the deformation
cohomology. This graded Lie bracket is compatible with the ∪-product on the
deformation cohomology making it a 3-algebra.

This is in parallel with the deformation theory of associative algebras, where the
role of the tangent cohomology is played by Hochschild cohomology. The tangent
cones to the moduli space of associative algebras are given by a degree 2-bracket,
the Gerstenhaber bracket [5]. The Gerstenhaber bracket is a Lie bracket and
is compatible with the ∪-product on the Hochschild cohomology making it a 2-
algebra. According to the celebrated Deligne’s conjecture this 2-algebra structure
lifts to an action of the E2-operad on the Hochschild complex.

The analogous statement is true for the deformation cohomology of a tensor
category - the 3-algebra structure lifts to an action of the E3-operad on the de-
formation complex [3]. The proof is in some sense easier than existing proofs of
the Delinge’s conjecture and is based on the internal structure of the deformation
complex of a tensor category. As well as Hochschild complex the deformation
complex is a cosimplicial complex. The special feature of the deformation com-
plex is that it is a cosimplicial complex of algebras. This together with a lattice
paths model of the E3-operad provides an explicit E3-algebra structure on the
deformation complex [3, Theorem 2.56].

It follows from a very general prediction of M. Kontsevich on deformations of
identity morphisms that the 2-bracket is trivial in characteristic zero [6]. In finite
characteristic the 2-bracket is non-trivial [3, Example 4.15]. The case of finite
characteristic will be studied systematically in a future work.
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Fibrations of (∞, 2)-categories

Andrea Gagna

(joint work with Yonatan Harpaz, Edoardo Lanari)

The classical work of Grothendieck introduced a fibrational framework to study
stacks and more generally pseudo-functors valued in small categories. This amounts
to an equivalence of 2-categories

PsFun(Aop,Cat) ≃ Cart(A),

between Cat-valued pseudo-functors with source the opposite of a small category
A and Grothendieck (or cartesian) fibrations over A. Lurie [1] generalized this
equivalence to the realm of ∞-categories, by showing that (co)cartesian fibrations
of simplicial sets over a base ∞-category A are in complete correspondence with
functors A → Cat∞, from A to the ∞-category of small ∞-categories, in the
cocartesian case, and contravariant such functors in the cartesian case. That is to
say, he proves an equivalence

Fun∞(A,Cat∞) ≃ CoCart∞(A).

This Grothendieck–Lurie correspondence plays a key role in higher category theory,
as it allows one to handle highly coherent pieces of structure, such as functors, in
a relatively accessible manner. They are also crucial to define and develop the
formalism of ∞-operads.

Recent progress in derived algebraic geometry and topological quantum field
theory requires a solid formalism of fibrations in the (∞, 2)-categorical context in
order to perform important constructions. For instance, Gaitsgory and Rozen-
blyum [2] need such a tool to:
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- formally extend the quasi-coherent sheaves∞-functor from the∞-category
of derived schemes to that of derived prestacks;

- define symmetric monoidal (∞, 2)-categories and prove a Serre duality for
Ind-coherent sheaves of derived schemes of finite type;

- prove the existence and the coherences of a six-functor formalism for D-
modules.

In a couple of recent articles [3, 4], together with my collaborators we have
introduce a plethora of fibrations of (∞, 2)-categories, modelled by maps of scaled
simplicial sets satisfying suitable lifting properties. Scaled simplicial sets were
introduced by Lurie and serve as a model for (∞, 2)-categories. The advantage
of using this model is that the combinatorics needed to deal with most proofs
and constructions can sometimes be adapted from the current literature. Having
to deal with the intricated combinatorics of simplices instead of that of globes
is the main disadvantage, which also prevents us to have a complete theory of
dualities/variances on-the-nose.

Fibrations can be thought of as a collection of (∞, 2)-categories indexed by
the base (∞, 2)-category, which vary functorially. With this picture in mind, the
most general case requires us to deal with fibrations with (∞, 2)-categorical fibres
and four possible variances must be encoded: we can reverse all the 1-cells, all
the 2-cells, none or both. These correspond to the functorial dependence, i.e.
covariant/contravariant, of the 1-cells as well as the functorial dependence of the
2-cells (modelled by triangles). By doing so, we also recover in particular the case
of (∞, 2)-categories fibred in ∞-categories. These are important because one of
the most natural example, namely the fibration A/x → A for x an object of A, is of
this kind and corresponds to the ∞-functor Aop → Cat∞ represented by x, where
Cat∞ here is the (∞, 2)-category of small ∞-categories. These fibrations enjoy
a list of nice properties and they are stable under composition and base change.
More importantly they are equivalent to their enriched counterparts, that is with a
natural notion of fibrations for categories strictly enriched in ∞-categories, which
has the advantage of having all the variances already built-in.
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Homology of strict ω-categories and the bubble-free conjecture

Leonard Guetta

The object of this talk is to present some aspects of the homotopy theory of strict
ω-categories. This theory started with the introduction by Street [Str87] of a nerve
functor

N : StrωCat → ∆̂,

which generalizes the usual nerve for (small) categories. Then, we can define the
homology of a strict ω-category C as the homology of its nerve N(C). In fact,
as proved by Gagna [Gag18], if we transfer the (Kan–Quillen) weak equivalences
of simplicial sets to strict ω-categories via this nerve functor, then the homotopy
theory obtained is equivalent to the usual homotopy theory of spaces. Hence, the
homology of ω-categories as defined above is just another way of looking at the
usual homology of spaces.

On the other hand, there is a well-studied class of strict ω-categories, called
polygraphs or computads, for which we can define what is usually known as poly-
graphic homology. Intuitively, polygraphs are the analogues of CW-complexes and
polygraphic homology is the analogue of cellular homology. Then, in analogy with
the topological case, a natural question to ask is whether the polygraphic homol-
ogy of a polygraph coincide with the homology of its nerve. As it happens, the
general answer to this question is no. However, there are many examples of “well-
behaved” polygraphs for which both homologies do coincide, but trying to figure
out exactly what is a well-behaved polygraph seems not an easy task and has been
studied in [Gue21].

In the case of 2-dimensional polygraphs, there is a particular class of polygraphs,
the bubble-free polygraphs, which seems to stand out. These are the 2-dimensional
polygraphs that contain no non-trivial 2-cells of the form

A A,

1A

1A

that is to say 2-cells whose source and target are units on a object. (Note that this
is required for all 2-cells of the polygraph and not only the generating ones). The
ultimate goal of this talk is to present the “bubble-free conjecture” which simply
asserts that the polygraphic homology of a 2-dimensional polygraph coincide with
the homology of its nerve if and only if it is bubble-free.
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On pasting in (∞, 2)-categories

Philip Hackney

(joint work with Viktoriya Ozornova, Emily Riehl, Martina Rovelli)

Given a category C and a sequence of morphisms f1, f2, . . . , fm with the target
object of fi equal to the source object of fi+1, there is a unique composite mor-
phism fm ◦ fm−1 ◦ · · · ◦ f1. If instead C is an (∞, 1)-category, there need not be
a unique composite in the usual sense. Instead, there is a space parameterizing
both the possible compositions fm ◦fm−1 ◦· · ·◦f1 of the given morphisms, and the
relationships among all of these possibilities. Composition in an (∞, 1)-category
is homotopically unique in the sense that this space is always contractible.

In a 2-category, there are more complicated sorts of compositions possible
among collections of 1- and 2-morphisms, which should be familiar to anyone
who has worked with natural transformations of functors between categories. For
instance, natural transformations between functors can be whiskered along other
functors, or composed vertically or horizontally.

C D E C D C D E⇓
⇓

⇓
⇓ ⇓

One can of course put these basic pictures together into more complicated ones,
but the same picture can arise in multiple ways. Power proved in [4] that general
pasting in a 2-category is well-defined. Pasting schemes are planar directed graphs
satisfying certain conditions, such as the following.

• •

• • • • • • • •

• •

⇓ ⇓

⇓
⇓

⇓
⇓

⇓

⇓
⇓

A labeling of a pasting scheme by a 2-categoryX is given by assigning an object to
each vertex, a 1-morphism to each directed edge (so that the source and target of
the 1-morphism match the labelings of the end vertices), and a 2-morphism to each
interior face (whose source and target match the composites of the 1-morphism
labelings on the boundaries). Power showed that given such a labeling of a pasting
scheme by a 2-category, there is a unique composite 2-morphism in the 2-category.

When working on some problems in (∞, 2)-category theory, we found ourselves
reasoning via pasting diagrams, but were surprised to discover that this funda-
mental result had not yet been established in this context. We sought to rectify
this, and proved in [3] that a labeling of a pasting scheme by an (∞, 2)-category
X has a homotopically unique composite.

Theorem. Given a pasting scheme and a labeling of the pasting scheme by an
(∞, 2)-category X, the associated space of composites is contractible.
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The labeling in this context is defined in terms of homotopy colimits of the
constituent cells, which handles, for instance, the possible ambiguity about 1-
morphism composition in the underlying (∞, 1)-category of X . The idea of the
proof is to show that the free (∞, 2)-category on a pasting scheme and the free
2-category on the pasting scheme are equivalent as (∞, 2)-categories, and then
apply Power’s theorem. Establishing this equivalence is not formal, as the functor
from 2-categories to (∞, 2)-categories is not cocontinuous. Indeed, our proof of
the equivalence relies heavily on delicate calculations in a particular model for
(∞, 2)-categories. We work in the simplicial categories model of Lurie, which has
the benefit that many of the horizontal compositions come ‘for free’ and do not
need to be added by hand. The actual computations utilize a new sharpening
of a result of Thomason about how the nerve functor interacts with pushouts of
Dwyer maps between small categories [5, 4.3]. There is a different, earlier proof
of this same equivalence (in the same model) in the unpublished PhD thesis [1] of
Tobias Columbus, who contacted us after our initial posting; a revised version of
this thesis is now readily available [2].

One of course hopes for a similar theorem for pasting in (∞, n)-categories when
n > 2, though this is a more difficult problem. Indeed, the combinatorial aspects
of n-categorical pasting are more subtle, and there are not simple extensions of
our methods to higher dimensions.
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Categorical Koszul Duality

Julian Holstein

(joint work with Andrey Lazarev)

The algebraic analogue of the loop space construction of topological spaces is
Adams’ cobar construction. Together with the bar construction it induces a Koszul
duality between algebras and coalgebras, providing an equivalence of suitable ho-
motopy theories of augmented differential graded (dg) algebras and dg conilpotent
coalgebras. Interesting things happen as one generalises this result, in particular
dropping the augmentation on the dg algebra side corresponds to introducing a
curvature term on the coalgebra side, this has been investigated by Positselski.

In this talk I discuss joint work with Andrey Lazarev [1], in which we generalise
this situation to a categorical Koszul duality and find a category of coalgebras
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Quillen equivalent to differential graded categories (with their usual Dwyer-Kan-
Tabuada model structure). To do this we reinterpret categories as monoids in
bicomodules over a coalgebra of objects. Then the bar construction associates to
any small dg category a pointed curved coalgebra, and dually there is a cobar
construction from pointed curved coalgebras to small dg categories.

To work more easily with curved coalgebras we introduce an uncurving functor
adjoint to the natural inclusion from dg coalgebras to curved coalgebras.

We also show that there is an equivalence of comodules over a pointed coalgebra
and modules over its cobar construction.

The most important example of a pointed curved coalgebra is (a twisted version
of) the chain coalgebra of a simplicial set, where we may view the simplicial set
either as a space or an (∞, 1)-category.

We finally show that the bar/cobar construction is closely related to the coher-
ent nerve construction from simplicial categories to quasicategories.

The additional structures on chain coalgebras and their comodules provide
promising directions for further research.
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Higher mathematics from a topos theoretic perspective

André Joyal

(joint work with Mathieu Anel, Georg Biedermann, Eric Finster)

I am very excited by the beautiful ideas that are coming out of this conference.
There are plenty of connections between the ideas and it is tempting to look for
some kind of big picture. Higher topos theory has proved to be a unifying force
for homotopy theory, higher category theory, higher algebra and the foundation of
mathematics. I will sketch it in my talk, although the picture is incomplete and
far from definitive.

The fact that category theory can be wholly extended to quasicategories [24, 29,
15], hence also to all (∞, 1)-categories [11, 35], is a kind of mathematical miracle.
The two theories are very similar, despite some important differences in higher
topos theory and stable homotopy theory. The similarity is very helpful for under-
standing and discussing the theory of (∞, 1)-categories in general. It is no secret
that in private discussion, mathematicians are often dropping the prefix ∞ when
refering to ∞-categories and ∞-topoi. An ordinary category can be said to be a
1-category if the occasion arise. We may also omit the word “homotopy” when
refering to homotopy limits and colimits. All pullback squares can be supposed to
be homotopy pullback and all pushouts to be homotopy pushout. An ∞-groupoid
can be called a space and the (∞, 1)-category of ∞-groupoids called the category of
spaces S. We may also say that a homotopy equivalence is an isomorphism. Any
ambiguity can be resolved by reverting temporarly to the traditional terminology.



Homotopical Algebra and Higher Structures 2509

We are using these conventions in our papers [3, 4]. We are influenced in this by
the philosophy of homotopy type theory, according to which the building blocks
of mathematics are (homotopy) types [17, 34, 20, 6].

We will argue that the theory of higher topoi

(1) is formally simpler than the theory of 1-topoi [29];
(2) is analogous to the theory of commutative rings [29, 7];
(3) includes stable and unstable homotopy theory [29, 30, 22];
(4) is a natural context for Goodwillie calculus [1];
(5) is foundational for mathematics [42, 9, 39].

I will present a few arguments in support of each of the statements above.

