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Introduction by the Organizers

The workshop Thin groups and super-approximation, was well attended with over
50 participants (in person + zoom participants) with broad geographic represen-
tation from all continents. This workshop was a nice blend of researchers with
various backgrounds.

Let us recall that a thin group refers to a finitely generated Zariski dense sub-
group of an S-arithmetic subgroup of a (semisimple real) algebraic group that is
of infinite covolume. Given a thin group Γ of a semisimple algebraic group G, we
consider a family, say F , of its congruence subgroups. Fixing a finite symmetric
generating subset Ω of Γ, the super-approximation for Γ with respect to F means
that the family of Cayley graphs (Γ/Γn,Ω), Γn ∈ F forms an expander family.

The main theme of this workshop as explained in our program was divided into
the following three topics:
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(1) Overview the super-approximation;
(2) Dynamical implications in terms of uniform exponential mixing of geodesic

flows;
(3) Applications to problems in arithmetic, geometry, and dynamics.

The lectures followed carefully the scheduled program: 6 of the lectures were
devoted to the first topic, 7 devoted to the second, and 5 devoted to the third.

The first theme of this meeting was to understand what the super-approximation
is, and go over proofs of some of the main results on this topic. There have been
many advances in our understanding of the spectral gap properties of random
walks in (locally) compact groups, and some of the progress manifested itself in
super-approximation property of thin groups. In the first lecture, Pham went
over the basics of random walk in a compact group and mentioned some of the
main results of super-approximation due to Bourgain-Gamburd, Bourgain-Varjú,
Golsefidy-Varjú, and Golsefidy. In the second lecture on this topic, Sert went
over the Bourgain-Gamburd machine and showed how these techniques answer
Lubotzky’s 1-2-3 problem. As part of the Bourgian-Gamburd machine, one needs
to understand the approximate subgroups. The first result of this type is due
to Helfgott. Dona explained the main ideas of Helfgott’s proof. The Bourgain-
Gamburd machine works in a single scale setting. In a multiscale setting, one needs
to focus on various scales separately. Kogler explained how Bourgain-Gamburd
and Benoit-de Saxcé overcame these difficulties in the Archimedean setting: com-
pact semisimple Lie groups. Winkel went through Varjú’s thesis and explained
how he dealt with the direct product of certain finite groups. Finally, Machado
explained how Golsefidy used understanding of approximate submodules and a
quantitative p-adic open function theorem to prove the super-approximation for
powers of primes.

The second topic is to understand the implication of super-approximation in
terms of the uniform exponential mixing of the geodesic flow on congruence covers
of a hyperbolic manifold of the form Γ\Hn where Γ < SO(n, 1) is a thin geometri-
cally finite subgroup. Thanks to the well-developed theory of Patterson-Sullivan,
there has been quite a lot of progress on this. After one lecture on preliminaries
on hyperbolic geometry given by Islam, the second lecture on this topic by Luethi
discussed the mixing and its consequence on matrix coefficients on a fixed geomet-
rically finite manifold. There are two approaches to prove exponential mixing: one
using the representation theory, following Edwards-Oh paper, on which we had 2
lectures by Dabeler and Han and the other using the so-called Dolgopyat machine,
following Oh-Winter and Sarkar, on which we had 2 lectures by Chow and Corso.
As an application of mixing, the last lecture on this topic by Lee was devoted to
the discussion on circle-counting problem for Apollonian circle packings, following
the works of Kontorovich-Oh, and Oh-Shah.

The third topic concerns the combination of the previous two with other tech-
niques (most notably, the affine sieve and the orbital circle method) to make
progress on (or solve outright) a wide range of (initially unrelated) problems span-
ning arithmetic, geometry, and dynamics. In the first lecture on these topics,
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Sarkar gave a basic overview of the types of problems that are amenable to at-
tack, setting up the next few lectures. Jones explained the local-global problem
for integral Apollonian packings and generalizations, and sketched how the or-
bital circle method is used in work of Bourgain-Kontorovich and others to show
a density-one analogue. Zaremba’s conjecture, as well as its origins in and ap-
plications to numerical integration and pseudorandom sequences, was explained
by Zhang, who also discussed some of the ideas in the proof of a density-one
analogue. This lecture and the previous one exhibited how the orbital circle
method, while broadly applicable as a “tool,” is not a quotable “theorem,” as
its actual use in practice varies greatly, with rather different machinery responsi-
ble for both the major arcs and minor arcs analyses in these two settings. The
last two lectures in this series concerned applications of the affine sieve. Kim’s
lecture stated the Einsiedler-Lindenstrauss-Michel-Venkatesh conjecture on low-
lying, closed, fundamental geodesics on the modular surface, and sketched its res-
olution by Bourgain-Kontorovich, using methods from the “Beyond Expansion”
program; the latter gives exponents of distribution greatly exceeding those coming
from spectral gap methods alone. The final lecture, by Litman, discussed progress
on the Pythagorean Prime Triples problems, spanning work of Kontorovich-Oh,
Hong-Kontorovich, and Bourgain-Kontorovich, each reducing the number of prime
factors of, say, the hypotenuse, in a thin (but not too thing) Zariski-dense orbit of
Pythagorean triples.

In order to accommodate the different time zone, each day began only at 3 pm
and ended at 10 pm at the MFO and the participants devoted the morning time
for group discussion and to go over lectures from previous days. There were a lot
of topics which were covered, and we felt we had a very good panoramic view of
the recent developments of these topics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Random walks on compact groups and super-approximation:
an overview

Lam Pham

As the first lecture of the workshop, we give an introduction to random walks
on compact groups and give the relevant definitions of spectral gap and super-
approximation, pointing out the connections with strong approximation and ex-
pander families. We also survey some relevant results.

1. Random Walks on Compact Groups

1.1. Spectral Gap. Let G be a compact group with normalized Haar measure
mG. We consider the regular representation λG acting on L2(G,mG) by left trans-
lations:

λG(g)f(x) = f(g−1x), g, x ∈ G, f ∈ L2(G).

Let

L2
0(G) :=

{
f ∈ L2(G)

∣∣∣∣
∫

G

fdmG = 0

}
= C⊥,

the space orthogonal to the constants in L2(G). Given a symmetric probability
measure µ on G (symmetric in the sense that µ(A) = µ(A−1) for any measurable
set A), we consider the convolution operator Aµ := λG(µ) defined by

(Aµf)(x) =

∫

G

f(g−1x)dµ(g), f ∈ L2
0(G).

This operator has norm ‖Aµ‖ ≤ 1, and we say that µ has a spectral gap if ‖Aµ‖ < 1.
A random walk is given by a probability measure µ and the sequence of convo-

lution powers {µ∗n}n≥1. The random walk with law µ has a spectral gap if µ has
a spectral gap.

1.2. Other representations. More generally, given a unitary representation on
a Hilbert space π : G → U(H), we can consider the operator π(µ) acting on H
given by

π(µ)ξ =

∫

G

π(g)ξdµ(g), ξ ∈ H.

Then, Aµ = λG(µ), ‖π(µ)‖ ≤ 1 and we can study the spectral gap of this operator.
Of course, in order to have ‖π(µ)‖ < 1, π should not have any G-invariant vectors.
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1.3. Expander Graph. Let ǫ > 0. A finite connected k-regular graph X is said
to be an ǫ-expander if for every subset A of vertices in X , with |A| ≤ 1

2 |X |, one
has the following isoperimetric inequality:

|∂A| ≥ ǫ |A| ,

where ∂A denotes the set of edges of X which connect a point in A to a point in
its complement. The optimal ǫ as above is sometimes called the discrete Cheeger
constant :

h(X) = inf

{ |∂A|
|A|

∣∣∣∣A ⊂ X, |A| ≤ 1
2 |X |

}
.

1.4. Spectral Gap and Expanding Constant. Given a k-regular graphX , one
can consider the operator

(1) Pf(x) =
1

k

∑

x∼y
f(y),

where x ∼ y means that x and y are connected by an edge.
This operator is self-adjoint on ℓ2(X) and ‖P‖ ≤ 1, so its spectrum is real and

contained in [−1, 1]. We can write the eigenvalues of P in decreasing order as

µ0 = 1 ≥ µ1 ≥ · · · ≥ µn (n = |X |).

The constant functions are eigenvectors of P with eigenvalue 1, and if X is con-
nected, the eigenvalue 1 has multiplicity 1 (if Pf = f and f achieves its maximum
at x, then f must take the same value f(x) at each neighbor of x, and this value
spreads to the entire graph). The spectral gap of the graph X is λ1(X) := 1− µ1.

The following key inequality connecting the Cheeger constant and the spectral
gap is known as the Discrete Cheeger-Buser Inequality: if X is connected and
k-regular,

1

2
λ1(X) ≤ 1

k
h(X) ≤

√
2λ1(X).

1.5. Family of expanders. Let k ≥ 3. Let ǫ > 0. A family (Xn)n of k-regular
graphs is said to be a ǫ-expanding family if

lim
n→∞

|Xn| =∞ and λ1(Xn) ≥ ǫ.

1.6. If S is a finite symmetric set in a compact groupG, we consider the symmetric
probability measure µS = 1

|S|
∑

s∈S δs.

If we have a sequence of sets Sn in finite groups Γn, and 〈Sn〉 = Γn, the Cayley
graphs of Γn with respect to Sn will be expanders if and only if the probability
measures µn have a (uniform) spectral gap.

When S generates a dense subgroup of a compact group, we are interested in
the spectral gap of µS .
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1.7. Margulis’ expanders. With Γ = SL(2,Z)⋉Z2, Margulis showed that given
a finite generating set of Γ, the infinite family of Schreier graphs (Z/nZ)2 of Γ was
an expanding family.

It uses the facts that SL(2,R)⋉ R2 has the relative property (T) with respect
to the normal subgroup R2, and that the lattice Γ inherits this property.

This observation implies, via theorems of Selberg and Kazhdan, that for d ≥ 2,
the family of Cayley graphs {SLd(Z/nZ) | n ∈ N} with respect to the image of a
finite generating set of SLd(Z) is an expander family.

2. Strong and Super Approximation

2.1. Strong Approximation. Suppose we have a family of polynomials

fα(x1, . . . , xd) ∈ Z[x1, . . . , xd], α ∈ I,
and we let X ⊂ Ad

Z denote the closed affine subscheme defined by these polyno-
mials. Thus, for any Z-algebra R, the scheme X has the following set of R-points:

X(R) = {(a1, . . . , ad) ∈ Rd | fα(a1, . . . , ad) = 0, ∀α ∈ I}.
Then for any integer m ≥ 1, we have a natural reduction modulo m map

ρm : X(Z)→ X(Z/mZ),

and the question is whether these maps are surjective for all m. For m | n, we
have a canonical homomorphism Z/nZ→ Z/mZ, and therefore we have a natural
map

πnm : X(Z/nZ)→ X(Z/mZ).

The system
{(
X(Z/mZ), πnm

)}
is an inverse system, so we can form the inverse

limit:

lim←−X(Z/mZ) = X(Ẑ), where Ẑ = lim←−Z/mZ,

and we identify

X(Ẑ) ≃
∏

p

X(Zp),

where Zp is the ring of p-adic integers.
The following are equivalent:

(1) ρm : X(Z)→ X(Z/mZ) is surjective for all integers m ≥ 1;

(2) the natural embedding ι : X(Z) →֒ X(Ẑ) has dense image.

We say that X has strong approximation if any of these is satisfied.
Instead of varieties, we can focus on algebraic groups, and more generally, on

finitely generated Zariski-dense subgroups.

2.2. Subgroups of GLn(Q). Let Γ be a finitely generated subgroup of GLn(Q).
Then there is a finite set S = {p1, . . . , pr} of primes so that if A = S−1Z =
Z
[
p−1
1 , . . . , p−1

k

]
, then Γ ⊂ GLn(A). Two measures of “how large Γ is” are obtained

by determining:

(a) the Zariski-closure GA of Γ in (GLn)A, and

(b) the closure Γ̄ of Γ in the profinite group GLn(Â) where Â =
∏
p/∈S Zp.
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If G ⊂ GLn is an algebraic Q-group and Γ ⊂ G(Q) is a finitely generated Zariski-
dense subgroup, then Γ ⊂ GA(A). Then, reduction Γp modulo p is well-defined if
p is large enough.

Theorem 1 (Strong Approximation). Let G ⊂ GLn be a connected, semisimple,
simply connected, algebraic group defined over Q, and let Γ ⊂ G(Q) be a finitely
generated Zariski-dense subgroup. Then for all sufficiently large prime numbers p,
there exists an algebraic group G(p) defined over Fp such that Γp = G(p)(Fp).

The Super Approximation Theorem is a strengthening of the Strong Approxi-
mation Theorem: the reduction modulo p map is not only surjective, but it defines
an expander family.

Theorem 2 (Super Approximation Theorem). Suppose G is a connected, simply
connected, semi-simple algebraic group defined over Q, and let Γ ≤ G(Q) be a
Zariski-dense subgroup generated by a finite set S. Then there is ε = ε(S) > 0
such that for all large enough prime numbers p, the reduction Γp of Γ is equal to

G(p)(Fp) and the associated Cayley graph Cay(G(p)(Fp), Sp) is an ε-expander.

3. Lubotzky’s 1-2-3 problem and the Bourgain-Gamburd
“Expansion machines”

Let Γ = SL2(Z). Consider the finite symmetric sets

S(j) :=

{(
1 j
0 1

)
,

(
1 −j
0 1

)}
⊂ Γ, j ∈ {1, 2, 3}.

The set S(1) generates Γ, while the set S(2) generates a finite-index subgroup of Γ.
In both cases, one readily obtains that the corresponding family of Cayley graphs

{Cay(πp(Γ), πp(S)) | p prime}
is an expanding family. However, S(3) generates an infinite index subgroup of
Γ. On the other hand, the subgroup 〈S(3)〉 is still Zariski-dense – Γ is called a
thin subgroup – so strong approximation still applies, and πp(S

(3)) still generates
SL2(Fp).

Lubotzky’s 1-2-3 problem asks if, in such a situation, the corresponding family
of Cayley graphs is still an expanding family. The following summary of results
gives a positive answer to this problem in a very strong sense.

3.1. Bourgain-Gamburd [4]. Let S ⊂ SL2(Z) be a finite symmetric set gener-
ating a not virtually solvable subgroup. Then, the family Cay(SL2(Fp), πp(S)) is
an expanding family.

3.2. Bourgain-Gamburd [2]. Let S ⊂ SLd(Z) be finite and symmetric. Assume
that S generates a subgroup Γ ⊂ SLd(Z) which is Zariski dense in SLd. Then
Cay(πq(Γ), πq(S)) form a family of expanders when q ranges through the integers.
Moreover, there is an integer q0 such that πq(Γ) = SLd(Z/qZ) if q is coprime to
q0.
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3.3. Salehi-Golsefidy-Varju [7]. Let Γ ⊂ GLd(Z[1/q0]) be the group gener-
ated by a symmetric set S. Then Cay(πq(Γ), πq(S)) form a family of expanders
when q ranges over square-free integers coprime to q0 if and only if the connected
component of the Zariski-closure of Γ is perfect1.

On the other hand, an appropriate adaptation of the Bourgain-Gamburdmethod
enables to prove a spectral gap property for finitely generated dense subgroups of
compact Lie group:

3.4. Bourgain-Gamburd [3]. Let S be a finite symmetric set of SU(2). If S ⊂
M2(Q̄) and the subgroup Γ = 〈S〉 it generates is Zariski-dense2 in SL2 (over C),
then µS has a spectral gap.

3.5. Bourgain-Gamburd [2]. Let S be a finite symmetric set of SU(d). If S ⊂
Md(Q̄) and the subgroup Γ = 〈S〉 it generates is Zariski-dense in SLd (over C),
then µS has a spectral gap.

The most general result was proved by Benoist and de Saxcé in the context of
compact Lie groups. A probability measure µ is adapted if its support generates
a dense subgroup.

3.6. Benoist and de Saxcé [1]. Let G be a connected compact simple Lie group
and U a fixed basis for its Lie algebra. Let µ be an adapted probability measure
on G and assume that for any g ∈ supp(µ), the matrix of Ad g in the basis U has
algebraic entries. Then µ has a spectral gap.
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Preliminaries on dynamics on geometrically finite hyperbolic manifolds

Mitul Islam

In this talk, we discuss the construction of Patterson-Sullivan density, Bowen-
Margulis-Sullivan measure, and Burger-Roblin measure associated to geometri-
cally finite subgroups of Isom+(H

d) = SO when d ≥ 2. We will also see some
applications of these measures in studying the properties of the limit set and the
dynamics of the geodesic flow.

Basics of Hyperbolic Geometry. Let d(·, ·) denote the distance on Hd induced
by the Riemannian metric of curvature −1. Suppose Γ is a discrete subgroup of
SO. The limit set of Γ is ΛΓ := Γ · x ∩ ∂Hd where x ∈ Hd is some (hence any)
fixed basepoint. The group Γ is called:

(1) convex co-compact if Γ acts co-compactly on the convex hull C(ΛΓ) of ΛΓ

in Hd, and
(2) geometrically finite if the 1-neighbourhood of C(ΛΓ) has finite volume.

If Γ is geometrically finite, then ΛΓ = ΛcΓ ⊔ ΛpΓ where ΛcΓ is the set of conical
limit points and ΛpΓ is the set of bounded parabolic points. Note that ξ ∈ ΛcΓ if
there exist infinitely many γn ∈ Γ and Rξ > 0 such that d(γnx, [x, ξ)) < Rξ where

[x, ξ) is a geodesic ray in Hd. On the other hand, ξ ∈ ΛpΓ if (ΛΓ \ {ξ})/StabΓ(ξ)
is compact. Finally, Γ is convex co-compact if and only if ΛΓ = ΛcΓ. Examples
of geometrically finite groups are Schottky groups and Apollonian circle packing
groups. See [6] or [3] for details.

The Poincaré series is given by (x, y ∈ Hd):

gs(x, y) :=
∑

γ∈Γ

e−sd(x,γy).

The critical exponent of Γ is δΓ := inf{s > 0 : gs(x, y) < ∞}. It is positive
whenever Γ is non-elementary, i.e. ΛΓ is an infinite set.

Conformal density and Patterson-Sullivan density. The main references
for this section are [5, 7, 2].

Definition 1. Suppose Γ ≤ SO is a discrete group. A Γ-conformal density of
dimension α is a family of finite measures {µx}x∈Hd , each supported on ∂Hd, such

that: for any x, y ∈ Hd, γ ∈ Γ, and ξ ∈ ∂Hd,
(1) γ∗µx = µγx

(2)
dµy
dµx

(ξ) = eαβξ(x,y)

where βξ : Hd×Hd → R is the Busemann function based at ξ, i.e. βξ(x, y) :=
limξt→ξ(d(x, ξt)− d(y, ξt)).

