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Abstract. Data science has become a field of major importance for science
and technology nowadays and poses a large variety of challenging mathemat-
ical questions. The area of applied harmonic analysis has a significant impact
on such problems by providing methodologies both for theoretical questions
and for a wide range of applications in signal and image processing and ma-
chine learning. Building on the success of three previous workshops on applied
harmonic analysis in 2012, 2015 and 2018, this workshop focused on several
exciting novel directions such as mathematical theory of deep learning, but
also reported progress on long-standing open problems in the field.
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Introduction by the Organizers

The workshop Applied Harmonic Analysis and Data Processing was organized
by Ingrid Daubechies, Gitta Kutyniok, Holger Rauhut and Thomas Strohmer.
This meeting was attended by 57 participants from four continents; 20 of them
participated in person and 37 participated virtually.

Data Science encompasses signal and image processing, data processing and
machine learning. On the one hand it is a quickly growing field of major impor-
tance for science, technology and society and on the other hand it is a very rich
source of a large variety of mathematical problems. A major challenge is the ever
increasing size and complexity of data and the demand for efficient computational
methods for processing such data. Mathematical understanding of the underlying
structures and algorithms is highly desired. One of the key drivers for a large
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number of big data applications is deep learning. Despite its huge success, how-
ever, the mathematical theory of deep learning is still in its infancy. Although a
few highly exciting mathematical results could be shown very recently, many open
problems remain. This means that the amount of new mathematical challenges
arising from the need of data analysis and information processing is enormous, with
their solution requiring fundamentally new ideas and approaches, with significant
consequences in the practical applications.

Applied Harmonic Analysis provides one key approach towards the problem
of efficiently representing, decomposing, processing, and analyzing univariate and
multivariate functions and data. Its applications range from theoretical ones such
as the decomposition of specific operators to more practical ones such as imaging,
machine learning, and inverse problems. Research is typically driven by real-world
applications leading to mathematically highly challenging questions, thereby also
significantly advancing the mathematical understanding of harmonic analysis it-
self and in turn impacting the respective application. Significant success has been
achieved in the last years, and we exemplarily mention the area of compressive
sensing, which has revolutionized the way we approach the collection and analysis
of large-scale sparse data such as in high-resolution imaging. This field, which also
has roots in other areas such as statistics, optimization and random matrices, has
reached a mature state and is nowadays considered a mathematical discipline of its
own and has triggered exciting new research directions such as provable non-convex
optimization in signal processing and data analysis, emerging mathematical foun-
dations for deep learning, structured dictionary learning, and high-dimensional
function reconstruction.

This workshop was a concerted effort to bring together researchers with various
backgrounds, including harmonic analysis, optimization, probability theory, ap-
proximation theory, machine learning, computer science and electrical engineering.
The workshop featured 26 talks, thereof several longer overview talks. Moreover,
a session of short presentations of 3 minutes took place on Monday, which we call
the 3 Minutes of Fame (following Andy Warhols concept of 15 minutes of fame).
This session has meanwhile become a tradition and has proven to be an efficient
vehicle to ensure that every participant had the possibility to advertise her/his
research. At the same time it is very entertaining for the audience. A large part
of the attendees participated, ranging from PhD students to renowned professors,
contributing to the success of this session.

Let us mention a few highlights from the program:

• Mathematical Theory of Deep Learning. A number of talks re-
ported on progress – but also on intriguing open questions – on the theory
of deep learning. Rémi Gribonval talked about the role of sparsity in deep
learning and how normalization of weights in the learning process leads
to improvements. Helmut Boelcskei provided an information theoretic ap-
proach to understanding the limits of deep generative neural networks.
For the model problem of low-rank matrix reconstruction Dominik Stöger
showed that overparameterization together with small initialization leads
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to an implicit bias of gradient descent towards low rank matrices, provid-
ing some insights on the somewhat mysterious implicit bias phenomenon
in deep learning. In a similar direction, Noam Razin reported on the
implicit bias phenomenon in the context of tensor-structured neural net-
works. Nadav Cohen provided convergence guarantees to global minima
for learning deep linear networks via gradient descent, rigorously connect-
ing it with the corresponding gradient flow. Martin Genzel reported that
solving inverse problems with deep neural networks may be robust with
respect to adversarial noise in contrast to classification with deep neural
networks. Felix Krahmer reported on neural network approaches for sparse
signal recovery. Youness Boutaib reported on classification with reservoir
computing, a particular stochastic recurrent neural networks.
• Solution of the Strohmer conjecture. A Gabor system is a discrete
set of functions arising as modulations and translations of single function.
It is of interest whether such a system with modulation and translation
parameters taken from a lattice form a so-called frame with good frame
constants. Thomas Strohmer conjectured in 2003 that the hexagonal lat-
tice provides a minimal ratio of the frame constants for the correspond-
ing Gabor system generated by the Gaussian function among all lattices.
Markus Faulhuber reported on his solution of this conjecture together with
Stefan Steinerberger.
• Ethical Aspects of Deep Learning. Rachel Ward started her talk
by initiating a discussion on ethical aspects of research on deep learning
and data science in general. While the mathematical research is clearly
fascinating, deep learning methodology can certainly be abused for tasks
that may be questionable, to say the least. In particular, issues of data
privacy, automated surveillance and military applications come to mind.
One may wonder whether one should do research in this direction at all.
Arguments that were discussed include:

– If researchers in academia stop doing research on deep learning and
related topics, only researchers in industry would continue which sets
these topics “out of control of academia”.

– Academic education needs to also provide PhD/Master/Bachelor stu-
dents with fundamentals on ethical aspects (via courses, seminars
etc.)

– We as a research community need to provide tools that can circumvent
certain issues. For instance, develop methods that transform data sets
in ways that remove privacy information but still allow for efficient
training of machine learning models.

This discussion was certainly open-ended. But the participants felt that
it was very important to think about ethical implications of our research.

The organizers would like to take the opportunity to thank MFO for providing
support and a very inspiring environment for the workshop. The hybrid setup of
the workshop worked very well. For many of the participants who could come
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in person to Oberwolfach, it was the first workshop since the beginning of the
pandemic where they could actually physically meet and discuss with colleagues.
They realized only then how much they had missed this part of science. But
also the people who could only participate virtually reported that they very much
enjoyed and profited from the workshop.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.



Applied Harmonic Analysis and Data Science 3011

Workshop (hybrid meeting): Applied Harmonic Analysis and
Data Science

Table of Contents
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Abstracts

Rapture of the deep: highs and lows of sparsity in a world of depths

Rémi Gribonval

(joint work with Quoc-Tung Le, Elisa Riccietti, Pierre Stock, Léon Zheng)

Attempting to promote sparsity in deep networks is natural to control their com-
plexity, and can be expected to bring other benefits in terms of statistical signifi-
cance or explainability. Yet, while sparsity-promoting regularizers are well under-
stood in linear inverse problems, much less is known in deeper contexts, linear or
not. We show that, in contrast to the linear case, even the simple bilinear set-
ting leads to surprises: ℓ1 regularization does not always lead to sparsity [1], and
optimization with a fixed support can be NP-hard [2]. We nevertheless identify
families of supports for which this optimization becomes easy [2] and well-posed [3],
and exploit this to derive an algorithm able to recover multilayer sparse factors
with certain prescribed supports [4, 5]. Behind much of the observed phenomena
are intrinsic scaling ambiguities in the parameterization of deep linear networks,
which are also present in ReLU networks. We conclude with a scaling invariant
embedding of such networks [6], which can be used to analyze the identifiability
of (the equivalence class of) parameters of ReLU networks from their realization.
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A convex hierarchy for causal optimization

David Gross

(joint work with Laurens Ligthart, Mariami Gachechiladze)

A causal structure is a description of the functional dependencies between random
variables. Deciding whether a distribution is compatible with a structure is a prac-
tically and fundamentally relevant, yet very difficult problem. Only recently has a
general class of algorithms been proposed: These inflation techniques associate to
any causal structure a hierarchy of increasingly strict compatibility tests, where
each test can be formulated as a computationally efficient convex optimization
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problem. Remarkably, it has been shown that in the classical case, this hierarchy
is complete in the sense that each non-compatible distribution will be detected at
some level of the hierarchy. An inflation hierarchy has also been formulated for
causal structures that allow for the observed classical random variables to arise
from measurements on quantum states – however, no proof of completeness of this
quantum inflation hierarchy has been supplied. We construct a first version of the
quantum inflation hierarchy that is provably convergent.

Classical causal models: In the formalization of Ref. [2], causal relationships be-
tween classical random variables are modeled using directed acyclic graphs (DAGs).
Each vertex corresponds to a random variable. Arrows denote causal relationships,
in the sense that each variable is taken to be a function of its parents in the graph
and independent randomness.

(a) (b)

Figure 1. Causal structure of the triangle scenario (a). Round
vertices denote latent variables that are not directly accessible,
while observed variables are written in squares. Arrows represent
causal relations. Panel (b) shows the second level inflation.

We are interested in the following causal hypothesis testing problem: Given
a joint distribution over the observed random variables and a candidate causal
structure, can the distribution be realized in a model that is compatible with the
structure? Because there is an infinite set of possible functional relationships, it
is a priori not obvious that the causal hypothesis testing problem is even algorith-
mically decidable.

Recently, hierarchies of convex relaxations for this problem have been developed
under the name of inflation techniques [3,4]. The high-level idea is to check for the
existence of certain symmetric extensions. Indeed, assume that a distribution is
compatible with a candidate causal structure. One can then define an “inflated”
model that involves n independent copies of the hidden variables. This larger
model has a number of symmetries: One can exchange a hidden variable from one
of the copies with the same hidden variable from another copy, without affecting
the distribution (Fig. 1). The n-th level of the hierarchy tests whether such an
n-fold inflated model exhibiting all these symmetries exists. In a break-through
development, it has been shown that the inflation method is complete for the clas-
sical causal compatibility problem, in the sense that any incompatible distribution
will be detected at some finite level [4].

Quantum causal structures: It is natural to generalize the causal hypothesis
testing problem to quantum causal structures [5, 8]. The input to the causal hy-
pothesis test is again a directed graph and a joint probability distribution with
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one classical variable corresponding to every observed node (Fig. 1). The problem
is to decide whether the classical distribution could have arisen from the following
process: (i) For each hidden node, prepare a quantum state on as many systems
as there are outgoing arrows from that node. Distribute the subsystems along
the arrows to the observed nodes. (ii) At each observed node, perform a global
measurement on all incoming quantum systems. Assign the result to the observed
random variable. Recently, a hierarchy of semidefinite programming (SDP) tests
generalizing the inflation technique to the quantum case has been proposed [5].

In Ref. [1], we show completeness of a related SDP hierarchy for the approximate
quantum causal optimization problem.

Problem 1 (Quantum causal polynomial optimization). Given a causal structure,
a polynomial function f0 on quantum states, and a countable set f1, f2, . . . of
polynomial functions that are non-negative on states compatible with the causal
structure. Find

f⋆ = min
ρ
f0(ρ), s. t. fi(ρ) = 0, i ≥ 1, ρ compatible with causal structure.

The causal compatibility problem reduces to the optimization one by choosing
f0 to be the 2-norm distance between the observed data P and the one produced
by the state. We show:

Theorem 1 (Main Theorem [1]). There is a hierarchy of semidefinite program-
ming relaxations for the quantum causal polynomial optimization problem, which
is complete in the sense that its optimal values converge to f⋆.

We give a description of such a hierarchy and establish a number of auxiliary re-
sults in the course of the work. These include: A proof showing that the arguments
in Ref. [6] generalize to give a quantum de Finetti Theorem valid for arbitrary C∗-
tensor products, not just the minimal tensor product for which it was originally
stated. We show that the non-commutative polynomial optimization (NPO) prob-
lem treated in Ref. [7] can be interpreted naturally as optimizations over the state
space of certain universal C∗-algebras.
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Fast binary embeddings using random hyperplane tessellations

Sjoerd Dirksen

(joint work with Shahar Mendelson, Alexander Stollenwerk)

In my talk I will consider the following question. Take independent random hyper-
planes with standard Gaussian directions and uniformly distributed shifts. How
many hyperplanes are needed to uniformly tessellate a given subset of Rn with
high probability? I will give a generally optimal answer to this question, which
surprisingly deviates from the conjectured answer. In the second part of my talk,
I will use random hyperplane tessellations to create fast binary embeddings, i.e.,
fast encodings of a dataset into a minimal number of bits, such that one can
quickly query Euclidean distances between the original data points up to a given
additive error. For this purpose, I will introduce a computationally efficient struc-
tured random matrix, called the double circulant matrix, and will show that it
strongly mimics the behavior of a Gaussian matrix. The talk will be based on two
forthcoming joint works with Shahar Mendelson and Alexander Stollenwerk.

