
Mathematisches Forschungsinstitut Oberwolfach

Report No. 6/2022

DOI: 10.4171/OWR/2022/6

Space-Time Methods for Time-Dependent Partial
Differential Equations

Organized by
Stig Larsson, Göteborg
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Abstract. Modern discretization and solution methods for time-dependent
PDEs consider the full problem in space and time simultaneously and aim to
overcome limitations of classical approaches by first discretizing in space and
then solving the resulting ODE, or first discretizing in time and then solving
the PDE in space.

The development of space-time methods for hyperbolic and parabolic dif-
ferential equation is an emerging and rapidly growing field in numerical anal-
ysis and scientific computing. At the first Workshop on this topic in 2017 a
large variety of interesting and challenging concepts, methods, and research
directions have been presented; now we exchange the new developments.

The focus is on the optimal convergence of discretizations and on efficient
error control for space-time methods for hyperbolic and parabolic problems,
and on solution methods with optimal complexity. This is complemented
by applications in the field of time-dependent stochastic PDEs, non-local
material laws in space and time, optimization with time-dependent PDE
constraints, and multiscale methods for time-dependent PDEs.

Mathematics Subject Classification (2010): 65N30, 65N38, 65N12.

Introduction by the Organizers

Space-time finite elements aim for a unified analysis of discretization and solution
methods in space and time. The main goal of this research is to develop novel
methods with respect to the following paradigms:

• Discretization: Develop and analyze discretization methods for parabolic
and hyperbolic partial differential equations on the Cartesian product of
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the spatial domain and the time interval; methods which can be flexibly
adapted to the local space-time behavior of the solution and which may
be restricted to cones within the space-time domain.

• Complexity: Develop and analyze fast algorithms for solving the arising
sparse systems which have less algebraic structure than those which arise
in the conventional approaches which often lead to, e.g., block-triangular,
block-circulant, or block-Toeplitz matrices.

• Adaptivity: Develop and analyze algorithms for full space-time adaptivity
on general space-time meshes.

• Regularity: Develop a detailed local space-time regularity theory for the
solution of parabolic and hyperbolic PDEs which allows to enrich the trial
spaces within an adaptive refinement process in an efficient way.

• Modeling: Develop and analyze numerical methods for time-dependent
stochastic models and a hierarchy of reduced models or multiscale models
by intertwining modeling and discretization in space and time. In partic-
ular this includes non-local material laws.

Application fields of space-time methods include, in particular, inverse problems
and control problems, where iterative solution methods depend on the full space-
time information (in particular for the evaluation of the adjoint state equation).
The solution of the adjoint problem is also required for efficient and reliable error
control. Moreover, a certified model reduction of time-dependent PDEs requires to
consider space and time together. These techniques apply, in particular, to time-
dependent stochastic PDEs and to multiscale problems, where approximation and
solution methods also depend on the full space-time information.

The research on space-time methods is driven by the development of discretiza-
tions specially designed for fully coupled approximation schemes together with a
strong emphasis on applications for time-dependent PDEs. This includes stochas-
tic PDEs, optimization and hierarchical modeling, where the integrated space-time
view is an inherent requirement for analysis and the efficient numerical solution of
the problem.

Together, we address the full range of questions arising from space-time dis-
cretizations, starting with a rigorous and systematic numerical analysis of the ap-
proximation quality and the solution complexity, up to the realization of parallel
simulation of challenging applications in engineering and sciences.
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Adaptive Space-Time Finite Element Methods for Parabolic Optimal
Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Carl Lundholm (joint with Mats G. Larson and Anders Logg)
Space-Time CutFEMs on Overlapping Meshes . . . . . . . . . . . . . . . . . . . . . . . 355

Christian Lubich (joint with Balázs Kovács, Jörg Nick)
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Abstracts

Fractional Harmonic Maps: Approximation and Convergence

Harbir Antil

(joint work with Sören Bartels, Armin Schikorra)

A fundamental problem in the calculus of variations concerns critical points of
energy functionals subject to pointwise constraints. Related applications arise
in ferromagnetism to model magnetization fields, liquid crystal theories defining
orientations of rod-like molecules, continuum mechanics for describing inextensible
rods and unshearable plates, and in quantum mechanics for spin systems.

This talk is based on the article [1] and considers the case of energies related
to the fractional Laplace operator. Fractional operators are nonlocal and enable
long range interactions. They enforce less smoothness in comparison to their clas-
sical counterparts. These features make them attractive for applications leading
to certain singularities such as defects in the mathematical description of liquid
crystals, which are often modeled by harmonic maps. While some ideas from the
treatment of standard, local differential operators can be employed to define stable
numerical schemes, new ideas are required to establish the convergence of discrete
stationary configurations.

Our point of departure is the fractional Dirichlet energy

(1) I[u] =
1

2

∫

Ω

|(−∆)
s
2u|2 dx

for an appropriate definition of the fractional Laplace operator (−∆)
s
2 with 0 <

s < 1. Here Ω ⊂ Rd is an open bounded domain with Lipschitz boundary ∂Ω. We
then consider stationary points for I subject to a unit-length constraint in the set

A = {v − ~N ∈ H̃s(Ω;RN ) : |v(x)|2 = 1 for a.e.x ∈ Ω},
where

H̃s(Ω;RN ) = {f ∈ Hs(Rd;RN ) : f = 0 in Rd \ Ω},
and ~N ∈ C∞(Rd;RN) is a fixed vector field that defines a unit-length exterior
Dirichlet condition on Rd \ Ω. Obviously, a homogeneous boundary condition is
incompatible with the unit-length constraint, at least when s ∈ (1/2, 1).

Stationary points for I in A are called fractional harmonic maps [5] and are
formally characterized by the Euler–Lagrange equations

(2) (−∆)su = λu in Ω, |u|2 = 1 in Ω, u|Rd\Ω = ~N,

where λ ∈ L1(Ω) is a Lagrange multiplier related to the pointwise unit-length
constraint. The function λ depends nonlinearly on the vector field u, e.g., in the
classical case s = 1 we have that λ = |∇u|2. This critical nonlinear dependence
requires appropriate arguments to show that accumulation points of bounded se-
quences of solutions are again solutions of the nonlinear equation. Such stability
results are crucial for convergence of numerical approximations.
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A useful equivalent characterization of fractional harmonic maps is the weak
formulation

(3)
(
(−∆)

s
2 u, (−∆)

s
2 v
)
= 0

for all v ∈ H̃s(Ω;RN ) satisfying the pointwise orthogonality relation u · v = 0
almost everywhere in Ω. If N = 3 then the latter equation is equivalent to

(4)
(
(−∆)

s
2 u, (−∆)

s
2 (u× φ)

)
= 0

for all φ ∈ C∞
c (Ω;R3). The latter identity can also be extended to the case N 6= 3.

Our first result establishes that a limit passage in the nonlinear equation (4)
is possible. In particular, if {uj}j∈N ⊂ A, such that uj ⇀ u in an appropriate
fractional order Sobolev space, as j → ∞, then

(5)
(
(−∆)

s
2uj, (−∆)

s
2 (uj × φ)

)
→
(
(−∆)

s
2u, (−∆)

s
2 (u× φ)

)

for all φ ∈ C∞
c (Ω;RN ). The key challenge here is the fact that due to nonlocality

of (−∆)s, the standard arguments from the case s = 1 cannot be applied.

Discrete fractional harmonic maps. The first numerical problem concerns the
convergence of discrete fractional harmonic maps as the mesh-sizes of underlying
triangulations tend to zero. We consider a sequence {Th}h>0 of uniformly shape
regular triangulations of the polygonal or polyhedral Lipschitz domain Ω ⊂ Rd

with maximal mesh-sizes h→ 0. Discrete fractional harmonic maps belong to

Ah = {vh − Ĩh ~N ∈ S1
0 (Th)N : |vh(z)|2 = 1 for all z ∈ Nh},

where S1
0 (Th) is the space of piecewise linear, globally continuous functions for

a triangulation Th of Ω̃ vanishing in the exterior Ω̃ \ Ω; the set Nh contains the
vertices of elements inside Ω at which the unit-length constraint is imposed, Ih
and Ĩh are the nodal interpolation operators on Th and an extension T̃h which

provides a triangulation of a domain Ω̃ such that Ω ⊂ Ω̃ and the support of ~N is

contained in Ω̃.
The discrete fractional harmonic maps are given by uh ∈ Ah fulfilling

(6)
(
(−∆)

s
2uh, (−∆)

s
2 vh
)
= 0

for all vh ∈ Fh[uh], where Fh[uh] is defined as

Fh[uh] =
{
vh ∈ S1

0 (Th)N : vh(z) · uh(z) = 0 for all z ∈ Nh

}
.

