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Abstract. Combinatorial Optimization deals with optimization problems
defined on combinatorial structures such as graphs and networks. Moti-
vated by diverse practical problem setups, the topic has developed into a
rich mathematical discipline with many connections to other fields of Math-
ematics (such as, e.g., Combinatorics, Convex Optimization and Geometry,
and Real Algebraic Geometry). It also has strong ties to Theoretical Com-
puter Science and Operations Research. A series of Oberwolfach Workshops
have been crucial for establishing and developing the field. The workshop we
report about was a particularly exciting event—due to the depth of results
that were presented, the spectrum of developments that became apparent
from the talks, the breadth of the connections to other mathematical fields
that were explored, and last but not least because for many of the particiants
it was the first opportunity to exchange ideas and to collaborate during an
on-site workshop since almost two years.
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Introduction by the Organizers

The workshop has been organized by Karen Aardal (Delft), Ola Svensson (Lau-
sanne), Satoru Iwata (Tokyo), and Volker Kaibel (Magdeburg). It was held in a
hybrid format with 31 on-site participants and 17 remote participants. Most par-
ticipants were affiliated with Mathematics departments and some with Computer
Science or Operations Research (Economics) departments. All remote particpiants
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were located either in Europe or in the U.S., some of them at the U.S. west coast
with a time difference of 9 hours to local time at Oberwolfach. This situation
imposed quite a challenge w.r.t. determining a reasanable time schedule for the
workshop, which we tried to meet by introducing night sessions at 20:00. In order
to nevertheless reserve enough time to discuss and to collaborate, in the mornings
we scheduled only one session right after breakfast, followed by a longer break
including lunch.

The workshop proved that the field of Combinatorial Optimzation is extremely
active and growing, also in terms of establishing more and more connections to
other mathematical fields. We provide some insight about examples of topics
that played central roles by sketching the topics of the five focus lectures of 60-90
minutes length that were delivered upon invitation of the organizers.

Nathan Klein reported about spectacular progress that has been made by
him and his coauthors Anna Karlin and Shayan Oveis Gharan on the traveling
salesman problem (TSP). After the question whether there is a better-than 1.5-
approximation algorithm for the metric TSP had been open (and urgent) since
Christofides came up with his famous algorithm more than 45 years ago, they
eventually managed to design an algorithm that indeed beats that barrier (by
10−37). The algorithm is based on constructing from an optimal solution to the
subtour relaxation an appropriate probability distribution from which a spanning
tree is sampled. While this algorithmic approach had been pursued before, the
breakthrough resulted in particular from a deepened understanding of the class of
distributions that are relevant here.

The traveling salesman problem is related to survivable network design problems
where we wish to find a cheap subgraph that has certain connectivity requirements.
In their focus lecture, Vera Traub and Rico Zenklusen gave an overview of their
recent progress on such problems. This progress has been achieved by combining
deep insights into the structure of linear programming relaxations with smart
combinatorial techniques. This combination has allowed them to overcome decade-
old difficulties and to give improved algorithms for several fundamental problems.
In particular, they gave a detailed explanation of their new local search based
algorithms for the weighted tree augmentation and steiner tree problems. For the
weighted tree augmentation problem they achieve an approximation guarantee of
3/2 (surpassing the old barrier of 2) and for the Steiner tree problem they gave a
much cleaner proof of the state-of-the-art guarantee.

The concept of extended formulations has receieved a lot of attention during
the last 10-15 years. The approach here is to express polytopes that are naturally
associated with combinatorial optimization problems as projections of higher di-
mensional polytopes that can be described much easier than the original ones. For
many concrete optimization problems this has been done very succesfully, for oth-
ers it has been proved that it is impossible to significantly reduce the complexity
of the representation in this way. In any case, the approach raises fundamental
extremal questions within the general theory of convex polytopes. In her focus
lecture, Lisa Sauermann explained results (jointy obtained with Matthew Kwan



Combinatorial Optimization 2895

and Yufei Zhao) on the extension complexity (the smallest number of inequalities
in an extended formulation) of random polytopes in fixed dimensions. They not
only obtained remarkably sharp estimates (showing, e.g., that in fixed dimensions
the extension complexity of the convex hull of n random points on a sphere grows
proportionally to

√
n with probability tending to one), but they also introduced

novel methods for constructing extended formulations that hopefully can be useful
in other situations as well.

Nima Anari reported about the solution of a problem that had been posed
by Mihail and Vazirani some 30 years ago: The graphs of the base polytopes of
matroids have edge expansion at least one. This implies that random walks on
those graphs are rapidly mixing, which opens up possibilities for generating ran-
dom bases of matroids efficiently. For general 0/1-polytopes, the corresponding
conjecture remains open. The lecture discussed several special cases and variations
of that general conjecture, in particular such ones that seem promosing for imply-
ing efficient random generation algorithms as well, thus providing very interesting
directions for the future research in this area.

Sebastian Pokutta provided an overview of interplay between machine learn-
ing and discrete optimization. Various machine learning tasks can be formulated
in terms of discrete optimization. The topics of this direction include best sub-
set selection, optimal classification trees, network verification, and rate-distortion
explanation. In the opposite direction, one can think of using machine learning
techniques for solving discrete optimization problems. One example is to train a
reinforcement learning agent to select good branching variables or cuts for solv-
ing integer programs. Another approach is to solve mixed integer programs with
neural networks. His explanation on reinforcement learning demonstrated an ani-
mation of a game situation, which was very interesting and entertaining as well.

Next to those five focus lectures there were 25 talks of 30 minutes length each,
both from on-site as well as from remote participants. You find details on the entire
program below, including descriptions of the problems that have been posed and
discussed during two open problem sessions.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Jesús de Loera (UC Davis) in the “Simons Visiting
Professors” program at the MFO.
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On complete classes of valuated matroids . . . . . . . . . . . . . . . . . . . . . . . . . . . 2913

Daniel Dadush (joint with Sander Borst, Sophie Huiberts, Samarth Tiwari)
On the Integrality Gap of Binary Integer Programs with Gaussian Data 2913

Giacomo Zambelli (joint with Daniel Dadush, László A. Végh)
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Abstracts

Submodular k-Partitioning and Hypergraph k-Cut

Chandra Chekuri

(joint work with Karthik Chandrasekaran)

Submodular k-Partition is the following problem: given a submodular set func-
tion f : 2V → R and an integer k, find a partition of V into k non-empty parts

V1, V2, . . . , Vk to minimize
∑k

i=1 f(Vi). Several interesting problems such as Graph
k-Cut, Hypergraph k-Cut and Hypergraph k-Partition are special cases. Submod-
ular k-Partition admits a polynomial-time algorithm for k = 2, 3 and when f is
symmetric also for k = 4. The complexity is open for k = 4, and when f is
symmetric for k = 5. Motivated by this problem, we examined the complexity of
Hypergraph k-Cut which recently admitted a randomized polynomial-time algo-
rithm for any fixed k. We obtained a deterministic polynomial-time algorithm for
Hypergraph k-Cut as well as new insights into Graph k-Cut [1]. The ideas also led
to a polynomial-time algorithm for Min-Max Symmetric Submodular k-Partition
for any fixed k [2]. The talk will discuss these results with the goal of highlighting
the open problem of resolving the complexity of Submodular k-Partition.

References

[1] K. Chandrasekaran and C. Chekuri, Hypergraph k-Cut for fixed k in deterministic polyno-
mial time, To appear in Mathematics of OR. Preliminary version in Proc. of IEEE FOCS,
2020.

[2] K. Chandrasekaran and C. Chekuri, Minmax Partitioning of Hypergraphs and Symmetric
Submodular Functions, Proc. of ACM-SIAM SODA, 2021.

The Two-Stripe Symmetric Circulant TSP is in P

David P. Williamson

(joint work with Samuel C. Gutekunst, Billy Jin)

The symmetric circulant TSP is a special case of the traveling salesman problem
in which edge costs are symmetric and obey circulant symmetry. Despite the sub-
stantial symmetry of the input, remarkably little is known about the symmetric
circulant TSP. The complexity of the problem has been an often-cited open ques-
tion. Considerable effort has been made to understand the case in which only edges
of two lengths a1 and a2 are allowed to have finite cost: the two-stripe symmetric
circulant TSP (see Greco and Gerace [2] and Gerace and Greco [1]). In this paper,
we resolve the complexity of the two-stripe symmetric circulant TSP, providing
the first step toward resolving the polynomial-time solvability of circulant TSP.
To do so, we reduce two-stripe symmetric circulant TSP to the problem of finding
certain minimum-cost Hamiltonian paths on cylindrical graphs. We then solve
this Hamiltonian path problem. Our results show that the two-stripe symmetric
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circulant TSP is in P. Note that the input size of a two-stripe symmetric circu-
lant TSP instance is a constant number of numbers (including n, the number of
cities), so that a polynomial-time algorithm for the decision problem must run in
time polylogarithmic in n, and a polynomial-time algorithm for the optimization
problem cannot output the tour. We address this latter difficulty by showing that
the optimal tour must fall into one of two parameterized classes of tours, and that
we can output the class and the parameters in polynomial time.

References

[1] I. Gerace and F. Greco. The travelling salesman problem in symmetric circulant matrices
with two stripes. Mathematical Structures in Computer Science, 18(1):165–175, 2008.

[2] F. Greco and I. Gerace. The traveling salesman problem in circulant weighted graphs with
two stripes. Electronic Notes in Theoretical Computer Science, 169:99–109, 2007.

Better ATSP approximation, even on graphs

Jens Vygen

(joint work with Vera Traub)

In previous work we reduced the approximation ratio for ATSP from 506 [2] to
22 + ǫ, for any ǫ > 0 [4]. Now we could improve it further to 17 + ǫ. The core
is a better approximation algorithm for Graph ATSP, for which we improve the
approximation ratio from 13+ ǫ [3] to 8+ ǫ. Our two new ingredients are a better
potential function for re-intializing Svensson’s algorithm [1] and an algorithm for
subtour cover with a better local guarantee.

References

[1] O. Svensson, Approximating ATSP by relaxing connectivity, Proceedings of the 56th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2015), 1–19

[2] O. Svensson, J. Tarnawski, and L. Végh, A constant-factor approximation algorithm for the
asymmetric traveling salesman problem, Journal of the ACM 67 (2020), Article 37

[3] V. Traub: Approximation Algorithms for Traveling Salesman Problems, PhD thesis, Uni-
versity of Bonn 2020

[4] V. Traub, and J. Vygen [2020]: An improved approximation algorithm for the asymmetric
traveling salesman problem., SIAM Journal on Computing 51 (2022), 139–173 (Preliminary
version in STOC 2020)

Sparse PSD approximation of the PSD cone

Santanu S. Dey

(joint work with Grigoriy Blekherman, Marco Molinaro, Kevin Shu,
Shengding Sun)

While semidefinite programming (SDP) problems are polynomially solvable in the-
ory, it is often difficult to solve large SDP instances in practice. One technique to
address this issue is to relax the global positive-semidefiniteness (PSD) constraint
and only enforce PSD-ness on smaller k × k principal submatrices – we call this
the sparse SDP relaxation. Surprisingly, it has been observed empirically that in
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some cases this approach appears to produce bounds that are close to the optimal
objective function value of the original SDP. In this talk, we formally attempt to
compare the strength of the sparse SDP relaxation vis-‘a-vis the original SDP from
a theoretical perspective.

In order to simplify the question, we arrive at a data independent version of it,
where we compare the sizes of SDP cone and the k-PSD closure, which is the cone
of matrices where PSDness is enforced on all k× k principal submatrices (denoted
as Sn,k). In particular, we investigate the question of how far a matrix of unit
Frobenius norm in the k-PSD closure can be from the SDP cone. Formally, let

distF (Sn,k,Sn+) = supM∈Sn,k,‖M‖F≤1infN∈Sn
+
‖M −N‖F .

We provide the following two incomparable upper bounds on this farthest distance
distF (Sn,k,Sn+) as a function of k and n:

Theorem 1. [1] Let 2 ≤ k ≤ n be integers. Then:

distF (Sn,k,Sn+) ≤
n− k

n+ k − 2
.

Theorem 2. [2] Let 2 ≤ k ≤ n be integers. Then:

distF (Sn,k,Sn+) ≤
(n− k)3/2√

(n− k)2 + (n− 1)k2
.

The second upper bound is based on the key insight that there is a convex cone
H(enk) so that if X ∈ Sn,k, then the vector of eigenvalues of X is contained in
H(enk). The cone H(enk ) is the hyperbolicity cone of the elementary symmetric
polynomial enk (where enk(x) =

∑
S⊆[n]:|S|=k

∏
i∈S xi) with respect to the all ones

vector.
We also provide the following matching lower bounds, which show that the

upper bounds are tight within a constant in different regimes of k and n.

Theorem 3. [1] Let 2 ≤ k ≤ n be integers. Then:

distF (Sn,k,Sn+) ≥
n− k√

(k − 1)2 n+ n(n− 1)
.

Other than linear algebra techniques, we extensively use probabilistic methods
to arrive at these bounds. The second lower bound is obtained by observing a
connection between matrices in the k-PSD closure and matrices satisfying the
restricted isometry property (RIP).

Finally, we also prove the following result.

Theorem 4. [1] Let 2 ≤ k ≤ n be integers such that k = rn and r < 1
93 . The:

distF (Sn,k,Sn+) ≥
√
r − 93r2√
162r + 3

.

We also prove the following result.
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Theorem 5. [1] Let 2 ≤ k ≤ n− 1. Consider ǫ, δ > 0 and let

m = 24

(
n2

ǫ2
ln
n

δ

)
.