Fundamental limits of deep generative neural networks

Helmut Bölcskei

(joint work with Dmytro Perekrestenko, Léandre Eberhard)

We show that every d-dimensional probability distribution of bounded support can
be generated through deep ReLU networks out of a 1-dimensional uniform input
distribution. What is more, this is possible without incurring a cost–in terms
of approximation error measured in Wasserstein-distance–relative to generating
the d-dimensional target distribution from d independent random variables. This
is enabled by a space-filling approach. The construction we propose elicits the
importance of network depth in driving the Wasserstein distance between the
target distribution and its neural network approximation to zero. Finally, we
find that, for histogram target distributions, the number of bits needed to encode
the corresponding generative network equals the fundamental limit for encoding
probability distributions as dictated by quantization theory.
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Optimization and generalization in overparameterized low-rank matrix
reconstruction: Small random initialization is akin to spectral learning

Dominik Stöger

(joint work with Mahdi Soltanolkotabi)

Modern machine learning models are typically trained in an overparameterized
regime. That is, the number of parameters of the model far exceeds the size of the
training data. Due to overparameterization, these models in principle have the
capacity to fit any set of labels including pure noise (see, e.g. [2]). Despite this
high fitting capacity, these models, which are often trained via first-order methods,
generalize well on yet unseen test data.

In this talk, we will focus on overparameterized learning in the context of low-
rank reconstruction from a few measurements. More precisely, in our model we
assume that we are given observations of the form

(1) yi = 〈Ai, XXT 〉 = trace(AiXX
T ) i = 1, . . . ,m,

where {Ai}mi=1 ⊂ Rn×n are known symmetric measurement matrices and X ∈
Rn×r⋆ is a low-rank matrix to be learned. We consider the non-convex loss function

min
Ū∈Rn×r

f(Ū) := min
Ū∈Rn×r

1

4m

m∑

i=1

(
yi − 〈Ai, Ū ŪT 〉

)2
,

where r ≥ r⋆. In this talk we will be especially interested in the overparameterized
regime, i.e. rn≫ m (although our theory will apply for all r ≥ r⋆.) We can rewrite
the loss function into the more compact form

min
Ū∈Rn×r

f(Ū) := min
Ū∈Rn×r

1

4
‖A

(
Ū ŪT −XXT

)
‖2,(2)

where A : R
n×n −→ R

m is the measurement operator defined by [A (Z)]i :=
1√
m
〈Ai, Z〉. We minimize f via gradient descent, i.e.,

Ut+1 = Ut − µ∇f (Ut)
= Ut + µ

[
(A∗A)

(
XXT − UtUTt

)]
Ut.

Here, our initialization U0 is given via

(3) U0 = αU.

The parameter α > 0 is referred to as scale of initialization and U ∈ R
n×r is a

random matrix, which is called the shape matrix.
There are two challenges connected with analyzing randomly initialized gradient

descent in this setting. Since f is non-convex it is a priori not clear whether
gradient descent converges to a global optimum or whether it gets stuck in a
local minima and/or saddle. This is the first challenge. The second challenge is
that of generalization. Namely, in the overparameterized scenario the number of
parameters is larger than the number of data points i.e. rn ≥ m. In this case, it can
be shown there are infinitely many Ū such that f(Ū) = 0, but ‖ŪŪT −XXT‖F is
arbitrarily large. That is, even if gradient descent converges to a global optimum,
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i.e. f
(
Ū
)
= 0, this does not imply that it has found the low-rank solution XXT

or even a point close to it.
In this talk we will address the outlined challenges by discussing the critical

role of small random initialization. (To be precise, by small random initialization
we mean that the parameter α in (3) is chosen small and that the matrix U in (3)
is a Gaussian matrix with i.i.d. entries.)

In this talk, we will discuss the following central insight.

Small random initialization followed by a few iterations of gra-
dient descent behaves akin to spectral initialization.

Based on this insight, we will derive convergence and generalization guarantees for
any r ≥ r⋆ under the assumption that the scale of initialization α > 0 is chosen
small enough. We will show that the ground truth signal can be recovered, if the
number of samplesm is at least at the order ofmr2⋆ (under the assumption that the
measurement matrices Ai are i.i.d. Gaussian matrices). Moreover, our theory will
explain how different choices of r (i.e. varying degrees of overparameterization)
impact the trajectory of the gradient descent iterates.

Hence, in this talk, we will give further theoretical support to the empirical
observations in [3]. Let us mention that the special case r = n has also been
studied in [4]. However, in contrast to our result, the result in [4] requires that the
sample size m goes to infinity when the scale of initialization α is decreased to 0.

At the end of the talk, we will discuss a number of open problems. For example,
one could aim to extend our results to scenarios where the measurement matrices
are more structured such as in matrix completion or blind deconvolution. It is
also an interesting open question whether the quadratic dependence of the sample
complexity m on r⋆ in our results is really necessary or rather an artefact of the
proof.
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Non-commutative Concentration Inequalities

Afonso Bandeira, March Boedihardjo

(joint work with Ramon van Handel)

Matrix Concentration inequalities such as Matrix Bernstein inequality have played
an important role in many areas of pure and applied mathematics [5]. These
inequalities are intimately related to the celebrated noncommutative Khintchine
inequality of Lust-Piquard and Pisier, which yields a nonasymptotic bound on the
spectral norm of general Gaussian random matrices

X =

n∑

i=1

giAi,

where gi are iid standard Gaussian variables and Ai are matrix coefficients.
This bound exhibits a logarithmic dependence on dimension that is sharp when

the matrices Ai commute, but often proves to be suboptimal in the presence of
noncommutativity. In an Oberwolfach workshop in 2014 [3], Tropp posed the
question of whether noncommutativity creates cancellations that can be leveraged
to remove this factor (see also [4], [7] and [5] for versions of this question). Subse-
quently, Bandeira and van Handel [2] obtained sharp bounds for random matrix
models with independent entries (with no dimensional dependency in most cases).
In a larger range of instances, Tropp [6] improved the dimensional dependence (to
a smaller power of the logarithm of the dimension) of noncommutative Khintchine
inequality by leveraging non-commutativity of the matrix coefficients.

In this talk we describe our recent work [1], in which we leverage ideas from
Free Probability to fully remove this dimensional dependence in a range of in-
stances, yielding optimal bounds in many settings of interest. We make use of the
mechanism introduced in [6] to leverage cancellations, together with an interpola-
tion argument that allows us to directly compare the random matrix of interests
with its “free”analogue. This argument allows us to also show strong asymptotic
freeness (in the sense of Haagerup-Thorbjørnsen) for a remarkably general class
of Gaussian random matrices.

As a byproduct we develop matrix concentration inequalities that capture non-
commutativity (or, to be more precise, “freeness”), improving over Matrix Bern-
stein in a range of instances.
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Nonlinear Fourier Series

Stefan Steinerberger

(joint work with Raphy Coifman, Hau-tieng Wu)

We discussed a natural way of decomposing a function F : C → C that is holo-
morphic in a neighborhood of the unit disk. Our starting point is a fundamental
theorem in complex analysis: Blaschke factorization. Any such function F
can be decomposed as

F = B ·G,
where B is a Blaschke product, a function of the form

B(z) = zm
∏

i∈I

ai
|ai|

z − ai
1− aiz

,

where m ∈ N0 and a1, a2, · · · ∈ D are zeroes inside the unit disk D and G has no
roots in D. For |z| = 1 we have |B(z)| = 1 which motivates the analogy

B ∼ frequency and G ∼ amplitude

for the function restricted to the boundary. However, the function G need not be
constant: it can be any function that never vanishes inside the unit disk. If F has
roots inside the unit disk, then the Blaschke factorization F = B · G is going to
be nontrivial (meaning B 6≡ 1 and G 6≡ F ). G should be ’simpler’ than F because
the winding number around the origin decreases.

Unwinding. There is a natural way of iterating Blaschke factorization. G has no
zeroes inside the unit disk but the function G(z)−G(0) has at least one root inside
the unit disk D thus has a nontrivial Blaschke factorization G(z)−G(0) = B1G1

where B1 is not constant. Iterating this procedure

F = B ·G
= B · (G(0) + (G(z)−G(0)))
= B · (G(0) +B1G1)

= G(0)B +BB1G1.

Formally this gives rise to the unwinding series

F = a1B1 + a2B1B2 + a3B1B2B3 + a4B1B2B3B4 + . . .

This unwinding series has a number of desirable properties. One such result,
also illustrated in Fig. 1, is monotonicity in the Dirichlet space: if F ∈ H∞(D)
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with roots {αj : j ∈ J} in D and has the Blaschke factorization F = B ·G, then
∫

D

|F ′(z)|2dz =
∫

D

|G′(z)|2dz + 1

2

∫

∂D

|G|2
∑

j∈J

1− |αj |2
|z − αj |2

.

The same type of unwinding is possible in other settings. We discuss an analo-
gous factorization on the upper half-space. The suitable replacement of Blaschke
products is now given by functions indexed by λ1, . . . , λn ∈ C+ of the form

B(z) =
n∏

k=1

z − λk
z − λk

, which satisfy |B(z)| = 1 on R.

We will consider function space ‖·‖X , ‖·‖Y on the set

L2
+(R) =

{
f ∈ L2(R) : supp(f̂) ⊆ [0,∞)

}

defined by ψ : [0,∞]→ [0,∞] which we assume to be a monotonically increasing,
differentiable function with ψ(0) = 0 and

‖f‖2X :=

∫ ∞

0

|F̂ (ξ)|2ψ(ξ)dξ as well as ‖f‖2Y :=

∫ ∞

0

|F̂ (ξ)|2ψ′(ξ)dξ.

Figure 1. F (eit) (solid line) given by the cubic polynomial.
G(eit) (dashed) has the same maximum winding but over a
smaller area.

There exists a general convergence result in this setting.

Theorem (see [2]). If F has roots λ1, . . . , λn ∈ C+, then we have
∥∥∥∥∥F

n∏

i=1

z − λk
z − λk

∥∥∥∥∥

2

X

≤ ‖F‖2X .

For the removal of a single root F (λ) = 0, we have the stronger estimate
∥∥∥∥F

z − λ
z − λ

∥∥∥∥
2

X

≤ ‖F‖2X − (2ℑ(λ))
∥∥∥∥F

z − λ
z − λ

∥∥∥∥
2

Y

.



3022 Oberwolfach Report 55/2021

Moreover, in the Dirichlet space ψ(ξ) = ξ, we even have
∥∥∥∥∥F

n∏

i=1

z − λk
z − λk

∥∥∥∥∥

2

X

≤ ‖F‖2X −
∫

R

|F (x)|2
n∑

i=1

2ℑ(α)
|x− λk|2

dx,

where the sum ranges over all roots of F on C+.

The decomposition has been actively studied in a variety of pure and applied
settings. Perhaps the most pressing open question is as follows.

Problem. What can be rigorously established about the conver-
gence properties of the unwinding series? Is it possible to obtain
an effective convergence rate for sufficiently nice functions F?

An approach proposed by S. Steinerberger and H. - T. Wu is studied the be-
havior of one step in the iteration, replacing G(z) by G(z) − G(0) in the special
case where G is a random polynomial (see [9]). We conclude with a nice recent
observation of Coifman & Peyriere: given

B(x) =
∏

k≥1

x− ak
x− ak

we have B(x) = eiθ(x) where

θ(x) =
∑

k≥0

σ

(
x− Re ak
Im ak

)

and σ is well-known object

σ(x) =
π

2
+ arctanx.
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Equivariant machine learning, structured like classical physics

Soledad Villar

(joint work with David W. Hogg, Kate Storey-Fisher, Weichi Yao,
Ben Blum-Smith)

There has been enormous progress in the last few years in designing neural net-
works that respect the fundamental symmetries and coordinate freedoms of phys-
ical law. Some of these frameworks make use of irreducible representations, some
make use of group convolutions, some use high-order tensor objects or spherical
harmonics, and some apply symmetry-enforcing constraints. Different physical
laws obey different combinations of fundamental symmetries, but a large fraction
(possibly all) of classical physics is equivariant to translation, rotation, reflection
(parity), boost (relativity), and permutations. Here we show that it is simple to
parameterize universally approximating polynomial functions that are equivariant
under these symmetries, or under the Euclidean, Lorentz, and Poincaré groups, at
any dimensionality d. The key observation is a simple consequence of classical in-
variant theory: Nonlinear O(d)-equivariant (and related-group-equivariant) func-
tions can be universally expressed in terms of a lightweight collection of scalars—
scalar products and scalar contractions of the scalar, vector, and tensor inputs.

Given a function f : X → Y and a group G acting on X and in Y as ⋆ (possibly
the action is defined differently in X and Y). We say that f is:

G-invariant: f(g ⋆ x) = f(x) for all x ∈ X , g ∈ G ;(1)

G-equivariant: f(g ⋆ x) = g ⋆ f(x) for all x ∈ X , g ∈ G .(2)

Most physics problems satisfy invariances and equivariances with respect to
some group action. Equivariant machine learning aims to learn functions from
data, that satisfy those invariances or equivariances by design, with the philosophy
that imposing these symmetries provides the right inductive bias for the learning
problem. To this end there are many ways to parameterize classes of invariant and
equivariant functions. Each of these ways has advantages and disadvantages.

