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Abstract. Graph theory is a quickly developing area of mathematics, with
an increasing number of connections to various parts of mathematics and
computer science. The workshop aimed at bringing together a broad range of
researchers at various career stages to discuss recent exciting developments,
in particular, the Product Structure Theorem and progress towards the res-
olution of Hadwiger’s Conjecture. While the workshop was impacted by the
COVID pandemic, it still offered many interesting talks, which updated its
participants on recent developments covering the whole breadth of graph the-
ory, and collaboration opportunities.
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Introduction by the Organizers

Graph theory has seen many substantial developments in the last two years, most
of which have been presented and discussed at the workshop. In particular, the
Tuesday afternoon was devoted to discussing the Product Structure Theorem and
its applications. The workshop was attended by 58 participants, 16 attending on-
site and 42 remotely. Many attendees switched from on-site participation to remote
one during the Christmas break (as of December 14, there were 33 participants
registered to attend on-site), in particular, because of the new travel restrictions
for those arriving from the UK imposed by Germany on December 19 and the
general anticipation of the coming Omicron wave. We have been pleased that
the workshop attendees included many early career researchers and females; the
diversity of the workshop attendees was also reflected in the selection of those
giving the talks during the workshop. The geographic diversity of the participants
with many remote attendees connecting from distant time zones put additional
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constraints on the workshop schedule, however, making the recordings of the talks
available during the workshop helped those participating from distant locations
to follow the workshop. To facilitate collaboration and communication among
on-site and remote participants, we also set up a Discord server where workshop
announcements were posted and channels to discuss particular research problems
were provided.

The schedule of the workshop spanned the whole week, starting on Monday at
9:00am and concluding on Friday at 6:15pm. Each day started with a 50-minute
talk discussing a major recent development. On Monday, the talk was followed
by 5-minute minipresentations given by all on-site participants; the minipresenta-
tions were supposed to introduce them and their research areas to others. On the
remaining days of the workshop, the long talk was followed by a single 25-minute
talk and the rest of the morning was devoted to collaborative work. This arrange-
ment was made to enable the remote participants based in Canada and the US,
who formed the majority of remote participants, to contribute actively to most
of the discussion following of the scheduled talks. Each of the afternoons, except
Wednesday, started with a 50-minute talk. On Monday, the talk was followed by
an open problem session, which many on-site and remote participants contributed
to. Many of the problems presented in the session were discussed and some even
solved during the following week. In particular, the counterexample constructed
by James Davies to a conjecture posted by Nicolas Trotignon is presented further
in the report. On Tuesday, Thursday and Friday, the afternoon program contained
additional three 25-minute talks.

One of the scientific highlight of the workshop was a series of talks on Tuesday
afternoon, which concerned the Product Structure Theorem and its applications.
The Product Structure Theorem asserts every planar graph is subgraph of a prod-
uct of a tree-like graph and a path, a remarkable result giving new insights in the
structure of planar graphs and yielding a completely new way to approach some
notoriously difficult problems concerning planar graphs. The series was started by
Vida Dujmović, who presented the Theorem and its proof in her 50-minute talk.
Some of many applications of the Theorem, both in mathematics and computer
science, were covered in the subsequent talks by Gwenaël Joret and Piotr Micek.

The remaining seven 50-minute talks updated the workshop participants on
major recent developments in graph theory in addition to the Product Structure
Theorem. Marthe Bonamy presented her recent proof on Gallai’s Path Decom-
position Conjecture for planar graphs. Maria Chudnovsky talked about her fasci-
nating work on tree-width of graphs with forbidden induced subgraphs. Reinhard
Diestel introduced a general canonical way of decomposing graphs that capture
their global structure. Jacob Fox updated the participants on his recent results
on size Ramsey numbers of graphs. Tom Kelly presented a solution of Erdős-
Faber-Lovász conjecture, a breakthrough result that attracted attention of many
mathematicians, e.g., Tim Gowers commented on the solution of the conjecture in
his tweet as follows: It’s one of those lovely statements that sounds as though it
should be either easyish to prove or false, but that turns out to be neither. Stephan
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Kreutzer discussed in his talk extensions of the theory of graph minors to directed
graphs, an intriguing research direction that keeps attracting attention of graph
theorists for over two decades, and indeed, the topics from his talk led to several
follow up discussions during the workshop. Finally, Luke Postle presented his re-
cent substantial steps towards proving Hadwiger’s Conjecture that he contributed
to.

While the workshop was severely impacted by the pandemic, the impact was
mitigated to the largest possible extent by excellent technical facilities for hybrid
meetings that the Oberwolfach Research Institute offers. We would like to particu-
larly thank the Oberwolfach staff for running the Institute’s program so smoothly
despite all challenges related to the pandemic. We are also indebted to Samuel
Mohr, one of the participants, who kindly agreed to help with operating technical
facilities provided by the Institute and greatly contributed to make the workshop
run so smoothly, and to Carla Groenland for her help with preparing this report.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Bojan Mohar and Bhargav Narayanan in the “Simons
Visiting Professors” program at the MFO.
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Matija Bucić (joint with Jacob Fox and Benny Sudakov)
Clique minors in graphs with a forbidden subgraph . . . . . . . . . . . . . . . . . . . 12

Johannes Carmesin
Local Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Maria Chudnovsky (joint with Tara Abrishami, Sepehr Hajebi and Sophie
Spirkl)
Induced subgraphs and tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

James Davies
Pivot-minor-closed classes are χ-bounded . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Reinhard Diestel
Global-local decompositions of graphs via coverings . . . . . . . . . . . . . . . . . . . 23

Vida Dujmović
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Abstracts

Gallai’s path-decomposition conjecture

Marthe Bonamy

(joint work with Alexandre Blanché and Nicolas Bonichon)

Given a graph G, a k-path decomposition of G is a partition of edges of G in
k paths. In 1968 [2], Gallai stated this simple but surprising conjecture: every
finite undirected connected graph on n vertices admits a ⌈n

2 ⌉-path decomposition.
Gallai’s conjecture is still unsolved as of today, and has only been confirmed on
very specific classes of graphs.

An odd semi-clique is obtained from a clique on 2k + 1 vertices by deleting at
most k − 1 edges. Bonamy and Perrett asked the following question [1, Question
1.1]: Does every connected graph G that is not an odd semi-clique admit a ⌊n

2 ⌋-
path decomposition?

We answer this question positively for planar graphs. Only two odd semi-cliques
are planar: the triangle K3 and K5 minus one edge, which we denote by K−

5 (see
Figure 1). We can therefore state the result as follows:

Theorem 1. Every connected planar graph G on n vertices except K3 and K−
5

can be decomposed in ⌊n
2 ⌋ paths.

2

1

1

1

1

1 1

2 2

2 2

3

Figure 1. On the left a 2-path decomposition of K3 and on the
right a 3-path decomposition of K−

5

To prove this theorem we first show that any minimal counter example must
satisfy a list of properties, then argue that there is no such graph.
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[1] M. Bonamy and T. Perrett, Gallai’s path decomposition conjecture for graphs of small
maximum degree, Discrete Mathematics 342.5 (2019): 1293–1299.

[2] L. Lovász, On covering of graphs, Theory of Graphs (ed. P. Erdős, G. Katona), Akad. Kiadó,
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Clique minors in graphs with a forbidden subgraph

Matija Bucić

(joint work with Jacob Fox and Benny Sudakov)

A graph Γ is said to be a minor of a graph G if for every vertex v of Γ we can
choose a connected subgraph Gu of G, such that subgraphs Gu are vertex disjoint
and G contains an edge between Gv and Gv′ whenever v and v′ make an edge in
Γ. The notion of graph minors is one of the most fundamental concepts of modern
graph theory and has found many applications in topology, geometry, theoretical
computer science and optimisation. Many of these applications have their roots in
the celebrated Robertson-Seymour theory of graph minors, developed over more
than two decades and culminating in the proof of Wagner’s conjecture [13]. One
of several equivalent ways of stating this conjecture is that every family of graphs,
closed under taking minors can be characterised by a finite family of excluded
minors. A forerunner to this result is Kuratowski’s theorem [9], one of the most
classical results of graph theory dating back to 1930. In a reformulation due to
Wagner it postulates that a graph is planar if and only if neither K5 nor K3,3 are
its minors.

Another cornerstone of graph theory is the famous 4-colour theorem dating
back to 1852 which was finally settled with the aid of computers in 1976 by [1].
It states that every planar graph G has chromatic number at most four. In light
of Kuratowski’s theorem, Wagner has shown that in fact the 4-colour theorem is
equivalent to showing that every graph without K5 as a minor has χ(G) 6 4. In
1943 Hadwiger proposed a natural generalisation, namely that every graph with
χ(G) > r has Kr as a minor. Hadwiger’s conjecture is known for r 6 5 (for the
case of r = 5 see [14]) but despite receiving considerable attention over the years
it is still widely open for r > 6, see [15] for the current state of affairs.

Here we study the question of how large a clique minor can one guarantee
to find in a graph G which belongs to a certain restricted family of graphs. A
prime example of this type of problems is Hadwiger’s conjecture itself. Another
natural example asks what happens if instead of restricting the chromatic number
we assume a lower bound on the average degree. Note that χ(G) > r implies that
G has a subgraph of minimum degree at least r − 1. So the restriction in this
problem is weaker than in Hadwiger’s conjecture and we are interested in how far
can this condition take us. This question, first considered by Mader [11] in 1968,
was answered in the 80’s independently by Kostochka [8] and Thomason [16] who
show that a graph of average degree r has a clique minor of order Θ(r/

√
log r).

This is best possible up to a constant factor as can be seen by considering a random
graph with appropriate edge density (whose largest clique minor was analysed by
Bollobás, Catlin and Erdős in [3]).

This unfortunately means that this approach is not strong enough to prove Had-
wiger’s conjecture for all graphs. For almost four decades, bounding the chromatic
number through average degree and using the Kostochka-Thomason theorem gave
the best known lower bound on the clique minor given the chromatic number. Very
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recently, Norin, Postle, and Song [12] got beyond this barrier and following a series
of works Delcourt and Postle [4] obtained the currently best result, by showing
that every graph of chromatic number r has a clique minor of size Ω(r/ log log r).
This still falls short of proving Hadwiger’s conjecture for all graphs.

However, if we impose some additional restrictions on the graph it turns out
we can do much better. One of the most natural restrictions, frequently studied
in combinatorics, is to require our graph G to be H-free for some other, small
graph H . This problem was first considered by Kühn and Osthus [10] who showed
that given s 6 t every Ks,t-free graph with average degree r has a clique minor

of order Ω
(

r1+2/(s−1)/ log3 r
)

. The polylog factor in this result was subsequently
improved by Krivelevich and Sudakov who obtained in a certain sense the best
possible bound. They also obtain tight results, for the case of C2k-free graphs.
These results show Hadwiger’s conjecture holds in a stronger form for any H-free
graph, provided H is bipartite. On the other hand, if H is not bipartite then
taking G to be a random bipartite graph shows that the bound of Kostochka [8]
and Thomason [16] can not be improved.

A natural next question is whether we can do better if we assume a somewhat
stronger condition than a bound on the average degree or the chromatic number.
A natural candidate is an upper bound on α(G), the size of a largest independent
set in G. Indeed, the chromatic number of a graph G is at least n/α(G). An
old conjecture, which is implied by Hadwiger’s conjecture, (see [15]) states that if
α(G) 6 r then G has a clique minor of order n/r. Duchet and Meyniel [5] showed
in 1982 that this conjecture holds within a factor of 2, following a number of slight
improvements Fox [7] gave the first improvement of the multiplicative constant 2.
Building upon the ideas of [7], Balogh and Kostochka [2] obtain the best known
bound to date.

In light of these results, Norin asked whether in this case assuming additionally
that G is triangle-free allows for a better bound. This question was answered in the
affirmative by Dvořák and Yepremyan [6] who show that for n/r large enough, a

triangle-free n-vertex graph with α(G) 6 r has a clique minor of order (n/r)1+
1
26 .

They naturally ask if the same holds if instead of triangle-free graphs we consider
Ks-free graphs. We show that this is indeed the case.

Theorem 1. Let s > 3 be an integer. Every Ks-free n-vertex graph G with

α(G) 6 r has a clique minor of order at least (n/r)1+
1

10(s−2) , provided n/r is large
enough.

For the case of s = 3 our result has a simpler proof and gives a better constant
in the exponent compared to that in [6]. As an additional illustration we use our
strategy to obtain a short proof of a result of Kühn and Osthus [10] about finding
clique minors in Ks,t-free graphs. The above-mentioned two examples put quite
different restrictions on the structure of the underlying graph, nevertheless our
approach performs well in both cases. This leads us to believe that our strategy,
or minor modifications of it, could provide a useful tool for finding clique minors
in graphs under other structural restrictions as well.



14 Oberwolfach Report 1/2022

Method Given a graph G our strategy for finding minors of large average degree
goes as follows:

(1) We independently colour each vertex of G red with probability p and blue
otherwise.

(2) Each blue vertex chooses independently one of its red neighbours (if one
exists) uniformly at random.

This decomposes the graph into stars, either centred at a red vertex with leaves
being the blue vertices, which have chosen the central vertex as their red neighbour
or being isolated blue vertices which had no red neighbours to choose from. We
obtain our random minor M(G, p) by contracting each star into a single vertex
and deleting the isolated blue vertices.

We note that similar strategies were employed by both Kühn and Osthus [10],
and Dvořák and Yepremyan [6]. Our strategy above streamlines their approaches
for finding dense minors. This helps us to develop a new way of analysing the
outcome, allowing us to answer the above question of Dvořák and Yepremyan [6]
as well as to obtain simpler proofs of the results of both [10] and [6].
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Local Separators

Johannes Carmesin

Tree-decompositions and corresponding methods to split graphs along separators
are a central tool in algorithmic as well as structural graph theory. It is a natural
step to consider local separators of graphs, vertex sets that split graphs only locally.

Similar to the fact that tree-decompositions can be viewed as a set of non-
crossing genuine separators, a set of non-crossing local separators can be subsumed
as a decomposition of the graph along a genuine decomposition graph. This ex-
tends tree-decompositions by allowing genuine decomposition graphs. In recent
years we have used these ideas to solve the following problems:

• extend Whitney’s planarity criterion from the plane to arbitrary surfaces
• a duality theorem characterising graphs containing bounded subdivisions
of wheels

• a local strengthening of the block-cutvertex theorem
• a local strengthening of the 2-separator theorem
• a criterion to detecting normal subgroups in finite groups
• a decomposition theorem for graphs without cycles of intermediate length

We expect that these methods will be applied further in parallel computing for
large networks.

One of the big challenges in Graph Theory today is to develop methods and
algorithms to study sparse large networks; that is, graphs where the number of
edges is about linear in the number of vertices, and the number of vertices is
so large that algorithms whose running time is estimated in terms of the vertex
number are not good enough. Important contributions that provide partial results
towards this big aim include the following.

(1) Bejamini-Schramm limits of graphs. Bejamini and Schramm intro-
duced a notion of convergence of sequences of graphs that is based on
neighbourhoods of vertices of bounded radius in [3]. Applications of these
methods include: testing for minor closed properties [4] by Benjamini,
Schramm and Shapira or the proof of recurrence of planar graph limits by
Gurel-Gurevich and Nachmias [8].

(2) From Graphons to Graphexes. Graphons have turned out to be a
useful tool to study dense large networks [10, 11]. Motivated by these
successes, analogues for sparse graph limits are proposed in [5, 6, 9].

(3) Graph Clustering. The spectrum of the adjacency matrix of a graph
can be used to identify large clusters, see the surveys [19] or [17].

(4) Nowhere dense classes of graphs. In their book [12], Nešetřil and
Ossana de Mendez systematically study a whole zoo of classes of sparse
graphs and the relation between these classes.

(5) Refining tree-decompositions techniques. Empirical results by Ad-
cock, Sullivan and Mahoney suggest that some large networks do have
tree-like structure [1]. In [2], these authors say that: ‘Clearly, there is a
need to develop Tree-Decompositions heuristics that are better-suited for
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the properties of realistic informatics graphs’. And they set the challenge
to develop methods that combine the local and global structure of graphs
using tree-decompositions methods.

Much of sparse graph theory – in particular of graph minor theory – is built
upon the notion of a separator, which allows to cut graphs into smaller pieces,
solve the relevant problems there and then stick together these partial solutions to
global solutions. These methods include: tree-decompositions [14], the 2-separator
theorem and the block-cutvertex theorem, Seymour’s decomposition theorem for
regular matroids [18], as well as clique sums and rank width decompositions [13].
Understanding the relevant decomposition methods properly is fundamental to
recent breakthroughs such as the Graph Minor Theorem [15] or the Strong Perfect
Graph Theorem [16]. As whether a given vertex set is separating depends on each
vertex individually. So in the context of large networks it is unfeasible to test
whether a set of vertices is separating. We believe that in order to extend such
methods from sparse graphs to large networks, it is key to answer the following
question. What are local separators of large networks?

Here, we answer this question. Indeed, we provide an example demonstrating
that the naive definition of local separators misses key properties of separators.
Then we introduce local separators of graphs that lack this defect. Our new
methods have the following applications.

(1) A unique decomposition theorem for graphs along their local 2-separators
analogous to the 2-separator theorem;

(2) an exact characterisation of graphs with no bounded subdivision of a
wheel. This connects to direction (4) outlined above;

(3) an analogue of the tangle-tree theorem of Robertson and Seymour, where
the decomposition-tree is replaced by a general graph. This connects to
direction (5).

