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Abstract. By definition, an R–matrix with spectral parameter is a solution
to the Yang–Baxter equation, introduced in the 1970’s by C.N. Yang and R.J.
Baxter. Such a matrix encodes the Boltzmann weights of a lattice model of
statistical mechanics, and the Yang–Baxter equation appears naturally as a
sufficient condition for its solvability.

In the last decade, several mathematical and physical theories have led to
seemingly different constructions of R–matrices. The theme of this workshop
was the interaction of three such approaches, each of which has indepen-
dently proven to be valuable: the geometric, analytic and gauge–theoretic
constructions of R-matrices. Its aim was to bring together leading experts
and researchers from each school of thought, whose recent works have given
novel interpretations to this nearly classical topic.
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Introduction by the Organizers

The mini-workshop Three facets of R–matrices took place in a hybrid format:
with 14 participants in-person and 7 virtual. The central objects of interest to
this workshop were R–matrices; solutions of the celebrated Yang–Baxter equation

(YBE) R12(u)R13(u+ v)R23(v) = R23(v)R13(u+ v)R12(u)

Here, R(u) is an operator on V ⊗ V depending on a parameter u (called the
spectral parameter), where V is a fixed finite-dimensional vector space over C.
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The equation takes place in End(V ⊗3) and the subscripts indicate which tensor
factors R acts upon. This equation emerged in the works of C.N. Yang and R.J.
Baxter in thermodynamics and statistical physics, around 1975.

The workshop consisted of introductory talks, research talks and discussion
sessions. Its goal was to understand three seemingly diverse theories which give
constructive approaches towards R–matrices. In addition, the participants shared
ideas about open problems in each theory, as well as possible a priori connections
among them.

Introductory talks. On the first day, there were three introductory talks.
Brian Williams and Masahito Yamazaki gave an introduction to Costello’s ap-
proach towards quantum field theories and its explicit incarnation in the set-
ting of a 4–dimensional Chern-Simons type gauge theory defined by Costello-
Witten-Yamazaki. David Hernandez talked about the geometric construction of
R–matrices via stable maps à la Maulik-Okounkov. David also discussed the alge-
braic interpretation of R–matrices as intertwiners, as well as the related transfer
operators. The analytic construction of R–matrices of Yangians via difference-
differential equations was explained in the fourth introductory talk by Sachin
Gautam on the second day of the workshop.

Research talks. In addition, the workshop had 9 talks by participants regarding
their research work related to R–matrices. These talks formed the bases for the
discussion sessions and provided us with more concrete questions and research
directions.

Discussion sessions. We had one discussion session at the end of the first day,
lead by Masahito Yamazaki and Sachin Gautam. It started with a summary of the
talks of the day and an explanation of the organizers’ vision of the main theme of
the workshop. The session continued with questions from the participants (both
in-person and online) about the talks. Masahito presented details of the Feynman
calculus mentioned in his talk. David explained normalization of the universal R–
matrix and their significance for the study of homological properties of the category
of finite-dimensional representations. The discussion between David Hernandez
and Valerio Toledano Laredo (online) led to the following open problem:

Open problem. Classify indecomposable, finite-dimensional representations of
the quantum loop algebras. In other words, what can we say about the split
Grothendieck group of this category? A recent work of Chari-Moura-Young re-
garding self-extensions of irreducible representations was mentioned as a starting
point for this problem.

We had two more discussion sessions on Thursday. In the morning we talked
about concrete relations between the three facets of R–matrices. Brian Williams,
Masahito Yamazaki and Meer Ashwinkumar (online) proposed a method of con-
structing abelianized R–matrix akin to the one from Sachin’s talk, which could
unite the gauge–theoretic and analytic approaches. We discussed a conjecture due
to David Hernandez and Andrei Okounkov relating analytic approach with the
geometric one. Additionally we learnt about the corresponding three facets of the
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K–matrix, solution to the reflection equation (type B analogue of the YBE), as
explained in Bart Vlaar’s talk. The discussion session on Thursday evening was
split into smaller groups aiming at more focused potential collaborations.
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Abstracts

The Yangian and four-dimensional Chern–Simons theory

Brian Williams

The Yangian Y g of a complex semisimple Lie algebra g is a Hopf algebra which
deforms the enveloping algebra of the current algebra g[z], of g valued polynomials
in one variable. It was introduced by Drinfeld in the mid–80’s as one of the
algebraic structures underpinning the study of integrable one and two-dimensional
models in statistical mechanics.

The purpose of this talk is to explain a relationship, pioneered by Kevin Costello
and collaborators, between a type of Chern–Simons gauge theory defined on four-
manifolds and the Yangian quantum group. Mathematically, a gauge theory in-
volves studying connections defined on bundles over a smooth manifold. In fact,
there is an interpolation of Chern–Simons type theories which exist in dimensions
three, four, five, and six. In dimension three, this is usual Chern–Simons theory, or
the study of flat connections on three-manifolds. On the other side, in dimension
six, this is so-called holomorphic Chern–Simons theory which describes the moduli
space of holomorphic G-bundles. (This theory is known to describe space-filling
open strings in topological string theory on R6, but will not play a role in this
talk.)

We are interested in the four-dimensional theory1. This gauge theory is defined
on manifolds of the form Σ× S where Σ is Riemann surface and S is a real two-
dimensional manifold. Mathematically, the moduli space associated to this theory
is the space of connections which are holomorphic in the direction of Σ and flat in
the direction of S. Most of this talk concerns the case Σ = C and S = R2. The
connection between four-dimensional gauge theory and quantum groups is similar
to the more familiar relationship between three-dimensional Chern-Simons theory
and quantum groups.

The key idea of Costello [1] is that the Yangian is controlled by the algebra
of local operators of the theory on C × R2. The key to this result relies on the
formalism of Costello-Gwilliam [2] that the algebra of operators of a quantum field
theory form a factorization algebra. This is a vast generalization of the description
of algebras of operators in conformal field theory as vertex algebras. Factorization
algebras simultaneously generalize the notion of a vertex algebra and algebras over
more familiar operads, such as the operad of little disks.

Using the topological R2-direction, the local operators A are endowed with
the structure of an algebra over the operad of (framed) little two-disks; in other
words, and E2-algebra. Moreover, there is a map of E1-algebras A → C, where
C is the trivial E1-algebra. By a generalization of a result of Tamarkin [4], the
endomorphisms of the resulting fiber functor AlgA → ModC endows the Koszul
dual A! of A with the structure of a Hopf algebra. Very roughly, the original

1The five-dimensional theory also appears in physics as a limit of M -theory in the so-called
Ω-background [3].
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algebra A has two topological directions and so two compatible multiplications.
Koszul duality with respect to one of these algebra structures results in a Hopf
algebra. It is one the main results of [1] that this Hopf algebra is equivalent to the
Yangian Y g.

The proof of this result relies on a uniqueness result of Drinfeld. Up to a
proper normalization, the coalgebra structure on the Yangian quantum group is
completely determined by its first-order behavior; semi-classically this is encoded
by a certain Poisson bracket. One can explicitly compute this bracket in the
QFT language and find a direct match, and this is done in [1]. There another
quantization that uses the ‘holomorphic gauge’ which one can use to compute this
one-loop effect in a different way [5].

Very important to the theory of the Yangian is the universal R-matrix. An
explicit characterization of the R-matrix in terms of QFT is given in the works of
Costello, Witten, and Yamazaki [6, 7]. In terms of factorization algebras, this R-
matrix is encoded by the operator product expansion (OPE) in the holomorphic
Σ = C direction. Using this, one sees that A enhances to the structure of a
vertex algebra in the category of Hopf algebras. The resulting vertex algebra OPE
completely pins down the R-matrix.
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Four-Dimensional Chern-Simons Theory and the Yangian, II

Masahito Yamazaki

Integrable models have long been studied extensively both in mathematics and
physics. One of the reasons for this is that there are so many different faces of
integrability, all of which are nicely and intricately tided together into a coherent
research topic of “integrable models”.

