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Introduction by the Organizers

The workshop Geometry and Optimization in Quantum Information, organized
by Hamza Fawzi, Omar Fawzi, Aram Harrow, and Monique Laurent, took place
in a hybrid format, with 15 in-person participants and roughly the same number
of participants joining remotely. The event brought together a broad spectrum
of researchers working on quantum information and mathematical optimization.
The workshop aimed at exploring the links between optimization and quantum
information, with a focus on the recent developments in the field. The program
featured a total of 21 talks, of which 11 were given on-site and 10 remotely via
Zoom. The talks were given in different formats: there were 13 regular 45-minute
talks, and 8 longer 75-minute talks. Monday evening was partly devoted to sev-
eral informal 5-minute talks. A stimulating open problem session took place on
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Wednesday evening in which several interesting questions were presented by both
on-site and remote participants. The program also provided ample time for collab-
orations and discussions between the participants in Oberwolfach. The expository
talks were divided according to the following main themes:

(A) Polynomial optimization, commutative and non-commutative: William
Slofstra, Vern Paulsen, Grigoriy Blekherman

(B) Convex geometry and quantum information: Guillaume Aubrun, Andreas
Winter

(C) Algorithmic aspects of optimization in quantum information theory: Ryan
O’Donnell, Michael Walter, Robert König

We now discuss each section separately.

(A) Polynomial optimization, commutative and non-commutative

One of the recent breakthrough results relating to the topic of this workshop is the
MIP ∗ = RE result by Ji, Natarajan, Vidick, Wright, Yuen, which, in particular,
provides a refutation of the Connes’ Embedding Problem (CEP) about operator
algebras using computer science and quantum information techniques. The result
relies at its core on the study of quantum nonlocal games. A key technique in the
study of nonlocal games is the noncommutative sum-of-squares hierarchy. In the
first expository talk of the workshop, William Slofstra discussed notions of posi-
tivity in ∗-algebras, and related computational questions. He focused on problems
coming from quantum nonlocal games, and the MIP ∗ = RE result. He further
described some recent undecidability results which imply in particular that on the
group algebra of the product of free groups, there are positive elements that are
not sums of squares. On Tuesday afternoon, Vern Paulsen talked about a partic-
ular class of nonlocal games, called synchronous games. A nice feature of these
games is that questions about values of these games connect to questions about
traces in operator algebras, which was the original formulation of the Connes’ Em-
bedding Problem. On Friday afternoon, Grigoriy Blekherman gave an overview
talk about recent exciting applications of the sum of squares method to graph
inequalities and extremal combinatorics. Several shorter research talks used tools
from polynomial optimization. On Monday morning, Felix Huber presented a new
result showing how to use noncommutative optimization to obtain dimension-free
entanglement witnesses for multi-partite Werner states. Omar Fawzi presented a
new method to obtain lower bounds on the squashed entanglement of a bipartite
state, using tools from noncommutative optimization and the sum-of-squares hi-
erarchy. On Tuesday, Stefano Pironio presented methods using noncommutative
and trace optimization for a problem in quantum cryptography. Finally, Sander
Gribling presented on Wednesday recent progress on the existence of mutually un-
biased bases in dimension 6 using the noncommutative sum-of-squares hierarchy,
and symmetry reduction.
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(B) Convex geometry and quantum information

In his expository talk, Guillaume Aubrun presented the notion of mean width of
a convex set, and gave an overview of the essential tools that are used to obtain
bounds on this quantity. He showed how these tools can be used to compute the
mean width of many common convex sets encountered in quantum information,
e.g., the set of separable states and the set of states that satisfy the positive par-
tial transpose criterion. Andreas Winter gave an overview talk on the topic of
entropy inequalities in the quantum setting, i.e., about valid inequalities on the
set {(H(ρS)S⊂[n] : ρ density on n systems} ⊂ R2n−1 where H(X) = − tr[X logX ]
is the von Neumann entropy function. The closure of this set is a convex cone,
and Winter mainly discussed the progress towards finding non-von-Neumann in-
equalities in the quantum case and commented on the simpler case of Rényi en-
tropies. Research talks featured applications of tools from convex geometry to
study particular convex sets in quantum information. Tim Netzer gave a research
talk about Quantum Magic Squares and showed that an analogue of the Birkhoff
von-Neumann theorem cannot hold for a certain matrix convex set of “quantum
doubly-stochastic matrices”. David Pérez-Garćıa explained how to use techniques
from geometry of Banach spaces for analyzing the security of position-based cryp-
tographic protocols. Gemma de las Cuevas presented a new framework to study
decompositions of tensors satisfying certain invariance properties. Arne Heimen-
dahl established a negative result about the stabilizer extent, which is a measure
of the efficiency of some classical simulation algorithms for quantum computers,
using tools from convex optimization theory and probabilistic methods. Cécilia
Lancien presented a method to construct entanglement witnesses using projective
tensor norms. Nilanjana Datta presented tools from optimization theory to obtain
lower bounds on the quantum capacity of quantum channels and analyzed the
behavior of their lower bound on random channels. Finally, Debbie Leung talked
about a simple family of quantum channels exhibiting surprising non-additivity
properties. She also presented a conjecture (the spin alignment conjecture) which
generated multiple discussions during the workshop.

(C) Algorithmic aspects of for quantum information

A fundamental problem in quantum information is the problem of quantum tomog-
raphy: the goal is to efficiently estimate a property about an unknown quantum
state ρ using as few samples as possible. Ryan O’Donnell gave an overview of tools
and techniques from representation theory that are used to study this problem and
highlighted some of the main open problems in this area. On Thursday morning,
Michael Walter gave an overview talk about optimization problems that arise from
group symmetries, such as the problem of minimizing the norm over a group or-
bit, which has applications to the quantum marginal problem, and beyond. He
described recent tools from geodesic convex optimization to attack these problems.
On Friday morning, Robert König presented new limitations on the Quantum Ap-
proximate Optimization Algorithms (QAOA) for the combinatorial optimization
problem of finding the maximum cut in a graph, and proposed a new recursive
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modification that numerically achieves promising results. Several research talks
described new classical algorithms for problems in quantum information, as well as
quantum algorithms for classical problems. Aram Harrow presented efficient clas-
sical algorithms to simulate 2D random quantum circuits of small depth. Harold
Nieuwboer presented a new quantum algorithms for the matrix scaling problem,
with polynomial speed-up on the best known classical algorithm.

In spite of the challenges imposed by the new hybrid format, the workshop ran
smoothly. We would especially like to thank the IT team at the institute for the
video conferencing setup which worked surprisingly well and allowed effective in-
teraction between the remote attendees and the participants in the lecture hall.
We are grateful to the staff for their efforts in maintaining a high standard of
hygiene measures against COVID and creating a relaxed working environment.
Finally, our thanks go to the administration of the Mathematisches Forschungsin-
stitut Oberwolfach for making the conference possible in these difficult times. For
some of the participants who were able to be physically present in Oberwolfach,
this was an opportunity to discuss in person after a long time due to the pandemic.
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Abstracts

Decision problems for positivity and sums of squares

William Slofstra

(joint work with Arthur Mehta, Yuming Zhao)

How do we test if an element of a ∗-algebra is positive? (For this talk, an element
of a ∗-algebra is positive if it maps to a positive operator in every ∗-representation
on a Hilbert space). One approach we could try is to write the element as a sum
of Hermitian squares. On the other hand, if we think the element is not positive,
we could try to find a finite-dimensional representation showing that it is not. For
the group algebra of the free group, both these approaches give procedures for
deciding whether an element is positive. Both approaches also come up in the
study of nonlocal games in quantum information. In this case, the underlying
∗-algebra is (closely related to) the product of two free group algebras. Searching
over sums of squares can be used to upper bound the commuting-operator value
of a nonlocal game, while searching over finite-dimensional representations can
be used to lower bound the quantum value. Unfortunately, the recent MIP∗=RE
result of Ji, Natarajan, Vidick, Wright, and Yuen [1] implies that it is undecidable
to determine if elements of this ∗-algebra are positive on all finite-dimensional
representations. In addition, there are elements which are not positive, but which
are positive in all finite-dimensional representations (so the product of two free
group algebras is not RFD). In this talk, I will give an overview of decision problems
for positivity and trace-positivity, and the connection with MIP∗=RE. Then I will
discuss work in progress with Arthur Mehta and Yuming Zhao, where we aim to
prove new undecidability results in this area.

References

[1] Z. Ji and A. Natarajan and T. Vidick and J. Wright and H. Yuen. MIP* = RE, Commun.
ACM 64 (2021), no. 11, pp. 131–138.

Dimension-free entanglement detection in multipartite Werner states

Felix Huber

(joint work with Igor Klep, Victor Magron, and Jurij Volčič)

Our work [1] is concerned with the detection of quantum entanglement. It arose
from combining a characterization of Werner state witnesses as non-negative trace
polynomials on the positive cone [2] with a recently introduced framework for trace
polynomial optimization [3].

A quantum state ̺ ∈ L((Cd)⊗n) is said to be separable, if it can be written as

̺ =
∑

i

pi̺
(1)
i ⊗ . . .⊗ ̺

(n)
i
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for some single-system quantum states ̺
(k)
i ∈ L(Cd) and some pi ≥ 0 satisfying∑

i pi = 1. A state is termed entangled if it is not separable. It is well known that
determining whether a given state is separable or entangled is a computationally
hard problem [4, 5]. In particular, the problem scales with the dimension d of
the local Hilbert space. In our talk we introduce a method that removes this
dependence on d for the class of multipartite Werner states. This allows for the
introduction of semidefinite programming hierarchies that scale in the number n
of systems only. Our first hierarchy is complete, in the sense that it can detect
every entangled Werner state, while the second hierarchy has smaller semidefinite
constraints in its first levels.

We consider multipartite Werner states: these are states which are invariant un-

der the adjoint action of unitaries, satisfying U⊗n̺U †⊗n
= ̺ , ∀U ∈ Ud. As a

consequence of the Schur-Weyl duality, they can then be expanded in terms of
permutation operators {ηd(σ) |σ ∈ Sn}. Here ηd is a unitary representation of the
symmetric group on (Cd)⊗n, permuting individual tensor factors as

ηd(σ) |v1〉 ⊗ . . .⊗ |vn〉 = |vσ−1(1)〉 ⊗ . . .⊗ |vσ−1(n)〉 .
To detect entanglement, we use the concept of entanglement witnesses. Denote

the set of separable and entangled n-partite states with local Hilbert space di-
mension d as SEP(d, n) and ENT(d, n) respectively. Witnesses are operators that
satisfy

tr(W̺) ≥ 0 for all ̺ ∈ SEP(d, n)(1)

tr(Wϕ) < 0 for some ϕ ∈ ENT(d, n)(2)

For Werner states, it is easy to see that one can restrict witnesses to be of the
form

W = ηd(w) =
∑

σ∈Sn

wσηd(σ) , wσ ∈ C .

Again invoking Schur-Weyl duality, we write a Werner state in L((Cd)⊗n) as

(3) ̺ =
⊕

λ⊢n
height(λ)≤d

1̃λ ⊗ ̺λ ,

Here the unitary group Ud acts on the first tensor factor while the symmetric
group Sn acts on the second; the representations are labeled by partitions λ of n
and 1̃ denotes the maximally mixed state. Importantly, in (3) not all irreducible
representations of Sn appear if d < n. This allows us to show the following.

Theorem 1. For every entangled Werner state there exists a witness w ∈ CSn

satisfying
tr(ηd(w)̺) ≥ 0 for all ̺ ∈ SEP(d, n) , ∀d ∈ N .

Because the witness has a non-negative expectation value on separable states
in all dimensions we term it dimension-free. The key idea in the proof is the
following: given a Werner state in ENT(d, n) (for some fixed d) and a witness w
detecting it, construct a witness w̃ = w + u where the support of u ∈ CSn lies
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exclusively in irreps with height(λ) > d. In [1] we show that such u can always be
found in order for w̃ to be dimension-free.

Now let us return to the task of finding entanglement witnesses. Given some
entangled state ϕ, (1) is a linear matrix constraint on w. (2) however is not a
linear constraint. We deal with this by writing tr(ηd(w)̺) as a polynomial that is
non-negative on the set of separable states. Recall the following three facts:

a. The minimum of a linear functional on a convex set can always be taken on
an extreme point. Thus min̺∈SEP(d,n) tr

(
ηd(w)̺

)
achieves its minimum

on some pure product state.

b. Given Xi ∈ L(Cd) and σ = (α1 . . . αr) . . . (γ1 . . . γt) ∈ Sn one has [6]:

(4) tr(ηd(σ)X1 ⊗ . . .⊗Xn) = tr(Xαr
· · ·Xα1

) · · · tr(Xγt
· · ·Xγ1

) .

c. A set of vectors |v1〉 , . . . , |vn〉 ∈ Cd forms a n × n positive semidefinite
Gram matrix Z of rank d with entries Zij = 〈vi|vj〉.

Our first semidefinite programming hierarchy arises in the following way: from
Theorem 1 and Facts a.− c. it follows that

min
̺∈SEP(n,n)

tr(ηn(w)ρ) ≥ min
Z∈Z

fw(Z) ,

where fw is a polynomial in the entries of Z and

Z = {Z ≥ 0 |Zij = Zji , Zii = 1 , Z ∈ L(Cn)} .
The set Z forms a spectrahedron also known as elliptope, representing allowed
values of inner products 〈vi|vj〉 of normalized vectors from Cn.

