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Abstract. Many real-life applications require mathematical models at mul-
tiple scales, defined in domains with complex structures, some of which having
time dependent boundaries. Mathematical models of this type are encoun-
tered in seemingly disparate areas e.g., flow and deformation in the subsurface
or beneath the ocean floor, and in processes of clinical relevance. While the
areas are different, the structure of the models and the challenges are shared:
the analysis and simulation must account for the evolution of the domain due
to the many coupled processes in the multi-scale context. The key theme
and focus of the workshop were novel ideas in the mathematical modeling,
analysis, and numerical simulation, which are cross-cutting between the two
application areas mentioned above. The talks have covered the mathematical
treatment of such problems, as well as the development of efficent numerical
discretization schemes and of solvers for large-scale problems.

Mathematics Subject Classification (2020): 35, 65, 74, 76, 86, 92.

Introduction by the Organizers

The workshop Multiscale coupled models for complex media has focused on the
mathematical and numerical analysis of mathematical models encountered in clin-
ical applications and the goesciences, and the efficent numerical simulation tech-
niques. The unifying aspect was the mathematical structure, expressed thorugh
coupled systems of (nonlinear) equation, modeling processes like flow, reactions
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and mechanical deformation. These systems are defined in mixed-dimensional do-
mains, or domains having a complex structure, with evolving interfaces at various
scales.

The aim of this workshop was to identify relevant mathematical challenges con-
nected with the types of models mentioned above, and in particular the apropriate
mathematical and simulation tools. The programme included 21 lectures on the
mathematical analysis, upscaling, numerical simulation and scientific computing
of processes in clinical applications and geosciences, some of them having a survey
character. In summary, the following topics were addressed:

" Mathematical methods for multiscale and mixed dimensional models, fluid-
structure interactions, fractures (homogenization, Hibert/de Rham com-
plexes, model order reduction);

" Computational methods, with sub-topics in isogeometric and higher order
methods, immersed boundaries, generalized multiscale finite elements, ma-
chine learning, discontinuous Galerkin methods, domain decomposition;

" Advanced modelling concepts for clinical applications (ophtalomlogy, car-
diovascular flows, biomechanics) and geosciences (energy and environment,
sea ice, coastal waves).

The workshop benefited greatly of the participation of scientists with a broad
and heterogeneous expertise, willing to collaborate and exchange ideas in a com-
mon mathematical language. The workshop was attended by 60 scientists (25 on
site) from 17 countries in Europe, North America, Asia, and Australia, including
5 young scientists who regeived the generous support through the “Oberwolfach
Leibniz Graduate Students” Programme.

The participants have experienced an inspiring and friendly atmosphere. There
were many discussions, leading to promising initiatives. All participants are grate-
ful for the outstanding professional support, the hospitality and the wonderful
conditions offered by the MFO. The restrictions due to pandemic did not allow
all participants to be present in person, but the institute has excellent facilites
so that even those attending online could take part actively in discussions (either
plenary, or in smaller groups during breaks), enjoy activities like a musical event,
and, of course, give presentations.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Martina Bukač (joint with Catalin Trenchea)
Numerical methods for fluid - elastic/poroelastic structure interaction
problems with biomedical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Ferdinando Auricchio (joint with coauthors)
Additive Manufacturing. A world full of opportunities and challenges! . . 201

Alessandro Reali (joint with Alessia Patton)
Some advances in isogeometric analysis of coupled and complex problems 201



174 Oberwolfach Report 4/2022

Ricardo Ruiz-Baier (joint with Wietse M. Boon, Martin Hørnkjol, Miroslav
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Abstracts

Immersed Boundary Methods for Complex Media: Principles,
Opportunities and Applications

Ernst Rank

(joint work with Mohammed Elhaddad, Davide d’Angella, Lisa Hug,
Stefan Kollmannsberger, Nina Korshunova, Z. Yosibash)

Cutting a structure out of a larger body is a standard CAD-operation (typically
associated with the term ‘trimming’) in geometric modelling. The reverse op-
eration, i.e. immersing a computational in a ‘fictitious domain’ was suggested
already in the 1960ies for a numerical approximation of boundary value problems.
Yet only during the last decade, a unification of these two views of ’immersing’ and
’trimming’ in Immersed Boundary Methods (IBM) has been realized as an attrac-
tive possibility for closely integrating geometric modelling and numerical analysis.
This contribution gives an introduction in the general principles of IBM and then
concentrates on a specific variant, the Finite Cell Method (FCM), a combination
of IBM with Isogeometric Analysis and Higher Order Finite Elements.

The major asset of IBM compared to classical boundary conforming Finite Ele-
ment Methods applied to the solution of Partial Differential Equations is obvious:
The physical domain of computation needs not be meshed into finite elements,
which is, in particular in cased of complex three-dimensional geometries still a
major issue for many applications. Instead of a mesh of boundary-conforming
tetrahedra or hexahedra the simply shaped fictitious domain is devided into a
Cartesian grid of uniform cells. On this grid an indicator function is defined,
which characterizes points inside and outside the original physical body. The such
defined grid is then used as a ’mesh’ of cells, where each cell is treated like a finite
element. The central advantage of saving the effort to generate a mesh yet comes
with significant cost, and several critical questions need to be answered to obtain
a feasible numerical method. First of all, cells cut by the boundary of the physical
domain need special treatment in computation of element stiffness matrices and
load vectors, as their integrand is discontinuous. We discuss several approaches,
where space-tree based numerical integration is a simple and robust possibility.
Another issue is the imposition of boundary conditions along segments which are
not matching with edges of grid cells. There, Neumann and Dirichlet boundary
conditions need to be applied in a weak sense. Simple penalty methods and more
advanced Nitsche-type formulations can successfully be applied. Further consid-
eration needs to be given to cells, which have only a small cut part interior to the
physical domain. These may result in conditioning problems of the system matrix,
which can yet be treated by suitable preconditioning techniques.

The Finite Cell Method extends these basic IBM principles in particular in two
directions. Firstly, a p-extension of the shape functions resulting in a higher order
approximation is applied, and secondly, an overlaid grid-refinement is developed.
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This hierarchical hp-version of Immersed Boundary Methods shows excellent ap-
proximation properties, accuracy and efficiency. It can be demonstrated that even
exponential rate of convergence is obtained in cases, where this optimal rate is
observed for a boundary conforming p-extension.

After discussing these principles we then address the topic of connecting geomet-
ric models to analysis. This connection can be realised by evaluating the domain’s
indicator function, algorithmically by evaluating a Point Membership Test (PMT)
for each integration point of the grid. While this PMT is the only necessary geo-
metric information on the analysis side, it can be provided for all relevant types of
geometric models by specifically taylored functionality. We show various examples,
starting from CAD-models based on Constructive Solid Geometry, where the PMT
is a combination of evaluations on geometric primitives and of Boolean operations.
We then concentrate on image-based models as they result e.g. from Computer
Tomography. For these models, voxel data can immediately be transfered to an
extended PMT, which not only evaluates the domain’s indicator function but also
provided material properties at the point of consideration.

As fields of application of the presented FCM virtual material testing for addi-
tive manufacturing is addressed. We show examples on analysis of lattice struc-
tures, where we compare the mechanical properties of the ’as-designed’ CAD-
structure with the ’as-built’ geometry obained from Computer Tomography. Spe-
cial emphasis is laid on a detailed validation of the developed methods. In the last
part, a combination of FCM with phase field models applied to fracture problems
in biomechanics and geomechanics is shown.
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Rigorous derivation of coupled Stokes-Plate-Equations for fluid flow
interacting with a thin porous elastic layer

Markus Gahn

(joint work with Willi Jäger, Maria Neuss-Radu)

Flow and transport processes through complex porous media including thin struc-
tures play an important role in many real-life applications. A crucial example is
the transport of substances from the lumen of blood vessels into the underlying
biological tissue through the wall of the blood vessel consisting of several thin
heterogeneous layers. The rigorous derivation of macroscopic models with effec-
tive interface laws between the different regimes plays an important role to reduce
complexity of mathematical models without loss of essential factors. A famous
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example is the law of Beavers-Joseph [2] which was derived rigorously in [11]. A
stationary Stokes flow through an ë-periodic filter consisting of an array of (dis-
connected) obstacles is treated in [14] and [6, 7], and for small obstacles in [1].
While there are a lot of results concerning dimension reduction for thin elastic
structures, see [4, 5] for the homogeneous case, [3] for oscillating coefficients, and
[10] for perforated layers, rigorous results treating fluid flow through thin porous
elastic layers seem to be missing in the literature.

In this talk we consider the fluid flow over a thin porous elastic layer ΩM
ë

separating two fluid-filled bulk domains Ω+
ë and Ω2

ë . The layer consists of a fluid
part ΩM,f

ë and an elastic solid part ΩM,s
ë . Thickness and periodicity of the layer

are of order ë, where the parameter ë is small compared to the size of the bulk
domains. The aim is the derivation of effective interface conditions between the
bulk domains for ë ³ 0, when the thin layer reduces to an interface Σ. The
micro-model is given by the following fluid-structure interaction problem: The
fluid velocity vë = (v+ë , v

M
ë , v2ë ) and the fluid pressure pë = (p+ë , p

M
ë , p

2
ë ) are given

by the instationary Stokes-equations
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where D(vë) is the symmetric gradient, and the displacement uë is given by

1

ë
"ttuë 2
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ë3
' ·
(

AëD(uë)
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= 0 in (0, T )× ΩM,s
ë .

At the fluid structure interface Γë in the thin layer we assume continuity of velocity
and the normal stresses

vMë = "tuë on (0, T )× Γë,

1

ë

(

2pMë I +D(vMë )
)

· ¿ =
1

ë3
AëD(uë) · ¿ on (0, T )× Γë.

On the fluid-fluid interface between the layer and the bulk domains we also have
continuity of the velocities and normal stresses. Further, on the lateral boundary
we assume homogeneous Dirichlet boundary conditions, and on the top/bottom a
zero normal stress condition (do-nothing boundary condition).

The existence and uniqueness of the weak solution (vë, pë, uë) can be estab-
lished by the Galerkin-method and standard energy estimates. Based on a priori
estimates uniformly with respect to ë, we can pass to the limit ë ³ 0, using the
method of two-scale convergence for thin heterogeneous layers [12, 13]. A main
ingredient for these estimates is a Korn-inequality [9] for thin perforated layers
with zero lateral boundary conditions. From general two-scale compactness results
also derived in [9] we obtain the following convergences for the micro-solutions in
the two-scale sense: There exist u30 * H1((0, T ), H2

0 (Σ)) + H2((0, T ), L2(Σ)) and
ũ1 * H1((0, T ), H1

0 (Σ))
3 with ũ31 = 0, and u2 * H1((0, T ), L2(Σ, H1

#(Z)/R))
3,
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such that up to a subsequence (for ³ = 1, 2)
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and same results are valid if we replace uë with "tuë, and the limit functions with
their time derivatives. The fluid velocity and pressure in the layer fulfill
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Passing to the limit ë ³ 0 in the micro-model, we obtain that the limit function
(v±0 , p

±
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3
0) is the unique weak solution of the macro-model [8]
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We see that on the macro scale the bulk solution is still given by the instationary
Stokes-equations. The fluid velocity is continuous at the interface Σ and equal
to the velocity of the interface, whereas the tangential components vanish. The
displacement is described by a time dependent plate equation with homogenized
coefficients carrying information about the micro structure of the layer, and an
additional stress term enforced from the bulk fluid. The convergence results imply
that in the topology of the two-scale convergence the micro solutions in the layer
can be approximated by
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x

ë

)

.

We see that the approximation of the displacement and the fluid velocity up to
order ë is given by a Kirchhoff-Love displacement. Further, the approximate fluid
velocity in the layer vMë,app is equal to the time derivative of the first two terms in the
approximate displacement uë,app. In other words, in this order of approximation
the fluid does not transport substances transversal through the layer. Using a
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formal asymptotic expansion, we expect that the second order-corrector for the
fluid velocity differs from ë2"tu2, but a rigorous proof is missing. The transversal
flux through the porous layer is important in applications, even if it is small, since
such small effects may have a relevant impact in long time scales. Therefore, it is
an important problem to determine higher order corrector and also error estimates
with respect to ë, which give quantitative predictions about the approximation.

In many applications, like for example transport through the wall of arterial
blood vessels, it is important to take into account transport of substances and
to consider multi-layers. The layers may differ in their properties, like thickness,
heterogeneity, and biochemical processes within the layers. It is also necessary to
investigate the influence of biochemical substances on the mechanical properties
of the layers, leading to strongly coupled problems between the fluid-, solid-, and
transport equations. Here there are still a lot of open questions concerning the
analysis and also the modelling for such kind of problems.
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Reduced Models for Blood Flows and Solute Transport in the
Circulatory System

Beatrice Riviere

(joint work with Rami Masri and Charles Puelz)

Computer models of the whole blood circulatory system can be used as non-
invasive tools for the understanding and prediction of the cardiovascular state
of patients suffering from hypoplastic left heart syndrom [9, 3]. While a full three-
dimensional model of blood flow and oxygen transport in the veinous and systemic
arteries coupled with blood vessels in the heart and organs would provide a detailed
description of the blood pressure, velocity and the oxygen concentration, it is also
prohibitively computationally expensive. The use of reduced models (0D and 1D)
allows for a simulation of the whole circulatory system while providing sufficiently
accurate results [8].

