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Abstract. Statistics for stochastic differential equations (SDEs) attempts
to use SDEs as statistical models for real-world phenomena. This involves an
understanding of qualitative properties of this class of stochastic processes
which includes Brownian motion as well as estimation of parameters in the
SDE or a nonparametric estimation of drift and diffusivity fields from obser-
vations. Observations can be in continuous time, in high frequency discrete
time considering the limit of small inter-observation times or in discrete time
with constant inter-obseration times. Application areas of SDEs where state
spaces are naturally viewed as manifolds or stratified spaces include multi-
variate stochastic volatility models, stochastic evolution of shapes (e.g. of
biological cells), time-varying image deformations for video analysis and phy-
logenetic trees.
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Introduction by the Organizers

The workshop Statistics of Stochastic Differential Equations on Manifolds and
Stratified Spaces organised by Stephan Huckemann (Göttingen), Xue-Mei Li (Lon-
don), Yvo Pokern (London) and Anja Sturm (Göttingen) was attended by 23
participants (including 8 women) corresponding to a half-workshop size. Travel
arrangements were still somewhat affected by the pandemic situation as well as
the beginning of teaching at UK universities. Thus, the workshop was organized
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in a hybrid format with 9 particpants including two of the organizers (Huckemann
and Li) participating virtually.

Statistical inference and simulation for stochastic differential equations (SDEs)
on Euclidean domains has been studied over several decades. This includes both
parametric approaches where a small number of real-valued parameters deter-
mine simulation behaviour or are to be estimated from observations of the SDE’s
state and nonparametric approaches. Observations can be in continuous time, in
high frequency discrete time considering the limit of small inter-observation times
or in discrete time with constant inter-observation times. Statistical methodol-
ogy for SDEs in the Euclidean case is an active field of research including im-
proved methods for sampling diffusion bridges to enable dealing with constant
inter-observation times (workshop contributions by M. Schauer, M. Sorensen and
F. van der Meulen comment on this issue) and consistency results for nonparamet-
ric estimation (workshop contributions by V. Panaretos and E. Schmisser). Many
applications drive the development of particular classes of SDEs, e.g. to capture
temporal synchronization as studied in the workshop contribution by S. Ditlevsen.
SDEs also play an important role as limiting objects of Markov chains arising
in Markov chain Monte Carlo and the design of proposal distributions and their
optimal scaling to achieve the best possible mixing of the Markov chains to reach
the invariant measure (often a Bayesian posterior distribution) is of continued
significant interest (workshop contribution by W. Kendall).

Stochastic analysis for SDEs whose state space is a non-trivial manifold has
been studied and introductory textbooks are now available but work on statistical
inference and the use of such SDEs in statistical applications is still rare. This is
partly due to the considerable technical challenges applied statisticians face when
considering work in the area. Application areas where state spaces are naturally
viewed as manifolds or stratified spaces include multivariate stochastic volatility
models (workshop contribution by M. Ngoc Bui), protein structure evolution and
molecular dynamics (workshop contribution by E. Garćıa-Portugués), stochastic
evolution of shapes (e.g. of biological cells) and time-varying image deformations
for video analysis (workshop contribution by S. Sommer) and phylogenetic trees
(workshop contribution by T. Nye). In some cases, existing algorithms can be car-
ried over essentially unchanged (e.g. the exact algorithm to simulate SDEs on the
circle rather than the real line). In other cases, the theoretical foundation is far
less clear than in the Euclidean case, even though empirical observations of good
behaviour are available (e.g. in the workshop contribution by M. Ngoc Bui). In
other cases, it is unclear how existing methods can be translated to the manifold
setting. Numerical integration schemes have been discussed by M. Mamajiwala.
Aspects of curvature on convergence rates of Fréchet means have been highlighted
by D. Van Tran and of diffusion means by S. Sommer. The workshop also ad-
dressed qualitative properties of Brownian motions in more general settings than
the standard Euclidean space with uniformly elliptic generator as studied by T.
Nye and K. Habermann in their workshop contributions and a look at statistics
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for stochastic partial differential equations (workshop contribution by M. Reiss)
widened the horizon.