We establish that if {uh}h>0 is a bounded sequence of discrete fractional harmonic

maps then every weak limit u ∈ H̃s(Ω;RN ) as h→ 0 is a fractional harmonic map.

Fractional harmonic map heat flow. The second application addresses a par-
abolic evolution defined by the L2-gradient flow for I given in (1); it was studied
analytically in [8, 9]. Its discretization or discretizations of gradient flows for other
metrics define fully practical methods to determine discrete fractional harmonic
maps. The L2-flow of fractional harmonic maps is formally given by the partial
differential equation

∂tu = −(−∆)su+ λu, |u|2 = 1,
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where again λ is the Lagrange multiplier subject to the unit-length constraint.
Rigorously, we define solutions of the fractional harmonic map heat flow as maps
u : (0, T )× Ω → RN with

u− ~N ∈ H1(0, T ;L2(Ω;RN )) ∩ L∞(0, T ; H̃s(Ω;RN ))

that satisfy u(0) = u0 for a given vector field u0 ∈ A, the constraint |u(t, x)|2 = 1
almost everywhere in (0, T )× Ω, and with the inner product (·, ·) in L2(Ω;RN )

(7) (∂tu, v) +
(
(−∆)

s
2 u, (−∆)

s
2 v
)
= 0

for all vector fields v ∈ H̃s(Ω;RN ) and almost every t ∈ (0, T ) with the orthogo-
nality relation u(t, x) · v(x) = 0 for almost every (t, x) ∈ (0, T ) × Ω, we further-
more require solutions to satisfy an energy-decay property. Our numerical scheme
adopts ideas from [2, 3] and imposes the orthogonality condition at the nodes of
a triangulation in an explicit way; the evolution equation is discretized implicitly.
Convergence of this scheme is shown.

Hyperbolic system for spin dynamics. The third numerical problem is a hy-
perbolic evolution equation determined by the force balance

(8) ∂tu = δI[u]× u = (−∆)su× u, |u|2 = 1,

which has been used to model nonlocal effects in spin chains, cf. [10, 7]. This
evolution is constraint and energy preserving which follows directly from testing
the equation with u and (−∆)su, respectively. To obtain these features for a dis-
cretization, we follow [6, 4] and use Crank-Nicolson type midpoint approximations.
Convergence of this scheme is established. The figure below shows snapshots of
approximations of a solitary wave in a periodic spin chain.
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Discontinuous Galerkin time-stepping methods: Maximal regularity
and a posteriori error estimates

Georgios Akrivis

(joint work with Charalambos Makridakis)

Consider an initial value problem for a linear parabolic equation,

(1)

{
u′(t) +Au(t) = f(t), 0 < t < T,

u(0) = 0,

in an unconditional martingale differences (UMD) Banach space X. Our structural
assumption is that the operator A is the generator of an analytic semigroup on X
having maximal Lp-regularity, i.e., u satisfies the stability estimate

(2) ‖u′‖Lp((0,T );X) + ‖Au‖Lp((0,T );X) 6 cp,X‖f‖Lp((0,T );X) ∀f ∈ Lp((0, T );X)

for some, or, as it turns out, for all p ∈ (1,∞), with a constant cp,X independent
of T, depending only on p and X . See [5] for an excellent account of the theory.

The numerical methods. We consider the discretization of the initial value
problem (1) by discontinuous Galerkin (dG) methods.

Let N ∈ N, k = T/N be the constant time step, tn := nk, n = 0, . . . , N, be a
uniform partition of the time interval [0, T ], and Jn := (tn, tn+1].

For s ∈ N0, we denote by P(s) and PX′(s) the spaces of polynomials of degree
at most s with coefficients in D(A) := {v ∈ X : Av ∈ X} and in the dual X ′ of
X , respectively, i.e., the elements g of P(s) and of PX′(s) are of the form

g(t) =

s∑

j=0

tjwj , wj ∈ D(A) and wj ∈ X ′, j = 0, . . . , s.

With this notation, let Vc
k(s) and Vd

k (s) be the spaces of continuous and possibly
discontinuous piecewise elements of P(s), respectively,

Vc
k(s) := {v ∈ C

(
[0, T ];D(A)

)
: v|Jn ∈ P(s), n = 0, . . . , N − 1},

Vd
k (s) := {v : [0, T ] → D(A), v|Jn ∈ P(s), n = 0, . . . , N − 1}.

We denote by 〈·, ·〉 the duality pairing between X and X ′.
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For q ∈ N, with starting value U(0) = U0 = 0, we consider the discretization of
(1) by the dG(q − 1) method, i.e., we seek U ∈ Vd

k (q − 1) such that

(3)

∫

Jn

(
〈U ′, v〉+ 〈AU, v〉

)
dt+ 〈U+

n − Un, v
+
n 〉 =

∫

Jn

〈f, v〉dt ∀v ∈ PX′(q − 1)

for n = 0, . . . , N − 1. We use the notation vn := v(tn), v
+
n := limsց0 v(tn + s).

With 0 < c1 < · · · < cq = 1 the Radau nodes, let tni := tn + cik, i = 1, . . . , q,

be the intermediate nodes, and tn0 := tn. Using the reconstruction Û ∈ Vc
k(q) of

the dG approximation U ∈ Vd
k (q − 1),

Û(tnj) = U(tnj), j = 0, . . . , q,

we can reformulate the dG method as

(4)

∫

Jn

(
〈Û ′, v〉+ 〈AU, v〉

)
dt =

∫

Jn

〈f, v〉dt ∀v ∈ PX′(q − 1).

Our basic idea is the interpretation of dG as modified Radau IIA methods. The
q-stage Radau IIA method is specified by the nodes c1, . . . , cq and the coefficients

aij =

∫ ci

0

ℓj(τ) dτ, bi =

∫ 1

0

ℓi(τ) dτ (= aqi), i, j = 1, . . . , q;

here, ℓ1, . . . , ℓq ∈ Pq−1 are the Lagrange polynomials for c1, . . . , cq. We denote by
ℓni the corresponding Lagrange polynomials shifted to the interval J̄n.

The dG approximations Un := U(tn), Uni := U(tni), i = 1, . . . , q, satisfy the
modified Radau IIA method

(5)





Uni = Un − k

q∑

j=1

aij
(
AUnj − fnj

)
, i = 1, . . . , q,

Un+1 = Un − k

q∑

i=1

bi
(
AUni − fni

)
,

n = 0, . . . , N − 1, with the nodal values f(tni) of f replaced by the averages

(6) fni :=
1∫

Jn
ℓni(s) ds

∫

Jn

ℓni(s)f(s) ds =
1

bik

∫

Jn

ℓni(s)f(s) ds, i = 1, . . . , q.

Also, Un+1 = Unq. Equivalently, (5) written in terms of Û is a modified collocation

method in each interval Jn with starting value Ûn0 = Un, namely,

(7) Û ′(tni) +AÛ(tni) = fni, i = 1, . . . , q.

Discrete maximal regularity. Combining the maximal parabolic regularity prop-
erty for Radau IIA methods, recently established in [3, Corollary 5.2, Theo-
rem 5.1], with the interpretation of dG methods as modified Radau IIA meth-
ods, we prove maximal regularity for the dG methods: The dG approximations
U0, . . . , UN ∈ D(A) are well defined by (3) and satisfy the maximal parabolic
regularity stability estimates

(8) ‖(∂Un)
N
n=1‖ℓp(X) + ‖(AUn)

N
n=1‖ℓp(X) 6 Cp,X‖f‖Lp((0,T );X)
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and

(9)

q∑

i=1

‖(AUni)
N−1
n=0 ‖ℓp(X) 6 Cp,X‖f‖Lp((0,T );X)

with Uni := U(tni). Also, the reconstruction Û satisfies the analogue of (2),

(10) ‖Û ′‖Lp((0,T );X) + ‖AÛ‖Lp((0,T );X) 6 Cp,X‖f‖Lp((0,T );X),

where Cp,X denotes a constant independent of N and T.
Here, for a sequence (vn)n∈N ⊂ X, we used the notation

∂vn :=
vn − vn−1

k
and ‖(vn)Mn=1‖ℓp(X) :=

(
k

M∑

n=1

‖vn‖pX
)1/p

.

Logarithmically quasi-maximal parabolic regularity results for dG methods were
recently established in [6, 7].

A posteriori error estimates. Let R ∈ Lp((0, T );X) be the residual of the

reconstruction Û of the dG approximation U ,

(11) R(t) := Û ′(t) +AÛ(t)− f(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

Then, the error e := u− Û satisfies the error equation

(12) e′(t) +Ae(t) = −R(t), t ∈ (tn, tn+1], n = 0, . . . , N − 1.

