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Abstract. Cluster algebras were developed by Fomin and Zelevinsky about
twenty years ago. While the initial motivation came from within algebra (to-
tal positivity, canonical bases), it quickly became clear that cluster algebras
possess deep links to a host of other subjects in mathematics and physics. In
a separate vein, starting about ten years ago, Arkani-Hamed and his collab-
orators began a program of reformulating the bases of quantum field theory,
motivated by a desire to discover the basic rules of quantum mechanics and
spacetime as arising from deeper mathematical principles. Their approach to
the fundamental problem of particle scattering amplitudes entails encoding
the solution in geometrical objects, “positive geometries” and “amplituhe-
dra”. Surprisingly, cluster algebras have been found to be tightly woven
into the mathematics needed to describe these geometries. The purpose of
this workshop is to explore the various connections between cluster algebras,
scattering amplitudes, and positive geometries.
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Introduction by the Organizers

The hybrid mini-workshop Scattering Amplitudes, Cluster Algebras, and Positive
Geometries was attended by about 20 participants, split roughly equally between
mathematicians and physicists, with representation from Europe, North Amer-
ica, and Asia. Four participants attended in person, while the rest were remote.
The workshop consisted of 14 talks and two discussion sessions. While most of
the talks were on the latest research in this area—often focusing on unpublished
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work in progress—a few of the talks served as an invitation to the central themes
connecting this physics and mathematics that have emerged over the past few
years.

There were talks on cutting edge topics within cluster algebras (Dani Kaufman,
Marcus Spradlin), and new light cast on the mysterious appearance of cluster
variables in the polylogarithmic structure of Feynman integrals (Song He). A
number of talks focused on new developments in the mathematics and physics
of amplituhedra (Nima Arkani-Hamed, Steven Karp, Lauren Williams, Tomasz
 Lukowski). A novel understanding of the “T-duality” symmetry, first encountered
in connecting different physical descriptions of amplituhedra, was extended in the
discussion (Pavel Galashin) of “shift maps” on the positive Grassmannian. Two
talks (Thomas Lam, Claudia Fevola) were related to certain important classes of
“stringy” integrals, defined on cluster varieties and beyond, with natural links to
algebraic statistics and likelihood maps. New connections between polytopes and
amplitudes were explored in a pair of talks, providing the first “all-loop-order”
analog of the amplituhedra —“surfacehedra”— for the scattering amplitudes of a
wide class of theories (Giulio Salvatori), and suggesting interesting mathematical
generalizations of particle scattering (Nick Early). Finally, two complementary
approaches to the construction of stringy integrals for surfacehedra were described,
naturally connected to a “global” description of Teichmüller space on the one hand
(Hadleigh Frost), and to representations of gentle algebras on the other (Pierre-
Guy Plamondon).

Conversations after the talks ranged widely, including both the in-person and
virtual participants. This brought people who had not previously met or collab-
orated into fruitful contact, for instance triggering discussions about the relation
between Dani Kaufman’s affine associahedra and the polytopes appearing in Giulio
Salvatori’s talk, and clarifying the positivity conditions yielding real solutions of
Schubert problems in interactions between Steven Karp and Nima Arkani-Hamed,
Thomas Lam, and Marcus Spradlin.

The two discussion sessions were aimed to facilitate communication between the
mathematicians and physicists. The sessions were entitled “Ask the mathemati-
cians a question” and “Ask the physicists a question” and were amongst the most
enjoyable activities of the workshop. All in all, despite the difficulties associated
with the hybrid nature of the event, the participants were actively engaged in the
talks and discussions, and the meeting has already stimulated a number of new
lines of inquiry.
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Abstracts

Kinematics, cluster algebras and Feynman integrals

Song He

(joint work with Zhenjie Li, Qinglin Yang)

For scattering amplitudes in N = 4 supersymmetric Yang–Mills theory (SYM)
in the planar limit, cluster algebras have played an important role not only for
its all-loop integrand, but also for the functions after integration. There has also
been significant progress in computing and studying finite, conformal Feynman
integrals contributing to amplitudes; remarkably, cluster algebras and the so-called
cluster adjacency conditions seem to apply to individual Feynman integrals. To
systematically study them, we identify cluster algebras for planar kinematics of
conformal Feynman integrals in four dimensions, as sub-algebras of that for top-
dimensional G(4, n) corresponding to n-point massless kinematics. We work with
general planar kinematics for Feynman integrals with “massive” corners, which
only depends on a subset of the n dual points. A priori it is unclear at all if one
can find any sub-algebra of the G(4, n) cluster algebra which parametrizes such a
kinematics. We show that it is indeed the case by going through all kinematics
with n ≤ 8. The basic idea is to find a suitable quiver of G(4, n), where we can
freeze some mutable variables such that the remaining sub-quiver with d mutable
nodes becomes independent of the removed dual points.

We provide evidence that they encode information about singularities of such
Feynman integrals, including all-loop ladders with symbol letters given by cluster
variables and algebraic generalizations. As a highly-nontrivial example, we apply
the D3 cluster algebra to an n = 8 three-loop wheel integral, which contains a
new square root. Based on the D3 alphabet and three new algebraic letters essen-
tially dictated by the cluster algebra, we bootstrap its symbol, which is strongly
constrained by the cluster adjacency. By sending a point to infinity, our results
have implications for non-conformal Feynman integrals, e.g. up to two loops the
alphabet of two-mass-easy kinematics is given by a limit of this generalized D3

alphabet. We also find that the reduction to three dimensions is achieved by fold-
ing and the resulting cluster algebras may encode singularities of amplitudes and
Feynman integrals in ABJM theory, at least through n = 7 and two loops. More
details and relevant references can be found in the preprint [1].

References
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Introduction to stringy integrals

Thomas Lam

In this talk, I give an introduction to “stringy integrals” [2] intended for cluster
algebra experts in the audience. Stringy integrals are integral functions of the
form

(1) I(S) = (α′)d
∫

R
d
≥0

r
∏

j=1

pj(x1, x2, . . . , xd)−α′Si
dx1

x1

dx2

x2
· · · dxd

xd

where pj(x) are Laurent polynomials with nonnegative coefficients, α′ is a fixed
positive real “string length”, and the integral is considered as a function of the
parameters S1, S2, . . . , Sr. The basic example of a string integral is Euler’s beta
function, which is in turn an example of a tree-level scattering amplitude in open
string theory. The latter are certain integrals over the moduli space M0,n of n-
pointed genus zero curves of importance in physics. Stringy integrals can also be
associated to cluster algebras: the stringy integral for the type An-cluster algebra
is the (n + 3)-point open string tree amplitude.

I discuss in this talk the convergence of the integrals (1), and the field theory
limit limα′→0 I(S), which turns out to be the canonical rational function of a
polytope, as studied in [1].

References

[1] N. Arkani-Hamed, Y. Bai, and T. Lam, Positive geometries and canonical forms, JHEP
November 2017, Article 39.

[2] N. Arkani-Hamed, S. He, and T. Lam, Stringy canonical forms, JHEP February 2021, Article
69.

Shift maps, poset associahedra, and totally nonnegative
critical varieties

Pavel Galashin

I will discuss some recent results on totally nonnegative parts of critical varieties
and the associated polytopes [4, 5, 6]. Along the way, I will highlight a surprising
relation between these results and the shift map (also known as T-duality [11])
that has previously appeared in relation to scattering amplitudes.

The shift map is a conjectural bijection Gr>0(k, n) 99K Gr>0(k − 1, n) between
certain subsets of two adjacent totally nonnegative Grassmannians [12]. Each
space Gr>0(k, n) is stratified into positroid cells Π>0

f indexed by permutations f ,

and the shift map is expected to send Π>0
f to Π>0

f↓ , where the permutation f↓ is

obtained from f by shifting all of its values down by 1. This map appears in the
BCFW triangulation [2] of the amplituhedron [1], and later it was also conjectured
to give a topological equivalence between the spaces of planar Ising and electrical
networks; see [9] and [7, Question 9.2].