Theorem 2. [7, 5] If Γ ≤ SO is a non-elementary discrete group, then there exists
a Γ-conformal density of dimension δΓ that is supported on ΛΓ.
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More precisely, if we assume that gδΓ(x, y) =∞, then the conformal density in
the above theorem is constructed by taking a weak-* limit of

µs(x) :=
1

gs(y, y)

∑

γ∈Γ

e−sd(x,γy)1γy

as s→ δ+Γ . A similar construction yields the result when gδΓ(x, y) <∞, see [7, 2].
A conformal density that is constructed as above will be called a Patterson-

Sullivan density. The following is an application of Patterson-Sullivan densities
for understanding the limit sets of convex co-compact subgroups of SO. Recall
that ΛΓ = ΛcΓ when Γ is convex co-compact.

Theorem 3. [7, 5] Suppose Γ ≤ SO is a discrete, non-elementary, convex co-
compact subgroup, and {µx} is a Patterson-Sullivan density. Then:

(1) µx and the Hausdorff δΓ-measure on ΛΓ have the same measure class,
(2) the Hausdorff dimension of ΛΓ is δΓ,
(3) Γ action on (ΛΓ, µx) is ergodic,
(4) {µx} is the unique (up to scaling) Γ-conformal density (of any dimension)

that gives positive measure to ΛΓ, and
(5) gδΓ(x, y) =∞.
For geometrically finite subgroups of SO, we have similar results [7, 2]. More

precisely, when Γ < SO is a discrete, non-elementary, geometrically finite sub-
group, then we have: {µx} does not have any atoms [8, 2]; the Hausdorff dimen-
sion of ΛΓ is δΓ; {µx} is the unique (up to scaling) Γ-conformal density (of any
dimension) that gives positive measure to the conical limit set ΛcΓ; Γ-action on
(ΛΓ, µx) is ergodic; and gδΓ(x, y) =∞.

Bowen-Margulis-Sullivan measure. The main references for this section are
[7, 2, 6].

A Γ-conformal density {µx} can be used to construct a geodesic flow {gt}t∈R

invariant measure on T1Hd /Γ called the Bowen-Margulis-Sullivan measure and

denoted by µBMS. In order to do this, we first identify T1Hd with (∂Hd×Hd \∆)×
R via the Hopf parametrization

u 7→ (u+, u−, βu+(x, π(u))).

Here x ∈ Hd is a fixed basepoint and π : T1Hd → Hd is the obvious projection map.
We now define the {gt} and Γ-invariant measure on T1Hd which then descends to
T1Hd /Γ:

dµBMS(u+, u−, t) = eδΓβu+
(x,π(u))eδΓβu

−
(x,π(u))dµx(u+)dµx(u−)dt

Sullivan showed that µBMS is a finite measure whenever Γ ≤ SO is a geometri-
cally finite subgroup, see [7] or [2, Theorem 9.2.2]. The support of µBMS consists
of all vectors u ∈ T1Hd such that u± ∈ ΛΓ. The following theorem is called the
Hopf-Tsuji-Sullivan-Roblin dichotomy for subgroups of SO, see for instance [2] or
[6].
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Theorem 4. Suppose Γ ≤ SO is a non-elementary discrete group and {µx} is a
Γ-conformal density of dimension δΓ. Then the following are equivalent:

(1) µx(Λ
c
Γ) > 0 (resp. µx(Λ

c
Γ) = 0),

(2) ΛcΓ is a full measure subset of (∂Hd, µx) (resp. µx(Λ
c
Γ) = 0),

(3) the geodesic flow on (T1Hd /Γ, µBMS) is conservative and ergodic (resp.
{gt} is completely dissipative and non-ergodic)

(4) Γ-action on (∂Hd×∂Hd, µx ⊗ µx) is conservative and ergodic (resp. Γ
action is completely dissipative and non-ergodic),

(5) gδΓ(x, y) =∞ (resp. gδΓ(x, y) <∞).

Burger-Roblin measure. The main references for this section are [1, 6, 4, 3].

Let {νx} be the Lebesgue measure on ∂Hd obtained by identifying the unit ball

in TxH
d with ∂Hd. Then {νx} is a Γ-conformal density of dimension (d−1). The

Burger-Roblin measure [6, 4] is a Radon (i.e. locally finite) measure on T1Hd /Γ
which is defined on T1Hd as:

dµBR(u+, u−, t) := e(d−1)βu+
(x,π(u))eδΓβu

−
(x,π(u))dνx(u+)dµx(u−)dt.

Note that (gt)∗µBR = e(d−1−δΓ)tµBR. Thus, if Γ ≤ SO is geometrically finite, then
µBR is an infinite measure unless δΓ = d − 1 (equivalently, unless Γ is a lattice).
The support of µBR is

F := {u ∈ T1Hd : u− ∈ ΛΓ}.
Consider d = 2. Then µBR is invariant under the horocycle flow given by the

action of N :=

{(
1 s
0 1

)
: s ∈ R

}
on T1 H2/Γ. In particular, Burger [1] showed

that if H2 /Γ is a convex co-compact surface with δΓ > 1/2, then µBR is (up
to scaling) the unique N -invariant Radon measure supported on F . This was
generalized to geometrically finite subgroups of SO (more generally, CAT(−1)
spaces) by Roblin [6].
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Overview of Thin Groups and Applications

Pratyush Sarkar

We refer the reader to [5, 24, 15] for a more detailed overview of thin groups.
Let us begin by discussing arithmetic lattices. A classical example is SL2(Z) <
SL2(R). More generally, if G is a semisimple algebraic group defined over Q, then
G(Z) < G(R) is an arithmetic lattice by a theorem of Borel–Harish-Chandra [4].
A discrete subgroup is called a lattice when the associated quotient is of finite
volume: vol(G(Z)\G(R)) < ∞. Lattices are Zariski dense in G by a theorem of
Borel [3]. Moreover, any finite index subgroup is again a lattice.

Remark 1. One can also consider semisimple algebraic groups and arithmetic
lattices over other number fields but for simplicity we will not do so in this report.
In fact we will mostly consider SL2(Z) or SLn(Z).

A thin group, coined by Sarnak, is essentially the other cases of discrete sub-
groups in the arithmetic lattice G(Z). The following is the formal definition.

Definition 2. A thin group Γ < G(Z) is a finitely generated infinite index sub-
group which is Zariski dense in G.

Note that for a thin group Γ < G(Z), we have vol(Γ\G(R)) =∞. Such groups
have been studied as long as 100–150 years ago. However, there were no tools to
study them in the context of arithmetic.

1. Strong approximation and superstrong approximation

Let q ∈ N. Define the reduction map

πq : SL2(Z) −→ SL2(Z/qZ)(
a b
c d

)
7−→

(
a+ qZ b+ qZ
c+ qZ d+ qZ

)
.

Then πq can be shown to be surjective using the Chinese remainder theorem.
Although it is harder to show, the generalization to arbitrary semisimple algebraic
groups also holds. This phenomenon is called strong approximation (SA). See the
book [22] for more details.

Recall that given a group G and a finite symmetric generating set S ⊂ G, i.e.,
s−1 ∈ S if s ∈ S, its Cayley graph Cay(G,S) is an undirected graph whose vertex
set is G and edge set is {(g, sg) : g ∈ G, s ∈ S} (see fig. 1). Note that such graphs
are always |S|-regular, i.e., there are exactly |S| number of edges emanating from
any vertex. Now, let S ⊂ SL2(Z) be any finite symmetric generating set. Then
{Cay(πq(SL2(Z)), πq(S))}q∈N = {Cay(SL2(Z/qZ), πq(S))}q∈N forms an expander
as defined below. This phenomenon is called superstrong approximation (SSA).
Lubotzky coined a related notion called property (τ).

Definition 3 (expander). Let k ∈ N. An infinite sequence of k-regular graphs

{Gq = (Vq, Eq)}q∈N with |Vq| q→∞−−−→ ∞ is called an expander if the correspond-
ing graph Laplacians {∆Gq

}q∈N (recall ∆Gq
= IdL2(Gq)− 1

kAGq
where AGq

is the
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s, s−1 ∈ S

g ∈ G

sg ∈ G

Figure 1. Cayley graph.

−1/2 0 1/2

i

(a) Γ1

−1 0 1

(b) Γ2
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(c) Γ3

Figure 2. Fundamental domains.

adjacency operator) have a spectral gap, i.e., there exists ǫ > 0 such that de-
noting 0 = λ0(∆Gq

) ≤ λ1(∆Gq
) ≤ · · · for the combinatorial spectrum, we have

λ1(∆Gq
) ≥ ǫ.

For SL2(Z), SSA is known using the following Selberg’s 3/16 theorem [25] re-
garding an explicit spectral gap. For SLn(Z) with n ≥ 3 (which has property (T)),
SSA is known from a general result that property (T) implies property (τ).

Theorem 4 (Selberg). Denoting Xq = ker(πq)\H2 and 0 = λ0(∆Xq
) ≤ λ1(∆Xq

) ≤
· · · for the Archemedian (L2) spectrum, we have λ1(∆Xq

) ≥ 3
16 for all q ∈ N.

For general semisimple algebraic groups, SSA is known from developments to-
ward the more general Ramanujan conjectures [11, 12, 23].

Let us now return to thin groups Γ < SLn(Z). Due to Matthews–Vaserstein–
Weisfeiler [17], SA continues to hold with a small modification. We state their
more general theorem for SLn.

Theorem 5 (Matthews–Vaserstein–Weisfeiler). Let Γ < SLn(Z) be a finitely gen-
erated discrete subgroup which is Zariski dense in SLn. There exists q0 ∈ N such
that πq|Γ : Γ→ SLn(Z/qZ) is surjective for all q ∈ N with (q, q0) = 1.

There are further generalizations of the above in [30, 19, 21].
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Figure 3. Schottky group.

Lubotzky in 1993–1994 raised his 1-2-3 problem: Of the following finitely gen-
erated subgroups of SL2(Z),

Γ1 =

〈(
1 ±1
0 1

)
,

(
1 0
±1 1

)〉
,

Γ2 =

〈(
1 ±2
0 1

)
,

(
1 0
±2 1

)〉
,

Γ3 =

〈(
1 ±3
0 1

)
,

(
1 0
±3 1

)〉
,

the first in fact coincides with the whole group SL2(Z) and hence satisfies SSA,
the second is of finite index and also satisfies SSA, but the third is of infinite
index (see fig. 2)—does it still satisfy SSA? Lubotzky suggested that SSA should
continue to hold. This is now known in vast generality after the works of several
people: Sarnak–Xue, Gamburd, Helfgott, Bourgain–Gamburd, Balog–Szemerédi,
Gowers, Pyber–Szabó, Bourgain–Gamburd–Sarnak, Breuillard–Green–Tao, Varjú,
Bourgain–Varjú, Golsefidy–Varjú, He–de Saxcé. We present here the theorem for
SLn which is due to Bourgain–Varjú [9].

Theorem 6 (Bourgain–Varjú). Let Γ < SLn(Z) be a finitely generated discrete
subgroup which is Zariski dense in SLn. Then, there exists q0 ∈ N such that
{Cay(πq(Γ), πq(S))}q∈N,(q,q0)=1 = {Cay(SLn(Z/qZ), πq(S))}q∈N,(q,q0)=1 forms an
expander.

2. Examples of thin groups

2.1. Schottky groups. Let {g1, g2, . . . , gk} ⊂ SL2(Z) be a finite generating set
which plays ping-pong, i.e., there exist mutually disjoint open balls C1, C2, . . . , Ck,
D1, D2, . . . , Dk ⊂ ∂∞H2 such that gj(ext(Cj)) = Dj for all 1 ≤ j ≤ k (see fig. 3).
Then Γ = 〈g1, g2, . . . , gk〉 is called a Schottky group and is in fact a free group.
This construction can be generalized for other semisimple algebraic groups which
we omit (see [1]). It is not difficult for such groups to be Zariski dense (e.g., we
simply require k ≥ 2 in SL2). Since they are always of infinite index in SL2(Z),
we obtain a large class of thin groups.
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Uα,β

0 1z0 ∞
g0 g1

g∞

Figure 4. Monodromy group.

2.2. Reflection groups. This is the work of Vinberg [29] and Nikulin [18]. Let f
be an integral quadratic form of signature (n, 1). Consider the arithmetic subgroup
Of (Z) ⊂ Of (R). A reflection subgroup Rf < Of (Z) is one which is generated by
all hyperbolic reflections which are in Of (Z). In fact it is a normal subgroup and
if it is nontrivial, then it is also Zariski dense in Of . Moreover, there exists only
finitely many f ’s (up to integral equivalence) for which Rf < Of (Z) is of finite
index. So for all other f ’s, we know Rf < Of (Z) is thin (provided it is nontrivial).

2.3. Monodromy groups. Consider the differential equation

Dα,β(u) = 0

on Ĉ where

Dα,β =

(
z
d

dz
+ β1 − 1

)
· · ·
(
z
d

dz
+ βn − 1

)
− z

(
z
d

dz
+ α1

)
· · ·
(
z
d

dz
+ αn

)

α = (α1, α2, . . . , αn) ∈ [0, 1)n

β = (β1, β2, . . . , βn) ∈ [0, 1)n.

This equation is regular away from {0, 1,∞} ⊂ Ĉ and there are n linearly in-
dependent solutions in terms of hypergeometric functions: z1−βj

nFn−1(1 + α1 −
βj , . . . , 1+αn− βj ; 1+ β1− βj , . . . , (1 + βj − βj), . . . , 1+ βn− βj |z) for 1 ≤ j ≤ n
whereˇis used to signify omission and the hypergeometric functions are defined as

nFn−1(ζ1, . . . , ζn; η1, . . . , ηn−1|z) =
∞∑

j=0

(ζ1)k · · · (ζn)kzk
(η1)k · · · (ηn−1)kk!

and the Pochhammer symbol is defined as

(η)k = η(η + 1) · · · (η + k − 1) =
Γ(α+ k)

Γ(k)
.

Note that Γ̂ := π1(Ĉ \ {0, 1,∞}) = 〈g0, g1, g∞|g∞g1g0 = 1〉 which is simply a free
group on two generators. Let Vα,β be a local solution space, say on some open
neighborhood Uα,β of z0 = 1

2 . See fig. 4 for a diagram of the setup.

We get a monodromy representation Mα,β : Γ̂ → GL(Vα,β) ∼= GLn(C) called
hypergeometric monodromy representation by analytic continuation of solutions in
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Vα,β along nontrivial loops based at z0. Let Γα,β = Mα,β(Γ̂). The following is a
fundamental theorem of Beukers–Heckman [2].

Theorem 7 (Beukers–Heckman). Let Gα,β be the Zariski closure of Γα,β. Then
Gα,β is one of SLn, SOn, Spn or a finite primitive reflection group listed in the
table of [26].

We now want Γα,β < GLn(Z) to obtain thin groups. This is in fact possible
with certain technical conditions. Moreover, for other technical reasons α, β ∈ Qn.
These properties actually imply that there are finitely many possible α, β ∈ Qn

for a fixed n ∈ N. See [13] for details. We are interested in the following question.

Question 8. Which Γα,β are arithmetic and which Γα,β are thin?

It is known that Γα,β are arithmetic for n ∈ {2, 3}. There have been further
work for the above question [10, 28, 27] when Gα,β = Spn.

We now briefly describe the work of Fuchs–Meiri–Sarnak [13]. Suppose Gα,β =
SOn. Suppose further that Gα,β(R) ∼= SO(n− 1, 1). In this case, the authors call
Γα,β a hyperbolic hypergeometric monodromy group (HHMG). This setup allows
one to exploit hyperbolic geometry. It turns out that there are 7 families and
some sporadic HHMGs. They find a certificate for thinness and prove that some
of these families and many of the sporadic ones are thin. They make the following
conjecture.

Conjecture 9 (Fuchs–Meiri–Sarnak). All but finitely many HHMGs are thin.

3. Applications

3.1. Generalization of Selberg’s 3/16 theorem and affine sieve. Let Γ <
SL2(Z) be a finitely generated discrete subgroup which is Zariski dense in SL2. De-
note by δΓ the Hausdorff dimension of the limit set of Γ in ∂∞H2. As mentioned
above, for lattices, SSA was initially derived from Selberg’s 3/16 theorem. In the
general case, once SSA is established, one can now “go backwards” and prove an
analogue of Selberg’s 3/16 theorem. This was initiated by Bourgain–Gamburd–
Sarnak [7] as in the following theorem. Note that the original square-free hypoth-
esis on q ∈ N is not required due to the improved SSA result of Bourgain–Varjú
(see theorem 6).

Theorem 10 (Bourgain–Gamburd–Sarnak). Suppose δΓ > 1
2 . Denote Xq =

ker(πq|Γ)\H2 for all q ∈ N. The following are equivalent:

(1) The sequence {Cay(SL2(Z/qZ), πq(S))}q∈N,(q,q0)=1 forms an expander.
(2) There exists ǫ > 0 such that λ1(∆Xq

) ≥ λ0(∆Xq
) + ǫ for all q ∈ N with

(q, q0) = 1.

An important fact is that there is no spectral gap for the δΓ ≤ 1
2 regime. One

must turn to resonances of the resolvent of the Laplacian for analogues. They
obtained sufficient results for the resolvent for their affine sieve application which
we recount below. A much stronger result and the right generalization of spectral
gap for the δΓ ≤ 1

2 regime is due to Oh–Winter [20].



2740 Oberwolfach Report 50/2021

Let f ∈ Q[(x)j,k] be integral on the orbit Γ ⊂ Mat2×2(R). Without loss of
generality, assume that gcd{f(x) : x ∈ Γ} = 1. Let f = f1f2 · · · fr for some
r ∈ N be its factorization in the UFD Q[(x)j,k]/(det((x)j,k) − 1) and assume the

factors are irreducible in the UFD Q[(x)j,k]/(det((x)j,k)− 1). Let ‖ · ‖ denote the
Frobenius norm. The following is the affine sieve application in [7].

Theorem 11 (Bourgain–Gamburd–Sarnak). There exists R ∈ N such that

|{x ∈ Γ : ‖x‖ ≤ T and fj(x) is prime for all 1 ≤ j ≤ r}| ≪ T 2δΓ

(log T )r
,

|{x ∈ Γ : ‖x‖ ≤ T and f(x) has at most R prime factors}| ≫ T 2δΓ

(log T )r
.

The above theorem was proved using affine sieve techniques from their earlier
work [6]. In that work, they prove a related counting result and obtain the following
theorem.

Theorem 12 (Bourgain–Gamburd–Sarnak). There exists R ∈ N such that {x ∈
Γ : f(x) has at most R prime factors} is Zariski dense in SL2.

3.2. Zaremba’s conjecture. Let A ⊂ N be a finite subset. Denote by DA the
set of denominators d of reduced rational numbers

b

d
=

1

a1 +
1

a2 +
1

.. . +
1

ak

whose coefficients a1, a2, . . . , ak in its continued fraction expansion are all in A.
The following was conjectured by Zaremba, motivated by applications in random
numbers and numerical integration.

Conjecture 13 (Zaremba). There exists A ∈ N such that D{1,2,...,A} = N.

The work of Bourgain–Kontorovich [8] was a breakthrough toward Zaremba’s
conjecture. It uses counting results coming from SSA among other techniques.