We present conservative reduced models for coupled flow and solute transport in
a blood vessel with radius R [1, 2, 5]. The unknowns are the scaled cross sectional
area of the vessel, A, the momentum, Q, and the radial average concentration, C:

(1) A = R2, Q = AU, U =
2

R2

∫ R

0

rvxdr.

We consider two choices for the axial velocity profile vx: a no-slip axial velocity
profile and a flat axial velocity profile.

Case: no-slip axial velocity profile

"A

"t
+
"Q

"x
= 0,(2)

"Q

"t
+ ³

"

"x

(

Q2

A

)

+
A

Ã

"p
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= 22Ã¿

³

³2 1

Q

A
,(3)

"(AC)

"t
+
"(QC)

"x
2 (³2 1)2

2³(3³2 2)D

"

"x

(

Q2 "C

"x

)

= 0.(4)

The parameter ³ > 1 depends on the choice of the axial velocity profile: for
instance, a parabolic profile (Poiseuille flow) corresponds to ³ = 4/3 whereas a
plug flow profile corresponds to ³ = 1.1. It has been noted that a realistic blood
velocity profile is closer to the plug flow profile than to the Poiseuille flow profile
[7]. The coefficients D, Ã and ¿ are the diffusion, density and kinematic viscosity
respectively.
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Case: flat axial velocity profile

"A

"t
+
"Q

"x
= 0,(5)

"Q

"t
+

"

"x

(

Q2

A

)

+
A

Ã

"p

"x
= 0,(6)

"(AC)

"t
+
"(QC)

"x
= 0.(7)

In both cases, a closure relation is needed for the pressure. We choose:

p = p0 + ³(A1/2 2A
1/2
0 ),

where ³ is a positive parameter, p0 is a reference pressure for area equal to A0.
Riemann invariants for (5)-(7) can be explicitely derived [4]; they are used in
determining boundary conditions at junctions between incoming and outgoing
vessels.

In patients with single ventricle hearts, the computational model couples the
one-dimensional partial differential equations above with compartmental models
(nonlinear ordinary differential equations) for the major organs and the heart
(right atrium, right ventricle and two valves). Using electrical analogy, compart-
mental models (0D models) are constructed as circuits with resistor and capacitor
elements. Organ bed models contain arterial (Cart) and venous (Cven) compliances
and resistances (Rart, Rven). Pressures in the arteriole and venule compartments
are related to pressures within the incoming and outgoing vessels by:

part,k 2 part =Qart,kRart,k, 1 f k f Nin,(8)

pven 2 pven,k =Qven,kRven,k, 1 f k f Nout.(9)

Pressure and flow between the arterial and venous sides of the organ satisfy the
relations:

(10) part 2 pven = QcapRcap, Cart
dpart
dt

= Qart 2Qcap, Cven
dpven
dt

= Qcap 2Qven.

Finally conservation of mass is enforced by

(11) Qart =

Nin
∑

k=1

Qart,k, Qven =

Nout
∑

k=1

Qven,k.

The model for the right heart (right atrium, interior valve, right ventricle and
exterior valve) is also built from electrical analogy. The flow through one valve is
driven by the pressure gradient and a smoothed Heaviside function.

An explicit time integrator is used to discretize the flow equations ((2)-(3) or
(5)-(6)) whereas a locally implicity time integrator is used for handling the trans-
port equation ((4) or (7)). The spatial discretization method is the discontinuous
Galerkin method with the local Lax-Friedrichs flux for the hyperbolic term [6].

Figure 1 shows the momentum and concentration for a simulation using a net-
work of 55 blood vessels. The solutions are obtained at the middle of the right
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Figure 1. Flow (Q) and concentration (C) at the middle of the
right femoral vessel as a function of time, for different axial ve-
locity profiles. Axial velocity profiles are ³ = 4/3 (red curve),
³ = 1.1 (orange curve) and flat profile (blue curve).

femoral vessel. The length of that particular vessel is 44.4cm, the reference pres-
sure is p0 = 75 mmHg. The other parameters are: A0 = 0.139 cm2, ³ = 2559000
dyn/cm3. The red solid curve corresponds to ³ = 4/3, the orange dashed line
to ³ = 1.1 and the dotted blue line is for the flat profile. The results indicate
that the choice of the axial velocity profile may have a significant impact on the
waveforms.
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Multiscale/multiphysics modeling: applications in ophthalmology
and cardiology

Giovanna Guidoboni

When applied to the study of the human body, mathematical models must neces-
sarily be multiscale, since phenomena occurring at small scales in space and time
affect the macroscopic system behavior and viceversa, and multiphysics, since or-
gan functions typically result from the complex interplay among fluid-dynamics,
biomechanics and biochemistry [1]. The utilization of multiscale/multiphysics
models to study living systems helps disentangle the interaction among coexisting
(often competing) factors that is not possible to single out in experimental and
clinical studies. Thus, multiscale/multiphysics models can serve as a virtual lab-
oratory where multiple scenarios can be simulated, conjectures can be tested and
new hypotheses can be formulated. In this work, two major applications of multi-
scale/multiphysics models are discussed, namely the study of glaucoma (Section 1)
and the design of noninvasive sensors for cardiovascular monitoring (Section 2).

1. Modeling ocular physiology to preserve vision in glaucoma

Glaucoma is the leading cause of irreversible blindness worldwide and it involves
progressive degeneration of the optic nerve and loss of retinal ganglion cells. An
elevation of the pressure inside the eye (intraocular pressure, IOP) has been identi-
fied as a glaucoma risk factor since the mid-1800s and, to date, it remains the only
approved therapeutic target for its treatment [2]. However, not all individuals with
elevated IOP develop glaucoma and many glaucoma patients continue to progress
to blindness despite successful IOP reduction. These patients account for as many
as 1/3 of all glaucoma cases in the US, and yet a successful treatment strategy
is not available for them. Abundant clinical and experimental evidence suggests
that hemodynamic alterations are involved in the pathophysiology of glaucoma,
but their relevance with respect to IOP remains controversial [3].

The main goal of this research is to help resolve this controversy by developing
multiscale/multiphysics models to evaluate the relative importance of blood pres-
sure (BP) and IOP in determining ocular perfusion and oxygenation, with the goal
of identifying patient cohorts where vascular targets, in addition to IOP reduction,
might be beneficial in preventing vision loss.

This research clarified, for the first time, that the pathological impact of IOP
elevation on ocular hemodynamics does not depend solely on the IOP level but
also on other patient-specific factors, such as blood pressure (BP). Our models
provided specific ranges of combined BP and IOP values that would increase a
patient’s susceptibility to low perfusion and glaucomatous damage [4]. Our theo-
retical predictions have been recently confirmed by an independent population-based
study involving nearly 10,000 individuals (nearly 20,000 eyes). Specifically, the
Singapore Epidemiology of Eye Diseases study found that the association between
low BP and glaucoma is especially pronounced in eyes with IOP g 21 mmHg, but
not significant in eyes with IOP< 21 mmHg [5]. These findings have a huge impact
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in glaucoma care, as they indicate that the concurrence of low BP and high IOP
should be accounted for when stratifying glaucoma risk groups.

From the mathematical perspective, this project led to the first well-posedness
analysis of deformable porous media models with nonhomogeneous boundary con-
ditions [6] and the development of numerical methods that preserve, at the discrete
level, the spatial fluxes of mass and linear momentum and the time evolution of the
total energy in coupled systems of ordinary and partial differential equations [7, 8].
Current research directions include: (i) the well-posedness analysis for deformable
porous media models with integral boundary conditions and their numerical solu-
tion, in order to address the multiscale coupling between three-dimensional models
for tissue perfusion and lumped parameter models for systemic circulation; and (ii)
the development of the first multiscale model for aqueous humor production and
its pharmacological modulation, which entails the mathematical definition and nu-
merical treatment of nontrivial multiscale connections among eye-level, cell-level
and exchanger-level models.

2. Ballistocardiography for noninvasive cardiovascular monitoring

Cardiovascular diseases (CVDs) represent the first leading cause of death world-
wide. Progression of a patient’s CVD is often gradual and subtle. Early detec-
tion of CVD progression is crucial to intervene effectively, optimize a patient’s
treatment and mitigate negative outcomes. A noncontact approach to monitoring
cardiovascular health is offered by ballistocardiography, whose signal, the ballis-
tocardiogram (BCG), captures the repetitive motion of the center of mass of the
human body resulting from the blood motion within the circulatory system. In-
terestingly, BCG-based monitoring of CVD does not require body contact and the
signal reflects the status of the whole cardiovascular system. In the recent years,
various technologies (e.g. piezoelectric sensors, load cells, accelerometers) have
been utilized to design BCG sensors that can be placed under a bed mattress or in
an armchair. Data show that BCG signals change with age and disease. However,
to date, BCG signals lack a standardization, meaning that different BCG wave-
forms may be obtained for the same individual when utilizing different devices.
The lack of standardization is the major obstacle currently hindering the use of
BCG as a clinical diagnostic and monitoring instrument.

To overcome this challenge, we have developed a mathematical model capa-
ble of providing a quantitative characterization of signature changes in the BCG
signal due to specific pathological cardiovascular conditions, such as reduced con-
tractility of the left ventricle (as observed in systolic heart failure) and increased
stiffness of the left ventricle (as observed in diastolic heart failure) [9, 10]. We are
currently working on testing our model predictions on data collected on healthy
subjects within the Center for Eldercare and Rehabilitation Technology directed
by M. Skubic (College of Engineering, University of Missouri) [11], on critically ill
patients within the Surgical Intensive Care Unit directed by Dr. Salman Ahmad
(University of Missouri Health Care) [12], and on swine within the lab of Dr. Craig
Emter (College of Veterinary Medicine, University of Missouri) [13].
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Some recent results on a deterministic, multi-layered, fluid-poroelastic
structure interaction problem, and a stochastic fluid-structure

interaction problem, motivated by biological applications

Sunčica Čanić

(joint work with J. Kuan, L. Bociu, B. Muha, J. Webster)

The work reported here has been motivated by the design of lab-grown organs, such
as a bioartificial pancreas. The design of lab-grown organs relies on using biocom-
patible materials, typically poroelastic hydrogels, to generate scaffolds to support
seeded cells of different organs. Additionally, to prevent the patient’s own immune
cells from attacking the transplanted organ, the hydrogel containing seeded cells is
encapsulated between two semi-permeable, nano-pore size membranes/plates and
connected to the patient’s vascular system via a tube (anastomosis graft). The
semi-permeable membranes are designed to prevent the patient’s own immune
cells from attacking the transplant, while permitting oxygen and nutrients carry-
ing blood plasma (Newtonian fluid) to reach the cells for long-term cell viability.
A key challenge is to design a hydrogel with “roadways” for blood plasma to carry
oxygen and nutrients to the transplanted cells [5].

1.1. Fluid-poroelastic structure interaction with a multi-layered poroe-
lastic structure. The ability to mathematically model, analyze, and predict the
behavior of biological and bioartificial tissue has never been more important. The
related mathematical models are intrinsically multi-scale and multi-physics. Even
at the mesoscale level, relevant to the understanding of the interplay between the
architecture of poroelastic hydrogel matrix and blood flow, the current states of
mathematical well-posedness and control theories are inadequate to address these
questions. Continuummechanics models of such systems are 3D fluid–3D structure
interaction partial differential equations with moving interfaces. The relevant flow
regimes necessitate the use of 3D viscous, incompressible flow models (the Navier-
Stokes or time-dependent Stokes equations) coupled to 3D poroelasticity. To the
best of our knowledge, there are only three manuscripts in the literature on fluid-
poroelastic structure interaction that address existence of solutions to this class of
problems [2, 4, 1]. Critical issues arise for both the weak and strong PDE solutions,
rooted in the well-known difficulties associated with the quasilinear problems in
3D (including the mathematical analysis of 3D Navier-Stokes and nonlinear Biot
equations). Namely, for strong solutions, uniqueness of solutions can be obtained
as well as appropriate smoothness of the interface, but these solutions are inher-
ently local, precluding control and stability analysis on biological scales. On the
other hand, weak solutions may exist for all times without smallness conditions,
but they lack sufficient regularity for uniqueness, and they present issues associ-
ated with the regularity of the interface. Additionally, for the biological problems
of interest here, the interface is, in fact, a poroelastic membrane or plate (the
capsule), separating the “free fluid flow” in the anastomosis graft (tube) from the
poroelastic gel (medium) containing the cells. To date, no comprehensive mathe-
matical study of the resulting fluid-structure interaction problems involving such
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multilayered poroelastic materials has been undertaken, and there is virtually no
theory available. These fluid-poroelastic structure interaction (FPSI) sys-
tems are inherently challenging, and the addition of porosity as a central feature
of the elastic structures, results in exceedingly complex mathematical models.