One of the goals of this mini-workshop has been to highlight three different
facets of integrability, namely ‘geometric,’ ‘analytic,’ and ‘gauge-theoretic,’ and to
explore the relations between them. The goal of this talk, which can be regarded
as a continuation of the talk of the same title (Part I) given by Brian Williams, is
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to introduce the ‘gauge-theoretic’ side of the story, along the lines of Ref. [1] (in
collaboration with Kevin Costello and Edward Witten).

The gauge-theoretical explanation of [1] is perturbative in nature—we have an
order-by-order analysis with respect to the deformation parameter ~. In integrable
model language this is a parameter deforming the universal enveloping algebra
U(g[[z]]) into the Yangian Y~(g) (here g is a semi-simple Lie algebra).

The perturbative expansion with respect to this parameter ~ is given by the
Feynman diagram analysis of the four-dimensional quantum field theory known as
the four-dimensional Chern-Simons theory. Its action functional is given by (for
the simplest case, namely the rational case with the spectral parameter is given
by a point of C)

S =

∫

R2×C

dz ∧ Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
,(1)

where A is a g-valued connection and Tr denotes the g-invariant Killing form. The
lattice of integrable model is then created by considering Wilson lines

Wγ = P exp

(∫

γ

A

)
,(2)

where γ is a straight line in R2, and P denotes the ordering along the path γ.
When we have multiple such Wilson lines we obtain the statistical lattice in R2,
so that the correlation function of the Wilson lines give the partition function
of the associated integrable model (by evaluating the Wilson lines in different
representations we obtain different integrable models).

One of the main insights (which goes back to [2]) is that the topological in-
variance of the theory along the R2-direction naturally explains the Yang-Baxter
equation, and hence the integrability of the model. This is very close to the ex-
planation of the knots invariants from three-dimensional Chern-Simons theory [3],
except now the four-dimensional theory in question has topological invariance only
along R2.

While the general definition of the correlation function requires the path-integral
and hence is ill-defined mathematically, the perturbative expansion in terms of
Feynman diagrams can be formulated precisely, and this gives a well-defined per-
turbative expansion in the expansion parameter ~. In this talk some examples of
Feynman diagram computation have been explained in detail. The statement is
that such an expansion reproduces the perturbative expansion of the integrable
models. For example, it is known that the adjoint representation of g = soN does
not lift to a representation of the Yangian Y (gN ) for N > 4, and this is reproduced
in gauge theory from the quantum gauge anomaly of the associated Wilson line.

While gauge-theoretic approach has been successful, there are obviously many
remaining questions to be asked. In the context of this mini-workshop, one obvi-
ous set of questions is to understand/clarify/learn from the relations between the
gauge-theoretic approach and geometric/analytic approaches. During the work-
shop there have been many discussions along these lines, and I am hoping to see
many future works motivated by this mini-workshop.
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3-facets of R-matrices: stable maps, intertwiners and transfer-matrices

David Hernandez

Our first lecture was devoted to present some of the important applications of
R-matrices. Recall an R-matrix R(z) ∈ A⊗2((z)) is a solution of the Yang-Baxter
equation

R12(z)R13(zw)R23(w) = R23(w)R13(zw)R12(z)

for A an algebra, z, w formal variables,

R12 = R⊗ 1 , R23 = 1⊗R , R13 = (τ ⊗ Id)(R23),

where τ is the flip. We recalled three of the various contexts in which R-matrices
appear (see [H1] ) :

(i) Intertwiners for quantum groups (representation theory). The specialization of
the universal R-matrix R(z) of a quantum affine algebra to a tensor product of
representations U ⊗ V gives rise, after composition by the flip, to an isomorphism
of (deformed) representations :

RU,V (z) : U ⊗ V (z) → V (z)⊗ U.

The Yang-Baxter equation guarantees the hexagonal identity is satisfied :

(1) V ⊗ U ⊗W
Id⊗PRU,W (zw)

// V ⊗W ⊗ U
PRV,W (w)⊗Id

((P
PP

PP
PP

PP
PP

P

U ⊗ V ⊗W

PRU,V (z)⊗Id
66♥♥♥♥♥♥♥♥♥♥♥♥

Id⊗PRV,W (w) ((P
PP

PP
PP

PP
PP

P
W ⊗ V ⊗ U

U ⊗W ⊗ V
PRU,W (zw)⊗Id

// W ⊗ U ⊗ V

Id⊗PRU,V (z)

66♥♥♥♥♥♥♥♥♥♥♥♥

.

For U, V simple representations, after a proper renormalization and by taking the
limit z → 1, it gives rise to a (non necessarily invertible) morphism

RU,V : U ⊗ V → V ⊗ U.

(ii) Construction of transfer-matrices for quantum integrable models (mathemati-
cal physics). For V a finite-dimensional representation of a quantum affine algebra,
we have the associated transfer-matrix :

TV (z) = (TrV ⊗ Id)R(z).
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The Yang-Baxter equation implies the integrability condition

[TV (z), TV ′(w)] = 0,

for two such representations V, V ′. Then, for another representationW , we obtain
a commuting families of operators on W whose spectra constitute the spectrum of
the corresponding quantum integrable model.

(iii) Maulik-Okounkov construction of stable maps (symplectic geometry). Maulik-
Okounkov [MO] have presented a very general construction of R-matrices from the
action of a pair of tori A ⊂ T on a symplectic variety X . In its cohomological
version, the construction gives the stable maps, morphisms of H•

T (pt)-modules

StabC : H•
T (X

A) → H•
T (X)

depending in particular on a certain chamber C. In good situations, for two cham-
bers C and C′, we obtain two stable maps:

H•
T (X)

H•
T (X

A)

StabC

99sssssssss

RC′,C

//❴❴❴❴❴❴❴❴❴ H•
T (X

A)

StabC′

ee❑❑❑❑❑❑❑❑❑

,

invertible after a proper localization, so that Stab−1
C′ StabC gives an R-matrix.

Our second lecture was entitled,
Baxter polynomials and truncated shifted quantum affine algebras

We explained the application of polynomiality of Q-operators to representations
of truncated shifted quantum affine algebras (quantized K-theoretical Coulomb
branches). Shifted quantum affine algebras and their truncations arose [FT] in
the study of quantized K-theoretic Coulomb branches of 3d N = 4 SUSY quiver
gauge theories in the sense of Braverman-Finkelberg-Nakajima which are at the
center of current important developments. The Q-operators are transfer-matrices
associated to prefundamental representations of the Borel subalgebra of a quantum
affine algebra, via the standard R-matrix construction. In a joint work [FH] with
E. Frenkel, we have proved that, up to a scalar multiple, they act polynomially
on simple finite-dimensional representations of a quantum affine algebra. This
establishes the existence of Baxter polynomial in a general setting.

We propose a conjectural parameterization of simple modules of a non simply-
laced truncation in terms of the Langlands dual quantum affine Lie algebra (this
has various motivations, including the symplectic duality relating Coulomb branch-
es and quiver varieties). We prove [H2] that a simple finite-dimensional represen-
tation of a shifted quantum affine algebra descends to a truncation as predicted
by this conjecture. This is derived from the existence of Baxter polynomials.
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R-matrix of Yangians

Sachin Gautam

(joint work with V. Toledano Laredo, C. Wendlandt)

Let g be a simple Lie algebra over C, ~ ∈ C× be a deformation parameter. Let
Y = Y~(g) be the Yangian - a Hopf algebra defined by Drinfeld. Let ∆ : Y → Y ⊗Y
denote its coproduct. The Yangian comes together with a 1-parameter group of
Hopf algebra automorphisms τs : Y → Y , s ∈ C. For a representation V of Y , we
define V (s) = τ∗s (V ). Moreover, we set ∆s = (τs⊗1)◦∆ and ∆op

s = (τs⊗1)◦∆op.
The following theorem is due to Drinfeld [1].