In [1] we provide a complete and computationally tractable characterization of
all scalar functions f : (Rd)n → R, and of all vector functions h : (Rd)n → Rd

that satisfy all of the symmetries of classical physics. The groups corresponding
to these symmetries are given in Table 1; they act according to the rules in Ta-
ble 2. The characterization we provide is physically principled: It is based on the
fundamental theorem of invariant functions [2] and it is also connected to the sym-
metries encoded in the Einstein summation rules, a common notation in physics
to write expressions compactly but that also allows only equivariant objects to be
produced.

Our characterization is based on simple mathematical observations. The first is
the First Fundamental Theorem of Invariant Theory for O(d): a function of vector
inputs returns an invariant scalar if and only if it can be written as a function only
of the invariant scalar products of the input vectors [2, Section II.A.9]. There are
similar statements for the Lorentz group O(1, d) and the rotation group SO(d).
The second observation is that a function of vector inputs returns an equivariant
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Orthogonal O(d) = {Q ∈ Rd×d : Q⊤Q = QQ⊤ = Id},

Rotation SO(d) = {Q ∈ Rd×d : Q⊤Q = QQ⊤ = Id, det(Q) = 1}

Translation T(d) = {w ∈ Rd}

Euclidean E(d) = T(d) ⋊O(d)

Lorentz O(1, d) = {Q ∈ R(d+1)×(d+1) : Q⊤ΛQ = Λ, Λ = diag([1,−1, . . . ,−1])}

Poincaré IO(1, d) = T(d + 1) ⋊O(1, d)

Permutation Sn = {σ : [n]→ [n] bijective function}

Table 1. The groups considered in [1].

Orthogonal; Lorentz Q ⋆ (v1, · · · , vn) = (Qv1, · · · , Q vn)

Translation w ⋆ (v1, · · · , vn) = (v1 +w, · · · , vk + w, vk+1, . . . , vn)
(where the first k vectors are position vectors)

Euclidean; Poincaré (w,Q) ⋆ (v1, · · · , vn) = (Qv1 +w, · · · , Q vk +w,Qvk+1, · · · , Q vn)

Permutation σ ⋆ (v1, . . . , vn) = (vσ(1), . . . , vσ(n))

Table 2. The actions of the groups on vectors. For the
Euclidean group, the position vectors are positions of points;
for the Poincaré group, the position vectors are positions of
events.

vector if and only if it can be written as a linear combination of invariant scalar
functions times the input vectors. In particular, if h : (Rd)n → Rd of inputs
v1, . . . , vn is O(d) or O(1, d)-equivariant, then it can be expressed as:

h(v1, v2, · · · , vn) =
n∑

t=1

ft

(
〈vi, vj〉ni,j=1

)
vt ,(3)

where ft can be arbitrary functions, but if h is a polynomial function the ft can be
chosen to be polynomials. In other words, the O(d) and O(1, d)-equivariant vector
functions are generated as a module over the ring of invariant scalar functions by
the projections to each input vector. In this expression, 〈·, ·〉 denotes the invariant
scalar product, which can be the usual Euclidean inner product, or the Minkowski
inner product defined in terms of a metric Λ (see Table 1):

Euclidean: 〈vi, vj〉 = v⊤i vj , Minkowski: 〈vi, vj〉 = v⊤i Λ vj .(4)

Our work [1] uses the ideas described above, and extension to translations
and permutations, to provide simple and universal parameterizations of invariant
and equivariant functions. In [3] we apply this scalar-based model to a simple
dynamical system, were we show implementations based on this formulation can
obtain state-of-the-art numerical performance.
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(Non-)uniqueness of phase recovery from Gabor and wavelet
transform measurements

Rima Alaifari

(joint work with Francesca Bartolucci, Matthias Wellershoff)

Originating from imaging and audio processing applications, the problem of phase
retrieval has gained significant attention by the applied harmonic analysis commu-
nity over the last decades. A common formulation of the problem is the following:

Suppose we consider a Hilbert spaceH and a measurement system (ϕλ)λ∈Λ ⊂ H
for an index set Λ ⊆ C. What can be said about uniqueness and stability of
recovering functions f ∈ H from magnitude measurements

(|〈f, ϕλ〉|)λ∈Λ ?

In its most general formulation, one can study this problem under the assumption
that (ϕλ)λ∈Λ is a (possibly non-discrete) frame. Dropping the frame condition is
not very meaningful, as one would want to consider a measurement system for
which any f ∈ H can be stably and uniquely determined from (〈f, ϕλ〉)λ∈Λ to
begin with.

Phase retrieval is a non-linear inverse problem that can be formulated more
precisely as follows: Let Φ := (ϕλ)λ∈Λ be a frame for H and define a metric that
accounts for inevitable trivial ambiguities, i.e.

dH(f, g) := inf
τ∈S1

‖f − τg‖,

where S1 is the unit circle in C. Furthermore, let

PCH := H/S1

be the according quotient space. Then, phase retrieval amounts to the inversion
of the operator

AΦ : PCH → R
Λ
+, f 7→ (|〈f, ϕλ〉|)λ∈Λ.

In other words, the goal is to recover signals up to a global phase factor, since it is
not possible to distinguish f from τf , τ ∈ S1, when only phaseless measurements
are acquired.

We have recently studied the question of uniqueness for phase retrieval when the
measurement system is a Gabor or wavelet frame. This consideration is motivated
by applications such as ptychographic imaging and the reconstruction problem in
the phase vocoder, an application in audio processing. First, let us define the
continuous transforms. The windowed (or short-time) Fourier transform (STFT)
of a function f ∈ L2(R) for a suitable window g is given by

Vgf(x, y) :=

∫

R

f(t)g(t− x)e−2πitydt, x, y ∈ R.
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The continuous wavelet transform of a function f ∈ L2(R) with respect to a
suitable wavelet ψ is defined as

Wψf(b, a) :=
1

a

∫

R

f(t)ψ

(
t− b
a

)
dt, a ∈ R+, b ∈ R.

We may then consider the following setup for phase retrieval:
Given magnitudes of the STFT or wavelet transform in the form

{|Vgf(x, y)|}(x,y)∈Λ , Λ ⊆ R
2

or

{|Wψf(b, a)|}(b,a)∈Λ , Λ ⊆ R× R+,

respectively, when is phase retrieval uniquely solvable? In particular, is it possible
to identify windows g (or wavelets ψ), and choices of index sets Λ and subspaces
M⊆ L2(R) such that the phase retrieval operator AΦ : PCM→ RΛ

+ is injective?
Especially, can we choose Λ to be discrete?

In recent work, we have given a positive answer for wavelets [2], and a positive [1]
as well as a negative answer [3] for the STFT. The two positive results are both
given forM the Paley-Wiener space defined as

PWΩ = {f ∈ L2(R) : suppf̂ ⊆ [−Ω,Ω]}.

Uniqueness of wavelet phase retrieval in the Paley-Wiener space. It is
possible to state a uniqueness result for wavelet phase retrieval when the wavelet
has a finite number of vanishing moments. If ψ has exactly ℓ vanishing moments,
then the function a−ℓWψf(·, a) converges to f in the L2−norm. This allows to
give a uniqueness result for real-valued functions f ∈ PWΩ from measurements

∣∣∣Wψf
( m
4Ω

, ak

)∣∣∣ , m, k ∈ N,

where (ak)k∈N ⊂ R+ is a sequence converging to zero. The main ingredients
here being that PWΩ is a reproducing kernel Hilbert space, the fact that analytic
functions real-valued on the real line are uniquely determined (up to sign) by their
magnitudes [5] and Shannon’s sampling theorem.

Uniqueness of Gabor phase retrieval in the Paley-Wiener space. The
so-called ambiguity function relation of time-frequency (TF) analysis relates the
magnitude of the STFT to the ambiguity function of the signal:

F
(
|Vgf |2

)
(y,−x) = Af(x, y) · Ag(x, y),

where F denotes the (two-dimensional) Fourier transform and Af(x, y) =
eiπxyVff(x, y) denotes the ambiguity function of f . The formula states that a
sufficient condition for Af to be uniquely recoverable from the STFT magnitudes
is that the ambiguity function of the window g has no zeros. It is easy to show
that Af determines f up to a global phase factor.

The most prominent example of a window with non-vanishing ambiguity func-
tion is the Gauss function. A less obvious example is the one-sided exponential [4].
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Note that in our context, it is sufficient that the ambiguity function only vanishes
on sets of measure zero, so that the Hermite windows can also be included.

We then searched for sufficient conditions on the ambiguity function of the
window, when the signal class to be reconstructed is the Paley-Wiener space. We
found that for the recovery of real-valued signals, it is sufficient to have that the
ambiguity function of the window g is non-zero almost everywhere on a finite line
segment of the TF plane, i.e. to have

Ag(0, y) 6= 0, for a.a. y ∈ (−2Ω, 2Ω).
When the signals are complex-valued, it suffices that Ag is non-zero almost every-
where on two finite line segments: uniqueness of phase retrieval can be guaranteed
if there is a c ∈ (0, 1

2Ω ] such that

Ag(0, y) 6= 0, Ag(c, y) 6= 0, for a.a. y ∈ (−2Ω, 2Ω).
In the real-valued setting (i.e. recovery of real-valued signals f from |Vgf |) one can
also state a uniqueness result from samples of |Vgf |, if the window g is such that
its Fourier transform is non-zero almost everywhere on (−Ω,Ω). This includes the
Gauss function.

Non-uniqueness of Gabor phase retrieval in L2(R). For a while, it has been
an open question whether for phase retrieval from STFT magnitudes there is a
critical density, i.e. whether uniqueness of phase retrieval can be guaranteed when
the Gabor frame is sufficiently oversampled. In light of the existing uniqueness
result from STFT magnitudes without sampling when the window is the Gauss
function, it is particularly interesting to study this choice of window function. We
answer this in the negative: when the signal class to be reconstructed is not further
restricted, i.e. whenM = L2(R), then for any lattice Λ = Rα(aZ× bZ) + λ there

exist functions f1, f2 ∈ L2(R) such that for ϕ(t) = e−πt
2

,

|Vϕf1(x, y)| = |Vϕf2(x, y)| , (x, y) ∈ Λ, but

dL2(R)(f1, f2) 6= 0.

Here, Rα denotes rotation by α and λ ∈ C a shift in the TF plane. We note
that these counterexamples have a simple explicit form. In the case that Λ is a
rectangular lattice, they can even be chosen to be real-valued.
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Continuous vs. Discrete Optimization of Deep Neural Networks

Nadav Cohen

(joint work with Omer Elkabetz)

The success of deep neural networks is fueled by the mysterious properties of
gradient-based optimization, namely, the ability of (variants of) gradient descent
to minimize non-convex training objectives while exhibiting tendency towards so-
lutions that generalize well. Vast efforts are being directed at mathematically
analyzing this phenomenon, with existing results typically falling into one of two
categories: continuous or discrete. Continuous analyses usually focus on gradi-
ent flow (or variants thereof), which corresponds to gradient descent (or variants
thereof) with infinitesimally small step size. Compared to their discrete (positive
step size) counterparts, continuous settings are oftentimes far more amenable to
theoretical analysis (e.g. they admit use of the theory of differential equations),
but on the other hand are stylized, and disregard the critical aspect of compu-
tational efficiency (number of steps required for convergence). Works analyzing
gradient flow over deep neural networks either accept the latter shortcomings (see
for example [1–3]), or attempt to reproduce part of the results via completely sep-
arate analysis of gradient descent (cf. [4–6]). The extent to which gradient flow
represents gradient descent is an open question in the theory of deep learning.

The presented work formally studies the foregoing question. Viewing gradient
descent as a numerical method for approximately solving the initial value problem
corresponding to gradient flow, we turn to the literature on numerical analysis,
and invoke a fundamental theorem concerning the approximation error. The theo-
rem implies that in general, the match between gradient descent and gradient flow
is determined by the curvature around gradient flow’s trajectory. In particular,
the “more convex” the trajectory, i.e. the larger the (possibly negative) minimal
eigenvalue of the Hessian is around the trajectory, the better the match is guaran-
teed to be. We show that when applied to deep neural networks (fully connected
as well as convolutional) with homogeneous activations (e.g. linear, rectified linear
or leaky rectified linear), gradient flow emanating from near-zero initialization (as
commonly employed in practice) follows trajectories that are “roughly convex,”
in the sense that the minimal eigenvalue of the Hessian along them is far greater
than in arbitrary points in space, particularly towards convergence. This implies
that over deep neural networks, gradient descent with moderately small step size
may in fact be close to its continuous limit, i.e. to gradient flow. We exemplify
an application of this finding by translating an analysis of gradient flow over deep
linear neural networks into a convergence guarantee for gradient descent. The
guarantee we obtain is, to our knowledge, the first to ensure that a conventional
gradient-based algorithm optimizing a deep (three or more layer) neural network
of fixed (data-independent) size efficiently converges to global minimum almost
surely under random (data-independent) near-zero initialization.
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We corroborate our theoretical analysis through experiments with basic deep
learning settings, which demonstrate that reducing the step size of gradient de-
scent often leads to only slight changes in its trajectory. This confirms that, in
basic settings, central aspects of deep neural network optimization may indeed be
captured by gradient flow. Recent works (e.g. [7–9]) suggest that by appropriately
modifying gradient flow it is possible to account for advanced settings as well,
including ones with momentum, stochasticity and large step size. Encouraged by
these developments, we hypothesize that the vast bodies of knowledge on contin-
uous dynamical systems, and gradient flow in particular (see, e.g., [10, 11]), will
pave way to unraveling mysteries behind deep learning.