As a first step in developing a comprehensive mathematical theory involving ex-
istence, uniqueness, and control of solutions, as well as numerical methods develop-
ment for physically-motivated 3D fluid-poroelastic systems arising in foundational
biological design and control problems, we have recently studied the interaction
between an incompressible, viscous fluid modeled by the dynamic Stokes equa-
tion and a multilayered poroelastic structure which consists of a thin, linear,
poroelastic plate layer (in direct contact with the free Stokes flow) and a thick Biot
layer. The fluid flow and the elastodynamics of the multilayered poroelastic struc-
ture are fully coupled across a fixed (linearized) interface through physical cou-
pling conditions (including the Beavers-Joseph-Saffman condition), which present
mathematical challenges related to the regularity of associated velocity traces.

In our recent work [1] we proved existence of weak solutions to this fluid-
structure interaction problem with (i) a linear, dynamic Biot model, and (ii) a
nonlinear quasi-static Biot component, where the permeability is a nonlinear func-
tion of the fluid content (as motivated by biological applications). The proof was
based on constructing approximate solutions through Rothe’s method, and using
energy methods and a version of Aubin-Lions compactness lemma (in the nonlin-
ear case) to recover the weak solution as the limit of approximate subsequences.
We also provided uniqueness criteria and showed that constructed weak solutions
are indeed strong solutions if one assumes additional regularity.

The next step will be to extend these results to nonlinear fluid-poroelastic struc-
ture interaction problems where the interface is moving, i.e., the problem is non-
linearly coupled. Additionally, including stochasticity in biological fluid-structure
interaction is of great importance. In the next section we discuss a recent well-
posedness result for a fluid-structure interaction problem with stochastic forcing.

1.2. Stochastic fluid-structure interaction. To capture the stochastic effects
in biological fluid-structure interaction problems we recently studied a benchmark
problem in which a stochastically forced linearly elastic membrane interacts with
the flow of a viscous incompressible Newtonian fluid in two spatial dimensions.
The membrane is modeled by the linear wave equation, and the fluid by the
2D time-dependent Stokes equations. The problem is forced by a “rough” sto-
chastic forcing given by a time-dependent white noise Ẇ (t), where W is a given
one-dimensional Brownian motion with respect to a complete probability space
(Ω,F ,P) with complete filtration {Ft}tg0. The forcing is applied to the “ex-
terior” surface of the membrane. The fluid and the membrane are coupled via
a two-way coupling describing continuity of fluid and structure velocities at the
fluid-structure interface, and the continuity of contact force at the interface. The
coupling is calculated at the linearized, fixed interface, rendering this problem a
linear stochastic fluid-structure interaction problem. The goal was to show that
despite the rough white noise, the resulting problem is well-posed, showing that
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the underlying deterministic fluid-structure interaction problem is robust to noise.
Indeed, in [3] we proved the existence of a unique weak solution in the probabilis-
tically strong sense to this stochastic fluid-structure interaction problem. This
means that there exist unique random variables (stochastic processes), describing
the fluid velocity u, the structure velocity v, and the structure displacement ·,
such that those stochastic processes are adapted to the filtration {Ft}tg0, i.e.,
they only depend on the past history of the processes up to time t and not on the
future, which satisfy the weak formulation of the original problem almost surely.

In contrast to the deterministic case, the proof based on an operator splitting
strategy presented in this work has several new interesting components:

(1) The energy estimates are given in expectation, and do not necessarily hold
pathwise. As a consequence, weak precompactness can be deduced only for
the probability measures, or laws associated with approximate sequences,
and not the sequences themselves.

(2) The energy estimate has an extra term that accounts for the energy
pumped into the problem by the stochastic forcing.

(3) The operator splitting strategy must obey “the correct” order in which
the operators associated with the deterministic and stochastic subprob-
lems have to be “solved” so that the stochastic integrals containing the
time increments of the stochastic forcing can be evaluated and bounded
to produce a stable scheme.

(4) To establish weak convergence of probability measures one must show that
the probability measures are tight, which requires the use of a compact-
ness result all Aubin-Lions even though the coupled problem is linear.

(5) Once weak convergence of probability measures (laws) associated with
approximate sequences is established, probabilistic techniques based on
the Skorohod’s theorem and Gyöngy-Krylov Lemma have to be employed
to obtain an almost sure convergence to a weak solution.

To the best of our knowledge, this is the first well-posedness result for a stochastic
FSI.
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Computational multiscale methods

Eric Chung

(joint work with Yalchin Efendiev, Thomas Hou, Wing Tat Leung,
Maria Vasilyeva, Mary Wheeler)

Many practical applications contain models with multiscale and high contrast co-
efficients. Due to scale disparity and the contrast, solving these problems using
traditional approaches require very fine computational mesh, which are computa-
tionally expensive. Thus some type of coarse-grid models are necessary for these
kinds of problems. The coarse grid does not necessarily resolve any scales and
is typically much larger than the fine-grid size. Each coarse block typically con-
tains many heterogeneities and high contrast. In modeling and simulations of
multiscale problems, it is difficult to adjust coarse-grid sizes based on scales and
contrast. Thus, it is important that the numerical performance is independent of
these physical parameters, and depends only on the coarse grid size.

We have developed a systematic framework for multiscale model reduction us-
ing the Generalized Multiscale Finite Element Method (GMsFEM). The main idea
is to construct multiscale basis functions in each coarse element via local spectral
problems. The construction of the method begins with the snapshot space, which
contains various potential modes of the solutions. Then local spectral problems
are used to identify multiscale basis functions, which are dominant modes within
the snapshot space. The goal of these constructions is to identify high-contrast
and non-local features that need to be represented individually. These non-local
features are typically channels (high-contrast regions that connect the boundaries
of the coarse grid) and need separate (individual) basis functions. We note that
the localizations of channels are not possible, in general, and this is the reason
for constructing basis functions for channels separately. We remark that the local
spectral problems and snapshots, if identified appropriately, correctly identify the
necessary channels without any geometric interpretation. This makes the GMs-
FEM a systematic tool for local multiscale model reduction. Adaptive GMsFEM
is also developed to enrich multiscale spaces. See [1] for a review.

It is important that the error of the multiscale approximation depends only on
the coarse grid size and is independent of the scales and contrast. The conver-
gence of the GMsFEM depends on the eigenvalue decay, where the eigenvalues
come from the local spectral problems. In order to design a multiscale method
with a mesh-dependent convergence with a minimal number of basis functions, we
propose the Constraint Energy Minimizing Generalized Multiscale Finite Element
Method (CEM-GMsFEM) [2]. The convergence analysis of the GMsFEM suggests
that one needs to include eigenvectors corresponding to small eigenvalues in the
local spectral decomposition. We note that these small eigenvalues represent the
channelized features, as we discussed above. For high-contrast problems, the local
solutions do not decay in channels and thus, we need approaches that can take
into account the information in the channels when constructing the decaying local
solutions. Our proposed CEM-GMsFEM is able to tackle these challenges.
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The above approaches are designed for linear multiscale problems, and their
extension to nonlinear multiscale problems remains challenging. Many nonlinear
problems have multiscale nature due to spatial and temporal scales. For example,
the dynamics of multi-phase flow and transport in heterogeneous media varies over
multiple space and time scales. There are in literature many successful linear and
nonlinear upscaling tools. Nonlinear upscaling methods, e.g., known as pseudo-
relative permeability approach, computes nonlinear relative permeability functions
based on single cell two-phase flow computations. It is known that these nonlinear
approaches lack robustness and they are processes dependent. To overcome these
difficulties, one needs better nonlinear upscaling methods. We have developed a
new method called the Nonlinear Nonlocal Multi-continua Upscaling (NLNLMC)
[3]. The goal of the method is to handle nonlinear multiscale problems with high
contrast and non-separable scales.

The above introduced the NLNLMC method for nonlinear multiscale problems.
The computations of the parameters in the upscaling model involve many local
nonlinear problems, and are therefore computationally expensive. The main com-
ponent of the NLNLMC method is the local downscaling functions, and these will
give the parameters required in the final coarse grid equation. Given a set of
macroscopic values, we will solve a local problem on an oversampling region to
construct a fine scale downscaling function, whose mean values on coarse elements
match the given macroscopic values. In general, this is an expensive task as these
local problems are solved on-the-fly when the solution averages are given, and one
cannot easily pre-compute these problems. This fact motivates the use of deep
learning [4]. The main idea is to consider the macroscopic variables as input and
the downscaling functions or their average values as output. Then suitable deep
neural networks are trained and are used to approximate this expensive proce-
dure. The resulting approach allows the use of deep neural network to learn the
parameters required in the coarse scale equations. This can give a significant im-
provement in the computational times. We remark that using deep neural network
for reduced models allows a robust learning process as there are fewer parameters
to be learned.

The research is partially supported by the Hong Kong RGC General Research
Fund (Project numbers 14304719 and 14302620).
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Discontinuous Galerkin approximation of flows in fractured porous
media on polygonal and polyhedral grids

Paola F. Antonietti

(joint work with Chiara Facciolà, Marco Verani)

We propose a unified formulation based on discontinuous Galerkin (dG) methods
on polygonal/polyhedral grids for the simulation of flows in fractured porous me-
dia. Following [1], we first consider the case where the porous medium is cut by a
single, non immersed fracture. We adopt a model for single–phase flows where the
fracture Γ is modeled as a (d 2 1)-dimensional interface in a d–dimensional bulk
domain Ω = Ω1 * Ω, cf. Figure 1, and model the flow in the porous medium and
in the fracture by means of the Darcy’s law. Following [1], we look for the bulk
pressure pi and velocity ui, i = 1, 2 and the fracture pressure pΓ and velocity uΓ

such that

ui = ¿i'pi in Ωi, i = 1, 2,(1a)

2' · ui = fi in Ωi, i = 1, 2,(1b)

pi = 0 on "Ωi, i = 1, 2,(1c)

uΓ = ¿Ç
Γ3Γ'ÇpΓ in Γ,(1d)

2'Ç · uΓ = fΓ + J2¿'pK in Γ,(1e)

pΓ = 0 on "Γ,(1f)

2{u} · nΓ = ³ΓJpK · nΓ on Γ,(1g)

2JuK = ³Γ({p} 2 pΓ) on Γ.(1h)

Figure 1. Sketch of the
computational
domain.

Here ¿i and fi denote the restrictions of the bulk
permeability tensor and of the source term to Ωi,
i = 1, 2, respectively, and n is the outward unit nor-
mal vector to Ω. Analogously, ¿Ç

Γ is the tangential
component of the fracture’s permeability, 3Γ > 0 is
the fracture’s thickness, fΓ * L2(Γ) is the source
term, and 'Ç and 'Ç · denote the tangential gradi-
ent and divergence operators, respectively. Finally,
J·K and {·} denote the jump and average operators,
see [2], and ³Γ, ³Γ are chosen as in [1].

To introduce the unified dG formulation, we
consider a polygonal/polyhedral mesh Th that is
aligned with the fracture Γ, which is assumed to
satisfy mild regularity assumptions, cf. [3]. We
denote by Fh the set of all its faces, that we can
decompose in Fh = FI

h * FB
h * Γh, where Γh is

the set of faces belonging to the fracture and FI
h and FB

h are the sets of inte-
rior/boundary faces, respectively. The mesh Th. For given integers kE , kF g 1,
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we introduce the finite-dimensional spaces:

Qb
h = {q * L2(Ω) : q|E * PkE

(E) "E * Th}, Wb
h = [Qb

h]
d

QΓ
h = {qΓ * L2(Γ) : qΓ|F * PkF

(F ) "F * Γh}, WΓ
h = [QΓ

h]
d.

The discrete formulation is: Find (ph,uh, pΓ,h,uΓ,h) * Qb
h ×Wb

h ×QΓ
h ×WΓ

h s.t.
(2) ∫

T
h

¿
21

uh · v =

∫

T
h

'ph · v+

∫

F
I

h
*Γ

h

{p̂2 ph}JvK +

∫

F
I

h
*F

B

h
*Γ

h

Jp̂2 phK · {v},

∫

T
h

uh · 'q 2

∫

F
I

h
*F

B

h
*Γ

h

{û} · JqK 2

∫

F
I

h
*Γ

h

JûK{q} =

∫

T
h

fq,

∫

Γ
h

(¿
τ
Γ3Γ)

21
uΓ,h · vΓ =

∫

Γ
h

'τpΓ,hvΓ +

∫

E
I

h,Γ

{p̂Γ 2 pΓ,h}JvΓK +

∫

E
h,Γ

{vΓ} · Jp̂Γ 2 pΓ,hK,

∫

Γ
h

uΓ,h · 'τqΓ2

∫

E
I

Γ,h

{qΓ}JûΓK 2

∫

EΓ,h

{ûΓ} · JqΓK =

∫

Γ
h

3ΓfΓqΓ 2

∫

Γ
h

JuKqΓ

for all (qh,vh, qΓ,h,vΓ,h) * Qb
h ×Wb

h ×QΓ
h ×WΓ

h . Here p̂ and û, p̂Γ and ûΓ are
the so called numerical fluxes, cf. [2]. A suitable definition of the numerical fluxes
determine different dG methods.