Theorem 1. There is a unique R(s) ∈ (Y ⊗ Y )[[s−1]] subject to the following
conditions: (1) R(s) = 1⊗2 + O(s−1), (2) For every x ∈ Y , we have ∆op

s (x) =
R(s)∆s(x)R(s)

−1, and (3) the following cabling identities are satisfied:

(∆⊗ 1)(R(s)) = R13(s)R23(s), (1 ⊗∆)(R(s)) = R13(s)R12(s).

It is well-known that conditions (1) and (2) imply the Yang-Baxter equation:

(YBE) R12(s)R13(s+ t)R23(t) = R23(t)R13(s+ t)R12(s).

Furthermore, Drinfeld’s R–matrix has the following properties: (4) R(s)−1 =
R21(−s), (5) (τa ⊗ τb)(R(s)) = R(s+ a− b).

If V,W are two irreducible, finite-dimensional representations of Y , and RV,W (s)
is the evaluation of R(s) on V ⊗ W , then it was also shown by Drinfeld that
RV,W (s) = χV,W (s)Rrat(s). Here χV,W (s) ∈ C[[s−1]] and Rrat(s) is a rational
function of s (rational solution to (YBE)) uniquely determined by the condition
that it maps the tensor product of highest weight vectors to itself. The formal
series χV,W (s) is known to be divergent.

Remark. The (unpublished) proof of the existence part of Theorem 1 relies on
certain cohomological arguments which are a priori non-constructive. This is the
main point of departure from the analogous case of the quantum loop algebras,
where the existence is obtained via Drinfeld double method. The uniqueness part
is easy, based on the determination of primitive elements in Y .



Mini-Workshop: Three Facets of R-Matrices 2803

Questions. How to interpret RV,W (s) as a function of one complex variable? Can
we get an explicit construction of RV,W (s)?

The answers to both these questions are obtained in [2, 3]:

Theorem 2. Given two finite-dimensionl representations V,W , there exist two

meromorphic functions R
↑/↓
V,W (s) : C → End(V ⊗W ), explicitly given, natural in

V and W , and satisfying the following conditions.

(1) R
↑/↓
V,W (s) is holomorphic and invertible in Σ↑/↓ ⊂ C, where Σ↑ = {ℜ(s/~) ≫

0} = −Σ↓. Moreover, R
↑/↓
V,W (s) → IdV⊗W as s→ ∞, s ∈ Σ↑/↓.

(2) For η ∈ {↑, ↓}, σ ◦Rη
V,W (s) : V (s)⊗W → W ⊗ V (s) is Y –linear. Here σ

is the flip of tensor factors.
(3) For η ∈ {↑, ↓}, and V1, V2, V3 finite-dimensional representations of Y , we

have:

Rη
V1(s1)⊗V2,V3

(s2) = Rη
V1,V3

(s1 + s2)R
η
V2,V3

(s2),

Rη
V1,V2(s2)⊗W (s1 + s2) = Rη

V1,V3
(s1 + s2)R

η
V1,V2

(s1).

(4) R↑
V,W (s)−1 = σ ◦R↓

W,V (−s) ◦ σ.
(5) Rη

V (a),W (b)(s) = Rη
V,W (s+ a− b).

(6) Rη
V,W (s) is asymptotic to RV,W (s) as s→ ∞ in Ση.

(7) Rη
V,W (s) =Rrat

V,W (s)Xη
V,W (s), where Rrat

V,W (s) is rational in s, and X
η
V,W (s) :

V (s)⊗W → V (s)⊗W is Y –linear.

Our proof of this theorem is based on the Gaussian decomposition of the R–
matrix. Namely, if we write R(s) = R+(s)R0(s)R−(s), where R±(s) are up-
per/lower triangular unipotent matrices and R0(s) is diagonal, then we have the
following.

• R0(s) is a solution of an additive, abelian, regular difference equation.
Such equations admit two meromorphic solutions satisfying condition (1)
of Theorem 2.

• R+(s) = R−
21(−s)−1, and R−(s) is a rational function of s which is built

in a recursive fashion from an intertwining equation.

In my talk I presented the aforementioned difference equation and the recursive
relation in detail and how to solve them in the exmaple of g = sl2 when V =W =
C2. I ended my exposition with the following two questions central to the theme
of the workshop.

Question 1. How can we obtain R0(s) from 4-dimensional Chern-Simons theory
of Costello-Witten-Yamazaki? Some possible approaches towards this were sug-
gested by B. Williams, M. Yamazaki and M. Ashwinkumar during the discussion
sessions.

Question 2. What is the interpretation of R−(s) in the geometric setting of
Maulik-Okounkov? A conjectural answer to this question was explained by David
Hernandez in his talk.
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Deformed Cartan matrices and generalized preprojective algebras
of finite type

Ryo Fujita

(joint work with Kota Murakami)

Let g be a complex finite-dimensional simple Lie algebra. In order to define the
deformed W-algebra associated with g, E. Frenkel and Reshetikhin [2] introduced
a two parameters deformation C(q, t) of the Cartan matrix C = (cij)i,j∈I of g.
Letting D = diag(di | i ∈ I) be the minimal left symmetrizer of C, its (i, j)-entry
is defined by

Cij(q, t) =

{
qdit−1 + q−dit if i = j,

[cij ]q if i 6= j.

for each i, j ∈ I, where [k]q := qk−q−k

q−q−1 . In the specialization (q, t) = (1, 1), it

certainly recovers the Cartan matrix C.
Its specialization C(q) = C(q, 1) at t = 1 is sometimes called the q-Cartan

matrix, or the quantum Cartan matrix. It plays an important role in the repre-
sentation theory of affine quantum groups (e.g. in the description of the diagonal
part of the universal R-matrix of the Yangian/quantum loop algebra). Consider

the inverse C̃(q) := C(q)−1 and let C̃ij(q) =
∑

u≥0 c̃ij(u)q
u denote the Taylor

expansion at q = 0 of its (i, j)-entry. These Taylor coefficients satisfy some inter-
esting properties: for any i, j ∈ I, we have

(P1) periodicity: c̃ij(u+ rh∨) = −c̃ij∗(u) for u ≥ 0,
(P2) positivity: c̃ij(u) ≥ 0 for 0 ≤ u ≤ rh∨,
(P3) palindromicity: c̃ij(rh

∨ − u) = c̃ij∗(u) for 0 ≤ u ≤ rh∨,

where r := max(di | i ∈ I), h∨ is the dual Coxeter number of g, and i 7→ i∗ is the
involution of I induced by the longest element of the Weyl group.

We give a representation-theoretic interpretation for these properties in terms
of the generalized preprojective algebra Π. It is introduced by Geiß, Leclerc, and
Schröer [5] to generalize the ordinary preprojective algebra associated with the
simply-laced Dynkin diagrams to the case of non-simply-laced Dynkin diagrams.
The algebra Π is a finite-dimensional self-injective algebra (over a field) defined

as a quotient of the Jacobian algebra P̃ i associated with a certain quiver with
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potential. The algebra P̃ i also appeared in the context of theoretical physics [1]
and in the representation theory of the quantum loop algebras [6].

We can equip the algebras Π and P̃ i with a Z-grading following [6]. Associated
with each vertex i ∈ I, we have the simple Π-module Si. In addition, there is the
maximal indecomposable iterated self-extension Ei of Si in the category of graded
Π-modules. We can show that the graded Euler-Poincaré paring 〈Ei, Sj〉q is well-
defined as a formal Laurent series in q and it can be expressed in terms of the
q-Cartan matrix C(q). As its dual statement, we have the following result. Let Īi
be the graded submodule of the i-th injective Π-module satisfying 〈Ej , Īi〉q = δij ,
and dimq Īi ∈ Z≥0[q

±1] its graded dimension.

Theorem 1 ([3, Theorem A]). For any i, j ∈ I, we have

C̃ij(q) =
qdj

1− q2rh∨

(
dimq eiĪj − qrh

∨

dimq eiĪj∗
)
,

dimq eiĪj = q−dj

rh∨∑

u=0

c̃ij(u)q
u.

This result gives a simple explanation for the above properties (P1) and (P2).
Moreover, it enables us to understand the other property (P3) as an incarnation
of the self-injectivity of the algebra Π.