Theorem 14 (Bourgain–Kontorovich). We have lim
N→∞

1

N
|D{1,2,...,50}∩[1, N ]| = 1.

The above theorem is equivalent to

|D{1,2,...,50} ∩ [1, N ]| = N + o(N) as N →∞.

In fact, they obtain a better error term of O
(
Ne−c

√
log(N)

)
for some c > 0. We

mention that the work of Huang [14] shows A = 5 suffices and the work of Magee–
Oh–Winter [16] shows the error term can be improved to O(N1−ǫ) for some ǫ ∈
(0, 1).
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Bourgain–Gamburd machine

Cagri Sert

The talk consisted of two parts. The first part included a discussion about ex-
pander families and (super-)strong approximation. In the second part, we ex-
plained the proof of the general result (the Bourgain–Gamburd machine) underly-
ing [1, Theorem 3] of Bourgain–Gamburd. For the exposition, we mainly followed
[1] and the useful notes of Tao [2].

1. Expander graphs and (super-)strong approximation

1.1. Expander graphs. Let G be a k-regular graph. One can associate to G an
adjacency matrix A (real, symmetric). Let λ1 ≥ . . . ≥ λn be the eigenvalues of
A, where n = |V G|, the cardinality of vertices of G. It is not hard to see that
k = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −k.
Definition 1 (Spectral definition). For ε > 0, a k-regular graph G is called an
ε-expander if λ2 ≤ (1− ε)k.

As such, any connected graph is an ε-expander for certain ε > 0. The interesting
question is to find (or determine which) families of k-regular graphs are expanders.
We shall call a family of graphs ε-expander family if all graphs in the family are
ε-expanders. In all discussion below, the degree k of graphs in a family are fixed.

First proof of existence of expander graphs was probabilistic (Pinsker). The first
constructive proof was given by Margulis in early ’70s. He showed that certain
regular Cayley graphs C(Gn, Sn)n∈N constitute an expander family (more precisely
Gn = SLd(Z/nZ) and Sn is the projection of a generating set of SLd(Z) (always)
not containing the identity, and d ≥ 3). Later on, a stronger property (Ramanujan)
was shown by Lubotzky–Philips–Sarnak for d = 2 for n’s ranging over primes.

The subsequent question of knowing whether infinite index but “large” (Zariski-
dense) subgroups of SLd(Z) also share this property of projecting onto expanders
was motivated by progresses in strong approximation which we now mention.

1.2. (Super-)strong approximation. The surjectivity in the following particu-
lar case of a result by Matthews–Vasserstein–Weisfeiler and Nori is what we will
refer to as strong approximation property.

Theorem 2 (Strong approximation). Suppose that Γ < SLd(Z) is Zariski-dense
in SLd. Then, there exists q0 ∈ N such that for every q ∈ N with (q, q0) = 1, the
projection Γ→ SLd(Z/qZ) is surjective.
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In particular, when we have Γ < SL2(Z) that is non-elementary (equivalently,
not virtually nilpotent) and S is a generating set of Γ, then the Cayley graphs
C(SL2(Fp), Sp) when p ranges over (large enough) primes and Sp denotes the pro-
jection as before, is connected. In particular, each of them are εp-expanders for
some εp > 0. Super-strong approximation refers to this expansion being uniform,
i.e. that C(SL2(Fp), Sp) constitutes an ε-expander family for some ε > 0.

Before the work of Bourgain–Gamburd [1], the understanding of the extent of
the super-strong approximation property was very limited (except for some signif-
icant progress by Gamburd in his thesis). The back then open 1-2-3 question of
Lubotzky reflected this fact. The following result of Bourgain–Gamburd provided
the answer and a fundamental progress, as much by the result itself as its proof.

Theorem 3 (Bourgain–Gamburd, [1]). Let S be a subset of SL2(Z). Then C(SL2

(Fp), Sp) is a family of expanders1 (p prime ≫ 1) if and only if the group 〈S〉
generated by S is non-elementary.

Underlying the proof of this result is a scheme that produces expansion out
of certain phenomena. This scheme or parts of it have been repeatedly used in
various extensions of the previous theorem as well as in other major results. The
rest of this notes is devoted to its discussion.

2. Bourgain–Gamburd machine

Below is the statement of this scheme whose formulation we borrow from [2].

Theorem 4 (Bourgain–Gamburd expansion machine). Suppose G is a finite group,
S ⊂ G is a symmetric set of cardinality k and that there exist constants 0 < κ <
1 < Λ such that

1) (High multiplicity or quasi-randomness, QR(κ)) Smallest dimension of a
non-trivial representation of G is |G|κ,

2) (Approximate subgroups or product theorem, AS) For every δ > 0, there

exists δ′ = δ′(δ) > 0 such that if A ⊂ G is a |G|δ′-approximate subgroup
of size contained between |G|δ and |G|1−δ, then 〈A〉 is a proper subgroup
of G.

3) (Non-concentration, NC)

There exists an even number n ≤ Λ log |G| such that supH≤G µ
∗n(H) < |G|−κ.

Then, (expand): C(G,S) is an ε-expander with ε = ε(κ,Λ, δ′, k).

In fact, there is an elementary probabilistic characterization of (two-sided) ex-
panders via equidistribution (with uniform exponential speed) of random walks
and this is what the previous results establishes. One notable aspect of this state-
ment is that it shows uniform equidistribution to prove spectral gap (usually, the
latter is used to prove the former).

1In fact, Bourgain–Gamburd proves that this is a two-sided family of expanders, for this
notion see e.g. [2]
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2.1. Quasi-randomness. To indicate the scheme of proof of Theorem 4, for β > 0
and a probability measure on a finite group G, let us call the following property
as ℓ2-flat(β): there exists a constant C = C(β) such that ‖µ∗n‖2 ≤ |G|−1/2+β for
some n ≤ C|G|, where µ∗n denotes the nth-step distribution of the µ-random walk
on G.

By a principle going back to Sarnak–Xue exploiting high multiplicity coming
from quasi-randomness, one shows (see [2, Proposition 1.3.7]) that QR(κ) + ℓ2-
flat(β) with β < κ/2 implies the expander property. Therefore, the proof of
Theorem 4 (which is QR + AS + NC =⇒ (expand)) boils down to showing
AS + NC =⇒ ℓ2-flat(β) with small enough β > 0. Showing this is indeed the
core of the proof of Theorem 4.

2.2. ℓ2-flattening and Balog-Szemerédi-Gowers lemma. To prove this last
ℓ2-flattening statement (see below), Bourgain–Gamburd bring a combinatorial
tool, namely the Balog-Szemerédi-Gowers (BSG) lemma, which was previously
related to the current setting of product-set expansion in non-commutative groups
by Tao. The following is a by-product of Bourgain-Gamburd’s use of Tao’s BSG
lemma ([2, Lemma 1.4.1]). Below, all implied constants are universal.

Lemma 5 (Weighted-BSG). Let ν be a symmetric probability measure on a group
G, and K ≥ 1. Then, either

1) (ℓ2-flattening) ‖ν ∗ ν‖2 ≤ 1
K ‖ν‖2, or

2) (some structure is charged) there exist a O(KO(1))-approximate subgroup
H ⊂ G with |H | ≪ KO(1)/‖ν‖22 and x ∈ G with ν(xH)≫ K−O(1).

Equipped with this ingredient, one proves the implication AS + NC =⇒ ℓ2-
flat(β) discussed above:

Lemma 6 (ℓ2-flattening). Suppose there exists n ≥ 1
2Λ log |G| such that ‖µ∗n‖2 ≥

|G|−1/2+κ. Then, ‖µ∗2n‖2 ≤ |G|−ε‖µ∗n‖2 for some ε = ε(κ, δ′).

The lemma is proved by arguing by contradiction: one applies Lemma 5 to get
a contradiction to the non-concentration hypothesis (NC) thanks to the product
theorem (i.e. hypothesis (AS)). These prove Theorem 4.

2.3. Back to Theorem 3. In the setting of Theorem 3, among the assumptions
of Theorem 4,

1) (QR) is a result of Frobenius, which says that the group Gp = SL2(Fp) is

(p− 1)/2 quasi-random. Note that (p− 1)/2 ∼ |Gp|1/3.
2) (AS) is a back-then-recent major result of Helfgott (later generalized by

Breuillard–Green–Tao and Pyber–Szabó) – which itself uses a (recent)
result of Bourgain–Katz–Tao among others,

3) (NC) is proved by Bourgain–Gamburd by a nice argument using results
of Dickson (on subgroups of SL2(Fp)), Tits (on free subgroups in linear
groups) and Kesten (the rate of return to identity for random walks on
free groups).
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Bourgain and Kontorovich’s work on Zaremba’s Conjecture

Xin Zhang

The goal of this note is to give a short description of Bourgain and Kontorovich’s
work on Zaremba’s Conjecture.

It is well known that every number x ∈ (0, 1) admits a continued fraction
expansion:

x = [a1, a2, · · · ] :=
1

a1 +
1

a2+
. . .

The integers a1, a2, · · · are called partial quotients for x. If x is rational, the length
of the expansion is finite.

Motivated by constructing sets with minimal discrepancy for numeric integra-
tion, Zaremba was looking for rationals b/d with d arbitrarily large and yet all
partial quotients of b/d are controlled. This led him to make the following conjec-
ture:

Conjecture 1 (Zaremba, 1972, [1]). Every natural number is the denominator
of a reduced fraction whose partial fractions are bounded. That is, there exists
some A > 1 so that for each d ∈ N, there is some b ∈ N with (b, d) = 1, so that
b/d = [a1, · · · , ak] with max{ai}ki=1 ≤ A.

In 2014, Bourgain and Kontorovichmade a major breakthrough towards Zaremba’s
conjecture:

Theorem 2 (Bourgain-Kontorovich, 2014, [2]). Almost every number is the de-
nominator of a reduced fraction whose partial quotients are bounded by 50.

Note that a reduced fraction b/d admits an expansion b/d = [a1, a2, · · · , ak] if
and only if (

∗ b
∗ d

)
=

(
0 1
1 a1

)(
0 1
1 a2

)
· · ·
(
0 1
1 ak

)
.

If we let Γ be the semigroup generated by

{(
0 1
1 a

)
: 1 ≤ a ≤ 50

}
and v0 = (0, 1)t,

then the statement of Theorem 2 can be rephrased as

#{〈γ(v0), v0〉 : γ ∈ Γ} ∩ [1, N ] = N + o(N)

as N →∞.
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The main technique employed in the proof of Theorem 2 is the Hardy-Littlewood
circle method. Let

ΩN =

{(
a b
c d

)
∈ Γ :

√
a2 + b2 + c2 + d2 ≤ 100N

}

(here we simplified the much more complicated original definition of ΩN in [2] in
order to present some main ideas.) We consider

R(n) :=
∑

γ∈ΩN

1{〈γ(v0), v0〉 = n}.

Then R(n) > 0 implies that n is a denominator of a reduced fraction with all
partial quotients bounded by 50. Therefore, to prove Theorem 2, it suffices to
prove that R(n) > 0 for almost all n ∈ N.

It is difficult to analyse R(n) directly. On the other hand, the Fourier transform

R̂(θ) :=
∑
γ∈ΩN

e(〈γ(v0), v0〉θ) is more comprehensible, where e(x) = e2πix. For
instance, the total input

R̂(0) =
∑

γ∈ΩN

1 ∼ cN2δ

by some counting techniques from thermodynamics formalism for finitely generated
sub-semigroups of SL2(Z). Here δ is the Hausdorff dimension of the set

{[a1, a2, · · · ] : ai ∈ [1, 50], i ∈ N}.
More generally, for q small we also have good estimate for R̂(a/q) by asymptotic
counting of points of Γ(q), the congruence subsemigroup of Γ of level q.

Suppose we have obtained sufficient information from R̂, we can retrieve R(n)
by the Fourier Inversion Formula:

R(n) =

∫ 1

0

R̂(θ)e(−nθ)dθ.

The Hardy-Littlewood circle method is to split
∫ 1

0

R̂(θ)e(−nθ)dθ =
∫

M

R̂(θ)e(−nθ)dθ +
∫

m

R̂(θ)e(−nθ)dθ :=M(n) + E(n),

where the “major arcs”M consists of small neighbourhoods of rationals with small
denominators, and the “minor arcs”m is the complement ofM in [0, 1). The reason

for this split is that in general, if f is an arithmetic function, |f̂(x)| is usually large
when x is near a rational with small denominator. We expect the “main term”
M(n) gives the major contribution to R(n) and E(n) is the error term.

Applying the aforementioned counting techniques, Bourgain–Kontorovich
showed that for n ∈ [N/2, N ],

M(n)≫ N2δ−1+o(1).

This is to say that an asymptotic positive-density portion of the total input is
roughly equidistributed among [N/2, N ].
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For the error term E(n), If one were able to prove that

|E(n)| ≪ N2δ−1−ǫ(1)

for some ǫ > 0, one then proved Zaremba’s conjecture up to verification of integers
bounded by an effectively computable large number. However, the bound (1) seems
beyond the reach of current techniques. Instead, Bourgain-Kontorovich proved the
following ℓ2-bound for E(n):

∑

n∈Z

|E(n)|2 ≪ N4δ−1−ǫ,(2)

which then implies (1) for almost all n ∈ [N/2, N ], and thus completes the proof
Theorem 2. Some techniques involved in obtaining (2) are Kloosterman’s re-
finement of the circle method, estimates of exponential sums, and Vinogradov’s
method for estimating bilinear forms.
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Approximate subgroups

Daniele Dona

For a group G and a K ≥ 1, a set A ⊆ G is a K-approximate subgroup if there is
some X ⊆ G with |X | ≤ K and A2 ⊆ XA. We focus here on the product theorem
by Helfgott [5], which classifies approximate subgroups for G = SL2(Fp). Then
we present the Balog-Szemerédi-Gowers lemma, in which approximate subgroups
appear as the only obstacles to a “random” behaviour: originally from a discrete
setting [3], the lemma is given here in a measure-theoretic version (see [7] and [1]).

1. A product theorem in SL2(Fp)

We have the following theorem. All references in this section are to [5].

Theorem 1 (Kep Prop. (a)). Let p be a prime and G = SL2(Fp). Fix δ > 0.
Then there exist constants C, ε > 0, depending only on δ, such that for any

A ⊆ G with 〈A〉 = G and |A| < p3−δ we have |A3| ≥ C|A|1+ε.
In line with other results about approximate subgroups, any slowly growing set

A is either too small (and choosing a small C is enough), or too large (meaning
|A| > |G|1−δ), or sits in a proper subgroup. We need only prove |Ah| ≥ C|A|1+ε
for any fixed h ≥ 3 and for only A symmetric, thanks to Ruzsa [6, Thm. 4.2].

We start with a random walk whose number of elements we estimate directly.

Proposition 2 (Lemma 4.7). Let V ⊆ SL2(K) be a set of simultaneously diago-
nalizable matrices, with common eigenvectors v1, v2. Let g be such that gvi 6= λvj
for all λ, i, j. Then |V gV g−1V | ≫ |V |3.
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The proof is straightforward: after conjugation by the same element, V is made
of diagonal matrices and g has all nonzero entries, so that checking entries gV g−1

must have ≫ |V | elements and V (gV g−1)V must have ≫ |V | · |V |2 elements.
The bound in Proposition 2 would be enough, as long as we fill two holes:

(1) we want V ⊆ Ak with k bounded and |V | large with respect to |A|, and
(2) we want g ∈ Ak with k bounded.

If such V, g exist, it would imply both |V gV g−1V | ≤ |A5k| and |V |3 ≫ |A|1+ε.
For the second hole, escape from subvarieties is enough (see [4, §3]).

Proposition 3 (Lemma 4.4). Let G ≤ GLN (K), acting on the affine space AN .
Let W be a closed variety in AN over K, and let x ∈ AN (K) with G · x 6⊆W (K).

Then there are k, η > 0 depending only on dim(W ), deg(W ) such that, for any
A ⊆ G with 〈A〉 = G, there are max{1, η|A|} elements g ∈ Ak with g · x /∈ W (K).

SL2(Fp) acts on A4(Fp) via matrix multiplication, and the “bad” condition of
having gv = λw for fixed v, w and some λ defines a variety Wv,w in A4. Thus, we
can find a “good” g ∈ Ak, using x = e and W =Wv1,v1 ∪Wv1,v2 ∪Wv2,v1 ∪Wv2,v2 .

We move now to the first hole. Matrices are simultaneously diagonalizable if and
only if they sit in the same centralizer C(g), when their trace is not ±2: we have
many elements with Tr 6= ±2, using Proposition 3 again and passing to A2. Hence,
our aim is a lower bound for |C(g) ∩Ak|. C(g) is the stabilizer of conjugation, so
we can use the orbit-stabilizer theorem in a version valid for sets: after combining
it with the pigeonhole principle, we obtain that there is some g ∈ A2 for which

|C(g) ∩ A4| ≥ |A2|
#{hgh−1|h ∈ A2} ≥

|A2|#{Cl(h)|Cl(h) ∩A2 6= ∅}
|A6| .

In SL2 and outside the Tr = ±2 case, conjugacy classes are in bijection with
characteristic polynomials, which in turn are in bijection with traces. Therefore

|C(g) ∩ A4| ≥ |A
2||Tr(A2)|
|A6| .

Our new problem becomes finding a lower bound for Tr(Ak
′

). By an element
counting process similar to the one in Proposition 2, we have the following.

Proposition 4 (Prop. 4.10). Let G = SL2(K). Then there exists some k′ such
that, for all A ⊆ G with 〈A〉 = G, we have |Tr(Ak′ )| ≫ |A| 13 .

This is not enough to give growth. Our counting arguments have played on the
principle that, for a “random enough” set X ⊆ G and a variety V ⊆ G, we should
have |X ∩ V | ≈ |X |

dim(V )
dim(G) : Ak

′

is indeed random enough, and in Propositions 2-4
we bounced between SL2 and the variety of diagonals (of dimensions 3 and 1).

We need one more idea: through traces, we can use a growth result in Fq, a sum-
product theorem. Such results go back to [2]: for anyX ⊆ Fp with p

δ < |X | < p1−δ,
we have max{|X +X |, |XX |} ≫δ |X |1+ε for some ε > 0 depending only on δ.
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As a matter of fact, instead of max, any “reasonable” polynomial involving both
field operations will do. We resort to this for our trace problem: we have in fact

Tr

[(
x
x−1

)(
a b
c d

)(
y
y−1

)(
a b
c d

)−1
]
= ad(xy+x−1y−1)−bc(xy−1+x−1y),

and then we can apply the following version of the sum-product theorem.

Proposition 5 (Prop. 3.3). Let q = pα, and let X ⊆ F∗
q with |X | < p1−δ. Then

there is some ε > 0 depending only on δ such that, for any a1, a2 ∈ F∗
q,

#{a1(xy + x−1y−1) + a2(xy
−1 + x−1y)|x, y ∈ X20} ≫δ |X |1+ε.