(1) The theory of higher topoi is formally simpler than the theory of 1-topoi [29].
A (higher) topos can be defined to be a presentable category satisfying Rezk’s
descent principle. If E is a presentable category, consider the contravariant functor
Slice : E → CAT defined by putting Slice(A) := E/A for every object A ∈ E and
putting Slice(u) := u⋆ : E/B → E/A for every map u : A → B. The descent
principle [37, 29] states that a presentable category E is a topos if and only if
the contravariant functor Slice takes colimits to limits. It follows that colimits
in E are universal and effective. The universality condition means that the base
change functor u⋆ : E/B → E/A preserves colimits for every map u : A → B in
E . The effectiveness condition means that if α : D′ → D is a cartesian natural
transformation between two diagrams D,D′ : I → E , then the following square is
cartesian for every i ∈ I.

D′(i)

α(i)

��

in′(i)
// colim(D′)

colim(α)

��
D(i)

in(i)
// colim(D)

In particular, if the top and bottom faces of the following cube in E are cocartesian,
and the vertical faces that contain the arrow C′ → C are cartesian, then the
vertical faces that contain the arrow D′ → D are cartesian.

C′ //

��

  ❆
❆
❆
❆
❆
❆
❆
❆

B′

��

  ❇
❇
❇
❇
❇
❇
❇
❇

A′ //

��

D′

��

C //

  ❇
❇
❇
❇
❇
❇
❇
❇

B

!!❇
❇
❇
❇
❇
❇
❇
❇

A // D
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This statement is false in the 1-topos of sets, as we can easily see in the case where
A = B = {1} and C = {1, 2}.

If E is a topos, then so is the category E/A for every object A ∈ E . If u : A → B is
a map in E , then the base change functor u⋆ : E/B → E/A has both a left adjoint
u! and a right adjoint u⋆.

(2) The theory of higher topoi is analogous to the theory of commutative rings
[29, 7]. Recall that a continuous maps between two topological spaces f : X →
Y induces a pair of adjoint functors f⋆ : Sh(Y ) ↔ Sh(X) : f⋆ between the
category of set-valued sheaves. The inverse image functor f⋆ always preserves
finite limits. Recall that a topos morphism (φ⋆, φ⋆) : F → E is defined to be
a pair of adjoint functors φ⋆ : E ↔ F : φ⋆, in which the functor φ⋆ preserves
finite limits. Notice that the functor φ⋆ : E → F preserves colimits, since it is
a left adjoint. An algebraic morphism of topoi φ⋆ : E → F is by definition a
functor which preserves colimits and finite limits. Every algebraic morphism φ⋆ :
E → F has a right adjoint φ⋆ : F → E since every cocontinuous functor between
presentable categories has a right adjoint. Hence the notions of topos morphism
and of algebraic morphism of topoi are essentially equivalent, except that they are
running in opposite directions. We shall denote by Topos the category of topoi and
topos morphisms, and by Toposop the category of topoi and algebraic morphisms.
An object of the category Toposop is called a logos in [7]. The categories of topoi
Topos and of logoi Logos := Toposop are mutually opposite. The duality between
topoi and logoi is similar to the duality between affine schemes and commutative
rings. A logos E is the same thing as a topos, except that the category E should
be viewed as a ring-like structure not as a space (a topos). Taking a colimit in
E is a form of addition and taking a finite limit is a form of multiplication. A
morphism of logoi φ⋆ : E → F is by definition a functor preserving colimits and
finite limits, like a ring homomorphism f : A → B is a map preserving sums and
products. The category of logoi Logos has many properties in common with the
category of commutative rings.

algebra geometry

logoi topoi

frames locales

commutative rings affine schemes

Boolean algebras Stone spaces

commutative
C⋆-algebras

compact spaces
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Commutative rings Logoi

the ring of integers: Z the logos of spaces: S

coproduct of rings: A⊗B coproduct of logoi: E ⊗ F

polynomial ring: Z[x] polynomial logos: S[X ]

ideal: J ⊆ A logos congruence: W ⊆ E

quotient ring A → A/J lex localization
E → Loc(E ,W )

sum of ideals:
∑

i Ji supremum of congruences:∨
iWi

product of ideals: J1 · J2 product of congruences:
W1 ·W2

division of ideals: J1\J2 division of congruences:
W1\W2

The coproduct of two logoi E and F is their tensor product E⊗F in the category
of presentable categories, like the coproduct of two commutative rings A and B is
their tensor product A⊗B in the category of abelian groups. The logos S[X ] freely
generated by an object X is the category Fun(Fin,S) of functor Fin → S, where
Fin is the category of finite spaces and X is the canonical functor Fin → S. If E is
a logos, then so is the arrow category E [1] = Fun([1], E). We shall say that a class
of maps W ⊆ E is a congruence if it contains the isomorphisms, if it is closed under
composition and the full subcategory of E [1] spanned by the arrows in W a sub-
logos (= it is closed under colimits and finite limits). For example, if φ : E → F is
a morphism of logoi, then the class of maps Wφ = {f ∈ E | φ(f) is invertible} is
a congruence in E . Every congruence W has the 3-for-2 property. Every class of
maps Σ ⊆ E generates a congruence Σc ⊆ E . If Σ ⊆ E is a set of maps, then the full
subcategory of Σc-local objects in E is reflective, the reflector ρ : E → Loc(E ,Σc)
is a morphism of logoi, Wρ = Σc and every morphism of logoi φ : E → F which
inverts the maps in Σ factors uniquely through ρ. The pushout product f�g of
maps in a logos E is the tensor product of a symmetric monoidal closed structure
on E [1]. The dot product of two congruences W1 and W2 on E is defined by
putting W1 · W2 := (W1�W2)

c. If W1 and W2 are two congruences, then so is
W1\W2 := {f ∈ E | f�W1 ⊆ W2}.



2512 Oberwolfach Report 46/2021

(3) The theory of higher topoi includes stable and unstable homotopy theory [29, 30,
2, 22]. Classical homotopy theory and stable homotopy theory can be developed
in any logos. We shall say that a map u : A → B is (-1)-truncated if it is a
monomorphism. A map u : A → B is (-1)-truncated if and only if the diagonal
map A → A×BA is invertible. If n ≥ 0, a map u : A → B is said to be n-truncated
if the diagonal map A → A ×B A is (n− 1)-truncated. An object A is said to be
n-truncated if the map A → 1 is n-truncated. The full subcategory of n-truncated
objects in E is a (n+ 1)-logos denoted E≤n. A 0-logos is just a frame in the usual
sense of the word (dual to a locale) and a 1-logos is just a 1-topos. The inclusion
functor E≤n ⊆ E has a left adjoint τn : E → E≤n which takes an object A to its
n-truncation τn(A). The sequence

· · · → τ2(A) → τ1(A) → τ0(A) → τ−1(A)

is the Postnikov tower of the object A. An object A is said to be n-connected if
τn(A) = 1. A map u : A → B is said to be n-connected if the object (A, u) of E/B
is n-connected. A (−1)-connected map is a surjection. Every map u : A → B
is the composite of a n-connected map p : A → E followed by a n-truncated
map v : E → B and this decomposition is unique. An object A is said to be
∞-connected if it is n-connected for every n ≥ 0. Not every ∞-connected objects
in a logos is contractible (we shall see examples later). A map u : A → B is said
to be ∞-connected if it is n-connected for every n ≥ 0. A logos E is said to be
hyper-complete, or reduced, if every ∞-connected map is invertible. The class W∞

of ∞-connected maps in a logos E is a congruence and the logos Loc(E ,W∞) is
reduced.

An object 0 in a category E is said to be nul if it is both initial and terminal. A
category with a nul object is said to be pointed. The suspension ΣX of an object
X in a pointed category E is defined by a pushout square, while its loop space ΩX
is defined by a pullback square:

X //

��

0

��
0 // ΣX

ΩX //

��

0

��
0 // X

The functor Σ : E → E is left adjoint to the functor Ω : E → E . A pointed
category E with finite limits and finite colimits is said to be stable [30] if cartesian
and cocartesian squares in E coincide. In which case the functors Ω,Σ : E → E
are mutually inverse. The homotopy category ho(E) of a stable category E is
triangulated. We shall denote the category of stable presentable categories and
cocontinuous functors by Stable. The category of spectra Sp is stable, presentable
and freely generated by one object S ∈ Sp, the sphere spectrum.

If E is category and A ∈ S, then a functor A → E is a family of objects of E
indexed by A. Consider the contravariant functor

Fun(−, E) : S → CAT
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which takes a space A ∈ S to the category Fun(A, E) = EA. The category of
families Fam(E) is obtained by applying the Grothendieck construction to the
functor Fun(−, E)

Fam(E) :=

∫ A∈S

EA

If Sp is the category of spectra, then Fam(Sp) is the category of parametrised
spectra. If the category E is stable and presentable, then the category Fam(E) is a
logos [22]. In particular, the category of parametrised spectra Fam(Sp) is a logos
(Biedermann, Rezk). A parametrised spectrum A → Sp is ∞-connected in the
logos Fam(Sp) if and only if A = 1. The canonical functor p : Fam(E) → S is a
left exact localisation and Wp = W∞. Moreover, the functor

Fam : Stable → Logos/S

is fully faithful.

Commutative rings Logoi

ideal: J ⊆ A logos congruence: W ⊆ E

J-adic filration:
A ⊇ J ⊇ J2 ⊇ J3 ⊇ · · ·

W -adic filration:
E ⊇ W ⊇ W ·2 ⊇ W ·3 ⊇ · · ·

J-adic tower:
. . . → A/J3 → A/J2 → A/J

Goodwillie’s tower:
. . . → E/W ·3 → E/W ·2 → E/W

Ring of dual numbers: Z[ǫ]/(ǫ2) Logos of parametrised spectra:
Fam(Sp)

A-modules E-stacks of stable categories

(4) The theory of higher topoi is a natural context for Goodwillie functor calculus
[1]. The n-fold dot power W ·n of a congruence W in a logos E is defined by
induction on n ≥ 1:

W ·1 = W and W ·(n+1) = W ·n ·W

This defines a decreasing chain of congruences

W ⊇ W ·2 ⊇ W ·3 ⊇ · · ·

and hence a sequence of left exact localizations

Pn : E → Loc(E ,W ·(n+1))

for n ≥ 0. The object PnF is the n-th excisive approximation of F in the sense of
Goodwillie. The (generalised) Goodwillie tower of an object F ∈ E with respect
to the congruence W is the sequence

· · · → P2F → P1F → P0F
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The classical Goodwillie tower was initially defined for finitary functors S ′ → S,
where S ′ = 1\S is the category of pointed spaces [12, 8]. Recall that a functor
S ′ → S is finitary if it preserves directed colimits. A finitary functor S ′ → S
is the left Kan extension of its restriction to the full category of finite pointed
spaces Fin′ ⊂ S ′. Hence the restriction functor Funfin(S ′,S) → Fun(Fin′,S) is an
equivalence of categories. But the category Fun(Fin′,S) is the logos S[X ′] freely
generated by a pointed object X ′ (the object X ′ is the canonical functor Fin′ → S).
There is a unique morphism of logoi ǫ : S[X ′] → S such that ǫ(X ′) = 1. We have
ǫ(F ) = F (⋆) for every F : Fin′ → S. The classical Goodwillie tower of the functor
F is the generalised tower of F with respect to the congruence W = Wǫ. In this
case, P0F is the constant functor with value F (⋆). When F (⋆) = ⋆ (the reduced
case) the functor P1(F ) can be constructed as the colimit

P1(F )(A) = colimn→∞ΩnF (Σn(A))

The resulting functor P1(F ) is 1-excisive, which means that it takes every pushout
square to a pullback square. It follows that we have

P1(F )(A) = Ω∞(D1(F ) ∧A)

for every pointed space A, for a spectrum D1(F ) called the first derivative of the
functor F . In the general case (the non-reduced case) the first derivative D1(F )
of the functor F : Fin′ → S is a parametrised spectrum, parametrised by the space
F (⋆). It can be computed as follows. Observe that the sphere spectrum S is an
object of the logos of parametrised spectra Fam(Sp), since S ∈ Sp ⊂ Fam(Sp);
the object S is naturally pointed; hence there exists a unique morphism of logoi
D1 : S[X ′] → Fam(Sp) such that D1(X ′) = S, since the logos S[X ′] is freely
generated by the pointed object X ′. The image of F ∈ S[X ′] by the morphism of
logoi D1 : S[X ′] → Fam(Sp) is a parametrised spectrum D1(F ). For every pointed
space A we have

P1(F )(A) =
⊔

x∈F (⋆)

Ω∞(D1(F )(x) ∧ A)

where the coproduct is a symbolic notation for the total space of a family of spaces
parametrised by the space F (⋆). It turns out that

Loc(S[X ′],W ·2) = Fam(Sp).

(5) The theory of higher topoi is foundational for mathematics [42, 9, 39]. Colimits
and finite limits in topoi are by definition preserved by algebraic morphisms of
topoi. But there are many other interesting operations in topoi that are not
preserved by algebraic morphisms. For example, every topos is cartesian closed
but the internal hom Hom(X,Y ) := Y X is generally not preserved by algebraic
morphisms. If E is a topos, then the contravariant functor Sub : Eop → Set which
takes an object X to the set of sub-objects of X is representable by an object
Ω ∈ E equipped with a monomorphism t : 1 → Ω. The object Ω is 0-truncated,
since the space Map(X,Ω) = Sub(X) is a set for every object X ∈ E . Thus Ω
belongs to the 1-topos E≤0. It follows that the map Ωτ0X → ΩX induced by the
canonical map X → τ0X is invertible for every object X ∈ E . In particular, if
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X is connected then ΩX ≃ Ω and ΩX contains no information about X in this
case. If κ is a regular cardinal, let us say that a map f : X → B is κ-small if
the object (X, f) of the category E/B is κ-small. Then the contravariant functor
Slicecoreκ : Eop → S which takes an object B to the core of the full subcategory of
E/B spanned by the κ-small objects is representable by an object Ωκ ∈ E equipped
with a κ-small map pκ : Ω′

κ → Ωκ [Lur1]. The κ-small map pκ is universal in the
following sense: for every κ-small map f : X → B there exists a unique cartesian
square

X //

f

��

Ω′
κ

pκ

��
B // Ωκ

When the cardinal κ is inaccessible, the pair (Ωκ, pκ) is a universe in Voevodski’s
sense; the topos E becomes a model of Voevodsky’s type theory [42, 9, 39, 16].
Martin-Lof type theory was initially developped as a constructive foundation of
mathematics [17]. A type theory of parametrised spectra was developed in [36].