As an application, we can compute the graded dimensions of the first extension
groups between the generic kernels introduced by Hernandez and Leclerc in [6].

The generic kernels are certain graded P̃ i-modules, which can be seen as the
additive counterparts of the Kirillov-Reshetikhin (KR) modules over the quantum
loop algebra Uq(Lg). More precisely, for each KR module V , the cluster character

of the corresponding generic kernel KV ∈ P̃ i-gmod coincides with the q-character
of V after a monomial transformation. Comparing our computations of Ext1 with
the computations of the denominators of the normalized R-matrices between the
KR modules due to Oh and Scrimshaw [7] (see also [4]), we are led to the following
conjecture. Let o(V,W ) denote the pole order of the normalized R-matrix RV,W (z)
at z = 1 for simple Uq(Lg)-modules V and W .

Conjecture 2 ([3, Conjecture B]). For any KR modules V and W , we have

o(V,W ) = dimExt1
P̃ i
(KV ,KW ).

At this moment, we can check that this conjecture is true as long as the left
hand side is known.
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Shifted Yangians, prefundamental representations and polynomial
R-matrices

Huafeng Zhang

(joint work with David Hernandez)

Let g be a finite-dimensional complex simple Lie algebra. The Yangian Y (g) of
g, introduced by Drinfeld, is one of the first examples of quantum groups. It is a
deformation of the universal enveloping algebra of the current algebra g⊗ C[t].

Depending on an integral coweight µ of g, the shifted Yangian Yµ(g) as an asso-
ciative algebra is obtained from the Drinfeld presentation of the ordinary Yangian
Y (g) by re-indexing the Drinfeld–Cartan generators while keeping all the relations.
These algebras appeared first for type A in the context of representation theory of
finite W -algebras by Brundan–Kleshchev [2], then for arbitrary types in the study
of affine Grassmannian slices by Kamnitzer–Webster–Weekes–Yacobi [6] and in the
study of quantized Coulomb branches of 3d N = 4 SUSY quiver gauge theories by
Braverman–Finkelberg–Nakajima [1]. In these works, certain quotients of shifted
Yangians, the truncated shifted Yangians, arise naturally.

Essentially all the basic algebraic properties of the ordinary Yangian, including
the one-parameter family of algebra automorphisms τa for a ∈ C, triangular de-
composition, PBW basis and coproduct, have been generalized to shifted Yangians
by Finkelberg–Kamnitzer–Pham–Rybnikov–Weekes [3].

Fix I the set of Dynkin nodes of g. By a highest weight we mean an I-tuple
(fi(u))i∈I of Laurent series in u−1 with leading term being a power of u. Let µ
be the coweight whose coefficient of the ith fundamental coweight is the degree
of fi(u). Then the I-tuple can be viewed as a character of the affine Cartan
subalgebra of the shifted Yangian Yµ(g), and the triangular decomposition leads
to the highest weight irreducible module.

Call the irreducible module positive prefundamental if precisely one component
of the I-tuple is u − a for a ∈ C and the other components are 1; such a module
is one-dimensional and it appeared first in the work of Brundan–Kleshchev [2].
Replacing u− a with 1

u−a , we get a negative prefundamental module.

In [4] we establish cyclicity and co-cyclicity properties for these modules.

Theorem 1. [4] Let N be a tensor product of negative prefundamental module and
V be an arbitrary highest weight irreducible module. Then V ⊗N is generated by
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a tensor product of highest weight vectors, and N ⊗ V is co-generated by a tensor
product of highest weight vectors. In particular, N is irreducible.

Since twisting V by the algebra automorphism τa still preserves irreducibility,
we obtain the normalized R-matrix, which is a module morphism sending a tensor
product of highest weight vectors to the opposite tensor product

ŘV,N(a) : τ∗aV ⊗N −→ N ⊗ τ∗aV for a ∈ C.

We show that this R-matrix as an operator-valued function of a is polynomial.
In particular cases, we recover the truncation series in the definition of truncated
shifted Yangians from a diagonal entry of the R-matrix. As a consequence of
polynomiality, we produce modules over truncated shifted Yangians.

Theorem 2. [4] If P is a tensor product of positive prefundamental modules and
N is a tensor product of negative prefundamental modules, then P ⊗N factorizes
through a truncated shifted Yangian.

In simply-laced types Kamnitzer–Tingley–Webster–Weekes–Yacobi [5] obtained
an explicit classification of highest weight irreducible modules over truncated
shifted Yangians, from which follows the above theorem. Our proof via R-matrices
works uniformly in general types.

Notice that P⊗N in the above theorem is a highest weight module whose highest
weight is rational, namely, each component is the Taylor expansion at u = ∞ of a
rational function of u. There is a category Osh of modules over shifted Yangians,
introduced in [2, 5], whose simple objects are the irreducible modules of rational
highest weights. It is an analog of the ordinary category O of modules over the
current algebra g⊗C[t]. Our last result is the Jordan–Holder property for category
Osh which fails for the ordinary category O. Its proof relies on the cyclicity and
co-cyclicity properties and on a geometric result [5] that each truncated shifted
Yangian admits a finite number of highest weight irreducible modules.

Theorem 3. [4] The tensor product of two irreducible modules in category Osh is
of finite representation length.
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Chern-Simons Theory and the R-Matrix

Nanna Aamand

It was shown by Costello, Witten and Yamazaki in [1],[2] that solutions to the
Yang-Baxter equation can be obtained as the expectation value of crossing Wilson
lines in a 4-dimensional Chern-Simons theory. As discussed in [2], their setup can
be translated into the setting of the usual 3-dimension Chern-Simons theory on
R2× [0, 1] with the following boundary conditions on the gauge field: Let g be the
(simple) lie algebra of the gauge group G of the Chern-Simons theory, and assume
that g admits a Manin triple: (g, l−, l+). Then we require that the gauge field
takes value in l− on the boundary R2 × {0} and in l+ on R2 × {1}.

It was shown in [3], by carrying out computations at leading order in per-
turbation theory, that one can indeed deduce constant solutions to the classical
Yang-Baxter equation (without spectral parameter) from this setup. I present my
work on showing that the result of [3] holds to all orders in perturbation theory,
thus producing a full R-matrix.

=• 13

• 12

• 23

• 13

• 23

• 12

1 2 3 1 2 3

Figure 1. Graphical representation of the Yang-Baxter equa-
tion.

More concretely, consider the usual graphical representation of the Yang-Baxter
equation shown in Figure 1. Each incoming line carries some vector space V and
at each crossing between two lines the incoming vector spaces are transformed by
an endomorphism R ∈ End(V )⊗2. Then the equality of the left and right side of
the figure reproduces the Yang-Baxter equation:

R12R13R23 = R23R13R12,

where Rij ∈ End(V )⊗3 is the transformation obtained by acting with R on the i’th
and j’th copy of V and with the identity map on the remaining copy. In the context
of gauge theory, we think of the lines as representing Wilson line operators in
R2×[0, 1] with each Wilson line supported at a different point in [0, 1] and carrying
some representation V of g. The expectation value of the Wilson line configurations
on either side of the figure is an element of End(V )⊗3 given by a perturbative sum
over weighted graphs (Feynman diagrams). Showing that the expectation value
of a pair of crossing Wilson lines is an R-matrix then amounts to showing that
the expectation value of the configuration in Figure 1 is invariant when moving
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the middle Wilson line from left to right. In order to accomplish this, I use of a
method due to Bott and Taubes (see [4]), considering a certain compactification of
the configuration space of Feynman diagram vertices. By applying Stokes’ theorem
to the Feynman integrals on the compactified configuration space, the problem of
showing invariance of the expectation value under deformations of the Wilson lines
becomes a problem of showing that the Feynman integrals vanish on the boundary
of the configuration space.
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Bethe/gauge correspondence for superspin chains from string theory

Nafiz Ishtiaque

(joint work with Seyed F. Moosavian, Surya Raghavendran, Junya Yagi)

We provide a brane construction of rational gl(m|n) spin chains with spins valued
in Verma modules and show that string dualities map the Bethe eigenstates to
massive vacua of certain 2d N = (2, 2) quiver gauge theories. This extends the
dictionary of Bethe/gauge correspondence for rational compact spin chains pro-
posed by Nekrasov and Shatashvili [1, 2, 3] to include non-compact spin chains as
well. More importantly, this provides a simple explanation for the Bethe/gauge
correspondence by relating it to string dualities.

