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Abstract. Three different active fields are subsumed under the keyword
Anosov theory : Spectral theory of Anosov flows, dynamical rigidity of Anosov
actions, and Anosov representations. In all three fields there have been dy-
namic developments and substantial breakthroughs in recent years. The mini-
workshop brought together researchers from the three different communities
and sparked a joint discussion of current ideas, common interests, and open
problems.
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Introduction by the Organizers

The term Anosov flow for a uniformly hyperbolic flow goes back to the work of
Anosov from the 1960’s, who proved structural stability under perturbations as
well as ergodicity of such flows on compact manifolds. Analogous results were
proven for Anosov maps on smooth manifolds. The first active field of research
represented at the conference aims at studying the spectral theory of Anosov
flows, in view of applications to dynamical zeta functions, counting periodic orbits
or mixing properties. Anosov actions are natural generalizations of Anosov flows
and maps: the groups R (in the case of flows) or Z (in the case of maps) whose
actions define the dynamics are replaced by either an abelian Lie group A or an
arbitrary Lie group G, depending on the level of generality. Such Anosov actions
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have been studied since the 70’s by Zimmer, Katok, Spatzier and others, leading
to striking rigidity results, but some of the main conjectures on that aspect still
remain open. The notion of an Anosov representation is more recent: Labourie
introduced it in 2006 for holonomy representations of fundamental groups of com-
pact negatively curved Riemannian manifolds and Guichard-Wienhard generalized
the definition to arbitrary hyperbolic groups in 2012. Since then the field had fast
paced developments.

The hybrid workshop (Anosov)3, organised by Colin Guillarmou (Orsay),
Benjamin Küster (Paderborn), Beatrice Pozzetti (Heidelberg) and Tobias Weich
(Paderborn) was, despite the pandemic situation, well attended with 14 partic-
ipants in locus and 6 online participants with broad geographic representation.
This workshop was a nice blend of researchers with various backgrounds coming
from the three different fields. The program featured 3 mini courses (3×60 min-
utes) and 10 research talks of 60 minutes. The remaining time was used for intense
discussions among the participants as well as an open problem session on Thursday
afternoon.

Spectral theory of Anosov flows. The geodesic flow on the unit tangent
bundle of any Riemannian locally symmetric space of rank one (compact or not)
is a canonical example of an Anosov flow in the sense that the Anosov property
can be read off directly once the flow is described in the Lie-theoretic language
available for such spaces. More generally, it has been known since the 1960’s
thanks to works of Hadamard and É. Cartan that the geodesic flow on the unit
tangent bundle of any negatively curved compact Riemannian manifold is Anosov.
This gives a rich class of interesting examples.

Originally, the study of Anosov flows (and maps) concentrated on their behavior
as dynamical systems; this leads to establishing stability, transitivity, ergodicity,
and mixing properties. In the 1980’s, Ruelle and Pollicott observed that the rate
of the exponential mixing of an Anosov flow on a compact manifold, as well as the
quantitative behavior of correlation functions of observables evolving according
to such a flow, are encoded in a discrete set of numbers in the complex plane,
the so-called Pollicott-Ruelle resonances. This uncovered a deep and extremely
fruitful connection between the fields of dynamical systems and spectral analysis.
Pollicott-Ruelle resonances of an Anosov flow can often be treated as eigenvalues of
the generator of the flow on anisotropic Banach and Hilbert spaces. The first mini-
course of the workshop, by Yannick Bonthonneau, introduced the audience to this
topic and explained how the spectral theory of Pollicott-Ruelle resonances is help-
ful to meromorphically continue dynamical zeta functions or to encode topological
information of the underlying manifold. In his talk Joachim Hilgert explained how
Pollicott-Ruelle resonances of the geodesic flow of locally symmetric spaces can be
related to a quantum spectrum (spectrum of some Laplacian). Some aspects of
stable ergodicity of Anosov flows were addressed in the talk of Gerhard Knieper.
Livio Flaminio addressed decay of correlation of the horocycle flow which can be
related to an Anosov flow, but which is itself not Anosov anymore.
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Anosov actions. Natural generalizations of hyperbolic flows are transversally
hyperbolic actions of groups of higher rank on manifolds. A canonical example
is the Weyl chamber flow on a higher rank locally symmetric space. In contrast
to the rank one case, there are very strong rigidity properties for higher rank
Anosov actions such as measure rigidity or cocycle rigidity. As a consequence
Weyl chamber flows of higher rank cannot be deformed, while for rank one geodesic
flows one can easily perturb the Riemannian metric on the locally symmetric space
to obtain a different Anosov flow. It is conjectured that all smooth higher rank
Anosov actions without rank one factors are conjugate to algebraic actions after
passing to finite covers. The second minicourse, by Ralf Spatzier, described a
recent breakthrough towards this conjecture. Two other aspects of Anosov actions
were addressed in the talks: Thi Dang presented results on topological mixing of
positive diagonal flows and Jialun Li presented new results about the counting and
equidistribution of torus orbits for Weyl chamber flows on finite volume locally
symmetric spaces of rank k > 2.

Anosov representations. Anosov representations provide a rich class of non-
compact locally symmetric spaces of higher rank, that are by now understood
as a good generalization of convex co-compact manifolds of higher rank. As al-
ready mentioned, the field stems out of pioneering work of Labourie and Guichard-
Wienhard, and has undergone fast and exciting development in the past ten years.
We now have equivalent characterizations of the holonomy representations of these
manifolds from geometric, Lie theoretic, dynamical and projective geometric view-
points. The third minicourse, by Fanny Kassel, gave a great introduction to these
various aspects. In her talk Anna Wienhard addressed questions about the ge-
ometry of these locally symmetric spaces and Lasse Wolf addressed in his talk
the question how such geometric properties can be exploited to prove absence of
embedded eigenvalues on such locally symmetric spaces. Francois Ledrappier dis-
cussed recent advances in the study of the Hausdorff dimension of the limit sets of
Anosov representations, and relations with the Falconer dimension of limit sets.

Anosov representations can be partially encoded in reparametrizations of the
geodesic flow of the abstract Gromov hyperbolic group, and as a result there are
uniformly hyperbolic flow(s) underlying Anosov representations. This powerful
viewpoint makes them amenable to the thermodynamical formalism and lead to
the definition of Riemannian metrics on their moduli space, the so called pressure
metrics. In his talk Andres Sambarino introduced various pressure metrics (associ-
ated with different linear functionals), and discussed their (non)-degeneracy. Xian
Dai discussed a different pressure metric on the Hitchin component in SL(3,R),
which can be studied with tools coming from microlocal analysis.
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Abstracts

Mini Course on Ruelle resonances and microlocal analysis

Yannick Guedes Bonthonneau

Ruelle resonances are discrete sets of complex numbers that describe the charac-
teristic frequencies of hyperbolic dynamical systems. In these three lectures, the
first was dedicated to explaining their classical definition in the case of uniformly
expanding maps, emphasizing the role of regularity in the definition.

To deal with hyperbolic systems, it is necessary to implement functional spaces
of mixed regularity. After motivating this observation of the 90’s, a framework
to do exactly this was presented. The purpose of the second presentation was to
introduce the necessary tools from microlocal analysis, and in the third talk these
tools were put in practice, culminating in the now classical result

Theorem 1. Let φt : M → M be a smooth Anosov flow on a compact manifold.
Then for any C > 0, there exists an anisotropic space C∞(M) ⊂ HC ⊂ D′(M),
on which φt acts as a bounded semi-group, and so that X the generator of φt has
discrete spectrum in {z ∈ C| ℜz > −C}.

Additionally, the spectral datum does not depend on the choice of space HC , nor
does it on C.

Some consequences and extensions regarding zeta functions, Anosov actions,
and hyperbolic dynamics on non-compact spaces were also discussed.
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Mini Course on Anosov representations

Fanny Kassel

Anosov representations are discrete, faithful (or finite-kernel) representations of
Gromov hyperbolic groups into noncompact real semisimple Lie groups, with
strong dynamical properties. They were introduced by Labourie [10] for funda-
mental groups of closed negatively-curved manifolds, and generalized by Guichard–
Wienhard [5]. They have been much studied in the past few years, and play an
important role in higher Teichmüller–Thurston theory and in recent developments
in the theory of discrete subgroups of Lie groups (see [8, 11]).