I am ending my talk with the following questions:

Q1 Is there a natural notion of (∞, n)-topos for 1 < n ≤ ∞ ?
Q2 Is there a Goodwillie calculus for (∞, n)-functors ?
Q3 What should be the role of higher operads ?
Q4 What should be the role of factorisation algebra and homology?
Q5 What should be the role of cobordism?

Comment Q1: See [40, 41] for the notion of cosmoi, see [34, 35] for the notion
of ∞-cosmoi and see [43] for the notion of 2-toposes. See [32] for the notion of
presentable (∞, 2)-categories and [21] for a higher Grothendieck construction. A
type theory for (weak) ω-categories was introduced in [18, 14].

Comment Q2: That is a wild question.
Comment Q3: Higher operads have an important role in higher mathematics
since the foundational work of Batanin [10], Baez and Dolan [13], Leinster [26, 27]
and Maltsiniotis [33]. Ordinary operads are playing a role in the chain rule for
derivatives in Goodwillie’s calculus [8].
Comment Q4: See [19] for factorisation algebra.

Comment Q5: See [31] for cobordism.
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Derived Decorated Feynman categories

Ralph M. Kaufmann

(joint work with Clemens Berger)

The naive inclusion of trees into all graphs gives rise to a natural construction of
moduli spaces of curves via a formalization using Feynman categories [10]. There
are three basic ingredients: the first is the identification of a categories encoding
these graphs. The second is a is the theory of decorations, defined in joint work
with Jason Lucas [9], which are a version of the Grothendieck construction later
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refined in [2]. The last ingredient is a W-construction from [10]. Applying this
machine results in cubical complexes which we prove can be identified with mod-
uli spaces, Outer space and further cubical complexes arising from mathematical
physics. This gives an ab initio construction of these intricate geometric objects
from combinatorial data. These results have been announced in [8].

1. Feynman categories corresponding to trees in graphs

The categories in question are graphical Feynman categories based on trees and
graphs. A Feynman category F is a special type of monoidal category F with a
choice of basic objects, that is a groupoid V and a functor ı : V → F , which satisfy
three axioms. The first says that the objects and their isomorphisms are freely
monoidally generated by the objects of V , the second says that the morphisms
(and their isomorphisms in the category of arrows) are freely generated by basic
morphisms, where is morphism is basic if its target lies in ı(V). The third axiom
is a technical size condition that guarantees that certain colimits exist. see [10]
for further details.

The strong symmetric monoidal functors from the monoidal category to a sym-
metric monoidal category C are called F -OpsC = [F , C]⊗. Other names would be
algebras or representations. This is avoided, because for certain Feynman cate-
gories the F -OpsC are algebras and representations in C [8]. The Ops for graph-
ical Feynman categories are versions and generalizations of operads or PROPs.
All other graphical Feynman categories are obtained by restriction or decoration,
[10, 9].

There is a basic graphical Feynman category FG whose underlying monoidal
category is a full subcategory of the Borisov–Manin [5] category of graphs, whose
objects are aggregates of corollas, that is graphs without any edges—tails are
allowed. The morphisms in this category are intricate, but have an underlying
graph called the ghost graph of the morphism

The Feynman categories of particular interest are subcategories of FG: the

wide subcatgory FGctd

whose basic morphisms have underlying graphs that are
connected, and the wide subcategory Fcyc whose basic morphisms have underlying
graphs that are trees. The Fcyc-OpsC are cyclic operads in C whence the name.

The FGctd

-Ops are non–genus graded modular operads introduced in [11].
Morphisms of Feynman categories are pairs of compatible functors (v, f) on

the groupoids and monoidal categories. It is proven in [10] that these morphisms
induce an adjunction on Ops via f! = Lanf is the pointwise left Kan extension.

f! : [F , C]⊗ ⇆ [F ′, C]⊗ : f∗

The trivial functor TF ∈ [F , C]⊗ is defined by sending all objects to the monoidal
unit T (X) = 1C and all morphisms to the identity of the monoidal unit. A
morphisms of Feynman categories is called connected if f!(TF ) = TF .
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2. Decorations

Decorations are a Grothendieck construction. The data is a Feynman category F

and O ∈ [F , C]⊗. This yields a new Feynman category FdecO whose underlying
category is el(O). The objects are pairs (X, ax) of an object and a “decora-
tion” ax ∈ O(X). Forgetting the decoration is morphism of Feynman categories
FdecO → F called a covering.

The relevant functor will be the set valued cyclic operad CycAss : Fcyc → Set.
The value of CycAss on a corolla with tails S is the set of cyclic orders of S. The
morphisms of F

cyc
decCycAss have underlying graphs of basic morphisms are trees

with a cyclic order at each vertex, that is planar trees. The Ops are precisely
planar cyclic operads: Fcyc

decCycAss = F¬Σcyc. Decorations are functorial and behave
well with respect to morphisms of Feynman categories and the associated adjoint
functors for Ops.

In [2] it is proven that for set-valuedOps the connected morphisms and coverings
form a factorization system. That is every morphisms of Feynman categories
factors uniquely (up to isomorphism) extending the factorization

f : F
i
→ F ′

dec f!(T ))
π
→ F ′

3. W-Construction

The W–construction of [10] is defined for so–called cubical Feynman categories.
This is a special condition which basically means that there is a N0 valued degree
function deg on the morphisms of F that is additive under ◦ and ⊗. Furthermore
the degree 0 morphisms are precisely the isomorphism and that there is a free and
transitive Σn action on each class of composable sequence of n degree 1 morphisms.
Here the classes are taken with respect to isomorphisms on the sequence. This
allows to construct a cubical complex by assigning transitions times in [0, 1] to
each degree 1 morphism of a chain

X
t1−→
f1

X1
t2−→
f2

X2 → · · · → Xn−1
tn−→
fn

Y

There is a realization functor by taking a colimit which assembles a cubical com-
plex: Let O ∈ [F , T op]⊗. For Y ∈ ob(F) we define W (O)(Y ) := colimw(F,Y )O ◦
s(−) where w(F, Y ) is a slice type indexing category whose objects are of sequences
as above with source X , see [10] for details. This construction generalizes that of
Boardman–Vogt [4] and [1].
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4. Results (w/ C. Berger)

On the combinatorial level applying the above to the inclusion i : Fcyc → FGctd

one obtains a square with the horizontal arrows being connected and the vertical
arrows being covers:

F
cyc
decCycAss = F¬cyc

π

��

iCycAss

// Fmod
dec i!(CycAss) = F¬Σmod

π

��

Fcyc i //

j

))❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚ FGctd

j!(T ) = Fmod

π

��

FGctd

Where we proved the indicated identifications. The names indicate that the Ops
for F¬Σcyc,Fmod,F¬Σmod are planar cyclic operads, modular operads and, respec-
tively, non-Sigma modular operads, as introduced by Markl in [12]. The basic
objects of F 6=Σmod are decorated corollas ∗g,s,S1∐···∐Sb

where the index is a surface
type: genus g, b boundaries marked respectively by S1, . . . Sb points and s internal
punctures.

On the topological level we prove the following results for the moduli space
Mg,s,S1∐···∐Sb

of Riemann surfaces of the given type.

(1) There is an identification

W (iCycAss
! (T ))(∗g,s,S1∐···∐Sb

) = Cone(M̄ comb
g,s,S1∐···∐Sb

)

The space is the space of metric almost ribbon graphs with the cone point
being a one vertex graph without edges corresponding to all edge length
being 0 and M comb

g,s,S1∐···∐Sb
⊂ M̄ comb

g,s,S1∐···∐Sb
is the combinatorial compact-

ification of Penner. In the case of emtpy boundary this is also homotopic
to the Kontsevich compatification,

(2) There is a strong deformation retraction

icycAss
! (W (T ))(∗g,s,S1∐···∐Sb

) ≃ Mg,s,S1∐···∐Sb

For as given topological surface type (g, s, S1 ∐ · · · ∐ Sb) is a surface type:
genus g. This is a generalization of Igusa’s result identifying Mg,n with
the nerve a category of forest contractions [7].

There is a similar results for the non–decorated case relating to Outer space of [6]
and, via restriction, to cubical complexes appearing in physics [3].
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B∞-structures, monoidal categories and singularity categories

Bernhard Keller

This is a report on the B∞-structures present on the Hochschild cochain complexes
of algebras, differential graded categories and in particular the differential graded
enhancements of singularity categories. For simplicity, we work over a field k
throughout.

We start by recalling the history of the investigation of the structure of Hoch-
schild cohomology starting from Gerhard Hochschild [14] with subsequent con-
tributions by Cartan–Eilenberg [3], Gerstenhaber [10], Baues [1], Kadeishvili [16]
and Getzler–Jones [11], who defined a B∞-structure as a dg (=differential graded)
bialgebra structure on the free cocomplete coalgebra

B+(V ) = T c(ΣV )

whose augmented graded coalgebra structure is the canonical one, where V is a
graded vector space and ΣV its suspension: (ΣV )p = V p+1. Such structures
are instrumental in (almost?) all positive answers to Deligne’s question on the
action of the little squares operad on the Hochschild cochain complex. We ob-
serve that B∞-structures are often concomitant with the existence of monoidal
structures on suitable triangulated categories. For example, the derived category
of A-bimodules becomes monoidal for the derived tensor product over A, con-
comitant with Getzler–Jones B∞-structure on the Hochschild cochain complex;
the derived category of sheaves of abelian groups on a topological space becomes
monoidal for the derived tensor product of sheaves, a structure concomitant with
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Baues’ B∞-structure on the cochain complex of a simplicial set X with punctual
X0 and whose geometric realization has trivial 1-skeleton.

We observe that if B is a B∞-algebra with homologically unital underlying
A∞-algebra, then its derived category DB of homologically unital A∞-modules
carries a structure of monoidal triangulated category whose unit is the free B-
module of rank one. Thus, the perfect derived category of B (the subcategory
of compact objects in DB) becomes a unitally generated monoidal triangulated
category (i.e. a triangulated category with a monoidal structure whose unit is a
classical generator of the triangulated category). More precisely, it is a k-linear,
monoidal, stable, small ∞-category generated (as a triangulated category) by its
unit. We would expect every such category to be of this form. Some evidence
for this is provided by Proposition 7.1.2.6 of Lurie’s [25], which provides an E2-
structure on the endomorphism spectrum of the unit in the non k-linear setting.
Interestingly, giving an E2-structure (up to homotopy) is equivalent to giving
a B∞-structure (up to homotopy) such that the brace operations mk,l vanish
for k > 1. Indeed, by definition, the B∞-algebras satisfying this property are
precisely the algebras over the braces operad. Now, as shown in section 3.5 of
[35], the braces operated is isomorphic to Kontsevich–Soibelman’s [21] ‘minimal’
operad M and they show in [loc. cit.] that M is quasi-isomorphic to E2. The
idea that (algebraic) monoidal triangulated categories should have B∞-structures
on the derived endomorphism algebras of their unit objects is further supported
by the following theorem.

Theorem (Lowen–Van den Bergh [24]). Let (A,⊗, I) be a monoidal k-category
such that

a) A is abelian (but ⊗ is not supposed to be biexact!) and
b) A has enough projectives and ?⊗ P is exact for each projective P .

Then the derived endomorphism algebra V = REnd(I) carries a B∞-structure
such that the canonical functor from the perfect derived category of V to the thick
subcategory of the derived category of A generated by I becomes monoidal.

Notice that this result is inspired by Reiner Hermann’s Ph. D. thesis [13] under
the supervision of R.-O. Buchweitz and H. Krause. It applies for example to
the category A of bimodules over an algebra A endowed with the tensor product
⊗A and the unit object A. In this case, the derived endomorphism algebra is
represented by the Hochschild cochain complex with the cup product and Lowen–
Van den Bergh show that their construction yields the classical B∞-structure (up
to quasi-isomorphism).

On the other hand, the theorem does not apply to the category A of sheaves
of abelian groups on a topological space X with the canonical tensor product and
the constant sheaf I = kX as its unit. Indeed, this category does not have enough
projectives in general. The derived endomorphism algebra is represented by the
singular cochains on X and we would expect to obtain Baues’ B∞-structure.

The construction of the Hochschild cochain complex with its B∞-structure gen-
eralizes from k-algebras to k-categories (which we view as ‘k-algebras with several



2522 Oberwolfach Report 46/2021

objects’ as in Mitchell’s [28])) and further to dg (=differential graded) categories.
This extension is of importance because of applications in the deformation theory
of abelian and of triangulated categories. It is a classical fact that the center,
i.e. the zeroth Hochschild cohomology, of an algebra coincides with the center of
its module category, i.e. the endomorphism algebra of its identity functor. The
‘derived version’ of this fact is due, independently, to Lowen–Van den Bergh [26]
and to Toën [31]. It states that there is a canonical algebra isomorphism be-
tween the Hochschild cohomology of an algebra and the Hochschild cohomology
of its (unbounded) derived category endowed with its canonical dg enhancement,
i.e. the dg-derived category DdgA. Moreover, by [17], this isomorphism lifts to an
isomorphism in the homotopy category of B∞-algebras between the corresponding
Hochschild cochain complexes. We see in particular that the center of A identifies
with the center of the dg category DdgA. This is a desirable property and one for
which it is crucial to take into account the dg structure. Indeed, the computa-
tions by Krause–Ye [23] show that the center of the underlying category DA is a
pathological object.