A matrix-version of the Putinar Positivstellensatz [7] can now be used to guar-
antuee non-negativity of fw + ǫ, ǫ > 0, on Z in terms of the quadratic module
generated by Z; its truncation to monomials of bounded degree yields our first
semidefinite programming hierarchy. This hierarchy is complete, in the sense that
for every entangled Werner state it finds an entanglement witness at some level of
the hierachy.

Our second hierarchy uses Theorem 1 in conjuction with Fact b., and so

min
̺∈SEP(n,n)

tr(ηn(w)̺) ≥ min
Xi∈L(Cn), X2

i =Xi

p(X1, . . . , Xn) ,

where p is a trace polynomial given by w ∈ CSn through (4) in (non-commutative)
matrix variables Xi = X2

i . We now strenghten the domain of non-negativity by
asking for non-negativity of p for all projectors from any tracial von Neumann
algebra. Again a Putinar-type Positivstellensatz [3] allows for a characterization
of non-negative p+ ǫ for all ǫ > 0; its truncation to trace monomials of bounded
degree yields our second semidefinite programming hierarchy. While it is presently
not known to us whether this hierarchy is also complete or not, it allows for smaller
semidefinite constraints in its first levels.
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Semidefinite programming lower bounds for the squashed
entanglement

Omar Fawzi

(joint work with Hamza Fawzi)

The squashed entanglement is an entanglement measure introduced by Christandl
and Winter [1]. It satisfies many desirable properties for an entanglement mea-
sure such as monotonicity under local operations and classical communication
(LOCC), additivity under tensor products, a monogamy relation and faithfulness.
In fact, it is the only known entanglement measure satisfying these properties [3].
These mathematical properties also have operational applications: the squashed
entanglement provides an upper bound on the distillable entanglement and the
distillable key [2]. For a bipartite state ρAB on A⊗B, the squashed entanglement
is defined as

Esq(A : B)ρ =
1

2
inf

ρABE

I(A : B|E)ρ ,(1)

where the infimum is taken over all possible finite-dimensional Hilbert spaces E
and all extensions ρABE of the state ρAB, i.e., TrEρABE = ρAB. The conditional
mutual information is defined in equation (3) below.

To define the conditional mutual information it is useful to start with the quan-
tum relative entropy. For density operators ρ, σ on a finite-dimensional Hilbert
space H, the quantum relative entropy is defined by

D(ρ‖σ) =
{

Tr(ρ(log ρ− log σ)) if supp(ρ) ⊆ supp(σ)
+∞ otherwise.

(2)

For a density operator ρAE on A ⊗ E with A finite-dimensional, we define the
conditional von Neumann entropy H(A|E)ρ = −D(ρAE‖IA ⊗ ρE) where ρE =
TrAρAE and IA denotes the identity operator on A. The conditional mutual
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information is then defined by

(3) I(A : B|E)ρ = H(A|E)ρ −H(A|BE)ρ .

Even though Esq(A : B)ρ satisfies almost all the properties one might ask of an
entanglement measure [3], its main drawback is that it is unclear how to compute
it.

In this work, we introduce a hierarchy of lower bounds E
(m)
sq (A : B)ρ on the

squashed entanglement satisfying for all positive integers m:

E(m)
sq (A : B)ρ ≤ Esq(A : B)ρ ≤ E(m)

sq (A : B)ρ +
2dA − 2

m2 ln 2
.

The quantity E
(m)
sq (A : B)ρ is defined by using an approximation of the logarithm

that appears in Eq. (2) with rational functions obtained via a Gauss-Radau quad-
rature, as in [4]. These rational functions lead to quantum f -divergences for ratio-
nal functions f that have variational expressions as determined in [5]. Combining

these properties, we find that E
(m)
sq (A : B)ρ can be expressed as a matrix-valued

noncommutative polynomial optimization problem over finite dimensional Hilbert
spaces. Using standard semidefinite programming hierarchies for noncommutative
polynomial optimization problems, this leads to semidefinite programming lower
bounds on the squashed entanglement.
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Estimating quantum states

Ryan O’Donnell

In this talk I surveyed recent results on learning quantum states (tomography)
and testing quantum states. A main theme is viewing this task as generalizing
known (and in many cases, recently developed) analogous results for learning and
testing probability distributions. The goal is to develop quantum algorithms that
are not much less than the analogous classical ones.

To develop the analogy, consider the basic, classical problem of density estima-
tion (of a discrete distribution). Here there is an unknown probability distribu-
tion p on a discrete set of outcomes {1, . . . , d}; in other words, we have unknowns
p1, . . . , pd with pi ≥ 0 and

∑
i pi = 1. We imagine the learning algorithm may

“pay for” n samples from p. “Nature” now draws a sample i1, . . . , in from the
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product probability distribution p⊗n, and this sample is revealed to the learner.
The learner may now run an algorithm to produce some final output “X”. Here
“X” may stand for any kind of object; perhaps the learner is trying to estimate all
of p, in which case X would be some hypothesis distribution p̂ = (p̂1, . . . , p̂d). But
the learner might have other goals; for example, X might be an estimate of the
entropy of p, or an estimate of the distance between p and some other known q.
In the particular case of trying to learn all of p, the “obvious” algorithm of letting
p̂ be the empirical distribution formed by the n samples is almost always the best
idea, but for other estimation tasks the right way to go from the samples to the
estimate may not be so clear.

In the quantum analogue of these tasks, we have an unknown quantum mixed
state ρ of d dimensions; i.e., ρ ∈ Cd×d is a positive semidefinite matrix (ρ ≥ 0) with
trace 1 (

∑
i ρii = 1). It can be very helpful also to view ρ as an unknown proba-

bility distribution p on the unknown orthonormal basis of eigenvectors |1〉, . . . , |d〉
of ρ. (The slight ambiguity that occurs if ρ has eigenvalues with multiplicity
causes no difficulties.) Now n “samples” consist of n copies ρ⊗n of ρ, and this
in turn can be thought of as n independent draws from p, resulting in a vector
|i1〉 ⊗ · · · ⊗ |in〉 ∈ (Cd)⊗n. We may think of this sample vector as being presented
to the quantum learner, who must now make a quantum measurement and pro-
duce an appropriate output “X” based on the measurement outcome. Again, “X”
could be an estimate ρ̂ of all of ρ, or something else: e.g., an estimate p̂ of ρ’s
eigenvalues p, an estimate of the von Neumann entropy of ρ, etc.

In the talk, several learning/testing goals and results were reviewed, comparing
the classical and quantum cases. For example:

• The naive algorithm can with high probability learn an unknown p, with
a hypothesis p̂ having total variation error at most ε (i.e., 1

2‖p − p̂‖1 ≤
ε), using n = O(d/ε2) samples, and this is known to be sharp (up to
constants). Analogously, one can learn ρ to trace distance ε using O(d2/ε2)
samples [3], and again this is sharp [1]. However the known algorithms in
the quantum case are quite sophisticated, relying on representation theory.

• The classical result above extends to stricter distance measures such as
Hellinger distance. The same improvement is also known for the quan-
tum analogue (using quantum fidelity in place of trace distance), up to
logarithmic factors [1]. Extensions of the quantum result to even stronger
distances measures (e.g., Bures χ2-distance) remain open.

• For the quantum task of just learning the eigenvalues p of ρ, this can
be done (again, via representation theory) with sorted-total-variation dis-
tance ε using n = O(d2/ε2) samples. The classical analogue of this task is
learning the multiset {p1, . . . , pd} to sorted-total-variation distance ε, and
interestingly it is known [5] that this can be done with n = o(d) samples
(more precisely, Θ(d/ log d)/ε2). As the only known quantum lower bound
for this problem is Ω(d/ε2), it is an interesting open problem as to whether
the quantum eigenvalue estimation task can be done with n = o(d2) sam-
ples.
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• The classical problem of testing whether an unknown distribution is the
uniform distribution p ≡ 1/d, or else ε-far (in total variation distance)

from uniform can be done with Θ(
√
d/ε2) samples [4], and it is known a

natural algorithm for empirically estimating
∑

i p
2
i can be used for this.

Regarding the analogous quantum problem, testing if ρ is the maximally
mixed state 1/d (or else ε-far in trace distance), this can be done with
Θ(d/ε2) samples [2], and also via a natural algorithm that estimates the
purity tr(ρ2) of ρ.

The latter portion of the talk was devoted to giving some introduction to the
representation-theoretic ideas that go into some of the quantum algorithms. For
example, the algorithm for estimating the purity of ρ (and hence testing whether ρ
is the maximally mixed state) is via a generalization of the “SWAP test”, wherein
given ρ⊗n, one estimates the average, over all pairs {i, j} ⊂ {1, . . . , n}, of the
expectation value under ρ of the SWAPij operator (which swaps the ith and jth
tensor components). This estimate has the correct expectation, and computing its
variance relies on the analysis of (avg{i,j}SWAPij)

2. In turn, this latter operator
can best be understood by expressing it as a linear combination of the more general
operators

Aκ = avg{R(π) : π ∈ Sn, cycleType(π) = κ},
where R(π) is the operator on (Cd)⊗n that acts by permuting tensor components
according to pi. Note that

R : Sn → {linear operators acting on (Cd)⊗n}
is a group representation, which is one way in which group representation theory
enters the picture.

Indeed, thanks to notion of Schur–Weyl duality from representation theory, one
can show that the optimal estimator for any symmetric polynomial of the eigen-
values of ρ (not just tr(ρ2)) is the expectation value of some linear combination
of operators Aκ. This implies that for quantum learning/testing algorithms that
are only concerned with properties of the eigenvalues p, it is optimal for them to
measure ρ⊗n in the Schur–Weyl basis, the result of which is a random Young dia-
gram with a certain probability distribution depending on p. This distribution can
alternatively be understood in terms of the probabilistic combinatorics of longest
increasing subsequences in random words, and in this way one can fruitfully use
a variety of tools from combinatorics to study quantum state eigenvalue learn-
ing/testing. For more general learning/testing tasks involving the whole of ρ (i.e.,
also its eigenvectors), further tools from the representation theory of the unitary
group may be used, but this was beyond the scope of the talk.
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Geometry of high-dimensional entanglement

Guillaume Aubrun

We compare, in terms of geomety, the relative sizes of different sets which appear
in quantum information theory, connected to the notion of entanglement. The
talk, of introductory nature, is based on material from [1].

To this end, we introduce the mean width of a convex subset K or a Euclidean
finite-dimensional vector space V as

w(K) = E sup
x∈K

〈x,G〉

where the expectation is taken with respect to a standard Gaussian vector G in V .
The mean width can be used to quantify the size of a set. As opposed to volume,
it is intrinsic: if W is a subspace of V and K ⊂ W , the mean width of K is the
same, computer in either W or V .

Two basic estimates are

(1) the union bound : if K ⊂ V is convex hull of N vectors of norm ≤ 1, then
w(K) .

√
logN ,

(2) the Sudakov minoration: if K contains an ε-separated subset of cardinal
N , then w(K) & ε

√
logN .

Elaborating on these two estimates, we derive the following information.

(1) The set Dn of mixed quantum states on Cn satisfies w(Dn) ≃
√
n,

(2) The inscribed Euclidean ball B ⊂ Dn, which has Hilbert–Schmidt radius

1/
√
n(n− 1), satisfies w(B) ≃ 1.

(3) The set Sepd⊗d ⊂ Dd⊗d of separable states satisfies w(Sepd⊗d) ≃
√
d, so

it is much smaller than Dd⊗d.
(4) By duality, the set BPd⊗d of block-positive matrices of trace 1 satisfies

d3/2 . w(BPd⊗d) . d3/2 log(d). Here, the logarithmic loss comes from a
application of the “MM∗ estimate” from local theory of Banach spaces.

(5) The set MMEd⊗d of states which are mixtures of maximally entangled
states satisfies w(MMEd⊗d) ∼ d.

(6) The set k−Extd⊗d of states that are k-extendible satifsies w(k−Extd⊗d) &
d/k because it contains a 1/k-homothetic copy of MMEd⊗d. This shows

that when stopped at a level k ≪
√
d, the extendibility hierarchy is asymp-

totically a poor approximation to separability.
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(7) The set PPTd⊗d ⊂ Dd⊗d of states with a positive partial transpose satisfies
w(PPTd⊗d) ∼ d. As above, the PPT criterion is asymptotically a poor
approximation to separability.
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Quantum Magic Squares

Tim Netzer

(joint work with Gemma De las Cuevas, Tom Drescher)

The notion of a magic square is familiar to many people, the similar notion of a
doubly stochastic matrix at least to many mathematicians. A doubly stochastic
matrix can be defined as a square matrix of size n, that contains a probability mea-
sure in each row and each column. The famous theorem of Birkhoff-von Neumann
states that these matrices are all convex combinations of permutation matrices,
i.e. matrices arising from permuting rows and columns of the identity matrix In.

In quantum theory, the notion of a probability measure is replaced by a so-called
positive operator valued measure (POVM), a collection of positive semidefinite
matrices P1, . . . , Pn ∈ Mats(C), that sum to the identity matrix:

P1 + · · ·+ Pn = Is.

So a quantum magic square is an n×n matrix that contains a POVM (of arbitrary
size s) in each row and column. There also exists the well-studied notion of a
quantum permutation matrix, which is a quantum magic square whose entries are
all idempotents, i.e. orthogonal projections.