In the first lecture, we started with some historical motivation: given a closed,
oriented hyperbolic surface S with fundamental group π1(S), we discussed Hitchin
representations of π1(S) into PSL(n,R), namely continuous deformations of the
representation obtained by composing the holonomy π1(S) → PSL(2,R) of S
with the irreducible representation of PSL(2,R) into PSL(n,R). Choi–Goldman
(for n = 3), Fock–Goncharov and Labourie (for general n) proved that these
representations are all faithful with discrete image, and this is what led Labourie to
introduce the notion of an Anosov representation. Hitchin representations define a
connected component of the character variety of π1(S) into PSL(n,R), the Hitchin

component, which was proved by Hitchin to be homeomorphic to R(n2−1)(2g−2),
where g ≥ 2 is the genus of S. The Hitchin component is the prototype of a higher
Teichmüller space, with striking analogies to the classical Teichmüller space of S.

In the rest of the first lecture, we discussed Anosov representations of Gromov
hyperbolic groups into semisimple Lie groups G of real rank one: these coincide
with convex cocompact representations into G. We stated several characterizations
of these representations, and sketched the proofs of the equivalences.

In the second lecture, we gave the general definition of an Anosov representation
into a noncompact real semisimple Lie group G of arbitrary real rank, in terms
of a pair of continuous boundary maps and of a relative contraction property
(dominated splitting) for a certain natural flow on a bundle. Given a semisimple
Lie group G, there are several (finitely many) types of Anosov representations
into G, determined by the choice of a conjugacy class of parabolic subgroups
P of G. We focused particularly on the case of Pi-Anosov representations into
G = SL(n,K) or PGL(n,K), where K = R or C, and Pi is the stabilizer of an
i-plane in Kn, for 1 ≤ i ≤ n − 1. We explained some important properties of
Anosov representations, e.g. that they form an open subset of the representation
space Hom(Γ, G). We gave several examples of families of Anosov representations,
and briefly discussed higher Teichmüller theory in relation to Hitchin and maximal
representations.

In the third and last lecture, we gave several characterizations of Anosov rep-
resentations, which generalize some of the classical dynamical characterizations
of convex cocompactness in rank one, based on work of Kapovich–Leeb–Porti [6,
7], Guéritaud–Guichard–Kassel–Wienhard [4], Bochi–Potrie–Sambarino [1], and
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Kassel–Potrie [9]. We explained how Anosov representations are also character-
ized in terms of some geometric notion of convex cocompactness, not in the Rie-
mannian symmetric space of G, but in the setting of convex projective geometry,
following Danciger–Guéritaud–Kassel [2, 3] and Zimmer [12].
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[4] F. Guéritaud, O. Guichard, F. Kassel, A. Wienhard. Anosov representations and proper
actions. Geom. Topol., 21:485–584, 2017.

[5] O. Guichard, A. Wienhard. Anosov representations : Domains of discontinuity and applica-
tions. Invent. Math., 190:357–438, 2012.

[6] M. Kapovich, B. Leeb, J. Porti. Anosov subgroups: Dynamical and geometric characteriza-
tions. Eur. J. Math., 3:808–898, 2017.

[7] M. Kapovich, B. Leeb. Discrete isometry groups of symmetric spaces. In Handbook of group
actions, vol. IV, p. 191–290, International Press, 2018.

[8] F. Kassel. Geometric structures and representations of discrete groups. In Proceedings of the
International Congress of Mathematicians 2018 (ICM 2018), p. 1113–1150, World Scientific,
2019.

[9] F. Kassel and R. Potrie. Eigenvalue gaps for hyperbolic groups and semigroups. J. Mod.
Dynamics, 22, 2022, to appear.

[10] F. Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math.,
165:51–114, 2006.

[11] A. Wienhard. An invitation to higher Teichmüller theory. In Proceedings of the International
Congress of Mathematicians 2018 (ICM 2018), p. 1007–1034, World Scientific, 2019.

[12] A. Zimmer. Projective Anosov representations, convex cocompact actions, and rigidity. J.
Differential Geom., to appear; arXiv:1704.08582.

Mini Course on Higher Rank Anosov Actions

Ralf Spatzier

Dynamical systems with extra symmetry turn out to be surprisingly rigid. For
instance generically a diffeomorphism cannot have infinite index in its centralizer
in the diffeomorphism group, as conjectured by Smale [10] and proved by Bonatti,
Crovisier and Wilkinson for C1-diffeomorphisms of a compact manifold [1]. For
hyperbolic systems one can hope to go one step further, and make the following
question (posed as a question in [3] and as a conjecture in [6, Conjecture 16.8]).

Conjecture. (Katok-Spatzier) All C∞ Anosov actions of Rk or Zk, k ≥ 2 (higher
rank), on any compact manifold without C∞ rank one factors are C∞ conjugate
to an algebraic action after passing to finite covers.

Here we call an action by a group G on a compact manifold M Anosov if G
contains an element g which acts normally hyperbolically w.r.t. the orbit foliation
O of G. This simply means that there is a continuous splitting of the tangent
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bundle TM = Es
g ⊕ Eu

g ⊕ TO such that Es
g gets contracted uniformly by g in

forward time, and Eu
g in backward time. We call an action totally Anosov if the

set of Anosov elements in G is dense in G.
A rank 1 factor of the action is a factor action of Rk or Zk which is trivial on a

corank1 subgroup. This condition is clearly necessary as one can always perturb
rank 1 factors.

The simplest examples of such actions are commuting linear maps on tori, or the
action by the diagonal subgroup of SL(n,R) on SL(n,R)/Γ where Γ is a uniform
lattice.

This conjecture was motivated by the Higher Rank Rigidity theorems in Rie-
mannian geometry (flats correspond to abelian groups), Margulis’ superrigidity
theorem and Zimmer’s Program. It got strong support by the works of Hurder,
Katok and Lewis, Katok and this author and others who proved local rigidity
theorems for homogeneous higher rank Anosov actions [8]. For higher rank Zk

Anosov actions on tori (or nilmanifolds) the conjecture was proved by Rodriguez
Hertz and Wang [9, 4] assuming the linearization of the action (on first homology
in the case of a torus) does not admit rank 1 factors (i.e. factors such that a corank
1 subgroup acts trivially).

For a special class of hyperbolic actions, the so-called totally Cartan actions,
this was proved recently by Vinhage and Spatzier [11]. These are Anosov actions
such that maximal intersections of unstable spaces for different Ansoov elements
define one-dimensional foliations. These are called coarse Lyapunov foliations.
Our results do not depend on the structure of the underlying manifold.

Most importantly, we introduce a novel way of providing a homogeneous struc-
ture to a system coming from actions of free products of Lie groups, a technique
introduced by Vinhage in his thesis [12] in which he applied this technique in a
local rigidity setting.

Theorem. (S-Vinhage)Let Rk × Zℓ be a C1,θ transitive, totally Cartan action,
for some θ ∈ (0, 1). Assume no finite cover of the action has a non-Kronecker
C1,θ rank one factor. Then the action is C1,θ-conjugate to an affine homogeneous
action (up to finite cover). Moreover, if the action is C∞, so is the conjugacy.

Besides establishing the above conjecture in this setting, we can also allow rank
1 factors and determine fairly precisely how those interact with each other and the
higher rank components without further rank 1 factors. In addition, we do not
need to assume a volume preserving assumption, just certain transitivity.

As mentioned, the main conjecture was motivated in part by the Zimmer pro-
gram on actions of higher rank semisimple Lie groups and their lattices. And
indeed, similar techniques combined with Zimmer cocycle superrigidity allow us
to prove the following classification result for such groups:

Theorem. (Butler-Damjanovic-S-Vinhage-Xu) Suppose that every simple factor
of a real semisimple group G has real rank at least 2. Let G act C∞ on a compact
manifold X. Assume the restriction of the action to some split Cartan subgroup
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A ⊂ G is totally Anosov and preserves an invariant volume. Then the action is
smoothly conjugate to an algebraic G-action.