Figure 1. The graph C6 ⊠K1.
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Example 1. What is the structure of the graph in 1? According to the 2-separator
theorem, this graph is 3-connected and hence a basic graph that cannot be decom-
posed further. In this paper, however, we consider finer decompositions and ac-
cording to our main theorem, the structure of this graph is: a family of complete
graphs K4 glued together in a cyclic way.

Our results. The 2-separator theorem1 (in the strong form of Cunningham
and Edmonds [7]) says that every 2-connected graph has a unique minimal tree-
decomposition of adhesion two all of whose torsos are 3-connected or cycles. We
work with the natural extension of ‘tree-decompositions’ where the decomposition-
tree is replaced by an arbitrary graph. We refer to them as ‘graph-decompositions’.

Addressing the challenge set by Adcock, Sullivan and Mahoney, our main result
is the following local strengthening of the 2-separator theorem.

Theorem 2. For every r ∈ N∪ {∞}, every connected r-locally 2-connected graph
G has a graph-decomposition of adhesion two and locality r such that all its torsos
are r-locally 3-connected or cycles of length at most r.

Moreover, the separators of this graph-decomposition are the r-local 2-separators
of G that do not cross any other r-local 2-separator.
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[12] Jaroslav Nešeťril and Patrice Ossona de Mendez. Sparsity: graphs, structures, and algo-
rithms. Springer, 2012.

1See [7, Section 4] for an overview of the history of the 2-separator theorem, see also [18].



18 Oberwolfach Report 1/2022

[13] Sang-il Oum. Rank-width and vertex-minors. J. Combin. Theory, Series B, 95(1):79–100,
2005.

[14] N. Robertson and P.D. Seymour. Graph minors. X. Obstructions to tree-decompositions.

J. Combin. Theory, Series B, 52:153–190, 1991.
[15] Neil Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. J. Combin.

Theory Ser. B, 92(2):325–357, 2004.
[16] Neil Robertson, Robin Thomas, Maria Chudnovsky, and Paul D Seymour. The strong perfect

graph theorem. Annals of mathematics, 164(1):51–229, 2006.
[17] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.
[18] Paul D Seymour. Decomposition of regular matroids. J. Combin. Theory, Series B,

28(3):305–359, 1980.
[19] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–

416, 2007.

Induced subgraphs and tree decompositions

Maria Chudnovsky

(joint work with Tara Abrishami, Sepehr Hajebi and Sophie Spirkl)

For a graph G = (V (G), E(G)), a tree decomposition (T, χ) of G consists of a tree
T and a map χ : V (T ) → 2V (G) with the following properties:

(i) For every v ∈ V (G), there exists t ∈ V (T ) such that v ∈ χ(t).
(ii) For every v1v2 ∈ E(G), there exists t ∈ V (T ) such that v1, v2 ∈ χ(t).
(iii) For every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is

connected.

For each t ∈ V (T ), we refer to χ(t) as a bag of (T, χ). The width of a tree de-
composition (T, χ), denoted by width(T, χ), is maxt∈V (T ) |χ(t)|− 1. The treewidth
of G, denoted by tw(G), is the minimum width of a tree decomposition of G.

Treewidth, first introduced by Robertson and Seymour in their monumental
work on graph minors, is an extensively studied graph parameter, mostly due to
the fact that graphs of bounded treewidth exhibit interesting structural [6] and
algorithmic [3] properties. Accordingly, one would naturally desire to understand
the structure of graphs with large treewidth, and in particular the unavoidable
substructures emerging in them. For instance, for each k, the (k×k)-wall, denoted
by Wk×k, is a planar graph with maximum degree three and with treewidth k (see
Figure 1; a precise definition can be found in [2]). Every subdivision of Wk×k

is also a graph of treewidth k. The unavoidable subgraphs of graphs with large
treewidth are fully characterized by the Grid Theorem of Robertson and Seymour,
the following.

Theorem 1 ([5]). There is a function f : N → N such that every graph of treewidth
at least f(k) contains a subdivision of Wk×k as a subgraph.

Following the same line of thought, our motivation is to study the unavoid-
able induced subgraphs of graphs with large treewidth. Together with subdivided
walls mentioned above, complete graphs and complete bipartite graphs are easily
observed to have arbitrarily large treewidth: the complete graph Kt+1 and the
complete bipartite graph Kt,t both have treewidth t. Line graphs of subdivided
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Figure 1. W5×5

walls form another family of graphs with unbounded treewidth, where the line
graph L(F ) of a graph F is the graph with vertex set E(F ), such that two vertices
of L(F ) are adjacent if the corresponding edges of G share an end. One may ask
whether these graphs are all we have to exclude as induced subgraphs to obtain a
constant bound on the treewidth:

Question 2. Is it true that for all k, t, there exists c = c(k, t) such that every
graph with treewidth more than c contains as an induced subgraph either a Kt, or
a Kt,t, or a subdivision of Wk×k or the line graph of a subdivision of Wk×k?

Sintiari and Trotignon [7] provided a negative answer to this question. To
describe their result, we require a few more definitions. Let H be a graph. We say
G contains H if G has an induced subgraph isomorphic to H . We say G is H-free
if G does not contain H . For a family H of graphs we say that G is H-free if G
is H-free for every H ∈ H. Given a graph G, a path in G is an induced subgraph
of G that is a path. A hole in a graph is an induced cycle of length at least four.
The length of a hole or a path is the number of edges in it.

A theta is a graph consisting of two non-adjacent vertices a, b and three paths
P1, P2, P3 from a to b of length at least two, such that P ∗

1 , P
∗
2 , P

∗
3 are pairwise

disjoint and anticomplete to each other. Note that the complete bipartite graph
K2,3 is a theta. Also, it is readily seen that for large enough k, all subdivisions of
Wk×k contain thetas, and of course line graphs of subdivisions of Wk×k contain
triangles. So the following theorem provides a negative answer to Question 2.

Theorem 3 ([7]). For every integer ℓ > 1, there exists a (theta, triangle)-free
graph Gℓ such that tw(Gℓ) > ℓ.

However, it was immediately observed that graphs in 3 contain vertices of arbi-
trarily large degrees. In [1] it was conjectured conjectured that for every k, every
graph with bounded maximum degree and sufficiently large treewidth contains
either a subdivision of the (k × k)-wall or the line graph of a subdivision of the
(k×k)-wall as an induced subgraph. In [2] two theorems supporting this conjecture
are proved; we will describe them next.

First let us define two more types of graphs. A pyramid is a graph consisting of
a vertex a and a triangle {b1, b2, b3}, and three paths Pi from a to bi for 1 6 i 6 3
of length at least one, such that P ∗

1 , P
∗
2 , P

∗
3 are pairwise disjoint, for i 6= j the only

edge between Pi \{a} and Pj \{a} is bibj , and at most one of P1, P2, P3 has length
exactly one.
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A prism is a graph consisting of two triangles {a1, a2, a3} and {b1, b2, b3}, and
three paths Pi from ai to bi for 1 6 i 6 3, all of length at least one, and such that
for i 6= j the only edges between Pi and Pj are aiaj and bibj . A pinched prism is a
graph consisting of a hole H of length at least six, together with a vertex b1 such
that NH(b1) is an induced two-edge matching. (This graph is often called a ‘line
wheel’, but here we choose to emphasize its similarity to a prism with a “pinched”
path). A generalized prism is a graph that is either a prism or a pinched prism.

For t > 2, a t-theta is theta where each of the three paths has length at least t.
A t-pyramid is defined similarly. The first result of [2] is:

Theorem 4 ([2]). For all k, t, every graph of bounded maximum degree and suf-
ficiently large treewidth contains a t-theta, a t-pyramid, or the line graph of a
subdivision of the (k × k)-wall as an induced subgraph.

This result affirmatively answers a question of [4] asking whether every graph of
bounded maximum degree and sufficiently large treewidth contains either a theta
or a triangle as an induced subgraph (where a theta means a t-theta for some
t > 2).

A subdivided cubic caterpillar is a tree of maximum degree at most three all of
whose vertices of degree three lie on a path. The second result of [2] is:

Theorem 5. [2] For every subdivided cubic caterpillar T , every graph with bounded
maximum degree and sufficiently large treewidth contains either a subdivision of T
or the line graph of a subdivision of T as an induced subgraph.

Additionally the authors of [7] observed that the number of vertices of the
graphs Gℓ from Theorem 3 is exponential in their treewidth, while for walls and
their line graphs, the number of vertices is polynomial in the treewidth. This
radical difference lead to the following conjecture.

Conjecture 6 ([7]). There exists a constant c such that if G is a (theta, triangle)-
free graph, then tw(G) 6 c log(|V (G)|).

We prove this conjecture, and in fact its generalization, as follows. Let C be the
class of (theta, pyramid, generalized prism)-free graphs. Also, for every integer
t > 1, let Ct be the class of (theta, pyramid, generalized prism, Kt)-free graphs.
We show:

Theorem 7. For every t > 1 there exists a constant ct such that every G ∈ Ct
has treewidth at most ct log(|V (G)|).

The following more general conjecture of Trotignon was disproved by James
Davies during the workshop:

Conjecture 8. For all t > 0 there exists c = c(t) such that if G is a graph with
no Kt, no Kt,t, no subdivision of Wt×t and no line graph of a subdivision of Wt×t

as induced subgraphs, then tw(G) 6 c log(|V (G)|).
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Pivot-minor-closed classes are χ-bounded

James Davies

Local complementation at a vertex v in a graph G replaces the induced subgraph
on the neighbourhood N(v) of v by its complement graph. Pivoting an edge uv in
a graph G is the act of performing local complementation at u, then v, and then
u again in order. A graph H is a vertex-minor of a graph G if H can be obtained
from G by a sequence of vertex deletions and local complementations. Pivot-minor
is defined similarly with the operation of local complementation replaced by the
operation of pivoting. So pivot-minors generalize vertex-minors. We discuss two
natural examples of graphs closed under vertex-minors, and one more that is closed
under pivot-minors but not vertex-minors.

A circle graph is an intersection graph of chords on a circle where two vertices
are adjacent whenever their corresponding chords intersect. Rank-width is a width
parameter analogues to that of tree-width but for dense classes of graph and dense
minor-like relations such as vertex-minors and pivot-minors. Likewise circle graphs
can be thought of as the analogue of planar graphs for vertex and pivot-minors.
This analogy is best shown by comparing the classical grid theorem of Robertson
and Seymour [12] to a recent grid theorem for vertex-minors of Geelen, Kwon,
McCarty and Wollan [7], which states that graphs of sufficiently large rank-width
contain every circle graph as a vertex-minor. Bipartite graphs are closed under
pivot-minors but not vertex-minors. Via their fundamental graphs, pivot-minors
of bipartite graphs essentially generalize minors for binary matroids, and thus
graph minors.

Dense classes of graphs often have unbounded chromatic number for the trivial
reason that they often contain cliques of unbounded size. This introduces the
notion of χ-boundedness. A class of graphs G is χ-bounded if graphs in G with
bounded clique number also have bounded chromatic number. All discussed classes
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closed under pivot-minors are known to be χ-bounded. Gyárfás [8] proved that
circle graphs are χ-bounded, and Dvořák and Král’ [6] proved that classes of
graphs with bounded rank-width are χ-bounded. More generally for vertex-minors,
Geelen [6] conjectured that every proper vertex-minor-closed class of graphs is χ-
bounded, which was proved by Davies [4]. Most generally Choi, Kwon and Oum [2]
conjectured that every proper pivot-minor-closed class of graphs is χ-bounded.
Our main result is a proof of this conjecture

Theorem 1. Every proper pivot-minor-closed class of graphs is χ-bounded.

The proof uses the strategy laid out by the notion ρ-control, and we discuss
this strategy. This strategy has been used to prove a number of χ-boundedness
theorems [13]. For a graph G and a positive integer ρ, a ρ-ball is an induced
subgraph formed by a vertex v and the vertices at distance at most ρ from v. We
let χ(ρ)(G) denote the maximum chromatic number of a ρ-ball contained in a graph
G, and we say that a class of graphs G is ρ-controlled if there exists a function f
such that χ(G) 6 f(χ(ρ)(G)) for all G ∈ G. This notion can naturally split the
problem of proving that a class of graphs G is χ-bounded into three subproblems.
The first is to show that for some ρ > 2, G is ρ-controlled. The next is to reduce ρ
and show that G is 2-controlled. The final subproblem is to make use of the fact
that G is 2-controlled to prove χ-boundedness.

The next natural step would be improving the χ-bounding function. Kim and
Oum [9] made the following conjecture.

Conjecture 2. Every proper pivot-minor-closed class of graphs is polynomially
χ-bounded.

The discussed natural classes closed under pivot-minors are all polynomially
χ-bounded. For circle graphs this was proved by Davies and McCarty [5], and
furthermore it is now know that they have a χ-bounding function of Θ(ω logω) [3,
11]. Bonamy and Pilipczuk [1] proved that graphs of bounded rank-width are
polynomially χ-bounded. We also report on an extension of Vizing’s theorem that
pivot-minors of line graphs (a class distinct from the class of lines graphs and the
class of all graphs) with clique number ω are ω + 1 colourable.
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[9] J. Kim and S. Oum. The Erdős-Hajnal property for graphs with no fixed cycle as a pivot-

minor. The Electronic Journal of Combinatorics, P2–9, 2020.
[10] R. Kim, O. Kwon, S. Oum, and V. Sivaraman. Classes of graphs with no long cycle as

a vertex-minor are polynomially χ-bounded. Journal of Combinatorial Theory, Series B,
140:372–386, 2020.

[11] A. Kostochka. Upper bounds on the chromatic number of graphs. Transactions of the In-
stitute of Mathematics (Siberian Branch of the Academy of Sciences of USSR), 10 (1988),
204-226 (in Russian).

[12] N. Robertson and P. Seymour. Graph minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986.

[13] A. Scott and P. Seymour. A survey of χ-boundedness. Journal of Graph Theory, 95(3):473–
504, 2020.

Global-local decompositions of graphs via coverings

Reinhard Diestel

We show that every finite connected graph G decomposes canonically into local
parts whose relative structure is reflected by a simpler graph H . Both H and the
associated decomposition H = (Vh)h∈H of G depend only on G and an integer
parameter r > 0, which we may choose to set our intended degree of local focus.

H and H are obtained as quotients of the canonical tree of tangles [3, 4], and its
associated tree-decomposition, of the covering of G whose characteristic subgroup
in π1(G) is generated by the cycles in G of length at most r.

H

G

Figure 1. The r-global structure of G for 3 6 r 6 9 is displayed
by a cycle. Its r-local parts are K5s.

Our main result was inspired by the intuition behind [1]. It reads as follows:

Theorem 1. [2] For every integer r > 0, every finite graph G has a canonical
decomposition modelled on another graph H = H(G, r) that displays its r-global
structure.
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The theorem extends to some infinite graphs too; these include all Cayley graphs
of finitely generated groups (with finite generating sets).

Here, a decomposition of G modelled on H , or H-decomposition of G for short, is
a family (Vh)h∈H of sets Vh of vertices of G, the parts of this decomposition, that
are associated with the nodes h of H in such a way that

• ⋃

h∈H G[Vh] = G;

• for every vertex v ∈ G, the subgraph of H induced by { h ∈ H | v ∈ Vh }
is connected.

The decompositions of a graph that are modelled on a tree are thus precisely its
tree-decompositions.

However while tree-decompositions have been used and studied widely, they do
not fit all graphs well: some graphs G have tree-decompositions into small, dense,
or otherwise interesting parts, but others do not. Such other graphs G, however,
may well have their own informative coarser overall structure: one expressible not
by a tree but by some other graph H . Our theorem finds the optimal such H for
every given graph G, given the desired degree r of local focus.

Our decompositions and their models H = H(G, r) are canonical in that they
commute with graph isomorphisms: if (Vh)h∈H and (Vh′)h′∈H′ are the decomposi-
tions which our proof constructs for graphs G and G′, then any graph isomorphism
σ : G → G′ maps the parts Vh of G to the parts Vh′ of G′ in such a way that h 7→ h′

is a graph isomorphism H → H ′. In particular, the graph H on which Theorem 1
models a given graph G is unique, up to isomorphism, for every r.

The formal definition of H ‘displaying the r-global structure’ of G comprises
a large amount of information and will be given in [2]. The construction of H =
H(G, r), however, is not hard to describe. It works as follows.

Given G and r, let Sr denote the subgroup of the fundamental group π1(G, v0)
of G based at a vertex v0 that is generated by the elements represented by a walk
in G from v0 to a cycle of length at most r, round it, and back along the access
path. This Sr is a normal subgroup; let Gr denote the normal covering of G with
Sr as characteristic subgroup.

By our choice of r, this covering Gr reflects all the short cycles of G, as well
as those of its longer cycles that are generated in π1(G) by the short ones. The
other longer cycles of G are usually unfolded to 2-way infinite paths, or double
rays . (One can construct examples where Gr covers G with finitely many sheets,
but those are rare.) Thus, Gr mirrors G in its ‘r-local’ aspects, but not in its
‘r-global’ aspects, where it is simply tree-like.

As a consequence of this tree-likeness of the global aspects of Gr, tree-decompo-
sitions will be a better fit for Gr than they were for G, whose global aspects could
include long cycles that would not fittingly be captured by tree-decompositions.
We exploit this by applying to Gr, not to G, the tree-decompositions that represent
the state of the art from the theory of graph minors: those that distinguish all the
maximal blocks, tangles and ends of G efficiently, and are canonical in the sense
described earlier.
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Since those tree-decompositions (Vt)t∈Tr
are canonical, the group Dr of deck-

transformations of Gr over G acts on their decomposition trees Tr. The canon-
ical model H for our r-local decomposition of G is then obtained as the orbit
space Tr/Dr. The parts Vh of the H-decomposition of G modelled on H are ob-
tained as the projections to G of the parts Vt of the canonical tree-decomposition
of Gr. The bulk of our proof consists of showing that Tr/Dr is indeed graph.