Starting from (2) and suitably choosing the numerical fluxes, we discuss and
analyze, in a unified setting, all the possible combinations of primal-primal, mixed-
primal, primal-mixed, and mixed-mixed dG formulations for the bulk and fracture
problems, respectively. For example, the primal-primal formulation follows from
a suitable choice of the numerical fluxes p̂ = p̂(ph), û = û(ph, pΓ,h), p̂Γ = p̂Γ(pΓ,h),
and ûΓ = ûΓ(pΓ,h) and reads as

Find (ph, p
Γ
h) * Qb

h×QΓ
h s.t. Ah

(

(ph, p
Γ
h), (q, qΓ)

)

= Lh(q, qΓ) "(q, qΓ) * Qb
h×QΓ

h,

where Lh : Qb
h×QΓ

h ³ R is defined as Lh(q, qΓ) =
∫

Th

fq+
∫

Γh

3ΓfΓqΓ, and where

Ah : (Qb
h ×QΓ

h)× (Qb
h ×QΓ

h) ³ R is defined as

Ah

(

(ph, p
Γ
h), (q, qΓ)

)

= Ab(ph, q) +AΓ(pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),
with

C((ph, pΓ,h), (q, qΓ)) =
∫

Γh

³ΓJphK · JqK +
∫

Γh

³Γ({ph} 2 pΓ,h)({q} 2 qΓ,h).

and

AP

b (ph, q) =

∫

Th

¿'ph·'q+
∫

FI

h
*FD

h

(2{¿'q} · JphK 2 {¿'ph} · JqK + ÃF JphK · JqK) ,

AΓ(pΓ,h, qΓ) =

∫

Γh

¿Ç
Γ3Γ'pΓ,h · 'qΓ 2

∫

EI

Γ,h
*ED

Γ,h

{¿Ç
Γ3Γ'qΓ} · JpΓ,hK

2
∫

EI

Γ,h
*ED

Γ,h

{¿Ç
Γ3Γ'pΓ,h} · JqΓK +

∫

EI

Γ,h
*ED

Γ,h

ÃeJpΓ,hK · JqΓK.
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Figure 2. Example of
N³ = 6
fractures
intersecting at
I+ for d = 2.

Here, ÃF and Ãe are suitable penalty functions to
be properly defined. For all the possible combina-
tions, we prove their well-posedness and derive a pri-
ori hp-version error estimates in a suitable (mesh-
dependent) energy norm, [4, 3].

We also discuss the extension to networks of frac-
tures. The key instrument here is the generalization
of jump and average operators at fractures’ inter-
section [5]. We assume that the fracture network
is the union of N³ fractures ³k, each of which is
a one co-dimensional manifold with zero curvature;
see Fig. 2 for a two-dimensional example. At the
fracture intersection I+ our model is supplemented
with suitable conditions. Let b = (b1, b2, . . . , bNΓ

)
and a = (a1, a2, . . . , aNΓ

) be regular-enough scalar
and vector-valued functions defined on the network.
We introduce the following extension of jump and
average operators for a and b at I+ as

{b}+ =
1

NΓ
(b1 + b2 + · · ·+ bNΓ

), {a}+=
1

NΓ

(

ai · Çi 2 ak · Çk
)

i,k*{1,2,...,NΓ}, i<k
,

JbK+ =
(

bi 2 bk
)

i,k*{1,2,...,NΓ}, i<k
, JaK+ = a1 · Ç1 + a2 · Ç2 + · · ·+ aNΓ

· ÇNΓ
,

where trace operators on I+ are understood. Based on the above definition we can
extend our formulation so has to take into account networks of fracture. We prove
its well-posedness as well as a priori hp-error estimates. Numerical experiments
assess the theoretical error estimates and accuracy of the proposed formulations.
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Cardiovascular Mathematics: Data, (Reduced) Models and Clinics

Alessandro Veneziani

(joint work with Adrien Lefieux, Marina Piccinelli, Alessio Gizzi,
Brad Leshnower, Habib Samady, Flavio Fenton)

1. Introduction

“Cardiovascular mathematics” is a term introduced years ago [4] to denote the set
of mathematical and numerical modeling techniques to specifically address cardio-
vascular diseases. Beyond the intrinsic speculative interest, one of the privileges
of working in this area is the close contact with medical doctors and clinicians in
what we can call “Clinical Cardiovascular Mathematics” (CCM). The potential -
and sometimes actual - role of rigorous mathematical and numerical modeling in
the clinical practice significantly increase the appeal of this work.

This talk addresses some of the lessons learned working closely with clinicians
on specific cardiovascular problems.

2. Some peculiarities of Clinical Cardiovascular Mathematics

Each of the subsequent subsections is inspired by a real clinical problem, but it
gives room for some general conclusions and open challenges.

2.1. Models and Patient-specific Data: a potentially stormy relation-
ship. As mathematicians, we love idealized models as a comfort zone where we
can do (virtual) experiments without the burden of specific “2+ order” details. In
CCM, unfortunately, “details” are called “patients”. Any accurate quantitative
analysis of blood flow with mathematical models requires patient-specific infor-
mation; in particular, the “morphology” of the patient is critical [12]. Either
level-set or machine learning techniques can be used for a (semi-)automated image
processing that reconstructs the patient’s morphology. But there is more.

Type B Aortic Dissection (TBAD) is a severe pathology where a part of the
descending aorta has two lumens generated by a pocket in the regular wall that
eventually leads to the formation of a parallel vessel (the false lumen - FL). The
clinical decision of whether it is worth operating with surgery instead of medical
treatment is currently guided by the patient’s morphology. The distance between
the Left Subclavian Artery and the Primal Intimal Tear (i.e., the main connection
between the FL and the true lumen - PIT) is the landmark currently monitored.
A large distance is considered a “no-growth” predictor, leading to drug treatment;
a small distance suggests surgery. However, morphology is not enough in the
cardiovascular system. We also have the “functionality”, i.e., the bloodstream.
We need to go beyond the image and simulate the blood. In an Emory patient
presented with a large distance in 2006, we decided to perform a patient-specific
simulation of the blood. This patient violated the clinical guideline, as the false
lumen, in fact, grew significantly in 4 years. Our simulations [13] pointed out the
role of the time-averaged Wall Shear Stress (TAWSS) in the FL: below a certain
threshold, the TAWSS and the growth displayed a strong positive correlation.
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While this makes sense, we could not reproduce the same situation when working
on more patients as the correlation growth/TAWSS was much more blurred and
unclear. On the other hand, the 5-patient study displayed the role of the maximum
wall shear stress at the PIT as a new landmark to categorize patients (Growth
vs. No-Growth) [11]. To confirm this hypothesis, we are currently working on
many more patients that will be regarded as the realization of a stochastic process
to analyze with Principal Component Analysis, similarly to what was done in a
previous project (Aneurisk) for cerebral aneurysms [9]. The take-home message is
that each patient may tell a different story, computer-aided multi-patients clinical
trials are mandatory in CCM. In turn, this leads to the need for (semi-)automated
image processing systems as well as efficient numerical solvers to cope with a large
number of patients within reasonable timelines.

2.2. Data and Model Assimilation: hybrid is good. Bioresorbable stents
were introduced for young patients with acute coronary occlusions a few years
ago. Despite the advantage of the complete absorption, they had several adverse
effects in follow-up, to the point that they were withdrawn from the market. A
possible hypothesis is that the abnormal thickness of the stent’s struts (to stand
the deployment pressure without a metallic core) triggers some blood recirculations
that may induce new inflammations and, eventually, occlusions. As pointed out
above, to test this hypothesis, we need to investigate many patient-specific geome-
tries, and to have accurate functional data that may corroborate the hypothesis
over a statistically significant number of patients. However, the automatic geo-
metrical reconstruction of stented arteries is challenged by many aspects. Optical
Coherence Tomography (OCT) generally obtains accurate images of stented coro-
naries, where it is possible to identify the struts with an excellent longitudinal
resolution. However, these images are an internal view, in a frame moving with
the catheter inside the vessel. The struts are detected only on a certain number
of slices to form a point cloud. The identification of the underlying skeleton of the
stent is not trivial. In addition, external imaging like angiographies are required
to reconstruct the actual curvature of the vessel.

The stent skeletonization based on the point cloud was done by an innovative
polyline-to-point cloud registration [8]. Using the undeployed stent as a template,
we were able of automating the patient-specific skeletonization of the stent.

The merging of the two imaging techniques (OCT and angiographies) required
the embedding of the OCT slices into a fictitious elastic domain that was deformed
to match the coronary centerline reconstructed by the angiographies. This map
was finally applied to the skeleton obtained by the registration. A physically-
guided approach based on computational elasticity allowed then to extend the
sparse information provided by the OCT into a 3D volume. After expanding
the skeleton into a 3D structure using Nef-polyhedra and subtracting it to the
unstented volume reconstructed by a standard level-set method, we are now able
of reconstructing a stented artery for Computational Fluid Mechanics in a timeline
of minutes (vs. days we needed a few years ago) [7]. The next step is the accurate
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modeling of the stent erosion, which requires the definition of multiscale-in-time
models.

The take-home message is that an accurate combination of data and models
is the key for solving the most challenging problems in CCM : data and models
together, and adequately merged, accomplished the mission.

2.3. Model Reduction: realtime model solution. Surgeons and clinicians in
the operating room solve many “optimization problems” (generally constrained)
by the help of some sparse data, experience, and intuition. As “optimization” is
a well-established field of mathematics, it is natural to think that rigorous op-
timization techniques can be used for clinical problems. But, we have a but:
computational time. Solving a shape-optimization problem constrained by the in-
compressible Navier-Stokes equations requires significant computational resources
and time. A possible approach is to resort to purely data-driven methods. While
this seems an appealing strategy, it is crucial to consider the massive amount of
training data for strictly data-driven approaches. On the other hand, Model Or-
der Reduction (MOR) has been established in the last few years as a rigorous
approach for reducing computational costs in computational mechanics (and be-
yond). We have several different MOR approaches that can customize numerical
solvers to specific problems with a tremendous reduction of computational costs.
We illustrate hereafter some possible examples.

2.3.1. Snapshot-based model reduction. The Total Cavopulmonary Connection
(TCPC) is a bridging surgery for newborn babies affected by the Hypoplasia of the
Left Ventricle. It consists of an artificial connection between the Superior/Inferior
Vena Cava with the Pulmonary Artery. The shape of this connection (or shunt)
was related to some long-term effects in the patients [10]. While rigorous shape-
optimization procedures are possible, the complexity of the geometry and of the
flow in the TCPC prevented their use in the clinical practice.

Proper Orthogonal Decomposition (POD) is a procedure to reduce the compu-
tational complexity of some problems by creating an appropriate space of solutions
that are determined by a relatively low number of degrees of freedom. Within an
offline/online paradigm, one first creates a library of snapshots by solving the
problem for a certain range of the parameters of interest (in our case, the ones
underlying the geometrical definition); successively, the intrinsic redundancy of all
the snapshots is filtered by extracting the singular values of the snapshot matrix
and dropping the smallest ones. Finally, the solution of the online procedure (i.e.,
with new values of the parameters not considered Offline) is computed on the
(relatively small) number of eigenvectors associated with the singular values re-
tained at the previous stage. Consequently, we project the original problem on this
subspace of eigenvectors, and solve it with a significant computational advantage.

In the shape optimization of the TCPC, where the flow distribution on the
pulmonary artery must be optimized by the geometry, we need to resort to some
iterative procedure to solve the Karush-Khun-Tucker equations associated with
the problem. Each iteration requires solving the incompressible Navier-Stokes
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equations in a cross-like domain. With a POD model reduction, each iteration can
be accelerated to a fraction of seconds to make the entire procedure compatible
with clinical timelines. This is an extremely hot and open research topic.

2.3.2. Non snapshot-based model reduction. In some cases, the singular values do
not decay fast enough to guarantee an efficient model reduction unless the offline
phase is guided by an accurate selection of the snapshots. In these cases, MOR
not snapshot-based is possible.

A classical and challenging problem in cardiac electrophysiology is the optimal
placement of the pace-maker leads or, in general, the optimal deployment of Car-
diac Resynchronization Therapies (CRT). In this case too, iterative procedures
underlying the optimization/data assimilation are generally computationally chal-
lenging. However, POD does not provide an adequate model reduction.