The brane construction of spin chains relies on the construction of 4d Chern-
Simons theory from the world-volume theory of D5 branes. The theory on a
stack of m D5 branes is the 6d N = (1, 1) super Yang-Mills theory with gauge
group U(m). Turning on a certain closed string background, which includes a
particular Ramond-Ramond 2-form field, induces a topological-holomorphic twist
and Ω-deformation of this theory reducing it to 4d Chern-Simons theory with
complexified gauge group GL(m) [4]. We get 4d Chern-Simons theory with gauge
supergroup GL(m|n) by introducing another stack of n D5 branes that are rotated
with respect to the previous D5-branes so that they share only four directions.
The open strings stretched between these two stacks of D5 branes provide 4d
N = 2 hypermultiplets at the intersection of the two stacks of D5 branes and they
couple the two 6d theories with U(m) and U(n) gauge symmetry. The topological-
holomorphic twist and Ω-deformation now reduces the D-brane theories to 4d
Chern-Simons theory with gauge group GL(m|n). The bosonic components of the
super connection come from the connections on the two stacks of D5 branes and
the fermionic components are remnants of the 4d N = 2 hypermultiplets.
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Integrable spin chains are represented by line operators in 4d Chern-Simons
theory [5]. We create line operators in the GL(m|n) Chern-Simons theory by
putting semi-infinite D3 branes ending on the D5 branes. This introduces 3d
defects in the 6d super Yang-Mills theories which reduce to line operators valued
in Verma modules after Ω-deformation. Highest weights of these modules are
determined by locations of the D3 branes along the D5 branes. Supersymmetric
configurations of fundamental strings (F1 branes) stretched between the D-branes
provide states in the spin chains represented by the line operators. A composition
of S and T-duality converts the D5-D3-F1 brane configurations into NS5-D4-D2
configurations. Supersymmetric F1 branes are mapped to supersymmetric D2
branes which correspond to the massive vacua of the world-volume theories of
the D2 branes. These world-volume theories are 2d quiver gauge theories with
N = (2, 2) supersymmetry. Thus we find a one-to-one map between states in the
integrable non-compact superspin chains and vacua of 2d supersymmetric gauge
theories.

The spin chains carry actions of the Yangian algebra Y (gl(m|n)). The Bethe/
gauge correspondence therefore implies an action of the Yangian on the vector
space spanned by the massive vacua of the 2d gauge theories. These vacua can be
characterized by the equivariant cohomology of certain Kähler varieties associated
to the gauge theories called the Higgs branches. We thus conjecture a geometric
construction of infinite dimensional highest weight representations of Y (gl(m|n))
in terms of equivariant cohomology of certain handsaw-type quiver varieties.
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Universal k-matrices for quantum symmetric Kac-Moody pairs

Bart Vlaar

(joint work with Andrea Appel)

Let (A,R) be a quasitriangular bialgebra. Consider, following [Da07], a twist
pair (ψ,F). Here F ∈ (A ⊗ A)× is a Drinfeld twist controlling the failure of
ψ ∈ Autalg(A) to be a quasitriangular isomorphism from (A,R) to (Acop,R21).
Hence (ψ,F) induces a braided tensor equivalence between ModA and Mod

op
A .



Mini-Workshop: Three Facets of R-Matrices 2811

Definition 1 ([AV20]). Given a quasitriangular bialgebra (A,R) and twist pair
(ψ,F), we say that (A,R) is (ψ,F)-cylindrical if there exists k ∈ A× such that

(1) ∆(k) = F−1 · (1 ⊗ k) · (ψ ⊗ id)(R) · (k ⊗ 1).

Owing to (1), the twist pair property (ψ ⊗ ψ)(R) = F · R21 · F−1
21 and the

intertwining property of R, the ψ-twisted reflection equation in A⊗A holds:

(2) (k⊗1) · (ψ⊗ id)(R)21 · (1⊗k) ·R = (ψ⊗ψ)(R)21 · (1⊗k) · (ψ⊗ id)(R) · (k⊗1).

Given a suitable right coideal subalgebra B ⊆ A, i.e. ∆(B) ⊆ B ⊗ A, and twist
pair (ψ,F), we discuss a construction of such k, based on the condition

(3) k · b = ψ(b) · k for all b ∈ B.

Namely, let g = n+ ⊕ h ⊕ n− be a symmetrizable Kac-Moody algebra, defined
over an algebraically closed field F of characteristic 0. Consider the q-deformed
universal enveloping algebra A = Uqg, defined over F(q). Its “universal R-matrix”
R, up to a Cartan factor, resides in the O-completion1 of, say, Uqn

− ⊗ Uqn
+.

An automorphism θ of g is said to be of the second kind if θ(n+) ∩ n+ is finite-

dimensional; for instance, the Chevalley involution ω. Denote by Aut
II
inv(g) the set

of involutions of the second kind and by I the set of Dynkin nodes of g. Given any
ζ ∈ Aut

II
inv(g), the parabolic Weyl group of the subset X(ζ) := {i ∈ I | ζ(hi) = hi}

is finite. Associated to its longest element is a Cartan modification Tζ of Lusztig’s
braid group action [Lu94] on the subcategory Oint ⊂ O of integrable modules with
the following properties.

• The universal R-matrix of the diagrammatic subbialgebra UqgX(ζ) ⊆ Uqg

possesses a Cartan modification Rζ := (T−1
ζ ⊗ T−1

ζ ) ·∆(Tζ).

• For a particular ζq ∈ Aut(Uqg) which q-deforms ζ and Cartan-modifies a
construction in [Ko14], (ζq,Rζ) is a twist pair “up to completion”, inducing
a braided tensor equivalence between Oint and ω

∗(Oop
int).

Given θ ∈ Aut
II
inv(g), the Letzter-Kolb coideal subalgebra [Le99, Ko14] is the

unique maximal right coideal subalgebra B = Uq(g
θ) ⊆ Uqg which q-deforms

U(gθ). Now set (ψ,F) = (θq,Rθ). A recursive argument using Lusztig’s skew
derivations [Lu94] yields the following extension of results from [BK19].

• Up to a group-like Cartan modification, there is a unique k = kθ in the
O-completion of Uqn

+ such that ǫ(k) = 1 and condition (3) is satisfied;
• By a direct computation, the coproduct of k = kθ is given by (1).

The two roles of AutIIinv(g) come together in the following key result.

Theorem 2 ([AV20]). Let A = Uqg with universal R-matrix R and let B = Uq(g
θ)

a Letzter-Kolb coideal subalgebra in terms of θ ∈ Aut
II
inv(g). Let ζ ∈ Aut

II
inv(g) be

arbitrary. There exists a quasitriangular automorphism β of (Uqg,R) such that

• (ψ,F) := (ζq ◦ β,Rζ) is a twist pair;

• the element kζ := T−1
ζ · Tθ · kθ of the Oint-completion of Uqg satisfies (3);

• the coproduct formula (1) is satisfied.

1In particular, R can be evaluated in tensor products of modules in the category O.
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Thus given a pair of involutions of the second kind one obtains a solution of
the universal reflection equation (2) in a completion of Uqg

⊗2. Evaluating (2) on
a tensor product of Oint-modules, we obtain a representation of a defining relation
of the type B (or “cylindrical”) ribbon Artin braid groupoid. Here the two sides of
any ribbon are coloured by Oint and ω

∗(Oop
int), respectively.