Let I = (I1, . . . , Im) be a sequence of random k-sets independently uniformly sam-

pled from
(
[n]
k

)
, and define SI as the set of matrices satisfying the PSD constraints

for the principal submatrices indexed by the Ii’s, namely

SI := {M ∈ R
n×n |MIi � 0, ∀i ∈ [m]}.

Then with probability at least 1− δ we have

distF (SI ,Sn+) ≤ (1 + ǫ)
n− k

n+ k − 2
.

References

[1] G. Blekherman, S.S. Dey, M. Molinaro, S. Sun, Sparse PSD approximation of the PSD cone,
Mathamatical Programming (2020), https://doi.org/10.1007/s10107-020-01578-y.

[2] G. Blekherman, S.S. Dey, K. Shu, S. Sun, Hyperbolic Relaxation of -kLocally Positive Semi-
definite Matrices, arXiv preprint arXiv:2012.04031 (2020).

Uniqueness, continuity and long-term behaviour of Nash flows
over time

Neil Olver

(joint work with Leon Sering, Laura Vargas Koch)

We consider a dynamic model of traffic that has received a lot of attention in the
past few years. Users control infinitesimal flow particles aiming to travel from a
source to destination as quickly as possible. Flow patterns vary over time, and
congestion effects are modeled via queues, which form whenever the inflow into a
link exceeds its capacity. This model was first studied from an algorithmic per-
spective by Koch and Skutella [3], who uncovered the key structure of equilibria
in this model. The precise analytic foundations of the model, as well as a demon-
stration of the existence of equilibria, followed in work of Cominetti, Correa and
Larré [1]. Despite lots of interest, some very basic questions remain open; we
resolve a number of them.

• We show uniqueness of journey times in equilibria.
• We show continuity of equilibria: small perturbations to the instance or
to the traffic situation at some moment cannot lead to wildly different
equilibrium evolutions.

• We demonstrate that, assuming constant inflow into the network at the
source, equilibria always settle down into a “steady state” in which the
behavior extends forever in a linear fashion.
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One of our main conceptual contributions is to show that the answer to the first
two questions, on uniqueness and continuity, are intimately connected to the third.
Our result also shows very clearly that resolving uniqueness and continuity, despite
initial appearances, cannot be resolved by analytic techniques, but are related to
very combinatorial aspects of the model.

To resolve the third question, we substantially extend the approach of [2], who
show a steady-state result in the regime where the input flow rate is smaller than
the network capacity. In essence, the key is to construct an appropriate potential,
but it is far from clear what it should be. Linear programming duality plays a
starring role in uncovering the correct choice.

References

[1] R. Cominetti, J. Correa, and O. Larré. Dynamic equilibria in fluid queueing networks.
Operations Research, 63(1):21–34, 2015.

[2] R. Cominetti, J. Correa, and N. Olver. Long-term behavior of dynamic equilibria in fluid
queuing networks. Operations Research, published online, 2021.

[3] R. Koch and M. Skutella. Nash equilibria and the price of anarchy for flows over time.
Theory of Computing Systems, 49(1):71–97, 2011.

Better-Than-2 Approximations for Weighted Tree Augmentation and
Connections to Steiner Tree

Vera Traub, Rico Zenklusen

Augmentation problems ask about the cheapest way to increase the (edge-)connec-
tivity of a graph by adding edges among a given set of options. One of the most
elementary and intensely studied augmentation problems is (Weighted) Tree Aug-
mentation. Here, a spanning tree has to be augmented into a 2-edge-connected
graph. We give the first approximation algorithms for Weighted Tree Augmenta-
tion that beat the longstanding approximation factor of 2, which can be achieved
through many standard techniques. More precisely, we present a relative greedy
approach and a local search procedure that can be interpreted as a refinement
thereof, leading to a (1.5 + ǫ)-approximation. Moreover, we show how ideas of
our local search approach extend to Steiner Tree, leading to an alternative way
to obtain the currently best approximation factor of ln 4 + ǫ. Contrary to prior
methods, our approach is purely combinatorial without the need to solve an LP.
Nevertheless, the solution value can still be bounded in terms of the well-known
hypergraphic LP, leading to an alternative, and arguably simpler, technique to
bound its integrality gap by ln 4.

References

[1] V. Traub and R. Zenklusen. A Better-Than-2 Approximation for Weighted Tree Augmen-
tation. In Proceedings of the 62nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2021. To appear. https://arxiv.org/abs/2104.07114.

[2] V. Traub and R. Zenklusen. Local Search for Weighted Tree Augmentation and Steiner Tree.
In Proceedings of the 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), 2021.
To appear. https://arxiv.org/abs/2107.07403.
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Dyadic linear programming

Gérard Cornuéjols

(joint work with Ahmad Abdi, Bertrand Guenin, Levent Tuncel)

A rational number is dyadic if it is an integer multiple of 1
2k

for some nonnegative
integer k. Dyadic numbers are important for numerical computations because
they have a finite binary representation, and therefore they can be represented
exactly on a computer in floating-point arithmetic. When real or rational numbers
are approximated by dyadic numbers on a computer, approximation errors may
propagate and accumulate throughout the computations. So it is natural to ask
when linear programs have dyadic optimal solutions. A vector x is dyadic if all its
entries are dyadic rational numbers.

A dyadic linear program is an optimization problem of the form

sup
{
w⊤x : Ax ≤ b, x dyadic

}

where A, b, w have integral entries.
Note that we do not restrict ourselves to fixed precision; we just require a finite

number of bits in the binary representation. This is an important point as we
will see that it makes the problem tractable. On the other hand, if the vector x
in the dyadic linear program were restricted to be of the form y

2k
for an integral

vector y and a nonnegative integer k bounded above by a given value K, then the
problem would be a classical integer linear program. Indeed the problem can then
be written as max

{
w⊤x : Ax ≤ b, x = y

2K , y integral
}
.

Some natural questions about dyadic linear programs are: When is the problem
feasible? Can we check feasibility in polynomial time? If the problem is infeasible,
can we provide a certificate of infeasibility? When does a dyadic linear program
have an optimal solution? For example, in dimension one, sup {x : 3x≤ 1, x dyadic}
does not have an optimal solution. Can dyadic linear programs be solved in poly-
nomial time? When can we guarantee that the dual also has a dyadic optimal
solution? This paper addresses these questions. In particular, we show that dyadic
linear programs can be solved in polynomial time.

Much of this work can be extended to p-adic linear programming. Given a prime
integer p ≥ 2, a rational number is p-adic if it is of the form q

pk
for some integer

q and nonnegative integer k. A p-adic linear program requires the entries of the
solution vector x to be p-adic. p-adic numbers give rise to interesting mathematics;
see Gouvêa [1] for example. For ease of exposition, this paper focuses on dyadic
linear programming.

We prove the following key lemma. A nonempty rational polyhedron contains
a dyadic point if, and only if, its affine hull contains a dyadic point.

It is therefore useful to characterize when a system of linear equations Ax = b
has a dyadic solution. As earlier, we assume that A, b have integral entries. We
show that exactly one of the following statements holds:
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(1) Ax = b has a dyadic solution,
(2) there exists a vector y ∈ R

m such that y⊤A is integral and y⊤b is non-
dyadic.

This is the analog of a classical theorem of the alternative for integer equations
(sometimes called the ”integer Farkas lemma”), stating that, if A, b have integral
entries, exactly one of the following statements holds:

(1) Ax = b has an integral solution,
(2) there exists a vector y ∈ R

m such that y⊤A is integral and y⊤b is not
integer.

Putting the two above results together, we get a theorem of the alternative
for a polyhedron: Let P be a nonempty rational polyhedron whose affine hull is
{x : Ax = b}, for some A, b with integral entries. Then exactly one of the following
statements holds:

(1) P contains a dyadic point,
(2) there exists a vector y such that y⊤A is integral and y⊤b is non-dyadic.

We show that there are four possible outcomes for a dyadic linear program:
(i) it is infeasible, (ii) it is unbounded, (iii) it has an optimal solution, (iv) it is
not unbounded, has feasible solution(s) and a finite optimal value, but no optimal
solution.

In each case, we provide a concise certificate for that outcome. In particular,
we give an optimal solution if one exists. We present polynomial algorithms to
generate these certificates. In other words, we show how to solve dyadic linear
programs in polynomial time.

We also consider dyadic linear programs where the constraints are available
through a separation oracle, as well as the situation where the columns of the
constraint matrix are accessed through column generation. In each case, we show
how to obtain polynomial-time algorithms.

We then introduce the notion of a dyadic polyhedron: A nonempty rational
polyhedron is dyadic if every nonempty face contains a dyadic point. We prove
that a polyhedron P is dyadic if and only if, for every integral vector c for which
max{c⊤x : x ∈ P} has an optimal solution, it has an optimal dyadic value.

A system of inequalities Ax ≤ b is Totally Dual Dyadic if for every integral c
for which min{b⊤z : A⊤z = c, z ≥ 0} has an optimal solution, it has an optimal
solution that is dyadic. In Section 4, we characterize such systems in terms of
dyadic generating sets for subspaces and cones. We prove that Totally Dual Dyadic
linear systems give rise to dyadic polyhedra.
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Online Edge Coloring via Tree Recurrences and Correlation Decay

Jakub Tarnawski

(joint work with Janardhan Kulkarni, Yang P. Liu, Ashwin Sah,
Mehtaab Sawhney)

Given a graph G = (V,E) with maximum degree ∆, the edge coloring problem
is to assign colors to edges such that any two edges sharing a common vertex get
different colors. A well-known theorem by Vizing [7] says that every graph can be
edge-colored using ∆+ 1 colors.

Bar-Noy, Motwani, and Naor [3] initiated the study of edge coloring in the
online setting. Here, the online algorithm has knowledge of the vertex set V of
the graph and the maximum degree ∆. However, the edges are revealed one by
one, and the online algorithm has to irrevocably assign a color to each newly
arriving edge. The goal is to minimize the number of colors used by the online
algorithm while maintaining a valid edge coloring of the graph at all time steps.
In the original paper, [3] showed that for graphs with maximum degree O(log n),
no online algorithm can maintain a proper coloring using fewer than 2∆− 1 colors
— a trivial bound achieved by the greedy algorithm which simply assigns every
arriving edge any color that is not used at either endpoint. However, this result
only applies to graphs with logarithmic maximum degree. Consequently, the focus
has shifted to the much more interesting regime of ∆ = ω(logn). In this regime,

[3] conjectured that the online algorithm that uses ∆ + O(
√
∆ logn) colors and

samples a color for each edge uniformly at random from the set of valid colors
succeeds with constant probability. However, we do not know how to analyze
this algorithm or give any online algorithm that beats the competitive ratio of
2 achieved by the trivial greedy algorithm; this has been raised as a challenging
open problem by all subsequent works.

A competitive ratio of 1+o(1) is achievable in important special cases: random-
order (instead of adversarial-order) edge arrival [1, 2, 4] and one-sided vertex
arrivals (instead of edge arrivals) for bipartite graphs [5]. Very recently, a compet-
itive ratio of 1.9 was obtained by Saberi and Wajc [6] for general vertex arrivals
on graphs of maximum degree ω(logn). Despite these impressive results, no algo-
rithm was known to beat the competitive ratio of 2 in the most general setting of
online edge arrivals. The main result of this paper makes the first progress in this
direction.

Theorem 1. There is an online randomized algorithm that on a graph with max-

imum degree ∆ = ω(logn) outputs an
(

e
e−1 + o(1)

)
∆-edge coloring with high

probability in the oblivious adversary setting.

Our proof of the theorem is based on reducing the problem to a matching
problem on locally treelike graphs, and then applying a tree recurrences based
approach for arguing correlation decay.

We believe that both our algorithm and its analysis are quite simple.
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Correlation decay is a well known and widely used technique in the statistical
physics and sampling literature, but was not applied to online problems previously.
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Stable matchings, lattices, and polytopes

Yuri Faenza

(joint work with Xuan Zhang)

Since Gale and Shapley’s seminal publication [8], the concept of stability in match-
ing markets has been widely studied by the optimization community. In this work,
matching markets have two sides, which we call firms F and workers W . In the
classical marriage model, every agent from F ∪W has a strict preference list that
ranks agents in the opposite side of the market. The goal is to find a stable match-
ing, which is a matching where no pair of agents prefer each other to their assigned
partners. A stable matching can be found efficiently via the Deferred Acceptance
(DA) algorithm [8]. Although successful, the marriage model does not capture
important features such as diversity in school cohorts [12, 15].

To model these and other features, instead of ranking individual potential part-
ners, each agent a ∈ F ∪W is endowed with a choice function Ca that picks a
collection of agents she prefers the best from a given set of potential partners.
Models with choice functions were first studied in [10, 13]. Mutatis mutandis, one
can define a concept of stability in this model as well. Two classical assumptions
on choices functions are substitutability and consistency, under which the exis-
tence of stable matchings is guaranteed [7, 2]. Clearly, existence results are not
enough for applications (and for optimizers). Little is known about algorithms in
models with choice functions: only extensions of the classical Deferred Acceptance
algorithm for finding the one-side optimal matching have been studied [5, 13].
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The goal of our work is to study algorithms for optimizing a linear function w
over the set of stable matchings in models with choice functions, where w is defined
over firm-worker pairs. Such questions are classical in combinatorial optimization,
see, e.g., [14] (and [11] for problems on matching markets). We focus on the QF-

Model, that assumes that all choice functions are substitutable, consistent, and
quota-filling. The QF-Model generalizes all classical models where agents have
strict preference lists, on which results for the question above were known. The
stable matchings in this model can be arranged as to form a distributive lattice [1].