Now, the maximal Lp-regularity of the operator A and the triangle inequality, re-
spectively, applied to the error equation (12) yields the upper and lower a posteriori
error bounds

(13) ‖R‖Lp((0,t);X) 6 ‖e′‖Lp((0,t);X) + ‖Ae‖Lp((0,t);X) 6 cp,X‖R‖Lp((0,t);X)

for all 0 < t 6 T for any p ∈ (1,∞) with a constant cp,X depending only on p and
X . Since R is a computable quantity, depending only on the numerical solution

Û and the given forcing term f, (13) is an a posteriori error estimate.
Under suitable regularity assumptions on the solution u, we first establish a

priori error estimates in the discrete ℓp(X)-norm. Subsequently, we show that the
a posteriori error bound ‖R‖Lp((0,T );X) is of asymptotic optimal order, assuming
also regularity of the forcing term f ; this, in turn, leads to optimal order a pri-
ori error estimates in the continuous Lp((0, T );X)-norm, which complements the
corresponding a priori error estimate in the discrete ℓp(X)-norm.
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Space-Time Finite Element and Multigrid Methods for the
Navier–Stokes Equations on Evolving and Static Domains

Markus Bause

(joint work with M. Anselmann)

1. Introduction

The numerical simulation of incompressible viscous flow continues to remain a
challenging task, in particular, if three space dimensions are involved. Using
space-time finite element methods (cf. [1, 3, 5, 6]) allows the natural construc-
tion of higher order methods. They offer the potential to achieve accurate results
on computationally feasible grids with a minimum of numerical costs. However,
constructing higher order numerical methods maintaining stability and inheriting
most of the rich structure of the continuous problem becomes increasingly difficult.
In particular, the arising algebraic systems and their solution by iterative meth-
ods demand for sophisticated and highly efficient techniques. Geometric multigrid
methods are known as the most efficient iterative methods for the solution of large
linear systems arising from the discretization of partial differential equations, par-
ticularly of elliptic type; cf. [7, 10]. To fully exploit their potential, they need to be
adapted to the space-time finite element discretizations; cf. [3]. Time-dependent
domains that are also of interest for applications of practical interest (for instance,
fluid-structure interaction or free surface flows) put a further facet of complexity
on the numerical simulation of the flow problems; cf. [1].

2. Mathematical problem

In this contribution we study the numerical approximation of solutions to the
nonstationary Navier–Stokes equations

∂tv + (v · ∇)v − ν∆v +∇p = f ,(1a)

∇ · v = 0 ,(1b)

equipped with initial and appropriate boundary conditions, by space-time finite
element methods of arbitrary order on static domains Ω ⊂ Rd, with d = 2 or
d = 3, and on evolving domains Ω ⊂ R2. In the latter case, the smooth motion of
the domain Ω = Ω(t) for t ∈ [0, T ] with final time T > 0 is assumed to be given.
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3. Navier–Stokes equations on static domains

Firstly, we study system (1) on time-independent domains Ω ⊂ Rd, d ∈ {2, 3}.
Key ingredients of the proposed space-time finite element approach are (cf. [2, 3]):

• Application of Dirichlet boundary conditions by Nitsche’s method;
• Discontinuous Galerkin time discretization by piecewise polynomials of
order k ∈ N0 in time;

• Space discretization by pairs of inf-sup stable finite elements (Qr)
d×Pdisc

r−1,
for r ≥ 2, with discontinuous discrete pressure.

A discontinuous temporal test basis, supported on the subintervals of the temporal
mesh, is chosen such that a time marching scheme is obtained. A damped version of
Newton’s method along with a generalized minimal residual method (GMRES) and
a V -cycle geometric multigrid (GMG) preconditioning technique for the GMRES
iterations are applied. For this, hierarchies of successively refined spatial grids built
on quadrilateral or hexahedral elements and the canonical grid transfer routines
regarding the chosen finite element spaces are used. A cell-based Vanka smoother
(cf. [11]) is built. For each of the spatial mesh cells, this operator defines a mapping
for the cell’s degrees of freedom. The cell’s unknowns for all of the k+1 time points
associated with the temporal degrees of freedom on the subinterval are comprised
in the elementwise smoothing step. This Vanka operator, adapted to the Galerkin
space-time discretization, is the key component for the solution of the algebraic
systems. Finally, the coarse grid problem is solved by a direct solver. For the
parallel implementation of the algorithms the deal.II library (cf. [4]) is used.

The proposed approach is carefully validated for the benchmark problem of
flow around a cylinder proposed in [9]; cf. Fig 1. The performance properties of
the nonlinear and linear solver are evaluated and computed values for the goal
quantities of drag and lift coefficient are presented (cf. [3]).

Figure 1. Computed flow profile for flow around a cylinder [2, 9].
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4. Navier–Stokes equations on evolving domains

For flow domains Ω(t) evolving in time, a fictitious domain approach is applied;
cf. [1, 2]. The physical domain is embedded into a fixed, time-independent com-
putational mesh. Thereby, an expensive remeshing and adaptation of the sparse
matrix data structure are avoided and the computations are accelerated. How-
ever, an extension of the flow solution to the fictitious or ghost domain is required.
Further, mesh cells are intersected in an arbitrary manner by moving boundaries
of the domain. This demands for numerical integration over such cut cells.

Key ingredients of the space-time approach for flows on evolving domains are
the discretization techniques and algebraic solver of Sec. 3 and:

• Spatial extension of the discrete physical quantities to the entire compu-
tational background mesh including fictitious subdomains of fluid flow;

• Iterated integration over cut cells (i.e. intersected quadrilaterals).

Here, an implicitly defined extension, that is free of (computationally expensive)
spatial derivatives of the discrete functions, is applied. Simultaneously, the exten-
sion stabilizes irregular cuts and prevents spurious oscillations caused by them.
The combination of higher order space-time finite element discretizations with the
fictitious domain approach, the extension and ghost penalty stabilization and the
integration over cut cells has not been studied so far and deserves elucidation.

The stability and convergence properties of this approach are carefully studied
for a sequence of numerical experiments of increasing complexity. Further, the
performance of the GMG preconditioning technique for the GMRES iterations,
proposed in Sec. 3 for time-independent domains, is now investigated for evolving
domains. A lack in the smoothing capabilities of the Vanka-type operator that
is manifested by a deficit in the reduction of the linear equation’s residuals on
the multigrid levels for an increasing number of grid hierarchies is observed and
discussed. Possible remedies for future research are outlined.
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Analysis of a modified Euler scheme for parabolic semilinear
stochastic PDEs

Charles-Edouard Bréhier

We propose a novel integrator to approximate solutions of parabolic semilinear
stochastic evolution equations

dX(t) = −ΛX(t)dt+ F (X(t))dt+ dW (t)

where −Λx(ξ) = ∂ξ(a(ξ)∂ξx(ξ)), ξ ∈ (0, 1) is a second order elliptic operator, F is
a globally Lipschitz nonlinearity, and W is a cylindrical Wiener process (meaning
that the SPDE is driven by space-time white noise). The objective is to overcome
some of the limitations of the standard Euler method (see [4, Chapter 10])

Xτ,st
n+1 = Aτ

(
Xτ,st

n + τF (Xτ,st
n ) +

√
τΓn

)

where τ = T/N , Aτ = (I+ τΛ)−1 and
√
τΓn =W (tn+1)−W (tn). Indeed, for any

positive τ , the standard Euler method does not preserve the spatial regularity of
the solutions of the exact solution X(t). As a consequence, approximation of the

distribution of X(Nτ) by the distribution of Xτ,st
N can only hold in a weak sense,

not in the total variation distance sense for instance.
The proposed modified Euler scheme, introduced in [1], is written as

(1) Xτ
n+1 = Aτ

(
Xτ

n + τF (Xτ
n)
)
+ Bτ,1

√
τΓn,1 + Bτ,2

√
τΓn,2,

where Γn,1,Γn,2 denote independent Gaussian random variables, distributed like
Γn from the standard scheme, and the linear operators are assumed to satisfy the
conditions Bτ,1 =

1√
2
(I + τΛ)−1 and Bτ,2B⋆

τ,2 =
1
2 (I + τΛ)−1. The modified Euler

scheme (1) can be combined with a finite difference method for the spatial dis-
cretization. It is worth mentioning that the linear operator Bτ,2 can be computed
by a Cholesky decomposition. Another more efficient method than the standard
Euler scheme would be the accelerated exponential Euler scheme [3], but it would
require knowledge of the eigenvalues and eigenfunctions of the linear operator Λ.

We present the main improvements when the modified Euler scheme (1) is used
instead of the standard method, see [1].
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• The spatial regularity is preserved at all times, for any value of the time-
step size τ .