In the mini course, we will carefully describe the various definitions and results,
introduce the main tools and explain how we use them We will also speculate on
the promise and outlook for future work.

One Key ingredient. Suppose we are given a totally Cartan action. Then ear-
lier work by Kalinin and the speaker [7] provides a metric along every 1-dimensional
coarse Lyapunov foliation Wλ which expands and contracts precisely according by
a constant λ(a) where λ : Rk → R is a linear functional. This allows to introduce
one parameter groups which acts on X by moving a point x along its coarse Lya-
punov manifold Wλ(x). Then the free product of these actions together with Rk

acts transitively on X (by local product structure of stable manifolds), intertwined
by the various eλ(a) for a ∈ Rk.

The free product naturally has the structure of a topological group, is locally
connected and path connected, and connected but is far from locally compact.
However if we can prove constancy of the stabilizers at different point (constant
“cycle” structure) it turns out that the image of this group in the homeomorphisms
of X , is a Lie group, thanks to a very general result by Geason and Palais [5] on
topological transformation groups.

So it all comes down to proving constancy of cycles. This is done by analyzing
geometric commutators which can be defined using the local product structure of
coarse Lyapunov foliations. The latter generate all cycles. The proofs are long
and complicated but quite geometric.
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Pressure metric in the space of Riemannian metrics

Xian Dai

(joint work with Nikolaos Eptaminitakis)

In this talk, we investigate the pressure metric defined in the space of negatively
curved Riemannian metrics proposed by Guillarmou, Knieper and Lefeuvre. We
motivate the talk from introducing the classical Weil-Petersson metric on the Te-
ichmuller space. We generalize the Weil-Petersson metric to the pressure metric
on the space of negatively curved Riemannian metrics using Thermodynamic for-
malism. Then we focus our study of the pressure metric on the Blaschke locus that
contains the Teichmüller space. The Blaschke locus contains all Blaschke metrics
arisen from affine geometry and is naturally related to the Hitchin component in
PGL(3,R). Finally, we show that, with respect to the pressure metric, a special
family of geodesics in this locus have infinite lengths. This is joint work in progress
with Nikolaos Eptaminitakis.
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Topological mixing of positive diagonal flows

Thi Dang

A dynamical system consisting of a flow φt acting on a locally compact topological
space Ω is topologically mixing if for every open non-empty sets U, V , there exists
T > 0 such that for every t > T , the intersection φtU ∩ V is non-empty.

LetG be a connected, real linear, semisimple Lie group without compact factors,
let Γ < G be a Zariski dense discrete subgroup. Consider a Cartan subspace in
Lie(G), denote by A = exp(a) the associated maximal R-split torus, and choose
a++ an open positive Weyl chamber. Positive diagonal flows are the one-parameter
flow of the form φt

Y (Γg) = ΓgetY where Y ∈ a++ is non zero. They act by right
multiplication on Γ\G. Let M be the compact subgroup such that AM is the
centralizer of A in G. Regular Weyl chamber flows are the one-parameter flow of
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the form φt
Y (ΓgM) = ΓgetY M where Y ∈ a++ is non zero. Positive diagonal flows

factor regular Weyl chamber flows.
In the case of lattices (they are Zariski dense by Borel density Theorem), topo-

logical mixing of positive diagonal flows is due to Howe–Moore [HM79].

Isometry group of hyperbolic n-spaces. Assume G = SO(n, 1)0 where n ≥ 3
and Γ < G discrete, torsion free, the space Γ\G corresponds to the frame bundle
over the hyperbolic orbifold Γ\Hn. In this case, positive diagonal flows correspond
to the geodesic frame flow, which factors the geodesic flow. The latter corresponds
to the regular Weyl chamber flow.

The non-wandering set for the geodesic frame flow ΩG is the lift in Γ\G of the
non-wandering set of the geodesic flow Ω ⊂ Γ\G/M . Mixing with respect to the lift
of the Bowen–Margulis–Sullivan (BMS) measure to ΩG were obtained for discrete
subgroups admitting a finite BMS measure by Winter [Win15]. Exponential rate of
mixing was obtained for convex cocompact groups ([Win16]), geometrically finite
subgroups with large critical exponent (Mohammadi–Oh [MO15], then Edwards–
Oh [EO21]). Finally, Sarkar–Winter [SW20] extended the exponential mixing
results to all geometrically finite subgroups.

In the general case of Zariski dense subgroups, topological mixing of the geodesic
frame flow is due to Maucourant–Schapira [MS19].

Regular Weyl chamber flows. Assume G is higher rank i.e. dim a ≥ 2, for
example G = SO(3, 1)0 × SO(3, 1)0. For Zariski dense subgroup, Olivier Glorieux
and the author obtained a necessary and sufficient condition for topological mixing.
It involved the two following objects.

Let Γ < G be a Zariski dense subgroup. The limit cone of Γ, denoted by B(Γ)

is a closed cone of a++ introduced by Benoist in [Ben97]. He proved that when Γ
is Zariski dense, B(Γ) is convex of non-empty interior. In fact, B(Γ) ∩ a++ is the
relative closed cone containing all non zero parameters Y ∈ a++ such that φt

Y has
a periodic orbit. The non-wandering set Ω was introduced by Conze–Guivarc’h
[CG00] for SL(n,R). It is the smallest closed subset of Γ\G/M containing all the
A-orbit generated by periodic orbits of regular Weyl chamber flows.

Theorem 1 (N-T. D-0. Glorieux [DG20]). Let G be a connected, real linear,
semisimple Lie group without compact factors. Let Γ be a Zariski dense, discrete
subgroup of G. Let Y ∈ a++.

The regular Weyl chamber flow φt
Y is topologically mixing on Ω if and only if

Y is in the interior of the limit cone B(Γ).

Thirion [Thi09] for Ping-Pong groups, Sambarino [Sam14] for the image of
Hitchin representations and Edwards–Lee–Oh [ELO20] for Borel Anosov groups
proved that φt

Y when Y 6= 0 is in the interior of the limit cone is measurably
mixing for a family of higher rank BMS measure that all charge Ω. Our result
provides an obstruction for measurable mixing of regular Weyl chamber flows φt

Y

when Y 6= 0 is in ∂B(Γ) ∩ a++.
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Positive diagonal flows. Denote by ΩG the lift in Γ\G of Ω. In the case when
M is abelian and connected, for instance when G = S0(3, 1)0 × SO(3, 1)0, the
author obtained a generalization of the previous theorem.

Theorem 2 (N-T. D. [Dan20]). Let G be a connected, real linear, semisimple Lie
group without compact factors. Assume that M is abelian and connected. Let Γ
be a Zariski dense, discrete subgroup of G. Let Y ∈ a++.

The positive diagonal flow φt
Y is topologically mixing on ΩG if and only if Y is

in the interior of the limit cone B(Γ).

For positive diagonal flows and in the case of Borel Anosov groups, Lee–Oh
[LO20] recently obtained an A-ergodic decomposition of the lifted higher rank
BMS measures, then Chow–Sarkar [CS21] proved local mixing of φt

Y for these
measures, for all non-zero Y ∈ a++ in the interior of the limit cone.

I gave a sketch of the proof of the obstruction for measurable mixing of positive
diagonal flows φt

Y and of regular Weyl chamber flows when Y ∈ a++ is non-zero
and in the boundary of the limit cone.

References

[Ben97] Y. Benoist. Propriétés asymptotiques des groupes linéaires.Geom. Funct. Anal., 7(1):1–
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Correlations functions for horocycle flows on Abelian covers of
compact Riemann Surfaces

Livio Flaminio

(joint work with Davide Ravotti)

We establish an asymptotic expansion of the correlations for the horocycle flow
on Zd-covers of compact Riemann Surfaces . Also it is possible to prove that the
spectra around 0 of the Casimir operators on any increasing sequence of finite
Abelian covers equidistribute with respect to an absolutely continuous measure.