When restricted to critical planar Ising and electrical networks, the shift map
is straightforward to define. In [4], we introduce the critical part Crit>0

f of an
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arbitrary positroid cell Π>0
f , building on the results of [8, 10]. We study shift maps

between different critical cells, as well as the topology of their closures Crit>0
f . We

show in [6] that in the case of the top positroid cell Π>0
k,n ⊂ Gr>0(k, n), Crit>0

k,n is
homeomorphic to the second hypersimplex ∆2,n. This polytope does not depend
on k, in agreement with the shift map prediction. For lower-dimensional positroid

cells Π>0
f ⊂ Gr>0(k, n), studying the topology of Crit>0

f leads to new interesting

families of polytopes which we call poset associahedra [5].
Poset associahedra are naturally defined in terms of tubings on a poset, similarly

to the construction of graph associahedra introduced in [3]. In special cases, poset
associahedra recover the Stasheff associahedron and the permutohedron. In [6],
we obtain each totally nonnegative critical variety as an image of an affine poset
cyclohedron, which is an affine analog of a poset associahedron. It remains an open

problem to decide whether each Crit>0
f is itself a polytope.
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Affine quotient associahedra

Dani Kaufman

(joint work with Zachary Greenberg)

This talk was based on joint work with Z. Greenberg [1]. We define and analyse
an analog of the generalized associahedra associated to finite type cluster algebras
for affine type cluster algebras.



3108 Oberwolfach Report 57/2021

When a cluster algebra has finitely many clusters, it is called a finite type cluster
algebra, and all of the relevant information it provides can be easily computed
and studied. We are motivated by considering the properties of cluster algebras
and cluster complexes as they transition from finite to infinite type in hopes of
extending the foundational work of [3].

Our primary goal is to construct a quotient of the cluster complex of an affine
cluster algebra by a finite index normal subgroup of its automorphism group. The
dual complex to this finite quotient will be the “quotient affine associahedron”, and
we analyse it in a similar fashion to that of the usual generalized associahedron.

Thinking of affine cluster algebras as “singly extended”, we take our analysis
one step further to the “doubly extended” case.

Definition 1. An affine type cluster algebra is a cluster algebra which has an
acyclic seed whose exchange matrix corresponds to an orientation of an affine
Dynkin diagram. Such exchange matrices can be described by directed graphs
with integer weight nodes called weighted quivers.

Our new method for analysing affine and doubly-extended cluster algebras stems
from considering a new family of weighted quivers called Tn,w quivers that contains
seeds for these algebras.

Let n = (n1, n2, . . . , nm) and w = (w1, w2, . . . , wm) with ni > 1, wi > 0 be
m tuples of positive integers. We consider a weighted quiver, Tn,w, with n =
∑

(ni − 1) + 2 nodes constructed in the following way: First consider the star
shaped quiver T ′

n,w with n−1 nodes consisting of one central node, N1 of weight 1
and m tails of length ni−1 of weight wi nodes i2, . . . , ini

connected in a source-sink
pattern with N1 as a source.

Tn,w is constructed from T ′
n,w by adding an additional weight 1 node N∞ along

with a double arrow from N∞ to N1 and single arrows from each of the m other
neighbours of N1 to N∞, as shown in Figure 1.

2n2
. . . 22 N∞ 32 . . .

1n1
. . . 13 12 N1 m2 . . .

Figure 1. The quiver Tn,w.

We prove the following theorem:

Theorem 2. Let n,w be m dimensional vectors of positive integers. Let χ(Tn,w) =
∑

(wi(n
−1
i − 1)) + 2. Then we have the following:

(1) If χ > 0, then Tn,w provides a seed of an affine cluster algebra.
(2) If χ = 0, then Tn,w provides a seed of a doubly extended cluster algebra.
(3) If χ < 0, then Tn,w provides a seed of an infinite mutation type cluster

algebra.
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Moreover almost every affine and doubly extended cluster algebra has a seed with
underlying quiver isomorphic to a Tn,w for some n,w.

Let us assume now that we are considering Tn,w quivers with χ > 0. The key
reason for considering these quivers as seeds of affine cluster algebras is that they
encode a simple finite index normal subgroup of the cluster modular group. Let

γ = {µN1
, (N1N∞)}

be the cluster modular group element given by mutation at node N1 and the
permutation which swaps nodes N1 and N∞. Then we prove that γ is equivalent
to χ−1 source-sink mutations on a corresponding affine Dynkin seed and that the
group generated by γ is a finite index normal subgroup.

Definition 3. Let C(A) be the cluster complex associated to the affine cluster
algebra A. The affine associahedron is the dual complex to C(A)/〈γ〉. The 1-
skeleton of an affine associahedron is the quotient exchange complex of an affine
cluster algebra.

We call cluster variables in an affine cluster algebra “finite” if freezing them
gives a finite subalgebra, and affine otherwise. The following theorem allows us to
count the facets of each codimension of this complex.

Theorem 4. Each finite cluster variable appears in a seed whose quiver is an
orientation of the associated affine Dynkin diagram. Every affine cluster variable
appears on a node other than N1 or N∞ in a Tn,w seed.

We prove the following theorem about the counts of codimension 1 and dimen-
sion 0 facets of the quotient affine associahedron.

Theorem 5. The number of distinct cluster variables in an affine cluster algebra
up to the action of 〈γ〉 is given by

(1)
∑

i

(ni − 1)ni +
n

χ
.

The number of distinct clusters in an affine cluster algebra up to the action of 〈γ〉
is given by

(2)
2

χ

∏

i

(

2ni − 1

ni

)

.

These theorems are analogues to similar facet counts of the usual generalized
associahedra of finite cluster algebras, see theorem 5.1 of [2].

We wish to further understand the quotient exchange complex. A possible
way to accomplish this is by introducing a special framing of a Tn,w quiver, and
consider two clusters the same if their unordered lists of c-vectors are the same
with respect to this framing.

Consider a framing, T f
n,w, obtained from Tn,w by adding a frozen node for

vertices i2, . . . , ini
in each tail and one vertex associated with the double edge.

For each tail node i add frozen nodes of weight wi labeled fi,2, . . . , fi,ni
with a
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single arrow from ij to fi,j . Then add a frozen node f1 of weight 1 along with
single arrows N1 to f1 and f1 to N∞.

Conjecture 6. Two clusters in the exchange graph of a Tn,w cluster algebra are
in the same orbit of the action of 〈γ〉 if and only if their c-vectors with respect to
this framing are the same.

The “if” part of the statement follows since the framing is preserved by the
action of γ. However, it is not clear that the only quivers which are identified are
the ones which are in the same γ orbit.

We take our analysis one step further and construct quotients of the cluster
complexes of doubly extended cluster algebras, i.e. the case that χ = 0. For these
algebras, the group 〈γ〉 is no longer a finite index normal subgroup. Thus we
consider (in most cases) the normal closure of γ and quotient the cluster com-
plex by this subgroup and call the dual of this complex the “doubly extended
associahedron”.

We conjecture the following about the topology of these complexes:
Conjecture 7.

(1) The affine generalized associahedron of an affine cluster algebra of rank
n + 1 is homeomorphic to a sphere of dimension n.

(2) The cluster complex of a doubly extended cluster algebra of rank n + 2 is
homotopy equivalent to Sn−1.