Discussions on the subtly different understanding of hypoellipticity in the ap-
plied statistics and the probability theory communities have highlighted new
methodological and algorithmic research directions: sampling hypoelliptic diffu-
sion bridges is not yet a solved problem after all! Many results in stochastic
analysis on manifolds that would be desirable from a methodological point of view
(e.g. convergence of Euler-like schemes, existence of time-reversed diffusions and
increased generality of bounds of SDE transition densities in terms of associated
Brownian motion transition densities) have been discussed. The workshop con-
cluded with a perspective on possible future applied research directions including
averaging and homogenization where the study of the generator of parametrized
families of diffusion processes and their convergence properties may be amenable
to translation to the manifold.
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Abstracts

Adaptive non parametric drift estimation of an integrated jump
diffusion process

Émeline Schmisser

(joint work with Benedikt Funke)

We consider a two-dimensional stochastic process (Xt, Vt)t≥0 such that

dXt = Vtdt, X0 = 0, dVt = b(Vt)dt+ σ(Vt)dWt + ξ(Vt−)dLt, V0
D
= η,

where W = (Wt)t≥0 is a standard Brownian Motion and L = (Lt)t≥0 is a centered
Lévy process with finite variance E(L2

1) :=
∫

R
y2ν(dy) < ∞ such that

dLt =

∫

R

z(µ(dt, dz)− ν(dz)dt).

W and L are independent and η is independent of both W and L. This process
is observed at discrete times 0,∆, . . . , n∆ where ∆ → 0 and n∆ → ∞. Our aim
is the nonparametric estimation of the unknown drift function b exclusively based
on observations of the integrated jump diffusion process Xt.

The main difficulty is that we do not observe directly Vt, but only the integrated
jump diffusion Xt. We consider the random variables

V̄k∆ :=
1

∆

(

X(k+1)∆ −Xk∆

)

=
1

∆

∫ (k+1)∆

k∆

Vsds, 1 ≤ k ≤ n+ 1.

and, to avoid some unnecessary dependence,

Y(k+1)∆ =
V̄(k+2)∆ − V̄(k+1)∆

∆
= b(V̄k∆) +Rk∆ + Zk∆

where Zk∆ is centred, and Rk∆ a remainder term. To construct our estimator, we
choose a sequence of increasing vectorial subspaces Sm of L2, and we minimize a
contrast function γn(s) on Sm where

γn(t) =
1

n

n
∑

k=1

(Y(k+1)∆ − s(V̄k∆))2.

We control the empirical risk of our estimator:

Rn(b̂m) = E

(

1

n

n
∑

k=1

(b̂m(V̄k∆)− b(V̄k∆))2

)

≤ c ‖bm − b‖2L2 + C
Dm

n∆
+K∆

where bm is the orthogonal projection of b on Sm, and Dm is the dimension of Sm.

Then we introduce a penalty term to choose the “best” estimator b̂m̂.
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Simulation of diffusion bridges and estimation for stochastic
differential equation

Michael Sørensen

The complexity of statistical inference for diffusions based on discrete time samples
often necessitates the use of computational techniques such as Markov chain Monte
Carlo. These require sampling of diffusion bridges that are coherent with observed
data, typically bridges between the observed values of the diffusion. A diffusion
bridge from a to b in [0, T ] is a solution X to a stochastic differential equation
started at a and conditioned to have the terminal value XT = b.

A method for simulating diffusion bridges for ergodic diffusions is presented. A
main advantage is that computing time is linear in T . Approximate bridges are
obtained by simulating (e.g. by the Euler scheme) two unconditional diffusions -
one with starting point a and another started at b. The first is spliced to the
time-reversal of the second the first time they meet. If they do not meet, a new
pair is simulated. For real diffusions the two diffusions can be independent. In
higher dimensions coupling methods are needed to ensure that the two diffusions
have a positive probability of meeting, and the stochastic differential governing
the second diffusion must be that of the time reversal of the stationary version of
the diffusion. The distribution of the approximate bridge is derived and used to
construct a Metropolis-Hastings algorithm where the proposals are approximate
bridges and the target distribution is that of an exact bridge from a to b.

It is briefly explained how the approach can be combined with methods of exact
simulation of diffusions to obtain a bridge simulation method that is both without
discretization error and with computing time linear in T ; for details see Jenkins,
Pollock, Roberts and Sørensen (2021).

The usefulness of the approach is demonstrated by an application to estimation
for stochastic differential equations with random effects, i.e. where some statistical
parameters are random, while other parameters are fixed.
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Brownian motion on Billera-Holmes-Vogtmann tree space.