Potential applications

Since H = H(G, r) and the associatedH-decomposition of G are canonical, we can
study how graph invariants of G interact with those of H as r ranges between 1
and |G|. The question to what extent standard graph invariants—the chromatic
number, say, or connectivity—are of local or global character, and how their local
and global aspects interact, drives much of the research in graph theory both
structural and extremal.

Theorem 1 now gives such studies a precise formal basis.
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Product Structure Theorem

Vida Dujmović

Paths, trees, and bounded treewidth graphs are some of the most well understood
families of graphs. The central aim of the results presented in this abstract is to
answer the following question: Can planar graphs be “factored” into these simpler
graphs? It turns out the the answers is yes (in some form at least), as detailed
below.

The statment of the main result includes strong product and treewidth thus we
first define these two terms. The strong product A⊠ B of two graphs A and B is
the graph whose vertex set is the Cartesian product V (A ⊠ B) := V (A) × V (B)
and in which two distinct vertices (x1, y1) and (x2, y2) are adjacent if and only if:

(1) x1x2 ∈ E(A) and y1y2 ∈ E(B); or
(2) x1 = x2 and y1y2 ∈ E(B); or
(3) x1x2 ∈ E(A) and y1 = y2.

A tree-decomposition of a graph G consists of a collection {Bx ⊆ V (G) : x ∈
V (T )} of subsets of V (G), called bags, indexed by the vertices of a tree T , and
with the following properties:
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⊠ =

Figure 1. The strong product H ⊠ P of a tree H and a path P .

• for every vertex v of G, the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty
(connected) subtree of T , and

• for every edge vw of G, there is a vertex x ∈ V (T ) for which v, w ∈ Bx.

The width of such a tree-decomposition is max{|Bx| : x ∈ V (T )}−1. The treewidth
of a graph G is the minimum width of a tree-decomposition of G.

A tree-decomposition {Bx ⊆ V (G) : x ∈ V (T )} of a graph G is k-simple, for
some integer k, if it has width at most k, and for every set S of k vertices in G, we
have |x ∈ V (T ) : S ⊂ Bx| 6 2. The simple treewidth of a graph G is the minimum
integer k such that G has a k-simple tree-decomposition

Theorem 1 (Dujmović et al.[5]). Every planar graph G is a subgraph of H ⊠ P
for some planar graph H of (simple) treewidth at most 8 and for some path P .

Theorem 1 can be generalized (replacing 8 with a larger constant) to bounded
genus graphs, and more generally to apex-minor free graphs [5]. Dujmović, Morin,
and Wood [6] gave analogous product structure theorems for some non-minor
closed families of graphs including k-planar graphs, map graphs, powers of bound-
ed-degree planar graphs, and k-nearest-neighbour graphs of points in the plane.
Dujmović, Esperet, Morin, Walczak, and Wood [4] proved that a similar product
structure theorem holds for graphs of bounded degree from any (fixed) proper
minor-closed class.

The proof of Theorem 1 also gives the following variant of the theorem.

Theorem 2 ([5]). Every planar graph is a subgraph of H ⊠ P ⊠ K3 for some
planar graph H of treewidth at most 3 and for some path P .

The treewidth 3 in the above theorem is best possible even if K3 is replaced
with any constant size complete graph [5]. That leaves the question of whether
the treewidth 8 in Theorem 1 can be reduced.

The proof of Theorem 1 (and Theorem 2) is based on earlier work of Pilipczuk
and Siebertz[9]. The proof has inductive step involving a cycle comprised of at
most 6 shortest paths in the given planar graph G. The proof variant that leads to
the proof of Theorem 1 had an additional property that these (at most 6) shortest
parts are all a vertex to its ancestor paths in a given breath first search tree of G.
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Ueckerdt et al.[10] managed to replaced “6 shortest paths” in the proof with
5. That, together with another technique, allowed them to reduced the bound in
Theorem 1 to 6.

Theorem 3 (Ueckerdt et al.[10]). Every planar graph G is a subgraph of H ⊠ P
for some planar graph H of (simple) treewidth at most 6 and for some path P .

Closing the gap between the upper bound 6 in Theorem 3 and the lower bound
3 is an interesting open problem.

Since their discovery, Theorem 1 and Theorem 2 have been used to solve a
number of long standing open problems, including: queue number of planar graphs
[5], non-repetitive chromatic number of planar graphs [3] and adjacency labelling
(universal graphs) for planar graphs [2, 7]. It also lead to the best known bounds
on centered colourings [8] and l-vertex ranking [1].
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[4] Vida Dujmović, Louis Esperet, Pat Morin, Bartosz Walczak, and David R. Wood. Clustered
3-colouring graphs of bounded degree. Comb. Probab. Comput., 31(1):123–135, 2022.
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[7] Louis Esperet, Gwenaël Joret, Pat Morin. Sparse universal graphs for planarity. CoRR,
abs/2010.05779, 2020. URL: https://arxiv.org/abs/2010.05779

[8] Michal Debski, Stefan Felsner, Piotr Micek, Felix Schröder. Improved bounds for centered
colorings. Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), 2212-2226.
SIAM 2020.

[9] Michal Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on proper
minor-closed graph classes. Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA
2019), pages 1501–1520. SIAM, 2019.

[10] Torsten Ueckerdt, David R. Wood, Wendy Yi An improved planar graph product structure
theorem CoRR, abs/2108.00198. URL: https://arxiv.org/abs/2108.00198

Sketches for distances in graphs

Louis Esperet

(joint work with Nathaniel Harms, Gwenaël Joret and Andrey Kupavskii)

Let C > 1 be a constant, and s : N → N be a function. A family of graphs G
is (C, s)-sketchable if for any r > 0 there is a mapping D = Dr : {0, 1}s(r) ×
{0, 1}s(r) → {0, 1}, and for any graph G ∈ G there is a probability distribution
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over mappings sk = skG,r : V (G) → {0, 1}s(r) such that for any x, y ∈ V (G) with
d(x, y) 6 r,

P[D(sk(x), sk(y)) = 1] > 2
3 ;

And for any x, y ∈ V (G) with d(x, y) > C · r,
P[D(sk(x), sk(y)) = 0] > 2

3 .

A family of graphs G is sketchable if it is (C, s)-sketchable, for some constant
C > 1 and for some bounded function s : N → N (that is, s is such that there is a
constant S > 0 such that for any r > 0, s(r) 6 S).

The notion of sketchability was introduced in the wider context of general metric
spaces, and there is now a good understanding of which finite dimensional normed
spaces are sketchable [1]. However this does not say much about graph metrics,
and the following question arises naturally.

Question. Which families of graphs are sketchable?

It is perhaps interesting to first consider the simpler case C = 1. Here it can be
checked that if the class of all paths is (1, s)-sketchable, then the function s cannot
be bounded by a constant. Thus it still makes sense to understand which classes
are (1, s)-sketchable for some arbitrary (unbounded) function s. It turns out to be
tightly connected with the notion of bounded expansion. Given a graph G and an
integer r > 0, a depth-r minor of G is a graph obtained by contracting pairwise
disjoint connected subgraphs of radius at most r in a subgraph of G. For any
function f , we say that a class of graphs G has expansion at most f if any depth-r
minor of a graph of G has average degree at most f(r) (see [2] for more details on
this notion). Note that every proper minor-closed family has constant expansion.
We say that a class G has bounded expansion if there is a function f such that G
has expansion at most f .

We prove the following.

Theorem 1. For any class G of bounded expansion, there is a function s such
that G is (1, s)-sketchable.

A class G is monotone if any subgraph of a graph of G is also in G. We have
the following partial converse of Theorem 1.

Theorem 2. If a monotone class G is (1, s)-sketchable for some function s, then
G has bounded expansion.

It turns out that we can indeed replace the constant 1 in Theorem 2 by 5.
Moreover, assuming the validity of a conjecture of Thomassen [3], we can replace
1 by any fixed constant C > 1.

We now turn to the general case C > 1, and recall that in the definition of a
sketchable class above, the size of the labels is bounded by an absolute constant,
unlike in Theorems 1 and 2 above.

We prove the following.
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Theorem 3. Any proper minor-closed class G is sketchable, while the class of
graphs of maximum degree 3 is not sketchable.

Note that the class of graphs of maximum degree 3 has bounded expansion, so
there is a clear difference with the setting of Theorem 1.

Again, we have a partial converse of Theorem 3 similar to Theorem 2 (but its
proof is very different from that of Theorem 2).

Theorem 4. Any monotone sketchable class has bounded expansion.

We conjecture that the following stronger result holds.

Conjecture 5. If for some monotone class G, there is a constant C > 1 and a
function s such that G is (C, s)-sketchable, then G has bounded expansion.

Note that this would imply both Theorems 2 and 4. As alluded to above,
Conjecture 5 would be implied by a conjecture of Thomassen [3], stating that
every graph of large average degree contains a subgraph of large girth and average
degree.
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On Size Ramsey Numbers

Jacob Fox

(joint work with David Conlon and Yuval Wigderson)

Given two graphs G and H , we say that G is Ramsey for H if every two-coloring
of the edges of G contains a monochromatic copy of H . Graph Ramsey theory is
mainly concerned with determining which graphs G are Ramsey for a given H .
In particular, of central concern is the Ramsey number r(H) of H , defined as the
minimum number of vertices in a graph G which is Ramsey for H .

We study the size Ramsey number r̂(H), defined as the minimum number of
edges in a graph G which is Ramsey for H . The size Ramsey number was intro-
duced by Erdős, Faudree, Rousseau, and Schelp [6] in 1978. They proved several
bounds on size Ramsey numbers, noting, for example, the basic inequality

r̂(H) 6

(

r(H)

2

)

and presenting a proof, due to Chvátal, that this bound is tight when H is a
complete graph. They ended their paper with four questions, asking for the as-
ymptotic order of r̂(H) as H ranges over four specific families of graphs. We
fully resolve two of these questions and make substantial progress on a third. The
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fourth question, about the size Ramsey number of paths, was resolved by Beck
[1], who proved the surprising result that r̂(Pn) = Θ(n) for the path Pn with n
vertices. This breakthrough inspired many of the subsequent developments in the
field.

The first question asked by Erdős, Faudree, Rousseau, and Schelp [6] was about
r̂(Ks,t) for s 6 t. They proved the bounds

Ω(st2s) 6 r̂(Ks,t) 6 O(s2t2s),

with the lower bound only holding for t = Ω(s2). However, in a later paper [7],
Erdős and Rousseau proved the lower bound r̂(Ks,t) = Ω(st2s) for all s 6 t. More
recently, Pikhurko [8] found an asymptotic formula for r̂(Ks,t) for all fixed s and
t → ∞.

Our first main result is an improved lower bound on r̂(Ks,t).

Theorem 1. For all s 6 t,

r̂(Ks,t) = Ω
(

s2−
s
t t2s

)

.

In particular, if t > (1 + δ)s for any fixed δ > 0, then we get a power saving
over the earlier lower bound of Ω(st2s). Moreover, once t = Ω(s log s), the bound
is tight up to a constant factor.

Corollary 2. If t = Ω(s log s), then

r̂(Ks,t) = Θ(s2t2s).

The second question raised by Erdős, Faudree, Rousseau, and Schelp [6] con-

cerned book graphs. Given positive integers k and n, the book graph B
(k)
n consists

of n copies of Kk+1, glued along a common Kk. Equivalently, it can be described
as the join of a Kk and an independent set of order n. This Kk is called the spine
and the vertices of the independent set are called pages. Ramsey numbers of book
graphs play a central role in Ramsey theory, because all known techniques for
proving upper bounds on the diagonal Ramsey numbers r(Kt) rely on induction

schemes that repeatedly use bounds on r(B
(k)
n ) for appropriately chosen k < t and

n. These Ramsey numbers have received considerable attention of late, beginning

with work of Conlon [2], who asymptotically determined r(B
(k)
n ) for n sufficiently

large in terms of k, and continuing with work of the authors [3, 4] giving alterna-
tive proofs and exploring variations of the basic question. Regarding size Ramsey
numbers, Erdős, Faudree, Rousseau, and Schelp [6] proved that

Ω(k2n2) 6 r̂(B(k)
n ) 6 O(16kn2)

for n sufficiently large in terms of k. Thus, while they were able to prove that
the dependence on n is quadratic, there was a massive gap between the lower and
upper bounds for the dependence on k. Our second main result closes this gap,

determining r̂(B
(k)
n ) up to a constant factor for n sufficiently large in terms of k.

Theorem 3. For every fixed k > 2 and all sufficiently large n,

r̂(B(k)
n ) = Θ(k2kn2).
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The third question raised in [6] concerns graphs which we call starburst graphs
(they appear to have not been previously named in the literature). For positive

integers k and n, the starburst graph S
(k)
n is obtained fromKk by adding n pendant

edges to every vertex ofKk; thus, it has kn+k vertices. Erdős, Faudree, Rousseau,
and Schelp [6] proved that if k is fixed and n is sufficiently large, then

Ω(k3n2) 6 r̂(S(k)
n ) 6 O(k4n2).

Thus, in this case, there is only a Θ(k) gap between the upper and lower bounds.
Our final main result shows that the lower bound is tight up to the constant factor.

Theorem 4. For every fixed k > 2 and all sufficiently large n,

r̂(S(k)
n ) = Θ(k3n2).

The proofs of our main theorems are all relatively short, but they employ a
surprising array of different techniques. In Theorem 1, the main new idea is to
use a random coloring with a hypergeometric distribution between certain vertices
and their higher degree neighbors, rather than the uniform distribution that is
usually used in Ramsey-theoretic lower bound constructions. The lower bound in
Theorem 3 uses a degree-based random coloring, where the probability an edge is
red depends on the degrees of its endpoints, while the upper bound uses some of
the regularity techniques that were recently developed for studying the ordinary
Ramsey numbers of books [2, 3, 4]. Finally, Theorem 4 is proved by examining
the properties of an appropriate random graph.

The full version of this paper is [5].
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Subgraphs of large connectivity and chromatic number

António Girão

(joint work with Bhargav Narayanan)

Many of the central open problems in graph theory concern structures that are
unavoidable in graphs of large chromatic number, Hadwiger’s Conjecture [1] being
perhaps the most notable example. Here, we shall address two related questions
that arise in the study of Hadwiger’s conjecture and its list colouring analogue.

Our starting point is the following well-known fact: every graph of chromatic
number at least 4k + 1 contains a subgraph of connectivity at least k, as follows
from a classical result of Mader [2] asserting that every graph of minimum degree
at least 4k contains a k-connected subgraph. It is natural to then ask if a graph of
large chromatic number must contain a subgraph of both large connectivity and
large chromatic number; this non-trivial problem was answered by Alon, Kleitman,
Thomassen, Saks and Seymour [3] who showed for each k ∈ N that there exists a
minimal f(k) ∈ N such that every graph with chromatic number at least f(k) + 1
contains a subgraph whose connectivity and chromatic number are both at least
k, and that f(k) = O(k3). This was improved by Chudnovsky, Penev, Scott and
Trotignon [4] who (amongst other things) showed that f(k) = O(k2).

The results described above have since found many applications in the study of
graphs of large chromatic number. Motivated by applications to the study of Had-
wiger’s conjecture, Norin asked if the aforementioned results could be sharpened
to show an essentially best-possible estimate of f(k) = O(k); our result answers
this question affirmatively. We point out that our result has already proved crucial
in improving the state of the art on Hadwiger’s Conjecture developed in a series
of papers of Norin, Song, Postle and Delcourt. (see e.g. [5, 6, 7])

Theorem 1. For each k ∈ N, every graph G with chromatic number at least 7k+1
contains a subgraph H with both connectivity and chromatic number at least k.

In other words, Theorem 1 asserts that f(k) 6 7k, and from below, Alon,
Kleitman, Thomassen, Saks and Seymour [3] showed that f(k) > 2k − 3. While
these bounds are not too far apart, we make no particular effort to optimise the
multiplicative constant in our result since it seems unlikely that this will completely
bridge the gap between the upper and lower bounds.

Finally, it is worth mentioning that all of [3, 4] treat the more general ‘asymmet-
ric’ problem of finding a subgraph of connectivity at least k and chromatic number
at least m. Our arguments also yield asymmetric analogues of Theorems 1 with
essentially optimal bounds.
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Further applications of the product structure theorem

Gwenaël Joret

(joint work with Vida Dujmović, Louis Esperet, Cyril Gavoille, Piotr Micek and
Pat Morin)

The recent product structure theorem for planar graphs [6] states that every planar
graphG is contained as a subgraph in the strong product of a graphH of treewidth
8 and a path P . Piotr Micek’s talk already covered a number of applications of
this theorem, including to queue numbers, nonrepetitive colorings, and p-centered
colorings of planar graphs. These applications were typically quick and smooth,
requiring only short arguments.

In this talk I will describe two further applications of the product structure
theorem for planar graphs. By contrast to the other applications mentioned above,
the use of the product structure theorem is less straightforward here and somewhat
more technical. The two problems under consideration are the following ones:

(1) What is the minimum number of edges in a graph containing all n-vertex
planar graphs as subgraphs? The best known bound is O(n3/2), due to
Babai, Chung, Erdös, Graham, and Spencer [2].