The main contributions of this work are: (i) we conduct the first formal study
for the discrepancy between continuous and discrete optimization of deep neu-
ral networks; (ii) we demonstrate the use of generic mathematical machinery for
translating a continuous non-convex convergence result into a discrete one; (iii) to
our knowledge, the discrete result we obtain forms the first guarantee of random
(data-independent) near-zero initialization almost surely leading a conventional
gradient-based algorithm optimizing a deep (three or more layer) neural network
of fixed (data-independent) size to efficiently converge to global minimum; (iv) the
fundamental theorem (from numerical analysis) we employ is seldom used in ma-
chine learning contexts and may be of independent interest; and (v) we provide
empirical evidence suggesting that gradient descent over simple deep neural net-
works is often close to gradient flow.
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Which neural networks can be computed? - Expressivity meets Turing
in Deep Learning

Laura Thesing

(joint work with Anders C. Hansen)

1. Motivation

Deep learning with neural networks celebrates success on a large variety of tasks.
The performance was long believed impossible. Popular tasks are image classifi-
cation, speech recognition, scene detection, inverse problems and PDEs. However,
besides the impressive results, we also learn more about the inherent instabilities
to small perturbations of the input. The instabilities are shown with adversar-
ial examples. Especially for image classification, there exists a large variety of
different attack types. We aim to shed further light on this issue by combining
the findings from expressivity theory of neural networks with their computability
properties. In this talk, we present a framework for the extension and a first re-
sult. Moreover, we discuss the open questions which answers will allow us to give
further insight into how to build stable and accurate networks.

Expressivity theory for neural networks dates back to the universal approxi-
mation theorem [1] and has then been extended to different architecture types as
well as smoothness properties of the functions that are approximated. We have
a good understanding of which functions can be approximated with neural net-
works. Given these insights, we ask three further questions which relate the results
to their computability.

(1) Is the ground truth a sensible problem?
(2) Are the neural networks in the approximation results computable?
(3) Does there exist an algorithm that maps from (noisy) samples to the neural

network approximation?

Finally, one can also ask how can we ensure that the method we chose acts as
expected?

2. Expressivity meets Computability

These questions and their motivation are the main part of the talk. We consider
the computability in terms of the Turing model and the accuracy in the worst-case
scenario with the ‖ · ‖∞-norm. This can in the future also be extended to average
case analysis with for example the ‖ ·‖2-norm. We also had interesting discussions
on different choices of the computability model, which are now part of further
considerations.



Applied Harmonic Analysis and Data Science 3031

1. The ground truth: We ask if the task, for example, a classification task, is
a sensible problem. Informally speaking, the first thought should always be if it
is plausible to assume that there is a meaningful structure in the data. Neural
networks have a very large representative power and are therefore also able to fit
random labels on image data sets [2]. The fitting does not take longer than with
meaningful data. Hence, the pure convergence of a learning algorithm does not
tell if the underlying problem is sensible nor if the approximation is correct. From
a computer science perspective, we ask if the problem relates to a computable
function. If the ground truth is already unstable we cannot expect a good ap-
proximation to become stable. Moreover, if the underlying function is already
non-computable we will see that an accurate approximation with neural networks
is impossible. Hence, the understanding of the ground truth is of very high im-
portance but unfortunately also very hard to analyse.

2. The neural networks: This part is already been taken into account in the ex-
pressivity literature [3]. Here, it is being controlled that the weights of the network
are rational numbers and therefore computable. Moreover, the most commonly
used activation function the ReLU(x) = max {0, x} is also a computable function.
And hence the composition of computable functions is again computable.

3. The approximating mapping: The core part of every learning algorithm is
the mapping from potentially noisy point samples to the approximating network.
Here, often a minimization problem with a loss function is solved. We do not take
this restriction into account but ask if there is any algorithm that can compute
the approximating network. The existence of such an algorithm is directly related
to the computability of the ground truth. To make the statement more precise
we introduce the computability from point samples. A family of functions F with
f : [0, 1] → R is n-computable from point samples for n ∈ N if there exists an
algorithm Γ, which takes as input point samples of f on the dyadic grid and a
computable point x ∈ R, where the function is evaluated. Then Γ outputs an
approximation y to the evaluation of f(x) such that |y−f(x)| < 2−n. If this holds
for all n ∈ N we call F ∞-computable from point samples. This notion allows
having finite accuracy of the approximation which is usually sufficient and also
takes into account where the information is taken from. We then get for n ∈ N,
a family of functions F is n-computable from point samples if and only if there
exists an algorithm ΓF ,n which computes for all f ∈ F a neural network Ψf,n that
approximates f up to an error of 2−n, i.e.

‖Ψf,n − f‖∞ ≤ 2−n

from information of point samples of f .

3. Conclusion, Outlook and Open Questions

We have seen that we can relate the computability from point samples to the
existence of an algorithm that gives an approximation with computable neural
networks. Hence, all computable problems are also computable with neural net-
works. This underlines the immense power of neural networks. One may ask why
we then still see the instabilities in practice. Two possible reasons are that the
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sampling complexity is essential. Our results are constructive and the sampling
complexity is much larger than the number of samples used in practice. The other
possibility is that the learning algorithm that is mostly used is not the algorithm
that can find a good approximation. To get further insight into this question we
continue this work with the analysis of different expressivity results with respect
to their computability. We then aim to consider also a more restrictive family of
functions to reduce the sampling complexity. Finally, the weights in the construc-
tion are very large and we aim to reduce them as well with more sophisticated
architecture choices.

In the long run, we want to get a good understanding of the ground truth,
especially in image classification to understand which problems are computable
and sensible. In this line, a measure that allows us to investigate both the stability
and accuracy of the network approximation is of high interest.
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Norm bounds for a scattering transform on graphs

Bernhard G. Bodmann

(joint work with Íris Emilsdóttir)

Introduction

In the present work, we examine signals on graphs whose structure is motivated
by time series analysis. In typical models for time series data, the values that
occur closely together in time show a stronger dependence than observations that
are spaced further apart [9]. However, this property may need to be modified to
explain recurring patterns, such as daily or weekly periodicities in traffic intensities.
We assume that the underlying periodicities are known and encoded in a graph
structure, where neighboring vertices are immediate successors in time or related
by a shift in time corresponding to a period of the observed process. Based on
the graph structure, one may devise a type of scattering transform in the spirit
of Mallat’s method to generate feature vectors with convolutional networks in a
non-adaptive way [1, 7]. This has been done by Zou and Lehrman [11] based on
graph wavelets [4], see also [2]. Here, we pursue a parallel strategy that is based
on heat kernels.
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Preliminaries

An oriented graph (V,E) is described by a vertex set V and an edge set E, for
which E contains ordered pairs of vertices. When considering a directed graph,
we also speak of an edge without orientation when passing from (i, j) ∈ E to
{i, j}. Two edges are adjacent if they have a vertex in common. A graph is
connected if any two vertices in V appear in a sequence of vertices such that each
pair of consecutive elements in this sequence forms an edge. A directed graph
is weakly connected if any two vertices appear in a sequence of adjacent edges
without orientation.

The Hilbert space ℓ2(V ) is the space of all real-valued functions f : V → R,
equipped with the canonical inner product that associates 〈f, g〉 = ∑

j∈V f(j)g(j)

with f, g ∈ ℓ2(V ). The standard graph Laplacian ∆ is the self-adjoint operator
corresponding to the quadratic form defined by Q(f) =

∑
i,j∈E |f(i) − f(j)|2 for

f ∈ ℓ2(V ). Given a directed graph (V,E) and a function a : E → R, we let ∆a be
the operator on ℓ2(V ) corresponding to Qa(f) =

∑
(i,j)∈E |ea(i,j)f(i)− f(j)|2. In

this context, we call the function a a connection. Finally, for two functions w, a on
the edge set of a directed graph with w assuming only strictly positive values, we let
∆w,a be defined via Qw,a(f) =

∑
(i,j)∈E w(i, j)|ea(i,j)f(i)− f(j)|2 = −〈∆w,af, f〉.

We then say that the edges are weighted by w. If there is φ : V → R such that for
each (i, j) ∈ E, a(i, j) = φ(j) − φ(i), then we say that a is a gradient function.

Main results

With the help of the Laplacian ∆w,a, we define a cascade of transforms.

Definition. Let (V,E) be a directed graph with weights w : E → R+, connection
a : E → R and Laplacian ∆w,a, 〈∆w,af, f〉 = −

∑
〈i,j〉 wi,j |ea(i,j)f(i)− f(j)|2.

For ǫ > 0, f : V → R, let S0(f) = f , we inductively set for m ∈ N

Sm(f) = (I − (I − ǫ∆w,a)e
ǫ∆w,a)1/2|Sm−1(f)|

and

Tm(f) = (I − ǫ∆w,a)
1/2e

ǫ
2
∆w,a |Sm−1(f)| .

Here, for any function g on V , |g| = max{g,−g}.

It is a direct consequence of this definition that the norm of a signal is preserved
under this transform.

Proposition. Let (V,E), w, a, and ∆w,a, Sm and Tm be as above, then for
N ∈ N,

‖f‖2 = ‖SN(f)‖2 +
N∑

m=1

‖Tm(f)‖2

Next, we observe that if a is a gradient function, then the functions in the kernel
of the Laplacian saturate the norm of T1.
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Proposition. Let (V,E) be a weakly connected, directed graph, w, a, and ∆w,a,
S1 and T1 as above, and there is φ : V → R such that a(i, j) = φ(j) − φ(i), then
‖T1(f)‖ = ‖f‖ if and only if there is c ∈ R and for each i ∈ V , f(i) = ceφ(i).

More generally, we study the behavior of the norm when applying S1 or T1, with
a similar motivation as in [10]. Here, we relate the norm to the Rayleigh quotient of
the Laplacian. Because of the Parseval-type identity ‖f‖2 = ‖S1(f)‖2+ ‖T1(f)‖2,
it is enough to investigate T1.

Theorem. Let (V,E) be a weakly connected, directed graph with weights w,
connection a, and Laplacian ∆w,a such that λ1 is the first non-zero eigenvalue of
−∆w,a, and λmax the maximal eigenvalue of −∆w,a. If ǫ > 0, 0 ≤ ρ ≤ λ1, and

−〈∆w,af, f〉 = ρ‖f‖2

then T1 as defined above satisfies

‖T1(f)‖2 ≥
[
(1− ρ

λ1
) + (1 + ǫλmax)e

−ǫλmax
ρ

λmax

]
‖f‖2

and

‖T1(f)‖2 ≤
[
(1 − ρ

λmax
) + (1 + ǫλ1)e

−ǫλ1
ρ

λ1

]
‖f‖2 .

Corollary. If the assumptions of the preceding theorem hold, f ∈ ℓ2(V ) \ {0},
and ǫ > 0 is sufficiently small so that (1 + ǫλ1)e

−ǫλ1λmax > λ1 then

‖T1(f)‖2/‖f‖2 − 1

(1 + ǫλ1)e−ǫλ1/λ1 − 1/λmax
≤ ρ .

Estimating the Rayleigh quotient is useful when it is used as a statistic to infer

whether an observed graph signal is consistent with a stochastic model for it. This
will be pursued in an application to traffic counts in forthcoming work.
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Gaussian lattice sums

Markus Faulhuber

(joint work with Laurent Bétermin, Stefan Steinerberger)

1. Definition and Main Result

In [2], we characterize optimizers for a variational problem with applications in
various fields. Let Λ be a lattice in R2 and consider the function

(1) EΛ(z;α) =
∑

λ∈Λ

e−πα|λ+z|
2

z ∈ R
2, α > 0.

The function EΛ(z;α) is simply the sum of (scaled) Gaussians centered at points
given by a (shifted) lattice: it may thus be understood as the two-dimensional
analogue of a Jacobi theta function. Given the fundamental nature of this object,
the function EΛ(z;α) naturally arises in many different areas of mathematics. In
[2], we are concerned with minimizing and maximizing the function EΛ(z;α). The
canonical candidate for solving the variational problem is the hexagonal lattice;

Λ2 =
√

2√
3

(
1 1

2

0
√
3
2

)
Z
2.

Theorem (Montgomery, 1988). Among all lattices Λ ⊂ R2 with fixed density,

max
z∈R2

EΛ(z;α) is minimized

if and only if Λ is the hexagonal lattice Λ2.

Main Result (Bétermin, Faulhuber, Steinerberger, 2021). Among all lattices
Λ ⊂ R2 with fixed density,

min
z∈R2

EΛ(z;α) is maximized

if and only if Λ is the hexagonal lattice Λ2.