Tom Nye

Statistics on non-Euclidean spaces is characterized by the lack of an addition op-
eration and scalar multiplication on the data space. This raises the question of
how to make sense of stochastic differential equations on such spaces, particularly
metric spaces which are not Riemannian manifolds. I will start by describing
some simple stratified spaces and explain how to obtain analytic expressions for
the transition kernel of Brownian motion. Next I will describe the Billera-Holmes-
Vogtmann (BHV) tree space of phylogenetic trees, a morecomplex stratified data
space. BHV tree space is a non-positively curved geodesic metric space, and exist-
ing statistical methods on the tree space mostly rely on least squares estimators. It
is highly desirable, though challenging, to construct a family of parametric distri-
butions on BHV tree space parametrised by a location and a dispersion parameter,
akin to the family of isotropic Gaussians in Euclidean space. One way to do this
is via transition kernels of Brownian motion. I will define Brownian motion on
BHV tree space and describe a bridge construction which enables Bayesian infer-
ence of the model parameters when data are modelled as identical independently
distributed draws from a Brownian motion kernel.

Inference for partially observed Riemannian Ornstein–Uhlenbeck
diffusions of covariance matrices

Mai Ngoc Bui

(joint work with Yvo Pokern, and Petros Dellaportas)

We construct a generalization of the Ornstein–Uhlenbeck processes on the cone
of covariance matrices endowed with the Log-Euclidean and the Affine-Invariant
metrics. Our development exploits the Riemannian geometric structure of sym-
metric positive definite matrices viewed as a differential manifold. We then provide
Bayesian inference for discretely observed diffusion processes of covariance matri-
ces based on an MCMC algorithm built with the help of a novel diffusion bridge
sampler accounting for the geometric structure. Our proposed algorithm is illus-
trated with a real data financial application.
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Stochastic Dynamical Systems Developed on Riemannian Manifolds

Mariya Mamajiwala

(joint work with Debasish Roy)

We propose a method for developing the flows of stochastic dynamical systems,
posed as Ito’s stochastic differential equations, on a Riemannian manifold identi-
fied through a suitably constructed metric. The framework used for the stochastic
development, viz. an orthonormal frame bundle that relates a vector on the tan-
gent space of the manifold to its counterpart in the Euclidean space of the same
dimension, is the same as that used for developing a standard Brownian motion
on the manifold. Mainly drawing upon some aspects of the energetics so as to con-
strain the flow according to any known or prescribed conditions, we show how to
expediently arrive at a suitable metric, thus briefly demonstrating the application
of the method to a broad range of problems of general scientific interest. These
include simulations of Brownian dynamics trapped in a potential well, a numerical
integration scheme that reproduces the linear increase in the mean energy of con-
servative dynamical systems under additive noise and non-convex optimization.
The simplicity of the method and the sharp contrast in its performance vis-á-vis
the correspondent Euclidean schemes in our numerical work provide a compelling
evidence to its potential.
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MCMC Optimal Scaling and Dirichlet forms

Wilfrid Kendall

(joint work with Jure Vogrinc, Giacomo Zanella and Mylene Bédard)

This talk reports work in progress on the use of Dirichlet forms to investigate op-
timal scaling phenomena for Markov chain Monte Carlo algorithms (specifically,
Metropolis-Hastings random walk samplers) under regularity conditions which are
substantially weaker than those required by the original approach (based on the use
of infinitesimal generators). The Dirichlet form method has the added advantage
of providing an explicit construction of the underlying infinite-dimensional con-
text, with intriguing possibilities for useful development using infinite-dimensional
stochastic analysis. In particular, this enables us directly to establish weak conver-
gence to the relevant infinite-dimensional diffusion. We also explore the behaviour
of optimal scaling when regularity does not hold, using models based on fractional
Brownian motion: intriguing examples of anomalous scaling then arise.
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Statistics for Stochastic Partial Differential Equations

Markus Reiß

In the first part we give a survey on statistical methods for stochastic partial
differential equations (SPDEs). We start with the questions of singularity and
equivalence of the observation laws on path space for simple stochastic differential
equations. In contrast to stochastic ordinary differential equations main param-
eters in SPDEs give rise to singular observation laws for different diffusivity and
transport parameters in a linear SPDE with second order differential operator in
the drift. Statistically, this means that we can pursue inference from observing
the realisation of an SPDE solution on a fixed time interval. The classical spectral
method, based on observing spatial Fourier modes in time, is discussed in detail.