(2) What is the minimum number of vertices in a graph containing all n-
vertex planar graphs as induced subgraphs? Here Bonamy, Gavoille, and
Pilipczuk [3] recently established a O(n4/3) bound.

Using the product structure theorem for planar graphs, we show that a bound
of n1+o(1) can be achieved for these two problems [7, 5].

We conclude this abstract by mentioning two directions for future research.
First, it would be interesting to refine the near-linear bounds into asymptoti-
cally exact bounds for the two problems. For problems (1) and (2) specialized
to n-vertex trees, the right asymptotics are respectively Θ(n logn) (Chung and
Graham [4]) and Θ(n) (Alstrup, Dahlgaard, and Knudsen [1]). For all we know,
this could be the correct answer for planar graphs too.

Second, it would be interesting to establish near-linear bounds more generally
for n-vertex Kt-minor free graphs instead of n-vertex planar graphs. These graphs
do not satisfy a product structure theorem in general.
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A proof of the Erdős–Faber–Lovász conjecture

Tom Kelly

(joint work with Dong Yeap Kang, Daniela Kühn, Abhishek Methuku and
Deryk Osthus)

In 1972, Erdős, Faber, and Lovász conjectured the following equivalent statements.
Let n ∈ N.

(1) If G1, . . . , Gn are complete graphs, each on at most n vertices, such that
every pair shares at most one vertex, then χ(

⋃n
i=1 Gi) 6 n.

(2) Every n-vertex linear hypergraph has chromatic index at most n.

Here the chromatic index χ′(H) of a hypergraph H is the minimum number of
colors need to color the edges of H so that no two edges of the same color share a
vertex. A hypergraph H is linear if every two distinct edges of H intersect in at
most one vertex.

Erdős considered this to be ‘one of his three most favorite combinatorial prob-
lems’. The simplicity and elegance of its formulation initially led the authors to
believe it to be easily solved. However, as the difficulty became apparent Erdős of-
fered successively increasing rewards for a proof of the conjecture, which eventually
reached $500.

The following three infinite families of hypergraphs are extremal for this con-
jecture:
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• finite projective planes of order k (known to exist when k is a prime power),
which are (k + 1)-uniform, linear, intersecting hypergraphs on n vertices
with n edges where n = k2 + k + 1;

• degenerate planes, also called ‘near pencils’, which are linear, intersecting
hypergraphs on n vertices with n edges for any n ∈ N consisting of one
edge of size n− 1 and n− 1 edges of size two; and

• complete graphs on n vertices where n ∈ N is odd (as well as some ‘local’
modifications of these).

We prove the Erdős–Faber–Lovász conjecture for every large n, as follows.

Theorem 1 ([12]). For every sufficiently large n, every linear hypergraph on n
vertices has chromatic index at most n.

Let us overview previous progress leading up to these results. Predating the
Erdős–Faber–Lovász conjecture, in 1948 de Bruijn and Erdős [3] showed that every
intersecting n-vertex linear hypergraph has at most n edges. Equivalently, the line
graph of an n-vertex linear hypergraph contains no clique of size greater than n.
Seymour [16] proved that every n-vertex linear hypergraph H contains a matching
of size at least |H|/n, which implies the de Bruijn-Erdős theorem, as an intersect-
ing hypergraph has matching number one. Kahn and Seymour [11] strengthened
this result by proving that every n-vertex linear hypergraph has fractional chro-
matic index at most n. Chang and Lawler [1] proved that every n-vertex linear
hypergraph has chromatic index at most ⌈3n/2− 2⌉. A breakthrough of Kahn [8]
in 1992 yielded an approximate version of the conjecture, by showing that every
n-vertex linear hypergraph has chromatic index at most n+ o(n). Recently Faber
and Harris [6] proved the conjecture for linear hypergraphs whose edge sizes range
between 3 and cn1/2 for a small absolute constant c > 0. More background and
earlier developments related to the Erdő–Faber–Lovász conjecture are detailed in
the surveys of Kahn [9, 10] and of Kayll [15]. See also the recent survey by the
authors [13].

In 1977, Erdős [4, Problem 9] asked the following equivalent questions (see
also [2, Problem 95] and [5]). Let n, t ∈ N.

(1) If G1, . . . , Gn are complete graphs, each on at most n vertices, such that
every pair shares at most t vertices, what is the maximum possible value
of the chromatic number χ (

⋃n
i=1 Gi)?

(2) If H is an n-vertex hypergraph of maximum degree at most n and codegree
at most t, what is the maximum possible value of the chromatic index
χ′(H)?

The case t = 1 corresponds to the Erdős–Faber–Lovász conjecture. Building on
the ideas of [12], we answer the question for all 2 6 t <

√
n and sufficiently large

n. The range when t is larger is already covered asymptotically by an observation
of Horák and Tuza [7].

Theorem 2 ([14]). There exists n0 ∈ N such that the following holds for all
n, t ∈ N where n > n0 and t > 2. If G1, . . . , Gn are complete graphs, each on
at most n vertices, such that |V (Gi) ∩ V (Gj)| 6 t for all distinct i, j ∈ [n], then
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χ(
⋃n

i=1 Gi) 6 tn. Moreover, for infinitely many k ∈ N, if n = k2 + k + 1 and
t 6 k, then there exist such G1, . . . , Gn such that

⋃n
i=1 Gi has tn vertices and is

complete (and in particular has chromatic number tn).

In the dual setting of edge-coloring hypergraphs, this result implies the following
for t > 2 and n sufficiently large: If H is an n-vertex hypergraph with maximum
degree at most n and codegree at most t, then χ′(H) 6 tn. We actually prove the
following result, which is stronger in three respects. Firstly, we allow the maximum
degree of H to be at most (1 − ε)tn for any ε > 0. Secondly, we prove that the
result actually holds more generally for list coloring. Thirdly, we characterize the
hypergraphs for which equality holds in the bound; in particular, χ′(H) = tn holds
only if H is a t-fold projective plane.

Theorem 3 ([14]). For every ε > 0, there exists n0 ∈ N such that the following
holds for all n, t ∈ N where n > n0. If H is an n-vertex hypergraph with codegree
at most t and maximum degree at most (1 − ε)tn, then χ′

ℓ(H) 6 tn. Moreover, if
χ′
ℓ(H) = tn, then there exists k ∈ N such that n = k2 + k + 1 and H is a t-fold

projective plane of order k.
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[12] D. Kang, T. Kelly, D. Kühn, A. Methuku, and D. Osthus, A proof of the Erdős-Faber-Lovász
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Digraph Minors

Stephan Kreutzer

(joint work with Archontia Giannopoulou, Ken-ichi Kawarabayashi and
O-Joung Kwon)

At the core of the theory of graph minors developed by Robertson and Seymour
in their graph minors series [9] is a powerful structure theorem which describes,
for any fixed graph H , the common structure of all finite graphs not containing H
as a minor ([13]). Roughly it states that every graph G with no H-minor can be
decomposed into pieces each of which is almost embeddedable into a surface whose
genus is bounded by a function of H , and which can be glued together in a tree
structure. A particularly simple form of this structure theorem applies when the
excluded minor H is planar: in that case, the parts fit together in a tree-structure
and they have bounded size, i.e., G has a tree-decomposition of bounded (tree)
width. This is exactly the Excluded Grid Theorem, first proved by Robertson and
Seymour in [10] (see also [1]). It states that there is a function f(k) such that
every graph of tree width (or, equivalently, which contains a tangle of order) at
least f(k) contains a k × k-grid as a minor. This is the best possible outcome in
at least two respects. Not only is there no such integer when H is not planar, but
no graph of tree width k has a minor isomorphic to the (k + 1)× (k + 1)-grid.

The case when H is non-planar is much harder. In order to motivate the
structure to capture this case, we need to introduce a few structural tools.

The Two Disjoint Paths Problem and Flatness. Let C be a cycle in a
graph G. We say that a C-cross in G is a pair of disjoint paths P1, P2 with ends
s1, t1 and s2, t2, respectively, such that s1, s2, t1, t2 occur on C in the order listed,
and the paths are otherwise disjoint from C. This concept is very related to the
famous Two Disjoint Paths Problem. To this end let s1, s2, t1, t2 ∈ V (G).
The Two Disjoint Paths Problem asks whether or not there exist two disjoint
paths P1, P2 in G such that Pi has ends si and ti. To relate this to C-crosses
assume that G has a cycle C with {s1, s2, t1, t2} in the order listed. Note that
the edges of C can be added without changing the problem. It follows that the
Two Disjoint Paths Problem can be answered affirmatively if, and only if,
the graph G has a C-cross.

It is well-known that if G can be drawn in the plane with C bounding a face,
then it has no C-cross. Complementing this observation, the well-known result
by Jung [5], Seymour [14], Shiloach [15], and Thomassen [16], says that if G does
not have a C-cross, then G can be nearly drawn in the plane with the outer face
boundary C containing s1, t1, s2, t2 in this order. The definition of nearly is too
complicated to mention here, but if we require G to be 4-connected, then we can
replace nearly drawn by drawn. In this case we call G C-flat.

The Flat Wall Theorem. We are now ready to describe a weaker version
of the structure theorem (excluded Kt theorem) of Robertson and Seymour [12,
Theorem 9.8], known as the Flat Wall Theorem. Let W be a large wall in a graph
G with no Kt minor. The Flat Wall Theorem asserts that there exist a set of
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vertices A ⊆ V (G) of bounded size (that only depends on t) and a big subwall
W ′ of W that is disjoint from A with the following property. Let C′ be the outer
cycle of W ′. Then C′ separates the graph G − A into two subgraphs (we call C′

separating in G−A), and the subgraph containing W ′, say H , can be nearly drawn
in the plane with C′ bounding the outer face boundary (again, the definition of
nearly is too complicated to describe here). This is equivalent to saying that H is
C′-flat in G−A.

This theorem is an important step towards the full excluded minor theorem of
Robertson and Seymour [13] mentioned above.

Towards a Directed Structure Theory. As a first step towards a structure
theory specifically for directed graphs, Reed [7] and Johnson, Robertson, Seymour
and Thomas [8] proposed a concept of directed tree width and directed tangle, and
conjectured a directed analogue of the Excluded Grid Theorem. The conjecture
had been open for nearly 20 years. It was solved in 2015 by Kawarabayashi and
Kreutzer [4]. This result provides a significant first step towards generalising the
theory of graph minors to directed graphs, a project we are currently undertaking.
Another step towards this goal is the proof of a directed analogue of the tangle
decomposition theorem in [11] by Giannopoulou, Kawarabayashi, Kreutzer, and
Kwon in [3].

In this talk I will focus on a third important step towards our goal of proving a
directed structure theorem for digraph minors, the generalisation of the Flat Wall
Theorem explained above to directed graphs proved in [2].

Roughly speaking, the Directed Flat Wall Theorem states the following. Given
a digraph G containing a sufficiently large cylindrical wall W in G, either we
can find a tournament of order t as a butterfly minor or there exists a set of
vertices A ⊆ V (G) of bounded size (bounded by a function of t) and a reasonably
big cylindrical subwall W ′ of W that is disjoint from A and has the following
properties. Let C′ be the outer cycle of W ′. Then C′ is separating in G−A, and
the strong component of G − A − C containing W ′, say H , is C′-flat in G − A.
Indeed, for each face F of W ′ there are components (bridges) B attached to F ,
and B ∪ F is F -flat in G − A as well. Moreover, B ∪ F is of bounded directed
tree width. Thus, every digraph of sufficiently large directed tree-width which
excludes some tournament as a butterfly minor contains a ”flat cylindrical wall”
after deleting a bounded number of apex vertices.

In the directed setting, the theorem comes in two variants, depending on whether
we exclude a tournament or a bidirected clique as a butterfly minor. The directed
flat wall theorem can be extended to digraphs excluding a bidirected clique as
butterfly minor at the expense of weakening the notion of flatness of the resulting
wall.

While the flat wall theorems in the directed setting may at first sight appear
to be very similar to the undirected flat wall theorem, there are significant differ-
ences in the notion of flatness that can be achieved. The main obstacle is that
the directed version of the two path theorem mentioned above does not hold for
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directed graphs. We will discuss these differences at the end of the talk and also
discuss the impact they have on a potential directed structure theorem.
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A unified Erdős-Pósa theorem for cycles in graphs labelled by multiple
abelian groups

O-joung Kwon

(joint work with Pascal Gollin, Kevin Hendrey, Sang-il Oum and Youngho Yoo)

Erdős and Pósa [2] proved in 1965 that every graph contains either k pairwise
vertex-disjoint cycles, or a set of O(k log k) vertices that hits all cycles of the
graph. This breakthrough result sparked extensive research on finding hitting-
packing dualities for various graph families.

In particular, cycles with modularity constraints have been considered. For
example, Thomassen [4] showed that for every positive integer m, an analogue
of the Erdős-Pósa theorem holds for the family of cycles of length 0 modulo m,



40 Oberwolfach Report 1/2022

and Thomas and Yoo [3] proved that for every integer ℓ and every odd prime
power m, an analogue of the Erdős-Pósa theorem holds for the family of cycles of
length ℓ modulo m. However, this property does not hold for all types of cycles of
length ℓ modulo m; Lovász and Schrijver (see [4]) found a class of graphs which
shows that such a duality does not exist for the family of odd cycles. Dejter and
Neumann-Lara [1] found infinitely many pairs (ℓ,m) for which an analogue of the
Erdős-Pósa theorem does not hold for the family of cycles of length ℓ modulo m.

Dejter and Neumann-Lara [1] asked to find all pairs (ℓ,m) of integers for which
an analogue of the Erdős-Pósa theorem holds for the family of cycles of length ℓ
modulo m. We completely answer this question and extend our result to a more
general setting on group-labelled graphs.

For an abelian group Γ and a graph G, a function γ : E(G) → Γ is called a Γ-
labelling of G. The γ-value of a subgraphH of G is the sum of γ(e) over all edges e
in H . Cycles of length ℓ modulo m can be naturally encoded in the setting of Zm-
labelled graphs, where each edge has value 1 and the target cycles have values
exactly ℓ. Given a set S of vertices in G, cycles containing a vertex of S, called
S-cycles, can be encoded as non-zero cycles with respect to the Z-labelling which
assigns value 1 to edges incident with vertices in S and 0 to all other edges. We
will discuss more examples later. Using multiple abelian groups, we may encode
cycles satisfying several properties together.

In a simpler form, our result can be stated as follows. For every pair of positive
integersm and ω, there is a function fm,ω : N → N satisfying the following property.
Let Γ =

∏

i∈[m] Γi be a product of m abelian groups, and for each i ∈ [m], let Ωi

be a subset of Γi with |Ωi| 6 ω. Let A be the set of all elements g ∈ Γ such that
πi(g) ∈ Γi \ Ωi for all i ∈ [m], and suppose that

(1) for all a ∈ A, we have 〈2a〉 ∩ A 6= ∅,
(2) for all a, b, c ∈ Γ with 〈a, b, c〉∩A 6= ∅, we have (〈a, b〉∪〈b, c〉∪〈a, c〉)∩A 6= ∅.

Let G be a Γ-labelled graph with Γ-labelling γ and let O be the set of all cycles
of G whose γ-value is in A. Then for all k ∈ N there exists either a set of k vertex-
disjoint cycles in O, or a hitting set for O of size at most fm,ω(k). On the other
hand, if A does not satisfy at least one of (1) and (2), then for every positive
integer t, there is a graph G with a Γ-labelling γ such that for the set O of cycles
of G with values in A, there are no two vertex-disjoint cycles in O and there is no
hitting set for O of size at most t.

This yields a corollary about cycles with modularity constraints. Let ℓ and m
be integers with m > 2, and let m = pa1

1 · · · pan
n be the prime factorization. Then

there is a function f : N → N such that for every graph G and every integer k, G
contains either k vertex-disjoint cycles of length ℓ modulo m or a set of at most
f(k) vertices hitting all such cycles, if and only if the following conditions are
satisfied:

(1) If pi = 2 for some i ∈ [n], then ℓ ≡ 0 (mod pai

i ).

(2) There do not exist three distinct i1, i2, i3 ∈ [n] such that ℓ 6≡ 0 (mod p
aij

ij
)

for each j ∈ [3].
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Homomorphism counts in robustly sparse graphs

Chun-Hung Liu

Determine the maximum number of edges of a graph with a given property is a
central problem in extremal graph theory. For example, Turán’s theorem deter-
mines the maximum number of edges of an n-vertex graph with no Kt-subgraph.
Since the number of edges equals the number of K2-subgraphs, we can consider
the following more general question.

Question 1. Let G be a graph class, and let H be a graph. What is the maximum
number ex(H,G, n) of H-subgraphs contained in an n-vertex graph in G?

Question 1 has been extensively studied for various graph classes G. In this
talk, we consider classes of graphs with a robustly sparse property. Our main
result shows that an obvious lower bound for ex(H,G, n) determines ex(H,G, n)
up to a constant factor.

To state the obvious lower bound, we need some definitions. A separation of a
graphH is an ordered pair (A,B) of subsets of V (H) such that A∪B = V (H), and
there exists no edge between A−B and B −A. The order of (A,B) is |A∩B|. A
collection C of separations of H is independent if for every (X,Y ) ∈ C, X −Y 6= ∅,
and for distinct (A,B), (C,D) ∈ C, A ⊆ D and C ⊆ B.

Let H be a graph. Let Z ⊆ V (H). Let k be a positive integer. We define
H ∧k Z to be the graph obtained from a union of k disjoint copies of H by for
each z ∈ Z, identifying the k copies of z into a vertex. We say an independent
collection C of separations of H is G-duplicable if H ∧ℓ C ∈ G for infinitely many
positive integers ℓ. It is easy to show the following lower bound for ex(H,G, n).
Proposition 2. For any graph H and graph class G, ex(H,G, n) = Ω(nk), where
k is the maximum size of a G-duplicable independent collection of separations of
H.