(3) The doubly extended associahedron associated with a doubly extended clus-

ter algebra is homeomorphic to Sn−1 × S2 in all cases other than E
(1,1)
8

where it instead is homeomorphic to S7 × S1 × S1.
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Some new frontiers in amplitudes and amplituhedra

Nima Arkani-Hamed

In this informal talk, intended to stimulate discussion, I sketch a number of new
directions connecting the combinatorics and geometry of the positive Grassman-
nian and amplituhedra not just to the “integrand” of scattering amplitudes, but
more directly to the actual amplitudes themselves.

(1) The amplituhedron determines scattering amplitudes in planar N = 4 su-
per Yang–Mills by a single “positive geometry” in the space of kinematic and loop
variables. I discuss a closely related definition of the amplituhedron for the sim-
plest case of four-particle scattering, given as a sum over complementary “negative
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geometries”, which provides a natural geometric understanding of the exponentia-
tion of infrared divergences of the amplitude, as well as a new geometric definition
of an IR finite observable which is directly determined by these negative geome-
tries. This provides a long-sought direct link between canonical forms for positive
(negative) geometries, and a completely well-defined, finite physical observable,
expressed in perturbation theory as a polylogarithmic function of a single kine-
matic variable. An especially simple class of negative geometries at all loop or-
ders, associated with a “tree” structure can easily be determined by an interesting
non-linear differential equation immediately following from the combinatorics of
negative geometries, allowing the computation of these “tree” contributions non-
perturbatively, for all values of the coupling constant, remarkably exhibiting the
qualitative behavior expected of the transition from “gluons” at weak coupling to
“strings in AdS space” at strong coupling.

(2) The appearance of cluster variables in the arguments of polylogs for ampli-
tudes continues to be a wonderfully mysterious fact, to be more deeply understood.
I suggest a geometric question naturally associated with planar diagrams, which
may hold some clues as to where this phenomenon comes from. The duals of
planar loop diagrams are graphs, whose nodes are associated with lines in P3, cor-
responding to the loop variables, as well as external data. Any such diagram can
be interpreted as giving rise to a “leading singularity”, known to play a central role
in the physics, by demanding that any pairs of lines connected by an edge in the
graph intersect. For the simplest case of a “box” diagram, this yields the first clas-
sic “Schubert” problem—to find a line in P3 intersecting a given set of four lines.
Remarkably, when the external data is positive, these Schubert problems have real
solutions. Furthermore each Schubert line has four points on it, and these four
points are always ordered, so long as the external data are positive in the sense
of the positive Grassmannian. Finally the cross-ratio of these four points give the
arguments of the dilogarithm associated with performing the loop integration for
the box diagram. This connection between the geometry of Schubert lines, and
the polylogarithmic functions associated with planar loop diagrams, appears to
hold in many other examples: the Schubert problems associated with the leading
singularities have real, ordered solutions, with non-trivial cross-ratios of points on
the Schubert lines having positivity properties. Furthermore these cross-ratios can
be recognized as cluster variables of the G(4, n) of the external kinematical data,
and appear as the arguments of the polylogs. There are however also some pecu-
liar counterexamples to this pattern, where some of the solutions of the Schubert
problem are not cluster variables, and do not enjoy positivity properties. The
systematics of this emerging story must clearly be better understood.

(3) Finally, the notion of positivity in the setting of the positive Grassmannian
and the amplituhedron is naturally invariant under what physicists think of as
“parity”, which translates mathematically to the rather non-trivial property that
the “twist map” preserves positivity. Only a small subset of minors are manifestly
parity invariant; these are also the variables of immediate relevance in the compu-
tation of amplitudes. It is then natural to ask: what is the image of the positive



3112 Oberwolfach Report 57/2021

part of the Grassmannian, purely in this parity-invariant subspace of minors, and
can we cut out this image by polynomial inequalities? I discuss a number of small
examples showing that the very simple statement of the positivity of all minors,
translates into non-trivial polynomial inequalities on the set of parity-invariant
minors. Fascinatingly, these polynomials also naturally show up from completely
standard physical considerations, as characterizing the locus of solutions of “Lan-
dau equations” controlling the possible branch points of amplitudes. A natural
hope is that these two sets of polynomials are in fact identical, with the math-
ematically natural question of a parity-invariant characterization of the positive
Grassmannian, being solved by producing solutions of Landau equations associ-
ated with planar graphs. In a precise sense, this would directly show how the loop
diagrams encoding physics compatible with the principles of spacetime and quan-
tum mechanics, are just a machine to produce the answer to a simple and natural
mathematical question about positivity. The story of the amplituhedron already
shows how this can happen for the integrand of amplitudes, but such a connection
would take a significant step towards seeing how positivity can determine physics
of the full amplitude.

Likelihood degenerations

Claudia Fevola

(joint work with Daniele Agostini, Taylor Brysiewicz, Lukas Kühne, Bernd
Sturmfels, Simon Telen; with an appendix by Thomas Lam)

Computing all critical points of a monomial on a very affine variety is a funda-
mental task in algebraic statistics [6, 7, 8, 9], particle physics [3, 4] and other
fields. We introduce degeneration techniques that are inspired by the soft lim-
its in the theory developed by Cachazo–Early–Guevara–Mizera (CEGM), and we
answer several questions raised in the physics literature.

More precisely, a central theme in CEGM theory in particle physics is the
count of the number of critical points to the potential function or equivalently
the number of solutions to the scattering equations. The analogous fundamental
task in algebraic statistics is to compute all critical points of a monomial on a
very affine variety. A very affine variety X is a closed subvariety of an algebraic
torus (C∗)n. For any integer vector u = (u1, . . . , un) ∈ Zn, the Laurent monomial
zu = zu1

1 · · · zun
n is a regular function on (C∗)n, and we are interested in the set

of critical points of zu on X . The natural approach is via the gradient of the log-
likelihood function log(zu) =

∑n

i=1 uilog(zi). This makes sense for any complex
vector u ∈ Cn. The coordinates of ∇log(zu) are rational functions, and we seek
points z ∈ X at which that gradient vector lies in the normal space. This leads
to a system of rational function equations whose solutions are the critical points.
Their number is independent of u, provided u is generic. This is an invariant of X ,
denoted MLdegree(X), and known as the maximum likelihood degree. Whenever
X is smooth, we know from [8, Theorem 1] that it coincides with the signed Euler
characteristic of X . In particle physics, very affine varieties arise from scattering
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equations [3, 4, 5, 11]. Their solutions are the critical points of log(zu) on the
moduli space M0,m = Gr(2,m)◦/(C∗)m of genus zero curves with m marked
points. In the more general context of CEGM amplitudes [3], one considers the
very affine varieties X(k,m) = Gr(k,m)◦/(C∗)m with k ≥ 2. These are moduli
spaces of m points in Pk−1 in linearly general position, natural generalizations
of M0,m. While the maximum likelihood degree MLdegree(X(2,m)) is known to
be (m − 3)!, much less is known for k ≥ 3. The connection between maximum
likelihood and scattering equations was developed in [11].

The term degeneration in algebraic geometry represents the idea of studying
the properties of a general object Xt for t 6= 0 by letting it degenerate to a
more special object X0, which is often easier to understand. This corresponds to
finding a nice compactification of the variety X 0 = ∪t6=0Xt to a variety X , by
adding the special fiber X0. Cachazo, Umbert and Zhang [5] introduced a class of
degenerations called soft limits. The present article arose from our desire to gain
a mathematical understanding of that construction from physics. We succeeded
in reaching that understanding, and we here share it from multiple perspectives:
algebraic geometry, combinatorics and numerical mathematics. The soft limits in
[5] are special instances of likelihood degenerations that are well adapted to the
geometry of configurations. We explain how these are related to the deletion maps

(1) πk,m : X(k,m + 1) → X(k,m).