Thus, |Tr(Ak′ )| ≫ |V |1+ε for some bounded k′. Putting together all results,

|A5k| ≥ |V gV g−1V | ≫ |V |3 = |C(g′) ∩ A2k′ |3 ≫ |A
k′ |3|Tr(Ak′ )|3
|A3k′ |3

≫ |A
k′ |3|V |3+3ε

|A3k′ |3 ≫ |Ak′ |3
|A3k′ |3

(
|Ak′ ||Tr(Ak′ )|
|A3k′ |

)3+3ε

≫ |Ak′ |3
|A3k′ |3

(
|A| 43
|A3k′ |

)3+3ε

,

implying that |Ak′′ |7+3ε ≫ |A|7+4ε. The single ε we have gained in the process is
enough to prove Theorem 1, using the already mentioned simplifications of Ruzsa.

2. The Balog-Szemerédi-Gowers lemma

Theorem 1 deals with finite groups, and the classical Balog-Szemerédi-Gowers
lemma deals with the discrete group Z. One may want to treat non-discrete
groups: there, it is more useful to describe growth in terms of measure or entropy.

In such cases, approximate subgroups are so only with respect to a scale. Defi-
nitions are expressed quantitatively in terms of some δ > 0. In a compact metric
group with distance d, we use the following notation: for a measure µ and a set S,

µδ = µ ∗ 1B(e,δ)

|B(e, δ)| , where B(x, δ) = {y ∈ G|d(x, y) < δ} (a δ-ball),

S(δ) =
⋃

s∈S
B(s, δ) = {y ∈ G|d(y, S) < δ} (the δ-neighbourhood of S),

Nδ(S) = min{#S|S is a cover of S made of δ-balls} (the metric entropy of S).

In each of them, δ codifies “how finely” we can see. In the result below, we bargain
between strength and finesse: the smaller δ is, the worse the estimates become.

Theorem 6. Let G be a compact Lie group, let µ be a symmetric probability
measure on G, and fix α > 0. Assume that ‖µδ‖22 ≥ δ−α. Then there exists ε > 0
such that, for all δ > 0 small enough, either

(1) ‖µδ ∗ µδ‖2 ≤ δε‖µδ‖2 (flattening), or
(2) there is a δ−O(ε)-approximate subgroupH with Nδ(H) ≤ δ−(dim(G)−α)−O(ε)

and there is some x ∈ G such that µδ(xH
(δ)) ≥ δO(ε) (concentration).
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The analogies with Theorem 1 are evident. The fastness of the set growth
becomes here the measure flattening by δε in (1). Conversely, in the slow growth
scenario of (2), there is a coset of an approximate subgroupH that greatly overlaps
with µ. Furthermore, H is of the “correct dimension”, meaning that if µ is large
enough to have ‖µδ‖22 ≥ δ−α then H has essentially the expected codimension α.
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Local-global I: Apollonian packings

Edna Jones

We discussed the strong asymptotic local-global conjecture for integral Apollonian
circle packings and progress towards proving this conjecture. An Apollonian circle
packing is a circle packing that is constructed by repeatedly placing circles tangent
to configurations of three mutually tangent circles already in the packing. A circle
packing is integral if the bend (1/radius) of each circle in the packing is an integer.
An integral circle packing is called primitive if the greatest common divisor of all
of the bends in the packing is 1.

To start, we discussed how integral Apollonian circle packings exist. Using a
poem written by Soddy [10], we introduce Descartes circle theorem. (The theorem
was written in a letter by Descartes [3, pp. 45–50] in 1643.)

Theorem 1 (Descartes circle theorem). If b1, b2, b3, b4 are bends of four mutually
tangent circles, then

(b1 + b2 + b3 + b4)
2 = 2(b21 + b22 + b23 + b24).

Using Descartes circle theorem, we show that the Apollonian group acts on
quadruples of bends of mutually tangent circles. The Apollonian group Γ is

Γ = 〈M1,M2,M3,M4〉,



Arbeitsgemeinschaft: Thin Groups and Super-approximation 2751

where

M1 =




−1 2 2 2
1

1
1


 , M2 =




1
2 −1 2 2

1
1


 ,

M3 =




1
1

2 2 −1 2
1


 , M4 =




1
1

1
2 2 2 −1


 .

Let v0 be an integer quadruple of bends of mutually tangent circles in an Apol-
lonian packing P . The orbit Γv0 contains all quadruples of bends of mutually
tangent circles in P , so all of the bends in P are integers.

Now that we know that integral Apollonian circle packings exist, we ask which
integers can appear as bends in a fixed integral Apollonian circle packings. A
number theorist might ask if there are any local or congruence restrictions on the
bends. This motivates the following definition of admissibility:

Definition 2 (Admissible integers for circle packings). Let P be an integral circle
packing. An integer m is admissible (or locally represented) if for every q ≥ 1

m ≡ bend of some circle in P (mod q).

Fuchs [4] characterized the congruence restrictions on the bends in a fixed prim-
itive integral Apollonian circle packing.

Theorem 3 (Fuchs). Let P be a primitive integral Apollonian circle packing.
Then m is admissible if and only if m is in certain congruence classes modulo 24.
(The congruence classes depend on the packing.)

The congruence conditions modulo 24 do not completely characterize the bends
that can appear in a fixed primitive integral Apollonian circle packing. However,
it is conjectured that if an integer is admissible and sufficiently large, then it is a
bend in a fixed primitive integral Apollonian circle packing.

Conjecture 4 (Graham, Lagarias, Mallows, Wilks, and Yan [6]). The bends of
a fixed primitive integral Apollonian circle packing P satisfy a strong asymptotic
local-global principle.

That is, there is an N0 = N0(P) so that, if m > N0 and m is admissible, then
m is the bend of a circle in the packing.

The first progress toward this conjecture was made by Graham, Lagarias, Mal-
lows, Wilks, and Yan [6].

Observation 1 (Graham–Lagarias–Mallows–Wilks–Yan). There exists a c1 > 0
such that at least c1N

1/2 of all integers less than N appear as bends in a fixed
primitive integral Apollonian circle packing.

They proved this observation by looking at the largest entries of (M1M2)
kv0,

where v0 is the root quadruple of bends and k > 0.
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The next result towards the strong asymptotic local-global conjecture was proved
by Sarnak [9].

Theorem 5 (Sarnak). There exists a c2 > 0 such that at least c2N/
√
log(N) of

all integers less than N appear as bends in a fixed primitive integral Apollonian
circle packing.

To prove this, Sarnak used the Descartes quadratic form Q (with signature
(3,1)) defined by

Q(v) = 2(b21 + b22 + b23 + b24)− (b1 + b2 + b3 + b4)
2.

Sarnak showed that there is spin homomorphism ρ : SL2(C) → SOQ(R) such
that

±
(
1 2
0 1

)
7→M4M3 and ±

(
1 0
2 1

)
7→M2M3.

It is well-known that ±
(
1 2
0 1

)
and ±

(
1 0
2 1

)
generate

Λ(2) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
1 0
0 1

)
(mod 2)

}
.

For any x, y ∈ Z and gcd(2x, y) = 1, there is a matrix of the form

(
∗ 2x
∗ y

)
∈ Λ(2).

Using this, Sarnak showed that

4(b1 + b2)x
2 + 2(b1 + b2 − b3 + b4)xy + (b1 + b4)y

2 − b1(1)

with x, y ∈ Z and gcd(2x, y) = 1 is a bend in our packing. The number of integers

up to N satisfying (1) is known to be of size N/
√
log(N). (See [8].)

Bourgain and Fuchs [1] proved that a positive density of integers appear as
bends in a fixed primitive integral Apollonian circle packing.

Theorem 6 (Bourgain–Fuchs). There exists a c3 > 0 such that at least c3N of
all integers less than N appear as bends in a fixed primitive integral Apollonian
circle packing.

This was proved by looking at multiple orbits of ρ(Λ(2)) in the packing.
The best result we have towards the strong asymptotic local-global conjecture

is by Bourgain and Kontorovich [2].

Theorem 7 (Bourgain–Kontorovich). Almost every admissible number is the bend
of a circle in the Apollonian circle packing P. Quantitatively, the number of ex-
ceptions up to N is bounded by O(N1−η), where η > 0 is effectively computable.

This theorem has been extended by Fuchs, Stange, and Zhang [5] to certain
other Kleinian circle packings.

We discussed a proof sketch of Theorem 7 outlined in [7].
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Mixing and the decay of matrix coefficients

Manuel Luethi

1. Introdution

Let Q : Rd+1 → R denote the isotropic quadratic form

Q(x1, . . . , xd+1) = x21 + · · ·+ x2d − x2d+1.

Let SOd,1(R) < SLd+1(R) be the special isometry group of Q and let G be its con-
nected component. Let K = SOd(R) embedded in the top-left corner of SLd+1(R).
Then K < G is a maximal compact subgroup and, denoting by e1, . . . , ed+1 the
standard basis of Rd+1, we have K = StabG(ed+1). Recall that Hd ∼= G/K,
i.e., Hd identifies with the ed+1-component in {Q = −1}. The space Hd ⊆ Rd+1 is
an embedded Riemannian submanifold which is simply connected with constant
negative curvature. We let dHd denote the induced.

We say that two geodesic rays σ1, σ2 : [0,∞)→ Hd are equivalent, if

sup
t≥0

dHd

(
σ1(t), σ2(t)

)
<∞

and we define ∂Hd as the set of equivalence classes of geodesic rays. Each geo-
desic σ : R→ Hd can be identified with a tuple in (σ+, σ−) ∈ ∂Hd×∂Hd. Here σ+

denotes the equivalence class of the geodesic ray t 7→ σ(t) and σ− denotes the
equivalence class of the geodesic ray t 7→ σ(−t). The equivalence classes σ+, σ− will
be called the endpoints of σ. This identification can be shown to give a bijection
between the set of geodesics parametrized with unit speed and (∂Hd × ∂Hd)−∆,
where ∆ denotes the diagonal, i.e.., any pair of distinct equivalence classes (v+, v−)
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can be connected by a unique geodesic σ(v+,v−) of unit speed. In particular, we
obtain an identification

T 1Hd ∼= (∂Hd × ∂Hd)−∆× R

given by
(v+, v−, t) 7→ σ̇(v+,v−)(t).

We also recall the identification T 1Hd ∼= Hd/M , where M < K is the centralizer
of the diagonal subgroup A < G given by

A =



at =



Idd−1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)





 .

Using the above identification, the geodesic flow G• on T 1Hd is described by the
action of A, namely Gt(gM) = ga−1

t M and, similarly, the frame flow F• on G is
given by Ft(g) = ga−1

t .
Let Γ < G be discrete torsion-free and consider the manifoldM = Γ\Hd. Given

a Borel measure m on T 1M ∼= Γ\T 1Hd, we abuse notaition and denote by m̃ both
the Γ-invariant lift to T 1Hd as well as the Γ × M -invariant lift to G. As M
and Hd are locally isometric and as left- and right-multiplication commute, both
the geodesic flow and the frame flow descend to T 1M and Γ\G respectively with
analogous representation by the action of A. We denote by Leb the Lebesgue
measure on Euclidean space of implicit dimension.

Definition 1. The measure m̃ is a quasi-product measure if there is a Radon
measure µ on ∂Hd × ∂Hd equivalent to a product of probability measures such
that m̃ = µ⊗ Leb.

Examples of quasi-product measures include the lifts of the Bowen-Margulis-
Sullivan, the Burger-Roblin, and the Haar measures on T 1M , which we abbreviate
by mBMS, mBR and mBR

∗ , mHaar respectively; cf. [3, Def. 2.1] for the corresponding
quasi-product structures. The Bowen-Margulis-Sullivan measure is an invariant
measure for the geodesic flow and, in fact, if it is finite, then it is the unique
measure of maximal entropy; cf. [4].

2. Mixing for the BMS-measure

The first main result is mixing for the BMS-measure with respect to the action
of A.

Theorem 2 (cf. [1, Thm. 1] and [6, Thm. 1.1]). Assume that Γ < G is Zariski
dense and that mBMS is finite. Then the geodesic flow and the frame flow are
mixing for m̃BMS.

Remark 3. (1) The theorem by Babillot [1, Thm. 1] applies to the geodesic
flow (i.e., M -invariant test-functions) and is more general than what is
stated here. Instead of proving mixing for the geodesic flow for Zariski-
dense Γ, the original theorem proves that the geodesic flow is mixing unless
the length spectrum generates a discrete subgroup of R.
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(2) The theorem by Winter [6, Thm. 1.1] proves mixing for the frame flow for
Zariski-dense Γ. The role of the length spectrum is taken by the transitivity
group [6, Lem. 3.1] and a large part of the proof is concerned with showing
that Zariski-density of Γ implies that the transitivity group is generically
dense.

Description of the proof. The proof is by contradiction, i.e., we assume that the
flow is not mixing. In particular, there exists a compactly supported continuous
function φ of vanishing integral and a divergent sequence (tn)n∈N such that φ◦atn
does not converge to 0 in the weak-∗ topology. In particular, there exists a non-
constant function ψ ∈ L2(m̃BMS) and a sequence (sn)n→∞ such that sn → ∞
and ψ is the weak-∗ limit both for φ ◦ asn and φ ◦ a−sn [1, Lem. 1]. By the Hopf
argument [2, Thm. 4.1], lifting ψ to a Γ-invariant function and smoothing along
the A-direction, we obtain a non-constant function which is invariant both under
the stable and the unstable foliation. Using Zariski density of Γ, one can show that
this invariance implies that the function is essentially constant, which is absurd;
cf. [6, Thm. 3.14, Thm. 4.2, Prop. 5. 1]. �

3. Local mixing for the Haar measure

The second result presented was local mixing for the Haar measure.

Theorem 4 ([5, Thm. 3.4] and [6, Thm. 1.4]). Assume that Γ is Zariski-dense with
critical exponent δΓ and assume that and mBMS is finite. Let ψ1, ψ2 ∈ Cc(Γ\G).
Then

lim
t→∞

et(d−1−δΓ)
∫

Γ\G
(ψ1 ◦ at)ψ2dm

Haar =
mBR(ψ1)m

BR
∗ (ψ2)

‖mBMS‖ .

Remark 5. (1) The result by Roblin [5, Thm. 3.4] proves local mixing for
the geodesic flow, i.e., for M -invariant test functions.

(2) Mixing of BMS-measure for the frame flow [6, Thm. 1.1] combined with the
argument of proof for [5, Thm. 3.4] extends the result from M -invariant
to general test functions.

(3) The argument applied in [5] actually shows that local mixing for the Haar
measure is equivalent to mixing for the BMS measure.

Ingredients to the proof. The proof uses two main ingredients. The first ingredient
is a local product structure for quasi-conformal measures with respect to the condi-
tional measures on stable and unstable horospheres; cf. [5, Lem. 1.15]. The second
ingredient is mixing of the flow for the conditional measure along horospheres [5,
Cor. 3.2]. �

References

[1] M. Babillot, On the mixing property for hyperbolic systems, Israel J. Math. 129 (2002),
61–76.

[2] Y. Coudène, Ergodic theory and dynamical systems, translated from the 2013 French original
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Exponential decay of matrix coefficients: the case of the critical
exponent bigger than d

2

Antje Dabeler

In this talk we studied the asymptotic behavior of matrix coefficients of repre-
sentations of G = SO0(d + 1, 1) according to the work of Edwards and Oh [1].
These results can be used to study the exponential mixing of the geodesic flow
with respect to the Bowen-Margulis-Sullivan measure [1, Theorem 1.2].

The aim of this talk was to understand the following theorem [1, Theorem 4.8].

Theorem 1 (Edwards-Oh). There exists m ∈ N such that for any complementary
series representation U(v, s) containing a non-trivial M -invariant vector, for all
u,w ∈ Sm(v, s) and t ≥ 0,

(1) 〈U(v, s)(at)u,w〉U(v,s) = e(s−d)t


 ∑

τ1,τ2∈K̂

〈T τ2τ1 c+(s)Pτ1u, Pτ2w〉U(v,s)




+O
(
e(s−d−ηs)t||u||Sm(v,s)||w||Sm(v,s)

)

and the sum converges absolutely. Moreover, the implied constant is uniformly
bounded over s in compact subsets of the interval Iv.

Here, c+ denotes the Harish-Chandra c-function, Sm(v, s) the Sobolev space
associated to U(v, s) and Pτ the orthogonal projection onto the K-type τ . The
parameter ηs is given by min{2s− d, 1}.

An important ingredient is the so-called spectral gap property for the quasi-
regular representation L2(G/Γ), where Γ is a discrete torsion-free geometrically
finite subgroup of G with critical exponent δ > d

2 . Before we give the result, we
recall the construction of complementary series representations of G.

All representations of G were classified by Hirai [2]. The complementary series
representations can be written as

(2) IndGMAN (v, exp s, 1N),

with v ∈ M̂ an irreducible unitary representation of M and s ∈ Iv ⊆
(
d
2 , d
)
. Here

MAN is the Langlands decomposition of a parabolic subgroup of G. The interval
Iv is determined by the highest weight of v:
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• n even:
(
j1, . . . , j d

2

)
∈ Z

d
2 with j1 ≥ j2 ≥ · · · ≥

∣∣∣j d
2

∣∣∣,
• n odd:

(
j1, . . . , j d−1

2

)
∈ Z

d−1
2 with j1 ≥ j2 ≥ · · · ≥ j d−1

2
≥ 0.

Define l = l(v) := min{l′ | jl′ 6= 0} and set l(1M ) = 0. Then, Iv :=
(
d
2 , d− l

)
.

Now, we can look at the quasi-regular representation ρ : G→ B
(
L2(G/Γ)

)
,

(3) (ρ(g)f)(x) = f(xg) for f ∈ L2(G/Γ), g ∈ G, x ∈ G/Γ.
The following theorem is due to Lax and Phillips [3],

Theorem 2 (Lax-Phillips). The intersection of the spectrum of the Laplace-

Beltrami operator with the interval
[
0, d

2

4

]
, viewed as an unbounded operator on

L2(Γ\Hd+1), consists of a finite set of eigenvalues {λi = si(d−si)}0≤i≤l satisfying
0 < λ0 = δ(d− δ) < λ1 ≤ · · · ≤ λl < d2

4 .

From this result, Mohammadi and Oh concluded that ρ has the strong spectral
gap property [4, Proposition 3.24]:

Proposition 3. L2(Γ\G) does not weakly contain any complementary series rep-

resentation U(v, s) with v ∈ M̂ and s > δ.

The proof of Theorem 1 can be divided into three steps:

(1) Asymptotic expansion of the matrix coefficients with respect to 〈 , 〉K (the
scalar product on L2(K), where K ⊆ G is a maximal compact subgroup),

(2) Intertwining operators,
(3) Asymptotic expansion of the matrix coefficients with respect to 〈 , 〉U(v,s)

(the scalar product making U(v, s) unitary).