The Proper Generalized Decomposition (PGD) is a methodology based on an
augmented variational formulation including all the parameters of interest as in-
dependent variables [3]. Numerically, this leads to Partial Differential Equations
with many independent variables (much more than the classical four space-time
variables). The numerical solution of this augmented problem can be accomplished
by an iterative separation-of-variable approach in the so-called PGD Offline phase.
At this point, the solution of the electrophysiology problem (the so-called Mon-
odomain/Bidomain equations) for a new value of the parameters is a simple eval-
uation of the solution in the values specified by the parameters, with modest
computational costs.

PGD was successfully applied to the variational data assimilation of the cardiac
conductivities [1].

Another “reduced-modeling” approach for the solution of the incompressible
Navier-Stokes equations in the arteries (i.e., cylindrical-like geometries) is repre-
sented by the so-called HiMOD [6]. HiMOD responds to the simple observation
that, in arteries, the main dynamics occur along the centerline (axial direction).
Therefore, the idea is to construct a customized method where one combines a
classical 1D axial solution with some Fourier or polynomial spectral representa-
tion of the transversal solution. This reduces drastically the number of degrees of
freedom of the solver with a tremendous computational advantage in pipes or net-
works of pipes. In this case, we do not have an Offline/Online paradigm, but just
the construction of customized functional spaces that create a “psychologically
1D” blood flow solver. This can be used to manage time-consuming Uncertainty
Quantification analyses of blood in a network of pipes [5].

The take-home message is that, contrarily to a popular idea, not only purely
data-driven methods can be real-time, as reduced models can include physical con-
ceptualizations of computational mechanics within a competitive timeline.

3. Conclusions

CCM is a fantastic place for advanced methods in applied mathematics, with
many open problems and challenges. The potential impact of methods and tools
on healthcare and society feeds the will to solve the most complex problems. It is
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essential that mathematicians drive the correct combination of models and data
when facing these challenges. While it is now clear the potential disruption of
data misinterpretations [2], quantitative and precision medicine can tremendously
improve the fate of many patients, thanks to the unique opportunity offered by
the data availability and the power of models and their reduction, to fit within the
pressing clinical timelines. And this calls for the best mathematics we have.

The support of US NSF, Emory URC, and NIH is gratefully acknowledged.
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Numerical methods for fluid - elastic/poroelastic structure interaction
problems with biomedical applications

Martina Bukač

(joint work with Catalin Trenchea)

Fluid-structure interaction(FSI) problems arise in many applications, and are char-
acterized by highly non-linear nature. In FSI problems where the dynamics are not
known, or in which the variables are changing rapidly, the robust, adaptive time-
stepping is central to accurately and efficiently predict the long-term behavior of
the solution. Hence, we first focus on discussing the development of a partitioned,
adaptive time-stepping method for FSI problems. The proposed numerical scheme
is based on the refactorized Cauchy’s one-legged ‘theta-like’ method, which con-
sists of a backward Euler method, where the fluid and structure sub-problems are
sub-iterated until convergence, followed by a forward Euler method. The bulk of
the computation is done by the backward Euler method, as the forward Euler step
is equivalent to (and implemented as) a linear extrapolation. After the solution is
computed, the time step, Ç , is adapted based on the following formula:

Çnew = Çns

(

·

‖ ̂T n+1‖

)
1

3

,

where ̂T n+1 is the local truncation error at time tn+1, · is the tolerance, and
s * [ 12 , 1) is a ‘safety’ parameter, routinely used to reduce the number of rejected
time steps in the adaptive algorithm. The outline of the algorithm applied to a
non-linear, moving domain FSI problem is given in Figure 1. The algorithm in a
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Figure 1. An outline of a partitioned, adaptive time-stepping
numerical method for FSI problems.

fixed time-stepping version has been published in [1].
To compute the local truncation error, we use an explicit approximation to the

solution calculated using a modified version of Adams-Bashforth two-step method,
in which case the local truncation error is defined as

̂T n+1 =
(

yn+1 2 yn+1
AB2

) 1

12 1/(24Rn)
,
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where yn+1 is the solution obtained using our algorithm, yn+1
AB2 is the solution

obtained using the Adams-Bashforth two-step method, and Rn is given as

Rn =
1

24
+

1

8

(

1 +
Çn21

Çn

)(

1 + 2
Çn21

Çn
+
Çn22

Çn

)

.

Using the formula above calculated based on the structure displacement, we obtain
promising numerical results. For example, in a simulation of the blood flow in an
idealized geometry, our results indicate that the smaller time step is used in systole,
when the inflow velocity sharply increases, but a much larger time step can be used
in diastole, helping to reduce the computational cost. Open problems related to
this project involve the extension of the method to include asynchronous time
stepping, and applications to more realistic problems.

The second part of this report focuses on the analysis of a diffuse interface
method for the Stokes-Darcy coupled problem. In particular, we consider the
interaction between a free flowing fluid and a porous medium flow, where the
free flowing fluid is described using the time dependent Stokes equations, and the
porous medium flow is described using Darcy’s law in the primal formulation. To
solve this problem numerically, we use the diffuse interface approach, where the
weak form of the coupled problem is written on an extended domain which contains
both Stokes and Darcy regions. This is achieved using a phase-field function, Φ,
which equals one in the Stokes region and zero in the Darcy region, and smoothly
transitions between these two values on a diffuse region of width ë around the
Stokes-Darcy interface. The phase-field function is regularized as:

Φë = (1 2 2·)Φë + ·,

where · is a small positive number.
Our work focuses on the analysis of convergence of the diffuse interface for-

mulation to the sharp interface formulation. This is performed by analyzing the
modeling error of the diffuse interface approach at the continuous level, and by
deriving the a priori error estimates for the diffuse interface method at the dis-

crete level. To analyze the modeling error, we let ë, · ³ 0, and obtain O(ë
1

2 ). The
convergence analysis of the finite element approximation of the diffuse interface
method gives the convergence rates which involve terms multiplied by ·21 and
·22. However, our numerical results show optimal rates of convergence that do
not depend on ·. An open question related to this work is: Could the analytical
results be improved?
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Additive Manufacturing. A world full of opportunities and challenges!

Ferdinando Auricchio

(joint work with coauthors)

Additive Manufacturing (AM) - also known as 3D printing - is taking off in many
industrial processes. In particular, powder bed fusion for metal manufacturing
has definitively changed the way of prototyping metal parts but also plastic 3D
printing is changing modern engineering in many aspects. However, AM is a com-
plex physical process, involving different thermo-mechanical phenomena at very
different scales; accordingly, simulation is fundamental to predict temperature and
stress distributions during and after the printing process. Furthermore, AM allows
for new unknown freedom in terms of complex shapes which can be manufactured,
opening the door to a new set of design requirements.

After a short introduction to the technology and possible applications, the pre-
sentation has focused on open problems of interest for the audience community
and in particular on the following problems:

" structural optimization problem allowing the possibility of distributing
material with different density in a specific design domain

" optimal deposition path for fiber-oriented technologies
" immersed two-level methods (in space and time) to describe highly non-
linear local problems

Some advances in isogeometric analysis of coupled and
complex problems

Alessandro Reali

(joint work with Alessia Patton)

Isogeometric Analysis (IGA) is a successful simulation framework originally pro-
posed by T.J.R. Hughes and coworkers in 2005 [1] with the aim of bridging Com-
putational Mechanics and Computer Aided Design. In addition to this, thanks to
the high-regularity properties of its basis functions, IGA has shown a better accu-
racy per degree-of-freedom and an enhanced robustness with respect to standard
finite elements in many applications - ranging from solids and structures to fluids,
as well as to different kinds of coupled problems - opening also the door for the
approximation in primal form of higher-order partial differential equations [2].

After a concise introduction of the basic isogeometric concepts, this lecture aims
at presenting an overview of some recent advances in IGA with a special focus on
coupled problems, where the characteristics of IGA seem to be of great advantage.
In particular, applications that will be discussed include the simulation of fluid-
structure interaction in different contexts like, e.g., biomechanical problems [3],
studies on the effect of mechanically-induced stresses on prostate cancer growth
[4], electro-mechanical simulations for biological tissues [5], and the use of phase-
field modeling for fracture [6] or for predicting the polarization evolution in elastic
ferroelectric materials [7]. The last part of the presentation will be finally devoted
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to the description of a simple, accurate, and inexpensive simulation technique for
laminated structures, allowed by the peculiar IGA features. In particular, this
approach, originally proposed in [8], takes advantage of the favorable properties
of IGA discretizations to efficiently simulate the behavior of laminated structures
comprising a large number of layers using only a single element through the thick-
ness and a post-processing technique able to recover an accurate out-of-plane stress
state by direct integration of the equilibrium equations in strong form. The idea
has also been successfully applied to isogeometric collocation in [9]. The convinc-
ing results of the extension of this approach to the cases of curved structures [10]
and of Kirchhoff plates [11], even in an immersed framework [12], are finally shown,
as well.
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Mixed formulations for poroelasticity/free-flow using total pressure

Ricardo Ruiz-Baier

(joint work with Wietse M. Boon, Martin Hørnkjol, Miroslav Kuchta,
Kent-André Mardal, Matteo Taffetani, Hans D. Westermeyer, Ivan Yotov)

We consider a multiphysics model for the flow of Newtonian fluid coupled with
Biot consolidation equations through an interface Σ (see, e.g., [3]). Let t * (0, tend]
and take a bounded connected Lipschitz spatial domain Ω ¢ R

d, d = 2, 3:

2div[2µfë(u)2 pF I] = Ãfg; divu = 0 in ΩF × (0, tend],

2div[2µsë(d)2 ×I] = Ãsf ; ×2 ³pP + »div d = 0 in ΩP × (0, tend],(1)
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We consider mixed boundary conditions on both subdomains and the transmission
conditions on Σ are (where Tn, Tt denote normal and tangential trace operators)

Tnu = Tn(
1
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d2 »

µf
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d).

The stability and well-posedness of the semi-discrete problem are derived, and
we also obtain the following result (see [5]).

Theorem 1. For each f * H1(0, tend;L
2(ΩP )) and pP,0 * H1

æ (Ωp), there exist
initial data u0 * H1

æ(ΩF ), pF,0 * L2(ΩF ), d0 * H1
æ(ΩP ), and ×0 * L2(ΩP )

such that the weak formulation of (1) complemented with the initial conditions
pP (0) = pP,0, d(0) = d0, and ×(0) = ×0, has a unique solution.

A new mixed-primal finite element scheme is proposed solving for the pairs
fluid velocity - pressure and displacement - total poroelastic pressure using Stokes-
stable elements. Optimal convergence rates are established, which are robust with
respect to » (see Figure 1). Upon time-discretisation, we are left with the Biot–
Stokes equations written in the operator form A(u,d, pF , ×, pP )

t = F , where
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A main challenge for these equations is the construction of solvers that scale
properly for nearly incompressible solids where » tends to infinity, as well as in
the case of nearly incompressible fluids, for which C0 approaches zero, or the
nearly impermeable regime where » is very small. These scenarios entail not only
a complication at the practical and implementation level, but also a difficulty
inherent to the functional setting of the abstract formulation [4].
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Figure 1. Interfacial flow in the eye, between trabecular mesh-
work and anterior chamber. Experimental error history and sam-
ple of axisymmetric numerical solution.

The problem defined by (2) can be shown to be well-posed using the usual
space H and its natural metric (for instance, following the analysis performed
in Theorem 1). Alternatively, consider the weighted product space Hë, where ë
encodes the weighting parameters », ³, ³, µf , µs, C0, ». Let us group the variables
as ~u = (u,d) and ~p = (pF , ×, pP ) and introduce the weighted norm

‖(~u, ~p)‖2Hë

:= 2µf‖ë(u)‖20,ΩF
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which hinges on a fractional norm of the restriction of the Biot pressure to Σ. The
space Hë is such that contains all (~u, ~p) that are bounded in this norm (see [1]).

Theorem 2. The problem defined by the solution operator (2) is well-posed in the
space Hë equipped with the norm (3).

A natural block-diagonal preconditioner for the Biot-Stokes problem is therefore
the Riesz map with respect to the inner product in Hë
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where µ21 := (2µs)
21 + (2µf )

21. This preconditioner yields robustness with
respect to a wide range of material parameters, as reported in Figure 2.

Several open problems and challenges arise as an extension to the results in
[1, 5]. For example, the efficient realisation of the preconditioners using algebraic
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Figure 2. Performance of the Biot-Stokes preconditioner (4) set-
ting µs, ³ to 1 and C0 = 0 and using TH1 elements.

or geometric multigrid, setting up appropriate scalable solvers that maintain ro-
bustness with respect to the timestep, extending the current analysis of robust
preconditioners to formulations based on four-field Biot equations (including both
total pressure and Darcy flux), and generalising the model to the regime of large
deformations and the incorporation of remodelling mechanisms better describing
the consolidation of the interface and choking phenomena in eye poromechanics.
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A geometric approach to modeling, analysis, and numerics for
fractured porous materials

Jan Martin Nordbotten

(joint work with Wietse M. Boon, Jon Eivind Vatne)

Fractures appear in many natural and engineered porous materials. Of particular
interest for the current talk relates to fluid flow through the porous media and its
fractures, and in particular, the case where the fractures are modeled as lower-
dimensional manifolds.