• When F = 0, the Gaussian invariant distribution ν of the Ornstein–
Uhlenbeck process

(
X(t)

)
t≥0

is preserved by the numerical scheme, for

any value of the time-step size τ .
• If F = −DV and if an appropriate ergodicity condition is satisfied, one
can approximate the invariant Gibbs distribution given by

dµ⋆(x) = Z−1 exp(−2V (x))dν(x)

of the process in the total variation distance: for any τ , the scheme admits
a unique invariant distribution µτ

∞, and for all κ ∈ (0, 12 ), there exists
Cκ ∈ (0,∞) such that

(2) dTV(µ
τ
∞, µ⋆) ≤ Cκτ

1
2
−κ.

The error estimate (2) is a major improvement compared with the existing litera-
ture: for the standard Euler method, one obtains weak error estimates

∣∣
∫
ϕdµτ,st

∞ −
∫
ϕdµ⋆

∣∣ ≤ Cκτ
1
2
−κ‖ϕ‖2

only if the test function ϕ is assumed to be at least of class C2. On the contrary (2)
yields weak error estimates

∣∣
∫
ϕdµτ

∞ −
∫
ϕdµ⋆

∣∣ ≤ Cκτ
1
2
−κ‖ϕ‖0

for measurable and bounded test functions ϕ.
Finally, an application of the modified Euler scheme to construct asymptotic

preserving schemes for a class of slow-fast SPDE systems

(3)





dXǫ(t) = −ΛXǫ(t)dt+G
(
Xǫ(t), Y ǫ(t)

)
dt

dY ǫ(t) = −1

ǫ
ΛY ǫ(t)dt +

1√
ǫ
dW (t),

is presented. The scheme is defined as

(4)





Xǫ,∆t
n+1 = A∆t

(
Xǫ,∆t

n +∆tG(Xǫ,∆t
n , Y ǫ,∆t

n+1 )
)

Y ǫ,∆t
n+1 = A∆t

ǫ
Y ǫ,∆t
n +

√
∆t

ǫ
B∆t

ǫ ,1Γn,1 +

√
∆t

ǫ
B∆t

ǫ ,2Γn,2,

and is such that
lim
ǫ→0

lim
∆t→0

Xǫ,∆t
N = lim

∆t→0
lim
ǫ→0

Xǫ,∆t
N

in the sense of convergence in distribution. We also present the uniform weak error
estimates

(5) sup
ǫ∈(0,ǫ0)

∣∣E[ϕ(Xǫ,∆t
N )]− E[ϕ(Xǫ(T ))]

∣∣ ≤ Cκ(T, ϕ, x0)∆t
1
3
−κ

obtained in [2]. The asymptotic preserving and uniform accuracy properties are
not satisfied if the standard Euler scheme is used, which illustrates the superiority
of the proposed modified Euler scheme in this multiscale context.
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hp-version space-time discontinuous Galerkin methods on
general meshes

Andrea Cangiani

(joint work with Zhaonan Dong, Emmanuil H. Georgoulis)

Recent years have witnessed a surge in research into Galerkin procedures on polyg-
onal and polyhedral (polytopic) meshes, aiming at greater resolution flexibility for
challenging numerical PDE problems; we refer to our recent monograph [1] for a
review.

A technique that naturally lends itself to the exploitation of very general meshes
is the discontinuous Galerkin (dG) method. dG is based on employing polynomi-
als of arbitrary degree defined over each mesh element domain without the en-
forcement of any continuity constraints between neighbouring elements. Instead,
elements are coupled via numerical flux functions: in this regard its design is sim-
ilar to that of Finite Volume Methods. Furthermore, the local space basis may be
defined directly in the physical frame, without resorting to local element mappings
to a given reference element. In particular, spaces of polynomials of total degree
p, denoted by Pp, may be used, irrespectively of the shape of the element.

One such class of dG methods, known as Interior Penalty (IP-dG) methods,
is based on suitable choices of an interior penalty discontinuity penalization pa-
rameter used to weakly enforce continuity across the mesh elements boundaries.
In a series of works [1, 2, 3], we have shown that IP-dG methods can be defined
which provide stable discretisations to a large class of linear PDE problems under
extremely general partitions of the computational domain.

Particularly relevant to the topic of the workshop, we have presented the hp-
version space-time discontinuous Galerkin (dG) finite element method for the nu-
merical approximation of parabolic evolution equations on general spatial meshes
consisting of polytopic elements, giving rise to prismatic space-time elements [2].
Here, the Pp basis are used in the space-time setting, as opposed to standard
dG-time-stepping methods whereby spatial elemental bases are tensorized with
temporal basis functions. This approach leads to dG methods which, compared
to dG time-stepping schemes employing tensorized space-time basis, use fewer de-
grees of freedom per time step. It turns out that the reduced number of degrees of
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freedom results in an acceptable deterioration of the approximation properties, as
proven by extensive comparison with standard approaches, such as the tensorized
space-time dG methods, the classical dG-time-stepping, and conforming finite el-
ement method in space. Compared to other methods, the new approach has also
the advantage that very general spatial meshes consisting of polytopic elements
with arbitrary number of faces can be used.

The polytopic dG method has recently been further generalised to the use of
meshes made of elements with general Lipschitz boundaries in [3]. Here we show
that the IP discontinuity penalization parameter can be defined to be explicitly
dependent on the particular element shape, but essentially independent on small
shape variations. The resulting IP-dG method is shown to be inf-sup stable for
the solution of advection-diffusion-reaction problems in a streamline-diffusion-like
norm. A priori error bounds are also presented under very mild structural as-
sumptions restricting the magnitude of the local curvature of the boundary of
each element. The stability and a priori error analysis is based on new extensions
of classical trace, Markov-type, and H1 −L2-type inverse estimates on essentially
arbitrary element shapes which may be of independent interest.

An obvious motivation of polytopic meshes is in their application within adap-
tive simulations, which are now accepted as the key technology for automatic com-
putational complexity reduction. However, little has been done so far to exploit
the endless possibilities offered by polytopic meshes, specifically in the context
of mesh adaptive algorithms driven by reliable a posteriori error estimators. We
finally present ongoing work on the a posteriori error analysis of IP-dG methods
applied to linear elliptic problems. Here we consider again the case of polytopic
meshes with arbitrary number of very small faces, under the mild assumptions
already employed in [2]. We remark that simplicial and/or box-type elements are
included in the analysis as a special case. As such, the presented analysis gen-
eralizes the classical a posteriori error analysis of hp-dG methods to the case of
arbitrary number of irregular hanging nodes per element. The analysis exploits a
new recovery strategy in conjunction with a generalized Helmholtz decomposition
formula, and results in a new a posteriori error bound which involves the usual
residual error estimator terms together with a new term depending on the jump of
the tangential derivatives along elemental faces. The complexity reduction poten-
tial of polytopic meshes within adaptive algorithms is showcased through a series
of numerical experiments in which the new a posteriori error estimator is used to
drive automatic refinement and coarsening of an initial mesh.
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Sparse grid approximation spaces for space-time boundary integral
formulations of the heat equation

Alexey Chernov

(joint work with Anne Reinarz)

Discretization by piecewise polynomials is a well-established and well-understood
approach for the numerical solution of partial differential equations. For time-
dependent problems, independent piecewise polynomial approximations can be
used in space and time. Given stability of the joint space-time approximation, the
accuracy of the method can be expressed in terms of the discretization parameters.
It is clear, however, that the space and time discretizations must be balanced
for an efficient numerical simulation, since the underrefined discretization space
will dictate the accuracy, whereas the overrefined space will determine the overall
computational cost.

In this note we address optimal balancing of several piecewise polynomial dis-
cretization spaces for the first kind space-time boundary integral formulations for
the homogeneous heat equation with Dirichlet boundary conditions. Let Ω ⊂ Rd,
d ≥ 2 be a bounded domain with a smooth boundary Γ := ∂Ω and I := [0, T ]
be the time interval of interest. After reduction to the mantle of the space-time
cyllinder Σ := Γ× I, cf. [6, 3], the problem is rephrased as the boundary integral
equation

(1) V ψ(x, t) :=

∫ T

0

∫

Γ

G(x− y, t− s) dyds = f(x, t), x ∈ Γ, t ∈ I,

where ψ is the unknown flux, f is the known data (depending on the Dirichlet
data) and G is the fundamental solution of the heat equation

(2) G(x, t) =

{
(4πt)−d/2e−|x|2/4t, t ≥ 0,

0, t < 0.