Our contributions and techniques. All sets considered in this paper are finite.
Let L = (X ,�) be a distributive lattice, where the elements of X are distinct
subsets of a base set E and � is a partial order on X . We refer to S ∈ X as an
element (of the lattice). Birkhoff’s theorem [4] implies that we can associate1 to
L a poset B = (Y,�⋆) such that there is a bijection ψ : X → U(B), where U(B)
is the family of upper sets of B. U ⊆ Y is an upper set of B if y ∈ U and y′ �⋆ y
for some y′ ∈ Y implies y′ ∈ U . We say therefore that B is a representation poset
for L with the representation function ψ. B may contain much fewer elements
than the lattice L it represents, thus giving a possibly “compact” description of
L. The representation poset B and the representation function ψ are univocally
defined per Birkhoff’s theorem. Moreover, the representation function ψ satisfies
that for S, S′ ∈ X , S � S′ if and only if ψ(S) ⊆ ψ(S′). Although B explains how
elements of X are related to each other with respect to �, it does not contain
any information on which items from E are contained in each lattice element. We
introduce therefore Definition 1. For S ∈ X and U ∈ U(B), we write χS ∈ {0, 1}E
and χU ∈ {0, 1}Y to denote their characteristic vectors, respectively.

Definition 1. Let L = (X ,�) be a distributive lattice on a base set E and B =
(Y,�⋆) be a representation poset for L with representation function ψ. B is an
affine representation of L if there exists an affine function g : RY → R

E such

that g(χU ) = χψ
−1(U), for all U ∈ U(B). In this case, we also say that B affinely

represents L via function g and that L is affinely representable.

As we show next, affine representability allows one to efficiently solve linear
optimization problems over elements of a distributive lattice. In particular, it
generalizes properties that are at the backbone of algorithms for optimizing a
linear function over the set of stable matchings in the marriage model and its
one-to-many and many-to-many generalizations (see, e.g., [9, 3]). For instance, in
the marriage model, the base set E is the set of potential pairs of agents from two
sides of the market, X is the set of stable matchings, and for S, S′ ∈ X , we have
S � S′ if every firm prefers its partner in S to its partner in S′.

Lemma 2. Suppose we are given a poset B = (Y,�⋆) that affinely represents a
lattice L = (X ,�) with representation function ψ. Let w : E → R be a linear
function over the base set E of L. Then max{w⊺χS : S ∈ X} can be solved in

1The result proved by Birkhoff is actually a bijection between the families of lattices and
posets, but we shall not need it in full generality.
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time min-cut(|Y |+ 2), where min-cut(k) is the time complexity required to solve
a minimum cut problem with nonnegative weights in a digraph with k nodes.

We want to apply Lemma 2 to the QF-Model. As a choice function may be
defined on all the (exponentially many) subsets of agents from the opposite side,
we model access to choice functions via an oracle model. We let oracle-call be
time required to compute the choice function Ca(X) of any agent a ∈ F ∪W for
any set X in the domain of Ca.
Theorem 3. The distributive lattice (S,�) of stable matchings in the QF-Model

is affinely representable. Its representation poset (Π,�⋆) has O(|F ||W |) elements.
This representation poset, as well as its representation function ψ and affine func-
tion g(u) = Au + x0, can be computed in time O(|F |3|W |3oracle-call). More-
over, matrix A has full column rank.

Theorem 3 is the union of two statements. First, the distributive lattice of stable
matchings in the QF-Model is affinely representable. Second, this representation
and the corresponding functions ψ and g can be found efficiently. From Theorem 3,
Lemma 2 and algorithms for min-cut (see, e.g., [14]), we obtain the following.

Corollary 4. The problem of optimizing a linear function over the set of stable
matchings in the QF-Model can be solved in time O(|F |3|W |3oracle-call).

As a consequence of studying a distributive lattice via the poset that affinely
represents it, one immediately obtains a linear description of the convex hull of
the characteristic vectors of elements of the lattice.

Theorem 5. Let L = (X ,�) be a distributive lattice and B = (Y,�⋆) be a poset
that affinely represents it via function g(u) = Au + x0. Then the extension com-
plexity of conv(X ) := conv{χS : S ∈ X} is O(|Y |2). If moreover A has full column

rank, then conv(X ) has O(|Y |2) facets.
Theorem 3 and Theorem 5 imply the following description of the stable match-

ing polytope, i.e., the convex hull of the characteristic vectors of stable matchings.

Corollary 6. conv(S) has O(|F |2|W |2) facets in the QF-Model.

For examples and extended discussions, we refer to the arXiv version of the
paper [6] and to the Ph.D. thesis of the second author [16].
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Integer programs with bounded subdeterminants and two nonzeros
per row

Samuel Fiorini, Stefan Weltge

(joint work with Gwenaël Joret, Yelena Yuditsky)

Consider integer programs max{c⊺x : Ax ≤ b, x ∈ Z
n} with integer matrices A.

It is an open question whether such integer programs can be solved in polynomial
time if the absolute value of the determinant of every square submatrix of A is
bounded by some constant ∆. In the case ∆ = 1, the matrix A is totally unimodu-
lar and the integer program can be replaced by its linear programming relaxation.
Recently, Artmann, Weismantel & Zenklusen [1] gave a strongly polynomial-time
algorithm for the case ∆ = 2. However, the question is open in the case ∆ ≥ 3.

In this work, we give a strongly polynomial-time algorithm for general constant
∆ under the further requirement that A contains at most two nonzero entries
in each row. The core of our approach is the first polynomial-time algorithm
for the weighted stable set problem on graphs that do not contain more than k
vertex-disjoint odd cycles, where k is any constant. Previously, polynomial-time
algorithms were only known for k = 0 (bipartite graphs) and for k = 1 (implied
by [1]).

We also observe that the case of two nonzeros per column can be also solved in
strongly polynomial-time, using a reduction to b-matching.
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On complete classes of valuated matroids

László Végh

(joint work with Edin Husić, Georg Loho, Ben Smith)

Valuated matroids were introduced by Dress and Wenzel in 1992 [1]. They are a
central object in discrete convex analysis, and play important roles in other areas
such as mathematical economics and tropical geometry. Finding a constructive
characterization, i.e., showing that all valuated matroids can be derived from a
simple class by some basic operations has been a natural question proposed in
various contexts.

Motivated by this, we study the class of R-minor valuated matroids, that in-
cludes the indicator functions of matroids, and is closed under operations such
as taking minors, duality, and induction by network. Our main result exhibits
valuated matroids that are not R-minor.

Valuated matroids are inherently related to gross substitute valuations in math-
ematical economics. By the same token we refute the Matroid Based Valuation
Conjecture by Ostrovsky and Paes Leme from 2015 [2], asserting that every gross
substitute valuation arises from weighted matroid rank functions by repeated ap-
plications of merge and endowment operations. Our result also has implications
in the context of Lorentzian polynomials: it reveals the limitations of known con-
struction operations.
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On the Integrality Gap of Binary Integer Programs with
Gaussian Data

Daniel Dadush

(joint work with Sander Borst, Sophie Huiberts, Samarth Tiwari)

For a binary integer program (IP) max cTx,Ax ≤ b, x ∈ {0, 1}n, where A ∈ R
m×n

and c ∈ R
n have independent Gaussian entries and the right-hand side b ∈ R

m

satisfies that its negative coordinates have ℓ2 norm at most n/10, we prove that the
gap between the value of the linear programming relaxation and the IP is upper
bounded by poly(m)(log n)2/n with probability at least 1−2/n7−2−poly(m). Our
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results give a Gaussian analogue of the classical integrality gap result of Dyer and
Frieze (Math. of O.R., 1989) in the case of random packing IPs. In constrast
to the packing case, our integrality gap depends only polynomially on m instead
of exponentially. Building upon recent breakthrough work of Dey, Dubey and
Molinaro (SODA, 2021), we show that the integrality gap implies that branch-
and-bound requires npoly(m) time on random Gaussian IPs with good probability,
which is polynomial when the number of constraints m is fixed. We derive this
result via a novel meta-theorem, which relates the size of branch-and-bound trees
and the integrality gap for random logconcave IPs.

On finding exact solutions of linear programs in the oracle model

Giacomo Zambelli

(joint work with Daniel Dadush, László A. Végh)

We consider the linear programming in the oracle model, that is, the problem
min{c⊤x : x ∈ P} where the polyhedron P = {x ∈ R

n : Ax ≤ b} is given
by a separation oracle that returns violated inequalities from the system Ax ≤
b. We present an algorithm that finds exact primal and dual solutions using
O(n2 log(n/δ)) oracle calls and O(n4 log(n/δ) + n5 log log(1/δ)) arithmetic opera-
tions, where δ := δ(A,b) is a geometric condition number associated with the matrix
(A, b). Specifically, for a matrix V with rows vi ∈ R

n, i ∈ [m], δV is the largest
value such that, for any set I ⊆ [m] such that the vectors {vi : i ∈ I} are linearly
independent and for every λ ∈ R

I ,
∥∥∥∥∥
∑

i∈I

λivi

∥∥∥∥∥ ≥ δV max
i∈I

|λi| · ‖vi‖ .

This condition number was previously studied in the context of the shadow simplex
algorithm by various authors [1, 3, 5]. The running time bounds above do not
depend on the cost vector c. Furthermore, the algorithm does not require any
knowledge of the problem instance, such as the condition number δ.

The algorithm works in a black box manner, requiring a subroutine for approx-
imate primal and dual solutions; the above running times are achieved when using
the cutting plane method of Jiang, Lee, Song, and Wong [8] for this subroutine.
Other methods can be used, such as the ellipsoid method [7], geometric rescaling
methods [4, 9] or Vaidya’s cutting plane method [10], albeit with worse running
time bounds. Whereas approximate solvers may return primal solutions only, we
develop a general framework for extracting dual certificates based on the work of
Burrell and Todd [2].

Our algorithm works in the real model of computation, and extends results by
Grötschel, Lovász, and Schrijver [7], and by Frank and Tardos [6] on solving LPs in
the bit-complexity model.In particular, our method does not rely on simultaneous
Diophantine approximation.
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[3] D. Dadush, N. Hähnle, On the shadow simplex method for curved polyhedra, Discrete &
Computational Geometry 56 (2016), 882–909.

[4] D. Dadush, L. Vegh, G. Zambelli, Rescaling Algorithms for Linear Conic Feasibility, Math-
ematics of Operations Research 45 (2020), 732–754.

[5] F. Eisenbrand, S. Vempala, Geometric random edge, Mathematical Programming 164
(2017), 325–339.

[6] A. Frank and E. Tardos, An application of simultaneous diophantine approximation in
combinatorial optimization, Combinatorica 7 (1987), 49–65.

[7] M. Grötschel, L. Lovász, A. Schrijver, Geometric methods in combinatorial optimization,
Progress in combinatorial optimization (1984), 167–183.

[8] H. Jiang, Y.T. Lee, Z. Song, S.C. Wong, An improved cutting plane method for convex
optimization, convex-concave games, and its applications, Proceedings of the 52nd Annual
ACM Symposium on Theory of Computing (STOC) (2020), 944–953.

[9] R. Hoberg, T. Rothvoß, An improved deterministic rescaling for linear programming algo-
rithms, Integer Programming and Combinatorial Optimization (IPCO) (2017), 267–278.

[10] P. Vaidya, A new algorithm for minimizing convex functions over convex sets, Mathematical
Programming 73 (1996), 291–341.

Approximate CVP in time 20.802n - now in any norm!

Thomas Rothvoss

(joint work with Moritz Venzin)

A (full rank) lattice is the set L := {Bx | x ∈ Z
n}, where B ∈ R

n×n is a regular
matrix. The two best studied computational problems on lattices are the following:
For the Shortest Vector problem we are given a lattice L (described by a matrix
B) and a norm ‖ · ‖K and the goal is to find the shortest non-zero vector in the
lattice, i.e. min{‖x‖K : x ∈ L\{0}}. For the Closest Vector problem we are given
a lattice L, a norm ‖ ·‖K and a target vector t ∈ R

n. The goal is to find the lattice
vector closest to t, i.e. min{‖x − t‖K | x ∈ L}. We abbreviate SVPp and CVPp
for the case of the norms ‖x‖p := (

∑n
i=1 |xi|p)1/p.

Both SVP and CVP and their respective (approximation) algorithms have found
considerable applications. These include Integer Programming [6, 5], factoring
polynomials over the rationals [7] and cryptanalysis [9]. The problem SVPK can
be solved in time 2O(n) regardless of the norm [1]. The Euclidean norm ‖ · ‖2
allows a faster algorithm with time 2n [2]. In fact, for SVP2 one can find a
constant factor approximation in time 20.802n; then this result can be transfered
to any ‖ · ‖p-norm [4].

For the harder CVP problem, only the case CVP2 can be solved exactly in
single exponential time; the best exact algorithm for any other norm takes time
nO(n). However (1 + ε)-approximations can be obtained for any norm ‖ · ‖K
in time (1/ε)O(n) [3]. Moreover, if one is satisfied with a large constant factor
approximation, then for CVPp and any p ≥ 1, running time 20.802n suffices [4].
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The main contribution of our work is the following:

Theorem 1. For any lattice L ⊆ R
n and any norm ‖ · ‖K on R

n one can find an
O(1)-approximate solution to CVPK and SVPK in time 20.802n and space 20.401n.