These maps are shown to be stratified fibrations. We discuss both the strata
and the fibers. This sets the stage for the computation of Euler characteristics
by combinatorial methods. This topological approach is applied to examine the
space X(3,m) of m points in general position in the projective plane P

2. Cachazo,
Umbert and Zhang [5] report that the ML degree of X(3,m) equals 26 for m = 6,
1 272 for m = 7, and 188 112 for m = 8. We present a topological proof of these
results, and we prove the conjecture made in [5, §6]. This involves a careful study
of the stratified fibration (1).

An additional approach we use to compute the number of critical points to
the scattering equations comes from numerical algebraic geometry. In particular,
these techniques are applied to configurations of eight points in projective 3-space.
Based on our computational results, we predict that the ML degree of X(4, 8) is
equal to 5 211 816. This is the number of solutions to the likelihood equations,
found numerically by the software HomotopyContinuation.jl [2]. We present a
detailed analysis of the tropical geometry of soft limits in this case. This confirms
the combinatorial predictions made in [5, Table 2], and offers a blueprint for future
research that connects tropical geometry and numerical analysis.
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Aspects of positive geometry and noncrossing combinatorics on the
Grassmannian, planar kinematics polytope and generalized worldsheet

Nick Early

In the study of scattering amplitudes, positive geometries [1, 2] can be used to
capture the recursive nature of residues of amplitudes for certain quantum field
theories; in this talk, we focus on the positive geometry of the biadjoint scalar
partial amplitude mn(α, β) for a pair of cyclic orders α, β. When α = β = I is the
standard cyclic order I = (1, 2, . . . , n), then the relevant positive geometry is ob-
tained by partially compactifying the torus quotient of the positive Grassmannian
G+(2, n), that is to say, the configuration space M0,n of n distinct points on CP

1.
Then the strata in the compactification are closely related to the residues of the
function mn(I, I). This is our starting point.

In recent work [5], we introduce a deformation of the positive Grassmannian
G+(3, n), and from its torus quotient a certain generalized worldsheet associahe-
dron, by replacing the

(

n
3

)

Plücker coordinates with Laurent polynomials, related
to certain cluster variables first appearing in the G(3, 8) cluster algebra. We gave
an explicit extension of the construction to all k ≥ 3.

We studied the polyhedral fan obtained by tropicalizing the deformation; and
formulated a conjecture that, (in fact for deformations of G+(k, n) for any k ≥ 3),
the face poset of the polyhedral fan is isomorphic to the noncrossing complex of k-
element subsets, whose maximal collections are known to be enumerated by the k-
dimensional Catalan numbers. This is in analogy with the partial compactification
of M0,n, where the codimension zero strata are known to be enumerated by size
n−3 collections of pairwise noncrossing pairs {i, j}. We ran numerous consistency
checks, including comparing the combinatorial formula with the numerical value
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obtained using the k = 3 case of the formula due to Cachazo–Early–Guevara–
Mizera, in terms of the generalized scattering equations. Working by analogy
with the correspondence between the positive tropical Grassmannian Trop+G(2, n)
and the associahedron, we were able to formulate a certain higher rank k ≥ 3
generalization of the set of positive roots ei − ej . The main combinatorial result
here was to prove that this gives rise to a complete simplicial fan consisting of

C
(k)
n−k maximal simplices which are in bijection with pairwise size (k−1)(n−k−1)

collections of pairwise noncrossing k-element subsets, again in perfect analogy with
the well-known triangulation of the standard root polytope studied by Gelfand–
Graev–Postnikov [6]. This proves a conjecture from [4] that the volume of the root

polytope Rk,n is the k-dimensional Catalan number C
(k)
n .

In this talk, we will survey the story described above, and time permitting we
will discuss relations to joint works with Cachazo [3, 4] on the Planar Kinematics
polytope and the so-called mirror superpotential, as studied by Marsh, Rietsch
and Williams in various works [8, 9, 10], see also [7].
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Surfacehedra

Giulio Salvatori

(joint work with Nima Arkani-Hamed, Hadleigh Frost, Pierre-Guy Plamondon,
Hugh Thomas)

A recurrent theme of this workshop is that Scattering Amplitudes can be thought of
as canonical differential forms of Positive Geometries. This fact was first discovered
in the context of N = 4 SYM [1], but more recently the same interpretation was
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found to hold in φ3 theory at tree level where the relevant positive geometry is a
polytope known as the Associahedron [2]. In this talk we illustrate how the picture
can be generalized beyond the tree level and furthermore beyond the planar limit
of the theory. This has led us to the discovery of a new class of polytopes, which
we called Surfacehedra, whose face lattice encodes the combinatorics of curves on
surfaces. Roughly speaking, amplitudes of a colored version of φ3 theory can be
identified with approximations to the canonical differential forms of Surfacehedra.

Let us begin by defining the field theory and the physical quantities of interest.
Consider a scalar field φi,j carrying two indices in a fundamental representation
of U(N) or SU(N). We consider an interaction of the form Lint = g Tr[φ3]. It is
well known [3] that the Feynman diagrammatic expansion of scattering amplitudes
takes an elegant form in terms of the t’Hooft coupling λ = g2N . One finds that
the amplitude An for the scattering of n particles is given by

An =
∑

S

CSAS ,

where the sum runs over all orientable surfaces S, considered up to homeomor-
phism, with n marked points on the boundary ∂S. In other words, the sum runs
over all choices of genus, number of punctures and number of boundary compo-
nents with the constraint that precisely n marked points have to be chosen on
the boundary. For each surface S the factor CS absorbs color factors as well as
powers of the coupling constant λ and of 1

N
which depend on the topology of S; its

computation is straightforward and we will not therefore focus on it. Our interest
will be centered instead on the kinematic factor AS , which depends only on the
momenta of the scattered particles and is given by a sum over all cubic Feynman
diagrams which can be drawn on the surface S, more precisely those that are dual
to a triangulation of S with vertices at the marked points or punctures of S. Be-
cause only a subset of all the Feynman graphs with n external legs contribute to
AS these are also called color ordered amplitudes. Feynman rules state that the
contribution of a diagram Γ to the amplitude AS is the integral

AΓ =

∫ L
∏

i=1

dki IΓ.(1)

The integrand IΓ is a rational function given by

IΓ =
∏

e∈Γ

(

P (e)2 −m2
)−1

,(2)

where the product runs over all internal edges e of the graph Γ and m is the mass
of the particles, a fixed parameter of the theory. To each edge e is associated a
momentum P (e) obtained by solving momentum conservation relations at each

vertex of the graph, which states
∑3

i=1 σ(ei)P (ei) = 0, where σ(ei) = ±1 is an
arbitrary orientation associated to the edge ei. Note that such orientation drops
out in IΓ since the latter only depends on the Minkowski norm of the momentum
P (e). Solving momentum conservation allows one to express the momentum of
any edge of the graph in terms of the momenta of the external legs, which are
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those of the particles being scattered, and of an arbitrary basis {ki}i=1,...,L for
the first homology group of the graph. In physics the elements ki of this basis are
called loop momenta for obvious reasons.