1. Notation

Let Γ be a co-compact lattice in G = PSL(2,R), and let M = Γ\G. We can
identify M with the unit tangent bundle of the compact orientable hyperbolic
surface S = Γ\H. We denote by g ≥ 2 its genus.

Abelian covers S0 = Γ0\H (respectively, M0 = Γ0\G) of S (respectively, of M)
are in one-to-one correspondence with intermediate subgroups [Γ,Γ] ≤ Γ0 ≤ Γ.
We shall assume that the Galois quotient group G := Γ/Γ0 is a free Abelian group
of rank d, where 0 < d ≤ 2g.

The horocycle flow {ht}t∈R on M0 (or on any quotient of G) is the homogeneous

flow generated by U =

(
0 1
0 0

)
∈ sl2(R), namely the flow given by

ht(Γ0g) = Γ0g exp(tU).

2. Infinite mixing asymptotics

Our main result, Theorem 1, provides an asymptotic expansion of the correlations
for the horocycle flow between smooth observables with compact support. The
first term in the expansion is usually called Krickeberg (or local) mixing. To the
best of our knowledge, Theorem 1 is the first infinite mixing result for parabolic
flows.

Theorem 1. There exists a constant σ(Γ0) > 0 such that the following holds. Let
v, w ∈ C

∞
c (M0). There exist (cj)j∈N such that for all t ≥ 1 we have

〈w, v ◦ ht〉 ∼

(
g − 1

2

) d
2

σ(Γ0)
vol(u) vol(v)

(log t)
d
2

+

∞∑

j=1

cj

(log t)j+
d
2

.

The constant σ in Theorem 1 is the determinant of an explicit period matrix of
harmonic 1-forms. In the case where Γ0 = [Γ,Γ], we have G = H1(M,Z) = Z2g,
and σ(Γ0) = 1.

With our method it is possible to obtain an analogous asymptotic expansion
for the correlations of the geodesic flow. In that case, the result has been proved
recently by Dolgopyat, Nandori and Pène [2], with different methods. See also the
previous result by Oh and Pan [5].
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3. Outline of the proof

Mixing rates of the one-parameter subgroup {exp(tU)} acting on an irreducible
unitary representation of PSL2(R) have been studied by several authors. The gist
of the matter is that mixing rates are uniform for all representations in the unitary

dual ̂PSL2(R) lying outside a (Fell) neighbourhood of the trivial representation. In
fact, following the lines of Ratner’s work [7], denoting by Hλ the Hilbert space of

a unitary representation of PSL2(R) of Casimir parameter λ = λ(ν) := 1−ν2

4 and

by W 3(Hλ) ⊂ Hλ the subspace of Sobolev vectors we have

Theorem 2. There exists a constant C ≥ 1 such that the following holds. Let
W 3(Hλ) be the Sobolev space of an irreducible representation of PSL2(R) of Casimir
parameter 0 ≤ λ < 1/4. For all w, v ∈ W 3(Hλ), there exist A = A(w, v), with

|A(w, v)| ≤ C‖w‖3 ‖v‖3,

such that for all t ≥ 1 we have
∣∣∣〈w, v ◦ ht〉 −A(w, v)t−1+|ν(λ)|

∣∣∣ ≤ C‖w‖3 ‖v‖3 t
−1.

Moreover, assume that λ 7→ wλ ∈ W 3(Hλ) and λ 7→ vλ ∈ W 3(Hλ) are parame-
terised families of vectors. If λ 7→ 〈wλ, U

jvλ ◦ ht〉 is of class C k for j = 0, 1, 2
and for all t ∈ R, then λ 7→ A(wλ, vλ) is of class C k. If λ = 0, then (clearly)
A(w, v) = 〈w, v〉 = vol(w) vol(v).

Unitary representations with Casimir parameter λ 6∈ [0, 1/4) yield faster decay
for the correlations of horocycle flows and therefore are not a matter of concern
for us. Thus we may limit ourselves to consider the representations with λ ∈
[0, 1/4). In particular we may disregard the discrete series of PSL2(R) and limit
our considerations to those representations that are generated by a K = PSO(2)-
invariant vector.

The above theorem shows that the difficulty of the analysis arises from the
fact that the trivial representation is not isolated in the PSL2(R)-spectrum of M0.
This is equivalent to say that the spectrum of the Laplace-Beltrami operator on
the infinite surface S0 is continuous all the way to zero.

The analysis of the work of Phillips ans Sarnak [6] overcomes this difficulty. In-
deed, since the action of Galois group G on M0 by deck transformations commutes
with the regular representation of G on L2(M0), these two action are simultane-
ously “diagonalisable”. This means that we can decompose the Hilbert space
L2(M0) as a Hilbert direct integral of irreducible unitary representations χ⊗ π of
G × G (here χ is a character of G and π an irreducible unitary representations
of G).

Indeed, for any χ ∈ Ĝ , the space L2(M,χ) of functions on M0 with finite square
norm

∫
M

|f(x)|2dx and satisfying f(γ−1x) = χ([γ])f(x), for all (x, γ) ∈ M0 × Γ,

is precisely the space of the L2 sections of a smooth line bundle Mχ over M . An
immediate application of Parseval identity implies
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Lemma 3. We have the following G-equivariant isometric direct integral decom-
position:

L2(M0) =

∫

Ĝ

L2(M,χ) dχ, f =

∫

Ĝ

πχ(f) dχ.

where πχ(f)(x) =
∑

[γ]∈G
f([γ]x)χ([γ]), for all x ∈ M0 and all χ ∈ Ĝ .

Furthermore, for any f ∈ Cr
c (M0) and any χ ∈ Ĝ , the function πχ(f) is a Cr

section of the line bundle Mχ.

We have (see also [1]):

Lemma 4. The family of line bundles Mχ depends analytically on χ ∈ Ĝ .

As the spaces L2(M,χ) are G-invariant, and since the base M is compact,
each of these spaces decompose into a direct sum of irreducible unitary sub-
representations of G. To understand this decomposition, we observe that the
PSL2(R)-spectrum of L2(M,χ) is determined by the eigenvalues of the Casimir
operator. Furthermore, since we are disregarding the irreducible sub-representa-
tions of the discrete series, the interesting irreducible sub-representations Hµj(χ)

occurring in L2(M,χ) are determined by the eigenvalues µj(χ) of the Casimir op-
erator on PSO(2)-invariant vectors. Equivalently they are determined by the spec-
trum (µj(χ)) of the Laplace-Beltrami operator on the space L2(S, χ) = L2(M,χ)/
PSO(2). The space L2(S, χ) is the space of L2 section of a line bundle Sχ over
the compact surface S. We may identify smooth sections of this bundle to smooth
functions in the interior of a nice fundamental domain F of the G -action on S0

which furthermore satisfy on ∂F boundary conditions given by the character χ.
Thus, if we let

0 = ν0 < ν1 ≤ ν2 ≤ · · ·

be the spectrum of the Laplace-Beltrami operator on F with Neumann boundary
condition, by the min-max principle, the spectrum {µj(χ)} of the Laplace-Beltrami
operator on L2(S, χ) satisfies the inequalities

0 = ν0 ≤ µ0(χ) ≤ ν1 ≤ µ1(χ) ≤ ν2 ≤ µ2(χ) ≤ · · ·

The previous discussion and the inequality ν1 > 0 imply that all the representa-
tions corresponding to eigenvalues µj(χ) with j ≥ 1 and any χ have fractional
polynomial decay of correlation functions. Thus we concentrate our attention
of the function χ 7→ µ0(χ). Clearly for the trivial character we χ0 = 1 have
µ0(1) = ν0 = 0. We have

Lemma 5 (see [6]). The bottom eigenvalue µ0(χ) of the Laplace-Beltrami operator
on L2(S, χ) satisfies the following properties:

(1) µ0(χ) ≥ 0 and µ0(χ) = 0 if and only if χ = 1;

(2) µ0(ξ) is real analytic in the variable χ ∈ Ĝ ;
(3) The critical point χ = 1 is non degenerate:

(
d2µ0

)
χ=1

=
2π

g − 1
Q,

where the matrix Q is positive definite. If Γ0 = [Γ,Γ], then det(Q) = 1.
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The above lemma and the previous discussion imply that for any open neigh-
bourhood U of the trivial character χ = 1, all the representations corresponding
to eigenvalues µ0(χ) with χ 6∈ U have fractional polynomial decay of correlation
functions. Thus the major contribution arises from the components in L2(S, χ) in
the subspace Hµ0(χ) with χ ∈ U .