Then we consider the observation of spatially local measurements and see that
the space resolution δ, tending to zero, plays a similar role as the frequency in spec-
tral methods tending to infinity. Based on the scalar local measurements in time
two estimators are derived, the augmented and the proxy maximum-likelihood es-
timator. For the stochastic heat equation we derive that the diffusivity estimators
are asymptotically normal with rate δ and explicit bias and variance. This allows
to pursue also nonparametric estimation for a space-dependent diffusivity function
θ(x), for which the spectral method is not feasible because the eigenfunctions of
the differential operator depend on the unknown function θ(x). The convergence
rate δ is minimax-optimal for this estimation problem and simulations show the fi-
nite sample properties of the estimators as well as their robustness with respect to
nonlinear perturbations in the source term (zero order of the differential operator).

As a concrete application in biophysics we consider stochastic models for cell
motility. A two-dimensional system of stochastic-reaction equations models cell
repolarisation, generalising the classical deterministic Meinhard model. Qualita-
tive implications of the dynamical noise on the repolarisation time are exhibited
and the performance of the diffusivity estimation for synthetic and experimental
data are shown. The talk is mainly based on the two references given below.
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Backward Filtering Forward Guiding for Markov processes

Frank van der Meulen

(joint work with Moritz Schauer, and Marcin Mider)

Consider a Markovian process that evolves on a prescribed tree-structure. The
transition on each inner edge is obtained by running a continuous-time Markov
process for a fixed time interval. At each vertex leaves can be attached; the values
at these leaves represent observations. An example is given in Figure 1. Suppose

0

s

t

v2

u

r v3

v1

Figure 1. Example of a tree with leaf-vertices v1, v2 and v3.
The inner vertices and root vertex are depicted by solid dots. At
vertex t the process splits (branches) independently, conditional
on the value at t (similar branching occurs at the root vertex).

the forward dynamics, i.e. the Markov process over the edges, is parametrised by
an unknown parameter θ.

As an example, on the branch (t, u) a diffusion process evolves for a time span
[t′, u′] according to the stochastic differential equation (sde)

(1) dXt = bθ(t,Xt) dt+ σθ(t,Xt) dWt, Xt′ = xt.

Branches leading to leaf-vertices correspond to a particular observations scheme,
e.g. the branch [u, v1] may correspond to assuming that Xv1 | Xu = x ∼ N(Lx,Σ)
for matrices L and Σ.

Interest lies in (i) sampling the process X conditional on its values at the leaf-
vertices and (ii) inferring the distribution of θ conditional on the leaf-vertices.
Here, I implicitly assume a Bayesian framework where the parameter θ is en-
dowed with a prior distribution. The task can be accomplished by an algorithm
called Backward Filtering Forward Guiding (BFFG). Here, one first computes
the Backward Information Filter (BIF) to a simplified version of the forward
dynamics, to ensure that the computations involved are tractable. In the SDE
case, rather than backward filtering (1) one would backward filter the linear SDE

dX̃t = (BX̃t + β(t)) dt + σ̃(t) dWt. The BIF then boils down to (backward)
Kalman-filtering on a tree.
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The output of the BIF can subsequently be used to adjust the dynamics of
the forward process such that it ends up in the observations at the leaf-vertices.
This adjustment is in fact an approximation to Doob’s h-transform. We call
the adjusted forward process a guided process, as it guides the process to the
observations. One can deduce closed-form expressions for the likelihood ratio
between the true conditioned process and the guided process. This in turn can be
used for Bayesian inference.

The BFFG-algorithm for diffusions is discussed in the paper [1], while general-
isations to graphical models and other stochastic processes is treated in [2].