Once again this arbitrary choice of basis is irrelevant, since it is being integrated
over in (1) to produce the final contribution AΓ associated to the graph Γ. However
it matters for the definition of the integrand IΓ, a fact which poses an immediate
and yet long-standing obstacle in extending the ideas of [1, 2] beyond the planar
limit approximation, i.e. beyond the case where S is a disk with n marked points
on the boundary and from which a total of L among punctures and disks are then
removed. In this case there is a canonical choice for the basis {ki}i=1,...,L which
allows one to define a unique integrand IS by

AS =
∑

Γ

AΓ =
∑

Γ

∫

dkiIΓ =

∫

dki
∑

Γ

IΓ =

∫

dkiIS ,(3)

where IS :=
∑

Γ IΓ. It is the rational function IS which can then be understood
as the canonical form of a positive geometry. Beyond the planar limit, however,
there is no obvious generalization of this canonical choice of homological basis and
therefore it is unclear whether the notion of a unique integrand for a color ordered
amplitude makes sense. In other words, the first problem to be addressed is to find
a meaningful way to compare the choice of loop momenta made across the various
diagrams, so that one can define an integrand by exchanging the order of the sum
over diagrams and integration over loops as done in (3). The first step toward
this is to exploit the fact that all diagrams Γ contributing to AS by definition
can be embedded on S in such a way that the external legs end on the marked
points on ∂S. Moreover, when Γ is embedded on S each of its internal edges e
uniquely corresponds to an element of the relative homology H1(S, ∂S). Therefore
by making a choice of basis for this homological group one has a common choice
of loop momenta for all diagrams Γ. The fine print is that the construction still
depends on a choice of embedding for each of the diagrams; if we denote by D
this set of embeddings we have then defined an integrand IDS which depends on
both D and S. In the planar case, the homological class [ℓ] ∈ H1(S, ∂S) of a curve
ℓ depends only on the location of the endpoints of ℓ and not on the homotopy
class of ℓ, therefore the dependence of the integrand on D drops out and indeed
one recovers the standard definition of integrand used for example in [1]. On the
other hand, beyond the planar limit the form of the integrand IDS as a function of
the external momenta {pj}j=1,...,n and loop momenta {ki}i=1,...,L depends on the

choice of D. This obviously affects the pole structure of the integrand, which is at
the heart of the connection between scattering amplitudes and positive geometries.

It is at this stage that the existence of Surfacehedra become crucial in that
they provide an organizational principle behind how the choice of D is reflected
on the pole structure of IDS . Before explaining this point, it is helpful to take an
extra level of abstraction and think of the integrand IDS directly as a function of
homotopy classes of curves on S. Concretely, we imagine associating a variable
Xℓ to each homotopy class of curves ℓ on S and we replace (P (e)2 − m2) with
Xℓ in (2). One immediate advantage of this operation is that the newly defined
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integrand has at most simple poles as a function of the variables Xℓ. This is
in contrast with the original integrand which can have double and higher poles
arising from the fact that different homotopy classes of curves can have the same
homological class. This makes it possible for the new integrand to be connected
with a canonical form of a positive geometry, which by definition has at most
simple poles. A deeper reason is that, as will be explained in the talk, the face
lattice of Surfacehedra captures the combinatorics of homotopy classes of curves on
surfaces: to each curve ℓ on S corresponds a facet of the Surfacehedron PS and two
such facets are compatible if the corresponding curves do not cross. This implies
that each and every embedding of a graph Γ contributing to AS corresponds to
some vertex of the Surfacehedron PS and moreover that the pole structure of IDS
can be understood in terms of the facet structure of PS . This is not exactly the
same as saying that the integrand coincides with the canonical form of PS : such
equality is destroyed by the choice of D or equivalently by a choice of vertices of the
Surfacehedron. One possibility is that the integrands IDS should be more naturally
thought of in connection with certain complexes discussed during Dani Kaufman’s
talk. Furthermore, there are vertices of PS which do not correspond to Feynman
diagrams at all. They live on facets of the Surfacehedron which are labelled by
closed loops on S rather than by curves with endpoints on ∂S. A precise physical
interpretation for these facets is still lacking but an intriguing idea is that they
could signal the need to complete the φ3 theory by introducing colorless particles,
in a similar way as in string theory one cannot consider open strings alone without
introducing also closed ones.

While the above ideas are interesting and worthy of further investigation, they
are not addressed in this talk, which instead focuses on the definition of Surface-
hedra as well as explaining their still conjectural convex realization. The starting
point is asking how to parametrize the set of all curves on the surface S, which
we do by borrowing the notion of geometric and shear vectors from [4] and from
the Teichmüller theory as developed by Thurston and Penner [5]. The Surfacehe-
dron is then defined by intersecting an infinite dimensional simplex with a finite
dimensional subspace

PS = {Xℓ ≥ 0, ℓ curve on S} ∩ {Xℓ + Xℓ′ −
∑

i

Xℓi = cℓ,ℓ′ , ℓ ∩ ℓ′ 6= ∅};

the subspace is given by a set of relations which we call tropical skein relations
due to their analogy with the non-linear relations defining the cluster (or skein)
algebra associated to the surface S [6]. Beyond the simple case where S is a disk
with marked points, as considered in [2], the constants cℓ,ℓ′ have to satisfy non
trivial requirements. It is still a conjecture that such constants can actually be
found, but a promising idea to prove their existence is by building them out of
geodesic lengths computed using an hyperbolic metric on S.
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The ‘u equations’ for hyperbolic surfaces, and string integrals

Hadleigh Frost

(joint work with Nima Arkani-Hamed, Pierre-Guy Plamondon, Giulio Salvatori,
Hugh Thomas)

The cross ratios of geodesic lengths on hyperbolic surfaces give rise to natural
coordinates, ‘u variables’, on the Teichmüller space, which satisfy relations, the ‘u
equations’. We conjecture the u equations for an arbitrary surface and show how
these variables give new formulas for the functions that arise in string theory.

1. Background

Let H be the upper half plane, with the Poincaré metric, and with the Möbius
action of PSL2R. Fix a hyperbolic surface with boundary, Σ, with geodesic bound-
aries, and marked cusp points on the boundary. Recall that the Teichmüller space
T (Σ) is the moduli space of Fuchsian groups Γ ≤ SL2R (up to conjugation) such
that Γ ≃ π1(Σ) and H/Γ is homeomorphic to Σ. If Σ has marked boundary points,
then each point in T (Σ) includes the added data of a ‘marking’: i.e. a labelling of
the boundary cusps of H/Γ.

Example. Let Σ be the annulus with one marked point on each boundary. A
family of Fuchsian groups is generated by z 7→ λz, for a real number λ > 1.
For some real w > 0, the two marked cusp points can be taken to be −1 and
w, respectively (i.e. the images of −1 and w in the surface H/Γ). T (Σ) is two
dimensional, with coordinates λ > 1 and w > 0.

2. The Hyperbolic Disk

When Σ is the disk with n boundary marked points, T (Σ) is just the moduli space,
M0,n(R), of n points on the projective line. The cross-ratios of the positions of
points on P1 have a direct interpretation in hyperbolic geometry, and can be used
as coordinates on M0,n(R). In particular, let z1 < z2 and z3 < z4 be four distinct
marked points on the boundary of H. Write γ1,2 for the geodesic in H from z1 to
z2. Write γ1,2|3,4 for the shortest geodesic between γ1,2 and γ3,4. The cross ratio
of the four points,

u(12, 34) =
(z3 − z2)(z4 − z1)

(z3 − z1)(z4 − z2)
,
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can also be computed as the ratio of ‘λ-lengths’, which are the lengths of geodesics
in H. In particular, the length of γ1,2|3,4 goes to zero if and only if u(12, 34) → 0.

The cross-ratios satisfy

(1) u(12, 34) + u(23, 41) = 1.

Moreover, if z1 < z2 < ... < zn−1 < zn, and zn+1 < zn+2 < ... < zm, then

(2) u(1n, n + 1m) =
n−1
∏

i=1

m−1
∏

j=n+1

u(ii + 1, jj + 1).

Now fix a hyperbolic disk with n marked cusp points. Denote by I, J,K, ...
an ‘arc’ on this disk: i.e. a geodesic between two boundary segments. Let z1 <
z2 < z3 < z4 be four of the cusp points, cyclically ordered. These points form a
quadrilateral bounded by the geodesics γ12, γ23, γ34, γ41. Then the ‘generalized u
equation’ associated to this quadrilateral is:

(3)
∏

I 6∼γ12,γ34

uI +
∏

J 6∼γ23,γ41

uJ = 1,

where the first product is over all arcs I that intersect both γ12 and γ34, and the
second product is analogous. This follows directly from (1) and (2).