We write Hr,s(Σ) := L2(I, Hr(Γ)) ∩Hs(I, L2(Γ)) for r, s ≥ 0, equipped with the
graph norm, and H−r,−s(Σ) := Hr,s(Σ)′ for its dual. The single layer operator
V : H−1/2,−1/4(Σ) → H1/2,1/4(Σ) is an isomorphism and satisfies the following
coercivity estimate [1]

(3) ∃cV > 0 : 〈V q, q〉 ≥ cV ‖q‖2H−1/2,−1/4(Σ), ∀q ∈ H−1/2,−1/4(Σ).

This remarkable property being typical for elliptic operators immediately implies
that any conforming discretization XL ⊂ H−1/2,−1/4(Σ) of (1) is stable and that
the discrete solution ψL ∈ XL is quasi-optimal, i.e.

(4) ‖ψ − ψL‖H−1/2,−1/4(Σ) ≤
||V ||
cV

inf
ηL∈XL

‖ψ − ηL‖H−1/2,−1/4(Σ).

This allows to construct a number of conforming discretization spaces XL for the
numerical solution of (1). In particular, let the polynomial degrees in the space
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and time domain px and pt be fixed and consider the following nested sequence of
discretizations in space and time on meshes defined by bisection

X x
0 ⊂ X x

1 ⊂ · · · ⊂ X x
i ⊂ · · · ⊂ H− 1

2 (Γ), X t
0 ⊂ X t

1 ⊂ · · · ⊂ X t
j ⊂ · · · ⊂ H− 1

4 (I)

The individual subspaces admit L2-orthogonal representations

X x
i =W x

0 ⊕W x
1 ⊕ · · · ⊕W x

i , X t
j =W t

0 ⊕W t
1 ⊕ · · · ⊕W t

j ,

so that for any ψ ∈ L2(Σ) holds

(5) ψ =
∑

(ℓx,ℓt)∈N2
0

w(ℓx,ℓt), w(ℓx,ℓt) ∈ W x
ℓx ⊗W t

ℓt .

Conforming discretizations can now be derived from (5) by restricting the non-

negative quadrant to finite, possibly anisotropic index sets IσL, Ĵ
σ
L ⊂ N2

0, where σ
indicates the anisotropy and thereby the optimal balance between space and time
discretizations.

In view of (4) it is natural to take the H−1/2,−1/4(Σ)-norm as the error measure.
As a comparison criterion we take the asymptotic convergence rate γ of the error in
this norm with respect to the dimension of the discretization space NL for smooth
solutions ψ:

γ := sup

{
γ̃ : ‖ψ − ψL‖

H−
1
2
,− 1

4 (Σ)
≤ cN−γ̃

L , where NL → ∞
}
.(6)

In the context of particular discretizations considered below, the smoothness re-

quirement may be replaced by ψ ∈ Hµ,λ(Σ) or Hµ,λ
mix(Σ) with 0 ≤ µ < px + 1 and

0 ≤ λ < pt + 1, cf. [2, Remark 1]. This allows the exclusion of the borderline case
µ = px + 1, λ = pt + 1, where the convergence estimates are usually corrupted by

logarithmic terms, and thereby simplifing the argument. Here the space Hµ,λ
mix(Σ)

stands for the hilbertian tensor product Hr(Γ)⊗Hs(I).
1. Anisotropic full-tensor product discretizations are a natural choice:

(7) IσL = {(ℓx, ℓt) : ℓx ≤ L/σ, ℓt ≤ σL}
Notice that the error measure is given by the anisotropic norm (4), thus
nontrivial values σ 6= 1 are expected in this case.

2. Anisotropic sparse-tensor product discretizations are defined as in [4]

(8) Ĵσ
L = {(ℓx, ℓt) : ℓxσ + ℓt/σ ≤ L}

This choice is potentially more efficient for smooth solutions, since it ex-
cludes the largest orthogonal subspace combinations (implying Ĵσ

L ⊂ IσL)
without compromising the accuracy.

The outcomes of the error analysis are summarized in the table below, cf. [2] for
the details. The argument is based on appropriate norm equivalences / bounds [2,
(17)–(19)] that can be found in [8, Proposition 3], [5, Proposition 1] and derived
along the lines of [7, Proposition 3].
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The numerical results in [2, 9] validate our theoretical findings. The interested
reader will find there also extensions to adaptive sparse grids and numerical solu-
tion by combination technique.

We finally remark that for some values (px, pt) algorithmic accelerations are
possible (e.g. when the matrix of the algebraic system is block triangular [9],
etc.). Such effects are not considered here.

Full tensor product, d = 2

(px, pt) conv. rate γ scaling σ2

(0, 0) 15
22 ≈ 0.68 6

5

(1, 0) 5
6 ≈ 0.83 2

(1, 1) 45
38 ≈ 1.18 10

9

(3, 1) 3
2 = 1.50 2

Sparse grids, d = 2

(px, pt) conv. rate γ scaling σ2

(0, 0) 7
6 ≈ 1.17 1

(1, 0) 5
4 = 1.25 1

(1, 1) 13
6 ≈ 2.17 1

(3, 1) 9
4 = 2.25 1

Full tensor product, d = 3

(px, pt) conv. rate γ scaling σ2

(0, 0) 15
32 ≈ 0.47 6

5

(1, 0) 5
8 ≈ 0.63 2

(1, 1) 45
56 ≈ 0.80 10

9

(3, 1) 9
8 ≈ 1.13 2

Sparse grids, d = 3

(px, pt) conv. rate γ scaling σ2

(0, 0) 3
4 = 0.75 2

(1, 0) 9
8 ≈ 1.13 2

(1, 1) 5
4 = 1.25 2

(3, 1) 17
8 ≈ 2.13 2
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Hands on comparison between time-stepping and space-time
discretizations of convection-reaction with DPG

Leszek Demkowicz

(joint work with Judit Muñoz-Matute, Nathan Roberts)

The Discontinous Petrov-Galerkin (DPG) method [2] was proposed by Demkow-
icz and Gopalakrishnan in 2010 where they introduced the idea of optimal test
functions for the transport problem [1] considering a weak variational formula-
tion. In the last decade, this method has been extensively studied and applied to
many other problems. In general, we can describe the DPG method as a mixed
method that delivers a stable solution (the discrete inf-sup condition is guaranteed)
and a built-in error representation to perform adaptivity [4, 14]. Recently, in [5],
Demkowicz and Roberts revisited the analysis of the DPG method for convection-
reaction problem.

In this work, we focus on the transient convection-reaction problem

(1)





ut + b · ∇u+ cu = f, in Ω× I,

u = g, in Γ− × I,

u = u0, in Ω× {0},
where Γ− = {x ∈ Γ : bn < 0} is the inflow boundary. We compare different
approaches to solve (1) using the DPG technology based on previous works of the
DPG community on transient problems. In particular, we consider the 1D+time
transport case (c = 0) over Ω × I = (0, 1)2 with b = 1, f = g = 0 and u0 being a
discontinuous function. We know that in this case the solution has a space-time
discontinuity so we are interested in a weak variational formulation of (1) both in
space and time. We consider three strategies:

1.- Method of discretization in time: We first apply the backward Euler method
in time for discretizing in time (1). Then we consider an ultraweak variational for-
mulation of the problem in space. Finally, we discretize the sequence of variational
problems employing the DPG method. This strategy has been studied in [7, 8, 15]
for parabolic problems.

2.- Space-time slabs: In the spirit of [3, 6, 9], we consider here the time variable
as an extra space dimension and we apply the DPG method in the space-time
domain. In order to reduce the cost, we solve the problem over a space-time slab
Ω× (tk−1, tk) and then employ the solution of the traces at time tk as the initial
condition for the next slab.

3.- Method of lines: We first consider an ultraweak variational formulation in
space in (1) and then we discretize by a conforming Petrov-Galerkin (PG) method.
We select piecewise polynomials of order p for trial andH1-conforming polynomials
of order p+1 vanishing in the outflow boundary for the test space. We know from
[1] that this choice corresponds to the optimal testing for the steady-state constant
advection problem in 1D. After semidiscretization in space we obtain a system of
ODEs and we employ the DPG-based time-marching scheme developed in [11, 12,
13]. This time integrator is based on an ultraweak variational formulation in time
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where the optimal test functions are computed analytically. Here, we compute
the solution at each time step tk (traces in time) and the solution in the interior
(tk−1, tk). We know that the DPG time-marching scheme is equivalent to classical
exponential time integrators for the trace variables [10] and that it delivers the
L2-projection of the solution in the time element interior.