This concerns joint work with Moritz Schauer (Chalmers University of Technology
- University of Gothenburg) and Marcin Mider (Trium Analysis Online GmbH).
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Langevin diffusions on the torus

Eduardo Garćıa-Portugués

Motivated by their use in modeling the evolution of proteins’ structures, we intro-
duced stochastic processes for continuous-time evolution of angles and developed
their estimation. The state space of such stochastic processes is the p-dimensional
torus Tp = Rp/(2πZ), diffusions {Θt} on it being defined as the “wrapping” by
the modulus operator (·) mod 2π of (time-homogeneous) diffusions on Rp given
by

dXt = b(Xt)dt+ σ(Xt)dWt,

where b(·) and σ(·) are 2π-periodic functions, this requirement being key for en-
suring the Markovianity of the resulting process {Θt}. The important class of
Langevin diffusions can be exported to Tp; it was seen that this class characterizes
ergodic time-reversible diffusions on Tp. Two specific Langevin diffusions were
exploited to define Ornstein–Uhlenbeck (OU) analogues on the torus, guided by
the characterization of the OU process on Rp as the unique ergodic time-reversible
diffusion with Gaussian stationary density and constant volatility. These two dif-
fusions are the multivariate von Mises and Wrapped Normal (WN) diffusions, the
last one given by

dΘt =

[

A
∑

k∈Zp

(µ−Θt − 2kπ)wk(Θt)

]

dt+Σ1/2dWt

for certain non-linear weights wk(·). Unlike in the OU case, the likelihood functions
of both diffusions involve a transition probability density (tpd) with no analyti-
cal solution. To bypass this issue, we explored three alternatives: (i) solving the
Fokker–Planck equation numerically through tailored discretization schemes; (ii)
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toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a spe-
cific approximation of the tpd of the WN process via the conditional density of
a wrapped OU process. A simulation study for p = 1, 2 compared the fidelity of
the approximate tpds to the exact ones, and investigated the estimation perfor-
mance of the approximate likelihoods. The specific approximate tpd for the WN
process was shown to be superior to the rest of tpd approximations for performing
estimation in this process, while numerically solving the Fokker–Planck equation
was seen to be a sensible estimation approach for p = 1. Finally, two diffusions,
on T1 and T2, were used to model the evolution of the backbone angles of the
protein 1GB1 in a molecular dynamics simulation. Empirical evidence of the per-
formance of the diffusive processes within a larger model of protein evolution was
also provided. The R package sdetorus implements the estimation methods and
applications presented.
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FDA of SDE?

Victor Panaretos

(joint work with N. Mohammadi and L. Santoro)

We consider the problem of nonparametric estimation of the drift and diffusion
coefficients of a Stochastic Differential Equation (SDE), based on n independent
replicates {X1(t), ..., Xn(t)}, observed sparsely and irregularly on the unit interval,
and subject to additive noise corruption. By sparse we intend to mean that the
number of measurements per path can be arbitrary (as small as two), and remain
constant with respect to n. We focus on time-inhomogeneous SDE of the form

dXt = µ(t)Xα
t dt + σ(t)Xβ

t dWt, where α ∈ {0, 1} and β ∈ {0, 1/2, 1}, which in-
cludes prominent examples such as Brownian motion, Ornstein-Uhlenbeck process,
geometric Brownian motion, and Brownian bridge. Our estimators are constructed
by relating the local (drift/diffusion) parameters of the diffusion to their global
parameters (mean/covariance, and their derivatives) by means of an apparently
novel PDE. This allows us to use methods inspired by functional data analysis,
and pool information across the sparsely measured paths. The methodology we
develop is fully non-parametric and avoids any functional form specification on the
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time-dependency of either the drift function or the diffusion function. We establish
almost sure uniform asymptotic convergence rates of the proposed estimators as
the number of observed curves n grows to infinity. Our rates are non-asymptotic
in the number of measurements per path, explicitly reflecting how different sam-
pling frequency might affect the speed of convergence. Our framework suggests
possible further fruitful interactions between FDA and SDE methods in problems
with replication.
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A polynomial expansion for Brownian motion and the associated
fluctuation process

Karen Habermann

Let (Bt)t∈[0,1] be a Brownian motion in R, which we assume is realised as the
coordinate process on the path space {w ∈ C([0, 1],R) : w0 = 0} under Wiener
measure P. We start by studying (Bt)t∈[0,1] conditioned to have vanishing iterated
time integrals up to order N ∈ N. Set

BN
1 =

(

B1,

∫ 1

0

Bs1 ds1, . . . ,

∫ 1

0

∫ sN−1

0

· · ·
∫ s2

0

Bs1 ds1 . . . dsN−1

)

and let Qn be the shifted Legendre polynomial of degree n ∈ N0 on [0, 1]. As
derived in [1], the stochastic process (LN

t )t∈[0,1] in R defined by

LN
t = Bt −

N−1
∑

n=0

(2n+ 1)