Now a quantum version of the Birkhoff-von Neumann Theorem would ask
whether each quantum magic square is a convex combination of quantum per-
mutation matrices. Taking classical convex combinations does clearly not suffice
here, but there exists a much more suitable notion, that of a free convex hull. Here
the single matrix entries of a quantum permutation matrix are compressed with
a matrix, which might even result in a change of size. In formulas, the quantum
permutation matrix (Pij)i,j=1,...,n, whose entries Pij are projectors of size s, is

changed to
(V ∗PijV )i,j=1,...,n

where V ∈ Mats,t(C). One also allows for sums of such compressions, with the
normalization constraint that

∑
j V

∗
j Vj = It for the respective compression matri-

ces. Reading this backwards, one says that the resulting quantum magic square
dilates to a quantum permutation matrix. For example, given just one POVM,
it always dilates to a so-called projective measurement, a POVM that consists of
only projectors. This is known as Naimark’s Dilation Theorem, and we thus ask
for a magic version thereof, applying to quantum magic squares instead of a single
POVM only.



2680 Oberwolfach Report 49/2021

We prove that this result is true when restricted to special quantum magic
squares, which we call semi-classical. They arise from classical magic squares
by tensoring them with positive semidefinite matrices (related to the minimal
operator system over the classical magic squares). But we also prove that the
general version of a Quantum Birkhoff-von Neumann Theorem / Magic Naimark
Theorem fails even under the very general notion of free convexity. The result is
constructive, we produce a quantum magic square of any size n > 3 that does not
dilate to a quantum permutation matrix.

Stabilizer extent is not multiplicative

Arne Heimendahl

(joint work with Felipe Montealegre-Mora, Frank Vallentin, David Gross)

The Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer
states can be simulated efficiently on a classical computer. Recently, this result
has been generalized to cover inputs that are close to a coherent superposition of
polynomially many stabilizer states. The runtime of the classical simulation is gov-
erned by the stabilizer extent, which roughly measures how many stabilizer states
are needed to approximate the state. An important open problem is to decide
whether the extent is multiplicative under tensor products. An affirmative answer
would yield an efficient algorithm for computing the extent of product inputs,
while a negative result implies the existence of more efficient classical algorithms
for simulating large-scale quantum circuits. Here, we answer this question in the
negative. Our result follows from very general properties of the set of stabilizer
states, such as having a size that scales subexponentially in the dimension, and
can thus be readily adapted to similar constructions for other resource theories.
This work has been published here [1].

The problem

The stabilizer extent of an n-qubit state ψ is the following minimization problem

ξ(ψ) = min

{( ∑

s∈Stabn

|cs|
)2

: ψ =
∑

s∈Stabn

css

}
,

where Stabn is the set of n-qubit stabilizer states. The extent ξ is the outcome of
an ℓ1-minimization problem whose complexity scales polynomially in the number
of n-qubit stabilizer states.

In particular, the complexity of determining the stabilizer extent of an arbitrary
vector ψ ∈ (C2)⊗n, scales superexponentially with the number of qubits n. Thus,
the question arises whether it is possible to simplify the computation of ξ for
certain inputs, e.g. product states of the form ψ = ⊗jψj .

Since the set of stabilizer states is closed under taking tensor products, one can
easily see that the stabilizer extent is submultiplicative, that is ξ(⊗jψj) ≤

∏
j ξ(ψj)

for any input state ⊗jψj . Bravyi et al. proved that it is actually multiplicative if
the factors are composed of 1-, 2- or 3-qubit states.
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As a result the stabilizer extent of product states is computationally tractable if
the factors are composed of at most three qubits. This raises the question whether
this property holds for arbitrary product states.

Main result

Our main result is that stabilizer extent is not multiplicative in general. In fact
our proof does not depend on the detailed structure of stabilizer states and holds
in much greater generality. Specifically only rather simple properties of Stabn
enter into the proof, prime among the properties used is that the number of the
stabilizer states scales subexponentially with the Hilbert space dimension. We
present our theorem in its full generality in the technical version of the abstract.

Theorem 1. Let n be large enough and ψ be a Haar-random n-qubit pure state.
Then,

Pr[ξ(ψ ⊗ ψ∗) < ξ(ψ)ξ(ψ∗)] ≥ 1− o(1).

In particular, the stabilizer extent is not multiplicative.

Additionally, we prove a conceptually simple necessary condition that is satisfied
by optimal decompositions. Recall that Stabn can be partitioned into stabilizer
orthonormal bases (e.g. Stab1 = {|0〉 , |1〉} ∪ {|+〉 , |−〉} ∪ {|+, Y 〉 , |−, Y 〉} where
the last term is the eigenbasis of the Pauli Y matrix).

Theorem 2. Let ψ be an n-qubit state. Suppose that ψ =
∑
css is an optimal

stabilizer extent decomposition, that is ξ(ψ) =
(∑

s∈Stabn
|cs|

)2

. Then, for any

orthonormal basis B ⊂ Stabn, there is at most one s ∈ B for which cs 6= 0.

Implications

Theorem 1 indicates that computing the extent is not only hard for general inputs
but also for product states of the form ⊗jψj .

It has also implications for classical simulation algorithms of quantum compu-
tation that are based on the stabilizer extent. These methods are usually called
Stabilizer rank methods [2, 3, 4]. Within the framework of quantum computing
with magic states, the idea is to expand initial magic state as a coherent super-
position of stabilizer states. The smallest number of stabilizer states required to
express a given vector in this way is its stabilizer rank. No efficient methods are
known for computing the stabilizer rank analytically or numerically. To address
this issue, Bravyi et al. [5] originally introduced the stabilizer extent as a com-
putationally better-behaved convex relaxation. The central sparsification lemma
of [5] states that a stabilizer decomposition with small extent can be transformed
into a sparse decomposition that is close to the original state.

Our result implies that if the magic state ψ⊗φ is a product state, then decompo-
sitions involving only product stabilizer states s⊗ s′ will generally be suboptimal.
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That is, even if

ψ =
∑

s∈Stabn

css, φ =
∑

s∈Stabn

dss,

are optimal (i.e. such that
√
ξ(ψ) =

∑
s |cs| and

√
ξ(φ) =

∑
s |ds|), it can hap-

pen that the decomposition ψ ⊗ φ =
∑

s,s′∈Stabn
csds′s ⊗ s′ is not optimal, i.e.√

ξ(ψ ⊗ φ) <
∑

s,s′ |csds′ |. Therefore, the commonly used approach of using prod-
uct stabilizer state decompositions for stabilizer rank simulations could in principle
be improved upon.

Our main theorem also proves that other magic monotones recently defined
in [3] are not multiplicative since they all coincide with the stabilizer extent on
pure states [6].

Open questions

An interesting open question is how large the gap can get between ξ(φ ⊗ ψ) and
ξ(φ)ξ(φ) for states |φ〉 and |ψ〉.

Furthermore, it might be interesting to see whether this technique can also be
applied to other conic optimization techniques.
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Synchronous Values of Games

Vern I. Paulsen

(joint work with J.W. Helton, L. Mancinska, H. Mousavi, S.S. Nezhadi,
T. Russell, I.G. Todorov, A. Winter )

Entanglement assisted cooperative games, often called non-local games, are an
important object of study in many areas of computer science and quantum infor-
mation. Such games were vital to the recent resolution of the Connes’ Embedding
Problem [9] and to answering the Tsirelson Problems [15, 9] about the relationships
between the different mathematical models for entanglement.

The value of a nonlocal game is the supremum of the probability of winning
the game over all allowed strategies. The value of a game can vary depending
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on the types of strategies or probability densities that are allowed, and there has
been considerable interest in how the value of a game can change when one is
allowed to use quantum assisted strategies versus classically defined distributions
[1, 12, 2, 14, 4, 3].

However, the Tsirelson problems are concerned with the fact that there are
several different mathematical models for describing the probability densities that
can arise from using entanglement and we now know that each of these models
give rise to different sets of densities. Thus, for each mathematical model of
entanglement, there is a corresponding value of a game and, in fact, showing that
the value of a game can vary depending on the model has been the most effective
tool for proving that these models are indeed different.

In this talk we focus on how the values of games behave when we insist that the
allowed densities are synchronous. A game is synchronous if the two cooperating
players, Alice and Bob, each have the same input(question) set and output(answer)
set and the rules of the game include the rule that if in a round of the game, they
are both asked the same question, then they must both give the same answer.

If we let p(a, b|x, y) denote the conditional probability that they return answers
a and b, respectively, given respective inputs x and y, then a density is called
synchronous if p(a, b|x, x) = 0, ∀a 6= b, i.e., if the probability that they give different
outputs given the same input is 0.

Each of the mathematical models for entanglement produces different sets of
synchronous densities and our goal is to try and compute these various values for
some special families of games.

The first type of game that we focus on are graph colouring games. Given a
graph with no loops G = (V,E) described by a vertex and edge set and a set of
k-colours, the goal of this game is for Alice and Bob to come as close as possible
to convincing a Referee that they have coloured the graph with k-colours.

At each round of the game Alice and Bob are given a pair of vertices and they
must return a pair of colours. They win the round if whenever the vertices were
adjacent, they returned different colours and whenever they are given the same
vertex, they returned the same colour. The value of the game measures the optimal
probability of winning this game over many rounds.

A deterministic strategy for this game, just means that Alice and Bob each
have a function f, g : V → {1, ..., k} such that upon receiving inputs x, y they
reply with outputs f(x), g(y).

However, when we restrict to synchronous deterministic strategies, then we need
f(x) = g(x) for all x, and so Alice and Bob must both use the same “colouring”
function. From this it follows that the synchronous deterministic value of this
game is directly related to the max k-cut problem for the graph.

It is well known that quantum densities can out perform any deterministic strat-
egy for this game. We show that similarly, synchronous quantum strategies and
out perform any synchronous deterministic strategy. Some what surprisingly, even
though this game is synchronous, we show that there are graphs for which a non-
synchronous quantum strategy can out perform synchronous quantum strategies.
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Another important topic in the theory of games is how their values behave
under parallel repetition of the game. It is known that the deterministic value of
a game can be supermultiplicative. But it is also known that if the value is less
than one, then the value of n parallel copies of the game will tend to 0 as n grows.

In sharp contrast, we give an example of a game for which the synchronous
value(both classical and quantum) is monotone increasing under repetition.

The XOR games are a family of games for which the classical and quantum val-
ues have been widely studied. We find parallel results for their synchronous values.
In particular, the synchronous value is obtained as the solution to a semidefinite
program, i.e., by maximizing a linear functional over a spectrahedron.

Synchronous densities of the various quantum types have been shown to cor-
respond to traces of various types on a universal C*-algebra [13, 10] and for this
reason computing the value of a game can be seen as computing the supremum
over all traces of a certain positive element of the algebra defined by the game.
This fact connects questions about synchronous values of games with problems
about traces, which was the original content of Connes’ Embedding Problem.

The new results in this talk are based on two papers, [6] and [11].
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Correlations in entanglement-assisted prepare-and-measure scenarios

Stefano Pironio

(joint work with Armin Tavakoli, Jef Pauwels, and Erik Woodhead)

Entanglement and quantum communication are paradigmatic resources in quan-
tum information science leading to correlations that have no classical analogue.
Correlations due to entanglement when communication is absent have for long
been studied in Bell scenarios. Correlations due to quantum communication when
entanglement is absent have been studied extensively in prepare-and-measure
scenarios in the last decade. Here, we will present some results about correla-
tions in scenarios that involve both entanglement and communication, focusing on
entanglement-assisted prepare-and-measure scenarios. The paradigmatic example
of such a scenario is the quantum dense coding protocol, where the communication
capacity of a qudit can be doubled if a two-qudit entangled state is shared between
Alice and Bob. We provide examples of correlations that actually require more
general protocols based on higher-dimensional entangled states. This motivates
us to investigate the set of correlations that can be obtained from communicating
either a classical or a quantum d-dimensional system in the presence of an unlim-
ited amount of entanglement. We show how such correlations can be characterized
by a hierarchy of semidefinite programming relaxations by reducing the problem
to a non-commutative polynomial optimization problem. We also introduce an
alternative relaxation hierarchy based on the notion of informationally-restricted
quantum correlations, which, though it represents a strict (non-converging) relax-
ation scheme, is less computationally demanding. As an application, we introduce
device-independent tests of the dimension of classical and quantum systems that,
in contrast to previous results, do not make the implicit assumption that Alice
and Bob share no entanglement.

Entropy inequalities

Andreas Winter

What are the constraints that the von Neumann entropies of the 2n possible
marginals of an n-party quantum state have to obey? Similarly for the Shannon
entropy of n random variables? Pippenger called these “the laws of (quantum) in-
formation theory”, among them subadditivity and strong subadditivity, and while
we know a few of them, we seem to be missing many. In fact, it is known that both
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classically and quantumly, the set of entropy vectors is essentially a convex cone, so
the laws in question naturally take the form of homogeneous convex inequalities,
More specifically, we can describe the classical and entropy cones for n parties by
linear information inequalities. Starting with Zhang and Yeung [1], Dougherty et
al. [2] and finally Matus [3] have shown that 4-partite Shannon entropies satisfy
infinitely many inequalities beyond the standard ones, the ”Shannon inequalities”,
which define a polyhedral cone. Matus’s result implies that the entropy cone of
4 random variables is not polyhedral. In this talk I will review progress towards
finding non-von-Neumann inequalities in the quantum case, commenting briefly
on the case of Rényi entropies as well.
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General decompositions with invariance, positivity and approximations

Gemma De las Cuevas

(joint work with Matt Hoogsteder Riera, Andreas Klingler, Tim Netzer)

To specify a theory or framework, one need not only to describe its basic compo-
nents but also how they compose, i.e. how they can be combined to give rise to
other elements. For example, the postulates of quantum mechanics specify how
to describe individual systems (as a ray in a Hilbert space), and how to describe
composed systems (with the tensor product of Hilbert spaces). Composition is
thus a fundamental and essential part of a theory.