A graph class G has bounded expansion if there exists a function f such that
for every graph G in G and nonnegative integer r, every graph obtained from a
subgraph of G by contracting disjoint subgraphs of G of radius at most r has
average degree at most f(r). Note that the graphs in a bounded expansion class
are robustly sparse in the sense that contracting disjoint subgraphs with bounded
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radius cannot create arbitrarily dense graphs. A graph class is hereditary if it is
closed under deleting vertices. The following is our main theorem.

Theorem 3. For every hereditary class G with bounded expansion and for every
graph H ∈ G, ex(H,G, n) = Θ(nk), where k is the maximum size of a G-duplicable
independent collection of separations of H.

Theorem 3 solves a number of open questions. For example, proper minor-
closed families are known to have bounded expansion, so Theorem 3 implies the
following result, solving a question of Eppstein [1].

Corollary 4. If G is a proper minor-closed family and H is a graph in G, then
ex(H,G, n) = Θ(nk) for some integer k.

Győri et al. [2] proposed a variant of Eppstein’s question.

Conjecture 5 ([2]). For any finite set of graphs F and for any graph H, if G is
the set of all planar graphs with no subgraph isomorphic to any member in F , and
H ∈ G, then ex(H,G, n) = Θ(nk) for some integer k.

Note that the class G mentioned in Conjecture 5 is not a minor-closed family.
But this class is a subclass of a proper minor-closed family, so it still has bounded
expansion. Therefore, Theorem 3 immediately implies Conjecture 5.

Corollary 6. Conjecture 5 holds.

When more information of the graph class G is provided, we can described G-
duplicable independent collections more concretely. For an independent collection
C of separations of H , the central torso is the graph obtained from H [

⋂

(A,B)∈C B]

by adding edges such that A∩B is a clique for every (A,B) ∈ C; a peripheral torso
is a graph obtained from H [X ] for some (X,Y ) ∈ C by adding edges such that
X ∩ Y is a clique.

The following corollary of Theorem 3 disproves a conjecture of Huynh and Wood
[4].

Corollary 7. Let s, t be positive integers with s 6 t. Let G be the class of graphs
containing no Ks,t-minor. Then for every graph H ∈ G, ex(H,G, n) = Θ(nk),
where k is the maximum size of an independent collection C of separations of H
of order at most s− 1 such that every torso of C is Ks,t-minor free.

Theorem 3 also implies the following result, answering a question of Huynh and
Wood [4].

Corollary 8. Let t be a positive integer. Let G be the class of graphs of path-width
at most t. Then for every graph H of path-width at most t, ex(H,G, n) = Θ(nk),
where k is the maximum size of an independent collection C of separations of H
of order at most t such that H ∧(t2)+2t+3 C has path-width at most t.

Colin de Verdière parameter µ(G) of a graph G is the largest corank of certain
matrices associated with G. Many graphs with certain topological properties can
be characterized by using this algebraic parameter. For example, µ(G) 6 1 if and
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only if G is a disjoint union of paths; µ(G) 6 2 if and only if G is outerplanar;
µ(G) 6 3 if and only ifG is planar; µ(G) 6 4 if and only ifG is linkless embeddable.
For any integer k, the class of graphs with µ 6 k is minor-closed. So Theorem 3
implies the following result, improving an earlier result of Huynh and Wood [4]
who proved the case when H is a tree.

Corollary 9. Let t be a positive integer. Let G be the class of all graphs G with
µ(G) 6 t. Let H be a graph with µ(H) 6 t. Then ex(H,G, n) = Θ(nk), where k
is the maximum size of an independent collection of separations of H of order at
most t− 1 such that every its torso L satisfies µ(L) 6 t.

For a surface Σ, the Σ-crossing number of a graph G is the minimum integer
t such that G can be drawn in Σ with at most t crossings. Any class of graphs
with bounded Σ-crossing number is a topological minor-closed family, and hence
has bounded expansion. So Theorem 3 implies the following.

Corollary 10. Let Σ be a surface. Let t be a nonnegative integer. Let G be the
class of graphs with Σ-crossing number at most t. Let H ∈ G. Then ex(H,G, n) =
Θ(nk), where k is the maximum size of an independent collection of separations
of H of order at most 2 whose every peripheral torso is planar and whose central
torso can be drawn in Σ with at most t crossings such that every peripheral edge
does not contain any crossing.

Note that the case t = 0 of Corollary 10 implies the earlier result about graphs
with bounded Euler genus in [4].

Another example of bounded expansion classes is the class of graphs admitting
a book embedding with a bounded number of pages. So Theorem 3 applies to this
class and solves another question of Eppstein [1].

Counting the number of H-subgraphs is equivalent to counting the number of
injective homomorphisms from H , up to a constant factor. So Theorem 3 can be
equivalently stated as counting the number of injective homomorphisms. Being
injective is a property that is consistent with respect to isomorphisms and taking
induced subgraphs. In fact, we can prove the following stronger form of Theorem 3,
which counts the number of homomorphisms satisfying any given property, as long
as this property is “consistent with respect to isomorphisms and taking induced
subgraphs”.

Theorem 11. For any hereditary class G with bounded expansion, graph H, and
set S of homomorphisms from H to members in G “consistent with respect to
isomorphisms and taking induced subgraphs”, we have

max
G∈G,|V (G)|=n

|{f ∈ S : f : V (H) → V (G)}| = Θ(nk),

where k is the maximum size of a “(G,S)-duplicable” independent collection of
separations of H.
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Quick applications of the product structure theorem

Piotr Micek

The product structure theorem for planar graphs (and beyond) has been proven to
be amazingly applicable in a very short period of time from its first informal publi-
cation in April 2019. Within my presentation, I covered three independent results
closing long-standing open problems constituing their own research areas. The
main aim though was to present a simple strategy to prove statements for planar
graphs when analogous statements are known for graphs of bounded treewidth.

Let me start with queue layouts of planar graphs. A queue layout of a planar
graph consists of a total ordering on its vertices and an assignment of its edges to
queues such that no two edges in a single queue are nested. The minimum number
of queues needed in a queue layout of a graph G is called its queue number and
denoted by qn(G).

In 1992 Heath, Leighton, and Rosenberg [1] asked (and later conjectured) if the
queue number of planar graphs is bounded. This was a tantalizing open problem
and attracted a lot of research around it. The only non-trivial bounds for the queue
number of n-vertex planar graph were growing with n. Using the Lipton-Tarjan
separator theorem one can easily show that the queue number of an n-vertex
planar graph is O(

√
n). Di Battista et al. [2] proved a first breakthrough on this

topic, by showing that every n-vertex planar graph has queue number O(log2 n).
Dujmović [3] improved this bound to O(log n) with a simpler proof. Within [4],
so in the paper introducing the product structure theorem itself, we proved that
qn(G) 6 49, for every planar graph G. The strategy of the proof is captured by
the following chain of inequalities

qn(G) 6 qn(H ⊠ P ⊠K3)

6 3 · 3 · qn(H) +

⌊

3

2
· 3
⌋

6 3 · 3 · 5 +
⌊

3

2
· 3
⌋

= 49,
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where H is a graph with stw(H) 6 3, P is a path, and K3 is a complete graph
on 3 vertices. The first inequality follows from (1) the product structure theorem,
i.e. G ⊆ H ⊠ P ⊠K3 and (2) the monotonicity of the qn() operator. The second
inequality is the technical contribution of the paper. We argue that we can take
out K3 and P from the operator paying a small multiplicative constant. Finally,
we are using a result by Alam et al. [5], i.e., if stw(H) 6 3, we have qn(H) 6 5.

The second example is a breakthrough result on the nonrepetitive chromatic
number of planar graphs. Consider a word w over some alphabet of symbols. A
square of a word w is a word w2 = ww. E.g. (ab)2 = abab. A word is nonrepetitive
if it contains no squares. A coloring of vertices of a graph is nonrepetitive if
for every path in G, the color sequence along the path is nonrepetitive. The
nonrepetitive chromatic number of a graph, denoted by π(G), is the least integer
k such that G admits a nonrepetitve coloring with k colors. Already in 1906, Thue
has proved that π(P ) 6 3 for every path P . In 2002, Alon et al. [6] conjectured that
planar graphs have bounded nonrepetitve chromatic number. This was a central
open problem in a very lively area of research. The product structure theorem
allows a simple proof for the conjecture. Indeed, Dujmović et al. [7] proved that
π(G) 6 768 for every planar graph G. Their proof strategy is captured within the
following lines:

π(G) 6 π(H ⊠ P ⊠K3)

6 π∗(H ⊠ P ⊠K3)

6 π∗(H ⊠ P ) · 3
6 π∗(H) · 4 · 3
6 43 · 4 · 3 = 768.

The first inequality follows from (1) the product structure theorem, i.e., G ⊆
H ⊠ P ⊠ K3 and (2) the monotonicity of the π() operator. Within the second
inequality a new operator π∗ is introduced. We have π(G) 6 π∗(G) for all graphs
G. Moreover, π∗() works better with the strong product as we can see in the
third and fourth inequality. Finally, π∗(H) 6 4k for all graphs H with tw(H) 6 k
follows by [8].

The third and last example is on p-centered chromatic numbers of planar graphs.
A vertex coloring φ of a graph G is p-centered if for every connected subgraph H
of G either φ uses more than p colors on H or there is a color that appears exactly
once on H . Centered colorings form one of the families of parameters that allow
to capture notions of sparsity of graphs. The p-centered chromatic number χp(G)
of G is the minimum integer k such that there is a p-centered coloring of G using
k colors.

In 2016, Dvořák asked if χp(G) is bounded by polynomial in p for G being
planar. This was proved by Mi. Pilipczuk and Siebertz [9]. Together with Debski,
Felsner, and Schröder [10] we proved that χp(G) = O(p3 log p) for all planar graphs
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G. The proof is captured within the following lines:

χp(G) 6 χp(H ⊠ P ⊠K3)

6 χp(H ⊠ P ) · χp(K3)

6 χp(H) · χp(P ) · χp(K3)

6 χp(H) · (p+ 1) · 3
= O(p2 log p) · (p+ 1) · 3
= O(p3 log p).

Again, the first inequality is by the product structure theorem. The second
and third inequalities are technical contributions of our paper and introduce yet
another auxiliary parameter χp(G). The rest follows from the bound for χp(H) =
O(pk log p) whenever stw(H) 6 k.
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Obstructions for matroids of path-width at most k and
graphs of linear rank-width at most k

Sang-il Oum

(joint work with Mamadou Moustapha Kanté, Eun Jung Kim and
O-joung Kwon)

The class of graphs of path-width at most k is minor-closed and therefore the list
of excluded minors for the class of graphs of path-width at most k is finite for each
k by the theorem of Robertson and Seymour [13]. In 1998, Lagergren [10] proved
that each excluded minor for the class of graphs of path-width at most k has at

most 2O(k4) edges.
We aim to prove analogous theorems for the class of matroids of path-width at

most k and for the class of graphs of linear rank-width at most k. For a matroid
M on the ground set E(M), we define its connectivity function λM by

λM (X) = rM (X) + rM (E(M)−X)− r(M) for X ⊆ E(M),

where rM is the rank function of M . The path-width of a matroid M is defined as
the minimum width of linear orderings of its elements, called path-decompositions
or linear layouts, where the width of a path-decomposition e1, e2, . . . , en is defined
as the maximum of the values λM ({e1, e2, . . . , ei}) for all i = 1, 2, . . . , n.

For matroid path-width, we do not yet know whether there are only finitely
many excluded minors for the class of matroids of path-width at most k. Previ-
ously, Koutsonas, Thilikos, and Yamazaki [9] showed a lower bound, proving that
the number of excluded minors for the class of matroids of path-width at most k
is at least (k!)2.

Geelen, Gerards, and Whittle [4] proved that for each finite field F, F-represent-
able matroids of bounded branch-width are well-quasi-ordered under taking mi-
nors. This implies that for each finite field F, there are only finitely many F-
representable excluded minors for the class of matroids of path-width at most k.
However, their theorem does not provide any method of constructing the list of
F-representable excluded minors. We are now ready to state our main theorem,
showing an explicit upper bound of the size of every F-representable excluded
minor.

Theorem 1. For a finite field F and an integer k, each F-representable excluded

minor for the class of matroids of path-width at most k has at most 2|F|
O(k2)

ele-
ments.

Thus, by Theorem 1, we ‘have’ an algorithm to construct a monadic second-
order formula ϕF

k to decide whether an F-representable matroid has path-width
at most k and we ‘have’ a fixed-parameter algorithm to decide whether an input
F-represented matroid has path-width at most k. Note that there is a subtle
difference between “have” and “there exist”; by Geelen, Gerards, and Whittle [4],
we knew that there exists ϕF

k, but we did not know how to construct it, because
their proof is non-constructive. By Theorem 1 we can enumerate all matroids of
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small size to find the list of all F-representable excluded minors and therefore we
can finally construct ϕF

k.
We remark that Geelen, Gerards, Robertson, and Whittle [3] showed an analo-

gous theorem for branch-width of matroids; for each k > 1, every excluded minor
for the class of matroids of branch-width at most k has at most (6k+1 − 1)/5
elements.1

By extending our method slightly, we also prove a similar theorem for the linear
rank-width of graphs as follows.

Theorem 2. Each excluded pivot-minor for the class of graphs of linear rank-

width at most k has at most 22
O(k2)

vertices.

Since every vertex-minor obstruction is also a pivot-minor obstruction, we de-
duce the following.

Corollary 3. Each excluded vertex-minor for the class of graphs of linear rank-

width at most k has at most 22
O(k2)

vertices.

The situation is very similar to that of matroids representable over a fixed finite
field. Oum [11] showed that graphs of bounded rank-width are well-quasi-ordered
under taking pivot-minors, which implies that the list of excluded pivot-minors for
the class of graphs of linear rank-width at most k is finite. Again its proof is non-
constructive and therefore it provides no algorithm to construct the list. Jeong,
Kwon, and Oum [6, 7] proved that any list of excluded pivot-minors characterizing

the class of graphs of linear rank-width at most k has at least 2Ω(3k) graphs.
Corollary 3 answers an open problem of Jeong, Kwon, and Oum [7] on the

number of vertices of each excluded vertex-minor for the class of graphs of linear
rank-width at most k. Adler, Farley, and Proskurowski [1] characterized excluded
vertex-minors for the class of graphs of linear rank-width at most 1. Theorem 6.1
of Kanté and Kwon [8] implies that distance-hereditary excluded vertex-minors
for the class of graphs of linear rank-width at most k have at most O(3k) vertices.

Previously, we only knew the existence of a modulo-2 counting monadic second-
order formula Φk testing whether a graph has linear rank-width at most k. This
is due to the theorem of Courcelle and Oum [2] stating that for each graph H ,
there is a modulo-2 counting monadic second-order formula to decide whether a
graph has a pivot-minor isomorphic to H . As there is a polynomial-time algo-
rithm to decide a modulo-2 counting monadic second-order formula for graphs of
bounded rank-width (see [2, Proposition 5.7]), we can conclude that there ‘exists’
a polynomial-time algorithm to decide whether an input graph has linear rank-
width at most k. However, this algorithm is based on the existence of Φk, and
we did not know how to construct Φk. Finally, by Theorem 2, we know how to
construct Φk algorithmically.

1In [3], the connectivity function of matroids is defined to have +1, which makes (6k − 1)/5.
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Recent Progress on Hadwiger’s Conjecture

Luke Postle

(joint work with Michelle Delcourt)

In 1943 Hadwiger [3] made the following famous conjecture.

Conjecture 1 (Hadwiger’s Conjecture). For every integer t > 1, every graph with
no Kt minor is (t− 1)-colorable.

Hadwiger’s Conjecture is widely considered among the most important problems
in graph theory and has motivated numerous developments in graph coloring and
graph minor theory. For an overview of major progress on Hadwiger’s Conjecture,
we refer the reader to [8], and to the recent survey by Seymour [9] for further
background.

The following is a natural weakening of Hadwiger’s Conjecture.

Conjecture 2 (Linear Hadwiger’s Conjecture). There exists a constant C > 0
such that for every integer t > 1, every graph with no Kt minor is Ct-colorable.
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For many decades, the best general bound on the number of colors needed to
properly color every graph with noKt minor had beenO(t

√
log t), a result obtained

independently by Kostochka [4, 5] and Thomason [10] in the 1980s. These results
bound the “degeneracy” of graphs with no Kt minor. Recall that a graph G is
d-degenerate if every non-empty subgraph of G contains a vertex of degree at
most d. A standard inductive argument shows that every d-degenerate graph is
(d + 1)-colorable. Thus the following bound on the degeneracy of graphs with no
Kt minor gives a corresponding bound on their chromatic number.

Theorem 3 ([4, 5, 10]). Every graph with no Kt minor is O(t
√
log t)-degenerate.

It has been shown that there exist graphs with no Kt minor and minimum
degree Ω(t

√
log t). Thus the bound in Theorem 3 is tight. Until very recently

O(t
√
log t) remained the best general bound for the chromatic number of graphs

with no Kt minor when Norin, Song and I [8] improved this with the following
theorem.

Theorem 4. For every β > 1
4 , every graph with no Kt minor is O(t(log t)β)-

colorable.

Delcourt and I [1] made the following further improvement to Theorem 4.

Theorem 5. Every graph with no Kt minor is O(t log log t)-colorable.