The core algorithmic ingredient is the well known sieving procedure due to Ajtai,
Kumar, Sivakumar [1] which can be paraphrased as follows:

Theorem 2. Given ǫ > 0, R > 0, N ∈ N and a lattice L ⊆ R
d of rank n, there is

a randomized procedure that produces independent samples v1, · · · , vN ∼ D, where
the distribution D satisfies the following two properties:

(1) Every sample v ∼ D has v ∈ L and ‖v‖2 ≤ aǫ · R, where aǫ is a constant
only depending on ǫ.

(2) For any s ∈ L with ‖s‖2 ≤ R, there are distributions Ds
0 and Ds

1 and some
parameter ρs with 2−ǫn ≤ ρs ≤ 1 such that the distribution D is equivalent
to the following process:
(a) With probability ρs, sample u ∼ Ds

0. Then, flip a fair coin and with
probability 1/2, return u, otherwise return u+ s.

(b) With probability 1− ρs, sample u ∼ Ds
1.

This procedure takes expected time 2(0.802+ǫ)n + N · 2(0.401+ǫ)n and requires N +
2(0.401+ǫ)n space.

In short: we can generate short lattice vectors whose length is within a constant
factor of a target vector s (most importantly, that vector s does not need to be
known to the algorithm). Moreover a substantial number of returned samples will
be a uniform choice from {u, u+ s} for some lattice vector u.

Note that this procedure works in the specified running time only for the Eu-
clidean norm. Now, given an arbitrary norm ‖ · ‖K, the key obstacle is to approxi-
mate the symmetric convex body K by balls (or ellipsoids). For two convex bodies
A,B ⊆ R

n we define the covering number N(A,B) as the minimum number of
translates of B necessary to cover A. Then we rely on the following deep result
from convex geometry:

Theorem 3 (Milman, Pisier). For any symmetric convex body, after applying a
linear transformation one has

N(K, tBn2 ), N(Bn2 , tK) ≤ exp
(
O(1) · n

t1.99

)
∀t ≥ 1

(in fact, also N(K◦, tBn2 ), N(Bn2 , tK
◦) ≤ exp

(
O(1) · n

t1.99

)
).

Milman proved this statement for t = 1 [8]. The later proof of Pisier for
general t ≥ 1 is non-constructive. However one can modify Milman’s Isomorphic
symmetrization scheme [8] to make it work for any fixed t. We prove:

Theorem 4. Let ε > 0. In time nO(logn) one can bring K in a position so that

N(K,Oε(1) · Bn2 ), N(Bn2 , Oε(1) ·K) ≤ 2εn

Then the algorithm to solve SVPK and CVPK works by transforming the lat-
tice accordingly; then cover K with 2εn many balls and apply the AKS sieving
argument with some care.
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Computing buyer-optimal Walrasian prices in multi-unit matching
markets via a sequence of max flow computations

Britta Peis

(joint work with Katharina Eickhoff, S. Thomas McCormick, Niklas Rieken,
Laura Vargas Koch)

We consider a multi-unit auction market where discrete indivisible items of n
different types, denoted by Ω = {i1, . . . , in}, are sold to a set of m buyers B =
{j1, . . . , jm}. We assume that each product type (or object) i ∈ Ω is available in
a quantity bi ∈ Z+. Each buyer j ∈ B is interested in buying at most dj ∈ Z+

items in total. The goal of the auctioneer is to find a per-unit price p(i) for each

object i, together with an allocation (or assignment) x ∈ Z
Ω×B
+ of items to buyers

such that the prices p and the allocation x satisfy certain desirable properties.
Certainly, the allocation x should be feasible in the sense that at most bi units
are sold of each object i ∈ Ω, and each buyer j buys at most dj items. That is,

x ∈ Z
Ω×B
+ needs to satisfy the feasibility constraints

(1)
∑

j∈B

xij ≤ bi for all i ∈ Ω, and
∑

i∈Ω

xij ≤ dj for all j ∈ B.

The full version of this this extended abstract, which can be found on https://
rwth-aachen.de/oms) is mainly concerned with the case where the buyers have
linear valuations of the objects, i.e., where buyer j ∈ B has a value of vij ∈ Z+
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for each copy of object i ∈ Ω. This value is reduced by the price p(i) that the
auctioneer charges, so the net value (or payoff) of one unit of object i to buyer
j is vij − p(i). For an assignment x ∈ Z

Ω×B we denote the items assigned to
buyer j by x•j . Then, in addition to the feasibility constraints (1), each buyer
j ∈ B should be happy with her allocation x•j , i.e., she should be assigned one of
her preferred bundles under the current prices. That is, x•j should be an optimal
integral solution of the linear program

(LPj) max
x•j

{
∑

i∈Ω

(vij − p(i)) · xij

∣∣∣∣∣
∑

i∈Ω

xij ≤ dj , 0 ≤ xij ≤ bi for all i ∈ Ω

}
.

A feasible assignment where each buyer achieves a preferred bundle is called stable.
Prices which admit a stable allocation are called competitive. Note that competi-
tive prices can easily be achieved. For example, if each price p(i) exceeds the maxi-
mum valuation maxj∈B vij for this item, the prices are competitive since each buyer
achieves a preferred bundle under the assignment where nothing is sold. Thus, the
goal of an auctioneer lies in finding competitive prices which are market-clearing
in the sense that the maximum possible amount D := min{∑i∈Ω bi,

∑
j∈B dj} of

items is sold. Such market-clearing competitive prices are also known asWalrasian
prices. A tuple (p∗, x∗) consisting of Walrasian prices p∗ and an associated stable
allocation x∗ is called Walrasian equilibrium [1].

Special case: housing market. The model we consider generalizes the classical
matching market (a.k.a. housing market) model, which corresponds to the special
case where bi = 1 for all i ∈ S and dj = 1 for all j ∈ B. For such housing markets,
Demange et al. [2] describe an ascending auction which starts at the minimal
possible selling prices (e.g. pi = 0 for all i ∈ Ω) and iteratively raises the prices on
some overdemanded set (“Hall set”) until the prices are market-clearing. By always
raising the prices on an inclusion-wise minimal overdemanded set, Demange et al.
guarantee that the prices are the (unique) component-wise minimal competitive
prices, and that they are market-clearing, thus buyer-optimal Walrasian prices.
A näıve approach to reduce our more general multi-unit auction to a single-unit
auction is via the following copy method : we replace the bi items of object i by
bi copies of a unit object, and replace the dj items demanded by buyer j by dj
unit-item buyers, with the same valuations. Certainly, an ascending auction of
the single-unit instance will return market-clearing prices, but these prices are in
general not buyer-optimal: Consider, for example, one buyer with a demand of
two and two different items with a supply of one which are valued differently by
her, say v = (5, 1). If we copy the buyer, both copies will prefer object 1 until the
price increased to 4. Now both copies of the sole buyer are indifferent between the
objects and thus p = (4, 0) and x = (1, 1) is a Walrasian equilibrium. However,
considering the original situation, since the buyer is alone p = (0, 0) and x = (1, 1)
is the buyer-optimal Walrasian equilibrium. Thus, the prices computed by the
copy method are not buyer-optimal.

More general case: multi-unit auctions with strong substitute valua-
tions. The model we consider fits into the more general model of multi-unit
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auctions on heterogenous indivisible goods with strong substitute valuations func-
tions, as studied by e.g. Ausubel [4] and Murota, Shioura and Yang [3]. It
is known (see, e.g., [4]) that the minimal minimizer of the Lyapunov function
L(p) =

∑
j∈B Vj(p) +

∑
i∈Ω bip(i), where Vj(p) denotes the maximum payoff each

buyer j ∈ B can achieve under prices p, corresponds exactly to the unique buyer-
optimal Walrasian price vector p∗ of such multi-unit auctions. Moreover, the
ascending auction, which starts at all-zero prices and iteratively raises the prices
uniformly by one on the unique minimal minimizer of the submodular function
X → L(p+ χX) for X ⊆ Ω, is known to terminate with the unique buyer-optimal
Walrasian price vector (cf. [4]). Using tools from discrete convexity and the fact
that the definitions of strong substitute and M ♮-concavity are essentially equiva-
lent, Murota, Shioura and Yang [3] show that each price-raising step can be done in
strongly polynomial time. Additionally, [3] provides tight bounds on the number
of iterations of the auction.

Our contributions. In this paper, we focus on multi-unit auctions with linear
valuation functions and demands. For this special case we provide a flow based as-
cending auction. We prove our results independent from the literature on auctions
with strong substitute valuations and discrete convex analysis by using network
flow properties. This enables us to show sensitivity regarding changes in supply
and demand. More concretely, we present an ascending auction which iteratively
raises the prices on the objects in the left-most min cut in an associated auxil-
iary flow network, and prove that the algorithm terminates with component-wise
minimal Walrasian prices. We show how to construct the corresponding stable
allocation where as much as possible is sold, and where every object with positive
price is completely sold. We furthermore show that structural insights obtained
from our flow-based approach lead to several insights regarding the sensitivity
analysis of our ascending auction.
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[Focus] A (Slightly) Improved Approximation Algorithm for
Metric TSP

Nathan Klein

(joint work with Anna Karlin, Shayan Oveis Gharan)

In an instance of TSP we are given a set of n cities V along with their pairwise
symmetric distances, c : V × V → R≥0. The goal is to find a Hamiltonian cycle
of minimum cost. In the metric TSP problem, which we study here, the distances
satisfy the triangle inequality. Therefore, the problem is equivalent to finding a
closed Eulerian connected walk of minimum cost. An algorithm of Christofides-
Serdyukov from four decades ago gives a 3

2 -approximation for TSP. This remained
the best known approximation algorithm for the general case of the problem despite
significant work.

In [1, 2] we prove the following theorem:

Theorem 1. For some absolute constant ε > 10−36, there is a randomized algo-
rithm that outputs a tour with expected cost at most (32 − ε) · c(x), where x is an
optimal solution to the subtour elimination LP for TSP.

The algorithm we analyze is (a slight variant of) the so-called max entropy
algorithm for TSP, introduced by Oveis Gharan, Saberi, and Singh in 2010 [3].
In particular, we first solve the subtour elimination relaxation of TSP to obtain
a point x. Then, we find a distribution of maximum entropy over spanning trees
with marginals x and sample a tree T from this distribution. Finally, similar to
Christofides’ algorithm, we add the minimum cost perfect matching on the odd
degree vertices of the sampled tree.

This theorem also immediately implies that the integrality gap of the subtour
polytope is at most 3

2 − ǫ. We remark that [1] only showed that the max entropy

algorithm has expected cost at most (32 − ε) · OPT ; [2] extended this to compare
against the cost of the LP.

Here we highlight three techniques which are crucial to the analysis of the
algorithm. The analysis is solely concerned with bounding the expected cost of
the matching, and uses the dominant of the O-Join polytope, where O is the set
of odd vertices of the sampled tree T .

The Polygon Structure for Near Minimum Cuts Crossed on one Side.
Let G = (V,E, x) be an undirected graph equipped with a weight function x :
E → R≥0 such that for any cut (S, S) such that u0, v0 6∈ S, x(δ(S)) ≥ 2. For some
(small) η ≥ 0, consider the family of η-near min cuts of G, i.e. sets S such that
x(δ(S)) ≤ 2 + η. Let C be a connected component of crossing η-near min cuts.
Given C we can partition vertices of G into sets a0, . . . , am−1 (called atoms); this
is the coarsest partition such that for each ai, and each (S, S) ∈ C, we have ai ⊆ S
or ai ⊆ S.

Benczúr and Goemans [5, 4] studied the case when η ≤ 6/5 and introduced the
notion of polygon representation, in which case atoms can be placed on the sides of
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an equilateral polygon and some atoms placed inside the polygon, such that every
cut in C can be represented by a diagonal of this polygon.

In this pair of papers, we show that (after a reduction using the polygon repre-
sentation) it suffices to study the structure of edges in a special family of polygon
representations. Suppose we have a polygon representation for a connected com-
ponent C of η-near min cuts of G such that no atom is mapped inside, and if we
identify each cut (S, S) ∈ C with the interval along the polygon that does not
contain a0, then any interval is only crossed on one side (only on the left or only
on the right). Then, we have that for any atom ai, x(δ(ai)) ≤ 2 + O(η) and for
any pair of atoms ai, ai+1, x(E(ai, ai+1) ≥ 1− Ω(η).

Generalized Gurvits’ Lemma. For a real stable polynomial p ∈ R≥0[z1, . . . , zn]
(with non-negative coefficients), Gurvits proved the following inequality:

n!

nn
inf
z>0

p(z1, . . . , zn)

z1 . . . zn
≤ ∂z1 . . . ∂znp|z=0 ≤ inf

z>0

p(z1, . . . , zn)

z1 . . . zn
.

As an immediate consequence, one can prove the following theorem about
strongly Rayleigh distributions, a class of distribution which includes max entropy
trees.

Theorem 2. Let µ : 2[n] → R≥0 be SR and A1, . . . , Am be random variables
corresponding to the number of elements sampled in m disjoint subsets of [n] such
that EAi = ni for all i. If ni = 1 for all 1 ≤ i ≤ n, then P[∀i, Ai = 1] ≥ m!

mm .

One can ask what happens if the vector ~n = (n1, . . . , nm) in the above theorem is
not equal but close to the all ones vector. We show that as long as ||~n−1||1 < 1−ε
then P[∀i, Ai = 1] ≥ f(ε,m) where f(ε,m) has no dependence on n, the number
of underlying elements in the support of µ.

Theorem 3. Let µ : 2[n] → R≥0 be SR and let A1, . . . , Am be random vari-
ables corresponding to the number of elements sampled in m disjoint subsets of
[n]. Suppose that there are integers n1, . . . , nm such that for any set S ⊆ [m],
P∑

i∈S Ai =
∑
i∈S ni ≥ ε. Then,

P[∀i, Ai = ni] ≥ f(ε,m).