Let now A be a right noetherian algebra. Let modA denote the abelian category
of finitely generated right A-modules and Db(modA) its bounded derived category.
The perfect derived category per(A) is the thick subcategory generated by the free
A-module AA. The singularity category of A is by definition the Verdier quotient

sg(A) = Db(modA)/per(A).

It first appears in Buchweitz’ unpublished manuscript [2] in this algebraic setting
and was rediscovered by Orlov [29] in a geometric setting motivated by mirror
symmetry. Notice that it vanishes if A is ‘smooth’, i.e. has finite global dimension.
Now assume that Ae = A⊗Aop is also noetherian. Then one defines the singular
Hochschild cohomology or Tate Hochschild cohomology of A to be the Yoneda
algebra of the identity bimodule in the singularity category of bimodules:

HH∗
sg(A) = Ext∗sg(Ae)(A,A).

It is not hard to show directly that this is a graded commutative algebra although
the quotient sg(Ae) does not carry any obvious monoidal structure. It is a natural
question to ask whether nevertheless, singular Hochschild cohomology carries a
Gerstenhaber bracket and whether it is the homology of a canonical B∞-algebra.
Both questions are hard but were answered in the affirmative in the recent work
of Zhengfang Wang [34]. Thus, we see that there is a complete structural analogy
between Tate–Hochschild cohomology and classical Hochschild cohomology. It is
therefore natural to ask whether Tate–Hochschild cohomology is not an instance of
classical Hochschild cohomology, i.e. whether the Tate–Hochschild cohomology of
A is classical Hochschild cohomology of some more complicated object associated
with A. Recall that a dg category A is smooth if the identity bimodule

IA : (X,Y ) 7→ A(X,Y )
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is perfect in the derived category D(Ae) of bimodules. Define the dg singularity
category of A as the dg quotient

sgdg(A) = Db
dg(modA)/perdg(A).

Theorem ([18]). There is a canonical morphism of graded algebras

HH∗
sg(A) → HH∗(sgdg(A)).

It is an isomorphism if the dg category Db
dg(modA) is smooth.

According to Theorem A of Elagin–Lunts–Schnürer’s [9], the dg-derived cate-
gory Db

dg(modA) is smooth if A is a finite-dimensional algebra such that A/rad(A)

is separable over k (which is automatic if k is perfect). By Theorem B of [loc. cit.],
it also holds if the algebra A is right noetherian and finitely generated over its
center and the center is a finitely generated algebra over k.

Conjecture. The morphism of the theorem lifts to a morphism in the homotopy
category of B∞-algebras.

Note that this morphism will be an isomorphism if the bounded dg derived
category Db

dg(modA) is smooth. In particular, this should hold for each finite-
dimensional algebra defined by a quiver with an admissible ideal of relations. The
following theorem confirms the conjecture for radical square 0 algebras.

Theorem (Chen–Li–Wang [4]). The conjecture holds if A = kQ/(Q1)
2, where Q

is a finite quiver without sinks or sources and (Q1)
2 the square of the ideal of the

path algebra kQ generated by the arrows.

Although Theorem for the moment only yields a graded algebra isomorphism,
it is sufficient to prove useful reconstruction theorems for isolated hypersurface
singularities. We refer to [15] for the precise statements and links to the theory of
cluster categories.

I thank the organizers for the invitation to this inspiring conference and Vladimir
Hinich for interesting discussions and for the reference to Proposition 7.1.2.6 in
[25]. I am grateful to Bruno Vallette for the reference to section 3.5 of [35].
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Operadic categories and simplicial ‘sets’

Joachim Kock

(joint work with Michael Batanin, Mark Weber)

The talk started with some motivation for the notion of operadic category: just
as operads have algebras, operadic categories have operads. It was explained how
this works for the operadic category ∆+ whose operads are nonsymmetric operads
(cf. Day and Street), and there was mention also of F, a skeleton of the category
of finite sets, whose operads are symmetric operads. Then came an outline of
the definition of operadic category by listing the data (but not all the axioms):
An operadic category is a small category C with a chosen terminal object in each
connected component, equipped with a cardinality functor |−| : C → F, and with
a fibre structure: for each morphism f : T → S in C and for each element i ∈ |S|,
there is given an object denoted f−1(i) (not necessarily given by preimage). Some
of the axioms and their subtleties were described, pointing out in particular that
the notion is not invariant under equivalence of categories.

After brief mention of the alternative formulation of the axioms by Lack in
terms of skew monoidal structures, the next topic was the alternative formulation
by Garner, Kock, and Weber [3]. One main ingredient here is the observation
that the chosen-local-terminals structure amounts precisely to saying that C is a
coalgebra for the (upper) decalage comonad D onCat. This was explained in some

detail since it plays an important role. The comonad D induces a monad D̃ on
D-Coalg, whose algebras are unary operadic categories. To get the multi-aspect,
[3] introduced a certain modification of D.

The rest of the talk explained the new material. It is a new interpretation
of operadic categories, in which all the axioms end up as simplicial identities.
Again the starting point is the D-coalgebra viewpoint, but now the multi-aspect
is encoded in a different way, in terms of the symmetric-monoidal-category monad
S. After some discussion of the compatibilities between D and S, the first theorem

was stated: an operadic category is the same thing as a D̃-pseudo-algebra in the
Kleisli category for S. Some of the arguments in the proof were explained along
the way.

The second main theorem is the simplicial interpretation. Following Garner–
Kock–Weber we observe that the unary-operadic-category axioms amount to an
undecking of the nerve of C. This means a simplicial setX such that DX = NC. To
capture general operadic categories, it is necessary to undeck in the Kleisli category
for S. The final theorem states that an operadic category is the same thing as a
pair (C, X) where C is a small category and X is a pseudo-simplicial groupoid such
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that DX = SNC. In other words, the category of operadic categories OpCat can
be characterised as the pullback

OpCat sGrpdps

Cat sGrpd.

y
D

S◦N

The operadic-category axioms concerning the local terminal objects are now
simplicial identities of the additional top degeneracy maps in the undecking. The
axioms concerning the fibre functor are simplicial identities of the additional top
face maps in the undecking. The structure and axioms relating to the cardinal-
ity functor are not immediately visible, but they are encoded by S. A subtlety
regarding the pseudo-ness of the simplicial groupoid X was pointed out: it is
concentrated in the top face maps, and it is not just something one can suppress.
Actually in the proof of the theorem it is revealed that the coherence isomorphisms
of the pseudo-simplicial identities correspond precisely to one of the axioms of the
cardinality functor of an operadic category. The coherence isomorphisms are thus
an essential part of the structure.

To finish, two benefits of the new characterisation were explained, in addition
to the general pleasure of expressing things simplicially: one is that one can now
obtain an equivalence-invariant notion of operadic category simply by replacing
the equation DX = SNC by an equivalence. One important example of this
situation is the two-sided bar construction of a symmetric operad is an operadic
category. Second, the pullback-diagram characterisation can be copied to the
realm of infinity-categories in the sense of Segal spaces to give a definition of
infinity operadic category. (Here simplicial spaces stand in for both simplicial sets
and simplicial groupoids, and there is no need to say ‘pseudo’.) The development
of such a theory has only just begun. A motivating example is that the category
of configuration spaces is (strongly suspected to be) an infinity operadic category.
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Higher algebra of A∞-algebras and the n-multiplihedra

Thibaut Mazuir

The structure of strong homotopy associative algebra, or equivalently A∞ -algebra,
was introduced in the seminal paper of Stasheff [Sta63]. It provides an operadic
model for the notion of differential graded algebra whose product is associative
up to homotopy. It is defined as the datum of a set of operations {mm : A⊗m →
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A}m≥2 of degree 2 − m on a dg-Z -module (A, ∂), which satisfy the sequence of
equations

[∂,mm] =
∑

i1+i2+i3=m
2≤i2≤m−1

±mi1+1+i3(id e
⊗i1 ⊗mi2 ⊗ id e⊗i3).

Similarly, the notion of A∞ -morphism between two A∞ -algebras A and B offers
an operadic model for the notion of morphism of strong homotopy associative
algebras which preserves the product up to homotopy. It is defined as the datum
of a set of operations {fm : A⊗m → B}m≥1 of degree 1 − m which satisfy the
sequence of equations

[∂, fm] =
∑

i1+i2+i3=m
i2≥2

±fi1+1+i3(id e
⊗i1⊗mi2⊗id e⊗i3)+

∑

i1+···+is=m
s≥2

±ms(fi1⊗· · ·⊗fis) .

A∞ -algebras and A∞ -morphisms between them provide a satisfactory framework
for homotopy theory. The most famous instance of this statement is the homotopy
transfer theorem. Let (A, ∂A) and (H, ∂H) be two cochain complexes together with
a diagram

(A, dA) (H, dH) ,h
p

i

where i and p are dg-morphisms of degree 0 and [∂, h] = id e − ip. If (A, ∂A) is
endowed with an A∞ -algebra structure, then H can be made into an A∞ -algebra
such that i and p extend to A∞ -morphisms and h extends to an A∞ -homotopy
(see next paragraph). The first (weaker) version of this theorem dates back
to [Kad80] and the previous formulation is due to [Mar06]. See also [Val20] and
[LH02] for an extensive study on the homotopy theory of A∞ -algebras.

An A∞ -algebra structure on a dg-module A is equivalent to a coderivation DA

on its suspended bar construction T (sA) such that D2
A = 0. An A∞ -morphism

between two A∞ -algebras A and B is then equivalent to a morphism of dg-
coalgebras F : (T (sA), DA) → (T (sB), DB). Following [LH02], one can then
define an A∞ -homotopy between two A∞ -morphisms F and G to be a morphism
of dg-coalgebras H : ∆∆∆1 ⊗ T (sA) −→ T (sB) where ∆∆∆1 is a dg-coalgebra model
for the interval and H maps the points 0 and 1 to F and G respectively. This
defines a satisfactory notion of homotopy, as the relation being A∞-homotopic
is an equivalence relation and is stable under composition. This definition can
moreover be rephrased in terms of operations, using the universal property of the
bar construction. An A∞ -homotopy between two A∞ -morphisms (fn)n≥1 and
(gn)n≥1 of A∞-algebras A and B corresponds to a collection of maps

[∂, hn] =gn − fn +
∑

i1+i2+i3=m
i2≥2

±hi1+1+i3(id e
⊗i1 ⊗mi2 ⊗ id e⊗i3)

+
∑

i1+···+is+l
+j1+···+jt=n

s+1+t≥2

±ms+1+t(fi1 ⊗ · · · ⊗ fis ⊗ hl ⊗ gj1 ⊗ · · · ⊗ gjt)
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A∞ -homotopies between A∞ -algebras being defined, one can now ask what a good
notion of a homotopy between homotopies is. And of a homotopy between two
homotopies between homotopies. And so on. This problem is solved in [Maz21b].
After introducing the cosimplicial dg-coalgebra ∆∆∆n together with the language
of overlapping partitions of [MS03], we define a n-morphism between two A∞ -
algebras A and B to be a morphism of dg-coalgebras F : ∆∆∆n ⊗ T (sA) −→ T (sB).
These higher morphisms are such that 0-morphisms correspond to A∞ -morphisms
and 1-morphisms correspond to A∞ -homotopies between A∞ -morphisms. They
have an equivalent definition in terms of operations. A n-morphism from A to B

corresponds to a collection of maps f
(m)
I : A⊗m −→ B of degree 1 −m − dim(I)

for I ⊂ ∆n and m ≥ 1, that satisfy

[

∂, f
(m)
I

]

=

dim(I)
∑

j=0

(−1)jf
(m)
∂jI

+(−1)|I|
∑

i1+i2+i3=m
i2≥2

±f
(i1+1+i3)
I (id e⊗i1 ⊗mi2 ⊗ id e⊗i3)

+
∑

i1+···+is=m
I1∪···∪Is=Is≥2

±ms(f
(i1)
I1

⊗ · · · ⊗ f
(is)
Is

).

where the last sums runs over all overlapping s-partitions I1 ∪ · · · ∪ Is = I of the
face I ⊂ ∆n. The set of higher morphisms between two A∞ -algebras then defines
a simplicial set which has the property of being a Kan complex. This Kan complex
is in fact in particular an algebraic ∞-category, which means that all fillers for an
inner horn inclusion can be explicitly described. The simplicial homotopy groups
of this Kan complex can moreover be conveniently computed. The HOM-simplicial
sets HOMA∞−Alg(A,B)• fall however short of defining a natural simplicial enrich-
ment of the category A∞ − Alg : the composition of A∞ -morphisms cannot be
naturally lifted to define a composition between n−A∞-morphisms.