∫ t

0

Qn(r) dr

∫ 1

0

Qn(r) dBr

has the same law as (Bt)t∈[0,1] conditioned on BN
1 = 0. Adapting the usual proof

of Mercer’s theorem shows that as N → ∞ the sequence of covariances CN given
by, for s, t ∈ [0, 1],

CN (s, t) = min(s, t)−
N−1
∑

n=0

(2n+ 1)

∫ s

0

Qn(r) dr

∫ t

0

Qn(r) dr

converges uniformly on [0, 1]× [0, 1] to the zero function. It follows that the laws
of (LN

t )t∈[0,1] converge weakly on Ω0,0 = {w ∈ C([0, 1],R) : w0 = w1 = 0} as
N → ∞ to the unit mass δ0 at the zero path, which establishes that Brownian
motion (Bt)t∈[0,1] admits the polynomial decomposition, for t ∈ [0, 1],

Bt =

∞
∑

n=0

(2n+ 1)

∫ t

0

Qn(r) dr

∫ 1

0

Qn(r) dBr .

The decomposition was obtained independently by Foster, Lyons and Oberhauser
in [2] who use this representation to generate approximate sample paths of Brow-
nian motion which respect integration of polynomials up to a fixed degree. The
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resulting approximation of Brownian motion was implemented by Trefethen as a
Chebfun Example into MATLAB, see [5].

In [1], it is further proven that the fluctuation processes (FN
t )t∈[0,1] defined

by FN
t =

√
NLN

t converge in finite dimensional distributions as N → ∞ to the
collection (Ft)t∈[0,1] of independent zero-mean Gaussian random variables whose
variances are given by, for t ∈ [0, 1],

E

[

(Ft)
2
]

=
1

π

√

t(1− t) .

This is linked in [4] to the asymptotic convergence rate of the approximation for the
Lévy area of Brownian motion based on the polynomial expansion of the associated
Brownian bridge. The fluctuation result follows from the pointwise convergence
that, for s, t ∈ [0, 1],

lim
N→∞

NCN (s, t) =

{

1
π

√

t(1− t) if s = t

0 if s 6= t
.

The pointwise convergence above characterises the asymptotic error in the eigen-
function expansion for the Green’s function of a particular Sturm–Liouville prob-
lem, which is analysed more generally in [3]. For a complete orthonormal set
{φn : n ∈ N0} of eigenfunctions for the Sturm–Liouville problem

d

dx

(

p(x)
dφ(x)

dx

)

− q(x)φ(x) = −λw(x)φ(x)

with the corresponding eigenvalues {λn : n ∈ N0} forming a strictly increasing se-
quence, it is shown that, for regular Sturm–Liouville problems and for the singular
Sturm–Liouville problems associated with the Hermite polynomials, the associated
Laguerre polynomials and the Jacobi polynomials,

lim
N→∞

Nγ
∞
∑

n=N+1

(φn(x))
2

λn
=

C
√

p(x)w(x)
,

where the constant C of proportionality is explicitly known, and γ = 1
2 for the

Hermite polynomials and the associated Laguerre polynomials, whereas γ = 1 for
regular Sturm–Liouville problems and the Jacobi polynomials.
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Curvature and smeariness

Do Tran

(joint work with Stephan Huckemann)

Statistical theory for Fréchet mean on non-Euclidean spaces has been intensively
studied and developed in the recent years with the emerge non-Euclidean data in
various applications. Initial steps can be traced back to the strong law of large
numbers (LLN) for Fréchet mean on metric spaces by Ziezold, [5]. The next
mile stone is the central limit theorem (CLT) for Fréchet mean on Riemannian
manifolds in [3] by Bhattacharya and Patrangenaru. Since then, subsequent devel-
opments of the CLT for Fréchet mean on Riemannian manifolds and metric spaces
with local manifold structure near the mean has been made, see, for example
[1, 2, 4]. A common assumption in deriving CLT for Fréchet mean on manifolds
is that the population measure is sufficiently concentrated in a ball at the mean.
The concentration of the population distribution is to ensure the strict convexity
of the Fréchet function around the mean. A more general form of the CLT for
Fréchet mean is given in [4] where the authors pointed out that the CLT can be
smeary, that is, the empirical Fréchet mean limiting rates that are slower than
the classical n−1/2, where n denotes sample size, when the Hessian of the Fréchet
mean vanishes.