One nice aspect of Montgomery’s result is that the maximum is assumed in a
lattice point; in contrast, we have relatively little control over the point z in
which the minimum is assumed (see Figure 1) which makes the proof significantly
harder. One important consequence of our Main Result is that the hexagonal
lattice maximizes the minimum while simultaneously minimizing the maximum
of EΛ (the latter being due to Montgomery). We expect this to be a very rare
property if (1) is generalized to higher dimensions. This reaffirms the special
role that the hexagonal lattice Λ2 plays for variational problems in R2. The Main
Result has many consequences, one of which is, in combination with Montgomery’s
result, that the conjecture of Strohmer and Beaver [9] is finally affirmed.
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Figure 1. Gaussian lattice sum for the hexagonal lattice Λ2

(left) and a non-hexagonal, non-rectangular lattice (right). For
EΛ2

(z;α) the minimum among all z is attained at the circumcen-
ter for all α > 0 and the closest lattice points are a covering radius
away. For general lattices, the minimum of EΛ(z;α), marked by
×, is “close” to the circumcenter and varies with α (see also [1]).

2. Consequences for Gaussian Gabor frames

Consider the Gaussian Gabor system G(ϕ,Λ), Λ =MZ2 with M ∈ GL(2,R) and
vol(Λ) = | det(M)| is fixed.

The quantity δ(Λ) = vol(Λ)−1 is called the density of the lattice and determines
the (over-)sampling rate of the Gabor system G(ϕ,Λ). The window function

ϕ(t) = 21/4e−πt
2

is the Fourier invariant standard Gaussian of L2(R)-unit norm. The associated
frame operator SΛ : L2(R)→ L2(R) is given by

SΛf =
∑

λ∈Λ

〈f, π(λ)ϕ〉π(λ)ϕ.

Here, π(λ) denotes a shift in the time-frequency plane by λ ∈ R2;

π(λ)ϕ(t) =MωTxϕ(t) = ϕ(t− x)e2πiωt, λ = (x, ω).

The Gabor system is a frame if and only if the frame inequality is fulfilled;

AΛ ‖f‖2L2 ≤
∑

λ∈Λ

|〈f, π(λ)ϕ〉|2 ≤ BΛ ‖f‖2L2 , ∀f ∈ L2(R),

for positive constants 0 < AΛ ≤ BΛ < ∞. The sharpest possible constants above
are obtained from the spectral bounds of the frame operator SΛ;

A−1
Λ =

∥∥S−1
Λ

∥∥
L2→L2

and BΛ = ‖SΛ‖L2→L2 .



Applied Harmonic Analysis and Data Science 3037

Due to the results of Lyubarskii [5], Seip [7], and Seip and Wallsten [8], we know
that G(ϕ,Λ) is a frame whenever δ(Λ) > 1. Hence, it makes sense to ask for the
optimal sampling pattern for a fixed oversampling rate δ.

In [9], Strohmer and Beaver compared the frame condition number, i.e., BΛ/AΛ,
of Gaussian Gabor systems with square lattice and hexagonal lattice of density 2.
They observed that, in this case, the condition number for the square lattice is

√
2

and for the hexagonal lattice it is “suspiciously close” to 3
√
2. Furthermore, they

conjectured that this is the smallest possible condition number among all lattices
of density 2. Further numerical comparisons also suggest that the hexagonal lattice
gives the optimal condition number for any fixed oversampling rate.

In general, it is extremely hard to compute frame bounds of Gabor systems, but
for Gaussian Gabor systems of oversampling rate 2n, n ∈ N, a result of Janssen [4]
shows that the computation of the sharp frame bound reduces to finding the
minimum and maximum of a Gaussian lattice sum as given by (1). By using
Montgomery’s result [6], it was shown in [3] that in this case BΛ is minimized
only for the hexagonal lattice. Using the Main Result [2], we also see that AΛ is
maximized in this case. Therefore, the conjecture of Strohmer and Beaver is also
confirmed in this case. We expect that in higher dimensions the optimal lattices
for the lower and upper frame bound will in general differ from each other.

The Main Result has further remarkable consequences, which are discussed
in detail in [2]. Due to the universality of Gaussian lattice sums and its wide
applicability in different areas of mathematics, it stands to reason that the Main
Result also has many more implications, not just the ones stated in [2].
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[2] L. Bétermin, M. Faulhuber and S. Steinerberger. A variational principle for Gaussian lattice

sums, arXiv preprint: 2110.06008 (2021), 1–62.
[3] Markus Faulhuber. Minimal Frame Operator Norms Via Minimal Theta Functions, Journal

of Fourier Analysis and Applications, 24(2) (2018), 545–559.
[4] Augustus J. E. M. Janssen. Some Weyl-Heisenberg frame bound calculations, Indagationes

Mathematicae, 7(2) (1996), 165–183.
[5] Yurii Lyubarskii. Frames in the Bargmann space of entire functions, in Entire and Subhar-

monic Functions vol. 11 of Advances in Soviet Mathematics, AMS (1992), 167–180.
[6] Hugh L. Montgomery, Minimal theta functions, Glasgow Mathematical Journal, 30(1)

(1988), 75–85.
[7] Kristian Seip. Density theorems for sampling and interpolation in the Bargmann–Fock space

I. Journal für die reine und angewandte Mathematik (Crelles Journal), 429 (1992), 91–106.
[8] Kristian Seip and Robert Wallstén. Density theorems for sampling and interpolation in

the Bargmann–Fock space II, Journal für die reine und angewandte Mathematik (Crelles
Journal), 429 (1992), 107–114.

[9] T. Strohmer and S. Beaver. Optimal OFDM design for time-frequency dispersive channels,
Communications, IEEE Transactions, 51(7) (2003), 1111–1122.



3038 Oberwolfach Report 55/2021

Using matrix factorizations for interpretability

Deanna Needell

(joint work with Laura Balzano, Hanbaek Lyu)

In modern data analysis, a central step is to find a low-dimensional representation
to better understand, compress, or convey the key phenomena captured in the
data. Matrix factorization provides a powerful setting for one to describe data
in terms of a linear combination of factors or atoms. In this setting, we have a
data matrix X ∈ Rd×n, and we seek a factorization of X into the product WH
for W ∈ Rd×r and H ∈ Rr×n. This problem has gone by many names over
the decades, each with different constraints: dictionary learning, factor analysis,
topic modeling, component analysis. It has applications in text analysis, image
reconstruction, medical imaging, bioinformatics, and many other scientific fields
more generally [2–5, 9, 10, 12].

Online matrix factorization is a problem setting where data are accessed in a
streaming manner and the matrix factors should be updated each time. That is,
we get draws of X from some distribution π and seek the best factorization such
that the expected loss EX∼π

[
‖X −WH‖2F

]
is small. This is a relevant setting in

today’s data world, where large companies, scientific instruments, and healthcare
systems are collecting massive amounts of data every day. One cannot compute
with the entire dataset, and so we must develop online algorithms to perform the
computation of interest while accessing them sequentially.

A natural way to relax the assumption of independence in this online context is
through the Markovian assumption. In many cases one may assume that the data
are not independent, but independent conditioned on the previous iteration. The
central contribution of our work is to extend the analysis of online matrix factor-
ization in [8] to the setting where the sequential data form a Markov chain. This
is naturally motivated by the fact that the Markov chain Monte Carlo (MCMC)
method is one of the most versatile sampling techniques across many disciplines,
where one designs a Markov chain exploring the sample space that converges to
the target distribution.

In this paper, we analyze convergence properties of the following scheme of
OMF:

Upon arrival of Xt:





Ht = argminH∈C′⊆Rr×n‖Xt −Wt−1H‖2F + λ‖H‖1
At = (1− wt)At−1 + wtHtH

T
t

Bt = (1− wt)Bt−1 + wtHtX
T
t

Wt = argminW∈C⊆Rd×r

(
tr(WAtW

T )− 2tr(WBt)
)

s.t. tr((BTt −WAt)(Wt−1 −W )T ) ≤ 0

(1)

where (wt)t≥1 is a prescribed sequence of weights, and A0 and B0 are zero matrices
of size r × r and r × d, respectively. Note that the L2-loss function is augmented
with the L1-regularization term λ‖H‖1 with regularization parameter λ ≥ 0, which
forces the code Ht to be sparse.
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This result is summarized in Theorem 1, rigorously establisheing convergence of
a non-convex generalization (1) of the online matrix factorization scheme in [7, 8]
when the data sequence (Xt)t≥0 is realized as a function of some underlying Markov
chain with a mild mixing condition.

Theorem 1. We assume mild conditions on the Markov chain and loss functions
(see [6]). Let (Wt, Ht)t≥1 be a solution to the optimization problem (1). Then the
following hold.

(i): limt→∞ E[ft(Wt)] = limt→∞ E[f̂t(Wt)] <∞.

(ii): ft(Wt)− f̂t(Wt)→ 0 and f(Wt)− f̂t(Wt)→ 0 as t→∞ almost surely.
(iii): Almost surely,

lim
t→∞
‖∇W f(Wt)− 2(WtAt −Bt)‖F = 0.(2)

Furthermore, the distance between Wt and the set of all local extrema of f
in C converges to zero almost surely.

We remark here that the algorithm and theory have also been extended to the
tensor case, see [11] for details.

We now present an example of how one can use ONMF and its tensor version in
applications. We demonstrate our method on video data of brain activity across
a mouse cortex, and how our online method learns dictionaries for the spatial and
temporal activation patterns simultaneously. The original video is due to Barson
et al. by using genetically encoded calcium indicators to image brain activity
transcranially [1].

Figure 1. Learning 20 CP-dictionary patches from video frames
on brain activity across the mouse cortex.

Our algorithm learns a dictionary in the space-color mode that shows spatial
activation patterns and the corresponding time mode shows their temporal acti-
vation pattern, as seen in Figure 1. Due to the nonnegativity constraint, spatial
activation atoms representing localized activation regions in the cortex are learned,
while the darker ones represent the background brain shape without activation.
On the other hand, the activation frequency is simultaneously learned by the
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temporal activation atoms shown in Figure 1 (right). For instance, the spacial
activation atom # 9 (numbered lexicographically) activates three times in its cor-
responding temporal activation atom in the right, so such activation pattern has
an approximate frequency of 2/3 sec.
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Machine learning meets super-resolution

Hrushikesh N. Mhaskar

In this talk, we pointed out a duality between the question of approximation of
functions and the question of blind source signal separation. We also explained our
idea that treating the classification problem as a super-resolution problem leads
to a provably good classification using a small number of samples, overcoming the
problem of non-disjoint class boundaries.

The question of blind source signal separation can be formulated in a gen-
eral setting as follows. Let X be a locally compact, metric, measure space,
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µ =
∑K

k=1 akδwk
for some integer K ≥ 2, ak ∈ R, wk ∈ X, where δwk

is the
Dirac delta distribution supported at wk. With a kernel G : X × X → R, we
observe

(1) f(yj) =

K∑

k=1

akG(yj , wk) + ǫj , j = 1, · · · ,M,

for judiciously chosen yj ∈ X, where ǫj are realizations of a mean zero random
variable with an unknown distribution. The problem is then to recuparate K, ak,
wk, and estimate the accuracy in terms of M .

Nominally, the problem of kernel based approximation of f is also the same,
except that f is considered to be an unknown function, one has typically no control
on the choice of yj, and the parameters as K, ak, wk may be chosen judiciously to
achieve a good approximation, the approximation error being estimated in terms
of M .

Table 3 gives a brief comparison.

Machine learning Signal separation

Approximate f , Choose ak, wk f is given, find ak, wk
Error measured in Error measured by

function space norm numerical accuracy
M depends upon M depends upon

smoothness (prior) on f minimal separation
Solve regularization problem Solve regularization problem

Table 3. A formal comparison between kernel based approxima-
tion of functions and blind source signal separation.

A crucial ingredient in our solution to both the problems is a family of localized
kernels Φn ∈ C(X× X) satisfying

(2) |Φn(y, z)| ≤ c
nq

max(1, (nρ(y, z))S)
, n ≥ 1, y, z ∈ X,

where ρ is the metric on X, q serves as the “dimension” of X, S > q is a parameter
depending on the construction of the kernels, and c > 0 is a constant depending
upon X and S, but independent of n, y, and z. For example, if X is a q-dimensional
compact, smooth, orientable manifold, λ2k’s are the eigenvalues of the (negative)
Laplace-Beltrami operator, and φk’s are the corresponding eigenfunctions, then
the family Φn can be constructed by the formula

(3) Φn(y, z) =

∞∑

ℓ=0

H

(
λℓ
n

)
φℓ(y)φℓ(z),

where H : [0,∞) → [0, 1] is an infinitely differentiable function, equal to 1 on
[0, 1/2], equal to 0 on [1,∞), and non-increasing on [1/2, 1] [6,8]. We have proved
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in [5,8] that if µ∗ is a positive measure on X, then under some additional conditions,

(4) σn(f) :=

∫

X

f(z)Φn(◦, z)dµ∗(z)→ f

uniformly for all f ∈ C(X), and estimated the degree of approximation. In view
of this fact, it is clear that for any (possibly signed) measure µ having bounded
total variation on X (i.e., µ ∈ C(X)∗),

(5) σn(µ) :=

{∫

X

Φn(◦, z)dµ(z)
}
dµ∗ → µ

in the weak-* sense. In [7], we have introduced a discrepancy expression to measure
the rate of weak-* convergence. Our discrepancy is a generalization of the Erdős-
Turán discrepancy as well as an analogue of the Wasserstein distance. We have
discussed in detail the rate of convergence using this discrepancy, and proved in

particular, that in the context of blind source signal separation (µ =
∑K

k=1 akδwk
),

the minimum amount of information M needed to achieve signal separation in a
robust manner is = Ω(η−q/β), where η is the minimal separation among the points
wk, and β is a parameter that defines the discrepancy. The term super-resolution
is used to consider the question of how to overcome this barrier.