3. The u equations

Let Σ be a more general hyperbolic surface, with hyperbolic boundary and labelled
boundary cusp points. Then Σ is homeomorphic to H/Γ for some Γ. We conjecture
the following theorem.

Theorem. For arcs I on a surface Σ, the associated cross-ratios uI satisfy

(4) uI +
∏

J

u
〈I,J〉
J = 1,

where 〈I, J〉 is the intersection number of the arcs I, J , and the product is over all
boundary-boundary arcs J .

The idea of the proof is that (4) is a consequence of (3), by identifying Σ with
H/Γ. The point is that if I intersects J some k times on Σ, then a preimage of I
in H intersects k copies of the preimage of J .

Example. Consider again the annulus with one point on each boundary, Σ. Write
Ri for the arc beginning and ending at point A, that goes around the annulus i ≥ 2
times. Note that all of these arcs are self-intersecting. Write Ci (for i an integer)
for the arc beginning at point A, ending at point B, that spirals around the annulus
+i times in the clockwise direction with respect to the surface’s orientation.

In the universal cover, H, Ri is the arc from [w, λw] to [wλi, wλi+1] (or any of
its images under z 7→ λz). Likewise, Ci is the arc from [−λ,−1] to [wλi, wλi+1]
(or any of its images). The associated u variables are the cross-ratios

u(Ai) =
(λi−1 − 1)(λi+1 − 1)

(λi − 1)2
, u(Ci) =

(wλi + 1)2

(wλi−1 + 1)(wλi+1 + 1)
.
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It is verified that these satisfy

u(Ai) +





i−1
∏

j=2

u(Aj)
2(j−1)









∏

j=i

u(Aj)





2(j−1)



∏

j

u(Cj)





i−1

= 1,

and

u(Ci) +





∏

j=2

u(Aj)
j−1









∏

j=2

u(Bj)
j−1









∏

j

u(Cj)
j−1



 = 1.

These equations agree with (4): the exponents are intersection numbers.

4. String Theory

In string theory, the tree level generalized Veneziano amplitude is written as an
integral

(5) A(Xij) =

∫

[0,1]n−3

du13...du1,n−1

∏

non adjacent
i,j

u
Xij

ij ,

where the uij are the u variables for a disk, and they satisfy the u equations, (3).
Generalizing this, let Σ be a hyperbolic surface with hyperbolic boundary and

marked cusp boundary points. Suppose Σ has n boundary segments, h distinct
boundary components, and genus g. Write ∂Σ for the boundary of Σ (not including
cusps). Then dimH1(Σ, ∂Σ) = n + h + 2g − 4. Fix a homomorphism

f : H1(Σ, ∂Σ) → R[k1, ..., kn, ℓ1, ..., ℓh+2g−1],

such that the ki are the images of geodesic boundary segments. We take the ki
and ℓi to be D-dimensional vectors in some vector space. For an arc I with class
[I] ∈ H1(Σ, ∂Σ) we define the variable XI as the norm squared, XI = ||f([I])||2.
Then we form the following integral, generalizing (5),

A(k1, ..., kn) =

∫ L
∏

i=1

dDℓi

∫

[0,1]n−3+2L

∏

a

duIa

(

∏

I

uXI

I

)

,

where the product over arcs I includes arcs that are self-intersecting.
In the case of the annulus, the above prescription agrees with the expectation

from string theory, which suggests that the products of u variables will give rise
to a new family of representations of string theory amplitudes.
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Solving u-equations with quiver representations

Pierre-Guy Plamondon

(joint work with Nima Arkani-Hamed, Hadleigh Frost, Giulio Salvatori,
Hugh Thomas)

We have seen the u-equations appear in the talks of Hadleigh Frost and Giulio
Salvatori. We will now see how we can solve them using the representation theory
of quivers.

1. A primer on quiver representations

Fix a field k. A quiver is an oriented graph. Given a quiver Q, its vertices will be
labelled 1, . . . , n. We denote by kQ the set of k-linear combinations of paths in Q;
when equipped with the concatenation of paths, it becomes a k-algebra. A relation
is a linear combination of paths of length at least 2. A quiver with relations is a
pair (Q,R) where Q is a quiver and R is a finite set of relations of Q.

Fix a quiver Q. A representation V of Q is given by

• for all vertices i of Q, a k-vector space Vi (assumed to be finite-dimensional
in this talk), and

• for all arrows α : i → j in Q, a linear map Vα : Vi → Vj .

If R is a set of relations on Q, then a representation of (Q,R) is a representation V
of Q such that, for any relation in R, the corresponding linear combination of
compositions of the Vα’s vanishes.

Example 1. Let Q = 1
α−→ 2

β−→ 3 and R = {βα}. Then V = k





1
0





−−−→ k2

[

0 1
]

−−−−−→ k
is a representation of (Q,R).

Fix a representation V of a quiver with relation (Q,R).

• The dimension vector of V is the vector dim(V ) = (dimV1, . . . , dimVn).
• The direct sum V ⊕W of two representations V and W is defined vertex-

wise. The representation V is indecomposable if it is not isomorphic to the
direct sum of two non-zero representations.

• A subrepresentation of V is a collection U of subvector spaces Ui ⊂ Vi

for i ∈ Q0 such that, for each arrow α : i → j, we have that Vα(Ui) ⊂ Uj .
The set of subrepresentations of V of dimension vector d is a projec-
tive variety called the Grassmannian of subrepresentations and denoted
by Grd(V ). It is a subvariety of the product of classical Grassmanni-
ans

∏n
i=1 Grdi

(Vi).

The main object we will need is a device to keep track of the “number” of sub-
representations of a given representation. Since this number can be infinite, we
will instead be “measuring” the Grassmannians of subrepresentations by comput-
ing their Euler characteristics. From now on, k = C.
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Definition 2. The F -polynomial of a representation V of (Q,R) is

FV (y1, . . . , yn) =
∑

d∈Z
n
≥0

χ
(

Grd(V )
)

yd1

1 · · · ydn
n .

Although F -polynomials seem like natural objects, they have appeared rela-
tively recently in connection with cluster algebras [3]. Note that, despite having a
definition similar to those of classical Grassmannians, the Grassmannians of sub-
representations do not behave remotely as well; in fact, any complex projective
variety is isomorphic to a Grassmannian of subrepresentations [6].

Example 3. If V = C
1−→ C

1−→ C, then FV = 1 + y3 + y2y3 + y1y2y3.

2. Relation with u-equations from polygons

The u-equations in type An [5, 1] can be illustrated with diagonals of an (n + 3)-
gon with vertices labelled 1 to n + 3. To each diagonal a, associate a variable ua;

the u-equations are then ua+
∏

b u
(a,b)
b = 1, where (a, b) is the intersection number

of a and b. If one fixes a triangulation of the surface, one can associate a quiver
with relations: vertices are diagonals of the triangulations, arrows are angles and
relations correspond to consecutive angles in a triangle [2]. There is then a bijection
between diagonals not in the triangulation and indecomposable representations of
the quiver with relations; diagonals i of the triangulation are sent to symbols Pi[1]
called “shifted projectives”. This is illustrated for a triangulation of a hexagon.