In Figure 1 we present the approximated solutions of (1) employing the three
different strategies mentioned before at times t = 0.25, 0.5, 0.75, 1. We selected
fine meshes in both space and time where the element size in space and the time
step size are of the same order. The top row corresponds to the Backward Euler
method in time together with DPG in space, the second row to the ultraweak
space-time slabs strategy and the last two rows to the DPG-based time-marching
scheme together with the PG method in space. In the third row we show the
solution at the traces in time (tk) and in the last row we plot a cross-section of
the solution in the element time interior.

Figure 1. Analytical and approximated solutions at times t = 0.25, 0.5, 0.75, 1.

We conclude that: (a) The Backward Euler method in time with DPG in space
has a smoothing effect near the discontinuity. (b) The solution obtained with the
ultraweak space-time DPG method is oscillatory for the trace variables. (c) The
DPG method in time together with DPG in space it is also oscillatory for the trace
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variables. However, it delivers an approximation that captures the discontinuities
in the element interior in time.

As future work, we will extend strategy 3 for higher dimensions in space. For
that, we need to consider broken test spaces, introduce interface variables in space
that will depend upon time and redefine the concept optimal testing. Our final
goal is to obtain a time-stepping strategy based on the DPG method capable of
capturing space-time discontinuities.
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Space-time Discontinuous Galerkin Methods for Waves

Willy Dörfler

(joint work with Christian Wieners)

Elastic and acoustic waves. Elastic waves are described by the displacement
field u : (0, T )× Ω → Rd (with Ω ⊂ Rd and T > 0) satisfying

̺∂2t u− divσ(u) = b ,

subject to a constitutive law σ = σ(u) = Cε(u) (C a fourth-order tensor, ε(u) the
symmetric gradient of u, b an external force density) and initial and boundary

conditions. For the velocity v = ∂tu and the stress σ : (0, T ) × Ω → R
d,d
Sym as

separate variables this results in the first-order system (1).
Acoustic waves are the limit of elastic waves for vanishing shear wave velocity

and are modeled by (2) with the pressure function p : (0, T )× Ω → R.

ρ ∂tv − divσ = b ,

∂tσ −Cε(v) = 0 .
(1)

ρ ∂tv −∇p = b ,

∂tp− κ∇ · v = 0 .
(2)

Linear hyperbolic first-order systems. Let Ω ⊂ Rd be bounded with bound-
ary parts Γl ⊂ ∂Ω, l = 1, . . . ,m , and denote by Q := (0, T )×Ω the corresponding
time-space cylinder.

Symmetric Friedrichs systems. The problems above are special instances of the
more general equation: Find y : Q→ Rm solving

Ly =M∂ty +Ay = f in Q, y(0) = y0 in Ω, (Any)l = gl on (0, T )× Γl

with positive definite M ∈ L∞(Ω;Rm×m
sym ), Aj ∈ Rm×m

sym , An =
∑d

j=1 njAj (where

n is the unit normal vector ∂Ω), f ∈ L2(Q;Rm), and gl ∈ L2((0, T )× Γl).
Example: For the case of acoustic waves we have

ρ ∂tv −∇p = b in (0, T )× Ω

κ−1∂tp−∇ · v = 0 in (0, T )× Ω

p(0) = p0, v(0) = v0 in Ω at t = 0

p(t) = pS on ΓS ⊂ ∂Ω , t ∈ (0, T )

n · v(t) = gD on ΓD = ∂Ω \ ΓS , t ∈ (0, T ).

If we write this as a first-order system we find for y = (v, p) and m = d+ 1

My=

(
ρv
κ−1p

)
, Ay=

(
−∇p
−∇ · v

)
, Any=

(
−pn
−n · v

)
, f=

(
b
0

)
, g=

(
−pSn
−gD

)
.

Inf-sup stability. For the case of homogeneous boundary and initial data we
introduce spaces Y = L2(Ω;R

m) and W = L2(Q;Rm) with inner products (·, ·)Ω,
(·, ·)Q, respectively, and norms

‖y‖Y =
√
(My,y)Ω , ‖w‖W =

√
(Mw,w)Q , ‖w‖W∗ =

√
(M−1w,w)Q ,
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and construct spaces V, V ∗ ⊂ L2(Q;Rm) with norms

‖w‖V =
√
‖w‖2W + ‖Lw‖2W∗ , ‖z‖V ∗ =

√
‖z‖2W + ‖L∗z‖2W∗ .

With the following result one can prove unique existence of v ∈ V for the weak
problem Lv = f for f ∈ L2(Ω;R

m).

Theorem 1 (Inf-sup stablity). The bilinear form b : V × W → R defined by
b(v,w) = (Lv,w)Q is inf-sup stable with β = (4T 2 + 1)−1/2:

inf
v∈V \{0}

sup
w∈W\{0}

b(v,w)

‖v‖V ‖w‖W
= inf

w∈W\{0}
sup

v∈V \{0}

b(v,w)

‖v‖V ‖w‖W
≥ β .

The Petrov–Galerkin setting. We discretize Ω into cells K ∈ K and (0, T )
into time intervals I ∈ I. This induces a decomposition of Q into space-time cells
R = I ×K ∈ R.

For a time-slab I we let YI,h ⊂ L2(Ω;R
m) be the space of piecewise polynomials

of degree pI,K for K ∈ K over Ω and Yh = ⊕I∈IYI,h. The space-time ansatz space
Vh ∈ L2(Q;Rm) is built of piecewise polynomials on R with degrees pR = pI,K in
time and qR = qI,K in space, respecting the homogeneous initial conditions, and
is required to be continuous in time. Accordingly, the test space Wh ∈ L2(Q;Rm)
equals Vh in space but is discontinuous in time with degree pR = pI,K − 1. Note
that this gives Wh ⊂ ∂tVh and is thus named a Petrov–Galerkin method.

We define an approximation Lh to L with:

a) Mh ∈ L∞(Ω;Rm×m
sym ) is uniformly positive definite, i.e., cM > 0 exists with

(Mhyh,yh)Ω ≥ cM‖yh‖2W , yh ∈ Yh ;

b) Ah ∈ L(Yh, Yh) is monotone and consistent, i.e.,

(Ahyh,yh)Q ≥ 0 , yh ∈ Yh ,

(Ahzh,yh)Q = (Azh,yh)Q , zh ∈ Yh ∩D(A) ;

Let Πh : L2(Q;Rm) → Wh be the projection with
(
MhΠhv,wh

)
Q
=
(
Mhv,wh

)
Q

and define discrete norms ‖v‖2Wh
=
(
Mhv,v

)
Q
and ‖v‖2Vh

=‖v‖2Wh
+‖ΠhM

−1
h Lhv‖2Wh

for v ∈ Vh.

Theorem 2 (Discrete inf-sup stablity). The bilinear form bh : Vh × Wh → R,
bh(vh,wh) = (Lhvh,wh)Q, is inf-sup stable with β > 0 defined in Thm. 1:

inf
vh∈Vh\{0}

sup
wh∈Wh\{0}

bh(vh,wh)

‖vh‖Vh
‖wh‖Wh

≥ β .

Discretizations that lead to approximations Ah as required can be obtained by
taking upwind schemes. A construction of such schemes uses the flux computed
from local Riemann problems [2, Sect. 3].

For this scheme one can derive error estimates in the Vh-norm for smooth solu-
tions of order τp + hq (in time and spatial step size), where 1 ≤ p ≤ minR∈R pR,
1 ≤ q ≤ minR∈R qR [1, Thm. 4.3] [2, Thm. 4.1].
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The case of non-homogeneous initial and boundary conditions can be treated in
this fashion if we assume that there is a û ∈ V that attains initial and boundary
values. The problem is then reformulated to seek the solution u ∈ V of Lu = f−Lû
[3, Rem. 10].

As solutions to hyperbolic problems can be of low regularity, we are interested
in weaker notions of solutions. In the following we allow more general non-
homogeneous initial conditions u0, but assume that M = Mh. For convenience,
the notion h ∈ H means that there is a sequence of nested problems with accu-
mulation at h→ 0.

Theorem 3 (Convergence of Petrov–Galerkin solutions in L2). Let u0 ∈L2(Ω;R
m)

such there exists a sequence (u0,h)h∈H ⊂L2(Q;Rm)with u0,h(0) → u0 in L2(Ω;R
m)

and suph∈H ‖u0,h‖Vh
≤ C. Then the discrete solutions (uh)h∈H are weakly con-

verging in L2(Ω;R
m) to the weak solution u ∈W of the equation

(u, L∗z)Q =
(
f , z
)
Q
+
(
Mu0, z(0)

)
Ω
, z ∈ V ∗ .(3)

A corresponding result can be proved also for the DG space-time setting where
we use discontinuous ansatz functions in time and the same space for the test
functions. Here, the condition for the initial value is relaxed.