Theorem 5 is in fact a corollary of the following more technical main result.

Theorem 6. There exists an integer C = C6 > 1 such that the following holds:
Let t > 3 be an integer. Let G be a graph and let

f(G, t) := max
H⊆G

{

χ(H)

a
: a >

t√
log t

, v(H) 6 Ca log4 a, H is Ka-minor-free

}

.

If G has no Kt minor, then

χ(G) 6 C · t · (1 + f(G, t)).

Theorem 6 has a number of interesting corollaries. As mentioned, a first corol-
lary of Theorem 6 is Theorem 5. This follows straightforwardly by using the
best-known bounds on the chromatic number of small Kt-minor-free graphs. A
second corollary is that Linear Hadwiger’s Conjecture reduces to small graphs as
follows.

Corollary 7. There exists an integer C = C7 > 1 such that the following holds:
If for every integer t > 3 we have that every Kt-minor-free graph H with v(H) 6

Ct log4 t satisfies χ(H) 6 Ct, then for every integer t > 3 we have that every
Kt-minor-free graph G satisfies χ(G) 6 C2t.

Proof. Follows from Theorem 6 by setting C = 2C6. �

A third corollary of Theorem 6 shows that Linear Hadwiger’s Conjecture holds
if the clique number of the graph is small as a function of t.
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Corollary 8. There exists C = C8 > 1 such that the following holds: Let t > 3 be

an integer. If G is a Kt-minor-free graph with ω(G) 6
√
log t

(log log t)2 , then χ(G) 6 Ct.

In 2003, Kühn and Osthus [6] proved that Hadwiger’s Conjecture holds for
graphs of girth at least five provided that t is sufficiently large. In 2005, Kühn and
Osthus [7] extended this result to the class ofKs,s-free graphs for any fixed positive
integer s > 2. Along this line, we have the following corollary of Theorem 6.

Corollary 9. Linear Hadwiger’s Conjecture holds for the class of Kr-free graphs
for every fixed r.

Note that the constant in Corollary 9 depends on r; adding the assumption that
t is sufficiently large with respect to r permits a constant that does not depend
on r. In 2017, Dvořák and Kawarabayashi [2] showed that there exist triangle-free
graphs of tree-width at most t (and hence Kt+2-minor-free) and chromatic number
at least

⌈

t+3
2

⌉

. Hence the result in Corollary 9 is tight up to the multiplicative
constant.
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Burling graphs revisited

Nicolas Trotignon

(joint work with Pegah Pournajafi)

The Burling sequence is a sequence of triangle-free graphs of increasing chromatic
number. Any graph which is an induced subgraph of a graph in this sequence
is called a Burling graph. These graphs have attracted some attention because
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they have geometric representations and because they provide counter-examples
to several conjectures about bounding the chromatic number in classes of graphs.

The goal of this talk is to provide new definitions of Burling graphs. Three
of them are geometrical : they characterize Burling graphs as intersection graphs
of various geometrical objects (line segments of the plane, frames of the plane,
axis-aligned boxes of R3). All these representations of Burling graphs were known,
mostly from [1] and [2]. Our contribution is to add restrictions to the configurations
of the geometrical objects so that there is an equivalence between the intersection
graphs and the Burling graphs, see [3].

Among our new equivalent definitions of Burling graphs, one is of a more com-
binatorial flavour. It says how any Burling graph can be derived from a tree with
some specific rules. This definition is convenient decide whether some given graph
is Burling or not. We use it to give several generic examples of Burling graphs or
rules to find edges whose subdivision preserves being a Burling graph. We also
use it to find examples of graphs that are not Burling, see [4]. Among several
consequences of all this, one is that graphs that do not contain any subdivision of
K5 as an induced subgraph have unbounded chromatic number, see [5].

It turns out that this talk was already given several time in 2021 to audiences
more or less overlapping Oberwolfach’s attendees. Therefore, the focus is on open
questions that we explain now and that were not advertised previously.

• Could it be that for all Burling graph H , graphs with no subdivisions of
H are χ-bounded? This is probably far too much, but disproving it would
be interesting.

• Let H be a Burling graph. Is the chromatic number of Burling graphs that
do not contain H as an induced subgraph bounded? If yes, it shows that
Burling graphs a kind of best possible or “minimal”. If not, this would
interestingly provide new triangle-free graphs of high chromatic number.

• Describe more precisely Burling graphs. Possibly characterize them by
excluding induced subgraphs, but the description will be certainly messy.
Or maybe just recognize them in polytime which seem to be possible.

• Is there a polytime algorithm to compute a maximum stable set in an
input Burling graph? The question might seem artificial but it would
maybe provide an answer to a conjecture or Thomassé, Trotignon and
Vušković : if a class of graph is closed under taking induced subgraphs
and admits a polytime algorithm to compute a maximum stable set, then
it is χ-bounded.

• Can we put triangles back in Burling graphs? The question might seem
strange. But it turns out that while triangle graphs of high chromatic
number are well studied, almost nothing is known about graphs of high
chromatic number that do contain triangles but no K4. In particular,
it is not known whether the chromatic number of such graphs can be un-
bounded while the chromatic number if its triangle-free induced subgraphs
is bounded.



Graph Theory 53

References

[1] Arkadiusz Pawlik, Jakub Kozik, Tomasz Krawczyk, Micha l Lasoń , Piotr Micek, William T.
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Short proofs of rainbow matching results

Benny Sudakov

(joint work with David Munhá Correia and Alexey Pokrovskiy)

Research regarding rainbow matchings in graphs dates back to the work of Euler
on various problems about transversals in Latin squares. A Latin square of order
n is an n × n array filled with n different symbols, where no symbol appears in
the same row or column more than once. A transversal in a Latin square of order
n is a set of m entries such that no two entries are in the same row, same column,
or have the same symbol. A transversal is said to be full if m = n and partial
otherwise. Despite the fact that not every Latin square contains a full transversal,
it is plausible to ask whether every Latin square contains a large partial transversal.
Indeed, the celebrated conjecture of Ryser, Brualdi and Stein [10, 5, 11] states that
every Latin square contains a transversal which uses all but at most one symbol.

Conjecture 1. Every Latin square of order n contains a transversal of size n−1.

There is a bijective correspondence between Latin squares of order n and proper
edge-colourings of the complete bipartite graph Kn,n with n colours. Indeed, let
a Latin square S have {1, 2, . . . , n} as its set of symbols and let Si,j denote the
symbol at the entry (i, j). To S we associate an edge-colouring of Kn,n with the
colours {1, 2, . . . , n} by setting V (Kn,n) = {x1, . . . , xn, y1, . . . , yn} and letting the
edge between xi and yj receive colour Si,j . Note that this colouring is proper,
and moreover, each colour consists of a matching of size n. It is now easy to see
that transversals of size m in S correspond to rainbow matchings of size m in
the coloured Kn,n. Therefore, the Ryser-Brualdi-Stein conjecture states - every
properly edge-colouring of Kn,n with n colours has a rainbow matching of size
n− 1.

The Ryser-Brualdi-Stein conjecture is just one thread of the research on rainbow
matchings and rainbow subgraphs more broadly. There are many other interest-
ing conjectures, some of them motivated by strengthening Ryser-Brualdi-Stein,
others motivated by other branches of mathematics. As an example, consider the
following conjecture of Aharoni-Berger [1].
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Conjecture 2. Let G be a properly edge-coloured bipartite multigraph with n
colours having at least n+1 edges of each colour. Then G has a rainbow matching
using every colour.

The motivation for this conjecture is the Ryser-Brualdi-Stein conjecture which
it strengthens (to see this, consider a properly coloured Kn,n as in Conjecture 2;
delete one colour to obtain a graph satisfying the Aharoni-Berger conjecture).
Given the difficulty of the Ryser-Brualdi-Stein conjecture, much of the effort has
been put into proving asymptotic versions of Conjecture 2. There are two natural
approaches one can take in proving weakenings of this conjecture, which we will
refer to as a weak asymptotic and a strong asymptotic. The weak asymptotic asks
for rainbow matchings which uses nearly all colours.

Weak asymptotic: Let G be a properly edge-coloured bipartite multigraph with n
colours having at least n+1 edges of each colour. Then G has a rainbow matching
of size n− o(n).
A weak asymptotic version of the Aharoni-Berger conjecture was proved by Barat-
Gyárfás-Sarkozy [4] who prove the above with error term o(n) =

√
n. Their proof

was very short and elegant, using the method of alternating paths.
Another direction is to prove qualitatively stronger asymptotic results. For us

“strong asymptotic” will mean a result, which guarantees matchings using all the
colours in the graph, at the cost of having slightly more edges of each colour.

Strong asymptotic: Let G be a properly edge-coloured bipartite multigraph with
n colours of size at least n + o(n) each. Then G has a rainbow matching using
every colour.
The reason we call the above statement as a “strong” asymptotic, is that it implies
the previously mentioned weak asymptotic. Indeed suppose we have a properly
edge-coloured bipartite multigraph G with n colours having at least n + 1 edges
of each colour. Delete o(n) colours in order to obtain a new graph G′ with n′ =
n−o(n) colours and each colour having n′+o(n)+1 edges. The strong asymptotic
applies to this to give a rainbow matching using every colour. This gives a rainbow
matching of size n′ = n− o(n) in the original graph. Moreover, note that we can
choose which o(n) colours we want to miss. This simple argument shows that the
“strong asymptotic with error term o(n) implies the weak asymptotic with error
term o(n).

It was believed that the strong asymptotic is fundamentally more difficult than
the weak one. Indeed, it took much longer for the strong asymptotic to be proved,
and the proof methods involved were considerably more difficult. It is easy to
see that if there are 2n edges of each colour has a rainbow matching of size n.
Indeed, if the largest matching M in such a graph had size 6 n − 1, then one of
the 2n edges of the unused colour would be disjoint from M , and we could get a
larger matching by adding it. This simple bound has been successively improved
by many authors. Aharoni, Charbit, and Howard [2] proved first that matchings
of size ⌊7n/4⌋ are sufficient to guarantee a rainbow matching of size n. Kotlar and
Ziv [7] improved this to ⌊5n/3⌋. The third author then proved that φn + o(n) is
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sufficient, where φ ≈ 1.618 is the Golden Ratio [8]. Clemens and Ehrenmüller [6]
showed that 3n/2 + o(n) is sufficient. Aharoni, Kotlar, and Ziv [3] showed that
having 3n/2 + 1 edges of each colour in an n-edge-coloured bipartite multigraph
guarantees a rainbow matching of size n. Finally, the strong asymptotic, as stated
above, was proved by the third author in [9]. This proof was much longer and
more difficult than Barat-Gyárfás-Sarkozy’s proof of the weak asymptotic. It also
gave a considerably weaker error term.

Now, we’ve already seen that “if the strong asymptotic is true, then the weak
asymptotic is true”. The main idea of this paper is a very short trick, that we
call “the sampling trick”, which allows one to prove the converse statement. This
trick will allow us to prove results like “suppose the weak asymptotic is true with
o(n) = n/f(n); then the strong asymptotic is true with o(n) = 3n/

√

f(n)”. Com-
bining this with the Barat-Gyárfás-Sarkozy result, we obtain the strong asymptotic
version of the Aharoni-Berger conjecture with a much improved error term.

Theorem 3. Let G be a properly edge-coloured bipartite multigraph with n colours
having at least n+n3/4 edges of each colour. Then G has a rainbow matching using
every colour.

Our approach, in addition to giving a polynomial error term, vastly simplifies the
original 40 page proof (a full proof will now take less than 2 pages). The “sampling
trick” is very versatile and applies to many other problems and conjectures. In
all our applications, it allows us to either prove a strong asymptotic for the first
time, or to greatly simplify an existing proof of the strong asymptotic.

• We give the first asymptotic proof of the “non-bipartite” Aharoni-Berger
conjecture, solving two conjectures of Aharoni, Berger, Chudnovsky and
Zerbib.

• We give a very short asymptotic proof of Grinblat’s conjecture (first ob-
tained by Clemens, Ehrenmüller, and Pokrovskiy). Furthermore, we ob-
tain a new asymptotically tight bound for Grinblat’s problem as a function
of edge multiplicity of the corresponding multigraph.

• We give the first asymptotic proof of a 30 year old conjecture of Alspach.
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69:91, 1967.
[11] S. K. Stein. Transversals of latin squares and their generalizations. Pacific J. Math.,

59(2):567–575, 1975.

Common graphs with arbitrary chromatic number

Jan Volec

(joint work with Dan Král’ and Fan Wei)

Ramsey’s Theorem [24], one of the most well-known results in combinatorics, as-
serts that for every graphH there exists a number N such that any 2-edge-coloring
of the complete graph with N vertices contains a monochromatic copy of H . De-
termining the smallest such N , which is known as the Ramsey number r(H) of
a graph H , is a famous open problem even in the case H is a complete graph
despite a recent progress on upper bounds [4, 25]. In fact, Erdős offered $100 for
determining whether the limit r(Kn)

1/n exists, and another $250 for computing
its value. In our work, we are concerned with a more general problem of how many
monochromatic copies of a graph H necessarily exist in any 2-edge-coloring of the
n-vertex complete graph.

Goodman’s Theorem [16] states that the number of monochromatic copies of
the triangle K3 is asymptotically minimized by the random 2-edge-coloring of a
complete graph. We say that a graph H is common if the number of monochro-
matic copies of H is asymptotically minimized by the random 2-edge-coloring of
a complete graph. In particular, K3 is common and more generally every cycle is
common [27]. In 1962, Erdős [11] conjectured that every complete graph is com-
mon, and later Burr and Rosta [2] conjectured that every graph is common. Both
of these conjectures turned out to be false: in the late 1980s, Sidorenko [26, 27]
showed that a triangle with a pendant edge is not common, and Thomason [30]
showed that K4 is not common. More generally, any graph containing K4 is not
common [20] (and thus almost every graph is not common), and there are graphs
H and 2-edge-colorings of complete graphs with the number of monochromatic
copies of H being sublinear in the number of monochromatic copies of H in the
random 2-edge-coloring [3, 13].

A characterization of the class of common graphs is an intriguing open prob-
lem and there is even no conjectured description of the class. This is also very
closely related to the famous conjecture of Sidorenko [29] and of Erdős and Si-
monovits [12], which asserts every bipartite graph has the Sidorenko property.
Since every graph with the Sidorenko property is common, the conjecture, if true,
would imply that all bipartite are common. Families of bipartite graphs proven
to have the Sidorenko property [1, 27, 28, 5, 8, 7, 9] provide examples of bipartite
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graphs that are common. Common graphs that are not bipartite, i.e., their chro-
matic number is larger than two, are scarce. In particular, Jagger, Šťov́ıček and
Thomason asked whether there exists a common graph with chromatic number at
least four. While odd cycles and even wheels [20, 27] are examples of 3-chromatic
common graphs, also see [17], the existence of a common graph with chromatic
number at least four was open until about 10 years ago when the 5-wheel was
shown to be common [19]. The question whether there exist common graphs with
arbitrary large chromatic number has been reiterated in [19], and Conlon, Fox and
Sudakov list the following problem in the survey paper “Recent developments in
graph Ramsey theory” [6, Problem 2.28]:

Problem. Do there exist common graphs of all chromatic numbers?

Our main result is the positive answer to this problem.

Theorem 1. For every ℓ ∈ N, there exists a connected common graph with chro-
matic number ℓ.

We treat common graphs using methods from the theory of graph limits, which
allows us applying spectral tools from the operator theory. In order to prove The-
orem 1, we establish the following stronger statement: every graph of sufficiently
large girth can be embedded in a graph H such that any 2-edge-coloring of a com-
plete graph has asymptotically at least as many monochromatic copies of H as
the random 2-edge-coloring.

Our proof of Theorem 1 is split into two cases based on whether the considered
2-edge-coloring is close to the random coloring or not; we refer to the two cases
as the local regime and the non-local regime. The core of the proof is formed by
the arguments related to the local regime, which is described by the existence of
a dominant eigenvalue of the operator associated with the 2-edge-coloring. While
both the Sidorenko property and common graphs have been studied in the local
regime [22, 15, 14, 10, 18] before, the proof of Theorem 1 required developing new
spectral based techniques to control (in)dependence of monochromatic embeddings
of different parts of H in the host 2-colored complete graph.

Our techniques extend to the setting of so-called k-common graphs introduced
in [20]: a graph H is k-common if the random k-edge-coloring of a complete graph
asymptotically minimizes the number of monochromatic copies of H among all
k-edge-colorings. This notion provides another link to the Sidorenko property: a
graph H has the Sidorenko property if and only if H is k-common for all k [21]. If
H is k-common, then it is k′-common for all k′ 6 k, and thus k-common graphs
for k > 3 are even more rare than common graphs. In fact, the question of Jagger,
Šťov́ıček and Thomason [20] about the existence of a non-bipartite k-common
graph for any given k > 3 has been resolved only recently in [21]. Using the
techniques developed to prove Theorem 1, we can also prove the following.

Theorem 2. For every k > 2 and ℓ ∈ N, there exists a connected k-common graph
with chromatic number ℓ.
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[11] P. Erdős: On the number of complete subgraphs contained in certain graphs, Magyar Tud.

Akad. Mat. Kutató Int. Közl. 7 (1962), 459–464.
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Rainbow clique subdivisions and blow-ups

Liana Yepremyan

This talk was based on two recent papers [6, 5]. In [6] we show that for any
integer m > 2, every properly edge-coloured graph on n vertices with more than
n1+o(1) edges contains a rainbow subdivision of Km. This is a rainbow analogue of
some classical results on clique subdivisions and extends some results on rainbow
Turán numbers. Our method relies on the framework introduced by Sudakov and
Tomon [16] which we adapt to find robust expanders in the coloured setting.