If g is finite-dimensional and ζ = id we recover the construction from [BK19]. If
g is of affine type we can also let k act on (finite-dimensional) evaluation modules
V (z), resulting in matrix-valued formal Laurent series. Under a mild assumption
on ζ, one observes that ζ∗q (V (z)) = (ζ∗q V )(z−1), so that (2) results in Cherednik’s
generalized parameter-dependent reflection equation [Ch92].

If the following conjecture holds (it can be verified for Uq ŝl2) we can recover the
original (untwisted or transpose-twisted) parameter-dependent reflection equation,
playing a key role in quantum integrability near a boundary, see e.g. [Ch84, Sk88].

Conjecture 3. Let V (z) be an evaluation module. There exists ζ ∈ Aut
II
inv(g) so

that ζ∗q V = V .
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Generalized Schur-Weyl dualities for quantum affine symmetric pairs
and orientifold Khovanov-Lauda-Rouquier algebras

Andrea Appel

(joint work with Tomasz Przezdziecki)

The classical Schur-Weyl duality is a fundamental symmetry, which allows to iden-
tify the category of finite-dimensional representations of the symmetric group Sℓ

with the subcategory of finite-dimensional representations of slN appearing in the
decomposition of the ℓ-tensor power of the fundamental representation V := CN

of slN . The identity stems from the simple observation that V⊗ℓ is (UslN ,Sℓ)-
bimodule, thus yielding a functor V⊗ℓ ⊗Sℓ

• : Repfd(Sℓ) → Repfd(UslN ).
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The quantum analogue of this construction appears as a duality between quantum
groups and Hecke algebras. In particular, in [4], Chari and Pressley provide a

functor Repfd(Ĥℓ,q2) → Repfd(UqLslN ) between the affine Hecke algebra Ĥℓ,q2 and
the quantum loop algebra UqLslN , arising from their joint action on the ℓ-tensor
product of the affinized fundamental UqLslN -representation V := C(q)N [z, z−1].

More recently, in the series of papers [6, 7, 8, 9], Kang, Kashiwara, Kim, and
Oh obtain a generalized version of Chari-Pressley Schur-Weyl duality, which goes
beyond type A and is expressed in terms of Khovanov-Lauda-Rouquier (KLR)
algebras, also known as quiver Hecke algebras. More precisely, let Q be a quiver
of finite-type, gQ the corresponding complex simple Lie algebra, and, for any

dimension vector β, let R
β
Q be the corresponding KLR algebra. Then, there is

a functor Repgr,fd(R
β
Q) → Repfd(UqLgQ), induced as before by a bimodule Vβ,

given by a direct sum of tensor products of certain affinized UqLgQ-modules. As

in the case of the affine Hecke algebra, the action of Rβ
Q on Vβ is given in terms

of certain normalized R–matrices of UqLgQ. The sum over all possible dimension
vector yields a functor

F :
⊕

β

Repgr,fd(R
β
Q) → Repfd(UqLgQ)

which is proved to be monoidal with respect to the tensor product induced on the

KLR side by the convolution product R
β
Q ⊗ R

β′

Q → R
β+β′

Q . Moreover, up to a
suitable localized quotient of the KLR category, F restricts to an equivalence with
(a generalization of) the Hernandez-Leclerc category CQ ⊂ Repfd(UqLgQ) [5, 10].

In fact, the original construction of the functor is more general and depends upon
a combinatorial datum consisting of a (possibly infinite) set of finite-dimensional
UqLg-representations Vi, each decorated with a non-zero scalar fi ∈ C(q). By
comparing the poles of the normalized R-matrices on Vi ⊗ Vj with fj/fi, one
obtains a quiver Q, which determines the KLR algebra. It is then proved that
there exists a combinatorial datum for which Q coincides with the Dynkin type
of g. In view of these results, the representation theory of KLR algebras can be
thought of as a powerful tool to study the representation theory of quantum affine
algebras.

A quantum affine symmetric pair (QSP) subalgebra is a distinguished coideal sub-
algebra Uqk ⊂ UqLg (also known as Letzter-Kolb subalgebras or affine ιquantum
groups. In [1], the author and B. Vlaar prove that QSP subalgebras (of arbitrary
Kac–Moody type) give rise to universal k-matrices, i.e. solutions of the reflection
equation (cf. the previous abstract by B. Vlaar). The latter can be thought of as
a boundary analogue of the Yang-Baxter equation, since it arises as a consistency
condition in the case of particles moving on a half-line. It will be proved in [2]
that, as in the case of the universal R-matrix, such universal k-matrices descend to
finite-dimensional UqLg-representations and provide a conceptual approach to the
trigonometric solutions of the spectral reflection equation. Moreover, as pointed
out by V. Toledano Laredo during the talk, it is clear that the existence of a
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universal solution implies that of a rational k-matrix on any finite-dimensional
UqLg-representation.

The understanding of the category Repfd(UqLg), which is naturally acted upon by
Repfd(UqLg), is however extremely limited. It is therefore desirable to produce a
boundary analogue of the functor F , establishing a generalized Schur-Weyl duality
between the QSP algebra Uqk with a suitable notion of KLR algebra. The key idea
is to enhance the combinatorial model (Vi, fi), developed by Kang-Kashiwara-Kim,
by taking into account the poles of the rational k-matrix on the representations
Vi. Such enhanced combinatorial datum yields a framed quiver Q. Note that the
QSP subalgebra Uqk depends on two families of parameters, which appear in the
poles of the k-matrix and therefore determine the framing. In particular, one can
observe that, for generic parameters, the framing will be trivial.

We further assume that there exists a contravariant involution θ on Q, which
preserves the framing. In [11], Varagnolo and Vasserot introduced a new KLR

algebra R
β
Q,θ, naturally associated to the datum (Q, θ), which we refer to as the

orientifold KLR algebra. We then get the following

Theorem 1.

(1) There exists a (Uqk,R
β
Q,θ)-bimodule Vβ, which induces a functor

Fθ :
⊕

β

Repgr,fd(R
β
Q,θ) → Repfd(Uqk)

(2) The functors (Fθ,F) intertwine the natural categorical actions

⊕
β Repgr,fd(R

β
Q) Repfd(UqLg)

⊕
β Repgr,fd(R

β
Q,θ) Repfd(Uqk)

F

Fθ

where the vertical arrow on the KLR side is given by induction.

Many follow-up questions remain open and are currently being investigated. In
particular, we expect the functor Fθ to give rise to an equivalence. This would
require a much deeper understanding of the structural properties of the orien-
tifold KLR representation theory. In turn, it would yield a QSP analogue of the
Herndez-Leclerc category, whose Grothendieck ring would be the best candidate
for a boundary analogue of cluster algebras.
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Presentation of generic K-theoretical Hall algebras of quivers via
Shuffle algebras

Olivier Schiffmann

(joint work with A. Negut, F. Sala)

Let Q be a finite quiver, with vertex set I and edge set E (edge loops and multiple
edges are allowed). Cohomological Hall algebras associated to Q for a Borel-Moore
homology theory (including K-theory) were recently introduced, in relation to
Donaldson-Thomas theory on the one hand and Nakajima quiver varieties on the
other hand (see [KS11, SV13, YZ18]). More precisely, the K-theoretic Hall algebra
of Q is the vector space:

KQ :=
⊕

n∈NI

KT (Rep
n
ΠQ)

where ΠQ is the preprojective algebra of Q, and Rep
n
ΠQ is the stack of complex

n-dimensional representations of ΠQ. The vector space KQ is equipped with a
natural Hall multiplication making it into an associative algebra. Here T is a
torus acting in a Hamiltonian way on Rep

n
ΠQ by appropriately rescaling the

maps attached to the arrows e ∈ E. The algebra KQ acts on the T -equivariant
K-theory of Nakajima quiver varieties :

Nw =
⊔

v∈NI

Nv,w

and is in some sense the largest algebra thus acting via Hecke correspondences.
When Q is a finite type quiver, KQ is identified with the positive half of the
quantum loop algebra (in Drinfeld’s sense) of gQ; the situation of an affine quiver,
in which case KQ is a quantum toroidal algebra, is studied in detail (in type A)
in [Neg15] (see also [VV20] for other affine quivers). More generally, for a quiver
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without edge loops and a specific one-dimensional torus T , there is an algebra
morphism:

(1) U+
q (LgQ) −→ KQ

which recovers Nakajima’s construction of representations of quantum affinizations
of Kac-Moody algebras on the equivariant K-theory of quiver varieties. The map
(1) is surjective (under some mild conditions on the torus action on Rep

n
ΠQ),

but it is not known to be injective in general (see [VV20]). Beyond these cases,
however, very little is known. Moreover, the structure ofKQ as an algebra depends
in a rather subtle way on T . Note that there is a natural gauge action of the group
(C∗)I on T , but as soon as Q contains edge loops or multiple edges the quotient
of T by this gauge group is nontrivial.