In the talk we focused our attention on the second part of the proof.
Edwards and Oh [1, Section 4.2] study the operators A(v, s) satisfying
• 〈u,w〉U(v,s) = 〈u,A(v, s)w〉K for all K-finite vectors u,w ∈ U(v, s),

• A(v, s)Us(g) = Ud−s(g)A(v, s) for all g ∈ G.
By Schur’s lemma, A acts as a scalar on the K-types of U(v, s), i.e. A(v, s) =∑
v⊂τ a(v, s, τ)Pτ . The relation v ⊂ τ is defined, for v ∈ M̂ and τ ∈ K̂, using

the interlacing property relating the highest weights of v and τ , respectively: Let

v =
(
v1, . . . , v⌊ d

2 ⌋

)
and τ =

(
τ1, . . . , τ⌊ d

2 ⌋

)
. Then they satisfy the interlacing

property, if,

for d = 2m− 1 : τ1 ≥ v1 ≥ τ2 ≥ v2 ≥ · · · ≥ vm−1 ≥ |τm|,(4)

for d = 2m : τ1 ≥ v1 ≥ τ2 ≥ v2 ≥ · · · ≥ τm ≥ |vm|.(5)

For a complementary series representation U(v, s) with non-trivialM -invariant
vector, we can deduce that v has the form (v1, 0, . . . , 0) and subsequently, that
every K-type of U(v, s) has the form (t1, t2, 0, . . . , 0). With these properties, we

can bound a(v,s,τ2)
a(v,s,τ1)

for any two K-types τ1 and τ2 of U(v, s) (see [1, Proposition

4.6]).
Thus, the second step allows us to transfer the results from the first step with

respect to 〈 , 〉K to the scalar product 〈 , 〉U(v,s).
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Uniform exponential decay of matrix coefficients: the case of the
critical exponent bigger than d/2

Zhicheng Han

The content of this talk is closely related to the previous talk in the report on
exponential decay of matrix coefficients in the case of a single geometrically finite
hyperbolic manifold. For the sake of completeness we reiterate the theorem here:

Theorem 1 ([2]). Given Γ a discrete subgroup of G = SO0(d+ 1, 1) with critical

exponent δ. Assuming δ > d/2 and set η := min

{
δ − d

2 +
√
(d2 )

2 − λ1, 1
}
. Then

there exists m > d(d+1)
2 such that for any ǫ > 0 and functions ψ1, ψ2 on T 1(M)

with ‖ψ1‖Sm , ‖ψ2‖Sm <∞, then we have as t→ +∞:

e(d−δ)t
∫

T 1(M)

ψ1(Gt(x))ψ2(x)dx =
1

mBMS(T 1(M))
mBR(ψ1)m

BR∗(ψ2) + error

with explicit error term expressed in L2-Sobolev norm:Oǫ(e
(−η+ǫ)t ‖ψ1‖Sm ·‖ψ2‖Sm).

Similarly for ψ1, ψ2 bounded function on T 1(M) supported on 1-neighbourhood of
supp(mBMS) we have similar asymptotic behaviour as t→∞:
∫

T 1(M)

ψ1(Gt(x))ψ2(x)dm
BMS(x) =

1

mBMS(T 1(M))
mBMS(ψ1)m

BMS(ψ2) + error1

with error term by Cm norm O(e−βt ‖ψ1‖Cm ‖ψ1‖Cm) and explicitly computable
term β = β(η) > 0.

Recall Gt the geodesic flow on unit tangent bundle of the geometrically finite
hyperbolic manifold M := Γ\G/K = Γ\Hd, and dx,mBMS,mBR,mBR∗ denotes
the Liouville, the Bowen-Margulis-Sullivan, the unstable and the stable Burger-
Roblin measures on T 1(M) respectively. We refer the readers to the talk by Antje
Gabeler in this report as well as the original paper cited here for further details.

The main result of this talk is to yield an uniform exponent η and β for (al-
most) all congruence subcovers. Consider now Γ a Zariski-dense subgroup of an
arithmetic subgroup G(Z) of G, in particular the case when δ > 1/2 satisfy this

condition. Denote Γq =
{
γ ∈ Γ

∣∣∣γ ≡ e mod q
}

the q-th congruence subgroup,

then one can uniformly bound the decay rate among those good q’s
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Theorem 2 ([2, Corollary 1.3]). The error exponents η and η in Theorem 1 can
be chosen uniformly over all congruence covers T 1(Γq\Hd+1) for all q square-free
integers with no factors in a fixed set S. We denote this set of q as F .

The key step to obtain such an uniform bound is to observe the spectral gap
of the Laplacian on congruence subcovers, is equivalent to the property of all
finite quotients forming an expander family. This is commonly known as the
archimedean spectral gap is equivalent to the combinatorial spectral gap. The
theorem in case of real hyperbolic manifolds can be explicitly stated as follows:

Theorem 3 (modified [1, Theorem 1.2]). Let G = O(d+1, 1) and Γ be its geomet-
rically finite discrete subgroup with δ(Γ) > d

2 generated by a finite symmetric set
S. Then the Cayley graphs Cay(Γ/Γq, S mod q) form a family fo expanders if and
only if there is a uniform spectral gap among subcovers, i.e., there is a ε(Γ) > 0
such that infq∈F λ1(Γ/Γq)− λ(Γ/Γq) ≥ ǫ.

This is a slightly generalized version of [1]. Assuming this, theorem 2 can be
readily derived from the following theorem of Salehi Golsefidy and Varjú, the
original version of which we state here can be adapted to a much more general
scene:

Theorem 4 ([4, Corollary 6]). Let Γ ⊆ GLd(k) be the group generated by a sym-
metric set S, where k is a number field. If the Zariski-closure of Γ is semisimple,
then Cay(πq(Γ), πq(S)) form a family of expanders when q ranges over square-free
ideals of the ring of integers Ok with large prime factors.

We now give a brief sketch of the proof of theorem 3. Note the necessary
condition was proved in [3] using Fell’s continuity argument, so we only sketch the
sufficient condition here. Strategy of general proof is similar to that of SL(2) =
SO(2, 1)-case. We hence satisfied with sketching the original proof, aside with
remarks of generalizations. A detailed version can be found in [1] and [5] in a
more detailed form.

First note it suffices to restrict our attention to the case when Γ/Γq = SL2(Fq).
This (and the general case) follows from [7] for q large enough. Fix now a fun-
damental domain F of Γ in H2. Then any functions f ∈ Γq\H2 can be lifted to

a Γq-invariant function f̃ on H2. Consequently such f can be regarded as vector
valued function F defined on Γ\H2 by setting:

F (z) = (f̃(γz))γ∈Γ/Γq

with z ∈ F identified with Γ\H2. Note this is equivalent to the right regular action
of SL2(Fq) on F : R(γ) · F (z) = F (γz). We denote such space as H and denote
H0 its subspace orthogonal to λ0-eigenspaces. Then the archimedean spectral gap
is equivalent to the claim that for any F in H0:

(1)

∫
F ‖∇F‖

2
dµ

∫
F ‖F‖

2
dµ
≥ λ0 + ε
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Fix now S the generating set of Γ. Then the expander graph property amounts to
say for each z ∈ F and for all F ∈ H0, there exists a γ ∈ S and ǫ = ǫ(S) > 0

‖F (z)− F (γz)‖2 ≥ λ1(G(Fq)) ‖F (z)‖2

Observe now we can focus on the f = ‖F‖ being the λ0-eigenspaces, as otherwise
we can orthogonally decompose f into λ0-eigenvectors and its orthogonal comple-
ment b0, and then computing 1 above already gives a nontrivial bound away from
λ. Note here we make a critical use of [6], which in particular states the hyperbolic
manifolds has 1-dimensional λ0-eigenspaces.

In the later case, this amounts to choose area of integration carefully, and by
integrating the gradient along geodesic perpendicular boundary direction of the
fundamental domain, and by choosing Fermi coordinates with respect to these.
Then assuming 1 contradicts with the expander property, which amounts to say
teh derivative is lower bounded. Therefore the theorem is proved.

we conclude this discussion by mentioning a few results branched out from this.
First a similar result of theorem 1 was derived in the case Γ a convex cocompact
subgroup of SO0(d, 1) by [8] and [9]. See also the article by Emilio Corso in this
report for more details.

It seems the whole story of uniform spectral gap (in the spirit of Selberg’s 3/16
theorem) ends at the critical exponent greater than δ(Γ) > d/2 for twofold reason:
First the Laplacian on Γ\Hd have no discrete spectrum between [0, d2/4) so the
natural replacement is by studying the resonances as poles of the meromorphic
continuation of the resolvent. We refer the reader to [1, Section 5 to 12] for more
details.

All the theorems cited in this report have already seen many applications. To name
a few, the uniform spectral gap is a crucial ingredient in the execution of affine
linear sieve in the archimedean norm, whereas the uniform exponential mixing has
seen its application to integral Apollonian packings. The readers is welcome to
the reference in cited articles for more details.

References

[1] Bourgain, J., Gamburd, A., and Sarnak, P. Generalization of Selberg’s 3
16

theorem and

affine sieve. Acta Math. 207, 2 (2011), 255–290.
[2] Edwards, S., and Oh, H. Spectral gap and exponential mixing on geometrically finite

hyperbolic manifolds. Duke Math. J. 170, 15 (oct 2021).
[3] Gamburd, A. On the spectral gap for infinite index ”congruence” subgroups of SL2(Z). Isr.

J. Math. (2002).
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Beyond Expansion Lecture I: Einsiedler-Lindenstrauss-Michel-
Venkatesh Problem

Wooyeon Kim

In this talk, we describe the formulation and sieve method solution [2] to the
ELMV problem [3] on low lying fundamental geodesics on the modular surface.

Let H = {x + iy : y > 0} denote the Poincaré upper half plane, let T 1H

be its unit tangent bundle with Riemannian metric ‖ζ‖z := |ζ|
Imz , where z ∈ H

is the position and ζ ∈ TzH ∼= C with ‖ζ‖z = 1 is the direction vector. The
fractional linear action of the group G = PSL2(R) = SL2(R)/{±I} on H is

defined by g(z, ζ) :=
(
az+b
cz+d ,

v
(cz+d)2

)
for g =

(
a b
c d

)
∈ G and (z, ζ) ∈ T 1H. Let

Γ = PSL2(Z) and X be the unit tangent bundle of the modular surface Γ\H.
The above action of G on T 1H induces the identification X ∼= Γ\G. Under this
identification, the time-t geodesic flow on X corresponds to right multiplication

by at :=

(
e

t
2

e−
t
2

)
on Γ\G. We now state the main result of [2]:

Theorem 1. There exists a compact region Y ⊂ X such that Y contains infinitely
many fundamental closed geodesics.

It is not yet clear what ”a closed geodesic is fundamental” means. To clarify
this, we need a correspondence between closed geodesics in X and equivalence
classes of integral binary quadratic forms. In other words, given closed geodesic,
we can attach a equivalence class of binary quadratic form as follows: Pick a point
Γg ∈ Γ\G on the given closed geodesic γ ∈ X , then there exists l > 0 and M ∈ Γ
such that gal =Mg. The hyperbolic matrix M is determined up to Γ-conjugation
and trM = 2cosh l2 . We also define the visual point α from g by

α = lim
t→∞

gat · i =
a− d+

√
tr2M − 4

2c
,

where M =

(
a b
c d

)
. Let Q(x, y) be the primitive integral binary quadratic

form such that α is a root of Q(x, 1) = 0. More explicitly, we take Q(x, y) =
sgn(tr(M))
gcd(c,d−a,b)(cx

2 + (d − a)xy − by2). We observe that this binary quadratic form

is determined up to SL2(Z)-change of coordinates. It is said that the geodesic γ
is fundamental if the discriminant D ∈ N of Q(x, y) is fundamental, i.e. D is the
discriminant of a real quadratic field KD = Q(D).

We now give a brief sketch of the proof of Theorem 1. Theorem 1 is actually
from the following stronger statement.
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Theorem 2. For any ǫ > 0, there exists a compact region Y ⊂X, D⊂{fund. disc.}
such that

• For any D ∈ D, |{γ ∈ CD : γ ⊂ Y }| > |CD|1−ǫ,
• For sufficiently large T > 0, |D ∩ [1, T ]| ≫ T

1
2−ǫ.

Here, CD is the class group of Q(D) and the elements of CD can be considered as
closed geodesics with discriminant D.

The visual point α ∈ R of the closed geodesic γ is a quadratic irrational. Let
α = [a0, a1, · · · , ak] be its continued fraction which is eventually periodic (by an
appropriate choice of g, we may assume it is periodic). Note that the corresponding

hyperbolic matrix M ∈ Γ of γ is then

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
ak 1
1 0

)
. It is also

well-known that the excursion of γ to the cusp is controlled by the upper bound
of partial quotients ai’s.

Fact. For any compact region Y ⊂ X , there exists AY ∈ N such that if γ is
contained in Y , then ai ≤ AY for any 1 ≤ i ≤ k.

To make use of this fact, we consider a thin group in SL2(Z)

ΓA :=

〈(
a 1
1 0

)
: 1 ≤ a ≤ A

〉+

∩ SL2(Z),

where the superscript ”+” denotes generation as a semigroup. Here are useful
facts about ΓA:

• ΓA is Zariski dense if A ≥ 2,
• |ΓA ∩ BN | ≍ N2δA , where BN is the N -ball in SL2(Z) with respect to
Frobenius norm and δA := Hdim{[a0, a1, a2, · · · ] : 1 ≤ aj ≤ A} [4],
• δA = 1− 6

π2A + o( 1
A ) [5].

A sufficient condition of being fundamental is thatD = tr2(M)−4 is square-free.
Using the above Fact, one can deduce Theorem 2 from the following proposition.

Proposition 3. For any η > 0, there exists A(η) ∈ N such that

|{M ∈ ΓA ∩BN : tr2(M)− 4 is square-free}| > N2δA−η.

The main ingredients of the proof of this proposition are sieving theorems and
“spectral gap” or “expander” property of ΓA. A theorem of [1] roughly says that
we have equidistribution in ΓA mod q with power saving error rate. In our setting,
we have the following estimate:

|{M ∈ ΓA ∩BN : tr2(M)− 4 ≡ 0(mod q)}| = 1

q
|ΓA ∩BN |+O(N2δA−θ)

for some θ > 0. Applying the sieving theorem for this estimate, one can count the
number of M ’s such that tr2(M)− 4 is almost-prime, and finally get the estimate
of Proposition 3.
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On Spectral Gap of Compact Simple Lie Groups

Constantin Kogler

Let G ⊂ GLd(C) be a compact connected simple Lie group (e.g. G = SU(d)) and
consider a symmetric Borel probability measure µ on G. We aim to understand
the distribution of µ∗n.

Definition 1. The symmetric measure µ is called non-degenerate if its support
generates a dense subgroup of G.

For example consider the measure

(1) µg1,g2 =
1

4
(δg1 + δg−1

1
+ δg2 + δg−1

2
).

As a Lie group has only countably many conjugacy classes of closed subgroups and
using that G is connected, it follows that µg1,g2 is almost surely non-degenerate
for g1 and g2 to be chosen uniformly at random from G.

If µ is non-degenerate, then we show below that µ∗n equidistributes to the Haar
measure mG on G, i.e. for f ∈ C(G),

(2) lim
n→∞

∫
f dµ∗n −→

∫
f dmG.

Denote by λG the left-regular representation of G and let Ĝ be the set of
irreducible representations of G. As G is compact, every irreducible representation
is finite dimensional and the Peter-Weyl Theorem holds:

(3) λG =
⊕

π∈Ĝ

π⊕ dimπ.

Furthermore we have the Fourier inversion formula for f ∈ C∞(G) and all g ∈ G,
(4) f(g) =

∑

π∈Ĝ

dim(π)〈π(f), πg〉HS,

where HS is the Hilbert-Schmidt inner product, i.e. 〈T, S〉HS = tr(TS∗) for T, S
bounded operators on a finite dimensional complex vector space.
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Lemma 2. Let µ be a symmetric non-degenerate probability measure on a compact

group G and let π ∈ Ĝ be an irreducible non-trivial representation. Then

||π(µ)||op < 1.

Proof. As π is finite dimensional and µ symmetric, the operator π(µ) is diago-
nalizable. Furthermore µ is a probability measure, implying ||π(µ)||op ≤ 1. It
thus suffices to show that π(µ) has no eigenvalue of modulus one. Assume for a
contradiction that π(µ)v =

∫
πgv dµ(g) = λv for a non-zero element v ∈ Hπ and

λ ∈ S1. As π is finite-dimensional and ||πgv|| = ||λv|| = ||v||, it must hold that
πgv = λv for almost all g ∈ supp(µ). Now consider the subgroup

H = {g ∈ G : πgv = v}
and fix an element g0 ∈ supp(µ) such that πg0v = λv. Then almost surely
supp(µ) ⊂ g0H . As µ is symmetric, supp(µ)2 ⊂ (g0H)−1(g0H) = H, showing
that G = H as µ is non-degenerate. However this implies that 〈v〉 is an invariant
subspace, contradicting the assumption that π is irreducible and non-trivial. �

Lemma 2 together with (3) or (4) implies (2). We next want to discuss whether
one can prove Lemma 2 uniformly over all non-trivial irreducible representations of
G. This leads to the notion of spectral gap. Notice that the Peter-Weyl Theorem
has as a consequence

||λG(µ)|L2
0(G)||op = sup

π∈Ĝ\{1G}
||π(µ)||op.

Definition 3. The measure µ has spectral gap if

||λG(µ)|L2
0(G)||op < 1.

Conjecture 4. (Spectral Gap Conjecture) Let µ be a symmetric probability mea-
sure on a compact connected simple Lie group. Then µ has spectral gap if and only
if µ is non-degenerate.

As argued above, spectral gap implies equidistribution of µ∗n and hence that µ
is non-degenerate. Equivalently, if the support of µ is trapped in a closed subgroup
of G, then µ cannot have spectral gap. The Spectral Gap Conjecture claims that
this is the only obstruction to µ having a spectral gap. In particular, in view
of the discussion around (1), the conjecture claims that spectral gap is a generic
condition.

If µ has spectral gap, using (4) one can deduce equidistribution of µ∗n with
exponential speed. Namely there is c > 0 such that for f ∈ C∞(G),

∫
f dµ∗n =

∫
f dmG +O(S(f)e−cn),

where S(f) is a Sobolev norm of sufficiently high degree on G.
Furthermore, if µ has spectral gap, one has exponential mixing of the operator

λG(µ): For f1, f2 ∈ L2(G),

(5) |〈µ∗n ∗ f1, f2〉 − 〈f1, f2〉| ≤ e−cn||f1||2 ||f2||2
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for c = − log ||λG(µ)|L2
0(G)||op.

A consequence of (5) is that µ∗n gives only very little mass to small sets. For
instance for ε > 0 small,

(6) µ∗n(Bε(e))≪ εdim(G) + e−cn.

If ε = e−c1n, then the right hand side of (6) decays exponentially fast. A similar
conclusion holds if Bε(e) is replaced by Bε(H) = {x ∈ G : d(x,H) < ε} for H a
closed subgroup of G. This shows that if µ has spectral gap, then G satisfies the
weak Diophantine property defined as follows:

Definition 5. The measure µ is calledweakly Diophantine if there exist c1, c2 >
0 such that for n large enough

sup
H<G

µ∗n(Be−c1n(H)) ≤ e−c2n,

where the supremum is taken over all closed subgroups of G.