Consequently we improved this bound in [5]. We show that for every integer
m > 2 and large n, every properly edge-coloured graph on n vertices with at
least n(logn)60 edges contains a rainbow subdivision of Km. Using the same
framework, in [5] we also prove a result about the extremal number of r-blow-ups
of subdivisions. We show that for integers r,m > 2 and large n, every graph on n
vertices with at least n2− 1

r (logn)
60
r edges has an r-blow-up of a subdivision of Km.

These results are sharp up to a polylogarithmic factor. Our proofs in the second
paper use the connection between mixing time of random walks and expansion in
graphs.

1. Introduction

The Turán number of a graph H , denoted ex(n,H), is the maximum possible
number of edges in an n-vertex graph that does not contain a copy of H . A
proper edge-colouring of a graph is an assignment of colours to its edges so that
edges that share a vertex have distinct colours. A rainbow subgraph of an edge-
coloured graph is a subgraph whose edges have distinct colours. The rainbow
Turán number of a graph H , denoted ex∗(n,H), is the maximum possible number
of edges in a properly edge-coloured graph on n vertices with no rainbow copy of
H . This notion was introduced by Keevash, Mubayi, Sudakov and Verstraëte [8]
as a rainbow variant of Turán numbers. One can define ex(n,H) and ex∗(n,H)
analogously for a family of graphs H.

It was shown in [8] that ex∗(n,H) = (1 + o(1)) ex(n,H) for non-bipartite H .
Just like in the regular Turán problems far less is known about rainbow Turán
numbers of bipartite graphs. The authors of [8] raised two problems concerning
rainbow Turán numbers of even cycles, one concerning an even cycle of fixed length
2k and the other concerning the family C of all cycles. For all k > 2, they showed
that ex∗(n,C2k) = Ω(n1+1/k) and conjectured that ex∗(n,C2k) = Θ(n1+1/k). The
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authors of [8] verified the conjecture for k ∈ {2, 3}. Following further progress
on the conjecture by Das, Lee and Sudakov [2], Janzer [4] recently resolved the
conjecture.

Regarding the rainbow Turán number of the family C of all cycles, Keevash,
Mubayi, Sudakov and Verstraëte [8] showed that ex∗(n, C) = Ω(n logn), by con-
sidering a naturally defined proper edge-colouring of the hypercube Qk, where
k = ⌊logn⌋. The vertices of Qk are binary vectors of length k and for any two vec-
tors which differ exactly at ith coordinate there is an edge of colour i. It is not hard
to see that in such a colouring of Qk there is no rainbow cycle. They also showed
that ex∗(n, C) = O(n4/3) and asked if ex∗(n, C) = O(n1+o(1)) and furthermore,
if ex∗(n, C) = O(n logn). Das, Lee and Sudakov [2] answered the first question

affirmatively, by showing that ex∗(n, C) 6 ne(logn)
1
2
+o(1)

. Recently, Janzer [4] im-
proved this bound by establishing that ex∗(n, C) = O

(

n(logn)4
)

, which is tight
up to a polylogarithmic factor. Together with Jiang and Methuku [6] we proved
the following generalisation of Das, Lee and Sudakov [2] on ex∗(n, C).
Theorem 1 (Jiang, Methuku, Yepremyan [6]). For every integer m > 2 there
exists a constant c > 0 such that for every integer n > m the following holds. If G

is a properly edge-coloured graph on n vertices with at least nec
√
log n edges, then

G contains a rainbow subdivision of Km, where each edge is subdivided at most
1300 log2 n times.

The method used in [6] utilises robust expanders in the coloured setting together
with a density increment argument, inspired in part by the method introduced by
Sudakov and Tomon [16].

Later, in [5] we lowered the eO(
√
logn) error term in Theorem 1 to a polylog-

arithmic term, which in conjunction with the above-mentioned Ω(n logn) lower
bound on ex∗(n, C) determines the rainbow Turán number of the family of Km-
subdivisions up to a polylogarithmic factor.

Theorem 2. Fix an integer m > 2 and let n be sufficiently large. Suppose that
G is a properly edge-coloured graph on n vertices with at least n(logn)60 edges.
Then G contains a rainbow subdivision of Km, where each edge is subdivided at
most (logn)6 times.

Theorem 2 provides the rainbow analogue of a fundamental (and highly in-
fluential) result of Mader [13] stating that for every integer m > 2, there exists
d = d(m) such that every graph with average degree at least d contains a subdi-
vision of Km. Research on this problem has a long history, see e.g., Mader [14],
Komlós and Szemerédi [9, 10], and Bollobás and Thomason [1].

Our proof of Theorem 2 exploits the connection between mixing time of random
walks and edge expansion. This connection is used in conjunction with counting
lemmas developed by Janzer in [4] regarding homomorphisms of cycles in graphs.
We also prove a strengthening of Theorem 2, regarding ‘rooted’ rainbow subdivi-
sions of Km in expanders. For this stronger version, in addition to the ingredients
used for proving Theorem 2, we use the framework of [6] and an additional idea
used by Letzter in [11].
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We also obtain a generalisation of the following result of Janzer [4] concerning
the Turán number of blow-ups of cycles. For an integer r > 1 and a graph F , the
r-blow-up of F , denoted F [r], is the graph obtained by replacing each vertex of
F with an independent set of size r and each edge of F by a Kr,r. Let C0[r] :=
{C2k[r] : k > 2}. Answering a question of Jiang and Newman [7], Janzer [4] proved
the following.

Theorem 3 (Janzer [4]). Let r > 1 be a fixed integer. Then ex(n, C0[r]) =
O
(

n2−1/r(logn)7/r
)

.

This bound is tight up to a polylogarithmic factor as random graphs show that
ex(n, C0[r]) = Ω(n2−1/r). We generalise Theorem 3 by proving the following.

Theorem 4. Let r,m > 1 be fixed integers and let n be sufficiently large. Suppose

that G is a graph on n vertices with at least n2− 1
r (logn)

60
r edges. Then G contains

an r-blow-up of a subdivision of Km, where each edge is subdivided at most (logn)6

times.

This bound is also tight up to a polylogarithmic factor as shown by random
graphs. The proof of Theorem 4 follows the proof of our first main result, Theorem
2, with the additional use of a ‘balanced supersaturation’ result, due to Morris and
Saxton [15]. Such a result gives us a collection ofKr,r’s in a sufficiently dense graph
such that no copy of K1,r is contained in too many copies of Kr,r (the result in [15]
is more general but this condition suffices for our purposes). This sort of result is
usually used in conjunction with the container method in order to upper bound
the number of H-free graphs. So it is quite interesting that we use this ‘balanced
supersaturation’ result for Kr,r’s in a new setting.

2. Main ideas

Our method in [6] builds on the method used by Sudakov and Tomon in [16]
together with some new ideas. We incorporate the minimality notion commonly
used in the study of graph minors and adapt the notion of “expander” conveniently
to our setting. For a graph G, we denote by d(G) the average degree of G.

Definition 5. A graph G is said to be d-minimal if d(G) > d but d(H) < d
for every proper subgraph H ⊆ G. Given d > 1, η ∈ (0, 1) and ε ∈ (0, 12 ], an
n-vertex graph G is called a (d, η, ε)-expander if G is d-minimal, and for every
subset S ⊆ V (G) of size at most (1− ε)n, we have d(S) 6 (1− η)d.

We show that most of the edges of a sufficiently dense graph can be covered
by edge-disjoint expanders. In a properly edge-coloured expander, from any given
vertex v, we can reach almost all of the other vertices by a rainbow path of poly-
logarithmic length avoiding a given set of vertices and colours. Additionally, the
notion of minimality ensures that the set of these “reachable” vertices induces most
of the edges in the expander. This additional feature of the expander is used to
show the existence of a common large intersection of reachable vertices for a pair
of vertices x and y in a general graph (not necessarily an expander). Eventually we
are either able to join any pair of vertices by a rainbow path of poly-logarithmic
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length avoiding a bounded set of colours and vertices (thus allowing us to build a
copy of the desired rainbow Kt-subdivision) or find a much denser subgraph. We
then complete the proof via a density increment argument as in [16].

In the subsequent paper [5], the main novelty is the use of the connection
between the mixing time of random walks and our notion of expansion. It is a
well-known and very useful fact that so-called ‘large conductance’ implies ‘small’
mixing time (see, e.g., Lovász [12]). Moreover, our notion of expansion implies
that our expanders have large conductance. Using these facts we show that if
additionally expanders are almost regular then long enough walks are close to
being uniformly distributed. We also use two counting lemmas of Janzer from [4].
In a properly edge-coloured graph, say that a closed walk is degenerate if it is
either not rainbow or visits a vertex more than once. The first lemma from [4]
implies that in a properly edge-coloured graph which is close to being regular, the
number of degenerate closed 2k-walks is significantly smaller than the number of
closed 2k-walks, provided that k is sufficiently large. Given two vertices x and y,
a closed 2k-walk W is said to be hosted by x and y if it starts at x and reaches
y after k steps. We call a pair of vertices (x, y) good if the number of degenerate
closed 2k-walks hosted by x and y is significantly smaller than the number of
closed 2k-walks hosted by x and y. The second lemma from [4] that we use shows
that if a pair (x, y) is good then there are many short pairwise colour-disjoint and
internally vertex-disjoint k-paths from x to y.

Using results about random walks on graphs, which relate mixing time to expan-
sion, we show that in an expander G on n vertices which is close to being regular,
for k suitably large (at least polylogarithmic in n), the numbers of closed 2k-walks
hosted by any two pairs of vertices are within a suitable polylogarithmic factor
(in n) of each other. This, combined with the fact that the number of degenerate
closed 2k-walks is small compared to the total number of closed 2k-walks (due to
the first lemma above), implies that almost all pairs of vertices are good. Thus,
using Turán’s theorem, we find a copy of Km in the graph formed by good pairs.
This, together with the fact that there are many short colour-disjoint and inter-
nally vertex-disjoint rainbow paths between any good pair of vertices (due to the
second lemma above) allows us to greedily build the desired rainbow-subdivision
of Km.

We also prove a stronger version of Theorem 2 asserting that in an expander
G which is close to being regular and whose average degree is large enough, for
any set S of m vertices, there exists a rainbow Km-subdivision with the vertices
of S being the branching vertices. The main step in this proof shows that for any
two vertices x and y in G there is a short rainbow x, y-path avoiding a prescribed
small set C of vertices and colours. By iterating this over all pairs of vertices in
S, we can build the desired rainbow Km-subdivision.

To show that there is a short rainbow x, y-path in G, we first apply tools due
to Jiang, Methuku and Yepremyan [6] and Letzter [11] to show that there is a set
of vertices U of size Ω(n) such that for each v ∈ U there is such a short rainbow
x, v-path P (v) and a short rainbow y, v-path Q(v), both of which avoid C, such
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that no colour is used on too many of these paths P (v) and Q(v). It easily follows
that for almost all pairs (u, v) with u, v ∈ U , the paths P (u) and Q(v) are colour-
disjoint. This, combined with the fact that most pairs in U are good (in the sense
mentioned earlier), implies that there exists at least one good pair (u, v) for which
P (u) and Q(v) are colour-disjoint. This allows us to find a suitable short rainbow
u, v-path L such that P (u) ∪ L ∪ Q(v) is a rainbow x, y-walk which contains the
desired rainbow x, y-path.

To prove Theorem 4 about r-blow-ups of subdivisions of cliques, we use similar
arguments as the ones for proving Theorem 2, albeit tailored to the setup of r-blow-

ups. Recall that we are given a graph G on n vertices with at least n2− 1
r (log n)

60
r

edges. A supersaturation result due to Erdős and Simonovits [3] implies that G
has many copies of Kr,r. Our approach is to take a large collection F of copies of
Kr,r in G and consider an auxiliary graph H whose vertices are r-sets of vertices
in G, and whose edges correspond to copies of Kr,r in F. To find a blow-up of
a Km-subdivision in G, it would suffice to find a ‘clean’ subdivision of Km in H,
denoted K, where the r-sets in G corresponding to the vertices of K are pairwise
disjoint. However, in order for our framework to be applicable, we need a crucial
additional property of F that any r-set of vertices A in G and vertex u /∈ A do not
lie in too many Kr,r-copies in this collection F. Fortunately, the existence of such
a collection F is guaranteed by a ‘balanced supersaturation’ result due to Morris
and Saxton [15].

3. Open questions

To conclude, by our results it follows that there is a constant c 6 60 such that any
n-vertex properly edge-coloured graph G with at least n(logn)c edges contains
a rainbow subdivision of Km. On the other hand, an immediate lower bound is
given by the best known lower bound from [8] on ex∗(n, C), which is Ω(n logn).
This shows that our bound is tight up to a polylogarithmic factor. We pose the
following question.

Question 6. Fix m > 2. What is the smallest c such that for all sufficiently
large n the following holds: if G is a properly edge-coloured graph on n vertices
with at least Ω(n(logn)c) edges, then it contains a rainbow subdivision of Km? In
particular, is c = 1?

From our results it also follows that any n-vertex graph with at least n2− 1
r (log n)

60
r

edges contains an r-blow-up of a subdivision of Km. This bound is tight up to
(logn)

60
r factor, due to the following proposition, which was mentioned in [4] as a

remark. We pose the following question, which strengthens Question 6.2 in [4].

Question 7. Fix m > 2. Is it true that if G is an n-vertex graph with at least

Ω(n2− 1
r ) edges then it contains an r-blow-up of a subdivision of Km?
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[9] J. Komlós and E. Szemerédi, Topological cliques in graphs, Combin. Probab. Comput. 3
(1994), 247–256.

[10] , Topological cliques in graphs II, Combin. Probab. Comput. 5 (1996), 79–90.
[11] S. Letzter, Hypergraphs with no tight cycles, arXiv:2106.12082 (2021).
[12] L. Lovász, Random walks on graphs: A survey, Combinatorics, Paul Erdős is eighty 2
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vollständigen Graphen homöomorph sind, Math. Nachr. 53 (1972), 145–150.
[15] R. Morris and D. Saxton, The number of C2ℓ-free graphs, Advances Math. 298 (2016),

534–580.
[16] B. Sudakov and I. Tomon, The extremal number of tight cycles, Int. Math. Res. Not. (2021),

https://doi.org/10.1093/imrn/rnaa396.

Problem Session

Louis Esperet (chair)

1. Well-linked sets in directed graphs (Ken-ichi Kawarabayashi)

Two sets S and T with |S| = |T | are (S, T )-well-linked in a directed graph if for
any A ⊆ S and B ⊆ T with |A| = |B|, there are |A| = |B| disjoint paths (linkage)
from A to B. Note: S, T may not be disjoint. Its order is |S|+ |T |
Motivation:

• Sparsest directed cut (for general graphs, no good approximation, but for

planar graphs, O(log3 n) approx. by Sidiropoulos and KK in FOCS’21).
More precisely, directed graph decomposition based on sparsest cuts.

(For undirected graphs, this leads to a well-linked set decomposition, and
this method leads to the polynomial grid theorem).

• Disjoint paths problem (in planar graphs) S = {s1, s2, s3 . . . , sk}, T =
{t1, t2, t3, . . . , tk}. See below.
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• A generalization of “well-linked” set (this (S, T )-well linked set can be
defined even for DAG).

Indeed, we are interested in DAG when there is no such a (S, T )-well
linked set for any S, T . Maybe in some cases, some algorithmic questions
can be faster?

Some problems:

• Okamura-Seymour for directed planar graphs:
More precisely, for a directed planar graph G with the outer boundary

C, if all vertices in S ∪ T are in C, and S, T satisfy a (S.T )-well-linked
set, there are paths Pi with source node si and terminal node ti, for
i = 1, . . . , k, such that each vertex in G is used in at most two (or any
constant number) of the paths.

• Polynomial acyclic grid theorem:
If (S, T ) is well-linked of order f(k), there is an acyclic grid W of order

k (i.e., W consists of two linkages X,Y of order k, such that X is from
top to bottom, and Y is from left to right), as a minor.

Moreover f is a polynomial function of k
We are actually interested in a more relaxed form: G contains either

W or biclique of order k as a minor. We are even interested in the case
when G is a DAG (or G has no k disjoint cycles).

If this kind of a form is true, we have a very good chance to show
the polynomial bound for Erdős-Posa for directed disjoint cycles (i.e., a
polynomial version of Younger’s conjecture)

2. Linear rank-width of graphs excluding some tree as a
vertex-minor (O-joung Kwon)

For a linear ordering L = v1, v2, . . . , vn of vertices of a graph G, the width of L
is defined as the maximum rank of the matrices A(G)[{v1 . . . vi}, {vi+1, . . . vn}],
where A(G) denotes the adjacency matrix, and the rank is computed over the
binary field. The linear rank-width of G is the minimum width over all linear
orderings of G.

Local complementation at a vertex v is the operation that replaces the subgraph
induced by N(v) with its complement. H is a vertex-minor of a graph G if H can
be obtained from G by local complementations and vertex deletions.

Problem: For every tree T , does the class of graphs having no T vertex-minor
have bounded linear rank-width?

Related papers:

• The grid theorem for vertex-minors JCTB accepted (Geelen, Kwon, Mc-
Carty, and Wollan)

• Obstructions to bounded rank-depth and shrub-depth JCTB 2021 (Kwon,
McCarty, Oum, and Wollan)

• Tree pivot-minors and linear rank-width SIDMA 2021 (Dabrowski, Dross,
Jeong, Kanté, Kwon, Oum, and Paulusma)
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3. Twin-width of graphs (Sang-il Oum)

Question. What is the maximum twin-width of an n-vertex graphs?