Conditioning while Preserving Marginals. Consider a strongly Rayleigh
distribution µ : 2[n] → R≥0 and let x : [n] → R≥0, where for all i, xi = PT∼µ[i ∈ T ],
be the marginals.

Let A,B ⊆ [n] be two disjoint sets such that E[AT ],E[BT ] ≈ 1. It follows from
the above that P[AT = BT = 1] ≥ Ω(1). Here, however, we are interested in a
stronger event; let ν = µ|AT = BT = 1 and let yi = PT∼µ[i ∈ T ]. It turns out
that the y vector can be very different from the x vector, in particular, for some
i’s we can have |yi − xi| bounded away from 0. We show that there is an event
of non-negligible probability that is a subset of AT = BT = 1 under which the
marginals of elements in A,B are almost preserved.
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Theorem 4. Let µ : 2[n] → R≥0 be a SR distribution and let A,B ⊆ [n] be two
disjoint subsets such that E[AT ],E[BT ] ≈ 1. For any α ≪ 1 there is an event EA,B
such that PEA,B ≥ Ω(α2) and

• PAT = BT = 1|EA,B = 1,
• ∑

i∈A |P[i]− P[i | E ]| ≤ α,
• ∑

i∈B |P[i]− P[i | E ]| ≤ α.
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Node Connectivity Augmentation via Iterative Randomized Rounding

Laura Sanità

(joint work with Haris Angelidakis, Dylan Hyatt-Denesik)

Many network design problems deal with the design of low-cost networks that
are resilient to the failure of their elements (such as nodes or links). One such
problem is Connectivity Augmentation, with the goal of cheaply increasing the
(edge- or node-)connectivity of a given network from a value k to k + 1. The
problem is NP-hard for k ≥ 1, and the most studied setting focuses on the case of
edge-connectivity with k = 1.

In this work, we give a 1.892-approximation algorithm for the NP-hard prob-
lem of augmenting the node-connectivity of any given graph from 1 to 2, which
improve upon the the state-of-the-art approximation previously developed in the
literature. The starting point of our work is a known reduction from Connectivity
Augmentation to some specific instances of the Node-Steiner Tree problem [1, 2],
and our result is obtained by developing a new and simple analysis of the iterative
randomized rounding technique [3] when applied to such Steiner Tree instances.
Our results also imply a 1.892-approximation algorithm for the problem of aug-
menting the edge-connectivity of a given graph from any value k to k + 1. While
this does not beat the best approximation factor known for this problem [4], a
key point of our work is that the analysis of our approximation factor is less in-
volved when compared to previous results in the literature. In addition, our work
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gives new insights on the iterative randomized rounding method, that might be of
independent interest.

References

[1] J. Byrka, F. Grandoni, A. Jabal Ameli, Breaching the 2-approximation barrier for con-
nectivity augmentation: a reduction to Steiner tree, Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing (STOC), (2020), 815–825.

[2] Z. Nutov, 2-node-connectivity network design, Proceedings of the 18th International Work-
shop on Approximation and Online Algorithms (WAOA), (2020), 220–235.

[3] J. Byrka, F. Grandoni, T. Rothvoss, L. Sanità, Steiner tree approximation via iterative
randomized rounding., J. ACM, 60(1):6:1–6:33, (2013).

[4] F. Cecchetto, V. Traub, R. Zenklusen, Bridging the gap between tree and connectivity aug-
mentation: unified and stronger approaches, Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC), (2021), 370–383.

A QPTAS for Stabbing Rectangles

Friedrich Eisenbrand

(joint work with Martina Gallato, Ola Svensson and Moritz Venzin)

We consider the following problem, calles stabbing: Given a set R = {R1, · · · , Rn}
of axis-aligned rectangles in the plane, the task is to find a set of horizontal line
segments of minimal total length such that all rectangles are stabbed. A rectangle
is stabbed if a line-segment in the solution intersects both its left and right edge.
This natural geometric optimization problem was introduced by Chan et al. [4].
Stabbing can be understood as a geometric interpretation of various combinatorial
optimization problems such asmessage scheduling with time-windows on a directed
path, frequency assignment, or problems in network design, see, for example, [1,
4, 7].

To understand stabbing as a message scheduling problem, consider the case of
a directed path {v1, . . . , vk} with weighted edges, along which we want to send
some messages. Each message has a release node vi and an arrival node vj , for
some i < j ∈ [k], and it needs to be sent during a specific time window [ti, tj ].
Opening an edge at a certain time to transmit messages along it has a cost equal to
its weight. Furthermore, edges are uncapacitated, meaning that a single edge can
transmit an arbitrary number of messages simultaneously. Therefore, messages
which are sharing some edges in the path and whose time intervals overlap, can
aggregate along the common edges and be transmitted together to decrease the
total cost of the transmission. The goal is to transmit all messages and minimize
the total cost of activated edges over time.

Each message request can be seen as a rectangle [vi, vj ] × [ti, tj ] ⊆ R
2. A

segment [vi, vj ]×{t} stabbing this rectangle, corresponds to a transmission of the
message from node vi to node vj at time t, with t1 ≤ t ≤ t2.

We can think of the cost of transmitting a message as the width of the corre-
sponding rectangle, that is to say, we can define rectangles such that |vi+1 − vi| =
w(vi, vi+1). Messages can aggregate exactly where their corresponding rectangles
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overlap and can share portions of the same segment to be stabbed. Finding an
optimal stabbing solution exactly corresponds to finding an optimal schedule.

We note that this generalises a special case studied in [1], where all messages
have the same arrival node. The frequency assignment problem can be modeled
analogously, see [4].
stabbing in turn can be interpreted as a geometric set cover problem, in which
the rectangles are the elements and the line-segments are the sets. An element
(rectangle) is contained in a set (line segment), if it is stabbed by the line segment.
This immediately implies that there is a O(log n)-approximation algorithm for
stabbing [5, 10].

Improving upon the logn-approximation for set cover in geometric settings has
been an important area of research in computational geometry. One successful
approach [2] for unweighted geometric set cover is via ǫ-nets [8] in range-spaces
of bounded VC-dimension. Since ǫ-nets are of linear size in certain geometric
settings [6, 11, 12], constant factor approximation algorithms can be obtained
via linear programming in these cases. Another very successful approach to tackle
geometric set cover problems is the quasi-uniform sampling technique of Varadara-
jan [13]. It gives rise to a sub-logarithmic approximation algorithms for geometric
set cover problems of small union complexity. The technique was improved by
Chan et al. [3] which then yields constant factor approximation algorithms for
weighted geometric set cover problems of small shallow cell complexity. This is the
case in the weighted disk cover problem for example.

The state-of-the-art for stabbing is as follows. Chan et al. [4] provide a constant-
factor approximation algorithm for stabbing that is based on a decomposition
technique and the framework of quasi-uniform sampling. More precisely, they
show how to decompose stabbing into two set cover instances of small shallow
cell complexity for which the technique of Varadarajan [13] and its improvement
by Chan et al. [3] yields a constant factor approximation. The authors show
furthermore that stabbing is NP-hard via a reduction from planar vertex cover.

Our contribution. In this paper, we provide the following results.

(1) We show that there is a PTAS for instances of stabbing for which the ratio
between the widths of the rectangles is bounded by a constant.

(2) This technique can then be recursively applied to yield a quasi-polynomial
time approximation scheme (QPTAS) for stabbing in general. The running

time of our algorithm is nO(log3(n)/ǫ2). This shows that stabbing is not
APX-hard unless NP ⊆ DTIME(2polylog(n)).

(3) We provide a simple 8-approximation algorithm for stabbing. First, we
round the instance to a laminar instance, i.e., an instance in which the pro-
jections of the rectangles to the x-axis yields a laminar family of intervals.
This laminar instance is then solved optimally via dynamic programming.

The contributions 2 and 3 settle two open problems raised in [4].
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To put our work into perspective, we also rely on a decomposition technique to
obtain our QPTAS. However, we do not rely on the balanced cut framework.
Instead we use a variation of the shifted grid technique by Hochbaum and Maass [9]
that we combine with a simple charging scheme and careful guessing.
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Determinant Maximization: Approximation and
Estimation Algorithms

Mohit Singh

(joint work with Vivek Madan, Sasho Nikolov, Uthaipon Tantipongpipat,
Weijun Xie)

In the determinant maximization problem, given a collection of vectors, we aim
to pick a subset to maximize the determinant of a natural matrix associated with
these vectors. The abstract problem captures problems in multiple areas including
statistics, convex geometry, allocation problems and network design. We will
survey the known results and techniques for the problem when the picked subset
must satisfy natural combinatorial constraints. The results vary from arbitrary
good approximations [3, 4, 5] to only estimation algorithms [1, 2]. The techniques
vary from stable and log-concave polynomials to sparsity properties of solutions
of convex programs.
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On the Integrality Gap of Binary Integer Programs with
Gaussian Data

Daniel Dadush

(joint work with Sander Borst, Sophie Huiberts, Samarth Tiwari)

For a binary integer program (IP) max cTx,Ax ≤ b, x ∈ {0, 1}n, where A ∈ R
m×n

and c ∈ R
n have independent Gaussian entries and the right-hand side b ∈ R

m

satisfies that its negative coordinates have ℓ2 norm at most n/10, we prove that the
gap between the value of the linear programming relaxation and the IP is upper
bounded by poly(m)(logn)2/n with probability at least 1−2/n7−2− poly(m). Our
results give a Gaussian analogue of the classical integrality gap result of Dyer and
Frieze (Math. of O.R., 1989) in the case of random packing IPs. In constrast
to the packing case, our integrality gap depends only polynomially on m instead
of exponentially. Building upon recent breakthrough work of Dey, Dubey and
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Molinaro (SODA, 2021), we show that the integrality gap implies that branch-
and-bound requires npoly(m) time on random Gaussian IPs with good probability,
which is polynomial when the number of constraints m is fixed. We derive this
result via a novel meta-theorem, which relates the size of branch-and-bound trees
and the integrality gap for random logconcave IPs.

A Deterministic Parallel Algorithm for Maximum Coverage via
Steiner Systems

Eric Balkanski

In this paper, we study the problem of maximizing a coverage function in the
adaptive complexity model. Adaptivity was recently introduced in the context
of submodular optimization as an information-theoretic measure for the parallel
runtime of an algorithm [1]. A recent line of work has designed algorithms that
achieve constant factor approximations for maximizing submodular functions, as
well as other classes of functions, under various constraints in a logarithmic (or
poly-logarithmic) number of adaptive rounds of function evaluations. These par-
allel algorithms all heavily rely on randomization and a fundamental question is
whether randomness is necessary to obtain parallel algorithms in the adaptive
complexity model.

We present a deterministic algorithm for maximizing coverage functions, an
important subclass of submodular functions, under a cardinality constraint that is
O(ǫ−2 logn) adaptive and achieves a nearly optimal 1−1/e−ǫ approximation. This
algorithm is the first deterministic algorithm for maximum coverage with sublinear
adaptivity that achieves a constant factor approximation. When the algorithm is
given as input the explicit representation of a coverage function, instead of a value
oracle, we obtain the first NC approximation algorithm for maximum coverage.
The algorithm relies on a novel connection between combinatorial optimization and
Steiner systems from combinatorial design theory that is of independent interest.
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[Focus] On the extension complexity of low-dimensional polytopes

Lisa Sauermann

(joint work with Matthew Kwan, Yufei Zhao)

The extension complexity xc(P ) of a d-dimensional polytope P is defined to be
the minimum number of facets in a (possibly higher-dimensional) polytope P ′ such
that one can obtain P as the image of P ′ under a linear projection. This notion
is motivated by its relevance in combinatorial optimization, and has been studied
intensively for various specific polytopes associated with important optimization
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problems. In contrast, this talk discusses some (more theoretical) questions about
extension complexity for some more general classes of (low-dimensional) polytopes.

A natural extremal question about extension complexity is the following (es-
sentially asking how much the extension complexity of a polytope is controlled by
its dimension): For a fixed dimension d, what is the maximum possible extension
complexity of a d-dimensional polytope with n vertices (or with n facets)? It
is equivalent to ask this question for polytopes with n vertices or for polytopes
with n facets (this can be seen by passing between a polytope and its polar dual
polytope). This question is still wide open, and most likely very difficult.

For d = 2, the best known upper bound is that every 2-dimensional n-vertex
polytope (i.e. every n-gon) has extension complexity O(n2/3) [4], while for d ≥ 3 no
non-trivial upper bounds are known (meaning that the best known upper bound
is n). The best known lower bounds are of the form Ω(

√
n) for every fixed d (see

[2] and also the earlier work [1] for d = 2). These lower bounds were obtained
by considering random d-dimensional polytopes and proving that their extension
complexity is typically at least Ω(

√
n). Heuristically, it makes sense to expect that

random d-dimensional polytopes should exhibit high extension complexity, so it
is natural to consider random polytopes in order to prove lower bounds for the
original extremal question.

This approach raises the question of actually finding the typical extension com-
plexity of a random d-dimensional polytope (this may, of course, depend on the
chosen model of random d-dimensional polytopes). In [1] and [2], the authors only
prove lower bounds for the typical extension complexity of the random polytopes
they consider, and it is a priori possible that the actual extension complexity of
these random polytopes is much higher.