Our central argument is that this problem should not be considered from the
perspective of a normal continuum model, which has been perturbed by the pres-
ence of fractures. In contrast, one should consider the model as inherently mixed-
dimensional, that is to say that the model equations are formulated on a collection
of domains of differing topological dimension.

In the main part of the talk, we review the representation of mixed-dimensional
geometries, emphasizing the role of boundary domains as hosts for coupling vari-
ables. Having established the geometric structure, we propose two generalizations
of the 3D de Rham complex (gradient, curl and divergence operators). These
two generalizations are not independent, indeed, they are seen to be adjoints with
respect to the natural L2 inner products for the mixed-dimensional geometry.

This foundation allows us to establish that L2-spaces on mixed-dimensional
geometries, together with the above-mentioned differential operators, form Hilbert
complexes, with the same cohomology structure as the underlying (standard) de
Rham complex. This ensures that mixed-dimensional Hodge Laplace problems are
well-posed in a weak sense.

Returning to the original application of modeling flow in fractured porous me-
dia, we identify that the standard models with lower-dimensional representations
of fracture correspond to the ”right-most” Hodge Laplacian in the de Rham com-
plex. Consequently, well-posedness theory for the model equations for fractured
porous media, in the presense of complex networks of intersecting fractures, is a
corollary of this work.

From the perspective of numerical approximations, we identify that the mixed
finite element subspaces can also be locally applied to form conforming subcomplex
of the mixed-dimensional Hilbert complex. This directly leads to the observation
that conforming mixed-finite element approximations for this problem are stable
and convergent. The talk concludes with a posteriori error bounds and numerical
examples. Further details can be found in the references.
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Multiscale modelling of maple sap flow

John M. Stockie

Sap exudation is the process whereby sugar maple trees (and a few other related
species) are able to generate a large positive stem pressure during winter when
the tree is leafless and largely dormant. Exudation pressure is vital for the maple
syrup industry since it is what allows sap to be harvested from tap-holes in large
quantities before it is processed into syrup. The underlying bio-physical causes of
sap exudation have been a subject of intense debate within the biological litera-
ture for over a century [2, 5]. Experiments clearly show that maple stem pressure
builds up in response to repeated cycles of freeze/thaw when daily temperatures
oscillate around the freezing point. Milburn and O’Malley [5] were the first to
propose a physically consistent explanation for this phenomenon that takes into
account distinctive features of the cellular microstructure of maple sapwood and
treats the sap as a two-phase (gas–liquid) mixture whose dynamics are governed
by the combined effects of heat transport, phase change, and osmotic flow through
selectively-permeable cell membranes. Until recently this picture remained the de-
finitive description for exudation, despite the increasing evidence from experiments
suggesting that certain vital processes might still be missing [6].

We review the results from a series of papers [1, 3, 4] that develop the first
mathematical model for the Milburn-O’Malley freeze/thaw process and incorpo-
rates the following additional physical effects:

" dissolution/nucleation of gas bubbles that are suspended within the sap,
" cryostatic suction due to the presence of ice-water interfacial tension that
arises from liquid freezing within microscopic capillaries,

" root water uptake from the soil,
" freezing point depression due to the presence of sugar dissolved in the sap.

The microscale model describing these processes consists of a coupled nonlinear
system of differential-algebraic equations (DAEs) that are defined on a “reference
cell” Y , representing a simplified cell geometry (see Figure 1a). The freeze/thaw
state is determined by 6 possible configurations of gas, liquid and ice phase inter-
faces within the reference cell so that there are actually 6 possible choices for DAEs
to impose at a given stem location, depending on the local value of temperature.

The freeze/thaw process is driven by changes in ambient temperature occurring
in the tree stem, which introduces a clear separation in spatial scales between
cellular processes occuring on the microscale and heat transport on the macroscale.
By tiling the tree stem with a periodic array of scaled copies ·Y of the reference
cell (see Figure 1b) we can apply the method of periodic homogenization [4] to
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(a) Reference cell (b) Stem cross-section

Figure 1. Illustration of the periodic homogenization process
with: (a) reference cell Y ; and (b) stem Ω· tiled with scaled
copies of the reference cell, ·Y .

obtain an “up-scaled” heat equation in the two-scale limit as ·³ 0:

"tE1 2'x ·
(

ΠD(E1)'xT1

)

=
1

|Y 1|

∫

Γ

D(E2)'yT2 · ~ndS.(1)

Here, T1(x, t) and E1(x, t) are the macroscopic temperature and enthalpy defined
on the stem region x * Ω, while T2(x, y, t) and E2(x, y, t) are the corresponding
microscopic quantities that also depend on the location within the reference cell
y * Y . The homogenization procedure gives rise to two sources of coupling between
the micro- and macroscale problems:

" The matrix Π multiplying the macroscopic diffusion coefficient is a geo-
metric scaling factor that comes from solving a standard elliptic problem
on the reference cell.

" The integral source term represents the contribution to the macroscale
temperature owing to the latent heat of phase change. This contribution
is evaluated as the heat flux across a curve Γ that bounds a liquid-filled
subregion of the reference cell, Y 1 ¢ Y lying outside Γ (see Figure 1a).

Note that formulating the heat equation in this temperature-enthalpy form, along
with a suitable definition for the thermal diffusivity function D(E), allows us to
capture the liquid/solid phase interfaces naturally along with the corresponding
release of latent heat. A detailed description of the two-scale model equations and
their derivation can be found in [3].

The equations described above are discretized in space with a simple finite vol-
ume approach, and then integrated in time using the stiff ODE solver ode15s

implemented in Matlab. Numerical comparisons are then made with temperature
and pressure data obtained from red and sugar maple trees located at the Uni-
versity of Vermont’s Proctor Maple Research Center [7]. A sample comparison
for a red maple tree is plotted in Figure 2, which shows that locations of spikes
(or drops) in the simulated stem pressure correlate closely with thaw (or freeze)
events, which are the zero-crossings in the temperature plot. The peak value of
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pressure for many of the thaw-induced spikes is also matched quite closely by the
simulations, as is the rate of the pressure decay following a spike. There are some
“weak” freeze/thaw events that are not captured by the simulations, but otherwise
these results suggest that the sap exudation model does a reasonable job of cap-
turing the essential physics underlying the pressure generation process in maple
trees.

Figure 2. Comparison between experiments and numerical sim-
ulations for a red maple tree, showing the ambient temperature
(solid blue line) and stem pressure (black dashed) measured in ex-
periments, along with the simulated pressure (black solid). Freeze
and thaw events are highlighted with dotted vertical lines.
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Mixed-dimensional coupling of 1D geometrically exact beam finite
elements and 3D continua for engineering applications

Alexander Popp

(joint work with Nora Hagmeyer, Matthias Mayr, Ivo Steinbrecher)

The interaction of rod- or beam-like structures with three-dimensional continua
can be found in a variety of different physical problems ranging from classical en-
gineering (e.g. fiber-reinforced materials of any kind) to biomedical applications
(e.g. stents for endovascular interventions). Truly mixed-dimensional 1D-3D cou-
pling along with suitable finite element discretization schemes offers a promising
framework for high-fidelity numerical simulations [1, 2, 3].

Our baseline approach [1] deals with the consistent embedding of curved 1D
Cosserat continua (i.e. beams) into 3D solid volumes. The beams are explicitly
modeled with 1D geometrically exact beam finite elements, while the surround-
ing solid volume is modeled with 3D continuum (solid) elements. Arguably, the
most natural choice for the coupling conditions is to couple the beam surface
·Ω0

B to the solid volume Ω0
S in the reference configuration. This approach would

lead to a 2D-3D coupling formulation, i.e. the beam surface is embedded into the
background solid volume. For the inherent assumption in this work, that the cross-
section dimensions of the beam are small compared to the other dimensions of the
coupled problem, we can approximate the surface integrals as line integrals along
the beam axis. These line integrals can be evaluated very efficiently, and the phys-
ical coupling dimensionality changes from surface-to-volume coupling (2D–3D) to
line-to-volume coupling (1D–3D). Exemplarily, the coupling contribution to the
resulting variational formulation (i.e. coupling virtual work ·Wc) becomes

(1) ·W 2D23D
c j ·W 1D23D

c =

∫

Γ1D−3D
c

»1D23D
(

·uB
r 2 ·uS

)

ds ,

where »
1D23D is a Lagrange multiplier vector defined along the beam center-

line (or a line load when interpreted physically), while uB
r and uS

r represent the
unknown displacement fields of the beam centerline and solid, respectively. A
mortar-type approach is employed to enforce the kinematic coupling constraints
on inevitably non-matching and mixed-dimensional meshes. This discrete for-
mulation follows closely the well-established concept of equidimensional (3D-3D)
mortar finite element methods, while carefully taking into account the peculiarities
of mixed-dimensional (1D-3D) coupling, e.g. for integration interval segmentation
and the handling of weak and strong discontinuities within the mortar integrals.
The inf-sup stability of the mixed formulation is practically assured by a sim-
ple choice of the discrete Lagrange multiplier basis »

1D23D =
∑

j Φj»j through
first-order Lagrange polynomials Φj , yet a theoretical proof is still missing.

The new approach has been verified and validated with an extensive set of
benchmark examples, such as convergence studies under uniform mesh refine-
ment, see Figure 1. Optimal convergence rates of the coupled model can only
be expected up to a certain degree of mesh refinement in the solid domain. This



Multiscale Coupled Models for Complex Media 211

is due to the obvious singularity introduced by the mixed-dimensional embedded
coupling formulation. From a mechanical point of view, the proposed 1D-3D cou-
pling is equivalent to a line load acting inside the solid domain. This represents
a generalized version of the well-known Kelvin problem, which consists of an infi-
nite solid domain into which a line load is embedded. Nonetheless, our numerical
examples convincingly illustrate that optimal convergence behavior is indeed pre-
served for relevant physical application scenarios of the proposed 1D-3D approach,
i.e. relatively slender and stiff fibers compared to the surrounding material.

Figure 1. Convergence problem setup (top left), L2 error (right)
and characteristic meshes with hex8 elements (bottom left).

Recently, the baseline approach has been extended towards additional model
complexities, such as the coupling of the beam’s rotational degrees of freedom [2],
the 1D-2D coupling of beams and solid surfaces as well as 1D-3D fluid-structure
interaction [3]. Among the many open challenges discussed during the Oberwolfach
workshop is a model transition in the spirit of homogenization theory in order to
recover optimal convergence also in the asymptotic (mesh refinement) limit.
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Discontinuous Galerkin Methods for Green-Naghdi Models Coupled
with Geomorphology

Clint Dawson

(joint work with Kazbek Kazhyken and Juha Videman)

In shallow water with highly energetic waves, the standard shallow water equa-
tions do not capture so-called ”dispersive wave phenomena”. In these environ-
ments, waves of different wave lengths travel with different phase speeds. Various
mathematical models have been proposed over the years to capture waves of dif-
ferent wave lengths, ranging from Boussinesq models to full Navier-Stokes models.
Green-Naghdi models of various complexities have been proposed which can ap-
proximate many different types of waves and transition easily from shallow water
to dispersive wave phenomena within a single model. In recent work, we studied
the numerical solution of this model using hybrid discontinuous Galerkin methods
[1]. In this talk, we extend this work to include sediment transport and bed erosion
(geomorphology). This gives rise to coupled, highly nonlinear, multiscale models.
We discuss the implementation of the hybrid DG scheme and its applications to
various laboratory experiments, which show good agreement overall. We then dis-
cuss the main motivation of this work, which is studying the Ria Formosa Lagoon
on the southern coast of Portugal. This is a highly energetic wave environment
where dispersive waves, and geomorphological effects, are all present. This region
has extremely complex geometry, in addition to transitioning from deep ocean cur-
rents to very shallow lagoons within kilometers. We discuss how we obtained data
to build a finite element model, and then show simulation results to demonstrate
that the addition of dispersive wave terms gives rise to additional geomophological
effects in the entrances to the lagoons under normal tidal conditions. This work
is described in [2, 3].
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Global-in-time Domain Decomposition Methods for Coupled Problems
in Heterogeneous Porous Media

Thi-Thao-Phuong Hoang

Global-in-time domain decomposition (GT-DD) methods are iterative algorithms
that solve time-dependent problems in the subdomains over the whole time in-
terval and exchange data on the space-time interfaces between the subdomains.
These methods can be seen as a combination of the classical waveform relaxation
method for a large system of ODEs and standard DD methods for steady-state
problems. GT-DD is different from the classical DD approach where the model
problem is first discretized in time by an implicit scheme, then at each time step
the iteration is performed and involves the solution of stationary problems in the
subdomains. The same time step is usually imposed on the whole domain for clas-
sical DD methods, while for GT-DD, different time steps can be used in different
regions of the domain. Thus GT-DD is very well-suited for parallel simulations
of multiscale coupled problems which often require local discretizations in both
space and time. It should be noted that GT-DD is fully implicit, and has no
time step restriction for stability reasons as normally required in (non-iterative)
partitioned time-stepping algorithms. There are basically two classes of GT-DD
methods: Schur-type and Schwarz-type methods. The former is based on the
physical transmission conditions while the latter is based on more general (opti-
mized) transmission conditions such as Robin or Ventcel conditions [3, 2]. Using
a substructuring technique, GT-Schur or GT-Schwarz methods can be reduced to
a space-time interface problem which is solved iteratively (e.g., by GMRES) and
globally in time.