While smeary distributions seems rather exceptional, results in [6, 8] it was
discovered that these exceptional distributions affect the asymptotics of a large
class of distributions, for instance all Fisher-von-Mises distributions on the circle:
the rates are smaller than n−1/2 until rather high sample sizes and eventually
an asymptotic variance can be reached that is higher than that of tangent space
data. The phenomenon is called finite sample smeariness (FSS). In theoretical side,
smeary distributions show connections with positiveness of the sectional curvature
of the space, c.f. [9, 7]. However, existence of smeary measures are only shown
on symmetric spaces which contain a sphere, c.f. [8]. Thus, two natural questions
arise: can smeariness occurs on any manifold with positive sectional curvature and
is smeariness, and to some extend FSS, as exceptional as it seems.

We address these two questions in this talk. We confirm that any Riemann-
ian manifold that contain a section with positive curvature features directional
smeariness. Furthermore, we show that in those Riemannian manifolds with max-
imal injectivity radius, by adding infinitesimal perturbations near the cut locus of
the mean, one can construct a directional smeary measures converging to a given
non-smeary one. On manifolds with positive sectional curvature and maximal in-
jectivity radius, there exists a sequence of full smeary measures converging to a
given non-smeary one. In particular, these results show that a small perturbation
near the cut locus of the mean can change the CLT and thus the out come of a
sampling process of Fréchet mean drastically.
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Stochastic flows and shape bridges

Stefan Sommer

(joint work with Moritz Schauer, and Frank van der Meulen)

For applications in shape analysis, we are interested in stochastic flows of shapes
and stochastic shape flows conditioned on fixed values in time and space, i.e. shape
bridges. With shapes being subsets (sometimes submanifolds) of a domainD ∈ Rd,
we take the large deformation approach (LDDMM, see e.g. [11]) and consider
stochastic flows of diffeomorphisms [8] acting on shapes to give stochastic shape
flows [1]. Shape bridges have previously been studied in the finite dimensional
setting [9, 2]. In this extended abstract, we outline steps to extend this to infinite
dimensional shape bridges. We start with the simplest case of a Brownian flow
without drift and with fixed covariance in the Eulerian frame of reference.

1. Finite dimensional Eulerian stochastics

Let (Ω,F ,P) denote a probability space, let D ⊆ Rd be a shape domain, and let
x = (x1, . . . , xn) be a set of n landmarks in D. With landmarks indexed by i and
components in Rd indexed by α, the stochastic model from [1] without momentum
(only x-variable dynamics) is

(1) dxi,t = σj(xi,t) ◦ dW j
t .



Statistics of SDEs on Manifolds and Stratified Spaces 2659

Here W denotes an RJ -valued Wiener process, and σ1, . . . , σJ denote J vector
fields on D, i.e. σj : D → Rd. We let X(D) denote the space of vector fields on D.
The Stratonovich SDE has the corresponding Itô formulation

(2) dxi,t =
1

2

∂σk(xi,t)

∂xα
i,t

σα
k (xi,t)dt+ σj(xi,t)dW

j

where indices j, k, α are implicitly summed over by the Einstein summation con-
vention.

1.1. Lift of standard Eulerian model. We now lift this to the stochastic flow

(3) dXt = σj(Xt) ◦ dW j
t

of diffeomorphisms Xt ∈ Diff(D) where σj(Xt)(x) = σj(Xt(x)). Solutions X =
{Xt}t∈[0,T ] are examples of Brownian flows [8].

For Xt ∈ Diff(D), let σ(Xt) be the linear map RJ → X(D), w 7→ σj(Xt)w
j

that to a vector w connects a vector field on D by multiplying on the noise fields
σ1, . . . , σJ . For time subdivisions 0 = t0 < t1 < · · · < tk = T , we have

(4)

∫ t

0

σ(Xs)dWs = lim
k→∞

k−1
∑

m=0

σ(Xtm∧t)(∆Wm,t) , ∆Wm,t = Wtm+1∧t −Wtm∧t .

The conditional covariance of Xtm+1
given Xtm , evaluated at points x1, x2 ∈ D

with finite k, a time subdivision 0 = t0 < t1 < · · · < tk = T , using the sum on the
lhs of (4) to define Xt, and with m < k,

cov
(

σ(Xtm)(∆Wm,tm+1
)(x1), σ(Xtm)(∆Wm,tm+1

)(x2) | Xtm

)

= σj1 (Xtm(x1))σj2 (Xtm(x2))
T
E[∆W j1

m,tm+1
(∆W j2T

m,tm+1
)T ]

=

J
∑

j=0

σj(Xtm(x1))σj(Xtm(x2))
T (tm+1 − tm) .