When µ =
∑K

k=1 akδwk
, the density of σn(µ) is

∑K
k=1 akΦn(◦, wk). Since Φn is

highly localized, the peaks of this density occur approximately at the points wk’s
and the corresponding value approximates ak. Moreover, for a properly chosen
threshold θ, the region where the absolute value of this density is larger than θ
splits into exactly K clusters, separated by half the minimal separation among the
wk’s. Thus, we obtain an algorithm for finding all the parameters, including the
number of clusters K. This is illustrated in many of our papers, e.g., [1–3, 9]. We
note that for (4) to hold with the correct rate of convergence without saturation,
it is important that Φn should not be a positive kernel. For the convergence
of σn(µ) to µ when µ is finitely supported, the localization of the kernels avoids
interference from one point wk to another. When µ is not finitely supported, then
the correct rate of approximation requires that Φn should not positive, but this
property makes it impossible to avoid interference so that the negative part of the
kernel at some point in the support of µ is not canceled by the positive part of the
kernel from another part of the support of µ. Thus, the question of approximation
of µ itself needs to be treated separately from the question of finding the support
of µ. This is accomplished in the same manner using Φ2

n in place of Φn.
The second major insight discussed in our talk is to consider the problem of

classification as the problem of super-resolution. The problem of classification is
the following. We have data of the form {(yj , zj)}Mj=1 where yj ’s are samples from
a probability distribution µ, and zj is the class label corresponding to yj ; i.e., an
element of {1, · · · ,K}. The question is to predict the class label for a new point y
sampled from µ. In active learning paradigm, all the points yj are known, but none
of the labels zj to start with. The objective is to choose the points yj judiciously at
which the corresponding label ought to be queried, and then extend these labels
to the rest of the support of µ. Considering the conditional probabilities of y
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belonging to different classes, we obtain µ =
∑K

k=1 µk, where µk’s are positive
measures, with the support Sk of each µk being the set of all y’s with class label
k. Thus, if we could determine the support Sk for each k, then the classification
problem is solved using exactly one yk from Sk; the minimal number of samples
required to solve the problem. If each µk has the form akδwk

, then this is exactly
the problem of signal separation. However, unlike in that problem the minimal
separation among Sk’s is typically 0. Therefore, this is a super-resolution problem,
except that we are interested only in separating Sk rather than approximating the
µk’s themselves. As such, we have proposed in [4] to use the same method as for
signal separation as in our previous papers, but with Φ2

n in place of Φn. In [4],
the kernel Φn is constructed using Hermite polynomials, with localization proved
using the Mehler identity and the Tauberian theorem in [6]. We have proved that
the resulting classification scheme converges in the sense of F -score. We note that
the number of classes is an output of our theorem; we do not need to know a priori
how many classes are in the data. Indeed, we have argued in [4] that the labels
can be hierarchical in nature.

References

[1] C. K. Chui and H. N. Mhaskar. Signal decomposition and analysis via extraction of frequen-
cies, Applied and Computational Harmonic Analysis, 40(1):97–136, 2016.

[2] C. K. Chui and H. N. Mhaskar, A unified method for super-resolution recovery and real
exponential-sum separation, Appl. Comput. Harmon. Anal., 46(2):431–451, March 2019.

[3] C. K. Chui, H. N. Mhaskar, and M. D. van der Walt, Data-driven atomic decomposition via
frequency extraction of intrinsic mode functions, GEM-International Journal on Geomath-
ematics, 7(1):117–146, 2016.

[4] A. Cloninger and H. Mhaskar, Cautious active clustering, Applied and Computational
Harmonic Analysis, 54:44–74, 2021.

[5] M. Maggioni and H. N. Mhaskar, Diffusion polynomial frames on metric measure spaces,
Applied and Computational Harmonic Analysis, 24(3):329–353, 2008.

[6] H. N. Mhaskar, A unified framework for harmonic analysis of functions on directed graphs
and changing data, Appl. Comput. Harm. Anal., 44(3):611–644, 2018.

[7] H. N. Mhaskar, Super-resolution meets machine learning: approximation of measures, Jour-
nal of Fourier Analysis and Applications, 25(6):3104–3122, 2019.

[8] H. N. Mhaskar, Kernel-based analysis of massive data, Frontiers in Applied Mathematics
and Statistics, 6:30, 2020.

[9] H. N. Mhaskar and J. Prestin, On local smoothness classes of periodic functions, Journal of
Fourier Analysis and Applications, 11(3):353–373, 2005.

Solving Inverse Problems With Deep Neural Networks
– Robustness Included?

Martin Genzel

(joint work with Jan Macdonald and Maximilian März)

In recent years, deep learning methods have been successfully applied to many
problems of the natural sciences [7]. A prominent example of such scientific ma-
chine learning is the development of efficient solutions strategies for inverse prob-
lems, such as those encountered in medical imaging (see Fig. 1 for an example).
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Formally, an inverse problem in its prototypical, finite-dimensional form reads as
follows:

(IP)

{
Given a forward operator A : Rd → Rm and corrupted measurements

y = A(x0) + e with ‖e‖2 ≤ η, reconstruct the signal x0 ∈ Rd.

}

Here, e ∈ Rm models an unknown perturbation of the measurement process, e.g.,
caused by noise or misspecifications in the forward operator.

A−−→
←−−
?

x0 (image signal) y (k-space)

Figure 1. Example from the NYU fastMRI dataset for magnetic
resonance imaging (MRI) [6]. Here, the inverse problem (IP) basically
amounts to reconstructing an image signal (left) from highly under-
sampled frequency measurements (right). Thus, A is the composition
of a Fourier transform with a binary sampling mask.

Until 2016, the gold standard for inverse problems was given by variational
methods, typically phrased as (convex) optimization schemes with handcrafted
regularization terms [3, 4]. Since then, deep-learning-based solutions have revo-
lutionized the field, often clearly outperforming classical algorithms in terms of
precision and speed [2,8]. Many of these approaches rely on a supervised learning
procedure, which in its most basic form looks as follows: Given a large set of exam-
ple pairs {(yi,xi0)}Mi=1 drawn from (IP), one intends to compute a reconstruction

neural network Net[θ̂] : Rm → Rd by means of empirical risk minimization, i.e.,

the network weights θ̂ are an (approximate) solution to

(ERM) minθ
1
M

∑M
i=1 ℓ

(
Net[θ](yi),xi0

)
,

where ℓ : Rd × Rd → R≥0 is an appropriate loss function. The hope is that the
resulting map does not only fit the training data but also generalizes well to unseen

instances (y,x0) of (IP) in the sense that Net[θ̂](y) ≈ x0.
The robustness against noisy perturbations is arguably one of the most im-

portant features of an inversion method (no matter if learned or not). Formally,
we call a solution map Rec: Rm → Rd for (IP) robust with respect to the input
y = A(x0) + e if it satisfies

(1) ‖Rec
(
A(x0)

)
− Rec(y)‖2 ≤ C · η

for a small constant C > 0. In other words, the error due to the perturbation e

is controlled through the admissible noise level η. A valid point in favor of model-
based variational methods is that bounds of the form (1) can be often theoretically
verified under appropriate assumptions on A and the regularizer, e.g., see [4].
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In contrast, there are currently no comprehensive guarantees for practical data-
driven schemes available. Hence, an empirical verification of their robustness re-
mains indispensable. While a remarkable resilience against statistical noise has
been frequently reported, several alarming findings indicate that inversion pro-
cedures via deep neural networks might become unstable [1]. In analogy to ad-
versarial attacks on classifiers [9], it was pointed out that even tiny distortions
in the input domain may cause severe artifacts in the recovered (image) signals;
thus, unlike (1), the reconstruction Rec(y) would drastically deviate from its un-
perturbed counterpart Rec

(
A(x0)

)
. If this suspicion is substantiated, it would

certainly have detrimental implications on the usage of artificial intelligence in
safety-critical fields such as medical imaging.

Addressing this controversial debate, the presented work [5] is the first to draw
a fairly different, far more optimistic, picture of the aforementioned issues. In our
large-scale study, we have investigated the reliability of deep learning algorithms
for solving inverse problems. Our experimental designs cover standard compressed
sensing as well as image recovery from Fourier and Radon measurements, including
a real-world scenario from medical imaging based on the NYU fastMRI dataset [6]
(see Fig. 1). In view of previous concerns, the outcome of our research was quite un-
expected: standard end-to-end neural network models can not only resist against
statistical noise, but also against adversarial perturbations. The latter amounts to
computing a worst-case perturbation of the (noiseless) measurements y0 := A(x0)
such that the error of a given solver Rec: Rm → R

d for (IP) is maximized:

(2) eadv ∈ argmax‖e‖2≤η ‖Rec(y0 + e)− x0‖2 .

In this way, we were able to demonstrate empirically that learning-based schemes
indeed have the potential to obey error bounds of form (1). A distinctive feature
of our approach is the quantitative and qualitative comparison with total-variation
minimization, which serves as a provably robust reference method (see Fig. 2 for
two example results from [5]). On the other hand, we have also identified patho-
logical situations where instabilities (error blowups) are possible. Importantly, all
considered neural networks were obtained by ordinary empirical risk minimization
(ERM), without the need for an adversarial defense.
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Figure 2. The left plot shows the impact of adversarial perturbations
on the MRI signal from Fig. 1. The recovery error of total-variation
minimization TV[η] is compared to three neural-network-based solvers
(UNet, TiraFL, and ItNet). The corresponding error curves are gener-
ated by computing eadv according to (2) for a range of noise levels η

(and every method independently). The right plot shows an analogous
experiment in the idealistic situation of one-dimensional piecewise con-
stant signals. Here, the benchmark TV[η] is a perfect match that allows
for exact recovery from noiseless measurements. Images taken from [5].

[6] F. Knoll, J. Zbontar, A. Sriram, M. J. Muckley, M. Bruno, A. Defazio, M. Parente,
K. J. Geras, J. Katsnelson, H. Chandarana, Z. Zhang, M. Drozdzalv, A. Romero, M. Rab-
bat, P. Vincent, J. Pinkerton, D. Wang, N. Yakubova, E. Owens, C. L. Zitnick, M. P. Recht,
D. K. Sodickson, and Y. W. Lui, fastMRI: a publicly available raw k-space and DICOM
dataset of knee images for accelerated MR image reconstruction using machine learning,
Radiology Artif. Intell. 2 (2020), no. 1, e190007.

[7] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature 521 (2015), no. 7553, 436–444.
[8] G. Ongie, A. Jalal, R. G. Baraniuk, C. A. Metzler, A. G. Dimakis, and R. Willett, Deep

learning techniques for inverse problems in imaging, IEEE J. Sel. Areas Inf. Theory 1 (2020),
no. 1, 39–56.

[9] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
Intriguing properties of neural networks, arXiv:1312.6199, 2013.

Intersectionless Envelope Estimation for EMD

Laslo Hunhold

The Empirical Mode Decomposition (EMD) is a heuristic self-adaptive and data-
driven method for additively separating a multi-component, nonlinear, nonsta-
tionary signal s : [0, 1] → R into Intrinsic Mode Functions (IMFs) and a residual
(see [1]). IMFs have the form

(1) u(t) = a(t) · cos(φ(t))
with ‘amplitude’ a(t) > 0 and ‘phase’ φ(t). The ‘frequency’ φ′(t) > 0 and a(t)
are supposed to be ‘slowly varying’. In this abstract we will only consider a single
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EMD iteration, namely separating a given signal s(t) into an IMF u(t) and a
residual r(t):

(2) s(t) = u(t) + r(t).

Subsequent EMD iterations are carried out by respectively taking the residual of
the previous iteration as the input signal, yielding the desired additive separation
of a signal into multiple IMFs and a single residual (that of the last iteration).