We answer this question up to constant factors (depending on d) for two different
models of random d-dimensional polytopes, namely polytopes obtained as the
convex hull of n independent uniformly random points on the unit sphere or of m
independent uniformly random points in the unit ball (the latter model is a very
well-studied model for random polytopes and it is known that in this model the
number of vertices is asymptotically almost surely of the form Θ(m(d−1)/(d+1)),
see for example [3]). More precisely, we prove the following two theorems.

Theorem 1. For every fixed d ≥ 2, there exist constants cd and Cd sch that the
following holds. Let P be the convex hull of n random points on the unit sphere
in R

d. Then, we have cd ·
√
n ≤ xc(P ) ≤ Cd ·

√
n with probability tending to 1 as

n→ ∞.

Theorem 2. For every fixed d ≥ 2, there exist constants cd and Cd sch that the
following holds. Let P be the convex hull of m random points on the unit ball in
R
d, and let n = m(d−1)/(d+1). Then, we have cd ·

√
n ≤ xc(P ) ≤ Cd ·

√
n with

probability tending to 1 as m→ ∞.

In short, for fixed dimension d ≥ 2, for both of the two models of random
polytopes that we considered, we proved that the extension complexity is asymp-
totically almost surely on the order of the square root of the number of vertices.
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While the lower bounds were known (or follow from known techniques), the new
contributions of our results are the upper bounds for the extension complexity in
the two theorems above.

In light of these results, and the heuristic that random polytopes should exhibit
high extension complexity, it would be tempting to conjecture that for every fixed
d ≥ 2, every d-dimensional polytope with n vertices has extension complexity
at most O(

√
n). Since showing such a bound would most likely be extremely

difficult, it might also make sense to consider some special classes of d-dimensional
polytopes, for example polytopes with all vertices on a common sphere.

Is it true that for every fixed d ≥ 2, every d-dimensional n-vertex polytope with
all vertices on a common sphere has extension complexity at most O(

√
n)? This

question is also open, but we prove that the answer is “Yes” for d = 2:

Theorem 3. Let P be a (2-dimensional) n-gon with all vertices on a common
circle. Then P has extension complexity at most 24

√
n.

This bound is tight up to the constant factor 24.

References

[1] S. Fiorini, T. Rothvoß, and H. R. Tiwary, Extended formulations for polygons, Discrete
Comput. Geom. 48 (2012), 658–668.

[2] A. Padrol, Extension complexity of polytopes with few vertices or facets, SIAM J. Discrete
Math. 30 (2016), 2162–2176.

[3] M. Reitzner, The combinatorial structure of random polytopes, Adv. Math. 191 (2005),
178–208.

[4] Y. Shitov, Sublinear extensions of polygons, arXiv preprint arXiv:1412.0728v2 (2020).

Algorithmic Tools for US Congressional Districting: Fairness
via Analytics

David Shmoys

(joint work with Nikhil Garg, Wes Gurnee, David Rothschild)

The American winner-take-all congressional district system empowers politicians
to engineer electoral outcomes by manipulating district boundaries. To date, com-
putational solutions mostly focus on drawing unbiased maps by ignoring political
and demographic input, and instead simply optimize for compactness and other
related metrics. However, we maintain that this is a flawed approach because
compactness and fairness are orthogonal qualities; to achieve a meaningful notion
of fairness, one needs to model political and demographic considerations, using
historical data.

We will discuss two papers that explore and develop this perspective.

• In the first paper [1] (joint with Wes Gurnee), we present a scalable ap-
proach to explicitly optimize for arbitrary piecewise-linear definitions of
fairness; this employs a stochastic hierarchical decomposition approach to
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produce an exponential number of distinct district plans that can be op-
timized via a standard set partitioning integer programming formulation.
This enables the largest-ever ensemble study of congressional districts,
providing insights into the range of possible expected outcomes and the
implications of this range on potential definitions of fairness.

• In the second paper [2] (joint with Nikhil Garg, Wes Gurnee, and David
Rothschild), we study the design of multi-member districts (MMDs) in
which each district elects multiple representatives, potentially through a
non-winner-takes-all voting rule (as currently proposed in H.R. 4000). We
carry out large-scale analyses for the U.S. House of Representatives under
MMDs with different social choice functions, under algorithmically gener-
ated maps optimized for either partisan benefit or proportionality. We find
that with three-member districts using Single Transferable Vote, fairness-
minded independent commissions can achieve proportional outcomes in
every state (up to rounding), and this would significantly curtail the power
of advantage-seeking partisans to gerrymander. We believe that this work
opens up a rich research agenda at the intersection of social choice and
computational redistricting.
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[Focus] The High-Dimesnional-Expander Perspective on
Combinatorial Distributions

Nima Anari

Over the past few years, a new tool, namely high-dimensional expanders, has
emerged as a powerful method for analyzing local Markov chains that sample
from combinatorial distributions. I will survey some of the breakthroughs in the
field of approximate sampling and counting obtained using this framework.

As the main motivation, I will introduce an open conjecture posed by Mihail and
Vazirani: in every polytope whose vertices are a subset of {0, 1}n, the skeleton,
i.e., the graph formed by vertices and edges, has expansion ≥ 1. The original
target of this conjecture were base polytopes of matroids, where the conjecture
would imply fast mixing of random walks on the so-called basis-exchange graph. I
will briefly talk about how high-dimensional expanders were used in resolving this
conjecture for matroids.

Beyond matroids, the conjecture of Mihail and Vazirani remains open. However,
unlike the matroid case, for general 0/1 polytopes, a resolution of the conjecture
does not imply fast Markov chains or sampling algorithms. I will introduce new
conjectures related to the one made by Mihail and Vazirani, that if true, would
imply fast mixing of random walks for 0/1 polytopes that have short edges. In



Combinatorial Optimization 2931

fact, if true, these conjectures would nail the precise mixing time of natural random
walks that can sample vertices of these polytopes.

Providing evidence for these conjectures, I will demonstrate fast mixing of ran-
dom walks for several classes of (not necessarily uniform) distributions whose sup-
ports are 0/1 polytopes with short edges. These distributions include, amongst
others, monomers in monomer-dimer systems, and nonsymmetric determinantal
point processes. As an application of fast mixing of random walks for these dis-
tributions, we resolve a question of Jerrum about sampling from monomer-dimer
systems in planar graphs.

I will talk about the main two tools from the study of high-dimensional ex-
panders that we use in analyzing random walks: spectral independence and en-
tropic independence. These tools can respectively yield polynomial (but lossy)
mixing time and optimal mixing of random walks associated to the aforemen-
tioned combinatorial distributions. I will connect these tools to the geometry of
polynomials, revealing new connections between spectral and entropic analysis of
Markov chains.

Based on several joint works with Yeganeh Alimohmmadi, Vishesh Jain, Fred-
eric Koehler, Kuikui Liu, Shayan OveisGharan, Huy Tuan Pham, Kiran Shiragur,
Cynthia Vinzant, and June Vuong.

Symmetric Rendezvous on the Line

Martin Skutella

(joint work with Max Klimm, Guillaume Sagnol, Khai Van Tran)

In the Symmetric Rendezvous Search on the Line with Unknown Initial Distance,
two identical agents are placed on the real line with their distance, the other’s
location, and their orientation unknown to them. Moving along the line at unit
speed and executing the same randomized search strategy, the agents’ goal is to
meet up as early as possible. The expected meeting time obviously depends on
the unknown initial distance and orientations. The quality of a randomized search
strategy is thus measured by its competitive ratio, that is, the ratio of the expected
meeting time and the earliest possible meeting time (half the initial distance).

We present a class of successively refined randomized search strategies together
with a rigorous mathematical analysis of their continuously improved competitive
ratios. These strategies all rely on the basic idea of performing an infinite sequence
of steps of geometrically increasing size in random directions, always returning to
the agent’s initial position before starting the next step. In addition, our more re-
fined strategies use two novel ideas. First, remembering their past random choices,
the agents randomly choose the direction of the next step in a Markov-chain-like
manner. Second, choosing the next few random directions in advance, each agent
may combine consecutive steps in the same direction into one longer step. As our
main result, we show that this combination of looking into the past as well as into
the future leads to a substantially improved competitive ratio of 13.93 compared
to the previously best known bound of 24.85 (Ozsoyeller et al. 2013).
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[Focus] Discrete Optimization in Machine Learning – an (informal)
overview

Sebastian Pokutta

Machine Learning problems are often linked to empirical risk minimization prob-
lems that in turn are typically solved with continuous optimization methods. More
recently however, it has been recognized that certain problems in machine learn-
ing naturally lead to discrete optimization problems. In this talk I will give an
overview of the role of discrete optimization methods in machine learning and
discuss some associated tradeoffs. Problems of interest include

(1) Best Subset Selection
(2) Optimal Classification Trees
(3) Feature Selection
(4) Architecture Search for NNs
(5) Boosting for Classification
(6) Network Verification
(7) Sinkhorn Networks
(8) Rate Distortion Explanations

as well as many related problems. Currently many important questions, for exam-
ple when the discrete solution to a learning problem outperforms the continuous
solution in learning tasks are wide open. The references below provide a sample
of works (a) using discrete optimization in machine learning, (b) using machine
learning in discrete optimization, and (c) combining machine learning with discrete
optimization.
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Single source unsplittable flows with arc-wise lower and upper bounds

Sarah Morell

(joint work with Martin Skutella)

In a digraph with a source node and several destination nodes with associated
demands, an unsplittable flow routes each demand along a single path from the
common source to its destination. Given some flow x that is not necessarily
unsplittable but satisfies all demands, we ask for an unsplittable flow y that does
not deviate from x by too much, i.e., ya ≈ xa for all arcs a.

Twenty years ago, in a landmark paper, Dinitz, Garg, and Goemans [1] proved
that, given some flow x, there exists an unsplittable flow y such that

ya ≤ xa + dmax for all arcs a,

where dmax denotes the maximum demand value. Unsplittable flows with arc-wise
lower bounds have, to the best of the authors’ knowledge, not been considered yet.
Based upon an entirely new approach, we prove the following result: Given some
flow x, there exists an unsplittable flow y such that

ya ≥ xa − dmax for all arcs a.

Secondly, building upon an iterative rounding technique previously introduced by
Kolliopoulos and Stein [2] and Skutella [4], we prove existence of an unsplittable
flow that simultaneously satisfies the upper and lower bounds for the special case
when demands are integer multiples of each other. For arbitrary demand values,
we prove the slightly weaker simultaneous bounds

xa/2− dmax ≤ ya ≤ 2xa + dmax for all arcs a.

This talk is based on the paper [3].
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The Geometry of All Pivot Rules for the Simplex Method

Jesús A. De Loera

(joint work with Alexander Black, Niklas Lutjeharms, Raman Sanyal)

For a matrix A ∈ R
n×d, and vectors b ∈ R

n, c ∈ R
d we consider the linear program

(LP)

max ctx
s.t. Ax ≤ b

The linear inequalities give rise to a polyhedron P that we will throughout assume
to be bounded. That is, we assume that P := {x ∈ R

d : Ax ≤ b} is a polytope.
We denote by G(P ) the vertex-edge graph of P . We further assume that the
objective function c is generic and hence yields an acyclic orientation of G(P ). We
will refer to (P, c) as the linear program.

The simplex method is one of the two most popular algorithms for solving linear
programs. Geometrically the simplex method finds a c-monotone path from any
initial vertex to the optimal vertex. The algorithm starts at some vertex v of P
and proceeds along directed edges to the unique sink which is the optimum vertex
vopt. At any non-sink v, a pivot rule chooses a neighboring vertex u of v with
ctu > ctv. Since the inception of the simplex algorithm, many different pivot rules
have been proposed and analyzed. To this day, no pivot rule is known to produce
only polynomially many steps on every LP. In this paper we provide polyhedral
structure that organizes the pivot rules on LPs.

In 1972 Klee and Minty first showed that Dantzig’s original pivot rule may
require exponentially many steps. The algorithm could be tricked into visiting all
2d vertices of a deformed cube to find a path between two nodes which are only
one step apart in the skeleton of the cube. Since 1972 researchers have shown
many of the popular pivot rules are known to require an exponential number of
steps to solve some concrete “twisted” linear programs.

We will not try to give a precise definition of what constitutes a pivot rule. A
first reason is pivot rules are all about decisions of switching pairs of variables, one
variable enters another leaves, but several authors arrived to the conclusion that
pivot rules can be used to encode hard problems, hard in the sense of complexity
theory. E.g., Fearnley and Savani showed that it is PSPACE-complete to decide
whether Dantzig’s pivot rule ever chooses a specific variable to enter the basis. In
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Figure 1. Three arborescences on an cube. The middle arbores-
cence does not come from a NW-rule.

contrast, Adler et al. showed the simplex method with the shadow vertex pivot
rule can decide this query in polynomial time. A second reason is that we do not
need to formally defined what a pivot rule is because our taxonomy of pivot rules
uses only a polyhedral geometry perspective.

Definition 1. The footprint of a pivot rule Γ on an LP (P, c) is the directed
subgraph obtained as the union of all monotone paths produced by Γ, starting with
any vertex of P .

Definition 2. A memory-less pivot rule is one where its footprint for every LP
is an arborescence, i.e., a directed tree with root at optimum.

An equivalent way to say this is a pivot rule is memory-less if it chooses the
neighbor of v 6= vopt using only local information provided by the set of neighbors
NbP (v) of v. Many rules that are used in practice, including greatest improvement
and steepest edge, are memory-less. Pivot rules not in this class include Zadeh’s
least visited facet rule as well as the original the shadow vertex rule. Similarly,
the celebrated random-edge pivot rule may or may not have an arborescence as a
footprint, so it cannot be considered memory-less.