Denote A∞ for the operad encoding A∞ -algebra structures and A∞ −Morph
for the operadic bimodule encoding A∞-morphisms between A∞ -algebras. They
each can be realized as operadic objects in polytopes : the operad A∞ stems
from the associahedra Km and the operadic bimodule A∞ − Morph stems from
the multiplihedra Jm. See [MTTV19] and [MMLA] for instance. In [Maz21b], we
construct a family of polytopes encoding the A∞ -equations for n-morphisms :
the n-multiplihedra n− Jm. They are defined as the polytopes ∆n × Jm endowed
with a thinner polytopal subdivision that is obtained by lifting the Alexander-
Whitney coproduct AW to level of the polytopes ∆n. Let M be an oriented closed
Riemannian manifold endowed with a Morse function f together with a Morse-
Smale metric. Following Abouzaid in [Abo11] who drew from earlier works by
Fukaya ([Fuk97] for instance), the Morse cochains C∗(f) can be endowed with
a geometric A∞ -algebra stucture by counting moduli spaces of perturbed Morse
gradient ribbon trees. See also [Mes18] and [AL18]. In [Maz21a] we prove that this
A∞ -algebra structure actually stems from an ΩBAs -algebra structure. We prove
in [Maz21a] and [Maz21b] that given two Morse functions f and g, one can in fact
construct n-morphisms between their Morse cochain complexes C∗(f) and C∗(g)
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Figure 1. The 1-multiplihedron ∆1 × J3 ...

through a count of geometric moduli spaces of perturbed Morse gradient trees.
This gives a realization of this higher algebra of A∞ -algebras in Morse theory.
These constructions stem from the fact that the associahedra can be realized as the
compactified moduli spaces of stable metric ribbon trees and the multiplihedra can
be realized as the compactified moduli spaces of stable two-colored metric ribbon
trees. It is also quite clear that given two compact symplectic manifolds M and
N , one should be able to construct n-morphisms between their Fukaya categories
Fuk(M) and Fuk(N) through counts of moduli spaces of quilted disks (under the
correct technical assumptions). In collaboration with Nate Bottman, we may also
inspect in the near future possible links between the n-multiplihedra and the 2-
associahedra (see [Bot19a] and [Bot19b] for instance), that Bottman introduced
in order to define the notion of an (A∞, 2)-category.
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Gravity properad and moduli spaces

Sergei Merkulov

Let Mg,m+n be the moduli space of algebraic curves of genus g with m+n marked
points decomposed into the disjoint union of two sets of cardinalities m and n,
and H•

c (Mm+n) its compactly supported cohomology group. We prove that the
collection of Sop

m × Sn-modules
{
H•−m

c (Mg,m+n)
}
m≥1,n≥0,2g+(m+n)≥3

=: GRav,

has the structure of a properad (called the gravity properad) such that it con-
tains the (degree shifted) E. Getzler’s gravity operad [2] as the sub-collection
{H•−1

c (M0,1+n)}n≥2. The properadic structure in GRav is non-trivial and gen-
erates higher genus cohomology classes from lower (even genus zero) ones; we
found infinitely many non-trivial examples. Moreover, we prove that the gener-
ators of the 1-dimensional cohomology groups H•−1

c (M0,1+2), H
•−2
c (M0,2+1) and

H•−3
c (M0,3+0) satisfy with respect to this properadic structure the relations of

the (degree shifted) quasi-Lie bialgebra, a fact making the totality of cohomology
groups ∏

g,n≥0,m≥1
p2g+n+m≥3

H•
c (Mg,m+n)⊗Sop

m ×Sn
(sgnm ⊗ idn)

into a complex with the differential fully determined by the just mentioned three
cohomology classes (which should be understood in this context as a hyperbolic
sphere S2 with (i) one geodesic boundary and two cusps, (ii) two geodesic bound-
aries and one cusp, and (iii) three geodesic boundaries, respectively). It is proven
that this complex contains infinitely many cohomology classes, all coming from a
morphism from M. Kontsevich’s odd graph complex GC−1.
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The prop structure in GRav is established with the help of T. Willwacher’s
[4] twisting endofunctor tw (in the category of properads under the operad of
Lie algebras) applied to the properad of ribbon graphs RGrad introduced earlier
by T. Willwacher and the author in [3]. As a family of complexes, the twisted
properad twRGrad = {twRGrad(m,n)}m≥1,n≥0 can in turn be identified with
the cell complexes of K. Costello’s family of moduli spaces [1], {Dg,m,0,n}m≥1,n≥0

of nodal disks with m marked boundaries and n internal marked points (such
that each disk contains at most one internal marked point) making the latter S-
bimodule into a dg properad called the chain gravity properad. According to K.
Costello [1], Dg,m,0,n is homotopy equivalent to Mg,m+n so that the properadic
structure on the above collection GRav of cohomology groups follows immediately
from the explicit purely combinatorial properadic structure in twRGrad and K.
Costello’s homotopy equivalence.
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Learning about complicial sets

Viktoriya Ozornova

Many applications in modern algebraic topology and algebraic geometry reveal a
need for a higher-categorical framework. Strict higher categories are easy to define
inductively: an n-category is defined as a category enriched in (n−1)-categories. A
prototypical example of such an object is the category of small categories: between
any two small categories, it is customary to consider not only a set of functors
between them, but rather a category of functors and natural transformations be-
tween those functors. In particular, we observe that natural transformations can
be composed in two different ‘basic’ ways, which can be schematically pictured as
follows:

⇓ ⇓
⇓

⇓

However, the examples of strict n-categories are rare in nature, mostly given by
categorical examples as above or archetypical examples encoding certain features
as e.g. compositions, which can be intuitively seen as defined by the pictures above.
Typical topological applications, as for example cobordism categories, require a
weak version of higher categories. A particular choice of such weakening is known
as ‘(∞, n)-categories’. However, this is not a unique mathematical notion; there
is rather a variety of ways to make this concept precise, and we refer to these
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different ways as models of (∞, n)-categories. One consequence of weakening the
axioms of higher categories is the fact that it turns out to be appropriate to
consider homotopy theories of (∞, n)-categories as opposed to mere categories of
(∞, n)-categories.

One family of models, often called cellular, is based on the idea of encoding
sets (or spaces) of compositions for every ‘basic’ way of composition of higher
morphisms. Since the composition is not strictly associative any more, we need
to remember also compositions of 3, 4, . . . higher morphisms composed at once. A
precise way of encoding these compositions is using an indexing category Θn of
such compositions, based on pioneering work of Joyal, further studied by Berger
and Makkai–Zawadowski, with homotopy theories for cellular models constructed
by Rezk [10] and Ara [1].

Cellular models have an advantage of being very intuitive; moreover, it is easy
to retrieve compositions of higher morphisms. However, a major disadvantage of
cellular models is their growth with n; the combinatorics of the problem get out
of hand very quickly. Complicial sets, due to Verity [12], also developed further in
[11] and [9], are a member of the family of simplicial models. They are based on an
easy modification of simplicial sets, and the underlying category does not change
with n - the varying value of n is encoded in the model structure. However, it is
not immediate whether this approach is equivalent to the cellular one in a precise
sense, and the status depends on n. For n = 1, the comparison was established by
Joyal–Tierney [7] and Verity [12]. For n = 2, the missing piece for the comparison
was recently established by Gagna–Harpaz–Lanari [6], and the indirect equivalence
is also based on work of Bergner–Rezk [4, 5] and Lurie [8]. In a joint work with
Bergner and Rovelli, we were able to derive a direct comparison between these
models, based on the just cited work as well as results by Barwick–Schommer-
Pries [2] :

Theorem ([3]). There is a direct Quillen equivalence between a model structure
on Θ2-spaces and the model structure for 2-complicial sets.

In joint work in progress with Rovelli, we made progress towards the comparison
for n > 2, which is completely open as of now.

90%-Theorem. Under mild hypothesis, there is a weak equivalence between the
nerve of the suspension of an n-category and the suspension of its nerve in the
model structure for n-complicial sets.

The main consequence of this slightly technical result would be as follows.

90%-Corollary. The same formula as for n = 2 defines a left Quillen functor
between a model structure on Θn-spaces and the model structure for n-complicial
sets.
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Weakly globular double categories and weak units

Simona Paoli

Higher category theory is a rapidly developing field with applications to disparate
areas, from homotopy theory, mathematical physics, algebraic geometry to, more
recently, logic and computer science.

Higher categories comprise not only objects and morphisms (like in a category)
but also higher morphims, which compose and have identities. A key point in
higher category theory is the behaviour of these compositions. In a category,
composition of morphisms is associative and unital. Higher categories in which
these rules for compositions hold for morphisms in all dimensions are called strict
higher categories: they are not difficult to formalize, but they are of limited use in
applications. A striking example is the case of strict n-groupoids, which are strict
n-categories with invertible higher morphisms. These are algebraic models for the
building blocks of topological spaces (the n-types) only when n = 0, 1, 2, see [6]
for a counterexample.

To model n-types for all n (that is, to satisfy the ’homotopy hypothesis’), a
more complex class of higher structures is needed, the weak n-categories. In a
weak n-category, compositions are associative and unital only up to an invertible
cell in the next dimension, in a coherent way.
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There are several different models of weak n-categories: a survey was given
in [3], and several new approaches appeared later on. Of particular relevance
for us are the Segal-type models [4], based on multi-simplicial structures. These
comprise the Tamsamani model Tan, originally introduced by Tamsamani [8] and
further studied by Simpson [7] as well as two new models I introduced in [4]:
the weakly globular Tamsamani n-categories Tanwg and the weakly globular n-fold
categories Catnwg. These models use a new paradigm to encode weakness in a
higher category, the notion of weak globularity. The sets of higher morphisms
in dimensions 0, · · · , n in Tan are replaced in Tanwg and Catnwg by homotopically
discrete structures which are only equivalent of sets. This allows to obtain the
model Catnwg of weak n-categories based on the simple structure of n-fold categories.
The three Segal-type models Tan,Tanwg,Cat

n
wg are proved in [4] to be equivalent up

to homotopy .
A model of higher categories with associative compositions and weak units was

proposed by Joachim Kock [2] and called fair n-categories Fairn. This model is
similar in spirit to Tan, but with the simplicial category ∆ replaced by the ’fat
delta’ category ∆ of coloured finite non-empty semi-ordinals. To date it is not yet
known if this model satisfies the homotopy hypothesis, except for the special case
of 1-connected 3-types [1]. It was conjectured earlier on by Simpson [6] that there
should exist a model of higher categories with associative compositions and weak
units that satisfies the homotopy hypothesis and is suitably equivalent to the fully
weak models.

Here we concentrate on the case n = 2. We construct a pair of functors between
Cat2wg and Fair2 and show they induce an equivalence of categories after localization
with respect to the 2-equivalences. This equivalence is not surprising, since both
models are known to be equivalent to bicategories [5], [2]. The significance and
novelty of our result lies in the method of proof: we establish a direct comparison
between Cat2wg and Fair2, which does not use their equivalence to bicategories.
This direct comparison is very non-trivial, and makes use of several novel ideas
and constructions, which we believe will lead to higher dimensional generalizations.

The passage from weakly globular double categories to fair 2-categories uses
a property of Cat2wg that was not observed so far, namely that it is possible to
extract from it a strictly associative (though not strictly unital) composition. It
also gives a new meaning to the weak globularity condition of weakly globular
double categories as encoding the category of weak units.

The functor in the other direction, from fair 2-categories to weakly globu-
lar double categories, factors thorough the category of Segalic pseudo-functors
SegPs[∆op,Cat] from ∆op to Cat, already introduced in [4]; it also uses novel prop-
erties of Fair2 and of the ’fat delta’ category ∆.

Finally, the categories Fair2, Cat2wg and SegPs[∆op,Cat] are not sufficient to prove
the final comparison result. To establish the zig-zags of 2-equivalences giving rise to
the equivalence of categories after localization between Cat2wg and Fair2, we need
to enlarge the context by introducing two new players: the category of Segalic
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pseudo-functors SegPs[∆op,Cat] from from the opposite of the ’fat delta’ category
to Cat and the category Fair2wg of weakly globular fair 2-categories.

We envisage that the new ideas and techniques of this work will provide a basis
for higher dimensional generalizations.
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Polyhedra for V∞-algebras, string topology, and moduli spaces

Kate Poirier

(joint work with Thomas Tradler)

Where associahedra are polyhedra that organize operations and relations in an
A∞-algebra, assocoipahedra are polyhedra that organize operations and relations
in a V∞-algebra, a homotopy version of an associative algebra that has a com-
patible co-inner product. Assocoipahedra appear in the study of spaces of string
topology operations—both on the chains or homology of the loop space of a closed,
oriented manifold (the topological side) and on the Hochschild cochains or coho-
mology of a V∞-algebra (the algebraic side). Here, we present five roles that
assocoipahedra play on both sides, including a conjecture relating these spaces of
operations to the moduli space of Riemann surfaces.

Combinatorics of directed planar trees. An α-tree is a directed planar tree
such that every interior vertex has at least one outgoing edge and no bivalent
vertices have exactly one incoming and one outgoing edge. A familiar example is
a planar rooted tree, with edges directed toward the root. An edge expansion of
α-tree T is an α-tree from which T is obtained by contracting interior edges. Given
an α-tree T , its space of edge expansions is a convex polyhedron in Euclidean space
whose faces correspond to edge expansions of T . When T is a corolla, its space
of edge expansions is called an assocoipahedron. When T is a corolla with exactly
one outgoing edge, the corresponding assocoipahedron is the usual associahedron.

Theorem (P.–Tradler [3]). The space of edge expansions of an α-tree is a decom-
position of K ×∆ where K is an associahedron and ∆ is a simplex.
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Koszuality of the V(d)-dioperad. A V(d)-algebra is an algebra with an associa-
tive product and a symmetric, invariant co-inner product. An example of such an
algebra is the singular cohomology of an even-dimensional manifold M ; the prod-
uct is the cup product and the co-inner product is the Thom class of the diagonal.
The combinatorics of assocoipahedra are used to prove the following theorem:

Theorem (P.–Tradler [4]). The dioperad governing V(d)-algebras is Koszul.

Further, assocoipahedra describe the operations and relations in the V
(d)
∞ -dioper-

ads in the same way that associahedra describe the operations and relations in the
A∞-operad.

The space of directed graphs. A directed graph is a directed fatgraph with no
bivalent vertices with one incoming and one outgoing edge. An edge expansion of
a directed graph G is a directed graph from which G is obtained by contracting
interior edges without changing the topological type. Tradler–Zeinalian show that
a chain complex DG∗—given by directed graphs and their edge expansions—acts

on the Hochschild cochains of a V
(d)
∞ -algebra (the algebraic side of string topology)

[5].
In work in progress with T. Tradler, we use assocoipahedra to build a cell

complex DG whose complex of cellular chains is exactly the chain complex DG∗.
The subcomplex of directed graphs with at least one “input” vertex and no directed
cycles is denoted NDG. The directed graphs in NDG may be assembled from
disjoint “input” vertices and collections of α-trees attached inductively along their
leaves.