Now Theorem 1 follow by the application of Theorem 2 and lemma 5 using a
stationary phase development.
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Quantum-classical correspondences

Joachim Hilgert

In this talk, I reported on recent work (with C. Arends, Y. Guedes Bonthonneau,
C. Guillarmou, T. Weich and L. Wolf; [GHW18, GHW21, BGHW20, HWW21,
AH21]) describing relations between the spectral theories of Anosov type actions
and their quantizations.

Historically the subject starts with the Poisson summation formula and the Sel-
berg trace formula for compact locally symmetric spaces. In those cases “spectral”
on the classical side refers to the length spectrum of closed geodesics, whereas on
the quantum side one has the spectrum of the Laplacian which can be viewed
as the quantization of the geodesic flow. About twenty years ago Lewis-Zagier
[LZ01] and Flaminio-Forni [FF03] observed correspondences for hyperbolic sur-
faces where also on the classical side one considers eigenvalues of operators related
to the geodesic flow. Our approach was inspired by the work [DFG15] of Dyatlov-
Faure-Guillarmou, which uses microlocal analysis and anisotropic Sobolev spaces
to establish Pollicott-Ruelle resonant states for the geodesic flow on compact hy-
perbolic spaces, and relates them to the Laplace eigenfunctions.

Our framework is as follows: let G be a non-compact simple real Lie group
and G/K be the corresponding Riemannian symmetric space. Then the algebra
D(G/K) of G-invariant differential operators on G/K is commutative and contains
the Laplacian ∆, i.e. the Laplace-Beltrami operator. If G has real rank 1 the
algebra D(G/K) is generated by ∆. Given a discrete subgroup Γ of G, the double
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coset space Γ\G/K is a locally symmetric space and D(G/K) factors to Γ\G/K in
the sense that Γ-invariant functions on G/K get mapped to Γ-invariant functions.

In this framework the quantum side is the spectral theory of D(G/K) on
Γ\G/K. If Γ\G/K happens to be a compact manifold (Γ co-compact and tor-
sion free) this spectral theory is presented in great detail in [DKV79].

To describe also the classical side we view the (co-)tangent bundle T (G/K) ∼=
T ∗(G/K) as the homogeneous bundle G ×K p ∼= G ×K p∗, where g = k + p is a
Cartan decomposition for the Lie algebra g of G. Then the space C∞(T ∗(G/K))G

of G-invariant Hamiltonian functions is Poisson-commutative. If a ⊆ p is a max-
imal abelian subspace and W = NK(a)/ZK(a) is the corresponding Weyl group,
restriction yields an isomorphism C∞(T ∗(G/K))G = C∞(G×K p∗)G ∼= C∞(a∗)W .
Using the symplectic structure on T ∗(G/K) a G-invariant Hamiltonian function
yields a G-invariant Hamiltonian vector field Hf . The classical side of our spec-
tral correspondences is the theory of Ruelle-Taylor resonances for the commutative
family {Hf | f ∈ C∞(T ∗(G/K))G} and their flows Φt

f .

Using the surjection ϕ : G/M × a → G ×K p, (gM,X) 7→ [g,X ] with M =
ZK(a), in view of the intertwining property ϕ(get∇f |a(X)M) = Φt

f (ϕ(gM)), [Hil05],
one relates the Hamiltonian flows with the partially hyperbolic Weyl chamber flow
T (G/M) = G ×M (n+ + a + n−) x A = exp(a). Here n± is the sum of root
spaces for the positive, resp. negative restricted roots associated with (g, a). In
real rank 1 this flow reduces to the geodesic flow.

If Γ\G/K is a compact manifold, according to [BGHW20] the classical spectral
theory can be analyzed via the space D′

+(Γ\G/K) of distributions on Γ\G/K
with wavefront set annihilated by Γ\G×M (n+ + a). In fact, the space Res(λ) of
resonant states for λ ∈ a∗

C
are the u ∈ D′

+(Γ\G/K) satisfying (H + λ(H))u = 0

for all H ∈ a. The subspace Res0(λ) of resonant states annihilated by the smooth
sections of G×M n− are called first-band resonant states.

Recall (e.g. from [DKV79]) that the Harish-Chandra isomorphism associates
to each λ ∈ a∗

C
a character χλ of the algebra D(G/K). If λ is generic, then ac-

cording to [HWW21] the canonical projection π : Γ\G/M → Γ\G/K induces
a linear bijection π∗ : Res0(λ) → ΓEχλ

, where the latter is the space of Γ-
invariant joint D(G/K)-eigenfunctions with character χλ. The generic resonant
states are closely related with irreducible spherical principal series representa-
tions and the associated Poisson transforms are crucial in establishing the spectral
correspondence. For applications of such spectral correspondences we refer to
[GHW21, BGHW20, HWW21, BGW21].

As in the theory of scalar Poisson transforms, “generic” in our context means

that for all positive restricted roots α, we have 2〈λ+ρ,α〉
〈α,α〉 6∈ N0. Here ρ is the usual

half-sum of positive restricted roots and 〈·, ·〉 is the bilinear form on a∗
C
induced

by the Killing form. In real rank 1 the spectral correspondence can be extended
to all λ, [AH21] ([FF03, GHW18] in the case of surfaces). To do that one has to
use reducible spherical principal series and vector valued Poisson transforms.
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For non-compact locally symmetric spaces there are only partial results: For real
hyperbolic spaces one can deal with the convex co-compact case, [GHW18, Had20].
First steps have been taken also for hyperbolic spaces with cusps, [GW17].
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Anosov geodesic flows, closed geodesics and stable ergodicity

Gerhard Knieper

(joint work with Benjamin Schulz)

In this talk we have shown that Finsler Anosov flows can be characterized by stable
hyperbolicity of its closed geodesic. The same is true for Riemannian Anosov flows
on closed surfaces. As an application we deduced that for closed surfaces C2 stably
ergodic geodesic flows are Anosov. These results are based on joint work with
Benjamin Schulz.

Theorem A. (Knieper, Schulz) Let M be a closed manifold and denote by Fhyp(M)
the set of Finsler metrics for whom all closed geodesic are hyperbolic. Then the C2

interior of Fhyp(M) are exactly the set of Finsler metrics for which the geodesic
flow is Anosov. For closed surfaces an analogous result holds for Riemannian
metrics as well.
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Conjecture. We conjecture that Theorem A also holds for Riemannian metrics
on closed manifolds of arbitrary dimensions.

The proof of Theorem A in the Finsler case uses the following important result of
Newhouse [N77].

Theorem 1. Let (V, ω) be a symplectic manifold and H0 : V → R a smooth
Hamiltonian with a compact regular energy level H−1

0 (1). Then there exists a
C2 neighborhood U ⊂ C∞(V ) of H0 and a dense set Q ⊂ U such that for all
H ∈ Q either the Hamiltonian flow φt

H on H−1(1) is Anosov or it has a closed
non-hyperbolic orbit.

The proof of Newhouse’s Theorem is based on a C2-closing Lemma for Hamiltonian
systems.
Another ingredient in the proof of Theorem A is the following characterization
of geodesic Anosov flows for Finsler metrics [CIS98] (resp. Riemannian metrics
[Ru91]).

Theorem 2. Let (M,F0) be a closed Finsler manifold. Then φt
F0

: SM → SM is

an Anosov flow if and only if F0 is contained in a C2 open neighborhood of Finsler
metrics without conjugate points. An analogous result holds for Riemannian met-
rics.