Memory-less pivot-rules are interesting because for every pivot rule Γ there is
always a Memory-less pivot rule applied to the LP, whose footprint is contained
in the footprint of Γ and the lengths of monotone paths are less or equal than
the paths produced by Γ. This follows immediately from the computation of the
shortest path arborescence of any rooted directed graph. Therefore if we wish to
show there is a pivot rule that gives polynomial-size paths for all LPs, then one
can find such a rule within the family of memory-less pivot rules.

Now, the essence of a memory pivot rule to (P, c) is captured by an arbores-
cence induced by the union of edges in the collection of simplex-paths obtained
by varying the starting vertex. Note also that the knowledge of the arborescence
is sufficient to give a pivot rule for (P, c). Figure 1 shows three such arborescences
on a 3-cube.

The two main questions that we address in this paper are

(1) How do the arborescences vary for fixed objective function c and varying
pivot rule?

(2) How do the arborescences vary for fixed pivot rule and varying objective
function c?
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To be able to change the pivot rules in a controlled and continuous manner,
we restrict to the following setup: For given P ⊂ R

d and c ∈ R
d, choose a

normalization η : Rd → R and a weight w ∈ R
d. For v 6= vopt, the next vertex

on the simplex-path from v is

(1) u∗ = argmax

{
wt(u − v)

η(u− v)
: u adjacent to v and ctu > ctv

}
.

A mechanism to choose w and η given (P, c) is called a normalized-weight pivot
rule, or NW-rule for short. If R is a normalized-weight pivot rule, we sometimes
write ηR(P, c) and wR(P, c) to stress the dependence of η and w on the LP (P, c).
As we explain in the next section, the main pivot rules (greatest-improvement,
steepest-edge), as well as our generalization of the shadow-vertex rule, max-slope,
belong to that class.

Although NW-rules are a strict subclass of memory-less pivot rules, we first
show the following universality result.

Theorem 3. For every simple polytope P there is a perturbation P ′ such that for
any memory-less pivot rule there is a NW-rule that produces the same arborescence
for (P ′, c) for every c.

The simplicity of P means that (P, c) is a non-degenerate LP for every c and
guarantees that the combinatorics of P and P ′ are isomorphic.

Now for a fixed LP (P, c) and a fixed normalization η, (1) determines an arbores-
cence A, that is, a map on the vertices of P with A(vopt) = vopt and A(v) = u∗
otherwise. We can continuously change the pivot rule by varying the weight w. We
call an arborescence that arises via (1) for a fixed weight w a coherent arbores-
cence and write A = Aη

P,c(w). This terminology underlines the proximity to the
theory of coherent monotone paths started in the 1990’s by Billera and Sturmfels.

An answer to question (A) is provided by the following theorem.
For a polytope Q ⊆ R

d, we write Qw = {x ∈ Q : wtx ≥ wty, y ∈ Q} for the
face that maximizes x 7→ wtx.

Theorem 4. Let (P, c) be a linear program and η a normalization function. There
is a polytope ΠηP,c ⊂ R

d called the pivot polytope such that the following holds:

For any generic weights w,w′

Aη
P,c(w) = Aη

P,c(w
′) ⇐⇒ (ΠηP,c)

w = (ΠηP,c)
w′

.

Now coherent arborescences are special and we compare their number the total
number of arborescences. We are able to completely determine the face lattice of
the pivot rule polytopes in terms of arborescences and show that how they relate
to the monotone path polytope.

Question (B) is strongly related to parametric linear programming. Whereas the
basic question there is roughly which objective functions yield the same optimum,
we will address the more subtle question which objective functions yield the same
arborescence. We make two assumptions on the NW-rule R, namely that ηR(P, c)
is independent of c and that wR(P, c) = c. Thus, for a fixed normalization function
η, we will write BηP (c) := Aη

P,c(c) for the arborescence of (P, c) obtained from (1)
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with respect to η and weight w = c. We show that the that the collection of
arborescences BηP (c) is governed by another polytope.

Theorem 5. Let P ⊂ R
d be a polytope and R a NW-rule as defined above. There

is a polytope ΓηP ⊂ R
d called the neighbotope of P and η such that the following

holds: For any generic objective functions c, c′ ∈ R
d

BηP (c) = BηP (c′) ⇐⇒ (ΓηP )
c = (ΓηP )

c′ .

How many matchings cover the nodes of a graph?

András Sebő

(joint work with Dehia Ait Ferhat, Zoltán Király, Gautier Stauffer)

Given an undirected graph, are there k matchings whose union covers all of its
nodes, that is, a matching-k-cover? When k = 1, the problem is equivalent to
the existence of a perfect matching for which Tutte’s celebrated matching theorem
[1] provides a ‘good’ characterization. We prove here, when k is greater than
one, a ‘good’ characterization à la Kőnig: for k ≥ 2, there exist k matchings
covering every node if and only if for every stable set S, we have |S| ≤ k · |N(S)|.
Moreover, somewhat surprisingly, we use only techniques from bipartite matching
in the proof, through a simple, polynomial algorithm. A different approach to
matching-k-covers has been previously suggested by Wang, Song and Yuan [2],
relying on general matching and using matroid union for matching-matroids, or the
Edmonds-Gallai structure theorem. Our approach provides a simpler polynomial
algorithm together with an elegant certificate of non-existence when appropriate.

Further results, generalizations and interconnections between several problems
are then deduced as consequences of the new minimax theorem, with surprisingly
simple proofs (again using only the level of difficulty of bipartite matchings). One
of the equivalent formulations leads to a solution of weighted minimization for
non-negative edge-weights, while the edge-cardinality maximization of matching-
2-covers turns out to be already NP-hard.

We have arrived at this problem as the line graph special case of a model
arising for manufacturing integrated circuits with the technology called ‘Directed
Self Assembly’.
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Complexity of optimizing over the integers

Amitabh Basu

We will consider problems of the form

(1) inf{f(x, y) : (x, y) ∈ C, (x, y) ∈ Z
n × R

d}.
where f : Rn×R

d → R is a convex (possibly nonsmooth) function and C ⊆ R
n×R

d

is a closed, convex set. We wish to design algorithms that returns a point in
C ∩ (Zn×R

d) with value at most ǫ more than the optimal value. Since we want to
allow general nonlinear objective functions f and convex sets C, we will assume
the algorithm will have access to a first order oracle for f , i.e., for any point
z ∈ R

n × R
d, the oracle returns f(z) and a subgradient in ∂f(z), and assume

access to a separation oracle for C.
To analyze the complexity of such problems, we have to introduce a way to

parameterize the problems in a reasonable way and investigate the complexity as
a function of these parameters. The parameters are meant to label problems to
mimic their “difficulty levels”. In other words, the “harder” instances should have
“higher” values of the parameter. The most common choice of parameters for this
class of optimization problems are the following five: n, d ∈ N and R,M, ρ ∈ R.
In,d,R,M,ρ are those instances of (1) such that

(1) The domain of f and C are both subsets of Rn × R
d.

(2) C is contained in the box {z ∈ R
n × R

d : ‖z‖∞ ≤ R}, and
(3) f is Lipschitz continuous with respect to the ‖ · ‖∞-norm with Lipschitz

constantM on any set of the form {x}× [−R,R]d with x ∈ [−R,R]n∩Z
n,

i.e., for any (x, y), (x, y′) with ‖y− y′‖∞ ≤ R, |f(x, y)− f(x, y′)| ≤M‖y−
y′‖∞.

(4) If (x⋆, y⋆) is the optimum solution, then there exists ŷ ∈ R
d and ρ > 0

such that {(x⋆, y) : ‖y − ŷ‖∞ ≤ ρ} ⊆ C, i.e., there is a “strictly feasible”
point (x⋆, ŷ) in the same fiber as the optimum (x⋆, y⋆) with a fiber box
of width ρ in R

d (the continuous space) around (x⋆, ŷ) contained in C.
Note that if d = 0 (the pure integer case), then this requirement becomes
vacuous.

The ǫ-information complexity of the class of optimization problems (1), parame-
terized by n, d,R,M, ρ, is defined as the minimum number of oracle queries needed
by any algorithm to return an ǫ-approximate solution to a problem in In,d,R,M,ρ.
This will be denoted by icompǫ(n, d,R,M, ρ). Thus, icompǫ(n, d,R,M, ρ) is an
unconditional lower bound on the overall complexity of any ǫ-approximation algo-
rithm for (1).

One can prove the following bounds on ǫ-information complexity.
Lower bounds.

• If n, d ≥ 1,

icomp ǫ(n, d,R,M, ρ) ∈ Ω
(
d2n log

(
R
ρ

))
.
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• If d = 0,

icomp ǫ(n, d,R,M, ρ) ∈ Ω (2n log (R)) .

• If n = 0,

icomp ǫ(n, d,R,M, ρ) ∈ Ω
(
d log

(
MR
ρǫ

))
.

Upper bounds.

• If n, d ≥ 1

icomp ǫ(n, d,R,M, ρ) ∈ O
(
(n+ d)d2n log

(
MR
ρǫ

))
.

• If d = 0

icomp ǫ(n, d,R,M, ρ) ∈ O (n2n log(R)) .

• If n = 0

icomp ǫ(n, d,R,M, ρ) ∈ O
(
d log

(
MR
ρǫ

))
.

Note that when n = 0, i.e., we consider continuous convex optimization with no

integer variables, we have icomp ǫ(n, d,R,M, ρ) = Θ
(
d log

(
MR
ρǫ

))
, giving a tight

characterization of the complexity. In fact, these results can be obtained for a
much broader class of oracles that include first-order/separation oracles as special
cases; see [2, 3, 1, 4].

For pure integer optimization with d = 0, our upper and lower bounds are off
by a linear factor in the dimension, which is of much lower order compared to the
dominating term of 2n log(R). Put another way, both bounds are 2O(n) log(R).
Since the strict feasibility assumption is vacuous and for small enough ǫ > 0, ǫ-
approximate solutions are the same as exact optimum solutions, M, ǫ and ρ do not
play a role in the upper and lower bounds.

There seems to be scope for nontrivial improvement in the bounds presented
for the mixed-integer case with n, d ≥ 1:

(1) It would be nice to unify the lower bound for n = 0 (the continuous case)
and n ≥ 1 (the truly mixed-integer case). The proof for n, d ≥ 1 is based
on the feasibility question, which is why M and ǫ do not appear in the
lower bound.

(2) When one plugs in n = 0 in the mixed-integer upper bound (n, d ≥ 1),
one does not recover the tight upper bound for n = 0; instead, the bound
is off by a factor of d. We believe this can likely be improved.

We do not have upper bounds on algorithmic complexity that are close to
the bounds established on information complexity when integer variables are in-
volved. In the case with no integer variables, n = 0, the classical ellipsoid algorithm

has complexity O
(
d2 log

(
MR
ρǫ

))
. Combining this with techniques from algorith-

mic geometry of numbers and enumeration based on branching on general split
disjunctions, one can give an algorithm for the general mixed-integer case with
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complexity O
(
2n log(n+d) log

(
MR
ρǫ

))
. It is a major open question to design an al-

gorithm with improved running time closer to the information complexity bound

of O
(
(n+ d)2n log

(
MR
ρǫ

))
.

However, the algorithms that achieve O
(
2n log(n+d) log

(
MR
ρǫ

))
complexity do

not explicitly utilize non-trivial cutting planes, i.e., halfspaces H such that C 6⊆ H
but C ∩ (Zn × R

d) ⊆ H . While it has not been established theoretically that
using such cutting planes can produce algorithms with better overall complex-
ity, it has been observed in practice that mixed-integer solvers rely heavily on
such cutting planes. Recently, two results have been established that give some
theoretical basis to this empirical fact. The first result establishes very general
conditions under which combining non-trivial cutting planes with enumeration
schemes gives an exponential advantage over using cutting planes alone or branch-
ing schemes alone. See [5]. If we hold n to be a fixed constant, then the complex-

ity O
(
2n log(n+d) log

(
MR
ρǫ

))
is a polynomial in the remaining parameters, and is

achieved by algorithms that use branching schemes without cutting planes. It is
an intriguing question to see if one can design a pure cutting plane algorithm that
is polynomial time if the number n of integer variables is a fixed constant. Such a
result has been recently established for pure integer problems (d = 0) in the plane,
i.e., n = 2; see [6]. Even the n = 3 case remains open.
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Open Problem: Approximating Symmetric Submodular Functions
by Hypergraphs

Chandra Chekuri

Devanur et al. [1] raised the question of approximating submodular functions and
symmetric submodular functions by simpler classes of functions. In particular
they showed that any non-negative symmetric submodular function f : 2N → R+

can be approximated to a relative factor of (n − 1) by graph cut functions; the
approximator is simply the cut function of the Gomory-Hu tree of f . They also
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observed that this bound is tight for a very simple function, namely f where
f(S) = 0 for S = ∅ and S = N and f(S) = 1 otherwise. They raised the
question of approximating symmetric submodular functions via hypergraphs and
also observed that rank r hypergraphs cannot approximate better than a factor of
Ω(n/r).

Is there a fixed constant c such that every symmetric submodular function
can be approximated by a hypergraph cut function within a factor of c? This is
open. We know that c ≥ 2. Experiments have shown that all functions on upto
10 elements can be approximated to within a factor of 2. Via relatively simple
arguments, Calvin Beideman, Karthik Chandrasekaran, Chao Xu, and myself have
shown that hypergraph cut functions can approximate, to within a constant factor,
symmetrizations of functions of the form f(S) = g(|S|) where g is a concave
function. Thus, hypergraph cut functions are able to overcome the strong lower
bound that holds for graph cut functions on these classes of simple functions.
Natural examples to try are symmetrizations of rank functions of simple matroids.
Laminar matroids are a natural example to try to generalize the case of concave
functions and these already pose various challenges.