Directed graphs and string diagrams. A short-branched tree is a metric fat-
graph tree subject to a particular length condition. A string diagram is a metric
fatgraph assembled from disjoint “input” circles and collections of short-branched
trees attached inductively along their leaves, in much the same way as graphs in
NDG are constructed. String diagrams form a cell complex SD. In joint work with
G.C. Drummond-Cole and N. Rounds, we show that SD parametrizes operations
on the singular chains of the loop space of a closed, oriented manifold and that
composition is respected on homology (the topological side of string topology) [2].

In work in progress with T. Tradler, we use assocoipahedra to construct a
homotopy equivalence NDG → SD.

Assocoipahedra and the moduli space of Riemann surfaces. The met-
ric condition defining short-branched trees is related to an equivalence relation
appearing in Bodigheimer’s work on the moduli space of Riemann surfaces [1];
the short-branched trees in some sense “interpolate” between equivalent cells in
his harmonic compactification of moduli space. In compelling examples, identi-
fications on faces of assocoipahedra create small circles in moduli space near its
harmonic boundary, providing evidence for the following conjecture:

Conjecture. The space of string diagrams SD is homotopy equivalent to the
moduli space of Riemann surfaces with boundary.
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Canonical E∞-operads involved in homotopy colimits of
I-chain complexes

Birgit Richter

Work starting in the late 1960s of Quillen, Sullivan, Bousfield-Gugenheim, Neisen-
dorfer and others enables us to study rational nilpotent spaces of finite type via
algebraic models. For instance Quillen developed models in the categories of dif-
ferential graded cocommutative coalgebras and Lie algebras and Sullivan’s differ-
ential graded commutative model of the rational cochains on a space allowed for
the important concept of minimal models in rational homotopy theory.

Mandell proved in 2006 that two finite type nilpotent spaces are weakly equiv-
alent if and only if their integral singular cochains are quasi-isomorphic as E∞-
algebras. Thus, if you don’t want to restrict to rational homotopy theory, then
you need the full information of the E∞-structure on the cochains and this is quite
an intricate structure.

One can ask whether one can replace the E∞-algebra of cochains C∗(X ; k) on a
space X by a strictly commutative model, if k is any commutative ring. Of course
this cannot be done in the context of differential graded commutative algebras,
because the Steenrod operations for k = Fp witness that this isn’t possible. The
existence as a commutative I-chain algebra is guaranteed by [3]. Here, I is the
skeleton of the category of finite sets and injections. In [2] we develop an explicit
model AI

∗ (X ; k) that generalizes Sullivan’s model to arbitrary commutative rings
k and that detects the homotopy type of nilpotent spaces of finite type.

Can we use I-chains to obtain models of spaces in the setting of differential graded
cocommutative coalgebras and Lie-algebras? An obstacle is that the homotopy col-
imit, that allows us to pass from I-chain complexes to ordinary chain complexes is
only lax monoidal, but not lax symmetric monoidal or lax symmetric comonoidal.
In fact we prove in [2] (modifying a construction from [4, Proposition 6.5] for
spaces) that the homotopy colimit sends commutative I-chain algebras to alge-
bras over the Barratt-Eccles operad. So this is one canonical E∞-operad occurring
in this setting.

There is an inclusion of categories i : Σ ⊂ I, where Σ is the skeleton of the
category of finite sets and bijections. This inclusion and the left Kan extension of
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symmetric sequences along i already features prominently in the work of Church-
Ellenberg-Farb [1].

If Z∗ is a symmetric sequence in chain complexes, then the left Kan extension
can be explicitly described as

i!(Z∗)(m) = colimi(n)↓m Z∗(n) ∼=
⊕

n≥0

k{I(n,m)} ⊗k[Σn] Z∗(n).

We use a canonical operad in the category of small category as the means
to describe the homotopy colimits of I-chains of the form i!(Z∗). The mth ar-
ity of the operad is the category of objects under m, C(m) := m ↓ I, with
m = {1, . . . ,m}. We can use the nerve functor, the free module functor and the
associated chain complex functor to produce an operad O in chain complexes with
O(m) = C∗(k{N(m ↓ I)}). This operad is an E∞-operad in the category of chain
complexes. Note that if one restricts to bijections, then this corresponds to the
Barratt-Eccles operad.

We show that for any symmetric sequence in chain complexes Z∗ one has

hocolimIi!Z∗
∼=

⊕

m≥0

O(m)⊗Σm
Z∗(m).

This yields the main result:

Theorem. For all chain complexes C∗ and all operads (P (m))m≥0 in the category
of modules hocolimIi!(P (FΣ

1 (C∗)) is the free O ⊗ P -algebra generated by C∗.

Here, FΣ
1 (C∗) denotes the free symmetric sequence on C∗ at the object 1 = {1}.

In particular, for P = Lie we get that hocolimIi!(Lie(F
Σ
1 (C∗)) is a free O ⊗ Lie-

algebra generated by C∗.
For cocommutative comonoids we obtain:

Theorem. If Z∗ is a cocommutative comonoid in symmetric sequences of chain
complexes, then i!(Z∗) is a cocommutative monoid in I-chain complexes and
hocolimIi!(Z∗) is an E∞ differential graded coalgebra.

For this structure we use a deconcatenation product on the operad O and this
in turn relies on the Alexander-Whitney map.

References

[1] T. Church, J. S. Ellenberg, B. Farb, FI-modules and stability for representations of sym-
metric groups, Duke Math. J. 164 (2015), 1833–1910.

[2] B. Richter, S. Sagave, A strictly commutative model for the cochain algebra of a space,
Compositio Mathematica 156 (8) (2020), 1718–1743.

[3] B. Richter, B. Shipley, An algebraic model for commutative HZ-algebras, Algebraic and
Geometric Topology 17 (2017), 2013–2038.

[4] C. Schlichtkrull, Thom spectra that are symmetric spectra, Doc. Math. 14 (2009), 699–748.



Homotopical Algebra and Higher Structures 2539

A modular operad of seemed surfaces and subgroups of ĜT

Marcy Robertson

(joint work with Luciana Basualdo Bonatto)

The absolute Galois group of Q, denoted throughout by Gal(Q), is the (topologi-
cal) group of automorphisms of the separable closure Q̄ over Q which fix Q. The
group Gal(Q) is an example of a profinite group which means that it is defined

as the inverse limit Ĝ = limG/N of all of its finite quotients. This means, if we
wished to describe an element g ∈ Gal(Q) we would require a description of the
image of g in each of the finite quotients. But we don’t know the finite quotients
of Gal(Q)!

This motivates the study of “Grothendieck-Teichmuller” or “Lego-Teichmuller”
theory, laid out in Esquisse d’un Programme [Gro97], is to identify each g ∈ Gal(Q)
with a pair

(χ(g), fg) ∈ Ẑ∗ × F̂2.

Here χ(g) is the cyclotomic character, χ : Gal(Q) → Ẑ∗, which gives the action of
Gal(Q) on roots of unity and is well-understood. The more difficult part is to find

necessary and sufficient conditions for an element of f of the free group F̂2 to come

from a g ∈ Gal(Q). Since F̂2 = π1(M0,4) it is reasonable to conjecture that by
studying the geometric actions of Gal(Q) on the fundamental groups of all moduli

spaces π1(Mg,n) one could gain some insight into which elements f ∈ F̂2 come from
g ∈ Gal(Q). This approach has yielded some necessary conditions, but sufficient
conditions are still a mystery. The goal of the work described is to introduce a

modular operad whose automorphisms correspond to pairs (λ, f) ∈ Ẑ∗ × F̂2 and
show that some of these automorphisms correspond to elements g ∈ Gal(Q).

A modular operad of surfaces. Let Σg,n be a Riemann surface with n-boundaries.
We want to assume that boundary has a collar and that the boundaries have a
labelling. If we choose a surface Σg,n as a basepoint, loops (up to homotopy) in
Mg,n are exactly diffeomorphism classes of Σg,n (up to those homotopic to the
identity). That means we can identify the profinite mapping class group, denoted

Γ̂g,n, with the fundamental group of π1(Mg,n).
In joint work with Luciana Basualdo Bonatto we are constructing a modular

operad of seamed surfaces. We define a family of groupoids Sg,n whose objects
will be surface of genus g with n boundaries together with a chosen “atomic”
quilt decomposition. A pants decomposition of a surface Σg,n is a collection of
simple closed curves which cuts the surface Σg,n into surfaces of type Σ0,3 (pairs
of pants). Quilted pants decompositions, introduced in [NS00] require that every
circle in the pants decomposition of Σg,n has two marked points, called vertices
and three disjoint lines between the vertices. These “quilts” cut each pair of pants
in the decomposition into two hexagonal patches.
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Figure 1. An example of a quilted pants decomposition of Σ1,2

Definition. Let Σg,n be a fixed surface. We define a groupoid Sg,n whose ob-
jects are a chosen quilt decomposition Q/P . Morphisms are homotopy classes
of orientation preserving diffeomorphisms preserving the collars and labels of the
boundaries (up to isotopy).

We define composition

Sg,n ×ij Sh,k → Sg+h,n+k−2

and contraction operations

Sg,n → Sg+1,n−2

on objects by gluing of surfaces and on morphisms as the “combination” of the
maps on the subsurfaces.

Theorem. The collection of groupoids S = {Sg,n} assemble into a modular op-
erad. What’s more, if we take the classifying space functor BSg,n ≃ BΓg,n.

ĜT . The profinite Grothendieck-Teichmuller group ĜT is an intermediate object
between the absolute Galois group and the fundamental groups of the moduli
spaces. Even though it is a profinite group, it is easier to understand and has a, by
now, well-understood description in terms of automorphisms of operads [Hor17,
BdBHR19]. In [NS00] they define a subgroup of the Grothendieck-Teichmuller
group which contains the absolute absolute Galois group. Before we can define
this group we must introduce some notation. For any homomorphism of profinite
groups

F̂2 G

(x, y) (a, b)

we write f(a, b) for the image of any f ∈ F̂2. For example, given the map F̂2 → F̂2

which swaps generators x and y we write f 7→ f(y, x).

Definition. The group Λ ⊆ ĜT is the group of pairs

(λ, f) ∈ Ẑ∗ × F̂ ′
2
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which satisfy the property that

x 7→ xλ and y 7→ f−1yλf

induce an automorphism of F̂2 and :

(I) f(x, y)f(y, x) = 1,
(II) f(x, y)xmf(z, x)zmf(y, z)ym = 1 where xyz = 1 and m = (λ− 1)/2,

(III) f(x34, x45)f(x51, x12)f(x23, x34)f(x45, x51)f(x12, x23) = 1 in Γ̂0,5 where
xij is a Dehn twist along a loop surrounding boundaries i and j.

(iv) f(e1, a1)a
−8ρ2

3 f(a22, a
2
3)(a3a2a3)

2mf(e2, e1)e
2m
2 f(e3, e2)a

−2m
2 (a1a2a1)

2m

f(a21, a
2
2)a

8ρ2

1 f(a3, e3) = 1 where a1, a2, a3, e1, e2 are the generating Dehn

twists in Γ̂1,2.

Let Ŝ denote the profinite completion of the modular operad S as defined in

[Hor17]. Let End0(Ŝ) denote the endomorphisms of the modular operad S which
fix objects. Our main theorem is:

Theorem. There is an isomorphism of profinite groups:

End0(Ŝ) ∼= Λ.

It remains to show that the Galois groupGal(Q) acts non-trivially on the operad

Ŝ but we expect this will follow from a similar result in [BdBHR19].
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Deformations, cohomology and homotopy theory of relative
Rota-Baxter Lie algebras

Yunhe Sheng

(joint work with Chengming Bai, Li Guo, Andrey Lazarev, Rong Tang)

The concept of Rota-Baxter operators on associative algebras was introduced by
G. Baxter [6] in his study of fluctuation theory in probability. A linear map
T : A → A on an associative algebra A is a Rota-Baxter operator if it satisfies
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T (x)T (y) = T (T (x)y + xT (y))

for all x, y ∈ A.
Recently it has found many applications, including Connes-Kreimer’s [11] alge-

braic approach to the renormalization in perturbative quantum field theory. Rota-
Baxter operators lead to the splitting of operads [3, 36], and are closely related
to noncommutative symmetric functions and Hopf algebras [13, 22, 43]. Recently
the relationship between Rota-Baxter operators and double Poisson algebras were
studied in [19]. For further details on Rota-Baxter operators, see [20, 21].

In the Lie algebra context, a Rota-Baxter operator was introduced indepen-
dently in the 1980s as the operator form of the classical Yang-Baxter equation.
Let (g, [·, ·]g) be a Lie algebra. A linear operator T : g −→ g is called a Rota-
Baxter operator if

[T (x), T (y)]g = T
(
[T (x), y]g + [x, T (y)]g

)

for all x, y ∈ g.
Rota-Baxter operators on Lie algebras play important roles in many subfields

of mathematics and mathematical physics such as integrable systems [37].
To better understand the classical Yang-Baxter equation and related integrable

systems, the more general notion of an O-operator (later also called a relative
Rota-Baxter operator or a generalized Rota-Baxter operator) on a Lie algebra was
introduced by Kupershmidt [27]; this notion can be traced back to Bordemann [7].
Let (g, [·, ·]g) be a Lie algebra, ρ : g → gl(V ) a representation of g on a vector space
V . A linear map T : V → g is called a relative Rota-Baxter operator if

[Tu, T v]g = T (ρ(Tu)(v)− ρ(Tv)(u))

for all u, v ∈ V .
Relative Rota-Baxter operators provide solutions of the classical Yang-Baxter

equation in the semidirect product Lie algebra and give rise to pre-Lie algebras
[2].