In the present paper, we consider the case when the torus T = (C∗)E×C∗ is as large
as possible and we work over the fraction field: F = Frac(KT (pt)) = Q(q, te)e∈E .
Our main result provides an explicit description of:

KQ,loc := KQ

⊗

KT (pt)

F

by generators and relations which we will now summarize. Let E be the “double”

of the edge set E, i.e. there are two edges e =
−→
ij and e∗ =

−→
ji in E for every edge

e =
−→
ij ∈ E. The set E is equipped with a canonical involution e↔ e∗. We extend

the notation te to an arbitrary e ∈ E by the formula: te∗ = q
te
. For any i, j ∈ I,

consider the rational function

(2) ζij(x) =

(
1− xq−1

1− x

)δij ∏

e∈
−→
ij

(
1

te
− x

) ∏

e∈
−→
ji

(
1− te

qx

)

and set ζ̃ij(x) = ζij(x) · (1 − x)δ
i
j . Let U+

Q be the algebra generated by elements
ei,d for i ∈ I, d ∈ Z subject to the following set of quadratic and cubic relations,
where we have set ei(z) =

∑
d∈Z

ei,dz
−d :

• For any pair (i, j) ∈ I2, the quadratic relation:

(3) ei(z)ej(w)ζ̃ji

(w
z

)
zδ

i
j = ej(w)ei(z)ζ̃ij

( z
w

)
(−w)δij
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• For any edge E ∋ e =
−→
ij , the cubic relation:

(4)
ζ̃ii

(
x2

x1

)
ζ̃ji

(
y
x1

)
ζ̃ji

(
y
x2

)

(
1− x2

x1q

)(
1− yq

x2te

) · ei(x1)ei(x2)ej(y)

+
ζ̃ii

(
x1

x2

)
ζ̃ji

(
y
x2

)
ζ̃ij

(
x1

y

)(
−x2te

y

)(
− y

x1

)δij

(
1− yq

x2te

)(
1− x1te

y

) · ei(x2)ej(y)ei(x1)

+
ζ̃ii

(
x2

x1

)
ζ̃ij

(
x1

y

)
ζ̃ij

(
x2

y

)(
x2te
yq

)(
y2

x1x2

)δij

(
1− x2

x1q

)(
1− x1te

y

) · ej(y)ei(x1)ei(x2) = 0

Theorem 1. There is an algebra isomorphism KQ,loc ≃ U+
Q.

When Q is a tree, the quotient of (C∗)E × C∗ by the action of the gauge group
(C∗)I is one-dimensional. In addition, one can check that in the case of an A2

quiver, the cubic relations (4) are equivalent to the standard q-Serre relations.
With this in mind, our results imply:

Theorem 2. Suppose that Q is a tree, and that T scales the symplectic form on
Rep

n
ΠQ nontrivially. Then the localization:

U+
q (LgQ)

⊗

KT (pt)

F −→ KQ,loc

of the map (1) is an isomorphism.

Cohomological Hall algebras of quivers are known (at least in the case of Borel-
Moore homology and K-theory) to embed in a suitable (big) shuffle algebra VQ,
whose multiplication encodes the structure of Q (see [SV20, VV20, YZ18]). In the
K-theoretic case and for maximal T , recent work ([Neg21, Zha19]) identified the
image of this embedding as the subspace SQ determined by the so-called 3-variable
wheel conditions. Theorem 1 is thus a direct corollary of the following theorem,
which is the main result of the present paper.

Theorem 3. There is an isomorphism U+
Q
∼= SQ.

For a general Q and a general choice of T (which satisfies some mild conditions),
there is a chain of algebra homomorphisms: U+

Q −→ KQ,loc −→ SQ. The content
of Theorem 3 is that these maps are all isomorphisms for T maximal.

Let us mention one other application of Theorem 3. When Q is the quiver with one
vertex and g loops, it is known by combining [SV12] and [Neg21] that the spherical

Hall algebra Hsph
X of the category of coherent sheaves on a genus g curve X defined

over Fq−1 is isomorphic to KQ. Here the equivariant parameters t1, . . . , tg are set



2818 Oberwolfach Report 51/2021

to be the inverses of the Weil numbers σ1, . . . , σg of X , hence:

ζg(x) =
1− xq−1

1− x

g∏

e=1

(σe − x)(1 − σex
−1)

For any e = 1, . . . , g, set:

Qe(z1, z2, z3) =
∏

1≤i<j≤3

∏

f 6=e

(
σf − zj

zi

)(
1− σf

zi
zj

)

Then we have the following result :

Theorem 4. The (generic) genus g spherical Hall algebra Hsph
g is generated over

F by elements κ±1
1,0, θ0,l, 1

vec
d for l ≥ 0, d ∈ Z subject to the following set of relations:

H+(z)H+(w) = H+(w)H+(z)(5)

E(z)H+(w) = H+(w)E(z)
ζg

(
z
w

)

ζg
(
w
z

) (for |w| ≫ |z|)(6)

E(z)E(w)ζg

(w
z

)
= E(w)E(z)ζg

( z
w

)
(7)

and for all e = 1, . . . , g and m ∈ Z the relation:

(8)
[
(xyz)m(x + z)(xz − y2)Qe(x, y, z)E(x)E(y)E(z)

]
ct
= 0.

In the formulas above, we set:

E(z) =
∑

d∈Z

1vecd z−d, H+(z) = κ1,0


1 +

∑

l≥1

θ0,lz
−l
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Three-dimensional WZW model and the R-matrix of the Yangian

Meer Ashwinkumar

In this talk, based on [1], I describe a three-dimensional quantum field theory dual
to the four-dimensional Chern-Simons theory reviewed by Masahito Yamazaki
earlier in the week. To be precise I analyze four-dimensional Chern-Simons theory
on a product of a disk, D, and the complex plane C (which is understood to
describe rational solutions of the Yang-Baxter equation from the work of Costello,
Witten and Yamazaki [2]), with the action

(1) S =
1

2π~

∫

D×C

ω ∧ Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

and complex gauge group, G, where ω = dz. Here, A can be understood to be the
partial connection A = Ardr+Aϕdϕ+Az̄dz̄, where (r, ϕ) are polar coordinates on
D and (z, z̄) are complex coordinates on C. With the boundary condition Az̄ = 0
at ∂D, this theory can be shown to be equivalent to a three-dimensional analogue
of the two-dimensional chiral WZW model, with the action where the field g is
valued in G.

This three-dimensional WZW model admits a symmetry under the transforma-
tion g(ϕ, z, z̄) → Ω̃(ϕ, z)g with corresponding conserved current Jϕ = − 1

π~∂ϕgg
−1.

This current can be shown, via quantization of Poisson brackets, to satisfy the fol-
lowing current algebra:
(2)
[
TrAJn

ϕ(z),TrBJ
m
ϕ (z′)

]
=iTr[A,B]Jn+m

ϕ (z)δ(z − z′) +
2

~
(nδm+n,0)δ(z − z′)TrAB

+ . . . ,

where the Fourier mode expansion Jϕ(ϕ, z) =
1
2π

∑∞
n=−∞ Jn

ϕ(z)e
inϕ has been em-

ployed, where A and B are arbitrary elements of the Lie algebra g, and where the
ellipsis indicates total derivative terms multiplied by positive powers of ~. This can
be interpreted as an “analytically-continued” toroidal Lie algebra, since writing
z = ǫt+ iθ, compactifying the θ direction to be valued in [0, 2π], and subsequently
taking ǫ→ 0 reduces it to a two-toroidal Lie algebra.