The weak Diophantine property is a non-commutative generalization of the
notion of a Diophantine number on the real line (see introduction of [2]). The
main result of this talk reduces spectral gap to the weak Diophantine property.

Theorem 6. ([3] for G = SU(d), [5] for general case) Let µ be a symmetric
probability measure on a compact connected simple Lie group. Then µ has spectral
gap if and only if µ is weakly Diophantine.

It remains to study the weak Diophantine property in more detail.

Theorem 7. ([3] for G = SU(d), [5] for general case) Let µ be a finitely supported
non-degenerate probability measure on G. Assume that supp(µ) consists of ma-
trices with algebraic entries. Then µ is weakly Diophantine. In particular, µ has
spectral gap.

The final consequence of Theorem 7 was first proven by Bourgain and Gamburd
for SU(2) in [2] for measures of the form µg1,g2 as defined in (1) for g1, g2 ∈
SU(2)∩M2(Q) generating a free subgroup. They generalized their results to SU(d)
in [3]. Building on the method by Bourgain and Gamburd, Benoist and de Saxcé
clarified in [5] the relationship between spectral gap and the weak Diophantine
property and further generalized the results to simple Lie groups.

We briefly discuss the proofs of Theorem 6 and 7. Concerning Theorem 7, for
simplicity consider the measure µg1,g2 for g1 and g2 generating a dense subgroup
of G. Then by Kesten’s Theorem [6], since the group generated by g1 and g2 is
non-amenable, it follows that

(7) µ∗n
g1,g2(e) ≤ e−c1n

for c1 > 0. For the reader unfamiliar with Kesten’s Theorem, consider the case
when the group generated by g1 and g2 is free. Then µ∗n

g1,g2(e) is the probability
that the natural symmetric random walk on the free group that starts at the
identity returns to the identity after n steps, a quantity that decays exponentially
by direct calculation.
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Notice that the above argument does not require g1 and g2 to have algebraic
entries, however in (7) we only show exponential decay at the identity. To pass to
decay for an exponentially small neighborhood around the identity, as required by
the weak Diophantine property, the current methods require the further assump-
tion that g1, g2 ∈Md(Q). Denote by K the number field generated by the entires
of g1 and g2. The height of the entries of supp(µ∗n

g1,g2) can be bounded by ec2n for
some c2 > 0. Using that there are no matrices in Be−c2n(e) ∩Md(K) with entries
of height ≤ O(e[K:Q]c2n) in Be−c2n(e), it follows for n ≥ 1 that

(8) supp(µ∗n
g1,g2) ∩Be−c2n(e) = {e},

by altering the constant c2. Combining (7) and (8), the weak Diophantine property
follows for the trivial subgroup. To further treat closed subgroups H < G, one
requires stronger results from the theory of random matrix products to derive (7)
for H and one moreover uses the effective Nullstellensatz for an analogue of (8)
(see Proposition 3.3 and 3.12 in [5]).

Returning to Theorem 6, the strategy of proof is analogous to the method of
Bourgain and Gamburd to show expansion of Cayley graphs of finite simple groups
of Lie type that was exposed in previous talks.

Denote Pδ =
1Bδ(e)

mG(1Bδ(e))
the uniform probability measure on Bδ(e). For a given

measure ν, we consider the δ-discretization of ν given as

νδ = ν ∗ Pδ.
The Bourgain-Gamburd method relies on analyzing the behavior of µ∗n at scale
δ (or δ-discretized) and to deduce uniform results for all scales. The following
proposition shows that if µ∗n is flat enough at all scales (for n depending on the
scale) then µ has spectral gap.

Proposition 8. (Lemma 2.9 of [5]) Let µ be a non-degenerate probability measure
on a compact semisimple Lie group. Assume that for δ small enough,

||(µ∗C log( 1
δ
))δ||2 ≤ δ−1/4.

Then µ has spectral gap.

In analogy to quasirandomness for finite groups, the proof relies on high multi-
plicity of the irreducible representations of G.

Proof. (Sketch for SU(2)) Recall that for SU(2) there is a unique representation
πk for each dimension k ≥ 1. By Lemma 2 it suffices to consider representations
of large dimension. Using the Plancharel formula for SU(2) (which follows from
(4)), ∑

k≥1

k||πk(µ)∗C log( 1
δ
)πk(Pδ)||2HS = ||(µ∗C log( 1

δ
))δ||22 ≤ δ−1/2

As ||πk(Pδ)− Idk|| ≤ kδ, we can omit the term πk(Pδ) in the above expression for
k ∼ δ−1. Thus

||πk(µ)||2C log( 1
δ
)

HS ≪ k−1δ−1/2 = δ1/2,

implying the claim for δ small enough and hence for k large enough. �
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Finally, it is necessary to establish an analogue of Helfgott’s Theorem for ar-
bitrary subsets of G. Having proven the latter, the proof of Theorem 6 is similar
to the setting of expander graph – using a scaled version of the Balog-Szemeredi-
Gowers Lemma (see Lemma 2.5 of [5]).

The proof of Helfgott’s Theorem relied on the Sum-Product Theorem [4] for
Z/pZ. This theorem was inspired by the Erdös-Szemeredi Theorem, stating that
there is ε > 0 such that for any finite subset A ⊂ R,

(9) |A+A|+ |A · A| ≫ |A|1+ε.

As we want to consider arbitrary subsets of G, as a preliminary step one needs to
generalize (9) to arbitrary subsets of R. This was achieved by Bourgain [1].

Instead of studying the cardinality of arbitrary subsets of R, we, as before,
discretize the setting and analyze the metric entropyNδ(A), defined as the minimal
number of δ-balls necessary to cover A ⊂ R.

Theorem 9. (Discretized Sum-Product Theorem [1], Simplified Version) Given
σ ∈ (0, 1) there is ε = ε(σ) > 0 such that the following holds for δ > 0 small
enough.

Assume that A ⊂ [0, 1] satisfies:

(i) (Size Assumption) δ−(σ−ε) ≤ Nδ(A) ≤ δ−(σ+ε).
(ii) (Non-concentration) For all x ∈ R and ρ ≥ δ,

Nδ(A ∩Bρ(x)) ≤ δ−ερ−σ.

Then

Nδ(A+A) +Nδ(A · A) ≥ δ−εNδ(A).

Assumption (i) is necessary in order to ensure that Nδ(A) can grow at least
δ−ε, whereas (ii) excludes the counterexamples [x, x + ρ] and unions of a small
number of such sets.

As discussed above, one further needs to generalize Theorem 9 to subsets of G.
This was done in [3] for SU(d) and in [7] for an arbitrary connected simple Lie
group G. We refer the reader to the references for a further discussion of these
results.
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Exponential mixing: the case of convex cocompact manifolds

Michael Chow

The aim of this talk is to present the exponential mixing of the Bowen-Margulis-
Sullivan measure mBMS for convex cocompact hyperbolic manifolds Γ\Hn. To
state the exponential mixing theorem precisely, let G = Isom+(Hn) ∼= SO◦(n, 1)
and Γ < G be a Zariski dense convex cocompact subgroup. Then the frame bundle
of Γ\Hn identifies with Γ\G and the frame flow corresponds to the action on the
right by a one-parameter subgroup of semisimple elements {at}t∈R. Stoyanov [3]
proved exponential mixing for the geodesic flow (on Γ\G/M) and later this was
extended to the frame flow by Sarkar-Winter [2]:

Theorem 1 (Exponential mixing). There exists C, η > 0 and r ∈ N such that for
every ϕ ∈ Crc (Γ\G), ψ ∈ C1

c (Γ\G) and t > 0,
∣∣∣∣∣

∫

Γ\G
ϕ(xat)ψ(x)dm

BMS(x) −mBMS(ϕ)mBMS(ψ)

∣∣∣∣∣ ≤ C
−ηt‖ϕ‖Cr‖ψ‖C1

One of the applications of this result is to deduce exponential decay of matrix
coefficients using Roblin’s transvere intersection argument:

Theorem 2 (Exponential decay of matrix coefficients). There exists η > 0 and
r ∈ N such that for every ϕ ∈ Crc (Γ\G), ψ ∈ C1

c (Γ\G), there exists C > 0
depending only on supp(ϕ) and supp(ψ) such that for all t > 0,

∣∣∣∣∣e
(n−1−δΓ)t

∫

Γ\G
ϕ(xat)ψ(x)dx −mBR(ϕ)mBR∗(ψ)

∣∣∣∣∣ ≤ C
−ηt‖ϕ‖Cr‖ψ‖C1

On the proof

Since Γ is convex cocompact, a classical construction of Bowen and Ratner gives
the existence of a Markov section for the geodesic flow, giving a symbolic cod-
ing and allowing us to apply symbolic dynamics and thermodynamic formalism.
Keeping track of the holonomy, we obtain a suspension space model for the frame
flow. More precisely, we study the R-translation flow on the suspension space
Σ+ ×M ×R/ ∼ where (Σ+, σ) is a one-sided shift space on a finite alphabet and
(x,m, s) ∼ (σ(x),mϑ(x)−1 , s − τ(x)), where τ : Σ+ → R is the first return time
map and ϑ : Σ+ →M is the holonomy map.

The main object of study then becomes transfer operators since by the classical
work of Pollicott, we can prove exponential mixing of the geodesic flow from spec-
tral bounds of transfer operators. In the geodesic flow case where we do not need
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to consider holonomy, for each complex parameter ξ = a + ib ∈ C, we have a
transfer operator Lξ : C(Σ+)→ C(Σ+) defined by

Lξ(H)(x) =
∑

x′∈σ−1(x)

eξτ(x
′)H(x′)

In the case of small frequencies |b| ≪ 1, the required spectral bounds are a conse-
quence of the Ruelle-Perron-Frobenius theorem and perturbation theory. For large
frequencies |b| ≫ 1, spectral bounds were obtained by Dolgopyat [1] first and his
results were generalized by Stoyanov. One of the key ingredients to Dolgopyat’s
method is the local non-integrability condition (LNIC) which will tell us that the
first return time map τ has large oscillations.

When considering the frame flow, we need to consider transfer operators with
holonomy, that is, the transfer operators from before twisted by representations
in the unitary dual M̂ of M . More precisely, given ξ ∈ C and ρ : M → Vρ in M̂ ,

the transfer operator with holonomy Lξ,ρ : C(Σ+, V
⊕dim(ρ)
ρ ) → C(Σ+, V

⊕dim(ρ)
ρ )

is defined by

Lξ,ρ(H)(x) =
∑

x′∈σ−1(x)

eξτ(x
′)ρ(ϑ(x′)−1)H(x′)

The LNIC required in this setting must deal with an AM -valued map Φ which
incorporates both the first return time map τ and the holonomy map ϑ. The LNIC
is proved by using Lie theoretic arguments and Zariski denseness of Γ (hence, it
is necessary to modify the above constructions using the smooth structure on G,
but we will not address this), and it will tell us Φ has large oscillations when b is
large or when ρ is nontrivial.

In addition to the the LNIC, in the frame flow case, a non-concentration property
(NCP) is required as well. The NCP essentially says that for Zariski dense Γ,
the limit set ΛΓ ⊂ ∂Hn ∼= Rn−1 ∪ {∞} does not concentrate along any particular
direction:

Proposition (NCP). There exists δ ∈ (0, 1) such that for all x ∈ ΛΓ ∩ Rn−1,
ε ∈ (0, 1) and unit vector w ∈ Rn−1, there exists y ∈ ΛΓ ∩ Bε(x) such that
|〈y − x,w〉| ≥ εδ.

Having the LNIC and NCP, we can follow the Dolgopyat’s method and construct
Dolgopyat operators from which we can deduce bounds for the transfer operator.
The mechanism of Dolgopyat’s method is summarized in the following theorem,
where for B > 0,

KB = {h ∈ C1(Σ+) | h > 0, ‖(dh)x‖op ≤ Bh(x) for all x ∈ Σ+}.
Theorem 3 (Dolgopyat’s method). There exists m ∈ N, η̃ ∈ (0, 1), E, a0, b0 > 0

and for each (b, ρ) ∈ R × M̂ with |b| > b0 or ρ 6= 1, there exists a finite indexing
set J (b, p) and a set of Dolgopyat operators

{NH
a,J : C1(Σ+)→ C1(Σ+) | H ∈ C1(Σ+, V ⊕dim(ρ)

ρ ), |a| < a0, J ∈ J (b, ρ)}
satisfying the following
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(1) Na,J(KE‖(b,ρ)‖) ⊂ KE‖(b,ρ)‖ (cone preserving)
(2) ‖Na,J(h)‖2 ≤ η̃‖h‖2 for all h ∈ KE‖(b,ρ)‖ (uniform contraction)
(3) If h ∈ KE‖(b,ρ)‖ satisfies

• ‖H(x)‖2 ≤ h(x) for all x ∈ Σ+ and
• ‖(dH)x‖op ≤ E‖(b, ρ)‖h(x) for all x ∈ Σ+,

then there exists J ∈ J (b, ρ) such that
• ‖Lmξ,ρ(H)(x)‖2 ≤ Na,J (h)(x) for all x ∈ Σ+ and

• ‖(dLmξ,ρ(H))x‖op ≤ E‖(b, ρ)‖Na,J(h)(x) for all x ∈ Σ+,

Given h and H satisfying the hypotheses of (3), by replacing h and H with
Na,J (h) and Lmξ,ρ(H), we see that (3) provides a mechanism for an induction
argument and this will give the required bounds for the transfer operator, from
which exponential mixing can be derived.

Theorem 4 (Spectral bounds for transfer operators). There exists C, η, a0, b0 > 0
such that if |a| < a0, and |b| > b0 or ρ 6= 1, then for every k ∈ N and for all

H ∈ C(Σ+, V
⊕dim(ρ)
ρ ), we have

‖Lkξ,ρ(H)‖ ≤ Ce−ηk‖H‖1,‖(b,ρ)‖
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Expansion of SL2(OK/I) with I square-free

Jeroen Winkel

In this talk we will see how we can make expanders of Cayley graphs of quotients
of the group SL2(OK), where K is a number field. First, we will consider a
theorem shown in 2008 by Bourgain and Gamburd [2]. For any prime p consider
the projection πp : SL2(Z)→ SL2(Z/p), which is always surjective.

Theorem 1. Let S ⊆ SL2(Z) be a finite symmetric set, such that 〈S〉 is Zariski
dense in SL2(Z). Then the Cayley graphs Cay(SL2(Z/p), πp(S)) form an expander
sequence, where p ranges over all large enough primes.

Today we talk about a theorem by Varjú generalizing this result in two direc-
tions: we will replace Z by a ring of integers and p by a square-free ideal. Before
stating the theorem we need some definitions.

Definition 2. A number field is a field K containing Q such that the dimension
[K : Q] is finite.
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Any α ∈ K is algebraic, meaning that there are a0, . . . , ak−1 such that αk +
ak−1α

k−1 + . . . + a0 = 0. Moreover, if we insist on k to be minimal, then the
a0, . . . , ak−1 will be unique. We say that α is an algebraic integer if all a0, . . . , ak−1

are integers. The set of algebraic integers in K is called OK . It can be shown that
this is a subring of K, called the ring of integers.

For example, if K = Q[i], we get OK = Z[i]. More generally, if K = Q[
√
m]

for a square-free integer m, we get OK = Z[
√
m] if m is 2 or 3 modulo 4, and

OK = Z[ 1+
√
m

2 ] if m is 1 modulo 4.
We can do number theory with the ring of integers OK , instead of the usual

integers Z. We say an algebraic integer p ∈ OK is prime if p is not invertible,
and there are no a, b ∈ OK that are not invertible with p = ab. Each algebraic
integer can be written as a product of primes, but unfortunately, we do not have
unique prime factorisation. For example, if K = Q[

√
−5], we have 6 = 2 · 3 =

(1+
√
−5) · (1−

√
−5). The algebraic integers 2, 3, 1+

√
−5, 1−

√
−5 are all primes

in OK .
The situation gets better if we look at ideals in OK . For all (non-trivial) ideals

I ⊆ OK there are unique prime ideals P1, . . . , Pk such that I = P1 · · · · · Pk. For
example in Q[

√
−5] we have (6) = (2, 1+

√
−5) · (2, 1−

√
−5) · (3, 1−

√
−5) · (3, 1+√

−5). The unique prime factorisation of 6 goes wrong exactly because these are
not principal ideals. Now we can make some definitions.

Definition 3. Let I, J ⊆ OK be ideals. We say I is square-free if all prime factors
occur only once. We say I and J are coprime if the prime factors of I and J are
disjoint (equivalently, I + J = OK). Let πI be the map SL2(OK)→ SL2(OK/I).

For a number field K of degree [K : Q] = r, there are r different embeddings
σ1, . . . , σr : K → C. Denote the direct sum by σ̂ : K → Cr. Also denote by σ̂ the
obvious map SL2(OK)→ SL2(C)

r. Now we can finally state the theorem.

Theorem 4. Let K be a number field and let S ⊆ SL2(OK) be a finite symmetric
set. Let Γ = 〈S〉. Suppose σ̂(Γ) is Zariski dense in SL2(C)

r. Then there is an
ideal J ⊆ SL2(OK) such that the Cayley graphs Cay(SL2(OK/I), πI(S)) form an
expander sequence, when I ranges over the square-free ideals coprime to J .

We will now show the whole proof but we will show some theorems that go into
it. Fix the notation G = SL2(OK) and GI = SL2(OK/I). Expander sequences
have something to do with fast covergens of the random wal and this is the first
step of the proof. Let χS denote the uniform probability measure on S. Let

χ
(k)
S = χS ∗ · · · ∗χS denote the k-fold convolution with itself. This is a probability

measure onG, corresponding to the probability distribution of a random walk after

k steps. Now for any ideal I, the measure χ
(k)
S should converge to the uniform

distribution on GI , which has norm |GI |−1/2. Moreover, this distribution should
happen exponentially quickly. Using some linear algebra it can be shown that the
theorem is equivalent to:
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for each ǫ > 0 there is a constant C such that

(1) ‖π(C logN(I))
I ‖2 ≤ |GI |ǫ−1/2

for each square-free ideal I coprime to J .
To prove 1 we need two theorems.

Theorem 5. There is a finite symmetric S′ ⊆ Γ and constants δ, C such that for
any even integer l ≥ logN(I) and every subgroup H ⊆ GI we have

πI(χ
(l)
S′ )(H) ≤ C · [GI : H ]−δ.

Note that the left-hand side is the probability that we are in the subgroup H
after l steps of random walk. So the theorem shows that we leave each proper sub-
group quite quickly. The proof of the theorem is based on a ping-pong argument,
but we skip it completely.

To state the other theorem we need to make another definition.

Definition 6. A probability measure µ on GI is called η-flattening if for all
probability measures ν on GI we have

‖µ ∗ ν‖2 ≤ ‖µ‖1/2+ǫ2 · ‖ν‖1/22 .

Theorem 7. For every ǫ > 0 there is η > 0 such that any probability measure µ
that satisfies ‖µ‖2 ≥ |GI |ǫ−1/2, and µ(gH) ≤ [GI : H ]−ǫ for all subgroups H ⊆ GI
and g ∈ GI , is η-flattening.