1

2

3

4

5

6

Q = 1 → 2 → 3

X26 X13

X25 X36 X14

X24 X35 X46 X15

C
1−→ C

1−→ C P1[1]

0 −→ C
1−→ C C

1−→ C −→ 0 P2[1]

0 −→ 0 −→ C 0 −→ C −→ 0 C −→ 0 −→ 0 P3[1]

On the top right are listed all diagonals, organized in a way reminiscent of cluster
variables in a cluster algebra of type A3. On the bottom right is the Auslander–
Reiten quiver of Q, whose vertices are isomorphism classes of indecomposable
representations, and arrows are irreducible morphisms. The Auslander–Reiten
translation τ is the action of going one step to the left. Under the bijection

associating arcs to representations, the original u-equation ua +
∏

b u
(a,b)
b = 1

becomes ua +
∏

b u
dimHom(a,τb)+dimHom(b,τa)
b = 1. This example illustrates that

the u-equations have a representation-theoretic interpretation.
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3. Results

Our main result is a solution for systems of u-equations defined for a large class
of quivers with relations.

Theorem 4. Let (Q,R) be a quiver with relations admitting only finitely many iso-
morphism classes of indecomposable representations. For each indecomposable V ,
let uV be a variable. Then the system of u-equations

uV +
∏

W indec.

u
dimHom(V,τW )+dimHom(W,τV )
W = 1, V indecomposable

is solved by

uV =















Frad P

FP
if V = P is projective,

yi
FE

FV FτV
if V = Pi[1],

FE

FV FτV
otherwise,

where τV → E → V is almost split.

The proof uses Auslander–Reiten theory and a result of [4] on F -polynomials.
We can prove similar results by working in cluster categories of finite type instead
of the category of representations of a quiver with relations.

4. Work in progress

If (Q,R) admits infinitely many indecomposable representations, the u-equation

uV +
∏

W indec.

u
dimHom(V,τW )+dimHom(W,τV )
W = 1

still makes sense, even though the product is now infinite. We can prove that
the F -polynomials still allow us to solve the system of u-equations in many nice
cases. These include gentle algebras arising from triangulations of surfaces more
general than a polygon.
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Gradient flows, adjoint orbits, and the topology of totally nonnegative
flag varieties

Steven N. Karp

(joint work with Anthony M. Bloch)

Given integers 1 ≤ k1 < · · · < kl ≤ n − 1, let Flk1,...,kl;n denote the partial flag
variety consisting of all chains of subspaces (Vk1

⊂ · · · ⊂ Vkl
) in Cn, where each

Vk has dimension k. One can view Flk1,...,kl;n as an adjoint orbit inside the Lie
algebra un of n×n skew-Hermitian matrices. Explicitly, let λ = (λ1, . . . , λn) ∈ Rn

be a weakly decreasing sequence with descents precisely in positions k1, . . . , kl,
and let Oλ be the adjoint orbit of un consisting of all matrices with eigenvalues

iλ1, . . . , iλn, where i =
√
−1. Then we have an isomorphism Oλ

∼=−→ Flk1,...,kl;n,
sending a matrix to its partial flag of generalized eigenvectors.

Lusztig [10, 11] introduced the totally nonnegative part Fl≥0
k1,...,kl;n

of Flk1,...,kl;n,

which defines a totally nonnegative part O≥0
λ of Oλ. We use the orbit context to

study totally nonnegative flag varieties from an algebraic, geometric, and dynam-
ical perspective. One of our motivations was to relate work of Bloch, Flashcka,
and Ratiu [2] with recent work of Galashin, Karp, and Lam [8, 9].

We highlight some of our main contributions, and conclude by posing some
open problems. For further details, see our paper [5].

The twist map. Let Fln := Fl1,...,n−1;n denote the complete flag variety. We

introduce an involution ϑ on Fl≥0
n called the twist map, defined as follows. We

represent a given V = (V1 ⊂ · · · ⊂ Vn−1) ∈ Fl≥0
n by the unique orthogonal matrix

g whose left-justified minors are all nonnegative, so that each Vk is spanned by the
first k columns of g. Then ϑ(V ) is defined to be the element represented by the
matrix ((−1)i+jgj,i)1≤i,j≤n, which is obtained by inverting (or transposing) g and
changing the sign of every other entry. Amazingly, this operation is compatible
with positivity:

Theorem 1. The twist map ϑ defines an involution on Fl≥0
n .

For example, the twist map ϑ sends










√
3
2 − 1

2
√
2

1
2
√
2

√
3
4

1
4
√
2

− 5
4
√
2

1
4

3
√
3

4
√
2

√
3

4
√
2











to











√
3
2 −

√
3
4

1
4

1
2
√
2

1
4
√
2

− 3
√
3

4
√
2

1
2
√
2

5
4
√
2

√
3

4
√
2











in Fl≥0
3 .

We call ϑ the ‘twist map’ since it is analogous to the twist maps introduced by
Berenstein, Fomin, and Zelevinsky [3, 7], but with the key difference that our map
is based on the Iwasawa (or QR-) decomposition of GLn, rather than the Bruhat
decomposition.

We also obtain a corresponding involution ϑλ : O≥0
λ → O≥0

λ on the totally
nonnegative part of any generic adjoint orbit, via the isomorphism Oλ

∼= Fln.
This generalizes (in type A) a map defined by Bloch, Flaschka, and Ratiu [2] on
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an isospectral manifold of Jacobi matrices appearing in the study of the Toda
lattice. Further connections with the Toda lattice are discussed in [5, Section 8].

Gradient flows. Inspired by [8, 9], we study flows on Oλ which strictly preserve

positivity, meaning that O≥0
λ is sent inside its interior O>0

λ after any positive time.
We focus on gradient flows for height functions of the form L 7→ tr(LN) (coming
from the Killing form) for fixed N ∈ un, and work in three different Riemannian
metrics: the Kähler, normal (or standard), and induced metrics. In several cases
we are able to classify which flows strictly preserve positivity.

One such case is when Oλ is isomorphic to a Grassmannian Grk,n := Flk;n for
some k, in which case the three metrics coincide up to dilation. We then have the
following classification:

Theorem 2. Let 2 ≤ k ≤ n − 2. Then the gradient flow of L 7→ tr(LN) on
Oλ

∼= Grk,n strictly preserves positivity if and only if iN is real, Ni,j = 0 for
i− j 6≡ −1, 0, 1 (mod n),

iN1,2, iN2,3, . . . , iNn−1,n, (−1)k−1iNn,1 ≥ 0,

and at least n− 1 of the n inequalities above are strict.

When Oλ is not isomorphic to a Grassmannian, then the three metrics are
different, and their gradient flows exhibit markedly different behavior with respect
to positivity. In the case of the Kähler metric, the flows admit a beautiful explicit
solution, which we use to obtain a complete classification, similar to Theorem
2. By contrast, in the normal metric, in the generic case (i.e. when Oλ

∼= Fln)
there are no flows which strictly preserve positivity; we leave the consideration
of non-generic orbits to future work. For the induced metric, our preliminary
investigations for Oλ

∼= Fl3 indicate that the existence of gradient flows which
strictly preserve positivity may depend on the spacing between the entries of λ.

Topology. Galashin, Karp, and Lam [8, 9] used certain flows which strictly pre-
serve positivity to show that the totally nonnegative part of a partial flag variety
(in arbitrary Lie type) is homeomorphic to a closed ball. We rephrase their ar-
gument in the orbit language for gradient flows in the Kähler metric, and show
that the height function provides a strict Lyapunov function for such a flow. This
implies that certain invariant subsets of Oλ are homeomorphic to closed balls.

We apply the framework above to study the topology of amplituhedraAn,k,m(Z).

These are generalizations of the totally nonnegative Grassmannian Gr≥0
k,n, intro-

duced by Arkani-Hamed and Trnka [1] in order to give a geometric basis for calcu-
lating scattering amplitudes in planar N = 4 supersymmetric Yang–Mills theory.
The amplituhedron An,k,m(Z) depends on a certain auxiliary (k + m) × n matrix
Z, where m is an additional parameter satisfying k + m ≤ n. It is believed that
every amplituhedron An,k,m(Z) is homeomorphic to a closed ball, which is known
in many special cases. We apply the methods of [8] to show that a new family of
amplituhedra are homeomorphic to closed balls. These are twisted Vandermonde
amplituhedra, for which the matrix Z arises by applying the twist map ϑ to a
Vandermonde flag.
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Theorem 3. Every twisted Vandermonde amplituhedron (in particular, every am-
plituhedron An,k,m(Z) with n− k −m ≤ 2) is homeomorphic to a closed ball.