(5)

1.2. Infinite dimensional noise. We now follow [4, 4.1.3] and [6]. To avoid the
direct specification of the noise fields σj in (3), we let W be a cylindrical Wiener
process on the Hilbert space H = L2(D,Rd), and let Q denote a Hilbert-Schmidt
operator on H . We then look at solutions to the SDE

(6) dXt = Q1/2(Xt) ◦ dWt

with Q1/2 being a square root of Q and Q1/2(Xt)(w) = Q1/2(w ◦ Xt). This is
again a Brownian flow, and Xt takes values in Diff(D) or some subspace thereof
depending on the regularity of Q, particularly the local characteristic kQ defined
below.

Since Q1/2 is Hilbert-Schmidt on H = L2(D,Rd), it is an integral operator of
the form

(7) Q1/2v(x) =

∫

D

kQ
1/2

(x, y)v(y)dy
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for some kernel kQ
1/2

: D ×D → Rd×d and

(8) Qv(x) =

∫

D

kQ(x, y)v(y)dy

with

(9) kQ(x, y) =

∫

D

kQ
1/2

(x, z)kQ
1/2

(z, y)Tdz.

One can show that

(10) kQ(x, y) =
1

t
E[Q1/2Wt(x)Q

1/2Wt(y)
T ]

generalizing (5). The integrals in (7) and (8) substitute the sums over the J fields
σj .

2. Bridges of flows

Consider again the Brownian flow (6) with Q1/2 given by (7). We now wish to
define a conditioned process, also known as a bridge process.

The flow X is a random variable with values in C([0, T ], H). Let A be the Borel
σ-algebra on C([0, T ], H) and let LX denote the law of X . Let v ∈ H . Existence
of the law, as a measure on C([0, T ], H), of X conditioned on XT = v follows from
disintegration or the existence of regular conditional probability measures, see e.g.
[3, 10] and references therein. In the present case, the spaces C([0, T ], H) and H
are Polish. We let η:C([0, T ], H) → H be the mappingX 7→ XT , i.e. the evaluation
of the process X at t = T . Then there exists a disintegration q : A ×H → [0, 1],
qy := q(·, y) such that q is a transition probability and, particularly, with the
marginal law µT = (ηT )∗LX

(11) LX(A) =

∫

H

q(A, y)dµT (y) .

This establishes, for each v in the image of η, the existence of the measure of the
bridge process, i.e. LX|XT=v.

2.1. Bridge SDE. Finding candidates for the bridge SDE can be approached with
the classical Doob’s h-transform, here applied to Hilbert space valued processes
[5]. A natural assumption is P (XT ∈ · | Xt = y) ≪ µT , t < T − ǫ, ǫ > 0, [7]. For
v ∈ H one then defines the h-function

(12) ht(Y ) = logZ
(v)
t (Y )

where

Z
(v)
T (Y ) =

P (XT ∈ dv | Xt = Y )

dµT

∣

∣

∣

∣

v

is the Radon-Nikodym derivative with respect to the marginal distribution µT in
v ∈ H . If the derivative ∇Y log ht(Y ) exists, it is expected that X conditioned on
XT = v satisfies an SDE
(13)

dXt = Q1/2(Xt)(Q
1/2(Xt))

∗∇Y log ht(Y )|Y=Xt +Q1/2(Xt) ◦ dWt, t ∈ [0, T − ǫ] .
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Precise conditions under which this is valid and behaviour for ǫ → 0 are to be
studied.

2.2. Shape bridges. In the LDDMM setting, shapes are objects s on which dif-
feomorphisms X ∈ Diff(D) act. For example, a curve s : S1 → D is acted upon by
composition Xt.s = Xt ◦ s. We now wish to condition the process X on XT .s = v
for some target shape v. Denoting the action π, i.e. π(Xt) = Xt.s, this corre-
sponds to conditioning on the fiber π−1(v). Disintegration provides existence of
the conditional law directly. Future work will investigate under which conditions
Doob’s h-transform can be used to derive equivalents of (13) for shape bridges.
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