Sketch of the proof of Theorem A: Let M be a closed manifold and U a C2

open neighborhood of Finsler metrics for whom all closed geodesics are hyperbolic.
Using Theorem 1 of Newhouse one can choose for each F ∈ U , a sequence Fk of
Finsler metrics in U for which the geodesic flow is Anosov that converges in the C2

topology to F . Since the Anosov property is an open but not closed condition one
cannot deduce directly that the geodesic flow of F is Anosov. However, Theorem
2 implies that the metrics Fk do not have conjugate points. But since the set of
metrics without conjugate points is C2 closed one obtains that F has no conjugate
points as well. Hence, we have proved that all metrics in U do not have conjugate
points and, therefore, by the Theorem 2 above, each F0 ∈ U is a metric for which
the geodesic flow is Anosov. �

Remark 3. Note that it is not possible to deduce Theorem A from Newhouse’s
Theorem in the Riemannian case. However, for surfaces there is a replacement
by the following Theorem of Contreras and Mazzucchelli which is proved among
other things in [CM21].

Theorem 4. Let M be a closed surface. Then exists a C2-dense set of Riemannian
metrics Q such that for all g ∈ Q either its geodesic flow is Anosov or the surface
contains a non-hyperbolic closed orbit.

Remark 5. For Riemannian metrics which do not contain contractible closed
geodesics this result has been also obtained by Schulz [Sch21].

As an application of Theorem A we obtain:
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Theorem B. (Knieper, Schulz) Let M be a closed surface and Ferg(M) (resp.
Rerg(M)) be the set of Finsler (resp. Riemannian) metrics for which the geodesic
flow is ergodic with respect to the Liouville measure. Then the C2 interior of
Ferg(M) (resp. Rerg(M)) consists of metrics for which the geodesic flow is Anosov.

Remark 6. One can replace the set of ergodic Finsler (resp. Riemannian ergodic)
metrics by the larger set of metrics for which the geodesic flow is topologically
transitive. Then the C2 interior of this set consists of metrics for which the geodesic
flow is Anosov as well.

Besides Theorem A the proof of this result uses the following Theorem which
is a consequence of results by Moser [Mo77] and Siegel and Moser [SM71].

Theorem 7. Let M be a closed surface with a Finsler metric F which has an
elliptic closed orbit. Then there exists a local symplectic coordinate system such
that the Poincaré map P is in a local neighborhood 0 ∈ R2 of the form (Birkhoff
normal form)

P (x) = Aα+β·‖x‖2(x) +O(‖x‖4)

where Aϕ is the rotation in R2 with angle ϕ ∈ R. The constants α and β are
symplectically invariant and called Birkhoff invariants. The elliptic orbit is called
of twist type if β 6= 0. If the elliptic orbit is of twist type then there is a flow-
invariant torus which divides the phase space into two flow-invariant open sets
of positive Liouville measure and, therefore, the geodesic flow is not topologically
transitive and in particular not ergodic.

Sketch of the proof of Theorem B: Suppose U is a C2 open neighborhood of
Finsler- or Riemannian metrics for which the geodesic flow is ergodic. Then the set
U consists of metrics for whom all geodesics are hyperbolic, otherwise there would
exist a metric in U that has a non-hyperbolic closed geodesic. By a sufficiently
small perturbation of this metric one obtains another metric in U with a closed
elliptic orbit of twist type. Then Theorem 7 implies that this metric has a non-
ergodic geodesic flow which contradicts the assumption made for U . Finally, the
hyperbolicity of closed geodesics for all metrics in U yields by Theorem A that
each metric in U is Anosov.
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Hausdorff dimension of the limit set for some Anosov representations

François Ledrappier

(joint work with Pablo Lessa)

We relate the Hausdorff dimension of the limit set for the action on the space of flags

of Anosov representations in PSLd(R) of a CAT (−1) finitely presented group to the

Falconer dimensions of the representation. This is joint Work In Progress with Pablo

Lessa (Montevideo).

For a matrix g ∈ SLd(R), write σ1(g) ≥ . . . ≥ σd(g) for the logarithms of the
singular values of g and write 0 ≤ λ1(g) ≤ . . . ≤ λd(d−1)/2(g) for the differences
λk(g) := σik(g)− σjk(g), for all ik < jk.

Let G ⊂ SLd(R) be finitely generated, denote by | · | the word length associated
to a finite fixed symmetric generator Σ. The group is called Anosov if there
exist c, ζ > 0 such that for all p = 1, . . . , d − 1, all g 6= Id, σp+1(g) − σp(g) ≤
−ζ|g| + c. Let ∂G be the Gromov boundary of the group G and F the space
of flags in Rd. The space ∂G is endowed with a Gromov distance, the space F
with a Riemannian metric invariant under rotations. There is a Hölder continuous
equivariant mapping ξ : ∂G → F such that for t 6= t′ ∈ ∂G, ξ(t) and ξ(t′) are in
general position. The image Λ := ξ(∂G) is called the limit set of the action of G.

LetG be a discrete subgroup of SLd(R). Following Falconer (see [F88], [PSW19]),
we define, for r ∈ [p− 1, p], p = 1, . . . , d(d− 1)/2,

ΦG(r) :=
∑

g∈G

exp−

(
p−1∑

k=1

λk(g) + (r − p+ 1)λp(g)

)
,

ΦG(r) :=
∑

g∈G

exp−

(
p−1∑

k=1

λd(d−1)/2−k+1(g) + (r − p+ 1)λd(d−1)/2−p+1(g)

)
.

Let G be a discrete subgroup of SLd(R). The (resp. lower) Falconer dimension of
G is the critical value (resp. DimF (G)) DimF (G)

DimF (G) := sup{r : 0 ≤ r ≤ d(d− 1)/2,ΦG(r) = +∞},

DimF (G) := sup{r : 0 ≤ r ≤ d(d− 1)/2,ΦG(r) = +∞}.

In dimension d = 2, DimF (G) = DimF (G) is the critical exponent of the series∑
e−rλ(g), the Poincaré exponent of the group. Sullivan observed that the Haus-

dorff dimension and the Minkowski (or box-)dimension of the limit set of a convex
cocompact group of isometries of a hyperbolic space coincide with the Poincaré
exponent ([Sul79]). Our main result is

Main theorem. Let G be a finitely generated Anosov subgroup of SLd(R), Λ
the limit set of G for its action on F . The Hausdorff dimension DimH(Λ), the
Minkowski dimension DimM (Λ) and the Falconer dimensions DimF (G),DimF (G)
satisfy

DimF (G) ≤ DimH(Λ) ≤ DimM (Λ) ≤ DimF (G).
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See [PSW19] (see also [GMT19]) for a more precise result for the action on
the projective space instead of the whole flag space, and for more general groups.
For several finite dimensional families of contracting C1 IFS or C1 repellers, the
maximum DimF (G) is achieved for a positive measure set of parameters (see
[F88], [FS21] and the references therein).

The first step in the proof is to show DimM (Λ) ≤ DimF (G). The proof follows the
schemes of the proofs of the similar results in [Z97], [BCH10], [PSW19], Theorem
B and [FS20].

The rest of the proof uses random walks on Γ. With the notations of [LL21], let
M(G) be the space of probability measures µ on G such that

∑
g∈G |g|µ(g) < +∞

and
⋃

n≥1 supp(µ
(n)) = G. Let µ ∈ M. There is a unique stationary probability

measure ν on F . By [LL21], the measure ν is exact-dimensional and the dimension
δ(ν) satisfies

δ(ν) ≤ DimH(Λ) ≤ DimM (Λ).

The first inequality follows from [Y82] since ν is supported by Λ and the second
one is a general property of dimension theory. We want to construct ν such that
δ(ν) ≥ DimF (G). In dimension d = 2, for a convex cocompactG, this is a property
of the Patterson-Sullivan measure.