Theorem 4 (Convergence of DG space-time solutions in L2). For u0 ∈ L2(Ω;R
m)

and f ∈ L2(Q;Rm) the discrete solutions (uh)h∈H of the acoustic wave equation
are weakly converging in L2(Ω;R

m) to the weak solution u ∈W of the equation (3).
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Low-rank space-time Galerkin methods for parabolic equations

Alexandre Ern

(joint work with T. Boiveau, V. Ehrlacher, A. Nouy)

We devise a space-time tensor method for the low-rank approximation of linear
parabolic evolution equations. The proposed method is a stable Galerkin method,
uniformly in the discretization parameters, based on a Minimal Residual formu-
lation of the evolution problem in Hilbert–Bochner spaces. The discrete solution
is sought in a linear trial space composed of tensors of discrete functions in space
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and in time and is characterized as the unique minimizer of a discrete functional
where the dual norm of the residual is evaluated in a space semi-discrete test
space. The resulting global space-time linear system is solved iteratively by a
greedy algorithm. Numerical results are presented to illustrate the performance of
the proposed method on test cases including non-selfadjoint and time-dependent
differential operators in space. Further insight can be found in [1].
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A FEM-BEM method for the numerical solution of 2D exterior linear
elastodynamics problems using scalar potentials

Silvia Falletta

(joint work with G. Monegato, L. Scuderi)

Let Ωi ⊂ R2 be an open, bounded and rigid domain, whose boundary Γ is assumed
to be closed and smooth. We aim at studying the propagation of elastic waves in
the homogeneous isotropic elastic medium Ωe := R2 \ Ωi, caused by a body force
f , a Dirichlet datum g and trivial initial conditions. Assuming small variations of
the vector field ue(x, t) = (ue1(x, t), u

e
2(x, t)), x = (x1, x2), this latter is uniquely

defined by the following system:




ρ
∂2ue

∂t2
(x, t)− (λ+ µ)∇(divue)(x, t)− µ∇

2
u
e(x, t) = f(x, t) x ∈ Ωe, t ∈ (0, T ]

ue(x, t) = g(x, t) x ∈ Γ, t ∈ (0, T ]

ue(x, 0) = 0 x ∈ Ωe

ue
t (x, 0) = 0 x ∈ Ωe,

where ρ > 0 is the constant material density, λ > 0 and µ > 0 are the Lamé con-
stants. Using the Helmholtz decomposition of a vector field (see [1]), we decompose
the unknown displacement by two unknown scalar potentials ue = ∇ϕe

P +curl ϕe
S

where, for a generic scalar function w = w(x1, x2), its vectorial curl is defined as
curl w = (∂x2

w,−∂x1
w). The unknowns ϕe

P and ϕe
S are called Primary (or longi-

tudinal) and Secondary (or transverse) waves.
Referring to [2] for details, we recall the main relations that allows us to rewrite

the elastodynamic equation in terms of a couple of wave equations. In particular,
by using the decomposition of the Dirichlet datum on Γ, g = ∇ϕe

P + curlϕe
S ,

and introducing the anti-clockwise oriented unit tangent vector τ
Γ
= (n

Γ,2 ,−nΓ,1),
n

Γ
= (n

Γ,1
, n

Γ,2
) being the ingoing unit normal vector on Γ, the following relations

hold:
∂ϕe

P

∂n
Γ

− ∂ϕe
S

∂τ
Γ

= g · n
Γ
,

∂ϕe
S

∂n
Γ

+
∂ϕe

P

∂τ
Γ

= g · τ
Γ
.
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Hence, we obtain that the exterior elastodynamics problem is formally equivalent
(see [3]) to the following exterior potentials problem:

(1)





∂2ϕe
P

∂t2
− v2P∇2ϕe

P =
1

ρ
fP (x, t) ∈ Ωe × (0, T ]

∂2ϕe
S

∂t2
− v2S∇2ϕe

S =
1

ρ
fS (x, t) ∈ Ωe × (0, T ]

∂ϕe
P

∂n
Γ

=
∂ϕe

S

∂τΓ
+ g · n

Γ
=:

∂ϕe
S

∂τ
Γ

+ gnΓ
(x, t) ∈ Γ× (0, T ]

∂ϕe
S

∂n
Γ

= −∂ϕ
e
P

∂τ
Γ

+ g · τ
Γ
=: −∂ϕ

e
P

∂τ
Γ

+ gτ Γ
(x, t) ∈ Γ× (0, T ],

endowed with null initial conditions.
Aiming at determining the solution of (1) in a bounded subregion of Ωe, sur-

rounding the physical domain Ωi, we truncate the infinite domain Ωe by intro-
ducing an artificial smooth boundary B, hence obtaining a finite computational
domain Ω, which is bounded internally by Γ and externally by B. Then, assum-
ing fP and fS locally supported in Ωi, we define on B × [0, T ] a couple of scalar
TD-NRBCs:

1

2
ϕe
⋆(x, t) + (K⋆ϕ

e
⋆)(x, t)− (V⋆(∂nD

ϕe
⋆))(x, t) = 0, ⋆ := P, S

V⋆ and K⋆, being the well known single and double layer operators associated with
the scalar ⋆ = P, S-wave equations:

(V⋆ψ)(x, t) :=

∫ t

0

∫

B
G⋆(x− y, t− s)ψ(y, s) dByds

(K⋆λ)(x, t) :=

∫ t

0

∫

B
Gn

D
,⋆(x− y, t− s)λ(y, s) dByds.

To restrict the original problem in the finite computational domain Ω, we impose
the continuity transmission conditions of the P and S-waves as well as of their
normal derivatives on the artificial boundary B. Hence, denoting by ϕP and ϕS

the restriction of the solutions ϕe
P and ϕe

S to Ω, we get:
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(2)





∂2ϕP

∂t2
(x, t) − v2P∇2ϕP (x, t) =

1

ρ
fP (x, t) (x, t) ∈ Ω× (0, T ]

∂2ϕS

∂t2
(x, t)− v2S∇2ϕS(x, t) =

1

ρ
fS(x, t) (x, t) ∈ Ω× (0, T ]

∂ϕP

∂n
Γ

(x, t) =
∂ϕS

∂τ
Γ

(x, t) + gnΓ
(x, t) (x, t) ∈ Γ× (0, T ]

∂ϕS

∂n
Γ

(x, t) = −∂ϕP

∂τ
Γ

(x, t) + gτ Γ
(x, t) (x, t) ∈ Γ× (0, T ]

1

2
ϕP (x, t) + (KPϕP )(x, t) + (VP (∂nϕP ))(x, t) = 0, (x, t) ∈ B × (0, T ]

1

2
ϕS(x, t) + (KSϕS)(x, t) + (VS(∂nϕS))(x, t) = 0, (x, t) ∈ B × (0, T ].

We discretize the space-time integral equations in (2) defined on B by combining
a second order BDF convolution quadrature in time and a collocation method in
space. Such a discretization is then coupled with an uncoditionally stable ODE
integrator in time and a FEM in space.

Example. In our experiment, the domain of computation is an annulus, whose
interior physical boundary Γ is the unit circle, and the artificial one B is the
circle of radius 2. We have chosen an S-wave source term, localized in space at
x = (1.5, 0), which varies in time as a Ricker pulse. In the plots we present
the snapshots of the numerical solution obtained at the fixed time instants tn =
0.75, 1.25, 1.75, 2, 2.5. The first three columns represent the solution obtained by
the scalar FEM-BEM method (|∇ϕP |, |curlϕS | and |u|, respectively) while the
last one refers to the solution obtained by applying a FEM-BEM approach for
the classical vector displacement formulation. As we can see, there is a very good
agreement between the new scalar and the standard vector solutions, depicted in
the second last and last columns of the figure, respectively.
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Two Time Parallel Algorithms for PDE Constraint Optimization:
Difference with Time Parallel Algorithms for Evolution Problems

Martin J. Gander

Parallel in Time (PinT) algorithms have received a lot of attention over the past
two decades, following the invention in 2001 of the Parareal algorithm by Lions,
Maday and Turinici [1]; for a detailed convergence analysis, see [2] for linear par-
tial differential equations, and [3] for nonlinear problems. PinT algorithms have
gained tremendous importance for the parallelization of evolution problems on the
massively parallel computing architectures available today, since the millions of
computing cores can often not be used effectively when only parallelizing such
problems in space. PinT algorithm have however a long history spanning more
than 5 decades; for a review, see [4]. More recently, PinT algorithms have also
been developed for optimal control problems and PDE constraint optimization,
where the constraints are given by evolution problems [5, 6, 7, 8, 9, 10, 11], for a
historical introduction to such problems, see [12]. These algorithms have become
known under the name ParaOpt algorithms.