Decomposition, i.e. expressing an object in the composed space in terms of its
elementary constituents, is the inverse problem, and it appears in any theory re-
lying on a composition rule—notably, in quantum many-body systems, but also
multivariate polynomials or probabilistic graphical models. Decomposing an ele-
ment is often hard, as the decomposition can reveal whether it has some notion
of positivity (e.g. it is positive semidefinite or separable when considering matrix
tensor product spaces), or of invariance (i.e. it is invariant under permutations
of the local spaces given by an action of a group G). This applies to objects of
very different nature within mathematics, physics and beyond, which can all be
studied from the common umbrella of general decompositions with invariance and
positivity.

Recently, such a unifying framework was proposed [4], which applies to spaces
where the composition rule is given by the tensor product. In such a space, every
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object can be expressed as a sum of elementary constituents

(1) v =
r∑

α=1

aα ⊗ bα ⊗ · · · ⊗ zα,

called a tensor rank decomposition. Whereas this is the natural decomposition
from the perspective of mathematics, in (quantum) physics the following linear
structure is considered in order to describe systems in one spatial dimension,

(2) v =

r∑

α1,...,αn−1=1

aα1,α2
⊗ bα2,α3

⊗ · · · ⊗ zαn−1,α1
,

called a Matrix Product State representation of v [12]. But there are many other
possibilities to arrange these indices (a combinatorial number depending on n).
Our framework described all such decompositions by means of a weighted simplicial
complex Ω: The summation indices are associated with the facets of a weighted
simplicial complex, and elementary constituents are associated with their vertices.
In addition, for invariant objects under a group of permutations G, this invariance
can be made explicit in the elementary tensors, resulting in a so-called (Ω, G)-
decomposition. For example, choosing the local vectors in a elementary tensor to
be the same

(3) v =

r∑

α=1

aα ⊗ aα ⊗ · · · ⊗ aα

results in a symmetric tensor rank decomposition. Similarly, a translational in-
variant Matrix Product State is given by

(4) v =

r∑

α1,...,αn−1=1

aα1,α2
⊗ aα2,α3

⊗ · · · ⊗ aαn−1,α1
.

By construction, if an object admits an (Ω, G)-decomposition, then it is G-
invariant. The main question considered in [4] was the converse: If an object is
G-invariant, when does it admit an invariant decomposition? A sufficient condition
for the existence of an invariant decomposition was given, and it was shown that the
multiplicity of the facets of Ω (or equivalently the number of summation indices)
can always be increased to satisfy this condition.

This framework contains as very special cases the tensor rank and symmet-
ric tensor rank decomposition, as well as various notions of inherently positive
decompositions that apply to positive semidefinite matrices or entrywise nonnega-
tive tensors. Particular examples are the nonnegative [2], positive semidefinite [9],
completely positive [1] and completely positive semidefinite transposed decompo-
sitions [5] of matrices. In addition, it includes the local purification form [7] and
the Matrix Product Density Operator form [14, 15]. This framework thus unifies
decompositions with and without positivity or symmetry which are well-studied
in algebraic geometry, convex optimisation, quantum information and quantum
many-body systems. Moreover, every (Ω, G)-decomposition has an associated
rank, defined as the minimal number of terms in the sum, and we study how
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these ranks are modified when varying Ω or G. In this way, we can compare ranks,
and we find that the largest one is the tensor rank (the minimal r in Eq. (1)).

While this framework is inspired by quantum many-body systems [4], we have
also applied it to multivariate polynomials [6], and have thus transferred results
about separations of ranks [7], the lack of local certificates of positivity in uncon-
strained decompositions [3], and the existence of explicitly invariant and inherently
positive decompositions among the two.

In addition, we have extended this framework to the approximate case, where
the notion of approximation is given by ε-balls around the elements (in some
norm). We have shown that essentially all separations among ranks disappear in
the approximate case. To prove this result, we have leveraged a recent version
of the approximate Carathéodory Theorem [10], showing that every element in a
convex hull can be approximately represented with a number of extremal points,
and only depending on the error, independent of the system dimension.

There are several open questions for further research. Concerning the error
analysis, what is the border rank of an (Ω, G)-decomposition? In particular, what
is the minimal rank of descriptions with an error going to 0. While the border rank
coincides with the rank of an exact description for many cases (including the matrix
rank [8] or positive factorisations [9]), this is in general not true for multipartite
tensors and tensor (network) decompositions thereof [11]. The existence of non-
trivial border ranks of locally positive decompositions remains open.

Another perspective would be a generalised version of Comon’s conjecture which
states that the tensor rank and its symmetric analogue always coincide for sym-
metric tensors. Recently, this conjecture has been disproven, i.e. there exist ten-
sors whose standard tensor rank is strictly smaller than its symmetric tensor rank
[13]. Studying other decomposition geometries, the W -state is a representative
example for a separation between the operator Schmidt rank and the transla-
tional invariant operator Schmidt rank, as shown in [5, 12]. The framework of
(Ω, G)-decompositions provides the means to generalise this statement, namely
characterising decomposition geometries Ω and symmetries G where the Ω-rank is
different from the (Ω, G)-rank.
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Mutually unbiased bases, polynomial optimization & symmetry

Sander Gribling

(joint work with Sven Polak)

Let d ∈ N≥2. A set of k orthonormal bases of Cd is called mutually unbiased if

(∗) |〈e, f〉|2 =
1

d

whenever e and f are basis vectors in distinct bases. A natural question is for which
pairs (d, k) there exist k mutually unbiased bases in dimension d. A dimension
counting argument shows that there can be at most d+1 mutually unbiased bases
(MUBs) in dimension d. No other general upper bounds are known. When d is a
power of a prime number it is known that there exists a set of d + 1 MUBs [10,
16]. However, for all d that are not a power of a prime the question is wide
open. Even for the first such number, dimension 6, it is not known whether
there exist more than 3 such bases, despite extensive numerical search [4]. It
is known however that certain sets of 3 MUBs are maximal, i.e., they can not
be extended, see [8]. Zauner conjectured that there do not exist 4 MUBs in
dimension 6 [18]. This conjecture is widely believed, but there is no formal proof.
We refer to [3] for an excellent survey on mutually unbiased bases. MUBs have
many applications in quantum information theory, for example in tomography
algorithms, cryptographic protocols, and entanglement detection.

Navascués, Pironio, and Aćın [13] gave a C∗-algebraic formulation of the above
problem: k MUBs exist in dimension d if and only if a certain C∗-algebra has
a representation with I 6= 0. This formulation naturally gives rise to a (tra-
cial) noncommutative polynomial optimization approach and thus to semidefinite
programming relaxations. Proving infeasibility of such a relaxation would prove
non-existence of k MUBs in dimension d. We follow this approach and exploit the
symmetries in the resulting semidefinite programming hierarchy.
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Symmetry is widely used in semidefinite programming and polynomial optimiza-
tion with applications in many areas including coding theory, combinatorics, and
geometry; for an overview see [2] and references therein. Symmetry in semidefinite
programs can be used to reduce the size of the involved matrices. Indeed, it is a
consequence of Schur’s lemma that a complex matrix ∗-algebra A is ∗-isomorphic
to a direct sum of full matrix algebras. That is, there exists a ∗-isomorphism φ
such that

(1) φ(A) =
⊕k

i=1C
mi×mi .

Constructing this ∗-isomorphism is often challenging. There exist numerical meth-
ods to do so, or can use the regular ∗-representation to obtain a representation of
A in an (often) smaller matrix algebra. We focus on the setting where the algebra
consists of matrices that are invariant under a permutation action of a (finite)
group. That is, we consider the matrix ∗-algebra A = (CZ×Z)G of G-invariant
Z ×Z matrices where the group G acts on the finite set Z. In this setting one can
construct the ∗-isomorphism from (1) explicitly. To do so, one needs to decompose
the G-module CZ into a direct sum of irreducible G-modules. Group invariance
has been used previously in (commutative) polynomial optimization, see for ex-
ample [6, 14]. Finding the ∗-isomorphism (i.e., the decomposition of CZ) remains
challenging even in the group-invariance setting.

What is the symmetry in the MUB problem? Let Sn be the symmetric group
on n elements. The MUB property (∗) of a set of k MUBs in dimension d is
naturally invariant under relabeling the bases (an Sk action) and, for each basis,
relabeling the basis elements (Sd actions). These actions together precisely define
an action of the wreath product Sd ≀Sk. One can show that the C∗-algebraic formu-
lation and the related semidefinite programming (SDP) relaxations are invariant
under this action. Our main contribution is a decomposition of the ring of ho-
mogeneous degree-t polynomials in variables xi,j (i ∈ [d], j ∈ [k]) into irreducible
Sd ≀ Sk-modules. In other words, we decompose the Sd ≀ Sk-module CZ where
Z = ([d]× [k])t. The irreducible modules for wreath products of finite groups are
well known, see, e.g., [11]. However, in general there is no explicit description of the
homomorphisms from the irreducible modules to other Sd ≀Sk-modules. See [9] for

a partial description. Our decomposition of C([d]×[k])t involves constructing novel
explicit homomorphisms for certain “L-shaped permutation modules”.1

There are two canonical actions of the wreath product of Sd ≀ Sk: a primitive
action on [d]k and an imprimitive action on [d] × [k]. We have studied the im-
primitive action. The primitive action is the one used extensively in coding theory
related SDPs: see the fundamental work of Schrijver [15] and subsequent works
that rely on representation theory [7, 12].

Using our symmetry reduction we obtain numerical sum-of-squares certificates
for the non-existence of d+ 2 MUBs in dimensions d = 2, 3, 4, 5, see Table 1. We
used the SDP-solvers SDPA-GMP, SDPA-DD or SDPA [17].

1For t = 1 the separate actions of Sd on C[d]t and Sk on C[k]t are transitive and the analytic
decomposition can be obtained for example from [5, Thrm. 3.1.1].
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d k t size = (dk)⌊t⌋ #variables (sum,max) block sizes result

2 4 4.5 4096 7 (1776, 380) infeasible

3 5 4.5 50625 7 (4529, 587) infeasible

4 6 5 7962624 43 (22225,1775) infeasible

5 7 5.5 52521875 75 (89385, 5495) infeasible

6 4 5.5 7962624 54 (67224, 5361) feasible
6 7 5.5 130691232 75 (92371, 5496) feasible

Table 1. We give the number of rows of the original t-th level
SDP, and for the symmetry reduced SDP the number of variables,
the sum and max of the block sizes, and the solver status.

Finally, we mention some directions for future work. A reformulation of the
MUB problem in terms of a nonlocal game based on quantum random access
codes is given in [1]. This gives gives rise to another SDP hierarchy that can be
used to prove non-existence of certain sets of MUBs and in [1] they numerically
exploit the symmetry in the corresponding SDPs (and rule out the existence of
d + 2 MUBs in dimensions d = 3, 4). We leave it for future work to combine
our analytical symmetry reduction with their approach. A second, more open
problem is whether it is possible to further exploit the small number of variables
in the symmetry reduced SDPs.
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Noncommutative Group Symmetries and Optimization

Michael Walter

We report on a recent work initiating the systematic development of a theory of
geodesically convex optimization on Riemannian manifolds that arise from the
symmetries of noncommutative groups [1]. This builds on and generalizes a grow-
ing body of work from the past few years which gave algorithmic solutions in
important special cases. A fundamental algorithmic problem in this setting is
the following. Consider a complex reductive group G acting linearly on a finite-
dimensional Hilbert space V , with a maximal compact subgroup K acting unitar-
ily. Given a vector v ∈ V , we wish to minimize the norm over its orbit:

cap(v) := inf {‖w‖ : w ∈ G · v}.
This problem is geodesically convex when formulated on the symmetric space
G/K. Remarkably, for different group actions it captures natural important prob-
lems in algebra (null cone), computational complexity (noncommutative polyno-
mial identity testing), analysis (Brascamp-Lieb inequalities), statistics (maximum
likelihood estimation), and quantum information (marginal problems). Even when
restricted to commutative groups, it already captures all of linear programming
– a well-known and powerful paradigm in mathematical optimization. Related
algorithmic questions are to minimize moment maps (a noncommutative notion
of the usual gradient) and to test membership in moment polytopes (convex poly-
topes, typically of exponential vertex and facet complexity, which arise from this
a priori nonconvex setting). The above captures a diverse set of problems in dif-
ferent areas of computer science, mathematics, and physics. Several of them were
solved efficiently for the first time using optimization methods; the corresponding
algorithms also lead to solutions of purely structural problems and to many new
connections between disparate fields.
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In the spirit of standard convex optimization, we develop two general methods
in the geodesic setting, a first order and a second order method, which receive
first and second order information, respectively, on the “derivatives” of the func-
tion to be optimized. These methods in particular subsume all past results. The
main technical work goes into identifying the key parameters of the underlying
group actions which control convergence to the optimum in each of these meth-
ods. These noncommutative analogues of “smoothness” are far more complex and
require significant algebraic and analytic machinery. Despite this complexity, the
way in which these parameters control convergence in both methods is quite sim-
ple and elegant. We show how to bound these parameters and obtain efficient
algorithms for null cone membership in several concrete situations. Finally, we
discuss intriguing open problems and further research directions.
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Geometry of Banach spaces: a new route towards Position
Based Cryptography

David Perez-Garcia

(joint work with Marius Junge, Aleksander M. Kubicki, C. Palazuelos)

In the field of Position Based Cryptography (PBC) one aims to develop crypto-
graphic tasks using the geographical position of a third party as its only credential.
Once the party proves to the verifier that it is in fact located at the claimed po-
sition, they interact considering the identity of the third party as granted. This
may result very appealing in practical applications and, notably, it presents the
only known proposal to prevent man-in-the-middle attacks without the need of
a secure private channel. Furthermore, since the study of PBC entered into the
quantum domain approximately a decade ago, beautiful and striking connections
were established with topics ranging from classical complexity theory to AdS/CFT
holographic correspondence. All this endow the study of PBC with a remarkable
interest also from a fundamental point of view, perspective that we take as our
main motivation in this work. In particular, here we build a new deep connection
with geometric functional analysis that is at the heart of our main results. This
also allows us to introduce new ideas and techniques in a field whose development
has slowed down due to the unexpected difficulty of the most fundamental ques-
tions about it. We hope this work sparkles a renewed interest on the community
on these far reaching problems.