In this talk, we present the development of GT-DD methods for the reduced
fracture flow model and the (nonlinear) Stokes-Darcy system. We write the prob-
lems in mixed form and consider conforming meshes for spatial discretization as
our focus here is local time stepping. The proposed methods can be extended to
nonmatching spatial grids via mortar finite elements as recently studied in [8] for
the case with no fractures. The talk is based on joint work with Yanzhao Cao,
Phuoc-Toan Huynh, Caroline Japhet, Michel Kern, Hemanta Kunwar, Hyesuk Lee
and Jean Roberts; more details can be found in [4, 7, 6, 5].

Global-in-time DD for the reduced fracture flow model. We consider a
reduced fracture model in which the fracture is known a priori and is modeled
as a hypersurface embedded in the porous medium. Let Ω be a bounded domain
separated by a fracture-interface ³ into two connected subdomains Ω1 and Ω2. We
assume that the permeability in the fracture is higher than the surrounding rock
matrix, so that the pressure is continuous across the fracture [1]. We construct
DD formulations by using the pressure continuity equation and tangential PDEs
in the fracture-interface as transmission conditions:

pi = p³ , on ³ × (0, T ), i = 1, 2,(1)

Ç³"tp³ + divÇuuu³ = q³ +
∑2

i=1 (uuui · nnni)|³ in ³ × (0, T ),

uuu³ = 2KKK³·'Çp³ in ³ × (0, T ),
(2)
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where · is the fracture width. Inspired by the global-in-time optimized Schwarz
method for the case without fractures, we introduce new transmission conditions,
namely Ventcel-to-Robin conditions, by taking linear combinations (for a positive
parameter ³) of the physical transmission conditions (1)-(2):

(3)
2uuui ·nnni + ³pi,³ + Ç³"tpi,³ + divÇ uuu³,i = 2uuuj · nnni + ³pj,³

uuu³,i = 2KKK³·'Çpi,³
on ³ × (0, T ),

for i = 1, 2, and j = (3 2 i). We have introduced Lagrange multipliers pi,³
representing the trace of pi on ³, and defined uuu³,i as the tangential velocity in
the fracture associated with the pressure pi. Based on either (1)-(2) or (3), we
proposed the following four GT-DD methods [4, 7]:

(i) Global-in-time primal Schur (GTP-Schur): This method is based on the
time-dependent Dirichlet-to-Neumann operators and its interface unknown » rep-
resents the fracture pressure p³ .

(ii) Global-in-time dual Schur (GTD-Schur): This is the dual version of the first
method, which uses the time-dependent Neumann-to-Dirichlet operators. Unlike
the standard dual Schur method, two interface unknowns ×1 and ×2 are introduced
representing uuu1 · nnn1|³ and uuu2 · nnn2|³ , since the normal flux may not be continuous
across the fracture-interface.

(iii) Global-in-time fracture-based Schur (GTF-Schur): This is a novel method
typically designed for the reduced fracture model. The interface unknown is the
total flux × := uuu1 ·nnn1|³ + uuu2 ·nnn2|³ , which is used to solve the flow problem in the
fracture to recover p³ . GTF-Schur also uses the Dirichlet-to-Neumann operators
as GTP-Schur, however, a different interface problem is formulated by matching
the sum of the normal fluxes from the subdomains with ×.

(iv) Global-in-time optimized Schwarz (GTO-Schwarz): Unlike the Schur-type
methods, here we consider Ventcel-to-Robin transmission conditions (instead of
the physical ones). Consequently, GTO-Schwarz uses the time-dependent Ventcel-
to-Robin operators and two interface unknowns are introduced representing the
Ventcel term for each subdomain.

GTP-Schur and GTD-Schur need efficient preconditioners for satisfactory con-
vergence, while GTF-Schur requires no preconditioning as its interface operator
is the identity operator. The convergence of GTO-Schwarz is accelerated by opti-
mizing the parameter ³ via the framework of optimized Schwarz waveform relax-
ation [4]. When smaller time steps are used in the fracture and larger ones in the
subdomains, numerical results (for non-immersed and partially immersed fracture
problems [7]) show that only the preconditioned GTD-Schur and the GTF-Schur
give smaller errors in the fracture; the errors by the preconditioned GTP-Schur
and the GTO-Schwarz are the same as those with conforming coarse time steps
on the whole domain. Thus GTF-Schur is the most efficient method in terms of
fast convergence and preserving the accuracy with nonconforming time grids.

Global-in-time DD for the Stokes-Darcy coupling. We consider the inter-
action between a free non-Newtonian fluid flow (governed by the nonlinear Stokes
equations) in Ωf with a porous medium flow (governed by the nonlinear Darcy
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equations in mixed form) in Ωp. On the space-time interface Γ× (0, T ), the follow-
ing transmission conditions to enforce mass conservation, balance of the normal
forces and the Beavers-Joseph-Saffman law are imposed:

uuuf ·nnnf + uuup · nnnp = 0,(4a)

2nnnf · (¿f (|DDD(uuuf )|)DDD(uuuf )2 pfIII) · nnnf = pp,(4b)

2nnnf · (¿f (|DDD(uuuf )|)DDD(uuuf )2 pfIII) · tttj = cBJSuuuf · tttj , j = 1, . . . , d2 1.(4c)

Only equations (4a) and (4b) are coupling conditions between the free fluid flow
and porous medium flow. They can be rewritten equivalently as Robin conditions
(for positive parameters ³p and ³f ):

nnnf · (pfI2 ¿fDDD(uuuf )) · nnnf 2 ³fuuuf · nnnf = pp + ³fuuup · nnnp, on Γ× (0, T ),(5a)

pp 2 ³puuup · nnnp = nnnf · (pf I2 ¿fD(uuuf )) · nnnf + ³puuuf ·nnnf , on Γ× (0, T ).(5b)

GT-DD methods can be developed based on either the physical transmission
conditions (4a)-(4b) or Robin conditions (5). Advantages of such an approach are
that smaller time steps in the fluid region can be coupled with larger time steps in
the porous medium, and stable long-term simulations can be carried out with no
restrictions on the time step sizes. In [6], a GT-Schur method was constructed for
the nonlinear Stokes-Darcy system, which leads to a nonlinear space-time interface
problem. A nested iteration approach was proposed: we linearize the nonlinear in-
terface problem by Newton algorithm, then at each Newton iteration, we solve the
linearized interface problem (globally in time) by GMRES. In [5], a GT-Schwarz
method with Robin conditions was considered and its convergence was proved for
the constant viscosity functions (i.e., linear problems) given that ³p g ³f . Nu-
merical results suggest that the ratio between ³p and ³f must be sufficiently large
in order to obtain expected accuracy in time.
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Agent–based and continuum–based mechanics in medical processes

Fred Vermolen

(joint work with Qiyao Peng, Ginger Egberts, Wietse Boon)

In order to optimise therapies applied to various diseases, it is necessary to un-
derstand the underlying biophysical mechanisms that are occurring in the body.
To validate the developed theoretical framework against clinical observations and
in-vitro experiments, the framework is translated into quantitative relations that
build up a mathematical framework. The mathematical frameworks consist of
(combinations of) algebraic equations, (partial) differential equations and stochas-
tic processes. Here, we deal with mathematical model frameworks for the evolution
of skin after burn injuries and the evolution of growth of tumors and the possible
subsequent metastasis of cancer. However, the focus of the current abstract lies
on burn injuries.

Severe burn injuries and other types of deep tissue injury are characterised by
damage on multiple layers of skin, such as the epidermis, dermis and possibly even
the subcutis. The epidermis consists of epithelial cells (keratinocytes) and usually
heals without any complications. The biological mechanism behind healing is cell
division (proliferation) and cell migration by cellular contact forces and random
walk (diffusion). This mode of healing is commonly referred to as wound closure.
Once the epithelial layer has been restored, then practitioners usually no longer
speak of a wound, but of a scar if the layers underneath have been damaged.
Since the dermal layer consists of collagen (which is the extracellular matrix that
supports the integrity of skin) and of small blood vessels and several cell types
such as, among others, fibroblasts and endothelial cells, the evolution of this layer
of skin is very different from the epidermal layer.

The evolution of the scar proceeds by a chain of biophysical processes, which
involve the coagulation of blood, build up of a provisional fibrin network (hemosta-
sis), the clearing up of contaminants and pathogens by immune cells (inflammatory
response), replacement of fibrin network by regenerated collagen and regeneration
of a network of small blood vessels (proliferative phase) and finally the reinforce-
ment of the collagen structure (remodelling). The presentation mainly covered the
proliferative phase where fibroblasts migrate into the wound area, and where they
secrete collagen. From an evolutionary point of view, it is advantageous in case
of deep tissue injury that the wound area reduces in order to minimise the influx
of contaminants and pathogens. However, in a burn injury, this reduction of area
is not favourable. Nevertheless, this undesirable reduction of area, referred to as
contraction, often takes place in deep burn injuries. This is caused by the differen-
tiation of fibroblasts into myofibroblasts, which exert large pulling forces on their
direct environment. Severe contractions may cause dysfunctioning of joints and
limbs and, in some extreme cases, even disability of patients.

The full mathematical frameworks that describes the interplay between different
cell types, chemical components (chemokines) and collagen can be found in [1]
and [2], where, respectively, an agent–based and continuum–based formulation is
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presented. In this abstract, we summarise some of the results and ideas of our
modelling work.

The first class of models is agent–based. Individual cells are treated where cells
migrate due to processes like chemotaxis (hence as a result of the gradient of the
concentration of a chemical), random walk. We present the description of the
two-dimensional case, the three-dimensional case is treated analogously. The cell
boundary is divided into nodal points, which are connected by line (boundary)
segments (line elements in three dimensions). At the midpoint of each boundary
segment, a force is exerted. For classical linear elasticity, where inertia, viscous
(damping) effects and plastic effects (permanent deformations) are disregarded,
the point forces are treated by a Dirac delta distribution. Let Ω be an open
domain with boundary Γ. Suppose that a force F is exerted at point xi * Ω, then

(1) 2' · Ã = F·(x2 xi),

where Ã = 2µ· + » (' · u)I, the strain is given by · = 1
2 ('u + 'uT ). The

fundamental solution in the 2D (infinite) plane is given by

(2) u(x) = 2 1

8ÃE(12 ¿)

(

(32 4¿) ln(||x 2 xi||)I +
(x 2 xi)· (x 2 xi)

||x2 xi||2
)

F,

where E and ¿, respectively, represent the Young’s modulus and Poisson ratio.
A 3D counterpart has also been derived. It is easily shown that this expression
is not in H1(Ω). D’Angelo has proved well-posedness of a Laplace problem with
a Dirac delta distribution in weighted Sobolev spaces. We are in the process
of demonstrating well-posedness of solutions of the above PDE with appropriate
boundary conditions. Since we consider the cell boundary as a (moving) manifold,
we sum over all cell boundary points and multiply by the measure (length in 2D
and area in 3D) of the boundary element, to get

(3) 2' · Ã =
∑

i

Q(xi)·(x2 xi)n(xi)∆Γ(xi),

where Q represents the force per unit of measure. In case of multiple cells, sum-
mation over all cells is applied. Using the fundamental solution and superposition
(due to linearity of the PDE), one obtains the following solution in the 2D plane

(4)

u(x) = 2 1

8ÃE(12 ¿)

∑

i

(

(32 4¿) ln(||x2 xi||)I

+
(x2 xi)· (x2 xi)

||x2 xi||2
)

Q(xi)n(xi)∆Γ(xi),

In [3] regularized Dirac delta distribution by Gaussian functions are considered, as
well as consistency and convergence between the regularized and nonregularized
distributions.

Since in reality, tissues contain water (blood) to a large extent and since the
myofibroblasts release chemicals that change the mechanical properties and struc-
ture of collagen, the above formalism is enriched with morphoelasticity, which
keeps track of permanent deformations of the tissue. The morphoelastic frame-
work is based on three ’deformation states’: the initial state, the current state and
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a revised equilibrium state. The difference between the revised equilibrium state
and the initial state reflects the permanent displacements and deformation of the
tissue. The partial differential equations for morphoelasticity are given by

Ã(
Dv

Dt
+ (' · v)v) 2' · Ã = F(5)

D·

Dt
+ (' · v)·+ · skw('v) 2 skw('v) ·+ (tr(·)2 1) sym('v) = 2G,(6)

where v and ·, respectively, denote the displacement velocity and effective Eulerian
strain. The skw(.), sym(.) and tr(.) operators, respectively, denote the skew
symmetric of a tensor, symmetric part of a tensor and the trace of a tensor. The
above set of PDEs is solved with initial and boundary conditions for v and an initial
condition for ·. The forcing is denoted by F and rate of permanent displacements
(and deformations) is quantified by the tensor G. The displacement is obtained
by integration of v over time.