It was proved in [Ahn, Kevin Hendrey, Donggyu Kim, Sang-il Oum, Bounds for
the Twin-width of Graphs, arXiv:2110.03957] that Payley graphs have twin-width
equal to n−1

2 . The paper also contains an upper bound for general graphs (of order
n
2 +O(

√
n logn)).

4. Treewidth of hereditary classes (Nicolas Trotignon)

The following conjecture was made by several people:

Conjecture: For every integer ℓ, there exists Cℓ > 0 such that if a graph G
contains none of the following as an induced subgraph:

• subdivision of an ℓ× ℓ wall
• line graph of a subdivision of an ℓ× ℓ wall
• Kℓ,ℓ

• Kℓ

then, treewidth(G) 6 Cℓ log |V (G)|.
Remarks:

• It would be a nice “induced subgraph” version of the celebrated Robertson
and Seymour grid theorem, and maybe too much to believe. So, particular
cases would be interesting. Also, trying to disprove it would be interesting.

• A weaker statement is proved by Tara Abrishami, Maria Chudnovsky,
Sepehr Hajebi, and Sophie Spirkl in Induced subgraphs and tree-decomposi-
tions III. Three-path-configurations and logarithmic tree-width, available in
arxiv 2109.01310.

• The logarithm in the conclusion is needed, as shown by a construction of
Ni Luh Dewi Sintiari and Nicolas Trotignon described in (Theta, triangle)-
free and (even hole, K4)-free graphs. Part 1 : Layered wheels, available in
arxiv 1906.10998.

Variant proposed by S. Thomassé: under the same conditions, but with the t× t-
wall replaced by any fixed cubic graph H , the graph G has bounded twin-width.

Counterexample to the conjecture by James Davies

We present a simple construction of a graph with large girth, tree-width polynomial
in the number of vertices that contains no induced subdivision of a 5×5 wall and no
induced line graph of a subdivision of a 5× 5 wall. This disproves the conjectures
and adds to the list of graphs that would appear in a possible induced version of
the grid theorem. Other known graphs that must appear in such a list include
layered wheels as constructed by Ni Luh Dewi Sintiari and Nicolas Trotignon.

For each j ∈ [n] let Pj be a path contain disjoint subpaths P1,j , . . . , Pn,j in
order. Let G be a graph consisting of disjoint anti-complete paths P1, . . . , Pn and
vertices v1, . . . , vn such that for each i ∈ [n], the neighbourhood of vi is contained
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in V (Pi,1) ∪ · · · ∪ V (Pi,n) and for each j ∈ [n], at least one neighbour of vi is
contained in V (Pi,j).

The graph G has tree-width at least n since it contains Kn as a minor by
contracting the connected induced subgraphs G[V (Pi)∪{vi}] down into individual
vertices. By appropriately choosing the neighbours of each vi, the graph G can be
chosen to have large girth. If we bound the length of the paths P1, . . . Pn, then G
will have at most O(n2) vertices. In particular this means that the tree-width of

G will be Ω(
√

|V (G)|).
A key property of the construction is that for i ∈ {2, . . . , n − 1}, the closed

neighbourhood N [vi] of vi forms a cutset of G. Using this feature it can be
carefully shown that G does not contain an induced subdivision of a 5 × 5 wall
or a line graph of a subdivision of a 5 × 5 wall. Maria Chudnovsky and Nicolas
Trotignon further observed that for appropriate choice of G (choosing each vi to
have exactly one neighbour in each Pi,j), the graph G contains no induced wheel.

5. Hitting all maximum independent sets (Noga Alon)

For a graph G = (V,E) on n vertices let α(G) denote its independence number,
and let h(G) denote the minimum cardinality of a set S of vertices that intersects
all maximum independent sets of G (that is, α(G − S) < α(G)).

Conjecture (Bollobás, Erdős and Tuza, 1991): If α(G) = Ω(n) then h(G) = o(n).

A relaxed conjecture: If χ(G) = O(1) then h(G) = o(n). (Open even for
χ(G) = 3.)

Remarks:

• Hajnal (1965): If α(G) > n/2 then h(G) = 1.
• There are graphs G = Gn on n vertices with α(G) > n/4, χ(G) 6 8
and h(G) >

√
n/2, and there are graphs G = Gn on n vertices with

α(G) = (1/2 − o(1))n and h(G) > (logn)0.999. This settles questions of
Friedgut, Kalai and Kindler, and of Dong and Wu.

• If G is regular and α(G) > 0.250001n then h(G) 6 O(
√
n logn). In

particular this holds for regular 3-colorable graphs.

6. Beyond Hadwiger in F -free graphs (Matija Bucić)

Question (B., Fox and Sudakov). For which graphs F does the following hold:
G does not contain F as a subgraph =⇒ ∃ a clique minor of size (χ(G))1+c for
c = c(F ) > 0?

• Kuhn-Osthus, 2005: true if F is bipartite and ask the question for F = Ks.
• Dvořák and Kawarabayashi, 2017: not true if F contains a triangle.
• Delcourt and Postle 2021: showed there is a linear sized clique minor ∀F
• B., Fox and Sudakov 2021: true ∀F with Hall ratio in place of χ.
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7. Grids and connectivity in digraphs (Stephan Kreutzer)

Societies. A society in a digraph is pair (G,Ω) where G is a digraph and Ω is a
cyclic ordering of some set Ω(G) ⊆ V (G).

A cross in (G,Ω) is a pair P1, P2 of disjoint directed paths such that the end-
points of Pi are si, ti and s1, s2, t1, t2 occur in Ω in this order.

Question. If (G,Ω) is a cross-free society, then is it true that there always is
a planar digraph H with Ω(G) ⊆ V (H) such that H has an embedding into the
plane with the vertices of Ω(H) appearing in the outer face in the order specified
by Ω such that H allows for exactly the same connectivity between vertices of
Ω(G) as G?

What should be true. We can replace G \ Ω(G) by a suitable grid to get at
least the same connectivity as in G but we may get more.

8. Compressibility of acyclic digraphs (Andrzej Grzesik)

For an acyclic oriented graph F define the compressibility of F as the smallest
integer k such that F is homomorphic to any tournament on k vertices.

One can observe that the compressibility of F determines the asymptotic answer
to the Turán problem asking for the maximum number of edges in a graph not
containing F as a subgraph, because an oriented equivalent of Erdős-Stone theorem
holds with the compressibility instead of the chromatic number.

Question: For what graphs F the compressibility of F is linear/polynomial in
the length of the longest directed path in F?

It is known to be linear for powers of paths and orientations of trees and cycles,
polynomial for 2-outdegenerated graphs, and exponential for transitive tourna-
ments.

9. Does Erdős-Posá hold for vertex minors? (Paul Wollan)

Conjecture: For every circle graph H , ∃f such that ∀k and G, either

• G has kH as a vertex-minor, or
• ∃ a rank f(k) pertubation G∗ of G such that G∗ has no H vertex minor.

Remarks:

• The role of circle graphs in vertex minor structure is the analog of the role
of planar graphs in graph minor structure

• Grid theorem for vertex minors says it suffices to prove that in a graph of
bounded rank width, either we have

– kH vertex minor, or
– a bounded rank perturbation of G has no H vertex minor

During the Oberwolfach meeting Xiaoyu He and Yuval Wigderson noted that
the proof of Theorem 1.4 in their paper https://arxiv.org/abs/2105.02383
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with Jacob Fox can be adapted to this setting in order to obtain that compress-
ibility is quasipolynomial in the length of the longest path for bounded degree
graphs.

10. Coloring of planar graphs with vertex pairings
(Johannes Carmesin)

A pairing of a graph is a partition of its vertex set into sets of size two of non-
adjacent vertices.

Question (C, Kurkofka, Mihaylov, Nevinson) Given a planar graph G with a
pairing, can G be coloured with 11 colours such that paired vertices receive the
same colour?

Remarks:

• originated from trying to extend the 4-colour theorem to 3D;
• The answer to this question is ‘no’. This was pointed out by Noga
Alon as well as Michal Pilipczuk and Lukasz Bozyk, see https://www.

jstor.org/stable/24966248?seq=1\#metadata_info_tab_contents

and https://mathworld.wolfram.com/EmpireProblem.html

• upper bound of 12. This bound is tight, see the above references

11. 2-well-quasi-order of planar graphs (Nathan Bowler)

Question: Are planar graphs 2-well-quasi-ordered under the minor relation?

That is, can we rule out the existence of a family of planar graphs (Gij)i<j∈N such
that there are no i < j < k ∈ N for which Gij is a minor of Gjk?

12. An inequality for the symmetric group (Bhargav Narayanan)

Let w : E(Kn) → R>0 be any non-negative weighting of the edges of the complete
graph on [n] vertices. Given w, we associate two quantities to any permutation
π ∈ Sn. First, the order-weight of π is given by

ord(π) =
n−1
∏

i=1

w(π(i), π(i + 1));

this comes from looking at π as an ‘ordering’ of [n], and then multiplying the
weights on the edges of the Hamilton path corresponding to π. Second, the cycle-
weight of π is given by

cyc(π) =
n
∏

i=1

w(i, π(i)),

where w(j, j) is taken to be 1 for all j ∈ [n]; this comes from looking at π as
a product of cycles, and then multiplying the weights on the edges in the cycle
decomposition of π (with multiplicity, and with fixed-points contributing weight
1).
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Here is a rather intriguing conjectural inequality: for all w as above, we have
∑

π∈Sn

cyc(π) >
∑

π∈Sn

ord(π),

with equality only holding for w identically 1 on each edge.
For n = 2 with a single weight x > 0 on the lone edge of K2, the inequality

reads 1+x2 > 2x, which is trivially true. For n = 3 with weights x, y, z > 0 on the
three edges of K3, the inequality reads 1+ x2+ y2+ z2+2xyz > 2xy+2yz+2zx,
and this can be verified with a little effort. Finally, for n = 4, my computer has
verified the conjecture, but I know of no nice proof.

This came from some joint work with Lisa Sauermann on counting spanning
trees where we just wanted this inequality for 0/1-valued w, i.e., for graphs. In this
special case, the inequality says that the number of Hamilton paths in any graph G
(counted twice, once for each orientation) is at most the number of permutations of
the vertex set where each vertex is sent either to itself or to one of its neighbours.
I do not know how to prove this in general either.

I do know the conjecture to be true when all weights are > 1, but this is rather
simple. When all the weights are equal, the inequality follows from a suitable
application of Jensen’s inequality to the random variable tracking the number of
fixed points of a (uniformly) random permutation.

13. Geometric reconstruction (Alex Scott)

Let S be a set of n points in R
d. The k-deck of S is the multiset of all k-point

subsets of S, given up to isometry. For example, the 2-deck of S is equivalent
to knowing how many times each distance occurs in S. We say that a set S is
reconstructible from its k-deck if every set with the same k-deck as S is isometric
to S.

How large does k need to be so that every set of n points is reconstructible from
its k-deck?

In one dimension, it is not hard to see that k = 4 is enough (i.e. every finite
set of R is reconstructible from its 4-deck). But in two dimensions, the problem
is more difficult. [N. Alon, Y. Caro, I. Krasikov and Y. Roditty, Combinatorial
reconstruction problems, J. Combin. Theory Ser. B 47 (1989), 153–161] raised
the question, and showed that every set of n points in
mathbbR2 can be reconstructed from its (log2 n + 1)-deck. [L. Pebody, A. J.
Radcliffe and A. D. Scott, All finite subsets of the plane are 18-reconstructible,
SIAM J. Discrete Math. 16 (2003), 262–275] showed that there is a constant k
that will do for all finite sets (in fact k = 36 is enough).

In three or more dimensions, much less is known. The arguments of Alon, Caro,
Krasikov and Roditty show that logarithmic size is enough, but there is no non-
constant lower bound. With Jamie Radcliffe, I conjecture the following.

Conjecture: There is some k ∈ N such that every finite subset of R3 is determined
up to isometry by its k-deck.
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14. A variant of the Erdős–Faber–Lovász conjecture (Tom Kelly)

The Erdős–Faber–Lovász conjecture is the following: If G1, . . . , Gn are complete
graphs, each on at most n vertices, such that every pair shares at most one vertex,
then χ(

⋃n
i=1 Gi) 6 n.

In joint work with Dong Yeap Kang, Daniela Kühn, Abhishek Methuku, and Deryk
Osthus from last year, we proved this conjecture for all sufficiently large n. There
are still several variations and possible generalizations that remain open. One such
example is the following:

Problem. Let G1, . . . , Gn be graphs, each of chromatic number at most n−1, such
that every pair shares at most one vertex. What is the largest possible chromatic
number of χ(

⋃n
i=1 Gi)?

Erdős asked a related problem in 1981 that turned out to be trivial, but this is
probably what he really wanted to ask.

In joint work with Daniela Kühn and Deryk Osthus, we proved an upper bound
of 2n− 3. It is possible that the answer is simply n, which would actually imply
the Erdős–Faber–Lovász conjecture.

Update: Luke Postle provided a construction which gives a lower bound of
7n/6.

15. Structure and coloring of 3-connected graphs with no large
odd holes (Xingxing Yu)

Definition: Let G denote the class of all graphs G with the following properties:

• G is 3-connected and internally 4-connected,
• the girth of G is 5, and
• G contains no odd holes of length at least 7.

Question (Robertson 2010; Plummer and Zha 2012): Find a structural charac-
terization of graphs in G.
Conjecture (Plummer and Zha 2012): All graphs in G are 3-colorable.

Maria Chudnovsky and Paul Seymour proved the conjecture above during the
workshop (see https://arxiv.org/pdf/2201.11505.pdf).

16. Querying for Subgraphs (Xiaoyu He)

Suppose G is an infinite hidden Erdős-Rényi random graph G(N, p), p > 0 very
small.

Let H be a fixed target graph we would like to find in G, e.g. H = K4.

Problem: Let f(H, p) be the number of adjacency queries needed to reveal a
copy of H in G with probability at least 1/2. What is the growth rate of f(H, p)
as p → 0+?
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For cliques, [Conlon, Fox, Grinshpun, H. ’19] proved that

• f(K3, p) ≍ p−
3
2 ,

• f(K4, p) ≍ p−2,

• f(K5, p) ≍ p−
8
3

• p−(2−
√
2)n+O(1) 6 f(Kn, p) 6 p−2/3n−O(1)

Problem: What about K6? Know p−
13
4 ≪ f(K6, p) ≪ p−

10
3 .

For degenerate graphs [Alweiss, Ben Hamida, H., Moreira ’20] proved that if
H is d-degenerate (d > 2), then f(H, p) = o(p−d). However, there exists a 2-

degenerate H with p−2

log4(1/p)
≪ f(H, p) ≪ p−2

log(1/p) .

Problem. For which H is f(H, p) ≍ p−c for some constant c?

17. Asymptotic dimension of embedded graphs (Chun-Hung Liu)

The asymptotic dimension of a graph class F is the minimum d such that there
exists a function f such that ∀G ∈ F and ∀r ∈ N, V (G) can be colored with d+1
colors so that ∀x, y ∈ V (G), if they are connected by a monochromatic path in
Gr, then the distance between x, y in G is 6 f(r).

Theorem (Gromov):

(1) The asymptotic dimension of the class of d-dimensional grids = d.
(2) Any infinite class of bounded degree expanders has infinite asymptotic

dimension.

Theorem (Bonamy, Bousquet, Esperet, Groenland, L., Pirot, Scott):

(1) Any proper minor-closed family has asymptotic dimension 6 2.
(2) The class of (g, k)-planar graphs has asymptotic dimension = 2.

Question: Does every graph class consisting of “essentially d-dimensional ob-
jects” have asymptotic dimension 6 d? 6 g(d)? > d? > g(d)?

Question: Does the class of graphs admitting book embeddings with k pages
have asymptotic dimension 2?

Note added. It appears from remarks of Noga Alon and Vida Dujmović
during the session that the answer to this second question is negative,
as there exist bounded degree expanders with bounded page number.

18. Ramsey’s theorem for matroid lines (Jim Geelen)

Conjecture. For r ≫ ℓ, if we 2-color the elements of a simple rank-r matroid M
with no lines of length > ℓ, then there is a monochromatic line.

• true for binary matroids
• true for R-representable matroids
• true for ℓ 6 3
• natural extension to higher rank flats is also open
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19. Planar graphs that are far from being 3-colorable
(Louis Esperet)

For ǫ > 0, a graph G is ǫ-far from a property P if one needs to delete at least
ǫ|V (G)| edges from G to obtain a graph from P .

It was proved in [A. Czumaj, M. Monemizadeh, K. Onak, C. Sohler, Planar
Graphs: Random Walks and Bipartiteness Testing, arxiv 1407.2109] that if an
n-vertex planar graph is ǫ-far from being bipartite, then G contains Ω(n) edge-
disjoint odd cycles.

Question (Sohler): Is it true that if an n-vertex planar graph G is ǫ-far from
being 3-colorable, then G contains Ω(n) edge-disjoint non-3-colorable subgraphs?

If true, it would imply that 3-colorability of planar graphs is testable in the sparse
model, i.e., that we only need constantly many queries in this model to decide
wether a planar graph is 3-colorable, or ǫ-far from being 3-colorable, with good
probability.

Note added. The problem was solved by Sergey Norin during the workshop.
Norin proved that the question has a positive answer, not only for 3-colorability
of planar graphs, but for any monotone property of a proper minor-closed class.

Reporter: Carla Groenland
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