The main task in PBC is called Position Verification (PV). In PV a prover has
to convince a verifier (usually composed by several agents spatially distributed)
that he is located at a claimed position. In purely classical scenarios, PV is easily
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proven to be insecure against a team of colluding adversaries surrounding the
honest location. That motivates the study of quantum PV schemes. Nonetheless,
it turns out that quantum PV can be also attacked and therefore, informationally
secure PV is not possible. Intriguingly, known general attacks build on the delicate
manipulation of quantum entanglement being this, in fact, a necessary resource
to compromise the security of general PV quantum protocols. The main question
regarding this setting is then the optimal amount of entanglement necessary to
break any PV protocol. Known upper bounds for that quantity are exponential in
the size of the quantum systems manipulated in the honest implementation of the
protocol while best lower bounds are only linear. This leaves the previous question
widely open. Proving that the correct scaling is indeed exponential would lead to
protocols that can be regarded as secure for all practical purposes. On the contrary,
finding general attacks to PV using only polynomially sized entanglement would
dramatically restrict the security guarantees in PBC. Our central goal is making
progress on the understanding of this dichotomy.

Main results. For that, we propose a PV protocol in the simplest one-dimensional
case (1-D PV) and find lower bounds on the resources needed to break it. We
denote GRad the proposed protocol that, as customary, makes reference to a family{
G

(n)
Rad

}
n∈N

rather than to a single task. The index n represents the security
parameter and it determines the quantum size of the protocol. More concretely,

in G
(n)
Rad the honest prover is required to manipulate an n2 dimensional quantum

system. In this work we are interested just on entanglement consumption and
hence we will assume that both classical communication and computational power
are not limited.

In 1-D PV, two verifiers in a line surrounding a point x aim to verify that the
prover they communicate with is located at x. The general structure of a PV
protocol in this setting proceeds in three basic steps: first, the verifiers prepare a
bipartite system and communicate it to x: one part of the system is communicated
to this point from the left, and the other, from the right. Secondly, when a honest
prover located at x receives both registers, he has to immediately apply a required
computation resulting in another bipartite system that has to be returned to the
verifiers. One register should be sent to the verifier at the left of x, and the other,
to its right. Finally, the verifiers check whether prover’s answer arrives on time
and whether the computation was performed correctly. Based on this information
they declare the verification correct or not.

In the dishonest scenario, two cheaters surrounding the location x, intercept the
communication between verifiers and honest prover and try to emulate the ideal
action in the honest protocol avoiding any delay in their response. This restricts
the cheater’s action, called strategy from now on, to consist of two rounds of
local operations mediated by a step of simulatenous two-way communication – see
Section 2.2 in the main text of this submission for a detailed discussion on that.

Once we have fixed the basic setting we study, let us describe the protocol
GRad involved in our main results. The honest implementation is as follows: given

n ∈ N, in G
(n)
Rad the verifiers start uniformly sampling a vector of n2 signs ε =
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(εij)
n
i,j=1, where εij = ±1 for each i, j = 1, . . . , n, and preparing the state |ψ〉 :=

1
n

∑
i,j |i〉A ⊗ |j〉B ⊗ |ij〉C in a tripartite Hilbert space HA ⊗HB ⊗HC . Registers

HA ⊗HB are both forwarded to the verifying location x from one of the verifiers,
let us say from the left of x. This verifier keeps register HC private during the
execution of the protocol. From the right, the classical information about the
choice of ε is communicated. A honest prover located at x, upon receiving both
pieces of information, has to apply the diagonal unitary determined by ε on the
received state. Immediately, registers HA ⊗ HB must be returned, but this time
only HA should travel to the verifier at the left. HB should be sent to the verifier
at the right. After receiving those registers, the verifiers check answer’s timing
and, at some later time, they perform the measurement {|ψε〉〈ψε|, Id − |ψε〉〈ψε|}
on the whole system HA ⊗HB ⊗HC , where |ψε〉 := 1

n

∑
i,j εij |i〉A ⊗ |j〉B ⊗ |ij〉C .

They accept the verification only if the arriving time was correct and the outcome
of the measurement was the one associated to |ψε〉〈ψε|.

Coming back to the dishonest scenario, specialized in this case for GRad, we
can informally state our main result as follows:

If the cheating strategy depends on the value of ε ∈ {±1}n2

in a sufficiently regular

way, then the entanglement needed to pass G
(n)
Rad is exponential in n.

In order to formalize this result, we need to quantify the regularity of a strategy.
We do this following two complementary approaches that lead to the definition of
two regularity parameters, σi

S and σii
S . These parameters can be in fact understood

as vector-valued measures of the total influence of a strategy regarded as a function
on the Boolean cube. Complementing this analytic understanding of σi

S and σii
S ,

we can also give a more operational interpretation for these regularity parameters.
More concretely, a given cheating strategy is determined by a family of quantum
operations {Ṽε, W̃ε, V,Wε}ε∈{±1}n2 and an entangled state they share in advance,

|ϕ〉. In their strategy, depending on the value ε sampled by the verifiers in a given
instance of the challenge, the cheaters first apply operators V ⊗ Wε and, after

communicating, they apply Ṽε ⊗ W̃ε. With this, σ
i(ii)
S can be upper bounded, up

to multiplicative logarithmic factors, by the following expressions:

σi
S .log Eε

(∑

i,j

1

2

∥∥∥Ṽε ⊗ W̃ε − Ṽεij ⊗ W̃εij

∥∥∥
2
)1/2

+O
(
1

n

)
,

σii
S .log Eε

(∑

i,j

1

2

∥∥∥V ⊗ (Wε −Wεij ) |ϕ〉
∥∥∥
2

ℓ2

)1/2

+O
(
1

n

)
,

where εij denotes the sign vector (ε11, . . . ,−εij , . . . , εnn). These expressions mea-
sure how strongly the first (resp. second) round of local operations implemented
by the cheaters in their strategy depend on ε. We note that current attacks to PV
based on teleportation or port-based teleportation are sufficiently regular, that is,
they fulfil σi

S = O(log(n)/n).
We can now state our main theorem in a more rigorous way:
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Theorem 1. Consider a cheating strategy for G
(n)
Rad, S, attaining acceptance

probability of at least 1 − ǫ for some 0 ≤ ǫ ≤ 1
8 . Denote by k the local di-

mension of the quantum resources used in S. If σi
S = O(polylog(n)/nα) or

σii
S = O(polylog(n)/n3/4+α) for some α > 0, then:

k = Ω
(
exp

(
nα′))

for some α′ > 0.

Even when known constructions verify the smoothness assumption above, we
do not know how generic this behaviour is. Moreover, we connect the possibility of
dropping out this assumption and obtaining unconditional bounds with a collection
of open problems in the area of geometric functional analysis. These open problems
are concerned with the estimation of type constants for the tensor product of finite
dimensional Hilbert spaces, endowed with some tensor norms, and the relation
between the cotype of these spaces and their volume ratio.

Multipartite entanglement detection via projective tensor norms

Cécilia Lancien

(joint work with Maria Anastasia Jivulescu and Ion Nechita)

Determining whether a multipartite quantum system is in a separable or an entan-
gled state is of prime importance in quantum information theory. Indeed, if such
a quantum system is in a separable state, it means that there are no intrinsically
quantum correlations between its subsystems, so that it is not providing any ad-
vantage compared to a classical system in information processing tasks. However,
the problem of deciding if a multipartite quantum state is separable or entangled
(and even only approximate versions of it) is known to be computationally hard
[2]. Standard solutions to overcome this practical difficulty consist in looking for
necessary conditions to separability that would be easier to check than separability
itself. These are usually dubbed entanglement criteria, and various families of such
criteria have already been extensively studied in the past. From a mathematical
point of view, a quantum state is described by a positive semidefinite operator on
a complex Hilbert space having unit Schatten 1-norm. And for a quantum state
on a multipartite system (i.e. on a tensor product Hilbert space), being entangled
is characterized by having a so-called projective Schatten 1-norm which is strictly
larger than 1 [5]. But there is no efficient way of estimating such tensor norm in
general [4]. An alternative consists in looking at other tensor norms, whose values
are easier to compute and always smaller than the tensor norm characterizing en-
tanglement (so that if they are strictly larger than 1, then the state is guaranteed
to be entangled).

This is the approach that we take in this work. We define and study a class of
entanglement criteria based on the idea of applying local contractions to an input
multipartite state, and then computing the projective tensor norm of the output.
More precisely, the local contractions that we consider are from the Schatten 1-
norm to the ℓ2 norm, i.e. from a non-commutative space to a commutative one.
This is what makes such entanglement criteria interesting in practice: they can
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be seen as reducing the study of mixed state entanglement to that of pure state
entanglement, which is an easier task.

Another advantage of our entanglement criteria is that their definition is inde-
pendent from the number of subsystems. Several aspects are, admittedly, simpler
to understand in the bipartite case, but they remain equally well-suited to the case
where more than two parties are involved. In fact, one of the main issues with
most well-known entanglement criteria is that they are specifically designed for
bipartite systems, and generalizations to systems with more parties are not fully
satisfying. Indeed, they usually consist in applying the bipartite criterion across
all bipartitions, which certifies entanglement across bipartitions of the subsystems,
but not genuinely multipartite entanglement [3].

Well studied entanglement criteria, such as the realignment criterion [1, 6] and
the SIC POVM criterion [7], are important examples in the framework we con-
sider. Our work provides natural generalizations of these criteria to the multipar-
tite setting, going beyond the biseparable case already discussed in the literature.
Moreover, we establish an exact relation between the performance of the realign-
ment and the SIC POVM criteria, solving in the positive two conjectures from [7].
We are in fact able to quantify more generally how all symmetric testers perform
in detecting the entanglement of several classes of bipartite states: pure states,
Werner states, isotropic states, pure states with white noise. Another natural
question that we ask is whether our family of entanglement criteria is complete,
i.e. in other words, whether any entangled state can be detected by a tester. We
show that, in the bipartite case, the answer is yes, when allowing for a permutation
of indices of the considered state before applying the testers. Finally, we take a
closer look at the multipartite case. We show that our extension of the realignment
criterion to this setting detects all entangled pure states, as in the bipartite case.

To summarize, we introduce in this work a new paradigm for entanglement
detection in bipartite and multipartite quantum systems, based on entanglement
testers. It consists in reducing the entanglement problem of mixed quantum states
(i.e. computing a projective Schatten 1-norm) to that of pure quantum states
(i.e. computing a projective ℓ2 norm). The latter is know to be much simpler, but
this is at the cost of obtaining only a sufficient criterion for entanglement.

The main question that remains unanswered at this point is whether our family
of entanglement criteria is complete, without allowing for a preliminary reshuffling
of indices. In the bipartite case, this problem can be seen as a factorization through
ℓ2 problem. In a different direction, it would be worth investigating further the
performance of our entanglement criteria in the multipartite setting. Indeed, the
only quantitative results that we establish in this work when more then two par-
ties are involved are for pure states. But what about the case of mixed states?
Are there interesting classes of multipartite mixed states whose entanglement can
be detected by the realignment or SIC POVM testers? And can we, in general,
compare the respective performances of these two testers? Finally, it could be in-
teresting to probe the efficiency of entanglement testers in the case where the out-
put dimension is (much) smaller than the dimension of the input space. Although
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such testers cannot be perfect (i.e. detect all entangled pure states), computing
the projective norm of the output tensor is easier when the dimension is smaller,
so the trade-off between the computational efficiency and the performance of these
testers needs to be assessed.
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Efficient classical simulation of random shallow 2D quantum circuits

Aram Harrow

(joint work with John Napp, Rolando La Placa, Alexander Dalzell,
Fernando Brandão)

Overview. One of the most basic questions in quantum computing is whether a
given class of quantum computations admits an efficient classical simulation. Due
to the exponential blowup in Hilbert space dimension associated with an extensive
quantum system, brute-force simulation quickly becomes intractable. However,
this does not preclude the existence of clever classical simulation algorithms which
exploit extra structure of the problem at hand to obtain efficiency: classic examples
include 1D quantum circuits with low entanglement (simulatable via MPS) and
Clifford circuits (simulatable via the Gottesman-Knill theorem).