On the pessimistic side we observed the following. Suppose we can construct a
hypergraph cut function that approximates f in an efficient and compact fashion
to within a factor of α. Then we can approximate the sparsest cut, defined as
min|S|≤|N |/2 f(S)/|S|, to within an O(α logn) factor since we can approximate
sparsest cut for hypergraphs to within a factor of O(logn). The results of Svitkina
and Fleischer [2] show that one needs exponential number of value queries to f to
approximate f(S)/|S| to better than a polynomial factor in n.

Is it likely that f can be approximated via hypergraph cut functions to within
a small factor but it is computationally difficult to find such a representation?
Note that sparsification results for hypergraphs show that O( 1

ǫ2n logn) weighted
hyperedges suffice to approximate the cut function of any hypergraph on n vertices
to within a (1+ǫ)-factor [3]. Thus the size of the hypergraph is not the bottleneck.
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Open Problem: Computing the diameter of the bipartite perfect
matching polytope

Laura Sanità

The diameter of a polytope P is the maximum value of a shortest path between
any two vertices on the 1-skeleton of P , where the 1-skeleton of P can be regarded
as the graph where vertices (resp. edges) correspond to 0-dimensional (resp. 1-
dimensional) faces of P . We are here interested in the complexity of computing
the diameter of the polytope given by perfect matchings of a bipartite graph.

Formally, for a given bipartite graph G = (V,E), the perfect matching polytope
PM(G) associated to G is:

PM(G) := {x ∈ R
E :

∑

e∈δ(v)

xe = 1 ∀v ∈ V, xe ≥ 0 ∀e ∈ E}

where δ(v) indicates the edges of G with one endpoint being v. Consider the
following problem:

• Input: Bipartite graph G = (V,E).
• Output: Diameter of PM(G).

Is the above problem NP-hard?

Open Problem: Integer infeasible subsystems

Robert Weismantel

(joint work with Marcel Celaya)

Let A be an integral m× n matrix and b an integral vector with m components.
Let ∆ be the largest magnitude of any subdeterminant of A. We define P = {x |
Ax ≤ b} and make the following assumptions.

• P is full dimensional,
• P does not contain any integer point, but any proper subsystem of Ax ≤ b
contains integer points.

Can we upper bound m as a linear function of n, provided that ∆ is con-
stant? More formally, do there exist one-dimensional functions f , g such that
m ≤ nf(∆) + g(∆)?

From a theorem of Doignon it follows that m ≤ 2n [1]. In the special case
when ∆ ∈ {1, 2} it follows from LP theory, theory of TU matrices and [2] that
m ≤ n + 1. For ∆ = 3 an upper bound of the desired form is not known. Note
that the number of distinct rows of A can always be upper bounded by O(n2h(∆))
where h is a one-dimensional function only depending on ∆, see [3] for details.
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Open Problem: Iterative rounding for feedback vertex set

Samuel Fiorini

The (undirected) feedback vertex set problem is to find, given a vertex-weighted
graph (G, c) a minimum cost set X such that G − X is a forest. This seems to
be a central problem. However, there is basically just one 2-approximation algo-
rithm to solve it, due to Bafna, Berman and Fujito (1995) and Becker and Geiger
(1994). Chudak, Hochbaum, Goemans and Williamson (1998) gave a primal-dual
interpretation of this algorithm, based on the following LP:

min
∑

v∈V (G) c(v)x(v)

s.t.
∑

v∈S(dS(v)− 1)x(v) ≥ |E(S)| − |S|+ 1 ∀S ⊆ V (G) : E(S) 6= ∅

x(v) ≥ 0 ∀v ∈ V (G) .

Is it true that for every extreme solution x∗ to the LP, there is a vertex v with
x∗(v) ≥ 1/2? This would immediately imply a new 2-approximation algorithm
based on iterative rounding. I can prove that when the LP is weakened by changing
the right-hand sides of the first block of constraints to |E(S)|− |S|, there is always
a vertex v such that x∗(v) ≥ 1/3. Stefan Weltge can show that both LPs can be
solved in polynomial time, since each has a polynomial size extended formulation.

Open Problem: Maximizing Subdeterminants in
Nonsymmetric Matrices

Nima Anari

Given a matrix L ∈ R
n×n with L+ L⊺ � 0, and an integer k ∈ {1, 2, . . . , n}, find

the k × k principal submatrix of L that has the maximum determinant:

max

{
det(LS,S)

∣∣∣∣ S ∈
(
[n]

k

)}
.

This is NP-hard to even approximately solve within a factor of ck for some universal
constant c (Di Summa-Eisenbrand-Faenza-Moldenhauer’14), so the ultimate goal
is a 2O(k) approximation. We currently know how to find a kO(k)-approximation
by local search (Anari-Vuong’21). In the case where L is symmetric (and PSD),
the approximation factor of 2O(k) is achievable by a clever continuous relaxation
(Nikolov’14).

An important application of the conjectured 2O(k) approximation would be a
O(log n)-factor approximation for computing the hereditary discrepancy of an n×n



Combinatorial Optimization 2945

matrix (see Reis-Jiang’21), beating the current best O(log3/2 n). For this partic-
ular application, it’s enough to solve the subdeterminant maximization problem
for skew-symmetric L: L = −L⊺. It’s even enough to assume L has the following
form:

L =

[
0 A

−A⊺ 0

]
,

where A is some arbitrary rectangular matrix. In this special case the problem
becomes equivalent to finding the k/2× k/2 (not necessarily principal) submatrix
of A with the largest determinant in magnitude.

Open Problem: α-Multiplicative Connectivity Augmentation and
Polygon Augmentation

Nathan Klein

Let α > 1 be a constant, let G = (V,E) be a k-edge-connected graph, and let L
be a weighted multiset of edges that may be added to the graph G called links (to
distinguish them from the edges of G). Then, the α-multiplicative connectivity
augmentation problem is to add the minimum weight set of links to G from L such
that E ∪ L is at least ⌈αk⌉-edge-connected.

For α ≤ 6/5, the cuts of G of size at most αk admit a compact polygon repre-
sentation [4, 3]. Therefore, we propose first studying α-multiplicative connectivity
augmentation for α ≤ 6/5 which may alternately be called polygon augmentation,
following the naming convention of the problems tree augmentation and cactus
augmentation in which the goal is to increase the connectivity of a graph by 1.

The main open problem is to design a better-than-2 approximation for this
problem for any constant α > 1. Due to recent exciting progress on the tree aug-
mentation problem [1, 2], we believe this is a good time to study its generalizations.
This is a natural generalization since for many networks, increasing connectivity
by 1 may have a negligible effect (for example, if the edge connectivity of the graph
is already very large).
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Open problem: Approximating submodular functions by matroid
rank functions

László Végh

Let f : 2V → R+ be a nonnegative and monotone increasing submodular function
with f(∅) = 0. Further, assume that for each i ∈ V , f({i}) = 1. If we further
assume that f is integer-valued, then f is a matroid rank function. The question
is whether a non-integer function f can still be well-approximated by a matroid
rank?

That is, does there exists a constant α > 0 such that for any function f as
above, there exists a matroid rank function f : 2V → Z+ such that

r(S)

α
≤ f(S) ≤ αr(S) ∀S ⊆ V ?

Open problem: Signings in the subtour polytope

Michel Goemans

Consider the subtour polytope P of the TSP on G = (V,E) (where we have
dropped the degree constraints, without loss of generality, for the question below):

P = {x ∈ R
E : x(δ(S)) ≥ 2 for all S ⊆ V, x ≥ 0}.

For any T ⊆ V of even cardinality, we know that x/2 belongs to the dominant of
the T -join polytope for G [2]. But is the following true:

Open question 1. For any x ∈ P and for any T ⊆ V of even cardinality, does
there exist a signing s : T → {−1,+1} (with s(T ) :=

∑
v∈T s(v) = 0) such that

there exists a transshipment (flow) f in G with capacities {ue : e ∈ E} and whose
excess at vertex v is s(v) for v ∈ T and 0 otherwise.

By Gale’s theorem (see Corollary 11.2g in [1]), this transshipment exists (s is a
valid signing) if and only if s satisfies that, for all S ⊂ V , one has s(S) ≤ x(δ(S))
(and this can be tested efficiently and the transshipment can be found efficiently).
Using splitting-off (à la Lovász), it is sufficient to consider the case in which |V |
is even and T = V .

The signing clearly exists if x is the incidence vector of an Hamiltonian cycle
(and in this case there is an exponential number of valid signings). If x is half-
integral, then a valid signing also exists; one can for example take an Eulerian
walk in 2x, consider the first visit of every vertex, and alternate +1 and −1
sign assignments. Proving the existence of the transshipment in the graph with
capacities αx for some small α ≥ 1 would also be interesting (α < 1 does not work
for many x). In fact, this would be implied if one could show the existence of thin
trees (as one could then alternate sign in a traversal of the tree).
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Open problem: Representation for 4/3-near-mincuts

Michel Goemans

In the recent result of Anna Karlin, Nathan Klein and Shayan Oveis Gharan on
the subtour polytope [3] presented at this workshop, the polygon representation of
approximately mincuts played an important role (among other tools). This poly-
gon representation (Benczúr Ph.D. thesis and [1]) generalizes the cactus represen-
tation of minimum cuts in a weighted undirected graph, and allows to represent
6
5 -mincuts (in a simple geometric way); these are the cuts whose capacity is strictly
less than 6/5 times the minimum cut value. Finding a compact representation of
all 4/3-mincuts is an important open problem. The ratio 4/3 is the limit α where
the number of α-mincuts is always at most

(
n
2

)
in a graph with n vertices (and

when other properties start breaking as well, like approximate splitting-off [2]).
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Open problem: Unrelated graph balancing

Nicole Megow

Let G = (V,E) be an undirected graph. Each edge e = {u, v} ∈ E has two
possible weights, w(u, v) ∈ R+ and w(v, u) ∈ R+, depending on how the edge
gets oriented. An orientation γ : E → V is a function that maps every edge
to one of its endpoints, we say, it orients the edges. Given an orientation, the
weighted indegree of a node v is the total weight of edges oriented towards v, that
is,

∑
{u,v}∈γ−1(v) w(u, v). The unrelated graph orientation problem is to find an

orientation γ for G that minimizes the maximum weighted indegree over all nodes
in G. The natural generalization of this problem to multigraphs is called unrelated
graph balancing.

Lenstra, Shmoys, and Tardos [2] provide a 2-approximation via LP rounding.
In fact, they consider the more general unrelated machine scheduling problem
R||Cmax. Graph balancing is a special case thereof, in which each job has a finite
processing time only on two machines; one could formulate the scheduling problem
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as unrelated graph balancing in hypergraphs. Improving upon the approximation
factor of 2 for R||Cmax is considered as one of the major open problems in sched-
uling [3].

Unrelated graph balancing seems to capture already the major difficulties and
no better approximation factor than 2 is known, not even in simple graphs. Ver-
schae and Wiese [4] show that the configuration LP has an integrality gap of 2
for this problem. The instance in their gap construction has edge weights only in
{1, k} for some arbitrary but large k. We are interested in beating the factor of 2
for this particular class of instances via a strengthened LP or some other approach.
We can show (with my PhD students Alexander Lindermayr and Jens Schlöter)
that there is a 7/4-approximation if the optimum value is k.

Note that Ebenlendr, Krcál and Sgall [1] give a 7/4-approximation via LP
rounding for the special case in which each edge has the same weight independently
of its orientation.
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Open problem: Perfect matching that maximizes the k-heaviest edges

Ola Svensson

Given a bipartite graph G = (V,E) with edge-weights w : E → R, efficient
algorithms for finding a perfect matching of maximum weight can be traced back
to the work of Jacobi over a century ago [2].

However, can you efficiently (in polynomial time) find a perfect matching that
maximizes the weight of the k-heaviest edges? This problem can be equivalently
stated as the following problem: find k edges of maximum weight that can be
extended to a perfect matching.

If the weights are polynomially bounded, then the randomized technique by
Mulmuley, Vazirani, & Vazirani [1] gives such an algorithm (even a parallel one).
It remains open if we can get a deterministic polynomial-time algorithm for this
problem. In addition, the complexity of the problem (without restrictions on the
edge-weights) remains open.
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Université Grenoble-Alpes
46, Avenue Felix Viallet
38031 Grenoble Cedex 1
FRANCE

Prof. Dr. David B. Shmoys

School of Operations Research and
Information Engineering
Cornell University
Frank H. T. Rhodes Hall 231
136 Hoy Road
Ithaca NY 14853-4201
UNITED STATES



Combinatorial Optimization 2953

Prof. Dr. Mohit Singh

H. Milton Stewart School of Industrial
and Systems Engineering
Georgia Institute of Technology
755 Ferst Drive, NW
Atlanta, GA 30332
UNITED STATES

Prof. Dr. Martin Skutella

Institut für Mathematik
Fakultät II, Sekr. MA 5-2
Technische Universität Berlin
Straße des 17. Juni 136
10623 Berlin
GERMANY

Prof. Dr. Ola Nils A. Svensson

EPFL IC IINFCOM THL2
Bâtiment INJ 112
Station 14
1015 Lausanne
SWITZERLAND

Dr. Jakub Tarnawski

Microsoft Research
Untere Heslibachstrasse 66
8700 Küsnacht
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ETH Zürich
HG G 21.5
Rämistrasse 101
8092 Zürich
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