In addition, bulk correlation functions of Wilson lines in the four-dimensional
Chern-Simons theory can be captured by boundary correlation functions of local
operators in the three-dimensional WZW model, at least up to order ~2 in per-
turbation theory. The relevant operators are depicted in Figure 1, where R1 and
R2 denote representations of G. In particular, I reproduced the leading nontrivial
contribution to the rational R-matrix purely from the boundary theory, i.e., by
computing the four-point function
(3)

〈g−1
R1

(0, z1)gR1
(π, z1)⊗g−1

R2
(π/2, z2)gR2

(3π/2, z2)〉 = 1+
~

z1 − z2
T a
R1

⊗TR2a+O(~
2).
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g−1
R1

(0, z1, z̄1)gR1
(π, z1, z̄1)

g−1
R2

(π2 , z2, z̄2)

gR2
(3π2 , z2, z̄2)

Figure 1

Moreover, the bulk topological symmetry onD is manifest at the boundary at order
~, and the result (3) holds for Wilson lines that are crossed in any configuration,
not just the perpendicular one. Agreement up to order ~2 holds as well, modulo
the framing anomaly. The six-point functions corresponding to configurations of
three simultaneously crossed Wilson lines depicted in Figure 2 were also computed
up to order ~2, modulo the framing anomaly, and were shown to agree with the
bulk computations.

(a) (b)

Figure 2

An open question is whether these results can be generalized to derive trigono-
metric and elliptic R-matrices (note that 3d WZW models for other choices of ω
can be obtained by generalizing the methods of [3]). It might also be possible to
study the 2d chiral WZW model analogously, and obtain the R-matrix of Uq(g)
(cf. Nanna Aamand’s talk). Finally, the 3d WZW model might be able to realize
known factorizations of the rational R-matrix described in Sachin Gautam’s talk.
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A geometric R-matrix for the Hilbert scheme of points on a
general surface

Noah Arbesfeld

In [4], it is explained how to use the representation theory of quantum groups
to describe structures in the enumerative geometry of Nakajima quiver varieties.
A key ingredient is an R-matrix acting in equivariant cohomology, constructed
geometrically using correspondences called stable envelopes. The R-matrix gives
rise to a quantum group called the Yangian; it is shown in [4] that this Yangian’s
Baxter subalgebras can be identified with the operators of quantum multiplication
by tautological divisors in the corresponding quiver variety.

In this project, we extend a portion of this package beyond the setting of Naka-
jima quiver varieties. The stable envelope construction of the R-matrix in [4]
requires that the underlying variety carries both a symplectic form and a large
automorphism group, which need not be the case for a general variety. However,
for the Hilbert scheme of points on C2, an alternative construction of the R-matrix
is given in [4, Ch. 13] using the language of conformal field theory. We adapt this
construction to produce R-matrices for the Hilbert scheme of points on a general
surface. We also show that classical multiplication by the tautological divisor in
the Hilbert scheme coincides with a Baxter subalgebra of the associated Yangian.

1. Construction

Let S be a surface that is either proper, or admits an action of a non-trivial torus
T such that the fixed locus ST is proper. We then equip H∗

T (S) with the structure
of a Frobenius algebra over Frac(H∗

T (pt)), with trace given by ǫ(γ) := −
∫
S
γ.

Let Hilb(S) = ⊔n≥0Hilbn(S) and let αm(γ), for m ∈ Z and γ ∈ H∗
T (S), be the

generators of the Heisenberg algebra of [2] and [5] acting on H∗
T (Hilb(S)). These

operators are given by correspondences and satisfy the supercommutator relations

[αn(γ), αn′(γ′)] = δn+n′nǫ(γγ′).

Let FS denote the Heisenberg module H∗
T (Hilb(S)). We regard FS a Fock space

with lowest weight vector |∅〉 ∈ H0(Hilb0S).
As defined, the Heisenberg action leaves the action of the “zero modes” α0(γ)

ambiguous. Taking advantage of this ambiguity, we introduce a formal parameter
u, we let FS(u) denote FS ⊗ C(u) where α0(γ) scales FS by −uǫ(γ).

The desired R-matrix will be defined in terms of the modified generators

α−
n (γ) :=

1√
2
(αn(γ)⊗ 1− 1⊗ αn(γ))

acting in FS(u1)⊗FS(u2) := F (S)⊗2⊗C(u1, u2) and will be a function of u1−u2.
We use the Feigin-Fuchs construction to obtain a Virasoro algebra action on

FS(u1) ⊗ FS(u2). Adjoin a parameter κ to the ground field. Then, if ∆γ =
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∑
i γ

(1)
i ⊗ γ

(2)
i , set

Ln(γ, κ) =
1

2

∑

m∈Z

∑

i

: α−
m(γ

(1)
i )α−

n−m(γ
(2)
i ) : − κ√

2
nα−

n (γ)− δn
κ2

4
ǫ(γ).

By [3, Thm 3.3], the operators Ln(γ, κ) satisfy the following Virasoro relation

[Ln(γ, κ), Ln′(γ′, κ)] = (n− n′)Ln+n′(γγ′, κ) + δn+n′

n3 − n

12
ǫ(γγ′(c2(S)− 6κ2)).

(1)

For generic κ and u1−u2, the Virasoro operators applied to |∅〉⊗|∅〉 ∈ FS(u1)⊗
FS(u2) generate an irreducible lowest weight module with

L0(γ, κ)|∅〉 ⊗ |∅〉 = 1

4
(2(u2 − u1)

2 − κ2)ǫ(γ)|∅〉 ⊗ |∅〉.(2)

The argument of ǫ in (1) plays the role of the central charge, while the scalar in
(2) plays the role of lowest weight. Observe that both of these quantities are even
functions of κ. We may therefore define R(u1 − u2) to be the unique operator in
FS(u1)⊗ FS(u2) which fixes the vacuum |∅〉 ⊗ |∅〉, and satisfies

R(u1 − u2)Ln(γ, κ) = Ln(γ,−κ)R(u1 − u2),

R(u1 − u2)(αn(γ)⊗ 1 + 1⊗ αn(γ)) = (αn(γ)⊗ 1 + 1⊗ αn(γ))R(u1 − u2)

for all n and γ.

2. Results

Theorem 1. The operator R(u) satisfies the Yang-Baxter equation with spectral
parameter.

This result is proved for S = C2 in [4, Thm. 14.3.1]; the proof for general S
uses this special case. The quantum inverse scattering method then produces a
Yangian YS with an action on ⊕iF

⊗i
S .

The matrix elements of R(u) also encode multiplication by Chern classes of the
tautological bundle.

Theorem 2. For n ≥ 0, let x1, . . . , xn be the Chern roots of the tautological bundle
O[n] on Hilbn(S). Then, the vacuum matrix element

|∅〉 ⊗H∗
T (Hilbn(S)) → |∅〉 ⊗H∗

T (Hilbn(S))

of the normalized operator R(u/
√
2) is equal to multiplication by

n∏

i=1

u− xi
u− κ− xi

.

Given a non-trivial line bundle L on S, one can modify the action of the zero
modes in the construction of R(u) to a produce a new operator which does not
solve the Yang-Baxter equation, but does satisfy an analog of Theorem 2 where
O[n] is replaced by L[n].
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3. Open questions

(1) What portion of the quantum cohomology of Hilb(S) is controlled by the
Yangian YS? This question seems most tractable when S is a K3 surface.

(2) Taking inspiration from the level of generality of [1], note that the con-
structions in Section 1.1 can still be carried out if H∗

T (S) is replaced by the
cohomology of a higher-dimensional variety or, more generally, a graded
supercommutative Frobenius algebra A. Does Theorem 1.1 still hold in
this more general setting? Either an affirmative or a negative answer would
be interesting.
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Département de Mathématiques
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