In this work, we add another class of quantum circuits to this list: namely,
random, sufficiently shallow, 2D quantum circuits. Besides the fact that delineat-
ing the boundary between classically simulatable and classically hard-to-simulate
processes is a basic question in computational complexity theory, random circuits
are of use in physics due to their being models of chaotic quantum dynamics, and
in quantum computation due to (among other applications) the fact that Random
Circuit Sampling (RCS) — that is, sampling from the output distribution pro-
duced by a random circuit — is a leading candidate for demonstrating so-called
“quantum computational supremacy”, and in fact was the basis for Google’s recent
claim of achieving this [1]. In this context, it becomes crucial to understand the
asymptotic hardness of the RCS problem. Unfortunately, while there are some
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hardness results for RCS under additional conjectures which have not received
widespread scrutiny, strong theoretical evidence remains sparse. A major advance
was made by Bouland, Fefferman, Nirkhe, and Vazirani [2], who proved that the
alternative problem of computing output probabilities of random circuits admits
a certain worst-to-average case reduction; since computing output probabilities of
generic instances is intractable under widely believed assumptions, this work essen-
tially showed that computing output probabilities of random circuits is intractable.
Subsequently, Movassagh made a technical improvement to this result [3].

Despite these strong hardness results for computing output probabilities, we
describe an efficient classical algorithm for the RCS problem in the setting of suf-
ficiently shallow 2D circuits. This algorithm is only efficient for shallow circuits,
and therefore does not refute Google’s quantum computational supremacy claims
which are based on deep circuits. Nonetheless, the existence of such an algorithm
has some bearing on the line of work attempting to establish the hardness of
RCS. The conventional wisdom, partially informed by [2, 3], has been that for a
given architecture, random gates should be almost the hardest possible. Our work
challenges this intuition and cautions against making bold average-case hardness
conjectures by showing that there is a natural setting where simulation is expo-
nentially easier for typical instances than for the worst case.

As a more concrete implication, our work demonstrates limitations of the hard-
ness results of [2, 3] in providing evidence for the hardness of RCS. In particular,
these hardness results do apply to the shallow random circuit families we study,
showing that near-exactly computing output probabilities is average-case hard.
Yet, we find that it is classically tractable to solve the RCS problem, and even to
compute typical output probabilities when some small additive error is allowed.
While the hardness results of [2, 3] apply to computing output probabilities, they
have been widely cited as evidence for the hardness of RCS; however, our work
implies that there are natural settings in which classically solving the RCS prob-
lem is far easier than precisely computing output probabilities in the average case.
Therefore, hardness results for the latter task should not in isolation be viewed as
evidence for hardness of the former.

Interestingly, we also find evidence that our algorithms experience computa-
tional phase transitions from polynomial-time to exponential-time when the cir-
cuit depth or local dimension exceeds some critical, constant value. As elaborated
upon below, we relate these computational phase transitions to (1) measurement-
driven entanglement phase transitions in 1D chaotic quantum dynamics, and (2)
phase transitions in classical statistical mechanical models.
Simulation algorithms. We propose two classical simulation algorithms for (noise-
less) random shallow 2D quantum circuits. To the best of our knowledge, these
algorithms represent the first simulation algorithms for 2D random circuits which
go beyond (exponential-time) methods based on tensor network contraction. The
first algorithm, which is also the algorithm we study in greatest depth, is based on
a reduction of the 2D simulation problem to the problem of simulating a certain 1D
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dynamics evolving in time. In turn, this effective 1D dynamics is simulated via Ma-
trix Product State (MPS) methods. More precisely, the effective 1D dynamics is
simulated using the Time Evolving Block Decimation (TEBD) algorithm of Vidal
[4], which involves periodically truncating (i.e. compressing) the MPS; we there-
fore refer to this algorithm as Space Evolving Block Decimation (SEBD). While
MPS are used to simulate the effective 1D dynamics, we note that SEBD is not
merely a tensor network contraction scheme, but crucially exploits the unitarity
of the circuit for its effectiveness. This differentiates it from simulation propos-
als for random circuits based on truncated tensor network contractions (e.g. [5]).
Also unlike such truncated tensor network contraction approaches, the algorithm
is self-certifying in the sense that it can bound the sampling error it’s making as
a function of the Schmidt coefficients discarded in the MPS compression steps,
even though exact simulation is hard and therefore the exact solution is unknown.
This self-certification feature allows us to numerically study the performance of
the algorithm. Our second proposed algorithm, which we call Patching, is based
on first exactly sampling from the marginal distributions of small causally dis-
connected regions, before “stitching” these patches together via recovery maps to
obtain a global sample. The efficiency of the first algorithm hinges on the effective
1D process having low entanglement, while the second hinges on the classical out-
put distribution being approximately Markovian in the sense that the conditional
mutual information (CMI) decays exponentially quickly with respect to shielded
regions.
Results and techniques. We give two classes of results: first, a rigorous proof that
SEBD is efficient in a specific situation that is hard in the worst case (Theorem 1),
and second, numerical and analytical evidence that the runtime of our algorithms
is efficient more generally when the circuits are sufficiently shallow, transitioning
to inefficient when the qudit local dimension or circuit depth becomes too large.

SEBD involves a reduction of the 2D simulation problem to a 1D simulation
problem evolving over time. We find that, after performing this reduction, the
effective 1D dynamics are highly similar to those of “unitary-and-measurement”
processes, which have seen an explosion in interest within the condensed matter
physics community in the past few years [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16].
This line of work has found strong evidence that, when random unitary dynamics
are interspersed with weak measurements, the 1D dynamics experiences an entan-
glement phase transition from an area-law to volume-law phase as measurement
strength is tuned. We find that, roughly, increasing the depth or the local dimen-
sion corresponds to decreasing the measurement strength in this picture, hence
the phase transition from an efficient to inefficient regime.

Unfortunately, so far the aforementioned measurement-driven entanglement
phase transition has eluded formal proof, and it is similarly hard to formally prove
that SEBD is generally efficient for random shallow 2D circuits, as the efficiency
of SEBD hinges on its associated effective 1D dynamics lying in an entanglement
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area-law phase. Nonetheless, we are able to formally prove that SEBD runs in poly-
nomial time for some special-case 2D architectures for which exact simulation is
known (from prior works) to be hard.

Theorem 1 (Informal). There exists a 2D circuit architecture A defined on n
qubits such that, if CA is the Haar-random circuit family associated with A, un-
der standard hardness conjectures there does not exist a polynomial-time classical
algorithm for sampling from the output distribution of arbitrary instances of CA,

or for near-exactly (i.e. up to e−Ω(n2) precision) computing output probabilities of
typical instances of CA. However, SEBD runs in time O(n) and, with probability

1− 2−n0.99

over choice of circuit instance, samples from the output distribution of

CA up to error at most 2−n0.99

in total variation distance, and estimates a fixed

output probability of CA with additive error 2−n/2n
0.99

.

While the architecture used to prove this result is contrived, it suffices to
demonstrate a formal separation between the hardness of approximately simu-
lating average-case circuits and worst-case simulation. The proof of the above
theorem lies partly on a technical lemma on the typical behavior of entanglement
after measurement; namely, we show that if a contiguous block of m qubits are
measured after applying a random shallow 1D circuit, the expected entanglement
entropy of the induced bipartite pure state is exponentially small in m. While this
theorem applies for a contrived architecture for which a formal proof is feasible,
it is desirable to understand the performance of these simulation algorithms for
more general and more natural 2D circuit architectures. To this end, we make
conjectures on the general performance of the algorithms, which are summarized
informally below.

Conjecture 1 (Informal). SEBD and Patching are asymptotically efficient for any
family of 2D quantum circuits with Haar-random gates of sufficiently low depth, but
experience a computational phase transition to an inefficient (exponential runtime)
regime when the depth or local Hilbert space dimension exceeds some (constant)
critical value. The critical values are architecture-dependent.

We collect numerical and heuristic, analytical evidence for these conjectures.
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Detecting positive quantum capacities of quantum channels

Nilanjana Datta

(joint work with Satvik Singh)

Using elementary techniques from analytic perturbation theory of Hermitian ma-
trices, we devise a simple strategy to detect positive quantum capacities of quan-
tum channels and their complements. Several noteworthy examples, such as the
depolarizing and transpose-depolarizing channels (including the Werner-Holevo
channel), dephasing channels, generalized Pauli channels, multi-level amplitude
damping channels, and (conjugate) diagonal unitary covariant channels, serve to
aptly exhibit the utility of our method. Our main result leads to simplified proofs
of certain existing structure theorems for the class of degradable quantum chan-
nels, and an extension of their applicability to the larger class of more capable
quantum channels.
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The platypus of the quantum channel zoo

Debbie Leung

(joint work with Felix Leditzky, Vikesh Siddhu, Graeme Smith, John Smolin)

Quantum channels are astonishing. They are like animals in a zoo each exhibiting
some exotic behaviors and unusual interactions with each other. This includes a
variety of synergies: super-additivity of coherent information, private information,
and Holevo information, superactivation of quantum capacity, and private com-
munication at a rate above the quantum capacity. Over the past two decades,
significant effort has been dedicated to elucidating these phenomena with numer-
ous exciting findings, but a full understanding remains elusive. Without such
understanding, we lack a theory on how to best communicate with quantum chan-
nels, and fail to answer the kinds of questions classical information theory does.
Random codes can be suboptimal; we cannot evaluate capacities beyond special
examples; our capacities may not capture the communication potential of a noisy
channel; our understanding of error correction in the quantum setting is incom-
plete, whether the data is classical, private, or quantum.

We think the best path towards a deeper understanding of super-additivities
in quantum information—really, a better understanding of quantum information
itself—is to better understand and develop the menagerie of phenomena. Clean
and clear examples of channels that isolate different aspects of nonadditivity are
in short supply. This paper presents such an example which is novel in several
ways.

Key results. We study a remarkably simple, low-dimensional, single-parameter
family of channels Ns (defined in (1) below). This family exhibits many strange
behaviors for quantum communication while having uncomplicated classical and
private classical capacities: (i) The classical and private classical capacities can be
calculated explicitly because the underlying information quantities (Holevo and
private information, respectively) are additive, even though the channel does not
belong to any of the known additivity classes. (ii) The same holds true for the
quantum capacity: the coherent information of this family is additive, provided
that a certain entropy minimization conjecture is true. We state this “spin align-
ment conjecture” below and give evidence for its validity in the main text. (iii)
The coherent information, and also the quantum capacity (assuming the spin align-
ment conjecture) of Ns tensored with an assisting channel is super-additive. The
phenomenon is exhibited even on simple assisting channels, including the qubit
amplitude damping channel, the qubit erasure channel, and the qubit depolariz-
ing channel. Moreover, super-additivity persists even if the assisting channel has
positive quantum capacity by itself, which has not been observed before. (iv) The
mechanism of super-additivity is novel and in particular differs from the known ex-
planation [1] of super-activation [3]. The vanilla mechanism from prior activation
results does not give super-additivity.
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Channel definition. This family of quantum channels is first introduced in [2],
and is defined by the isometry F : Ha → Hb ⊗ Hc with Ha = Hb = C3 and
Hc = C2,

F |0〉 = √
s |0〉 ⊗ |0〉+

√
1− s |1〉 ⊗ |1〉 ,

F |1〉 = |2〉 ⊗ |0〉 ,
F |2〉 = |2〉 ⊗ |1〉 , 0 ≤ s ≤ 1/2.(1)

This gives rise to a pair of channels Ns(ρ) = trcFρF
†, and N c

s (ρ) = trbFρF
†. If

one restricts the input to the span of {|0〉 , |1〉} or the span of {|0〉 , |2〉}, one obtains
a degradable sub-channel of Ns. Likewise, the span of {|1〉 , |2〉} maps perfectly
to the output of N c

s . These two simple modes of transmission are intertwined in
F , giving rise to the following long list of exotic properties, some of which are
summarized in Figures 1A and 1B below.

• Ns is neither degradable nor antidegradable, yet its private information is
additive and the private capacity can be computed exactly: P(Ns) = 1.

• Subject to the spin-alignment conjecture, the coherent information is ad-
ditive and the quantum capacity can be computed exactly.

• The quantum capacity of Ns can be upper-bounded (unconditionally) as
Q(Ns) ≤ log(1 +

√
1− s). Thus the quantum and private capacity of

Ns are provably separated; see also Fig. 1 below), yet both capacities are
additive (modulo the spin alignment conjecture for quantum capacity).

• Ns does not belong to any of the known additivity classes for Holevo infor-
mation (unital qubit channels, entanglement-breaking channels, Hadamard
channels, depolarizing channels, direct sum of partial trace channels), yet
its Holevo information is additive and the classical capacity can be com-
puted exactly: C(Ns) = 1.

• In summary, the private and classical capacity of Ns coincide, while the
quantum capacity of Ns is different. Furthermore, the complementary
channel N c

s has all capacities equal to 1.

• Both the private and classical capacity of Ns have the strong converse
property, establishing the respective capacity as a sharp threshold beyond
which any private or classical information transmission fails with certainty.
The channel is not a member of any of the known classes of channels for
which strong converses (for either private capacity or classical capacity)
are known.