In higher dimensions, we still can construct an analog of the Patterson-Sullivan
measure. For ξ ∈ F , ξ = {{0} ⊂ U ′

1(ξ) ⊂ . . . ⊂ U ′
d−1(ξ) ⊂ Rd}, j = 1 . . . , d − 1,

and g ∈ G, we define the expansion coefficients σi(g, ξ) by
∑

i≤j

σi(g, ξ) = log | detU ′
j
(ξ)(g)|,

where, for any subspace U in Rd, | detU (g)| is the Jacobian of the linear mapping
from U to gU , both endowed with the Euclidean metric.

Order the differences ρk(g, ξ) := σik (g, ξ) − σjk(g, ξ), for all ik < jk, in such
a way that ρ1(g, ξ) ≥ . . . ≥ ρd(d−1)/2(g, ξ) ≥ 0. We define the type T (g, ξ) the
corresponding order on the pairs (i, j), i < j. There is a finite set of possible types.
Since the set of types is finite, there is (at least) one type T0 such that the restricted
function ΦG,T0

ΦG,T0
(r) :=

∑

g∈G,T (g)=T0

e−(
∑p−1

k=1 ρk(g)+(r−p+1)ρp(g))

has DimF (G) as critical value. We fix such a type T0 realizing DimF (G).
Define, for g ∈ G, ξ ∈ F , a type T and a real r, 0 ≤ p− 1 ≤ r ≤ p ≤ d(d− 1)/2,

βT
r (g, ξ) :=

(
p−1∑

k=1

ρk(g, ξ) + (r − p+ 1)ρp(g, ξ)

)
,

where the order of the indices k, 1 ≤ k ≤ d(d − 1)/2, corresponds to the type T .
We have, following [Q02],



Mini-Workshop: (Anosov)3 3091

Proposition. Fix a type T , r, 0 ≤ r ≤ d(d − 1)/2. The function (g, s) 7→
βT
r (g, ξ(s)) is Hölder continuous in s and defines a cocycle on G × ∂G. There

exists a finite measure ν0 on ∂G such that

(1)
dg∗ν0
dν0

(s) = e

(
β
T0
dimF (G)

(g,g−1ξ(s))
)

.

Since the Radon-Nykodym cocycle in (1) is Hölder continuous, we can use a re-
sult by Connell and Muchnik ([CM07]) for CAT (−1) groups. With our notations,
it reads as

Proposition.(([CM07])) There exists a probability measure µ0 ∈ M(G) such that
the measure ν0 is the only µ0-stationary measure on ∂G.

We now know by [LL21] that the measure ν = ξ∗(νo) is exact dimensional on
F . Moreover, [LL21] yields a formula for the dimension δ(ν) in terms of local
dimensions of conditional measures. Comparing with (1) finally gives:

δ(ν) ≥ DimF (G).
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Counting and equidistribution of periodic diagonal orbits

Jialun Li

(joint work with Thi Dang)

Let G be SLd(R), denote by M the sign group. Let Γ be any finite subgroup
of the lattice SLd(Z) that acts freely on G/M . I will talk about the counting
and equidistribution of compact periodic orbits of the diagonal group A on the
space Γ\G/M . Counting periodic diagonal orbits is a natural generalization of the
prime geodesic theorem on compact hyperbolic surfaces, dating back to Huber,
Margulis and Bowen. In the SL2(Z) case, it is the topic of Sarnak’s thesis, and it
is connected to the counting of real quadratic orders.

Let C(A) be the set of periodic compact diagonal orbits on Γ\G/M . For each
periodic compact diagonal orbit F , we can define a lattice Λ(F ) in the Lie algebra
a of the diagonal group A. An element Y in a is in Λ(F ) if for any point x in
F , we have x exp(Y ) = x. Let a++ be the positive Weyl chamber, then the main
counting result (a version of the prime geodesic theorem in the higher rank case):
there exits ǫ > 0 such that as t goes to +∞,

∑

F∈C(A)

#(Λ(F ) ∩B(0, t) ∩ a++)vol(F ) = vol(Dt) +O(e−ǫt).

Here B(0, t) is the ball of radius t in a with respect to the Killing norm and Dt

is the ball of radius t in the Riemannian symmetric space G/K. We only count
periodic diagonal orbits with their systole less than t. The multiplicity is given
by the number #(Λ(F ) ∩ B(0, t) ∩ a++). For the hyperbolic surface case, this
multiplicity is exactly the number of closed geodesics of length less than t over the
same base F . The equidistribution result is similar with vol(F ) replaced by an
A-invariant measure on F .

The counting result follows directly from the equidistribution result. I will
sketch a proof. For the equidistribution on the compact part: We first use Hopf
coordinates to separate the Haar measure. We generalize an idea of Roblin from the
hyperbolic case to the higher rank case. It consists in approximating fixed points
on the Furstenberg boundary of loxodromic elements by their angular part. Then
we use the angular distribution of lattices points [GN12] to obtain equidistribution
in the Furstenberg boundary. For the non-compact part, we need to prove the non-
escape of mass of the periodic diagonal orbits. We use ideas from homogeneous
dynamics, such as the systole and the Siegel domain. The talk is based on recent
joint work with Thi Dang.
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Pressure metric degenerations (are Lie-theoretic)

Andrés Sambarino

The Hitchin component of PSLd(R) is a special connected component of the char-
acter variety

X
(
π1S,PSLd(R)

)
= hom

(
π1S,PSLd(R)

)
/PSLd(R),

where S is a closed connected oriented surface of genus greater than 2 and PSLd(R)
is the Lie group of volume preserving d × d matrices up to a scalar multiple,
defined as follows. Let τd : SL2(R) → SLd(R) be the unique (up to conjugation)
morphism that acts irreducibly1 on Rd. A representation ρ : π1S → PSLd(R) is
called Fuchsian if it factors as

ρ : π1S → PSL2(R)
τd−→ PSLd(R),

where the first arrow is discrete and faithful. A Hitchin component Hd(S) is then a
connected component of X

(
π1S,PSLd(R)

)
that contains a Fuchsian representation.

For each d, there are either one or two Hitchin components Hd(S) according to
wether d is, respectively, odd or even.

As it is proved by Hitchin [4],Hd(S) is analytically diffeomorphic to R(2g−2)(d2−1).
It is, in particular, a differentiable manifold and its tangent space at every point
can be described as the first co-homology group with twisted coefficients

(1) TρHd(S) = H1
Ad ρ

(
π1S, sld(R)

)
.

Let us denote by a =
{
(a1, · · · , ad) ∈ Rd :

∑
ai = 0

}
a Cartan subspace of

sld(R), a
+ = {a ∈ a : a1 ≥ · · · ≥ ad} a Weyl chamber and its dual cone by

(a+)∗ = {ϕ ∈ a∗ : ϕ|a+ ≥ 0}.

For every ϕ ∈ P(a+)∗ a procedure from Bridgeman-Canary-Labourie-S. [2],
that involves the thermodynamical formalism over hyperbolic systems developed
in the 70’s and 80’s (see Bowen-Ruelle [1] and Parry-Pollicott [7]), equips the
Hitchin component with a Out(S)-invariant semi-definite bi-linear form Pϕ, called
a pressure form.

Deciding which linear forms ϕ induce Riemannian metrics on Hd(S) is still an
unsolved issue and in this report we focus on the simple roots

∆ =
{
σi ∈ a∗ : σi(a) = ai − ai+1

}
.

The main motivation for studying these pressure forms is the following.
Consider Hd(S) as a subset of X

(
π1S,PSLd(C)

)
, the latter equipped the com-

plex structure J induced by the complex structure of PSLd(C). It follows from
the Anosov property, established by Labourie [6], that there exists a neighbor-
hood U of Hd(S) inside X

(
π1S,PSLd(C)

)
such that for every ρ ∈ U and every

p ∈ {1, · · · , d− 1} there exists a continuous equivariant map ξ
σp
ρ : ∂π1S → Gi(C

d).