Deformations. The concept of a formal deformation of an algebraic structure
began with the seminal work of Gerstenhaber [17, 18] for associative algebras.
Nijenhuis and Richardson extended this study to Lie algebras [34, 35]. More gen-
erally, deformation theory for algebras over quadratic operads was developed by
Balavoine [4]. There is a well known slogan, often attributed to Deligne, Drinfeld
and Kontsevich: every reasonable deformation theory is controlled by a differential
graded (dg) Lie algebra, determined up to quasi-isomorphism. It is also mean-
ingful to deform maps compatible with given algebraic structures. Recently, the
deformation theory of morphisms was developed in [8, 15, 16] and the deformation
theory of diagrams of algebras was studied in [5, 14] using the minimal model
of operads and the method of derived brackets [26, 30, 42]. Sometimes a dg Lie
algebra up to quasi-isomorphism controlling a deformation theory manifests itself
naturally as an L∞-algebra. This often happens when one tries to deform several
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algebraic structures as well as a compatibility relation between them, such as di-
agrams of algebras mentioned above. We will see that this also happens in the
study of deformations of a relative Rota-Baxter Lie algebra, which consists of a
Lie algebra, its representation and a relative Rota-Baxter operator.

Cohomology theories. A classical approach for studying a mathematical struc-
ture is associating invariants to it. Prominent among these are cohomological in-
variants, or simply cohomology, of various types of algebras. Cohomology controls
deformations and extension problems of the corresponding algebraic structures.
Cohomology theories of various kinds of algebras have been developed and studied
in [10, 17, 24, 25]. More recently these classical constructions have been extended
to strong homotopy (or infinity) versions of the algebras, cf. for example [23].

Homotopy invariant construction of Rota-Baxter Lie algebras. Homo-
topy invariant algebraic structures play a prominent role in modern mathemati-
cal physics [40]. Historically, the first such structure was that of an A∞-algebra
introduced by Stasheff in his study of based loop spaces [38]. Relevant later de-
velopments include the work of Lada and Stasheff [28, 39] about L∞-algebras
in mathematical physics and the work of Chapoton and Livernet [9] about pre-
Lie∞-algebras. Strong homotopy (or infinity-) versions of a large class of algebraic
structures were studied in the context of operads in [29, 32].

Our results. We apply Voronov’s higher derived brackets construction [42] to
construct the L∞-algebra that characterizes relative Rota-Baxter Lie algebras as
Maurer-Cartan (MC) elements in it. This leads, by a well-known procedure of
twisting, to an L∞-algebra controlling deformations of relative Rota-Baxter Lie
algebras. Moreover, we show that this L∞-algebra is an extension of the dg Lie
algebra that controls deformations of LieRep pairs (a LieRep pair consists of a
Lie algebra and a representation) given in [1] by the dg Lie algebra that controls
deformations of relative Rota-Baxter operators given in [41].

We study the cohomology theory for relative Rota-Baxter Lie algebras. A rel-
ative Rota-Baxter Lie algebra consists of a Lie algebra, its representation and an
operator on it together with appropriate compatibility conditions. Constructing
the corresponding cohomology theory is not straightforward due to the complex-
ity of these data. We solve this problem by constructing a deformation complex
for a relative Rota-Baxter Lie algebra and endowing it with an L∞-structure. In-
finitesimal deformations of relative Rota-Baxter Lie algebras are classified by the
second cohomology group. Moreover, we show that there is a long exact sequence
of cohomology groups linking the cohomology of LieRep pairs introduced in [1],
the cohomology of O-operators introduced in [41] and the cohomology of relative
Rota-Baxter Lie algebras. The above general framework has two important special
cases: Rota-Baxter Lie algebras and triangular Lie bialgebras and we introduce
the corresponding cohomology theories for these objects. We also show that in-
finitesimal deformations of Rota-Baxter Lie algebras and triangular Lie bialgebras
are classified by the corresponding second cohomology groups.
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Dotsenko and Khoroshkin studied the homotopy of Rota-Baxter operators on
associative algebras in [12], and noted that “in general compact formulas are yet
to be found”. For Rota-Baxter Lie algebras, one encounters a similarly challeng-
ing situation. We use the approach of L∞-algebras and their MC elements to
formulate the notion of a (strong) homotopy version of a relative Rota-Baxter Lie
algebra, which consists of an L∞-algebra, its representation and a homotopy rel-
ative Rota-Baxter operator. We show that strict homotopy relative Rota-Baxter
operators give rise to pre-Lie∞-algebras, and conversely the identity map is a
strict homotopy relative Rota-Baxter operator on the subadjacent L∞-algebra of
a pre-Lie∞-algebra. An r∞-matrix gives rise to a homotopy relative Rota-Baxter
operator.
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Higher Lie theory

Bruno Vallette

(joint work with Daniel Robert-Nicoud)

State of the art. At the center of classical Lie theory lies Lie’s third theorem,
which tells us how to integrate a finite dimensional real Lie algebra in order to
obtain a simply connected real Lie group, providing an equivalence between the
respective categories. The Baker–Campbell-Hausdorff (BCH) formula plays a fun-
damental role, inducing the group structure. We developed the higher Lie theory,
i.e. the extension of this theory to the derived world of differential graded Lie
algebras and — further still — to homotopy Lie algebras.

Replacing classical Lie algebras by their derived versions is mandatory in defor-
mation theory, whose fundamental theorem, due to Pridham [Pri10] and Lurie
[Lur11], shows that every deformation problem is controlled by a differential graded
Lie algebra in characteristic zero, formalizing a heuristic principle that dates back
to Deligne and others, see [Toe17] for a detailed account. In this domain, given
an underlying “space” together with a type of structure, one would like to classify
all the possible structures present on that space up to some equivalence relations.
For example, one can study the classification of associative algebras structures on
a chain complex up to isomorphisms [Ger64], the classification of complex struc-
tures on Riemannian manifolds up to diffeomorphisms [KS58], or the classification
of Poisson structures on manifolds up to diffeomorphisms [Kon03]. In each of these
cases, there is a differential graded Lie algebra whose Maurer–Cartan elements are
in one-to-one correspondence with structures and whose action of the gauge group,
obtained via the BCH formula, models the equivalence relation of interest.

This deformation theoretical information is contained in the Deligne groupoid,
whose points are the Maurer–Cartan elements of the differential graded Lie alge-
bra and whose morphisms are the gauge equivalences. However, in the world of
homotopy theory we are interested in comparing these equivalences, and then the
equivalences between equivalences, and so on. This raises the question of finding
a Deligne “∞-groupoid” which would faithfully encode this higher data. The pic-
ture that comes to mind is that of a topological space with points related by paths
subject to homotopies and then homotopies of homotopies, etc. Indeed, according
to Grothendieck’s homotopy hypothesis, this is exactly the type of object that one
should be looking for in order to get a suitable notion of an ∞-groupoid.

The study of the rational homotopy theory of spaces is yet another domain where
differential graded Lie algebras play a key role: as shown by Quillen [Qui69] with
homotopical methods, they faithfully model the rational homotopy type of con-
nected and simply-connected spaces. Using geometrical methods, Sullivan [Sul77]
settled a Eckmann–Hilton or Koszul dual version of rational homotopy theory
with quasi-free differential graded commutative algebras as models. Although the
notion was not yet defined at the time, such a Sullivan model is equivalent to
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the structure of a homotopy Lie algebra on the dual of its generators. This lat-
ter notion, which generalizes that of a differential graded Lie algebra by relaxing
relations up to homotopy, has come to play a ubiquitous role in recent years.

In the world of homotopy theory, where one considers objects up to quasi-isomor-
phisms, the notions of a differential graded Lie algebra and of a homotopy Lie
algebra are equivalent. For instance, the Lurie–Pridham theorem can equally be
stated using homotopy Lie algebras as it is formulated in terms of an equivalence
of ∞-categories. But in the algebraic world, where one works up to isomorphisms,
this does not hold true and the notion of a homotopy Lie algebra is mandatory
to encode some deformation problems in the way explained above. Homotopy
Lie algebras also give rise to a natural notion of “morphisms up to homotopy” —
commonly called ∞-morphisms — that also play a very important role in deforma-
tion theory, see the deformation quantization of Poisson manifolds by Kontsevich
[Kon03]. If one wants to do deformation theory using homotopy Lie algebras, the
main issue is to coin the right generalization of the gauge group: what is the nature
of the object that integrates homotopy Lie algebras?

Higher Lie theory. Our work lies at the cornerstone of Lie theory, deformation
theory, and rational homotopy theory. Hinich [Hin97] and then Getzler [Get09]
introduced two deformation ∞-groupoids naturally associated to homotopy Lie
algebras, the latter one being denoted by γ•(g) . Since its introduction, Getzler’s
∞-groupoid was rarely studied or used directly, contrarily to Hinich’s version.
The reason for this lies in the complicated form of its intrinsic definition. This is
unfortunate since, in the authors’ opinion, this object should be central in both
deformation theory and rational homotopy theory. Driven by this, the starting
goal of our project was to present an alternative definition of Getzler’s ∞-groupoid
with which it is easier to work and for which we can give explicit formulas. We
construct an explicit cosimplicial (complete shifted) homotopy Lie algebra

mc• := ŝL∞ (C•)

which is freely generated by the normalized chain complex of the geometric sim-
plices. Then an idea going back to Kan [Kan58] tells us how to use it to obtain a
couple of adjoint functors

L : sSet sL∞- alg : R .⊥

Theorem. Getzler’s functor is naturally isomorphic to the above integration func-
tor:

R(g) := HomsL∞- alg(mc•, g) ∼= γ•(g) .

This new description has many advantages. For example, it is known that
Hinich’s space MC•(g) is functorial with respect to ∞-morphisms, while Getzler’s
space was known to be functorial with respect to strict morphisms only. With the
present new construction, we are able to prove functoriality of R with respect of
a refined version of ∞-morphisms. Moreover, this approach automatically gives
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us a left adjoint functor L which provides us with explicit homotopy Lie algebra
models for non-necessarily connected nor simply-connected spaces.

Higher Baker–Campbell–Hausdorff products. The Kan property for R(g)
can be established by providing canonical horn fillers, so that we actually get a
canonical algebraic ∞-groupoid. This latter notion [Nik11] is defined by a structure
(the canonical horn fillers) and not by a property (existence); as such, it behaves
much better than generic Kan complexes with respect to algebraic properties.
This represents a change of paradigm which makes Getzler’s construction leave
homotopy theory and enter the world of algebra. These horns fillers define a
whole hierarchy of higher Baker–Campbell–Hausdorff products for homotopy Lie
algebras.

Rational homotopy theory. Finally, the higher Lie theory admits a salient
application in rational homotopy theory: the adjoint functors L and R directly
relate homotopy Lie algebras and simplicial sets, i.e. spaces, faithfully preserving
their rational homotopy type. First, these two functors induce bijections between
path-connected points and gauge equivalent Maurer–Cartan elements. Then, they
are shown to preserve the composition into connected components. So it remains
to study their behaviour on any connected component alone. We introduce a

pointed version L̃ ⊣ R̃ of the aforementioned adjunction.

Theorem. For X• a pointed connected finite type simplicial set, the unit

X• −→ R̃L̃(X•)

of the L̃ ⊣ R̃-adjunction is homotopically equivalent to the Q-completion of Bous-
field–Kan. In particular, it a rationalization when X• is nilpotent.

This simplifies drastically the Lie side of rational homotopy theory: recall that
Quillen’s original construction, associating a Lie algebra to a space, is done via
the composite of many consecutive adjunctions. It also has the great advantage
of extending it outside the connected and the simply-connected cases. And it
settles a faithful Eckmann–Hilton or Koszul dual to Sullivan’s approach: recall
that the linear dual of the generating space of a Sullivan model form a homotopy
Lie algebra. A similar approach — which was a source of inspiration of our work
— was developed by Buijs–Felix–Tanre–Murillo, see e.g. [BFMT20], but with a
theory working only for differential graded Lie algebras and without the explicit
formulas provided by the operadic calculus.
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Rational homotopy theory and mysterious duality

Alexander A. Voronov

(joint work with Hisham Sati)

Mysterious duality was discovered by Iqbal, Neitzke, and Vafa [3] in 2001 as a
convincing, yet mysterious correspondence between certain symmetry patterns in
toroidal compactifications of M-theory and del Pezzo surfaces [2, 4], both governed
by the root system series Ek. It turns out that the sequence of del Pezzo surfaces
is not the only sequence of objects in mathematics which gives rise to the same Ek

symmetry pattern. I will present a sequence of topological spaces, starting with
the four-sphere S4, and then forming its iterated cyclic loop spaces Lk

cS
4, whose

rational homotopy theory is subject to the same Ek symmetry properties. For this
sequence of spaces, the correspondence between its Ek symmetry pattern and that
of toroidal compactifications of M-theory is no longer a mystery, as each space
Lk
cS

4 is naturally related to the compactification of M-theory on the k-torus via
identification of the equations of motion of (11 − k)-dimensional supergravity as
the defining equations of the Sullivan minimal model of Lk

cS
4, cf. [1]. This gives

an explicit duality between rational homotopy theory and physics and uncovers
the mystery of Mysterious Duality between mathematics and physics:

Algebraic geometry oo //
hh

Iqbal-Neitzke-Vafa ((

Algebraic Topology

Physics
vv Sati-V

66♠♠♠♠♠♠♠♠♠♠♠♠

Conjecture. There must be an explicit relation between the series of del Pezzo
surfaces Bk, 0 ≤ k ≤ 8, and the series of iterated cyclic loop spaces Lk

cS
4, 0 ≤

k ≤ 8. This relation should match the Ek symmetry patterns occurring in both
series, as well as relate other geometric data, such as the volumes of curves on del
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Pezzo surfaces, with some geometric data, such as the radii of S4 and S1s, for the
iterated cyclic loop spaces Lk

cS
4.

Thus, we shift the mystery of Mysterious Duality into a duality between alge-
braic geometry and algebraic topology:
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What is a 2-dimensional field theory and how might one
construct one?