We will not say much about the proof, just that to prove it, we have to write
GI = GP1 × · · · ×GPk

where the Pi are the prime factors of I, and we prove the
theorem first for the GPi

and then use this to prove it for the product as well. To
prove it for a prime ideal P , we need Helfgott’s triple product theorem [3]: there
is δ > 0 such that for every generating set A ⊆ GP we have

|A · A ·A| ≥ |A| ·min(|A|, |GP |/|A|)δ.
Finally we show how Equation 1 follows from the theorems above. First of all,

since being an expander is independent of generating set, we may as well replace
S′ by S.

Next we find the ideal J . Let P1, . . . , Pk be some prime ideals such that for each
i, the projection πPj

(Γ) is a strict subgroup of SL2(GPj
). Let J be the product of

them (we want J to be the product of all such prime ideals but we do not know yet
that there are finitely many). By quasi-randomness, there is some positive α such
that the index of πPj

(Γ) is at least |GP |α. Then the index of πJ (γ) in SL2(OK/J)
is at least |GJ |α. Applying the theorem on H = Γ gives

1 = πJ (χ
(l)
S )(Γ) ≤ C[GJ : Γ]−δ ≤ C|GJ |−αδ.

So |GJ | ≤ C1/αδ. This is a finite number. This shows that there can be only
finitely many ‘bad’ prime ideals, so we can indeed let J be the product of all of
them.

For all square-free ideals I coprime to J , the map πI : Γ → GI will then be a
surjection. We can replace the constant C by 1 by possibly making δ smaller. Now
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apply the theorem on H = {1}. This gives πI(χ(logN(I))
S )(g) ≤ |GI |−δ for g ∈ GI .

As a result, ‖πI(χ(logN(I))
S )‖2 ≤ |GI |−δ/2.

Now let k be an integer and suppose that ‖πI(χ2k logN(I)
S )‖2 ≥ |GI |ǫ−1/2. Then

by the theorems, πI(χ
(2k logN(I))
S ) will be η-flattening. So

‖πI(χ(2k+1 logN(I))
S )‖2 ≤ ‖πI(χ(2k logN(I))

S )‖1+η2 .

By induction, we get

‖πI(χ(2k logN(I))
S )‖2 ≤ |G|−δ/2(1+η)

k

as long as the norm is at least |GI |ǫ−1/2. So for some k < log(1/δ)
log(1+η) we get

‖πI(χ(2k logN(I))
S )‖2 ≤ |G|ǫ−1/2. This shows Equation 1.
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Uniform exponential mixing: the case of convex cocompact manifolds

Emilio Corso

The purpose of this talk was to present the results of Oh-Winter ([9]) and Sarkar
([12]) concerning uniform exponential rates of mixing for the geodesic flow on
congruence covers of convex cocompact hyperbolic manifolds. Compared to what
had been previously established in [8] and [4], the theorems do not require any
restriction on the critical exponent of the convex cocompact subgroup defining the
base manifold. In higher dimensions, analogous statements hold for the frame flow
(cf. [13]); however, we confined our exposition to the case of the geodesic flow for
the purposes of illustration.

In order to phrase the main theorem presented in the talk conveniently, it is
necessary to introduce an arithmetic setup. For any integer n ≥ 2, Hn denotes
the n-dimensional hyperbolic space. Let K be a totally real number field, whose
ring of integers is denoted by OK. Consider a quadratic form Q : Cn+1 → C
defined over the field K, whose restriction to Rn+1 has signature (n, 1), and let
SOQ = SOQ(C) = {g ∈ GLn+1(C) : Q(g(x)) = Q(x) for any x ∈ Cn+1} be
the associated special orthogonal group. The group of real points SOQ(R) is
isomorphic to SOn,1(R) as a real Lie group, so that its connected component
SOQ(R)

◦ can be identified with the group of orientation-preserving isometries of
Hn. We shall assume that, for any non-trivial embedding σ : K →֒ R, the group
(SOQ)

σ(R), obtained by applying σ to the coefficients of the polynomial equations
defining SOQ(R), is compact.
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Remark 1. The latter condition ensures that the group of integer points SOQ(OK)
embeds as a discrete subgroup inside G = SOQ(R)

◦ (see [7, Chap. I.3]). As an

example for n = 2, we might consider the field K = Q[
√
2] and the quadratic form

Q(x, y, z) = x2 + y2 −
√
2z2.

Let Γ < SOQ(OK) be a Zariski dense convex cocompact subgroup. For any non-
trivial ideal q of OK, denote by NK(q) = [OK : q] its ideal norm, and let Γq be the
congruence subgroup of level q of Γ, that is, the intersection of Γ with the kernel of
the canonical projection SOQ(OK)→ SOQ(OK/q). The unit tangent bundle of the
hyperbolic manifold Γq\Hn can be identified with double-coset space Γq\G/M , for
a compact subgroupM < G; similarly for Γ\Hn. The manifolds Γq\Hn are locally
isometric covers of the base manifold Γ\Hn, and the same applies to the respective
unit tangent bundles, once an appropriate choice of Riemannian metrics has been
made.

Let (at)t∈R be the one-parameter diagonalizable subgroup of G whose action by
right translations on Γ\G/M (and all its congruence covers) induces the geodesic
flow; we endow the homogeneous spaces Γq\G with the Bowen-Margulis-Sullivan
(BMS) measure mBMS

q induced by the BMS measure on Γq\G/M .
Assume that Γ satisfies the strong approximation property. Then the expo-

nential mixing rates of the geodesic flow on Γq\G/M , with respect to the BMS
measures, are uniform over q. The precise statement reads as follows:

Theorem 2 (Oh-Winter, Sarkar). There exist real constants C, η > 0 and a non-
trivial proper ideal q0 of OK such that, for any square-free ideal q ⊂ OK coprime
to q0 and any pair of M -invariant functions φ, ψ ∈ C1(Γq\G),

∣∣∣∣
∫

Γq\G
φ(xat)ψ(x) dm

BMS
q (x)− 1

mBMS
q (Γq\G)

mBMS
q (φ)mBMS

q (ψ)

∣∣∣∣

≤ CNK(q)
Ce−ηt‖φ‖C1‖ψ‖C1 .

(1)

A few comments about the statement of Theorem 2 in order:

• Since the BMS measures rescale asmBMS
q (Γq\G) = [Γq : Γq′ ] mBMS

q′ (Γq′\G)
whenever q ⊂ q′, it is clear that a power of NK(q) should appear in any
attainable uniform statement for this setting. Taking for instance the case
n = 2 and K = Q, this observation also indicates that the optimal power
rate C should correspond to the power growth rate of [Γ : Γq] (identifying
q with its unique positive generator q), that is, C = 3.
• By the usual Roblin’s transverse intersection argument, Theorem 2 ad-
mits as a corollary a uniform exponential decay rate of correlations with
respect to the Haar measure on Γq\G for compactly supported observables
φ, ψ, where the numerator in the limiting term is replaced by the prod-
uct mBR

q (φ)mBR∗

q (ψ), and mBR
q (resp. mBR∗

q ) is the unstable (resp. stable)
Burger-Roblin measure on Γq\G (see [12, Cor. 1.1.1]).
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• It is expected that Theorem 2 holds without the assumption that q is
square-free; the latter comes into play owing to the use of the expander
machinery of Golsefidy and Varju ([5]), which is instrumental in the proof.
• When the critical exponent δΓ of Γ is strictly larger than n−1

2 , Theorem 2
is due to Edwards and Oh ([4]), building on previous work of Moham-
madi and Oh ([8]). Also, for a single convex cocompact manifold Γ\Hn,
exponential mixing was earlier established by Stoyanov ([14]).

We now proceed to give a brief outline of the proof of Theorem 2, referring
to [9] and [12] for all the details.

The first essential ingredient, common to any modern treatment of exponential
mixing of Anosov flows ([3, 6, 14]), is the symbolic coding of the geodesic flow on
Γq\G/M . To be in a position to treat all congruence covers simultaneously, it is
beneficial to consider a Markov section (cf. [2, 11]) for the flow on the base manifold
Γ\G/M having sufficiently small size compared to the injectivity radius, so that
it can be lifted isometrically to the universal cover G/M , completed through the
dynamics to a Markov section for the flow on G/M , and projected down to form
compatible Markov sections for the flow on each cover Γq\G/M . The symbolic
coding amounts to identifying, measure-theoretically, the geodesic flow restricted
to the (compact) support of the BMS measure on Γq\G/M with a suspension flow
(also known as special flow in the literature) ((Rτq , (Gtq)t, ντq )) over a subshift of
finite type; the roof function determining the suspension coincides with the first
return time τ to the Markov section Rq, while the (symbolic) dynamics on the base
is given by the Poincaré first return map σ. This description allows to leverage the
Markov nature of the shift process via the theory of transfer operators, reducing
the proof of exponentially-decaying bounds for correlations functions to spectral
bounds on such operators.

Since useful spectral bounds on transfer operators are tipically to be expected
for non-invertible systems, we consider instead the suspension flow (U τq , (Gtq)t, ντU,q)
over the associated one-sided shift; integrating along the strong stable direction
of the geodesic flow, it is possible to reduce the bound in (1) to a corresponding
decay of correlations Cφ,ψ(t) for sufficiently regular observables φ, ψ defined on the
suspension space U τq . Adapting an exceedingly fruitful idea of Pollicott ([10]), it
possible to express the Laplace transform

Ĉφ,ψ(ξ) =
∫ ∞

0

Cφ,ψ(t)e−ξtdt, (ℜξ > 0)

of Cφ,ψ, via the Ruelle-Perron-Frobenius (RPF) theorem (cf. [12, Thm. 2.7]), as
an infinite sum of terms involving appropriately defined congruence transfer oper-
ators. These act on functions defined on the underlying shift space Uq ≃ U ×Gq,
where U (resp. Uq) is the union of rectangles along the unstable direction forming
the Markov section on the base Γ\G/M (resp. on the congruence cover Γq\G/M)
and Gq = Γ/Γq. Specifically, the congruence transfer operators are defined (up
to some renormalization coming from the RPF theorem) for any non-trivial ideal
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q ⊂ OK and any ξ = a+ ib ∈ C as

(2) Mξ,q(H)(u) =
∑

σ(u′)=u

e−(a+δΓ−ib)τ(u′)cq(u
′)−1H(u′)

for any function H ∈ C(Uq,C) ≃ C(U,L2(Gq;C)), where cq : U → Γ/Γq is a
cocycle keeping track of how the geodesic flow on Γq\G/M moves between different
fundamental domains for the covering map Γq\G/M → Γ\G/M .

The crucial uniform bounds on the operator norm of iterates of Mξ,q is con-
tained in the following proposition:

Proposition 3 ([12, Thm. 2.13]). There exists constants C1, η1, a0 > 0 and a
non-trivial proper ideal q′0 ⊂ OK such that, for every ξ = a+ ib with |a| < 2a0, any
square-free ideal q coprime to q′0 and any Lipschitz function H : U → L2(Gq,C)
with zero-mean values, it holds

‖Mk
ξ,q(H)‖2 ≤ C1NK(q)

C1e−η1k
(
‖H‖∞+

1

max{1, |b|}Lip(H)

)
for every k ∈ Z≥1.

As a result of Proposition 3, the series defining Ĉφ,ψ on the half-plane {ℜξ > 0}
converges absolutely on the strip {|ℜξ| < 2a0}, thereby providing a holomor-
phic extension for the Laplace transform to the left-side of the imaginary axis.
The correlation function Cφ,ψ might at this point be retrieved via inverse Laplace

transform Cφ,ψ(t) = 1
2π

∫ +∞
−∞ Ĉφ,ψ(−a0 + ib)e(−a0+ib)tdb, and the relevant upper

bounds for Cφ,ψ(t) are derived from the corresponding bounds for Ĉφ,ψ(ξ).
The bulk of the work in [12] lies therefore in the proof of Proposition 3. The

employed methods differ substantially according to the size |b| of the frequency.
For large frequencies |b| > b0, the resulting high-oscillatory nature of Mξ,q, in
conjunction with the fundamental geometric observation that the cocycles cq are
locally constant ([12, Lem. 2.11]), allows to adapt the construction of Dolgopyat’s
operators (already instrumental for the case of a single manifold in [3, 14]). The
resulting bounds are entirely analogous to the single-manifold case, and do not
depend on the ideal norm NK(q) (cf. [12, Thm. 4.1]).

On the other hand, uniformity for small frequencies |b| ≤ b0 demands an in-
genious use of the expanding machinery developed by Bourgain-Gamburd-Sarnak
([1]) and subsequently extended by Golsefidy-Varju ([5]). Specifically, for a fixed
integer s ≥ 1, it is possible to estimate the value ofMs

ξ,q(H)(u) via a finite sum

of convolution operators
∑

αs,...,α1
µu,ξ,q(αs,...,α1)

∗ φq.H(αs,...,α1)
, which should be inter-

preted as finite-scale approximations of the transfer operator (namely they depend
only on finitely many coordinates αs, . . . , α1 of the sequences). The L2-norm of
each addend µ ∗ φ of the sum (omitting subscripts and superscripts for notational
simplicity) can be bounded from above via an L2-flattening type of lemma ([12,
Lem. 3.14]): there exists a constant C̄ > 0 such that

(3) ‖µ ∗ φ‖L2(Gq) ≤ C̄NK(q)
− 1

2 ‖ν‖L1(Gq)‖φ‖L2(Gq) ,

where ν is a positive measure on Gq defined analogously to the complex measure
µ but removing the oscillatory terms eibτ . The flattening lemma follows, albeit in
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a rather intricate manner, from uniform spectral gap for the family of expanders
Cay(Gq), where we recall that Gq ≃ SOQ(OK/q) for all q coprime to a fixed q1,
as Γ is assumed to satisfy strong approximation. Using (3), what remains can be
majorized uniformly in a strip {|ℜξ| < 2a0} by means of standard spectral bounds
for transfer operators on the base manifold Γ\G/M . Similar but more technical
estimates can be performed for the Lipschitz constant ofMs

ξ,q(H); for these, the

restriction |b| ≤ b0 is essential (cf. [12, Lem. 3.23]). Combined with the bounds on
the supremum norm ofMs

ξ,q(H) discussed above, they allow to run an inductive
argument leading to the desired estimate in Proposition 3.

References

[1] J. Bourgain, A. Gamburd and P. Sarnak, Affine linear sieve, expanders, and sum-product,
Invent. Math. 179 (2010), 559–644.

[2] R. Bowen, Markov partitions for Axiom A diffeomorphisms, Amer. J. Math. 92 (1971),
725–747.

[3] D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. 147 (1998), 357–390.
[4] S. Edwards, H. Oh, Spectral gap and exponential mixing on geometrically finite hyperbolic

manifolds, arXiv:2001.03377 (2020).
[5] A. Salehi Golsefidy, P. Varju, Expansion in perfect groups, Geom. Funct. Anal. 22 (2012),

1832–1891.
[6] C. Liverani, On contact Anosov flows, Ann. of Math. 159 (2004), 1275–1312.
[7] G.A. Margulis. Discrete Subgroups of Semisimple Lie Groups. Ergebnisse der Mathematik

und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1991.
[8] A. Mohammadi, H. Oh, Matrix coefficients, counting and primes for orbits of geometrically

finite groups, J. Eur. Math. Soc. 17 (2015), 837–897.
[9] H. Oh, D. Winter Uniform exponential mixing and resonance free regions for convex co-

compact congruence subgroups of SL2(Z), J. Amer. Math. Soc. 29 (2016), 1069–1115.
[10] M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math. 81 (1985), 413–426.
[11] M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math.

15 (1973), 92–114.
[12] P. Sarkar, Uniform exponential mixing for congruence covers of convex cocompact hyperbolic

manifolds, arXiv:1903.00825 (2019).
[13] P. Sarkar, Generalization of Selberg’s 3/16 theorem for convex cocompact thin subgroups of

SO(n, 1), arXiv:2006.07787 (2020).
[14] L. Stoyanov, Spectra of Ruelle transfer operators for Axiom A flows, Nonlinearity 24 (2011),

1089–1120.

Beyond Expansion II: Achieving or Exceeding the Ramanujan-quality
Exponent of Distribution

Matthew Litman

The aim of this talk is to introduce the exponent of distribution in the affine sieve,
Pythagorean triples, and how the exponent arises in the story of Pythagorean
triples. Let’s first take a look at our setting which makes understanding the sieve
a bit easier.
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1. Pythagorean Triples

A Pythagorean triple x = (x, y, z) ∈ (Z≥0)
3 is an integral point on the cone F = 0,

where

F (x) := x2 + y2 − z2.
Let G = SOoF (R) and take Γ < G(Z) to be a geometrically finite subgroup with
no unipotent elements other that I. For a fixed triple, say x = (1, 0, 1) or (3, 4, 5),
one can consider the orbit of x under Γ,

O := x · Γ.
On this orbit, it is natural to consider the following integer-valued functions

(where the constants in front are to remove any extraneous factors induced by
congruence conditions on the coordinates):

fH(x, y, z) = z (hypotenuse)

fA(x, y, z) =
1

12
xy (normalized area)

fP(x, y, z) =
1

60
xyz (product of the coordinates)

One question that pops into mind for any of these quantities is “how many prime
factors does f(x) have?” As a first step, recall the following parametrization of
such triples given by the Babylonians with gcd(x, y, z) = 1, x odd, and y even:

(x, y, z) = (c2 − d2, 2cd, c2 + d2)

for some c, d ∈ Z. Written this way, we see z = c2 + d2 and since every prime
p ≡ 1 (mod 4) can be written as a sum of two squares, fH(x) can have as little
as one prime factor. This inspires yet another question, ”does the collection of
triples x with fH(x) prime ‘fill out’ the cone F = 0?” More precisely, we are
asking if this collection is Zariski dense in the closure of O, given by Zcl(O) =
{x ∈ (R≥0)

3 : F (x) = 0}. It is conjectured that this collection is Zariski dense,
but so far progress has given us the following: let

O(f,R) := {x ∈ O : f(x) is R−almost prime}
R0(O, f) := min{R ≤ ∞ : Zcl(O(f,R)) = Zcl(O)}

where an integer is R-almost prime if it has at most R prime factors.

Theorem 1 ([5]). For Γ as above and δΓ (the critical exponent of Γ) sufficiently
close to 1, one has

R0(O, f) ≤





7 if f = fH
25 if f = fA
37 if f = fP .

These results rely on the existence of a spectral gap θ (which exists if δΓ >
1
2

and satisfies θ ∈ [ 12 , δΓ) [2]), and on acceptable upper bounds (given by θ = 5
6 if

δΓ >
5
6 [4]). If θ = 1

2 , we say Γ has a Ramanujan-quality spectral gap. The above
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R0 values have since been lowered by going “beyond expansion”, utilizing methods
of abelian harmonic analysis to overcome limitations of the spectral gap approach.
Instead of expanding on this, we illuminate roughly how the value for fH present
in Theorem 1 is attained.