• The coherent information of Ns is strictly super-additive when used with
many familiar simple channels such as the qubit amplitude damping chan-
nel, Ap, the qubit erasure channel, Eλ, and the qubit depolarizing channel,
Dp. See Fig. 1 for an overview.
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• Subject to the spin-alignment conjecture, the strict super-additivity of
Q(1)(Ns⊗M) forM = Ap, Eλ is lifted to the quantum capacities, and here,
both constituent channels have large, positive quantum capacities. The
super-additivity of coherent information for all three assisting channels
(and superadditivity of quantum capacity for M = Ap, Eλ) is achieved on
a joint input state having the same form. Thus, in all three cases the same
mechanism lies at the heart of the observed super-additivity effects.

• This“mechanism”of super-additivity is distinct from those in prior (super-)
activation of quantum capacities. Smith and Yard [2] showed that a 50%
erasure channel can transform private capacity into quantum capacity at
the cost of a factor of 1/2, via an attempted conversion of a p-bit (state
with secret key) into entanglement, which succeeds with probability 1/2.
This superactivates the quantum capacity of any channel with no quantum
capacity but positive private capacity. But for the channelNs, even though
the private capacity is much bigger than the quantum capacity, we have
Q(Ns) >

1
2P(Ns). Therefore, the Smith-Yard protocol cannot increase

the capacity. We may expect that the coherent information is optimized
on an input that is independent across the erasure channel and Ns, giving
additive coherent information. Instead, superposing the Smith and Yard
strategy with the product strategy while retaining a coherent memory of
which strategy was used provides the observed super-additivity!

Spin alignment conjecture. We now provide a short description of a conjecture
about the entropy of spins. Subject to this conjecture, Q(1)(Ns) = Q(Ns). First,
consider a single spin-1/2 particle whose density operator ρ is a convex combina-
tion of a given mixed state Q and some variable state ω. The minimum entropy
of ρ can be shown to occur at ω = |φ〉〈φ|, where |φ〉 is an eigenvector of Q corre-
sponding to the largest eigenvalue. The spin-alignment conjecture generalizes the
aforementioned setup: ρ is now allowed to be an n-spin density operator that is
formed by a convex combination of several distinct states. In each distinct n-spin
state, a subset of the spins are fixed to be products of the mixed state Q, and the
rest of the spins are in some variable joint state. The spin-alignment conjecture
posits that ρ has minimum entropy when spins in all these variable states align
with each other making each variable state a product over the same spin state |φ〉.
We prove this conjecture in certain special cases with n = 2 and 3. For modest
values of n we find numerical evidence supporting this conjecture.
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(a) (b)

Figure 1. (A) Capacities of the qutrit channel Ns. (B) Super-
additivity of coherent information of Ns

Hybrid quantum-classical algorithms for approximate graph coloring

Robert König

(joint work with Sergey Bravyi, Alexander Kliesch, Eugene Tang)

There is a growing demand for practical algorithms solving combinatorial opti-
mization problems which are challenging for classical computers. An example of
such a problem is the graph coloring problem, which tends to be NP-complete
even when restricted to special sub-classes of graphs. An approximate version of
the graph coloring problem is the MAX-k-CUT problem, which seeks to find an
approximate vertex coloring of a graph using k colors such that the number of
miscolored edges is minimized. This problem generalizes the standard MAX-CUT
problem (which is equivalent to MAX-2-CUT). A well-studied quantum algorithm
for MAX-CUT is the Quantum Approximate Optimization Algorithm (QAOA) [1].

In this work, we first formulate a variation of QAOA using (k-dimensional)
qudits which is applicable to the MAX-k-CUT problem. Given a graphG = (V,E),
define the (classical) 2-local cost Hamiltonian on n = |V | k-dimensional qudits as
follows:

H =
∑

(i,j)∈E

∑

b∈Zk\{0}

Πi,j(b) where Π(b) =
∑

a∈Zk

|a, a+ b〉〈a, a+ b| .(1)

Maximum energy states of H have support on computational basis states associ-
ated with optimal approximate k-colorings. The level-p QAOA (denoted QAOAp)
uses variational states of the form

|ψ(β, γ)〉 =
p∏

t=1

B(βt)
⊗neiγtH |+〉⊗n

with angles (β, γ) ∈ (Rk)p × R
p(2)
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where |+〉 = k−1/2
∑

b∈Zk

|k〉, B(β) =
∑

α∈Zk

eiβa |φa〉〈φa|, and where |φa〉 = Za |+〉,

Z =
∑

b∈Zk

e2πib/k|b〉〈b| are the eigenvectors of the generalized Pauli operator X . As

usual, angles (β, γ) maximizing 〈ψ(β, γ)|H |ψ(β, γ)〉 are found using some (classi-
cal) iterative procedure such as gradient descent (by querying the quantum device);
a corresponding state |ψ(β, γ)〉 is subsequently measured in the computational ba-
sis to obtain an approximate k-coloring z ∈ Zn

k . The approximation ratio achieved
by QAOAp (i.e., the expected number of properly colored edges divided by the
maximal number MCk(G) of properly colored edges in an k-coloring) is then given
by αMCk

p (G) = maxβ,γ 〈ψ(β, γ)|H |ψ(β, γ)〉 /MCk(G).

Main findings. Here we seek to study the power of this modified QAOA applied
to MAX-k-CUT as compared to the best known efficient classical algorithms. We
first establish analytical bounds pinpointing limitations of QAOA as described
here: similar to earlier observations about QAOA for MAX-CUT, the proposed
algorithm suffers from locality constraints and its uniformity. Prompted by this,
we introduce a modification of QAOA which supplements the basic energy mini-
mization routine by efficient classical processing. The latter sidesteps the locality
constraints inherent in near-term quantum hardware. We find numerically that
this modification which we call recursive QAOA (RQAOA), substantially improves
upon the results of standard QAOA. In fact, it is shown to outperform the best
known classical algorithms for the MAX-k-CUT problems on generic random in-
stances.

Limitations of QAOAp for MAX-k-CUT. While it is known that QAOA
asymptotically provides optimal solutions, it is important for the imminent NISQ
era to understand its behavior for low levels p (corresponding to few variational
parameters). In [2], we showed that for levels p = O(log n), one can always
find examples for which QAOA for the MAX-CUT problem is outperformed by
the best known classical algorithm, the Goemans-Williamson algorithm [3]. This
result was further improved by Farhi et al. [4], where they demonstrate a class
of graphs for which constant-level QAOA is incapable of beating the most trivial
algorithm which randomly assigns each vertex to one of the two sets in the desired
bipartition. We show that a similar kind of restriction also holds for the MAX-k-
CUT problem:

Theorem 1. Let Gbi
n,d denote the uniform distribution over all d-regular bipartite

graphs on n vertices. Let αMCk
p (G) denote the approximation ratio achieved by

QAOAp for MAX-k-CUT on the graph G. There is a constant ζ > 0 such that

Pr
G∼Gbi

n,d

[
αMCk
p (G) ≥ (1− 1/k) + od(1) + on(1)

]
≤ o(1)(3)

for all degrees d satisfying d ≥ ζ and d = o(
√
n) and all levels p < 1

2 logd n.

Theorem 1 states that, roughly speaking, for random d-regular bipartite graphs
of sufficiently large degree d, the performance of constant (or even logarithmic)
depth QAOAp is asymptotically equivalent to the naive algorithm of assigning



2708 Oberwolfach Report 49/2021

each vertex to a random partition. This result therefore generalizes the corre-
sponding bound for MAX-CUT derived in [4]. The proof of Theorem 1 relies on
two key characteristics of QAOA, namely its locality and uniformity. The QAOA
unitary is a local quantum circuit: for a constant level p, each interaction term
〈ψ(β, γ)|Πi,j |ψ(β, γ)〉 involves only a neighborhood of radius p around each given
edge (i, j). Moreover, the algorithm is spatially uniform: reduced density operators
for isomorphic neighborhoods are identical and thus contribute the same amount
of energy. A random d-regular graph has the property that almost all of its local
neighborhoods are isomorphic, which implies strong concentration properties for
the resulting QAOA expectation values.

Sidestepping locality constraints: RQAOA. To sidestep the locality con-
straints facing QAOA, we consider a recursive modification of the algorithm which
we call recursive QAOA (RQAOA). RQAOA utilizes additional classical process-
ing in the form of correlation rounding. The correlation rounding step amplifies
the results of low-level QAOA, taking full advantage of both the budding quantum
hardware and the powerful existing classical architecture. RQAOA mitigates the
problematic limitations of QAOA by allowing the coupling of non-local degrees of
freedom through the correlation rounding step.

Formally, RQAOA (which we previously discussed for MAX-CUT in [2]) pro-
ceeds as follows. First, run the standard QAOA to maximize the expected value
of the cost function Hamiltonian H defined in equation (1). For i, j ∈ [n], de-
fine Mi,j(b) as the expectation value of Πi,j(b) on the optimal state. Next, find
a pair (i∗, j∗) of vertices and a color b∗ ∈ Zk such that the value of Mi∗,j∗(b

∗) is
maximal (breaking ties arbitrarily). Then impose the constraint xj∗ = xi∗ + b∗

(mod k), restricting the search space to the span of computational basis vectors |x〉
which satisfy the constraint. Now, we eliminate the variable xi∗ by inserting
the constraint into the cost function Hamiltonian. To do so, we use the iden-
tity Πi,j(b)Πj,h(a − b) = Πi,j(b)Πi,h(a) which holds for all h 6∈ {i, j} and all
a ∈ Zk. Thus we have Πi∗,h(a) = Πj∗,h(a − b∗) on the subspace satisfying the
constraint. Replacing Πi∗,h(a) by Πj∗,h(a − b∗) in the cost function Hamiltonian
for all h 6∈ {i∗, j∗}, we get a new Hamiltonian H ′ of the form (1) (possibly with
additional edge weights) which acts on n− 1 variables. We can now run standard
QAOA again on the reduced Hamiltonian H ′, iterating the process above until we
reduce the problem to a size which is amenable to a straightforward computation
(such as a brute-force search).

Efficient classical simulation of QAOA1 and RQAOA1. To numerically
assess the performance of RQAOA, we require classical simulation algorithms.
For MAX-CUT, an analytic expression for QAOA1 expectation values is known,
permitting efficient classical evaluation [5, 2]. We show that for MAX-k-CUT,
QAOA1 expectation values can also be efficiently computed:

Theorem 2 (Classical Simulation of level-1 QAOA for MAX-k-CUT). For any
i, j ∈ [n], b ∈ Zk and (β, γ) ∈ Rk × R, the QAOA1-correlation function

〈ψ(β, γ)|Πi,j(b) |ψ(β, γ)〉
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can be classically computed in time O(k6(di+dj)), where di and dj are the degrees
of vertices i and j, respectively.

For a constant number of colors k, this scales at most linearly with n. For
constant-degree graphs, the computation requires a constant amount of time. Our
simulation algorithm works more generally for Hamiltonians H =

∑
i,j Hi,j with

pairwise commuting 2-local interaction terms {Hi,j}i<j and QAOA1-type ansatz
states defined using any tensor product operator as the driving term. The algo-
rithm relies on the fact that by commutativity of the interaction terms, the evalua-
tion of expectation values can be reduced to the iterative application of superoper-
ators Ew for every w ∈ V \{i, j} to the density matrix η = eiγHi,j |+〉〈+|⊗ne−iγHi,j .
For MAX-k-CUT, Ew admits diagonal Kraus operators which allows for an efficient
evaluation. This results in the stated complexity for QAOA1.

Through the efficient evaluation of correlation functions, Theorem 2 also imme-
diately implies an efficient simulation method for RQAOA1. Therefore, RQAOA
at level 1 is itself an instance of an efficient classical algorithm for MAX-k-CUT.
Conversely, the efficient classical simulation of RQAOA1 allows a crucial window
into the algorithm’s performance, allowing key comparisons to well known classi-
cal algorithms. Corresponding simulation results are indicative for the potential
performance of RQAOA at larger (“genuinely quantum”) levels p.

Numerical performance of RQAOA for MAX-3-CUT. Here we present
numerical results comparing the performance of QAOA1, RQAOA1, and the best
known, very recently discovered classical algorithm by Newman [6] for MAX-3-
CUT. The latter is a simplification of the previous algorithms by Klerk et al. [7]
and Goemans and Williamson [8] based on randomized rounding of SDP solutions.

To this end, we randomly generated d-regular, 3-colorable graphs with n ver-
tices for several values of d and n. For QAOA1 and RQAOA1, we employ a suitable
parametrization allowing to find optimal angles using a 1-dimensional grid search
instead of the notoriously problematic gradient descent. Since Newman’s algo-
rithm is randomized, we run the algorithm 100 (i.e., a constant number of) times
and take the best result over these samples as the benchmark for our comparisons.

A selection of our numerical results is illustrated in Fig. 1. We observe that
RQAOA1 significantly outperforms QAOA1 for MAX-3-CUT in all considered
cases. We also note that RQAOA1 is highly competitive with Newman’s algo-
rithm, although this statement needs to be qualified.

For certain parameter values of (n, d) (e.g., for small graphs), we observe that
Newman’s algorithm produces a distribution of approximation ratios with large
variance. This in turn implies that the optimal solution (over 100 samples) re-
turned by Newman’s algorithm tends to provide a good coloring. For such graphs,
RQAOA1 is outperformed by this best solution, yet still provides a coloring better
than what Newman’s algorithm produces on average. For other parameter values
(including cases where the size of the graphs is larger), the variance of Newman’s
algorithm is smaller, and the empirical average is close to theoretically guaranteed
worst-case approximation ratio. For these instances, we observe that RQAOA1

outperforms all solutions returned by Newman’s algorithm. This suggests that
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RQAOA may be a promising algorithm for problem sizes of real practical rele-
vance.