The separation process in (2) is called ‘sifting’ and illustrated in Figure 1: The
first step is estimating the lower envelope m−(t) and upper envelope m+(t), where
an envelope is a curve that traces the signal’s extremes without intersecting it.
The residual r(t) and IMF u(t) are then obtained using
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Figure 1. Given a signal s(t) (left) its envelopes (dashed) are
estimated (middle) and averaged, yielding the residual r(t)
(right).

r(t) =
m−(t) +m+(t)

2
,(3)

u(t) = s(t)− r(t).(4)

In particular, we can directly determine a(t) = m+(t) − r(t) and normalize the
IMF to u(t)/a(t) = cos(φ(t)), leaving only the determination of φ(t). This phase
extraction will however not be in the scope of this abstract and we want to focus
on the envelope estimation.

Without loss of generality we only consider the estimation of the upper envelope.
We can estimate the lower envelope by negating the estimated upper envelope of
the negated signal. In the classical approach (see [1] and [2]), the upper envelope
is estimated by natural cubic B-Spline interpolation of the signal’s local maxima.
This has the disadvantage that the estimated envelope can intersect with the
signal, violating the envelope property (see Figure 2). There have been numerous
approaches to improve the mathematical formulation and estimation of envelopes
(see for example [3] and [4]) with their own downsides in regard to precision,
efficiency and generalization for multivariate data. EMD is widely used (see for
example [5]), further underlining the need for a better envelope estimation method.

The author proposes the following iterative scheme to obtain better envelopes:
For an envelope estimate m̃ (that is initially set to 0), determine the spots t where
s′(t) = m̃′(t) and s′′(t) < m̃′′(t) or t ∈ {0, 1}. Natural cubic B-Spline interpolation



3048 Oberwolfach Report 55/2021

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

Figure 2. The classical method (left) yields intersecting en-
velopes, whereas the proposed iterative method (right) prevents
intersections.

of these spots yields a new estimatem that can be used as m̃ for the next iteration.
This is repeated untilm is at most ε below s at any given point (see Algorithm 1 for
the multivariate case with Hessian H). Specifically, the first iteration is identical
to the classical method of interpolating local maxima.

Algorithm 1 Iterative Slope Envelope Estimation for multivariate signals

input : multicomponent signal s ∈ C2([0, 1]d,R)
tolerance ε > 0

output: upper envelope m ∈ C2([0, 1]d,R)

m←− 0 ∈ C0([0, 1]d,R);

repeat
m̃←− m;

P ←− {(t, s(t)) ∈ [0, 1]d × R | ∇(s− m̃)(t) = 0 ∧H(s− m̃)(t) negative definite};

m←− Interpolate(P ∪ (∂[0, 1]d, s(∂[0, 1]d)));

until ‖max(s−m, 0)‖
∞

< ε;

The algorithm shows no asymptotic overhead compared to the classical method:
Finding local maxima and evaluating ‖max(s−m, 0)‖∞ are embarassingly paral-
lel (i.e. trivially separable into parallel tasks) and natural cubic B-Spline interpo-
lation is linearly complex. The relatively small number of necessary iterations can
at least be confirmed empirically (see Figure 3).

Theoretically speaking, the fast convergence can be explained with the fact that
the interpolation points change less and less with each iteration. The effect of such
changes on the slope in other areas is additionally dampened by the interpolation.
This indicates a self-stabilizing behaviour whose proof would require an estimation
of the effect of control point changes on the interpolation’s slope.

All in all, the iterative slope envelope estimation yields intersectionless envelopes
with negligible overhead. Within the EMD heuristic, this may improve the quality
of the signal separation.
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Figure 3. Subsection from March 1st 2020 to May 1st 2020 of
daily DAX closing prices (thin). The algorithm converged on the
range January 2nd 2020 to November 25th 2021 after 4 iterations
with ε = 10. Left and middle show estimated envelopes (thick)
and residuals (dashed). The classical method (left) exhibits the
intersection problem, whereas the iterative slope method (mid-
dle) yields intersectionless envelopes. The residuals (right) of the
classical (dashed) and iterative method (thick) differ significantly.
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Designing the Quantum Channels Induced by Diagonal Gates

Robert Calderbank

(joint work with Jingzhen Hu, Qingzhong Liang)

The challenge of quantum computing is to combine error resilience with universal
computation. There are many finite sets of gates that are universal, and a stan-
dard choice is to augment the set of Clifford gates by a non-Clifford unitary [1]
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such as the T = Z1/4 gate. Gottesman and Chuang [2] defined the Clifford hier-
archy when introducing the teleportation model of quantum computing. The first
level is the Pauli group. The second level is the Clifford group, which consists of
unitary operators that normalize the Pauli group. The lth level consists of unitary
operators that map Pauli operators to the (l − 1)th level under conjugation. The
structure of the Clifford hierarchy has been studied extensively [3–8]. For l ≥ 3,
the operators at level l are not closed under matrix multiplication. However, the
diagonal gates at each level l of the hierarchy do form a group, and the gates

Z1/2l−1

, C(i)Z1/2j with i+ j = l − 1 generate this group [3, 6].
Quantum error-correcting codes encode logical qubits into physical qubits, and

protect information as it is transformed by logical gates. Given a logical diagonal
operator among the generators of the diagonal Clifford hierarchy, we describe a
general method for synthesizing a CSS code [9,10] preserved by a diagonal physical
gate which induces the target logical operator. Logical diagonal gates play a
central role in quantum algorithms. In the Shor factoring algorithm [11, 12], our

method applies to the C(i)Z1/2j diagonal gates which play an essential role in
period finding. In magic state distillation (MSD) [13–22], the effectiveness of the
protocol depends on engineering the interaction of a diagonal physical gate with
the code states of a stabilizer code [23, 24]. Our method transforms a CSS code
supporting a lower level logical operator to a CSS code supporting a higher level
logical operator. The coefficients in the Pauli expansion of a diagonal gate satisfy
a recursion that makes it possible to work backwards from a target logical gate.
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Our approach makes
use of an explicit represen-
tation of the logical chan-
nel induced by a diagonal
physical gate. The 2n−k1

rows of the array are in-
dexed by the [[n, k1−k2, d]]
CSS codes corresponding
to all possible signs of the
Z-stabilizer group. The
2k2 columns of the array
are indexed by all possible
X-syndromes µ. The logical operator Bµ is induced by (1) preparing any code
state ρ1; (2) applying a diagonal physical gate UZ to obtain ρ2; (3) using X-
stabilizers to measure ρ2, obtaining the syndrome µ with probability pµ, and the
post-measurement state ρ3; (4) applying a Pauli correction to ρ3, obtaining ρ4.
For each syndrome, we expand the induced logical operator in the Pauli basis to
obtain the generator coefficients [25] that capture state evolution. The generator
coefficients Aµ,γ are obtained by expanding the logical operator Bµ in terms of Z-
logical Pauli operators ǫ(0,γ)E(0,γ), where ǫ(0,γ) ∈ {±1}. Intuitively, the diagonal
physical gate preserves the code space if and only if the induced logical operator
corresponding to the trivial syndrome is unitary. To support the objective of fault
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tolerance, we emphasize transversal gates [23], which are tensor products of uni-
taries on individual code blocks. The approach taken in prior work is to focus on
the code states, and to derive sufficient conditions for a stabilizer code to be fixed
by a transversal Z-rotation [13–15, 17–20, 22, 26]. In contrast we derive necessary
and sufficient conditions by analyzing the action of a transversal diagonal gate on
the stabilizer group that determines the code. An advantage of our approach is
that we keep track of the induced logical operator.

The action of a diagonal physical operator UZ on code states depends very
strongly on the signs of Z-stabilizers [25,27,28] and our generator coefficient frame-
work captures how these signs change the logical operators induced by UZ . For
the coherent noise model, a judicious choice of signs creates a decoherence-free
subspace, that enables data storage. We demonstrate how to switch between com-
putation and storage by simply applying a Pauli matrix.

physical level

lo
g
ic
a
l
le
v
e
l

Concatenation

Removing Z-stabilizers

Adding X-stabilizers

Example:

[[4,2,2]] [[64,2,2]]

[[64,15,4]]

+

Haah [26] used divisibility properties of clas-
sical codes to construct CSS codes with param-
eters [[O(dl−1),Ω(d), d]] that realize a transver-

sal logical Z1/2l−1

. Modulo Clifford gates, his
construction includes the [[2l, 1, 3]] punctured
quantum Reed-Muller (QRM) codes [18] that

support a single logical Z1/2l−2

gate, and the
family of [[6k + 8, 2k, 2]] triorthogonal code [15]
that support a logical transversal T gate. In
contrast we introduce three basic operations -
concatenation, removal of Z-stabilizers, and addition of X-stabilizers - that can
be combined to synthesize an arbitrary logical diagonal gate [29], and present
the [[2m,

(
m
r

)
, 2min{r,m−r}]] QRM code family [25, 30] as a proof of concept. We

also characterize all CSS codes with positive signs, invariant under transversal Z-
rotation through π/2l, that are constructed from classical Reed-Muller (RM) codes
by deriving necessary and sufficient conditions that relate l to the parameters of
the component RM codes [25].
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Potential and Limitations of Neural Networks for Recovery of
Sparse Signals

Felix Krahmer

(joint work with Stefan Bamberger, Reinhard Heckel)

1. Introduction

The field of compressed sensing was introduced in the seminal works [1, 2] and
has grown to an intensely studied theory. Its key idea is to enable reconstruction
of signals and images from few measurements by imposing constraints on their
structure. A commonly studied example of such a structure is sparsity of the
signal vectors in some basis. That is, one assumes a signal or image that is well-
approximated by a linear combination of just few basis vectors.

In many scenarios, such a signal or image can then be provably recovered from
the measurements by solving a convex optimization problem. Compressive sensing
enables accelerated magnetic resonance imaging, accelerated computed tomogra-
phy, and many other applications.

More recently, neural networks have also been empirically demonstrated to ex-
hibit excellent reconstruction performance for such applications and to even out-
perform classical optimization based methods for a variety of signal and image
reconstruction problems. However, contrary to optimization-based methods for
which a rich literature on performance guarantees exists [3], for neural network
based signal reconstruction, many underlying theoretical questions are still open.

In mathematical terms, the goal of the compressed sensing problem studied in
this note is to recover a signal x ∈ Rn from m linear measurements y = Ax ∈ Rm

(A ∈ Rm×n), for a ground truth signal x that is s-sparse, i.e. at most s of its n
entries are non-zero.

1.1. Goal of this work. Due to the success of neural networks for classification
but also certain inverse problems such as the ones arising from MRI scanning,
the question arises whether the classical compressed sensing problem of recovering
sparse signals can be solved using neural networks. Given measurements y = Ax
like above for a sparse signal x, an end-to-end neural network function f should
recover x from a coarse approximation given by AT y such that x = f(AT y) or at
least ‖x− f(AT y)‖ is small.

Note that in the first step, a neural network applies a linear transformation to its
input. Thus, given f , we can define a network function f̃ such that f̃(y) = f(AT y).
Considering in addition that (A†)TATA = A (with A† being the Moore-Penrose
pseudoinverse), we can see that the problems of finding f such that f(AT y) is

(approximately) x and finding f̃ such that f̃(y) is (approximately) x are equivalent.
This is why we consider the latter case in the results of this work.

The goal of this work is to investigate for what kinds of neural networks it is
possible to reconstruct any sparse signal x from its measurements. For a negative
result, we restrict this analysis to the case of 1-sparse vectors. Since impossibility
of recovering 1-sparse vectors also implies impossibility of recovering vectors of
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any higher sparsity level, this is not an essential restriction in this direction. In
all results, we assume that all networks have the commonly used ReLU activation
function given by ReLU(x) = max(0, x) and use specific properties of it.

Specifically, we show that no ReLU -neural network with only one hidden layer
can recover all 1-sparse vectors in the setup of interest, regardless of the size of
the network. We also show that there exist relu-networks with two hidden layers
that can perform approximate recovery with an arbitrary precision. Moreover,
we show that the previously developed tools can be applied to show that exact
reconstruction of s-sparse vectors is possible with ⌈log2 s+ 2⌉ layers. However, in
this case of exact recovery, it is unknown whether the shown number of layers is
optimal.

2. Main Results

The main results of this work are the following two theorems. Theorem 2.1 states
that a ReLU network with one hidden layer cannot recover all s-sparse vectors
from any m ≪ n linear measurements, not even approximately and for 1-sparse
vectors. In strong contrast, Theorem 2.2 states that for a ReLU network with two
hidden layers, recovery of all s-sparse vectors is possible to an arbitrary precision
ǫ > 0 under weak assumptions on the matrix A.

Theorem 2.1 (Impossibility result for one hidden layer). Let A ∈ Rm×n, m ≤ n,
and f : Rm → Rn be a function described by a (possibly biased) neural network
with one hidden layer, ReLU activation function, and arbitrary width. Then,

sup
x∈Σ1\{0}

‖x− f(Ax)‖2
‖x‖2

≥
√
1− m

n
.

Note that in the case of underdetermined recovery problems, arguably the case
of particular interest, m ≪ n such that the lower bound for the relative error is
close to 1.