This morphoelasticity formulation is also applied to a full continuum-based
model. The continuum–based model involves PDEs for the densities of cells (fi-
broblasts and myofibroblasts), a chemokine and the density of collagen, as well
as the PDEs for morphoelasticity. The model can be found in [2]. The patient–
specific nature of many of the input parameters brings in uncertainty in the out-
comes. For this reason, a stability analysis [2] and a Bayesian parameter sensitivity
analysis for the 1D case has been done [4]. The finite element implementation has
been done in 1D and in 2D. In the 2D case, a moving mesh ALE method has
been implemented on the basis of linear Lagrangian basis functions. The mesh
quality is monitored by checking the angles of the triangles. If the mesh quality is
lower than a predefined tolerance, then global remeshing is applied. Using the 2D
computational framework, several wound geometries are currently being analysed.

The uncertainty in the modelling framework necessitates interpretation of the
modelling outcomes in a statistical sense, where we estimate (posterior) proba-
bility distributions on the basis of prior probability distributions for the input
parameters. This Bayesian framework is also used for the reproduction of the
finite element results by a neural network, which yields very quick estimations of
the statistical parameters of interest that can be used by clinicians.
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From Micro to Macro: Sediment Transport Simulations with a Fully
Resolved Lattice Boltzmann - Discrete Element Method

Christoph Rettinger

(joint work with Ulrich Rüde, Bernhard Vowinckel)

Sediment transport denotes the mobilization of densely packed particles through
the action of a flowing fluid in which the sediments are entrained. It, thus, natu-
rally occurs in rivers and seas and is a fascinating geophysical multiscale problem.
On the microscale, the onset and characteristics of this movement depend, e.g., on
the local flow strength and individual grain properties like size and shape. These
features result in a grain-selective transport that becomes visible on the macroscale
as bed structures like ripples and dunes and effects like downstream-fining in rivers.
As these determine the typical spatial and temporal scales of interest for engineers,
corresponding macroscale models have been developed that view the system as two
continua, fluid and solid. For a successful application, however, they require clo-
sure relations obtained from accurate studies at the microscale.

Simulations that assist this upscaling procedure by providing predictive results
have to apply thoroughly validated numerical methods and typically very fine tem-
poral and spatial resolutions to accurately capture all relevant features of the fluid-
particle interaction. These simulation requirements result in high computational
costs that can only be tackled by high-performance computing (HPC) and specifi-
cally designed algorithms. Recently, we developed such a tool for dense particulate
flows [5] within the HPC multiphysics framework waLBerla [2]. It employs the
lattice Boltzmann method (LBM) to model the fluid flow above the bed and inside
the pores. The discrete element method (DEM) accounts for frictional collisions
between particles. The coupling is based on the momentum exchange of both
phases, augmented by lubrication correction models to capture strong short-range
hydrodynamic interactions between particles. All components work on strictly
localized parts of the complete simulation data, making this approach well-suited
for massively parallel execution on supercomputers.

Its usefulness in the context of multiscale analysis has recently been demon-
strated by deriving a rheological description of sediment bed dynamics [6]. These
studies are based on the so-called µ(J) rheology framework [3], which links the
macroscopic friction coefficient µ and the particle volume fraction Ç to the viscous
number J , a non-dimensional measure for the shear rate. In previous laboratory
experiments [3, 4], this framework has already been successfully parameterized
and applied to describe the behavior of packed beds consisting of monodisperse
spheres.

Our simulations studied a similar setup featuring several ten thousand fully
resolved particles that initially form a packed bed and are subject to a laminar
Couette-type flow. Once a statistically stationary state was observed, we extracted
the relevant rheological properties via spatial and temporal averages. We found
a close agreement to these experimental results for a monodisperse bed. In par-
ticular, we could confirm the so-called creep regime for very low viscous numbers
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that was before then only observed by Houssais et al. [4] and was debatable due
to possible experimental imperfections. Based on the further evidence from our
simulation results, we proposed an extension to the original µ(J) model to cover
this regime as well. The complete model that captures the system’s rheological
behavior is then given as:

(1) µ(J) = µ0 +
µ1 2 µ0

1 + Jc/J
︸ ︷︷ ︸

µc

+
µ2 2 µ1

1 + Jf/J
︸ ︷︷ ︸

µf

+
5

2
ÇmJ

1/2 + J,
︸ ︷︷ ︸

µh

(2) Ç(J) =
Çm

1 + (KnJ)1/2
.

The first relation is composed of the hydrodynamic (µh), the frictional (µf ), and
the newly added creep (µc) regime. The model depends on the maximum particle
volume fraction Çm and features empirically determined parameters µ0, µ1, µ2,
Jc, Jf , and Kn.

Since most sediment beds exhibit differently-sized particles, we carried out sim-
ulations of polydisperse setups by sampling the particle diameter from a log-normal
distribution with different variance values. We could show that the above rheolog-
ical relations are equally applicable for these cases, given that the parameters µ1,
µ2, and Kn are adjusted correspondingly. By expressing these parameters as func-
tions of Çm, which increased with the degree of polydispersity and was thus taken
as a surrogate to express it, we obtained a general rheology model for polydisperse
packings.

These extensions showcased how macroscale models can benefit from simula-
tions at the microscale. For further advances on the modeling side, the proposed
generalized parameterization based on Çm as the sole measure for polydispersity
should be challenged by considering bimodal or other size distributions. In those
cases, the vertical size-based segregation process might need to be addressed ex-
plicitly as it continuously changes the local bed composition. This behavior could
prevent the formation of a statistically stationary state which is, however, required
to extract averaged rheological quantities. Moreover, the effect of particle shape is
also largely unknown. Incorporating non-spherical shapes in the microscale simu-
lation leads to additional challenges regarding complex numerical algorithms and
their in-depth validation.

Mathematically, an in-depth analysis of the macroscale models is necessary to
ensure their stable numerical solution. It has recently been noticed that applying
the µ(J) rheology in granular flow models can result in an ill-posed problem that
requires regularization [1]. This issue has to be investigated for the proposed
extended rheology model and in the context of two-phase models. Only then do
larger systems like rivers become computationally accessible in a robust manner.
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[5] C. Rettinger, U. Rüde, An efficient four-way coupled lattice Boltzmann - discrete element
method for fully resolved simulations of particle-laden flows, J. Comput. Phys. 453 (2022)
110942.
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Reduced models for multiscale industrial structures : beyond
homogeneization

Patrick Le Tallec

(joint work with Bertrand Leturcq)

In memoriam of Roland Glowinski 1937-2022, great scientist, leader and friend.

Progressive deformation of nuclear fuel assemblies that occurs during a succession
of irradiation cycles within a nuclear reactor is at the core of numerous inter-
actions. Its study requires a mechanical model of fuel assemblies, taking into
account irradiation growth and creep, the different friction mechanisms within the
structure, to be combined to a hydraulic model of the core to address the fluid-
structure interaction phenomenology. A multiscale approach is required due to
the high complexity of the multi-body multi-physics calculations, which involves
something like 4 million contact surfaces and up to sixty thousands fuel rods. In
order to improve the representativeness of the core model without penalizing the
computational cost of the coupled simulations, model order reduction can be pro-
posed at the scale of each of the 241 fuel assemblies present at the reactor core.
It borrows the concepts of the Nonlinear Transformation Field Analysis (NTFA)
as used in non-linear homogenization [1]. The theoretical formulations and the
application to slender structures with friction and nonlinear creep are discussed
below, together with the questions which are left open when trying to give a more
theoretical ground to the proposed strategy.

The engineering challenge is to limit the fuel assemblies permanent bows which
can be at the origin of costly incidents during the pull out or of poor functioning
of the reactor’s control safety bars. The phenomena to take into account include
the non uniform irradiation growth of the fuel rods, the irradiation creep of the
structure, the existence of dry friction forces, and the heterogeneous relaxation
of the holding springs. The collective response of the hundreds of fuel assemblies
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inside the core couples the global effect of the external loading, the localized creep
of the structural elements and the local evolution of the friction force inside each
holding spring. The time scale is of the order of one year and corresponds to
a reactor loading cycle. The spatial scale ranges from a rod length of 5m to
fixing sizes of 1mm. A full model would require more than 200 millions degrees
of freedom and a considerable effort in the local integration of creep, contact and
friction. Model reduction is thus needed.

The idea herein is to consider a single fuel assembly as the representative volume
element (RVE) classically used in multiphase homogeneisation. In this framework,
the solution within a RVE in presence of creep and friction is historically obtained
by by Transformation Field Analysis (TFA) as introduced by [2] and [3]. In their
construction, these authors decide to choose a limited number of phases within the
RVE, each nonlinear phase being supposed to be uniform in space. This very crude
approximation allows to apply the original constitutive law (creep or friction) to
predict the evolution of the constitutive variable inside the phase p (namely the
evolution of the irreversible strain field ·inp for a problem of creep) at the scale
of each nonlinear phase. For an RVE with elasticity tensor L, given history of
irreversible strain ·inp and subjected to a given macro deformation ·̄ imposed in
average to the RVE, the resulting stress field to be used in a global equilibrium
equation can be explicitly given at all points by

Ã = L : A : ·̄+
∑

p

L : (Dp 2 Ip)·
in
p

with localisation and influence tensors A and Dp obtained a priori by solving
elementary elasticity problems at the scale of the RVE.

The NTFA strategy of [1] proposes a more accurate approximation of the in-
elastic strain fields ·inp by replacing the constant fields by a linear expansion on an
orthogonal basis of strain modes µp obtained at a controlled accuracy by Proper
Orthogonal Decomposition (POD) based on a collection of precomputed snap-
shots. The challenge is then to project the nonlinear constitutive law on these
modes without using local integration on each RVE and at each time step, which
would be of the same complexity as the original multiscale problem. A simple but
efficient averaging rule is proposed in [1] for constitutive laws based on a nonlinear
dissipation potential controlled by the local Von Mises equivalent stress Ãeq

·̇inp :=
1

V

∫

V

·̇in : µpdV =
1

V

∫

V

3

2

"Ë

"Ãeq
(Ãeq)

Ã2 : µp

Ãeq
dV

j 1

V

3

2sr

"Ë

"Ãeq
(sr)

∫

V

Ã2 : µpdV

with s2r =< Ã2
eq > the volume average of the square of the local Von Mises equiv-

alent stress. The above integral is a linear combination of a small number of
precomputed dissipation integrals. The function s2r is a quadratic function of the
stress field, hence reduces to a quadratic form directly computed in terms of modes
with no need of an element wise integration of the detailed model at each time
step. This results in a considerable gain of computing time and turns out to be
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very efficient for mildly nonlinear creep. It can be generalized to situations with
space variable coefficients or involving more complex anisotropic laws [4] .

Extending this approach to nonlinear industrial structures requires two addi-
tional ingredients in order to extend the notion of imposed deformation to a com-
plex substructure and to build a sign preserving modal expansion of the contact
forces. For the first point, we use a domain decomposition strategy. A substructure
like a fuel assembly is a natural subdomain of the full structure, and its motion
can be accurately controlled by the rigid body motions of each of its interface with
the global structure. In this framework, the ”global deformation” of a single fuel
assembly is defined by the three translational modes of each of its 11 spacing grids.

The modal expansion of the contact forces uses a positive decomposition of
contact forces snapshots X on r positive modes using a Non negative Matrix Fac-
torisation X j Λ̂H obtained by least squares minimization of the approximation

error using alternating directions. The result is a modal matrix Λ̂ of r positive
columns (typically r j 10). The local contact conditions are then transferred to
the reduced model through a simple projection of the contact constraints on these
positive modes. Last, a modal basis of slip displacements is obtained by POD, to
be combined to averaged stick slip criteria written at mode level.

Altogether, the reduced model uses the full elastic problem but with a reduced
nonlinear loading, based on simplified boundary conditions, reduced creep laws
(as in standard NTFA) to get the evolution of the creeping modes, reduced (NMF
projected) contact conditions to get the reduced normal forces, and a NTFA like
reduced friction law to get the evolution of each slipping mode. With this loading
reduction, the local solution can be explicitly obtained from a small set of precom-
puted elementary elastic solutions. The numerical tests indicate that considerable
cost reduction (a factor of 20 to 100) can be achieved while preserving engineering
accuracy.

The proposed strategy is quite general. It embeds an error control in the modal
construction of the boundary displacements and of the creep modes. The open
problems concern on one hand the error analysis of the NTFA averaged mate-
rial law and on the other hand the combined control of the modal expansion of
the contact forces and of the slipping modes in order to improve robustness and
accuracy.
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