By the standard spin double cover ι : SL2(R) → SOoF (R), taking x0 = (1, 0, 1)
yields

f(x0 · ι
(
a b
c d

)
) = c2 + d2 = z.

Therefore we can consider Γ living in G = SL2(R), x0 = (0, 1), and our problem
on R0 for hypotenuses is reduced to studying O = x0 · Γ, f(c, d) = c2 + d2, and
f(O) = {c2 + d2 : γ ∈ Γ}. In other words, we are asking what R0 gives us that
{γ ∈ Γ : c2 + d2 is R0−almost prime} is Zariski dense in SL2(Z). To approach
this, we call on the affine sieve.

2. Affine Sieve

We take this machinery as a black box but utilize what it implies. The sieve wants
Γ, x0 (to form an orbit under Γ), f integral on the orbit, and q square-free to
give us estimates for R0. This is done by understanding the distribution of Γ on
multiples of q. Let Γx = {γ ∈ Γ : ‖γ‖ < x} (here ‖γ‖ can be thought of as tr(γTγ))
and define

rq(x) := #{γ ∈ Γx : c2 + d2 ≡ 0 (mod q)} − 1

q
#{γ ∈ Γx},

N := max{n ≥ 1 : γ ∈ Γx, c
2 + d2 = n} ≍ x2.

We want to pick Q such that the “error” satisfies

E :=
∑

q<Q

|rq(x)| = o(#{γ ∈ Γx}), (∗)

where #{γ ∈ Γx} = x2δΓ . Such a Q is called a level of distribution. Our goal is to
get as large a Q as possible for (∗) to hold, and to express it in terms of N :

Q = Nα,

where α is called an exponent of distribution. With this α, we obtain upper bounds
R for R0 by taking R = ⌈ 1α + ε⌉.

By unpacking #{γ ∈ Γx : c2 + d2 ≡ 0 (mod q)}, we get a better understanding
of the remainder |rq(x)| (with a fair amount of crude estimates along the way and
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1A denoting the indicator function for the event A):

#{γ ∈ Γx : c
2 + d

2 ≡ 0 (q)} =
∑

γ∈Γx

1c2+d2≡0(q) =
∑

γ0∈SL2(q)

∑

γ∈Γx
γ≡γ0(q)

1c20+d20≡0(q)

=
∑

γ0∈SL2(q)

1c20+d20≡0(q)

∑

γ∈Γx
γ≡γ0(q)

1
(1)
=

∑

γ0∈SL2(q)

1c20+d20≡0(q)

[

1

|SL2(q)|

∑

γ∈Γx

1 +O(x2θ)

]

=
∑

γ0∈SL2(q)

1c20+d20≡0(q)

[

1

|SL2(q)|
x
2δ +O(x2θ)

]

(2)
=

1

q
x
2δ +O(q2x2θ),

where in (1) we used results on effective counting in congruence towers to estimate
the sum (see [5]) and in (2) used that there are roughly q2 elements in SL2(q) with
c2 + d2 ≡ 0 (mod q). If we now sum over these remainder terms, we arrive at the
exponent of distribution,

E =
∑

q<Q

|rq(x)| = O(Q3Nθ) ⇒ Q3Nθ ≍ N δ ⇒ Q = N
δ−θ
3 and α =

δ − θ
3

.

By taking δ very close to 1 and θ = 5
6 , we get α ≈ 1

18 and R = 19. This value
is far from optimal but serves as a backbone for the arguments used in [5, 6]. The
achievements of these papers also lie in their reducing of the power of q present
in the remainder, where in [6] they reduce the power of q by 1 to obtain R = 13
and in [5] they are able to remove q all together and bring the remainder down
to |rq(x)| = O(x2θ), resulting in α = δ − θ and R = 7. Using the 5

6 -spectral
gap, this is best result that current methods based off expansion can give. If we
instead assume a Ramanujan-quality spectral gap, we can get α ≈ 1− 1

2 = 1
2 and

R = 3 which is better than R = 4 (making our title a slight misnomer), but this
is conditional on a rather large assumption.

In the seminal paper of Bourgain and Kontorovich [1], they go beyond expansion
by decomposing the indicator function along its primitive harmonics to uncondi-
tionally achieve the exponent of distribution α = 7

24 − ε to retrieve R = 4 for fH.
Later, Ehrman expanded their approach to all three functions f considered above
to raise the exponent and arrive at the best unconditional results we have:

Theorem 2. [1, 3] If Γ has no parabolic elements and δΓ > δ0, one has

R0(O, f) ≤





4 if f = fH, δ0 = 0.984

18 if f = fA, δ0 = 0.9955

26 if f = fP , δ0 = 0.9963.
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Multi-scale setting III: the p-adic case

Simon Machado

1. Statements of the main results

Fix q0 and n0 two positive integers, as well as Ω a finite subset of GLn0(Z[
1
q0
])

and Γ := 〈Ω〉 the group it generates. For every integer m coprime to q0 let
πm : GLn0(Z[

1
q0
]) → GLn0(Z/mZ) denote the reduction of coefficients mod m.

The main result we discussed in this talk can be stated elementarily in terms of
Cayley graphs and expansion:

Theorem 1 ([3]). The family

{Cay(πpn(Γ), πpn(Ω))}p,n,
where p runs through all prime numbers p ∤ q0 and n runs through N, is a family
of expanders if and only if the connected component G0 of the Zariski-closure G
of Γ is perfect i.e. [G0,G0] = G0.

Theorem 1 gives a complete classification of subsets for which expansion hap-
pens. If we denote now µ the uniform probability measure on Ω, then Theorem
1 essentially reduces to a bound on the top eigenvalue of the convolution opera-
tors f 7→ µ ∗ f defined for f ∈ L2

0(πp(Γ)) i.e. for all L2 maps with mean zero.
If λ(πpn(Γ),Ω) denotes the modulus of the top eigenvalue of this operator, then
Theorem 1 asserts that supp∤q0,n≥0 λ(πpn(Γ),Ω) < 1 if and only if G0 is perfect.
This observation, combined with the Peter–Weyl theorem, enables us to rephrase
Theorem 1 in the framework of spectral gap over p-adic fields. For a prime num-
ber p ∤ q0 we can see Γ as a subgroup of GLn0(Zp) via the natural embedding
GLn0(Z[

1
q0
])→ GLn0(Zp). Define Γp as the closure, in the Hausdorff topology, of

Γ in GLn0(Zp). We have:

Corollary 2 ([3]). The inequality

sup
p∤q0

λ(Γp,Ω) < 1

holds if and only if the connected component G0 of the Zariski-closure G of Γ is
perfect.

Note, finally, that the proof of the “only if” direction is extremely robust. In
particular, we have the stronger statement:
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Lemma 3. Let (mk)k∈N be a family of integers coprime to q0 that goes to infinity.
If the family

{Cay(πmk
(Γ), πmk

(Ω))}k≥0

is a family of expanders, then G0 is perfect.

As a consequence:
λ(Γp,Ω) < 1 for some p ⇒ G0 is perfect ⇒ supp∤q0 λ(Γp,Ω) < 1.

2. Sketch of the proof

Very much like for spectral gap in compact simple Lie groups, the proof boils down
to two results: one about approximate subgroups and one about representations
at various scales. This reduction is a result of an application of the Bourgain–
Gamburd machine to our problem.

The first result is about quasi-randomness of the family of groups {πpn(Γ)}p,n.
It is easy to see that these groups are not quasi-random, as πpn(Γ) always admits
a small factor of the form πp(Γ). We can prove however that these factors are the
only obstructions to quasi-randomness. In other words, Γ is quasi-random at each
scale :

Proposition 4 (Quasi-randomness at every scale, Prop. 18 [3]). There is a con-
stant C > 0 such that all but finitely many irreducible representations φ of πpn(Γ)
that do not factor through πpn−1(Γ) have dimension at least pCn.

This is proved through essentially standard means - one can see it as a conse-
quence of Howe’s kirillov theory for compact p-adic analytic groups applied to the
groups Γp.

The second ingredient is a product theorem - a result stating that powers of
subsets must grow quickly - for subsets that are generic at a given scale Q. To
be more precise, we fix Q = pn for p ∤ q0 prime and n ≥ 0 and denote by µ the
uniform measure on Ω. We will consider subsets that are generic in the sense that
they have a large weight under the measure (πQ)∗µ∗l for some large enough l. In
[3] it is proved that:

Theorem 5 (Product theorem, Thm. 20 [3]). For all ǫ > 0 there is δ > 0 such
that the following is true for Q large enough depending on ǫ:

Let A be a subset of πQ(Γ) such (πQ)∗µ∗l(A) > Q−δ for some l ≥ 1
δ logQ and

|AAA| ≤ |A|1+δ. Then |A| ≥ |πQ|1−ǫ.
When G has its unipotent radical U that is abelian, the proof of Theorem 5 can

be summed up as follows. First, prove this result in the case of G semi-simple using
sum-product phenomena - as in the proof of spectral gap in compact Lie groups.
(This was first proved by Bourgain–Gamburd in the case of Γ Zariski-dense in
SLn(Z) in [1]; subsequently, Salehi Golsefidy [2] extended it to G any semi-simple
group). The second step consists in showing that there must exist an element v
in AC - for some small constant C - that lies in πQ(Γ) ∩ πQ(U). This step is one
of the main difficulties overcome in [3] and uses a key diophantine property that
yields:
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Proposition 6 (Key proposition, Prop. 37 [3]). There is δ > 0 depending on Ω
such that if H is a subgroup of πQ(Γ), then

(πQ)∗µ
∗l(H) ≤ [πQ(Γ) : H ]δ

for all l ≥ δ−1 log(Q).

Finally, use the action by conjugation of A on v as well as the first step to prove
that πQ(A

C′

) ∩ πQ(U) is large for some constant C′. This method enables us to
prove Theorem 5 by induction on the dimension of U.

References

[1] Jean Bourgain, Alex Gamburd, Expansion and random walks in SLd(Z/pnZ): II, J. Eur.
Math. Soc. 11 (2009), 1057–1103.

[2] Alireza Salehi Golsefidy, Super-approximation, I: p-adic semisimple case, International
Mathematics Research Notices Volume 2017, Issue 23 (2017), 7190–7263.

[3] Alireza Salehi Golsefidy, Super-approximation, II: the p-adic case and the case of bounded
powers of square-free integers, J. Eur. Math. Soc. 21 (2019), 2163–2232.

Application to equidistribution and counting

Minju Lee

This is a summary of the talk given by the author at MFO, October 7th of
2021, as a part of the program “Arbeitsgemeinschaft: Thin groups and Super-
approximation”. The goal of the lecture is to give an application of mixing to an
orbital counting problem using the strategy from [2], in the infinite volume setup.
The main references are survey papers [5] and [6].

Let us start with a concrete example. Let P be a bounded Apollonian cir-
cle packing, Γ < PSL(2,C) be the associated Apollonian group with the critical
exponent δΓ. For a bounded Borel set E ⊂ C, define

(1) NP(T,E) := {C ⊂ P : curv(C) ≤ T, and C ∩E 6= ∅},

where curv(C) is the inverse of the Euclidean radius of C. We have:

Theorem 1. [7] For any bounded Borel set E with HδΓ(∂E) = 0,

NP(T,E) ∼ cAHδΓ(E)T δΓ

where HδΓ is the δΓ-dimensional Hausdorff measure on the limit set ΛΓ and cA > 0
is a constant independent of P.

In fact, the counting problem (1) can be realized as a special case of a more
general counting problem which we discuss below.
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Asymptotic distribution of orbits in H\G. Let

G = PSL(2,C), H = PSU(1, 1) ∪
(

0 1
−1 0

)
PSU(1, 1)

and Γ < G be a Zariski dense discrete subgroup. Let [e] ∈ H\G and assume
that [e]Γ is discrete. For an increasing family of subsets BT ⊂ H\G, we want to
understand the asymptotic behavior of #([e]Γ ∩ BT ) as T → ∞. When Γ is a
lattice inside G, under the assumptions

(1) vol(Γ ∩H\H) <∞ and
(2) BT are “well-rounded” with respect to volH\G,

we have

#([e]Γ ∩ BT ) ∼
vol(Γ ∩H\H)

vol(Γ\G) volH\G(BT )

as shown in [2]. The second condition accounts for the negligibility of the boundary
of BT with respect to volH\G; more precisely, it means

lim sup
ǫ→0

lim sup
T→∞

volH\G(BT+ǫ)− volH\G(BT−ǫ)

volH\G(BT )
= 0.

When Γ is not necessarily of finite co-volume, we will consider a measure µPS
Γ∩H\H

on Γ ∩ H\H , whose total mass will be referred to as skinning constant skΓ. In
[4], an explicit locally finite Borel measure MH\G on H\G is given so that the
following analogue of [2] holds:

Theorem 2 ([4],[7]). Let Γ be a geometrically finite group. Assume that (1)
skΓ <∞, and (2) BT are well-rounded with respect toMH\G. Then

#[e]Γ ∩ BT ∼MH\G(BT ) as T →∞.

In the rest of the lecture, we will

• give the definition of the skinning constant,
• explain the connection between Theorem 1 and Theorem 2,
• and give the idea of the proof of Theorem 2.

Skinning constant. We now explain the measure µPS
Γ∩H\H . Let ν be a Patterson-

Sullivan measure of dimension δΓ. For g ∈ G, let g+ ∈ ∂H3 be its image under
the visual map. Define a locally finite Borel measure µPS

H on H by:

dµPS
H (h) := eδΓβh+ (e,h)dν(h+).

By the definining relation of Patterson-Sullivan density, it is Γ ∩ H-invariant,
and hence descends to a measure on Γ ∩ H\H , denoted by µPS

Γ∩H\H . We define

skΓ := |µPS
Γ∩H\H |. A criterion for the finiteness of skΓ as well as the compactness

for the support of µPS
Γ∩H\H is known, and the finiteness of skΓ implies that HΓ is

closed in G [7].
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Transition from Theorem 1 to Theorem 2. Note that P is a union of finitely
many Γ-orbits of a circle. For simplicity we will focus on

#{C ∈ ΓC0 : curv(C) ≤ T, and C ∩ E 6= ∅}
and further assume that C0 is the unit disc {z : |z| = 1}, so that StabG(C) = H .
Set

nz :=

(
1 z
0 1

)
, at =

(
e

t
2 0

0 e−
t
2

)
.

Let N = {nz : z ∈ C}, A = {at : t ∈ R} and K = PSU(2) so that we have the
Iwasawa decomposition G = NAK. Observe that

curv(γC0) ≤ T and γC0 meets E

⇔ hull(γC0) meets NEAt≥log T−1j

⇔ γHK ∩NEAt≥log T−1K 6= ∅
where NE = {nz : z ∈ E}, At≥log T−1 = {at : t ≥ logT−1} and j ∈ H3 is the point
stabilized by K. It follows that

#{C ∈ ΓC0 : curv(C) ≤ T, and C ∩ E 6= ∅}
= #{[γ] ∈ Γ/Γ ∩H : γHK ∩NEAt≥log T−1K 6= ∅}
= #{[γ] ∈ Γ ∩H\Γ : γ ∈ HKAt≤log TN−E}
= #([e]Γ ∩ BT )

where BT := HKAt≤log TN−E ⊂ H\G. After this transition, one needs to verify
MH\G(BT ) ∼ cAHδΓ(E)T δΓ as T →∞. The detail of the last step can be found
in [7].

Outline of the proof of Theorem 2. The idea of empolying mixing to get a
counting result first appears in Margulis [3]. Counting problem for orbital points
in an affine symmetric space H\G was treated by Duke-Rudnick-Sarnak [1] and
Eskin-McMullen [2]. Using Roblin’s transversal intersection argument [8], we can
adapt the strategy of [2] in the infinite volume setup to get a counting result. More
precisely, we first deduce the following equidsitribution of translation of Γ∩H\Hat
as t→∞:

Theorem 3. For all bounded f ∈ L1(µPS
Γ∩H\H), we have:

e(2−δΓ)t
∫

Γ∩H\H
f([h]at) dh→

∫

Γ\G
f(x) dx as t→∞.

Let us say few words on the proof of Theorem 3. When Γ is geometrically finite,
it is known that the frame flow is mixing with respect to the Bowen-Margulis-
Sullivan measure mBMS [9]. Combined with Margulis’ banana argument, one can
first deduce an equidistribution result for the Patterson-Sullivan measure on H ;
this is possible due to the local product structure of mBMS, which is referred to as
Roblin’s transversal intersection argument [8]. Finally, one gets an equidistribution
result for the Haar measure on H from that of the Patterson-Sullivan measure on
H (Theorem 3).
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As in [2], we define the counting function FT : G→ R as follows:

FT (g) =
∑

γ∈Γ∩H\Γ
1BT

([e]γg).

Note that FT descends to Γ\G and FT ([e]) = #([e]Γ∩BT ). Choose a nonnegative
ρ ∈ Cc(Γ\G) with

∫
G ρ = 1 whose support is contained in [e]Oǫ where Oǫ is an ǫ-

neighborhood of e. We will approximate FT ([e]) by 〈FT , ρ〉L2(Γ\G). By “unfolding”
the latter expression, we have

〈FT , ρ〉L2(Γ\G) =

∫

Γ\G

∑

γ∈Γ∩H\Γ
1BT

([e]γg)ρǫ(g) dg

=

∫

Γ∩H\G
1BT

([e]g)ρǫ(g) dg

=

∫

H\G

(∫

Γ∩H\H
ρǫ(hg) dh

)
1BT

(Hg) d(Hg).(2)

Hence, to get the asymptotic behavior of 〈FT , ρ〉L2(Γ\G), we are led to investigate

the asymptotic behavior of
∫
Γ∩H\H ρǫ(hg) dh as g →∞ in H\G. When g →∞ in

A+, this is given by Theorem 3. In general, we can further decompose the Haar
measure with respect to the generalized Cartan decomposition G = HA+K in (2)
to get the candidate of MH\G [4]. When BT is well-rounded, MH\G(BT ) gives
the correct asymptotic formula for #([e]Γ ∩ BT ).
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SWITZERLAND

Constantin Kogler

Wolfson College
University of Cambridge
Barton Road
Cambridge CB3 9BB
UNITED KINGDOM

Prof. Dr. Alex Kontorovich

Department of Mathematics
Rutgers University
Hill Center, Busch Campus
110 Frelinghuysen Road
Piscataway NJ 08854-8019
UNITED STATES



Arbeitsgemeinschaft: Thin Groups and Super-approximation 2789

Dr. Or Landesberg

Department of Mathematics
Yale University
Box 208 283
New Haven, CT 06520
UNITED STATES

Homin Lee

Department of Mathematics
Indiana University at Bloomington
831 East 3rd St.
Bloomington IN 47405-7106
UNITED STATES

Min Ju Lee

Department of Mathematics
Yale University
Box 208 283
New Haven, CT 06520
UNITED STATES

Matthew C. Litman

Department of Mathematics
University of California, Davis
One Shields Avenue
Davis, CA 95616-8633
UNITED STATES

Dr. Manuel Luethi

Section des Mathématiques
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