Nathalie Wahl

Let Cob2 denote the surface cobordism category: the objects of Cob2 are the
natural numbers, where we think of n as representing a disjoint union of n circles,
and morphisms all the topological types of cobordisms between circles. By a 2d–
TFT (2–dimensional topological field theory), we mean here a symmetric monoidal
functor

F : Cob2 −→ Vect

from Cob2 to the category of vector spaces.

Theorem (Folklore theorem). There is an equivalence of categories between the
category of 2d-TFT and the category of commutative Frobenius algebras.

In the statement, a commutative Frobenius algebra means a vector space V
equipped with a commutative multiplication µ : V ⊗V → V and a non-degenerate
trace τ : V → k, where k denotes the ground field. In the stated equivalence,
V = F (1) is the value of the 2d–TFT on the object 1, µ the value of F on the pair
of pants, and τ the value of F on a disc. (A proof of this theorem can be found in
Kock’s book [4].)

Now we can replace Cob2 by a category CobC∗

2 with the same objects but with
morphisms from n to m the chain complex

⊕

Σ∈Cob2(n,m)

C∗(M(Σ))

where Σ runs over the morphisms in Cob2, i.e., the topological types of cobordisms
from n to m circles, and M(Σ) denotes the moduli space of Riemann structures
on Σ, and where the chains are some appropriate cellular chains on the moduli
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space. Likewise, one can consider the category CobH∗

2 with the same objects and
morphisms now the graded vector spaces

⊕

Σ∈Cob2(n,m)

H∗(M(Σ)).

We will call symmetric monoidal functors

F : CobC∗

2 −→ Chain

from CobC∗

2 to the dg-category of chain complexes a 2d–TCFT (2–dimensional
topological conformal field theory), and symmetric monoidal functors

F : CobH∗

2 −→ gVect

from CobC∗

2 to the graded linear category of graded vector spaces a 2d–HCFT
(2–dimensional homological conformal field theory).

In this talk, we considered the following questions:

(1) What is a 2d–TCFT or 2d–HCFT as an algebraic structure? i.e., what
could be an analogue of the above theorem in those cases?

(2) Are there non-trivial examples?
(3) Are such field theories useful for anything?

We only gave very partial answers, surveying some of the results and ideas in the
papers [1, 2, 3].
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Substitudes, Bousfield localization, higher braided operads, and
Baez-Dolan stabilization

David White

(joint work with Michael Batanin)

In 1995, Baez and Dolan introduced the stabilization hypothesis, which loosely
states that k-tuply monoidal weak n-categories are the same as (k + 1)-tuply
monoidal weak n-categories as long as k ≥ n + 2 [BD95]. Here k-tuply monoidal
signifies the additional structure you get on a weak n-category from reindexing
from an (n+ k)-category with one cell in each dimension < k. For example, if C is
a 2-category with one object and one morphism, and we reindex two levels, then
we obtain a 0-category (i.e., a set) with two commuting operations, corresponding
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to horizontal and vertical composition in the 2-cells of C. By the Eckmann-Hilton
argument, this yields the structure of a commutative monoid. Reindexing three
levels, from a 3-category with only one cell in dimensions 0, 1, and 2, does not
yield any additional structure on the resulting 0-category.

In [BW15], we sketched a proof of the stabilization hypothesis depending on
the homotopy theory of k-operads (which encode k-tuply monoidal structure). We
made good on this promise by proving the [BW20b, Theorem 14.2.1]:

Theorem A (Baez-Dolan Stabilization). Let 0 ≤ n and M an n-truncated mono-
idal combinatorial model category with cofibrant unit. Then i! :Bk(M)→Bk+1(M)
and (jk)! : Bk(M) → E∞(M) are left Quillen equivalences for k ≥ n+ 2.

Here M should be thought of as a model category of weak n-categories (e.g.,
Rezk’s model via Θn-spaces), Bk(M) is the category of algebras over a k-operadGk

(the cofibrant replacement of the terminal k-operad) encoding k-tuply monoidal
weak n-categories, and i and j are comparison functors (based on suspension
and symmetrization) between k-operads, (k+1)-operads, and symmetric operads,
previously constructed by Batanin [Bat10]. To say M is n-truncated means its
simplicial mapping spaces are Wn-local (defined below).

Such a result (but requiring a standard system of simplices on M) had previ-
ously been proven by Batanin, but we deduce Theorem A from a much stronger
result [BW20b, Theorem 14.1.2], where SO is the category of symmetric operads:

Theorem B. Let M a combinatorial monoidal model category with cofibrant unit.
For k ≥ 3 and 2 ≤ n + 1 ≤ k, the symmetrization functor symk : OpWn

k (M) →

SO(M) and the suspension functor Σ! : OpWn

k (M) → OpWn
m (M) (for k < m ≤ ∞)

are left Quillen equivalences. Moreover, for 1 ≤ n ≤ ∞, the braided symmetriza-
tion functor bsym2 : OpWn

2 (M) → BO(M) is a left Quillen equivalence with the
category of braided operads.

Here OpWn

k (M) denotes the category of locally constant k-operads, relative to
the localizer Wn that encodes n-types. As developed by Cisinski, a fundamental
localizer [BW20b, Definition 9.1.1] is a class of functors between small categories
that contains all identity functors, satisfies the two out of three property, is closed
under retracts, contains functors A → 1 where 1 is the terminal category and A is
a category with terminal objects, and such that, if u/c : A/c → B/c is in W for
each object c ∈ C (where u is a morphism in Cat/C) then u is in W.

The localizer Wn is the smallest localizer containing the unique functor from
the (n+ 1)-sphere (viewed as a category) to the terminal category. That minimal
fundamental localizers such as Wn exist is a theorem of Cisinski. We recall that a
category A is said to be W -aspherical if the unique functor from A to 1 is in W .

To study the homotopy theory of OpWn

k (M), we encode categories of k-operads
as algebras over substitudes. A substitude [BW20b, Definition 5.1.1] is equiva-
lent to the data of a colored operad P with a category A of unary operations.
We use techniques from [BB17] and [WY18] to transfer model structures from
presheaf categories [A,M] to categories algebras over what we call Σ-free tame
unary substitudes with faithful unit, a class that includes categories of k-operads.
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We generalize work of Cisinski to prove the existence of left Bousfield localiza-
tions [A,M]W for any proper fundamental localizer W , with respect to the projec-
tive, injective, or Reedy model structure on presheaves [BW20b, Theorem 9.3.5].
In these local model structures, local objects F : A → M are W -locally constant
presheaves, i.e., for any W -aspherical category A′, and any functor u : A′ → A,
the induced functor u∗(F ) : A′ → M is isomorphic to a constant presheaf in
Ho[A′,M]. The local equivalences are morphisms u : A → B inducing right
Quillen equivalences on categories of locally constant presheaves.

W∞ is the minimal fundamental localizer making categories with terminal ob-
jects W -aspherical. Equivalently, W∞ is the class of functors whose nerve is a
weak equivalence. W∞-locally constant functors F are those taking all morphisms
f in A to weak equivalences. This is analogous to [CW18] where the local ob-
jects are the homotopy functors (i.e., those preserving weak equivalences). If M is
n-truncated then [A,M]Wr → [A,M]W∞ is a Quillen equivalence for all r ≥ n+1.

To get from Opk(M) to OpWn

k (M), we must left Bousfield localize. Unfortu-
nately, categories of algebras over substitudes are often not left proper. To remedy
this, we develop a theory of left Bousfield localization that does not require left
properness, and results in a semi-model structure. A semi-model category [BW20b,
Definition 2.1.1] has three classes of morphisms that satisfy all of the model cat-
egory axioms except that we only know that trivial cofibrations with cofibrant
domain lift against fibrations, and that morphisms with cofibrant domain admit
factorizations into trivial cofibrations followed by fibrations. Because semi-model
categories admit cofibrant replacement, and because the subcategory of cofibrant
objects behaves exactly like a model category, every result about model categories
has a semi-model categorical analogue, and semi-model categories are equally use-
ful in practice. We state our localization theorem [BW20a, Theorem A]:

Theorem C (Bousfield localization without left properness). Suppose that M is
a combinatorial semi-model category whose generating cofibrations have cofibrant
domain, and C is a set of morphisms of M. Then there is a semi-model struc-
ture LC(M) on M, whose weak equivalences are the C-local equivalences, whose
cofibrations are the same as M, and whose fibrant objects are the C-local objects.
Furthermore, LC(M) satisfies the universal property that, for any any left Quillen
functor of semi-model categories F : M → N taking C into the weak equivalences
of N , then F is a left Quillen functor when viewed as F : LC(M) → N .

This theorem is of independent interest for a host of applications, detailed
in [BW20a], as lack of left properness has bedeviled researchers seeking to left
Bousfield localize for years. Examples in [BW20a], show that sometimes the classes
of morphisms above do not satisfy the model category axioms, so only a semi-model
structure is possible.

There are two ways to get from [A,M] to OpWn

k (M). One can either localize
first, then lift the resulting model structure (as in [Whi17, Whi21]), or one can
lift first (using the transfer theorem) and then attempt to localize. As proven in
[BW21, Theorem 5.6], these two approaches are equivalent (when both work).
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In addition to these localization results, to prove Theorem B we develop a the-
ory of homotopical Beck-Chevalley squares [BW20b, Theorem 4.2.2] to lift Quillen
equivalences of presheaf categories to Quillen equivalences of algebras over substi-
tudes. This vastly generalizing previous work on such problems (e.g., [WY19]).

Locally constant k-operads are a model for higher braided operads [Bat10], and
the category of unary operations Qop

k has Qk
∼=

∐
Qk(m) such that the nerve

of Qk(m) is homotopy equivalent to the unordered configuration space of points
in Rk. An analysis of this homotopy type [BW20b, Theorem 11.1.7] is the last
ingredient in the proof of Theorems A and B, and the reason for the inequalities
featuring k and n. We also lift various equivalences of homotopy categories in this
setting (known since [Bat10]) to Quillen equivalences [BW20b, Proposition 12.2.1].
Another consequence of Theorem B is:

Theorem D (Stabilization for Higher Braided Operads). If M is a n-truncated,
combinatorial, monoidal model category with cofibrant unit, and n ≥ 0 and 3 ≤
n+2 ≤ k ≤ ∞, then the symmetrization functor symk : OpW∞

k (M) → SO(M) and

the suspension functor Σ! : OpW∞

k (M) → OpW∞

m (M) (for k < m ≤ ∞) are left

Quillen equivalences. Moreover, for 1 ≤ n ≤ ∞, bsym2 : OpW∞

2 (M) → BO(M)
is a left Quillen equivalence.

Finally, we obtain a stabilization result for (n+m,n)-categories, rather than just
weak n-categories, stated below for Rezk’s model of (n+m,n)-categories (where
Spm models m-types), as a consequence of the stronger results listed above:

Theorem E. The suspension functor induces a left Quillen equivalence

i! : Bk(ΘnSpm) → Bk+1(ΘnSpm)

for k ≥ m + n + 2 and, hence, an equivalence between homotopy categories of
Rezk’s k-tuply monoidal (n +m,n)-categories and Rezk’s (k + 1)-tuply monoidal
(n+m,n)-categories.

Our methods are general enough to apply to other definitions of higher cate-
gories, including Tamsamani, Segal, and n-quasi-categories.

References

[BD95] Baez J., Dolan J., Higher-dimensional algebra and topological quantum field theory,
Journal Math. Phys. 36 (1995), 6073–6105.

[Bat10] Batanin M.A., Locally constant n-operads as higher braided operads, J. Noncomm.
Geo. 4 (2010), 237–265.

[BB17] Batanin, M.A., Berger, C., Homotopy theory for algebras over polynomial monads,
Theory and Application of Categories 32, No. 6, 148–253, 2017.

[BW15] Batanin M.A. and White, D., Baez-Dolan Stabilization via (Semi-)Model Categories
of Operads, in “Interactions between Representation Theory, Algebraic Topology, and
Commutative Algebra,” Research Perspectives CRM Barcelona, 5 (2015), 175–179.

[BW21] Batanin, M.A. and White, D., Left Bousfield localization and Eilenberg-Moore Cate-
gories, Homology, Homotopy and Applications 23(2), pp.299-323, 2021. Available as
arXiv:1606.01537.

[BW20a] Batanin, M.A. and White, D., Left Bousfield localization without left properness, avail-
able as arXiv:2001.03764.



Homotopical Algebra and Higher Structures 2555

[BW20b] Batanin, M.A. and White, D., Homotopy theory of algebras of substitudes and their
localisation, arXiv:2001.05432.

[CW18] Chorny, B. and White, D., A variant of a Dwyer-Kan theorem for model categories,

available as arXiv:1805.05378.
[Whi17] White, D. Model structures on commutative monoids in general model categories.

JPAA 221:12 (2017), 3124–3168.
[Whi21] White, D. Monoidal Bousfield Localization and Algebras over Operads, Equivariant

Topology and Derived Algebra, Cambridge University Press (2021), 179–239.
[WY18] White, D., Yau, D., Bousfield localizations and algebras over colored operads, Applied

Categorical Structures, 26:153–203, 2018.
[WY19] White, D., Yau, D., Homotopical adjoint lifting theorem, Applied Categorical Struc-

tures, 27:385–426, 2019.

Reporter: Andrey Lazarev



2556 Oberwolfach Report 46/2021

Participants

Dr. Dimitri Ara
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Department of Mathematics
University of Quebec/Montreal
C.P. 8888
Succ. Centre-Ville
Montréal QC H3C 3P8
CANADA

Prof. Dr. Ralph Kaufmann

Department of Mathematics
Purdue University
150 N. University Street
West Lafayette IN 47907-2067
UNITED STATES

Prof. Dr. Bernhard Keller

U.F.R. de Mathématiques
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Institut de Mathématiques de Jussieu
Case 247
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