Theorem 2.2 (Arbitrary precision recovery with two hidden layers). Let s ≥ 1
and A ∈ Rm×n be a matrix for which Ax 6= 0 for all 2s-sparse x ∈ Rn. Let
ǫ ∈ (0, 1). There exists a function f : Rm → Rn, represented by an unbiased ReLU
network with two hidden layers such that for all s-sparse x ∈ Rn,

sup
x∈Σs\{0}

‖x− f(Ax)‖2
‖x‖2

≤ ǫ.

With the same methods as Theorem 2.2, also the following result about exact
recovery can be shown.

Theorem 2.3 (Exact recovery for sparsity s). Let A ∈ Rm×n be a matrix for which
Ax 6= 0 for all 2s-sparse x ∈ Rn, s ≥ 2. There exists a function f : Rm → Rn,
represented by an unbiased ReLU network with ⌈log2(s)⌉ + 2 hidden layers such
that f(Ax) = x for all s-sparse x ∈ Rn.

A key ingredient to this theorem is a general result about the exact represen-
tation of continuous piecewise linear functions by ReLU networks [4].
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Theorems 2.1 and 2.2 show that for solving the sparse recovery problem to
an arbitrary precision with ReLU networks, two hidden layers are necessary and
sufficient. In contrast, the universal approximation theorem [5] states that one
hidden layer is enough to approximate any continuous function on a compact
domain. So the key difference that the domain of the sparse recovery problem,
that is the set of all images of s-sparse vectors under A, is not compact.

Previous approaches of unfolding the iterative shrinkage thresholding algorithm
(ISTA) had already shown the possibility of approximately solving the sparse
recovery problem with sparsity s for networks of depth O(log s) [6]. Theorem
2.2 improves this to precisely two hidden layers and Theorem 2.3 shows that the
former depth is even sufficient for exact recovery.
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The role of recurrence and stochasticity in learning streaming data

Youness Boutaib

(joint work with Wiebke Bartolomaeus, Sandra Nestler, Holger Rauhut)

Recurrent neural networks (RNNs) constitute the simplest machine learning par-
adigm that is able to handle variable-length data sequences while tracking long
term dependencies and taking into account the temporal order of the received
information. These data streams appear naturally in many fields such as signal
processing or financial data. The RNN architecture is inspired from biological
neural networks where both recurrent connectivity and stochasticity in the tem-
poral dynamics are ubiquitous. Despite the empirical success of RNNs and their
many variants (long short-term memory networks (LSTMs), gated recurrent units
(GRUs), etc.), several fundamental mathematical questions related to the func-
tioning of these networks remain open:
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• What is the exact type of information that an RNN learns from the input
sequences?
• Training artificial RNNs with classical methods like gradient descent suffer
from fundamental problems such as instability, non-convergence, explod-
ing gradient errors [2] and plateauing [4]. On the other hand, biological
networks seem to be robust and easy to train. How does stochasticity
contribute in regard to this?
• What is the amount of data needed for such a network to achieve a small
estimation error with high probability?

We set out to answer these questions by modelling a biological neural network as
a continuous-time (stochastic) RNN with a randomly chosen connectivity matrix
and an identity activation function in view of classifying data streams:

• The continuous-time dynamics provide us with a richer mathematical tool-
box while keeping key features and issues of such systems such as the
dependence on the whole data sequence and its order.
• Randomly generating the connectivity matrix of an RNN is the cornerstone
of reservoir computing [3,5] which has shown exceptional performances in
a variety of tasks.
• We choose to work with identity activation functions in order to build the
intuition as to the answer to the questions above. In this case, we obtain
precise formulas. We aim to generalise the results of this study to the
non-linear case in a later work.

More explicitly, the input and the hidden state of the RNN are modelled, re-
spectively, as high-dimensional time-dependent continuous paths x and y. The
dynamics of the latter are dictated by the following stochastic differential equa-
tion (SDE):

(1) dyt = (−yt +Wyt + u(xt))dt+ΣdBt, t ≤ T.

Here, u is a pre-processing map, W is the network matrix that models the connec-
tion strength between neurons and Σ describes the random effect of a Brownian
noise B. In line with most common practices, a hyperplane classifier h is com-
bined with the final hidden state of the neural network to produce a prediction
v = h(yT (x)).

In [1], we approach the binary classification problem from the point of view of
statistical learning theory. Note that as the hidden state vector yT (x) is random,
the global hypothesis class H is itself a class of random learners, thus prompting
an adjustment of the learning setup and proof techniques. We give a generalisation
error bound that shows that minimising the empirical risk achieves agnostic PAC
learnability and gives guarantees on the ability of the empirical risk minimiser to
generalise to unseen data. Consequently, we study in details the empirical risk
minimisation (ERM) procedure:
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Figure 1. A sketch of the recurrent learning architecture

• we compare its output to that of the popular Support Vector Machine
(SVM). In particular, the solution to the ERM algorithm is sensitive to
the number of inputs in each class (thus, in some way, “learning” the
data generating distribution), but stable against outliers and does not suf-
fer from non-convergence problems encountered by SVM algorithms when
combined with gradient descent to produce an optimal pre-processing map
u.
• We argue heuristically that noise, which is a natural assumption in mod-
elling biological neural networks, provides stability and robustness against
different types of perturbations to the dataset.
• We show rigorously that in the linear case, the RNN retains a “par-
tial signature” of the time-lifted input signal as global information about
said signal. The empirical risk is a function of the tunable parameters
of the model and the partial signatures of the training data S(x) =(∫ T

0
(T−s)k
k! xsds

)
k≥0

. This means that the RNN can learn the classifi-

cation task based only on the partial signature S of the training data
and that it cannot distinguish between two paths with the same partial
signatures.

Finally, we look into the numerical minimisation of the empirical risk using gra-
dient descent. The experiments are performed using the Japanese vowel dataset1

(12-dimensional paths) and classes of 5-dimensional trigonometric polynomials.
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Generalization in Deep Learning Through the Lens of Implicit
Rank Minimization

Noam Razin

(joint work with Asaf Maman, Nadav Cohen)

One of the central mysteries in deep learning is the ability of overparameterized
neural networks to generalize, even in the absence of any explicit regularization.
Conventional wisdom is that gradient-based optimization induces an implicit regu-
larization — a tendency to fit training examples with predictors of minimal “com-
plexity.” Mathematically characterizing this tendency is a major open problem in
the theory of deep learning.

A widespread hope is that a characterization based on minimization of norms
may apply, and a standard testbed for studying this prospect is matrix factor-
ization — matrix completion via linear neural networks. It was an open ques-
tion whether norms can explain the implicit regularization in matrix factorization.
Though initially it was conjectured that the nuclear norm is implicitly minimized
( [1]), in [2] we resolve this open question in the negative, by proving that there
exist natural matrix factorization problems on which the implicit regularization
drives all norms towards infinity while minimizing rank. This suggests that, rather
than perceiving the implicit regularization via norms, a potentially more useful in-
terpretation is minimization of rank.

The natural question that arises is whether the interpretation of implicit rank
minimization applies to more practical settings. In [3] and [4] we show that the
tendency to low rank extends from matrices to tensors (multi-dimensional arrays).
Namely, by characterizing the dynamics that gradient descent induces on tensor
factorizations, we establish that these result in incremental learning, creating a bias
towards low tensor ranks. Analogously to how matrix factorization can be viewed
as a linear neural network, tensor factorizations correspond to a class of non-
linear convolutional networks, for which low tensor ranks implies a bias towards
local dependencies. Motivated by this observation, we empirically demonstrate
that: (i) simple natural image datasets (MNIST and FMNIST) are fittable with
predictors of extremely low tensor ranks, explaining why generalization on such
datasets is achieved; (ii) other image datasets, which entail strong dependence
between spatially distant pixels, lead convolutional networks to completely fail in
generalizing; and (iii) it is possible to greatly improve generalization by employing
dedicated explicit regularization which promotes high tensor ranks, i.e. long range
dependencies.



Applied Harmonic Analysis and Data Science 3059

Overall, our results suggest that notions of rank (such as tensor ranks) may
shed light on both implicit regularization of neural networks, and properties of
real-world data translating this implicit regularization to generalization.
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Riesz bases of exponentials for partitions of intervals

Götz Pfander

(joint work with Shauna Revay, David Walnut)

Fourier series form a cornerstone of analysis; it allows the expansion of L2[0, 1]
functions in the orthonormal basis of integer frequency exponentials E(Z) =
{e2πikx}k∈Z. A simple rescaling argument shows that by splitting the integers
into evens and odds, we obtain orthogonal bases for functions defined on the first,
respectively the second half of the unit interval, that is, E(2Z) is an orthogonal
bases of L2[0, 1/2] and E(2Z+ 1) is an orthogonal bases of L2[1/2, 1].1

Building on this curiosity, we explain that, given any finite partition of the unit
interval into subintervals, we can split the integers into subsets, each of which
forms a Riesz basis (not necessarily orthogonal) for functions on the respective
subinterval [5–7]. (The case of 2 subintervals was considered by Kristian Seip
in [8].)

Theorem 1 ( [5]). For a0 = 0 < a1 < a2 < . . . < an = 1 exist pairwise disjoint
sets Λ1,Λ2, . . . ,Λn ⊆ Z with Λ1 ∪Λ2 ∪ . . .∪Λn = Z so that E(Λk) is a Riesz basis
for L2[ak−1, ak].

This result was then generalized to provide hierarchical Riesz bases with integer
frequencies as follows.

Theorem 2 ( [6]). For b1, . . . , bn > 0 with
∑n
j=1 bj = 1 exist pairwise disjoint sets

Λ1, . . . ,Λn ⊆ Z with
⋃n
j=1 Λj = Z and the property that E

(⋃
j∈J Λi

)
is a Riesz

basis for L2(I) for I any interval of length
∑

j∈J bj for any J ⊆ {1, . . . , n}.

In the countable setting, we obtain

1Here and in the following, we shall use the customary notation E(Λ) = {e2πiλx}λ∈Λ.
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Theorem 3 ( [6]). Let b1, b2, . . . > 0 satisfy
∑∞

j=1 bj = 1. For fixed K ∈ N there
exist pairwise disjoint sets Λ1,Λ2, . . . ⊆ Z with the property that for any J ⊆ N
with |J | ≤ K we have E

(⋃
j∈J Λj

)
is a Riesz basis for L2(I) for I any interval of

length
∑

j∈J bj.

It is worth to emphasize that Riesz bases of exponentials can not be combined
as above in general, that is, if E(Λ1) and E(Λ2) form Riesz bases for L2(I1) and
L2(I2) respectively, it need not follow that E(Λ1 ∪ Λ2) forms a Riesz basis for
L2(I1 ∪ I2), even if Λ1 and Λ2 are disjoint.

Our results are based on combining tools from analysis, probability and number
theory. Key is the development of an Avdonin map calculus that allows for an
iterative use of Avdonin’s theorem [1]:

Theorem 4. For ϕ : Z+α
a → R injective with separated range, E

(
Rangeϕ

)
is a

Riesz basis for L2[0, a] if for some R > 0 it holds

sup
m∈Z

∣∣∣∣
1

R

∑

k∈[mR,(m+1)R)

ϕ
(
k+α
a

)
− k+α

a

∣∣∣∣ <
1

4a
.

This is combined with a suited formulation of Weyl-Khinchin equidistribution
theorem

Theorem 5. For a irrational and ǫ > 0 exists N0 such that for N ≥ N0 and
m ∈ Z,

∣∣∣ 1
N

(m+1)N−1∑

k=mN

k + 1
2

a
mod 1 − 1

2

∣∣∣ < ǫ.

as well as with a result on inhomogeneous Beatty sequences [2–4]

Theorem 6. For a, b irrational with a + b = 1, the sets
{[k + 1

2

a

]
Z+ 1

2

}
k∈Z

and

{[ℓ+ 1
2

b

]
Z+ 1

2

}
ℓ∈Z

partition Z+ 1
2 , where [x]K rounds x to the nearest element in

K, choosing the lesser if two elements in K have the same distance to x.

For details we refer to [6].

References

[1] S. Avdonin. On the question of Riesz bases of complex exponential function in l2. Vestnik
Leningrad Univ. Ser. Mat., 13:5–12, 1974.

[2] Samuel Beatty. Problems and Solutions: Problems for Solutions: 3173. Amer. Math.
Monthly, 33(3):159, 1926.

[3] Samuel Beatty, A. Ostrowski, J. Hyslop, and A. C. Aitken. Problems and Solutions: Solu-
tions: 3177. Amer. Math. Monthly, 34(3):159–160, 1927.

[4] Aviezri S. Fraenkel. The bracket function and complementary sets of integers. Canadian J.
Math., 21:6–27, 1969.
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GERMANY

Prof. Dr. Matthew Hirn

Michigan State University
Department of Computational
Mathematics, Science & Engineering
Room 2507F, Engineering Building
428 S. Shaw Ln.
East Lansing MI, 48824
UNITED STATES

Frederik Hoppe

Lehrstuhl für Mathematik der
Informationsverarbeitung
RWTH Aachen University
Pontdriesch 10
52062 Aachen
GERMANY

Laslo Hunhold

Department Mathematik/Informatik
Abteilung Mathematik
Universität zu Köln
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