Open problems. We state several problems raised by our work.

Problem 4. Does the Plücker-nonnegative part of Flk1,...,kl;n (which differs from
Lusztig’s totally nonnegative part unless k1, . . . , kl are consecutive integers [6])
have nice properties?

The Plücker-nonnegative part of Fl1,3;n was studied by Bai, He, and Lam [4].

Problem 5. Do the twisted Vandermonde amplituhedra appearing in Theorem 3
have any other distinguishing properties?

Problem 6. Can we classify gradient flows preserving An,k,m(Z)? Does there ex-
ist such a flow for every Z, allowing one to show that An,k,m(Z) is homeomorphic
to a closed ball?
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Towards cluster super-algebras

Marcus Spradlin

(joint work with S. James Gates, Jr., S.-N. Hazel Mak, Anastasia Volovich)

This talk is based on the preprint [1]. The workshop focuses on connections be-
tween scattering amplitudes and cluster algebras. There have recently been several
apparently distinct approaches to the construction of cluster superalgebras (see for
example [2, 3, 4, 5, 6, 7]), and it is natural to wonder whether these make any
appearance in physics. In the talk I review the definition proposed by Ovsienko
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and Shapiro in [5] and explain that while in general the cluster superalgebras con-
structed in this manner are infinite, there is a finite algebra that is based on the
A2 cluster algebra and has 15 cluster supervariables. I also mention an alternate
definition of cluster superalgebras based on promoting ordinary cluster variables
to superfields and comment on some possible applications of cluster superalgebras
to various aspects of scattering amplitudes.
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Enumeration techniques with applications to positroids, amplituhedra,
and their friends

Lauren Williams

(joint work with Robert Moerman)

The Exponential Formula and its generalizations (which fit into the framework
of Joyal’s theory of species), give techniques to count objects which are built by
choosing a set S, breaking it up into components, and placing a structure on each
component.

The momentum amplituhedron Mn,k, introduced by Damgaard–Ferro– Lukow-
ski–Parisi in [1], has a boundary stratification which was first described in [2]. In
[3], we reformulate the strata in terms of Grassmannian forests, which are acyclic
planar graphs embedded in a disk, in which each vertex is decorated by a helicity.

By enumerating Grassmannian forests while keeping track of helicity and the
corresponding dimension statistic in the momentum amplituhedron, in [3] we were
able to come up with an explicit formula for the number of r-dimensional boundary
strata in the momentum amplituhedron Mn,k.

In what follows, the notation F 〈−1〉(x) denotes the compositional inverse of the
power series F (x). That is, F 〈−1〉(F (x)) = F (F 〈−1〉(x)) = x. Lagrange Inversion
allows one to compute the coefficients of F 〈−1〉(x) in terms of those of F (x).
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Theorem 1. The number of boundaries of the momentum amplituhedron Mn,k

of dimension r is given by the coefficient [xnykqr]Gforest(x, y, q) where

xGforest(x, y, q) =

(

x

1 + Gtree(x, y, q)

)〈−1〉
,

and

Gtree(x, y, q) = x
(

1 + y + yq C〈−1〉(x, y, q)
)

, with

C(x, y, q) =
x(1 − x(1 + y)q2 − x2yq2(1 + q − q2) − x4y2q5(1 + q))

(1 + xq)(1 + xyq)(1 − xq2)(1 − xyq2)
.

Note that the compositional inverse above is taken with respect to the variable x.
Equivalently,

[xn]Gforest(x, y, q) =
1

n + 1
[xn] (1 + Gtree(x, y, q))

n+1
.

When we substitute q = −1 in the above formulas, they simplify dramatically
and allow us to check that the Euler characteristic of Mn,k is always 1. See [3] for
a table of data.

References

[1] D. Damgaard, L. Ferro, T. Lukowski, M. Parisi, The momentum amplituhedron, J. High
Energy Phys. 8 (2019).

[2] L. Ferro, T. Lukowski, R. Moerman, From momentum amplituhedron boundaries to ampli-
tude singularities and back, J. High Energy Phys. 7 (2020).

[3] R. Moerman, L. Williams, Grass trees and forests: Enumeration of Grassmannian trees
and forests, with applications to the momentum amplituhedron, arXiv:2112.02061.

On the geometry of the orthogonal momentum amplituhedron

Tomasz  Lukowski

(joint work with Robert Moerman, Jonah Stalknecht)

In recent years we have seen tremendous interest in positive geometries [1] that
encode observables in quantum field theories, and in particular the ones that can
be employed to study scattering amplitudes. A particularly fruitful theory where
positive geometries can be defined is N = 4 super Yang–Mills, where the ampli-
tuhedron An,k [2] and the momentum amplituhedron Mn,k [3] have been intro-
duced to encode the tree-level scattering amplitudes. Both of these geometries are
defined as the image of the positive Grassmannian through a linear map. More
recently, a similar construction has been proposed for ABJM theory tree-level scat-
tering amplitudes [4, 5] using the orthogonal Grassmannian and its positive part.
The resulting geometry, denoted Ok, is (2k−3)-dimensional and can be thought of
as a deformation of the ABHY associahedron A2k−3 [6] where faces corresponding
to even-particle planar Mandelstam variables are squashed to lower dimensional
boundaries.
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In this talk I will describe the properties of Ok, and in particular provide a
complete classification of its boundaries. To this end we have used the algorithm
developed in [7] where it was successfully applied to find all boundaries of the

amplituhedron A(2)
n,k, and which has been subsequently used to find all boundaries

of the momentum amplituhedron Mn,k in [8]. Applying this algorithm to the
orthogonal momentum amplituhedron Ok, we observed that all boundaries can be
labelled by a particular class of graphs, which we called orthogonal Grassmannian
forests, that correspond to all possible factorizations of ABJM amplitudes. This
observation is analogous to the one that has been made for N = 4 sYM in [8],
where the boundaries of the momentum amplituhedron Mn,k can be labelled us-
ing Grassmannian forests, see [9]. Both form a subset of the Grassmannian graphs
introduced in [10]. In this talk I will summarise our explorations of the boundaries
for Ok for k ≤ 7, and provide a conjecture on the boundary stratification for all k.
In particular, using the methods developed in [9], we provided a generating func-
tion for the number of boundaries of a given dimension and this allows us to show
that the Euler characteristic for the orthogonal momentum amplituhedron equals
one. This story parallels the one developed for the momentum amplituhedron.

Moreover, it has been shown in [5] that both the interior of the ABHY associa-
hedron A2k−3 and the interior of the orthogonal momentum amplituhedron Ok are
diffeomorphic to the positive part of the moduli space of n points on the Riemann
sphere and therefore are diffeomorphic to each other. This is however not true for
their closures. Nevertheless, we showed that there is a simple diagrammatic way
to understand how the boundaries of the associahedron naturally reduce to the
boundaries of the orthogonal momentum amplituhedron.
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Montréal, Québec H3C 3P8

CANADA

Dr. Anastasia Volovich

Department of Physics

Brown University

Box 1917

Providence, RI 02912

UNITED STATES



Scattering Amplitudes, Cluster Algebras, and Positive Geometries 3133

Prof. Dr. Lauren K. Williams

Department of Mathematics

Harvard University

Science Center

One Oxford Street

02138 Cambridge MA 02138-2901

UNITED STATES