Outlook. Our quantum-classical hybrid algorithm studied here provides concrete
evidence that limitations of near-term quantum devices can be overcome by the
inclusion of classical processing. Especially in the resource limited NISQ era,
further analytical understanding of both QAOA and RQAOA is an important
open problem.

Figure 1. Approximation ratios for (n, d) = (60, 6) (left) and
(300, 6) (right), respectively. The guaranteed worst-case approxi-
mation ratio of Newman’s algorithm is indicated by the horizon-
tal line at α = 0.836008. For each graph, the empirical mean and
standard deviation of Newman’s algorithm are indicated through
the error bars.
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Quantum algorithms for matrix scaling

Harold Nieuwboer

(joint work with Joran van Apeldoorn, Sander Gribling, Yinan Li,
Michael Walter, Ronald de Wolf)

Matrix scaling is an easily stated computational task: given a matrix with non-
negative entries, rescale its rows and columns with positive numbers such that
the new matrix has prescribed row and column sums. Despite its simple state-
ment, it has applications in many different contexts, such as approximation of
the permanent [14], fast approximation of optimal transport distances in machine
learning [11], and finding maximum-likelihood estimators for log-linear models [6].
A related problem with similar structure is that of matrix balancing, which is
used in practice for numerical preconditioning, and can be used to approximate
min-mean-cycles in weighted graphs [3]. Furthermore, there has been a lot of
recent interest in (non-commutative) generalizations of matrix scaling, such as op-
erator and tensor scaling [12, 8]. The matrix scaling and balancing problems are
well-understood and efficiently solvable with classical algorithms. In this talk, we
discuss two recent works [4, 13] on both quantum algorithms and quantum lower
bounds for matrix scaling and balancing.

For A ∈ R
n×n
≥0 , let ~r(A) := A~1n and ~c(A) := AT~1n be its vectors of row and

column sums, respectively. The matrix scaling problem is then defined as follows
for the ℓp-norm (p ≥ 1): given ε > 0, and ~r,~c ∈ Rn

≥0 with ‖~r‖1 = ‖~c‖1 = 1, find

positive diagonal matrices X,Y such that B = XAY satisfies ‖~r(B) − ~r‖p ≤ ε
and ‖~c(B) − ~c‖p ≤ ε. We refer to such a B as being ε-(~r,~c)-scaled. A common

choice for ~r,~c is ~1n/n, i.e., the uniform distribution, and we refer to these as the
uniform target marginals. We assume henceforth that the smallest non-zero entry
of each of A, ~r and ~c is at least 1/poly(n), and we write m for the number of
(possibly) non-zero entries of A.

While achieving both ~r(XAY ) ≈ε ~r and ~c(XAY ) ≈ε ~c simultaneously is
difficult, satisfying one of the constraints at a time is easy; if XAY is the current
matrix, then to satisfy the row-marginal constraint, one can update X to X ′ by
setting X ′

i = Xi · ri/ri(XAY ). Alternating between updating X and Y is known
as Sinkhorn’s algorithm, and surprisingly, this algorithm converges whenever A is
asymptotically (~r,~c)-scalable, that is, for every ε > 0 there exist X,Y such that
XAY is ε-(~r,~c)-scaled. We assume that this holds from here onwards.

It is known that if one computes the ri(XAY ) exactly, then Sinkhorn’s algo-

rithm outputs an ε-ℓ1-scaling of A in Õ
(
1/ε2

)
iterations (cf. [2, 9, 4]). This can
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be proven by considering the (convex) potential function

f(~x, ~y) =
n∑

i,j=1

Aije
xi+yj − 〈~r, ~x〉 − 〈~c, ~y〉

where ~x = log(X) and ~y = log(Y ), showing that it decreases by roughly ε2 as

long as XAY is not ε-ℓ1-scaled, and showing that the potential gap f(~0,~0) −
inf~x,~y f(~x, ~y) is not too large. The cost of every iteration is given by the cost of
computing the row (or column) sums of the current matrix, which can be done

in time Õ(m); hence a classical implementation of Sinkhorn’s algorithm finds an

ε-ℓ1 scaling in time Õ
(
m/ε2

)
. When A is entrywise positive, one can show Õ(1/ε)

iterations suffice, thus finding scalings in time Õ
(
n2/ε

)
.

However, if one has quantum (binary) oracle access to A, then we show that
one can use quantum amplitude estimation [7] to compute (1 ± δ)-multiplicative

approximations to the ri(XAY ) in time Õ(
√
n/δ) per row, and use these approxi-

mations for updating the X,Y . The choice δ = O(ε2) only increases the number of
required iterations by a constant factor (compared to the classical setting), leading

to a quantum algorithm finding ε-ℓ1-scalings of A in quantum time Õ
(√
mn/ε4

)

when A has at most m non-zero entries. If A is entrywise positive, one can reduce

this to Õ
(
n1.5/ε3

)
, in analogy with the classical setting. Furthermore, the quan-

tum Sinkhorn method can be shown to be optimal (up to logarithmic factors) for
constant ε, in the following sense: there exists an ε0 > 0 such that any quantum
algorithm that ε0-ℓ1-scales dense matrices to uniform marginals with probability
≥ 2/3 must make Ω(n1.5) queries.

Among the classical state-of-the-art are second-order methods which have a
polylogarithmic 1/ε dependence, namely box-constrained Newton methods [10,
1] and interior-point methods [10]. These rely on efficient graph sparsification
algorithms, for which a quantum speedup was recently obtained [5]. We use this
to obtain a quantum speedup for the second-order methods in terms of n,m, but
the resulting algorithm still has a polynomial 1/ε dependence; see [13] for details.

This leads to the question as to whether a polylogarithmic 1/ε dependence
can be preserved while obtaining a sublinear dependence on the input size m.

We show that this is impossible: we prove that for ε = Θ̃(1/m), any quantum
algorithm which ε-ℓ2-scales matrices with at most m non-zero entries to uniform

marginals must make Ω̃(m) queries to the matrix entries, even when the success
probability is only assumed to be ≥ 3

2 exp(−n/100). This lower bound is proven by
a reduction from determining the Hamming weight of bit strings of length n, each
of which is assumed to have Hamming weight n/2± 1, for which a Ω(n2) quantum
query lower bound holds. From (random permutations of) the bit strings one
then creates a matrix A such that the row sums are determined by the Hamming
weights; hence the scaling factors X obtained from a single row-rescaling step
encode the Hamming weight of each bit string. Using a concentration argument,

one can show that XA is Θ̃(1/m)-scaled with probability ≥ 2/3 (over the random
permutations), and strong convexity properties of the potential f discussed earlier
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imply that any other scaling factors which ε-ℓ2-scale the matrix for ε = Θ̃(1/m)
also encode the Hamming weights of the bit strings.

However, some open problems remain. For general matrices, the interior-point
method of [10] has the best guarantees in the high-precision regime, finding an

ε-ℓ1-scaling in time Õ
(
m1.5

)
; a natural question is whether this can be reduced

with a quantum algorithm while retaining the polylogarithmic 1/ε-dependence.
Another interesting problem is determining the complexity of the following task:
given a dense non-negative matrix A whose entries sum to at most 1, find an

ε-ℓ1-approximation of ~r(A). An upper bound of Õ
(
n1.5/ε

)
can be given using

amplitude estimation. One can also prove lower bounds of Ω(n1.5) when ε is a
small enough constant, and Ω(n/ε) when ε = Ω(1/n) [13], so there remains a gap
between the lower and upper bounds.
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Graph Homomorphisms and Obstructions to Sums of Squares

Grigoriy Blekherman

(joint work with Annie Raymond, Mohit Singh, Rekha Thomas)

A graph G has vertex set V (G) and edge set E(G). All graphs are assumed to be
simple, without loops or multiple edges. The homomorphism density of a graph
H in a graph G, denoted by t(H ;G), is the probability that a random map from
V (H) to V (G) is a graph homomorphism, i.e., it maps every edge of H to an
edge of G. An inequality between homomorphism densities refers to an inequality
between t(Hi;G), for some finite graphs Hi, that is valid for all graphs G.

The graph profile of a collection of connected graphs U = {C1, . . . , Cs}, denoted
as GU , is the closure of the set of all vectors (t(C1;G), t(C2;G), . . . , t(Cs;G)) as G
varies over all graphs. For example, the graph profile of U = {edge, triangle} is
the well-known set in [0, 1]2 shown in Figure 1 [17].
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Figure 1. The graph profile of edge and triangle.

Graph profiles are extremely complicated sets and they have been fully under-
stood in very few cases. The study of graph profiles was initiated in [7], where it
was shown that a graph profile is a closed full-dimensional subset of [0, 1]s for an
arbitrary s-tuple of connected graphs. However to this day, there is no triple of
connected graphs for which the graph profile is fully known. For pairs of graphs,
the profile GU for U = {edge,Kn} where Kn denotes the complete graph on n
vertices was determined first for n = 3 in [17], for n = 4 in [15], and for a general
n in [19]. Determining the profile of {edge, H} where H is an arbitrary bipar-
tite graph would involve resolving the famous Sidorenko conjecture which says



Geometry and Optimization in Quantum Information 2715

t(H ;G) ≥ t(edge;G)|E(H)|. Despite considerable attention, this conjecture is only
known for some classes of bipartite graphs [5, 11, 20, 6].

Completely understanding a graph profile is equivalent to understanding poly-
nomial inequalities valid on it. Many results and problems in extremal graph
theory can be restated as polynomial inequalities between homomorphism densi-
ties [12, 16]. The Cauchy-Schwarz inequality has been one of the powerful tools
used to verify density inequalities for graphs and hypergraphs [8, 12, 18, 9]. This
proof method is equivalent to the general sum of squares (sos) proof method that
has been widely used in optimization [1]. Moreover, sos proofs naturally yield to
a computerized search via semidefinite programming. Nonnegative graph combi-
nations admit a Positivstellensatz: any graph combination strictly positive on a
graph profile GU is a sos [13, 14].

Hatami and Norine [10] show significant computational limitations on verifying
inequalities between homomorphism densities. Firstly, they show that the prob-
lem of verifying the validity of an inequality between homomorphism densities is
undecidable. This implies that there exist valid polynomial inequalities that can-
not be certified even via rational sums of squares. We showed in [2] that natural

combinatorial inequalities such as Blakley-Roy inequalities, Pk ≥ edgek, where Pk

is a path of odd length k, cannot be certified by sos. We now show a much stronger
obstruction to sums of squares.

In [3] we introduced a new notion of sos-testable graph combinations, which are
more general than sums of squares and rational sums of squares. Roughly speaking,
sos-testable graph combinations correspond to graph combinations whose nonneg-
ativity can be recognized by sums of squares, although there is no explicit certifi-
cate of nonnegativity. More precise definition will be given below. We found large
families of pure binomial graph density inequalities that are not sos-testable, and
even their pure binomial approximations remain not sos-testable. These families
include Blakley-Roy inequalities for odd paths.

We focus on pure binomial inequalities, i.e. inequalities of the formGα
1 · · ·Gαk

k ≥
Hβ1

1 · · ·Hβm
m . For a fixed graph collection U , the exponent vectors of valid binomial

inequalities form a convex cone. It is not not known whether deciding validity of
a pure binomial inequality is undecidable.

Question 1. Given two (not necessarily connected) graphs G1 and G2 is the
question of whether G1 − G2 ≥ 0 is a valid homomorphism density inequality
decidable?

In all of the examples we were able to do in [3] and [4] the cone of exponents of
valid binomial inequalities is rational polyhedral, i.e. all binomial inequalities valid
on U can be deduced from a finite collection of inequalities with integer exponents.
The most general result we have is the following [4]:

Theorem 1. Let U be a finite collection of connected, chordal, series-parallel
graphs. Then exponents of binomial inequalities valid on the profile GU form a
rational polyhedral cone.

We ask whether this is true for an arbitrary finite collection of connected graphs:
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Question 2. Let U be a finite collection of connected graphs. Do exponents of
binomial inequalities valid on the profile GU form a polyhedral cone. If yes, then
is it necessarily a rational polyhedral cone?

Sos profiles and sos-testable functions.
For a fixed positive integer d, define the d-sos-profile, denoted as Sd, to be the
set of all points on which all sos graph combinations

∑
[[a2j ]], with all aj having

at most d edges in their constituent graphs, are nonnegative. Let the (U , d)-sos
profile SU ,d be the projection on Sd onto the graphs in U . We proved in [3] that
Sd is a basic, closed semialgebraic set, and all valid pure binomial inequalities on
the sos-profile can be described explicitly as coming from 2× 2 minors of a certain
moment matrix. We showed that pure binomial inequalities that can be deduced
in this way sometimes cannot even approximate valid binomial inequalities on the
true profile GU .

A graph combination a is sos-testable if it is nonnegative on Sd for some d. Sos-
testable functions do not have to come with an explicit certificate of nonnegativity
on an sos-profile. However, in principle, since Sd is a semialgebraic set, nonnega-
tivity of a graph combination on Sd can be verified via real quantifier elimination.
We show that if a graph combination a becomes sos-testable after multiplication
by an sos-testable graph combination b, then a was already sos-testable. The class
of sos-testable functions includes sums of squares and also rational sums of squares,
but is quite likely significantly larger. It is not clear at this point whether even
rational sos is a bigger class than just sos.

In [3] we exhibited concrete families of binomial graph density inequalities that
are not sos-testable, even approximately. An example of such a binomial inequality
are all Blakley-Roy inequalities for odd paths.
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