1i.e. has no non-trivial invariant subspaces,
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Fix a(ny) Riemannian metric on the Grassmanian Gi(C
d) of p-dimensional sub-

spaces of Cd and denote by

Hffσp
(ρ) = dimHff

(
ξσp
ρ (∂π1S)

)

the corresponding Hausdorff dimension.
For every σ ∈ ∆ the function Hffσ is analytic on a (possibly smaller) neigh-

borhood of Hd(S) and critical at Hd(S) (Pozzetti-S.-Wienhard [8]). Its Hessian
is thus well defined and one has the following relation with the pressure forms for
the simple roots:

Theorem 1 (Bridgeman-Pozzetti-S.-Wienhard [3]). For every v ∈ TH(S,GR) and
every σ ∈ ∆ one has

HessHffσ(Jv) = Pσ(v).

In light of equation (1), natural decompositions of TρHd(S) arise when ρ is not
Zariski dense. To simplify their description we introduce the following definition.

Definition 2. Consider ρ ∈ Hd(S), then a ρ-adjoint factor is an irreducible factor
of the representation Ad ◦ρ : π1S → GL(sld(R)). If V is such a factor let us denote
by V 0 = V ∩ a.

The adjoint factors depend only on the Zariski closure of ρ, and when ρ is
Fuchsian one needs to look at the decomposition of sld(R) as an sl2(R)-module
via ad ◦ didτd. This was carried out by Kostant [5]: there are d− 1 factors,

sld(R) =
d−1⊕

e=1

Ve

say, and Ve has dimension 2e + 1. The corresponding 0-space V 0
e will be denoted

by ke and called a Kostant line, since they are in fact one-dimensional.
In general, since the Zariski closure of a Hitchin representation is reductive (see

for example Hitchin [4]) the Lie algebra sld(R) decomposes as a sum of adjoint
factors and hence so does the cohomology

H1
Ad ρ

(
Γ, sld(R)

)
=

⊕

V adjoint factor

H1
Ad ρ(Γ, V ).

Moreover, the vector subspace V 0 ⊂ a is the zero-restricted-weight-space of the
representation (

AdPSLd(R) |H
)
|V : H → GL(V)

of the Zariski closure H of ρ.
Finally, recall that the character variety X

(
π1S,PSLd(R)

)
is equipped with a

natural involution i, induced by the external2 automorphism of PSLd(R), g 7→
(g−1)t.Denote also by i : a → a the associated opposition involution i(a1, . . . , ad) =
(−ad, · · · ,−a1).

The purpose of this report is to advertise the following ongoing work.

2when d ≥ 3
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Theorem 3 (S.). Consider a Hitchin representation ρ ∈ Hd(S) and fix a ρ-
adjoint factor V. Consider also a simple root σ ∈ ∆. Then the pressure form Pσ is
degenerate at H1

Ad ρ(π1S, V ), in which case Pσ will vanish identically, if and only
if either

- ρ is Fuchsian and the associated Kostant line ke lies in the kernel of σ.
- ρ is fixed by i, i|V 0 = − id and σ is i-invariant.
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Dynamics of Anosov representations – in the interior and
at the boundary

Anna Wienhard

In this talk I discussed some aspects of the dynamics of images of Anosov rep-
resentations on symmetric spaces, with a special view towards orbit growth, the
limit set at infinity, the geometry of the locally symmetric spaces and their com-
pactifications.

The first part of the talk focussed on geometry. I explained how the locally
symmetric spaces of infinite volume, that arise as quotients of Anosov representa-
tions can be compactified, and how these compactifications are related to domains
of discontinuity for the Anosov representations in compactifications of symmetric
spaces and flag varieties. It would be interesting to use these compactifications to
say something about spectral properties of the Anosov representation and/or the
quotients.

The second part of the talk focussed on dynamics. I reviewed some recent re-
sults on orbit growth and entropy of Anosov representations, and on how they
are related to the Hausdorff dimension of the limit set of the Anosov representa-
tion. I shortly adressed relations to counting problems (see work of Sambarino,
Carvajales, Hee Oh et. al.), and raised some open questions.
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Absence of embedded eigenvalues for higher rank locally
symmetric spaces

Lasse L. Wolf

(joint work with Tobias Weich)

In [Pat75] Patterson showed that for a geometrically finite hyperbolic surface of
infinite volume all eigenvalues of the Laplacian are smaller than 1/4, i.e. there
are no eigenvalues embedded in the essential spectrum [1/4,∞). This result has
been extended to hyperbolic manifolds of higher dimension by Lax-Phillips [LP82]
which they use to obtain estimates for lattice point counting in hyperbolic mani-
folds. In the case of surfaces the infinite volume assumption is equivalent to the
geometric condition that the surface has a funnel. This geometric assumption has
consequences on the spectral property of the Laplacian. It implies that the latter
has no embedded eigenvalues. Our goal is to establish similar connections between
the geometry and the spectral analysis for more general symmetric spaces, in par-
ticular for higher rank symmetric spaces. Let X = G/K be a symmetric space of
non-compact type and Γ a torsion-free subgroup of G. In contrast to hyperbolic
surfaces where only funnels and cusps occur as non-compact ends, the classifica-
tion of the ends of Γ\X in the general setting remains a mystery. Hence, the
geometry at infinity is far more complicated in this case. Nevertheless, we provide
a geometric condition on Γ that implies the absence of embedded eigenvalues. It
is motivated by the following observation: a funnel occurs if and only if there is a
boundary point x∞ ∈ ∂H and a neighborhood U of x∞ such that U is contained in
a fundamental domain for Γ acting on H. In particular, x∞ is a wandering point
for the action of Γ on the compactification H of H, i.e. there is a neighborhood U
of x∞ such that γU intersects U non-trivially only for finitely many γ ∈ Γ. Our
geometric condition is that there exists a wandering point x∞ for the action of Γ

on the maximal Satake compactification X
S
of X with x∞ ∈ ∂X

S
. (Obviously

every point in X is wandering.) Note that (in contrast to the case of symmetric
spaces of rank one) there are multiple different G-compactifications for a higher
rank symmetric space X . We presented the following

Theorem 1. Let X = G/K be a symmetric space of non-compact type and Γ
a torsion-free subgroup of G such that there exists a wandering point x∞ for the

action of Γ on X
S
with x∞ ∈ ∂X

S
. Then Γ\X has no embedded eigenvalues.

To define embedded eigenvalues consider the algebra D(X) of G-invariant dif-
ferential operators on X . Let G = KAN be the Iwasawa decomposition and
χλ the Harish-Chandra character of D(X) for λ ∈ Hom(Lie(A),C). Then λ is
a joint eigenvalue if there is an L2-function on Γ\X that is an eigenfunction for
each D ∈ D(X) with eigenvalue χλ(D). We call λ an embedded eigenvalue if in
addition λ ∈ Hom(Lie(A), iR) holds. This generalizes the two results mentioned
above.

An interesting example is obtained for Anosov representations.
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Corollary 2. Let Γ be the image of a P -Anosov representation that is torsion-free
and non-cocompact. Then Γ\X has no embedded eigenvalues.

This corollary can be obtained using the works of Kapovich-Leeb [KL15] (and
partially Guichard-Kassel-Wienhard [GKW15]). They provide a compactification
of the locally symmetric space Γ\X modeled on the maximal Satake compactifi-

cation, i.e. there is a region of proper discontinuity Ω ⊆ X
S
for the action of Γ on

X
S
such that X ⊆ Ω and the action of Γ on Ω is cocompact. Since every point

in a region of proper discontinuity is wandering and X is a proper subset of Ω we

have a wandering point that is in ∂X
S
. We deduce the Corollary by applying the

theorem.
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Warburger Straße 100
33098 Paderborn
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Prof. Dr. Francois M. Ledrappier
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Sorbonne Université
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Dr. Thibault Lefeuvre
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Jun-Prof. Dr. Maria Beatrice
Pozzetti

Mathematisches Institut
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Prof. Dr. Federico Rodriguez
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Dr. Andrés Sambarino
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Prof. Dr. Ralf J. Spatzier
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Prof. Dr. Tobias Weich

Institut für Mathematik
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Warburger Straße 100
33098 Paderborn
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Prof. Dr. Anna Katharina
Wienhard

Mathematisches Institut
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Lasse Lennart Wolf
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