Solving evolution problems with PinT algorithms is however quite different from
solving optimal control or PDE constraint optimization problems with evolution
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problems as constraints using PinT algorithms. I illustrated this in my presenta-
tion with two ParaOpt algorithms, the first one from [13, 14] based on Schwarz
domain decomposition in time, motivated by [8], and the second one from [15]
based on Parareal techniques.

Consider the PDE constraint optimization problem

(1) min
y,u

J (y, u), subject to ẏ +Ay = u, y(0) = y0,

where y is the state, u the control, A a linear operator, and the functional to be
minimized is defined by

(2) J (y, u) :=
1

2

∫ T

0

‖y − ŷ‖2 + γ

2
‖y(T )− ŷ(T )‖2 + ν

2

∫ T

0

‖u‖2,

γ and ν being two positive parameters to give weights to the terms to be minimized.
Using a Lagrange multiplier λ(t), see e.g. [12], we have to minimize

(3) min
y,u,λ

(
J (y, u) +

∫ T

0

(ẏ +Ay − u)Tλ

)
.

Taking derivatives with respect to λ, y and u, we find the optimality condition

(4)

{
ẏ + Ay = u on (0, T ),

y(0) = y0,

{
λ̇−ATλ = y − ŷ on (0, T ),

λ(T ) = −γ(y(T )− ŷ(T )),
λ(t) = νu(t).

We can eliminate u(t) = 1
νλ(t) to obtain the PDE first order optimality system

(5)

[
ẏ

λ̇

]
+

[
A −ν−1I
−I −AT

] [
y
λ

]
=

[
0
−ŷ

]
,

with initial and final conditions y(0) = y0, λ(T ) = −γ(y(T )− ŷ(T )). The fact that
we have now initial and final conditions is very important, the problem we have to
solve is now a boundary value problem in time, not an initial value problem any
more!

To use a Schwarz domain decomposition method in time1, we divide the time
interval (0, T ) into I1 = (0, β) and I2 = (α, T ), α ≤ β and for n = 1, 2, . . ., solve





[
ẏn1
λ̇n1

]
+

[
A −ν−1I
−I −AT

] [
yn1
λn1

]
=

[
0
−ŷ

]
on I1 = (0, β),

yn1 (0) = y0,

λn1 (β) + pyn1 (β) = λn−1
2 (β) + pyn−1

2 (β),

1This would make very little sense, without further mechanisms like a coarse propagation,
for the pure evolution problem, since solving the subdomain problem earlier in time followed by
the subdomain problem later in time would immediately lead to the solution of the evolution
problem, due to causality, and this independently of the overlap.
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



[
ẏn2
λ̇n2

]
+

[
A −ν−1I
−I −AT

] [
yn2
λn2

]
=

[
0
−ŷ

]
on I2 = (α, T ),

yn2 (α) − qλn2 (α) = yn−1
1 (α)− qλn−1

1 (α),

λn2 (T ) = −γ(yn2 (T )− ŷ(T )),

where p and q are two real parameters that can be tuned to get best performance
of the algorithm. If the PDE is discretized, and A = AT ∈ Rm×m, A = QDQT ,
with QTQ = I and D = diag(d1, . . . , dm), then we can diagonalize the subdomain
problems, and obtain for example for the first one





[
żn1
µ̇n
1

]
+

[
D −ν−1I
−I −D

] [
zn1
µn
1

]
=

[
0
−ẑ

]
on I1 = (0, β),

zn1 (0) = z0,

µn
1 (β) + pzn1 (β) = µn−1

2 (β) + pzn−1
2 (β),

which are now m independent 2× 2 systems of the form

ż
(i),n
1 + diz

(i),n
1 − ν−1µ

(i),n
1 = 0, µ̇

(i),n
1 − diµ

(i),n − z
(i),n
1 = ẑ(i).

Isolating µ1 from the first equation and substituting into the second yields

(6) z̈
(i),n
1 − (d2i + ν−1)z

(i),n
1 = −ν−1ẑ(i),

with z
(i),n
1 (0) = z

(i)
0 (0) and transmission condition at t = β

(7) ż
(i),n
1 + (di + pν−1)z

(i),n
1 = ż

(i),n−1
2 + (di + pν−1)z

(i),n−1
2 ,

and similarly on the second subdomain. Equation (6) shows us that in fact we have
now a Laplace like equation to solve in time, not a parabolic evolution problem any
more, and thus a Schwarz algorithm in time makes sense for the optimality system.
Furthermore, the transmission conditions are automatically Robin transmission
conditions in (7), even without the parameters p and q, so applying Schwarz to the
optimality system (5) leads automatically to an algorithm in the class of Optimized
Schwarz Methods, see [16] for an introduction to such methods. In [13], we show
that this algorithm converges linearly, in contrast to the superlinear convergence
PinT algorithms often show for parabolic evolution problems, and we show also
how to optimize the parameters p and q, see also [14].

Similarly, I showed a second new such ParaOpt algorithm, based on Parareal
techniques, introduced and analyzed in [15], and it also converges linearly, in
contrast to the Parareal algorithm that converges superlinearly when applied to
parabolic evolution problems [2]. There is therefore an important difference for
PinT algorithms when they are used to solve evolution problems, in contrast to
solving optimal control problems with these evolution problems as constraints,
since the optimality condition transforms the evolution problems into boundary
value problems.
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Higher-order boundary elements in the time domain:
adaptivity, graded meshes and hp-versions

Heiko Gimperlein

(joint work with Alessandra Aimi, Giulia Di Credico, Ceyhun Özdemir,
Ernst P. Stephan)

Solutions to the wave equation in the exterior of a polyhedral domain or a screen
in R3 exhibit singular behavior from the edges and corners. For time-independent
problems, p- and hp-versions of boundary element methods, as well as h-versions
on graded meshes, give rise to fast approximations of both smooth solutions and
geometric singularities. Optimal convergence rates on quasi-uniform meshes have
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been obtained in [2], while exponential convergence is known on geometrically
graded meshes for suitable data. On the other hand, adaptive mesh refinements
based on a posteriori error estimates are of interest for the approximation of non-
smooth solutions [3].

The talk discussed the extension of these classical results for h-, p- and hp-
versions of the Galerkin boundary element method in the time domain, with quasi-
optimal error estimates. To be specific, for n = 2, 3 in the exterior Ω ⊂ Rn of a
closed polyhedral surface or screen Γ we considered the initial-boundary value
problem for the (scalar) wave equation

∂2t u(t, x)−∆xu(t, x) = 0 in R+
t × Ωx(1)

and the (vector-valued) elastodynamic equations

(2) (λ + µ)∇(∇ · u) + µ∆u− ρü = 0 in R+
t × Ωx

for given Dirichlet data u|Γ = g on Γ = ∂Ω. For simplicity, homogeneous initial
conditions are u(0, x) = ∂tu(0, x) = 0 are considered.

Flat polygonal screens Γ pose the greatest numerical challenges. To solve the
Dirichlet problem for (1) or (2) numerically, we reformulate it as a time dependent
integral equation

(3) Vψ =
(
K + 1

2

)
g

on Γ for the single layer operator V . This integral equation is approximated
using Galerkin boundary elements, based on tensor products V p

∆t,h of piecewise
polynomial functions of degree p on a quasi-uniform mesh in space and a uniform
mesh in time.

The approximation rate is governed by the singularities of the solution at non-
smooth boundary points of the domain. In conical or wedge domains the singular
behavior of the solution to inhomogeneous wave and elastodynamic equations with
homogeneous boundary conditions has been clarified by Plamenevskǐı and collabo-
rators since the late 1990’s [8]. Their results show that at fixed time t, the solution
admits an explicit singular expansion with exactly the same singular behavior as
for elliptic equations. The results were used by Müller and Schwab to prove opti-
mal convergence rates for a finite element method on algebraically graded meshes
for the wave and elastodynamic equations in polygonal domains in R2 [7].

Corresponding results for the wave equation in R3 were obtained in [4, 5] and
for the elastodynamic equations in [1]. They imply approximation results for
boundary element methods on graded meshes [4], hp versions [5] and the efficiency
of a posteriori error estimates for adaptive refinement procedures [6].

For example, in [5] we obtain:

Theorem. Let ψ be the solution to the single layer integral equation (3) and

ψh,∆t the best approximation in the norm of Hr
σ(R

+, H̃− 1
2 (Γ)) to ψ in V p

∆t,h on a
quasi-uniform spatial mesh with ∆t ≤ Ch. Then

‖ψ − ψh,∆t‖r,− 1
2
,Γ,∗ ≤ C

((
h

p2

) 1
2
−ε

+

(
h

p

) 1
2
+η

+

(
∆t

p

)µ+1−r
)
,
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where r ∈ [0, p + 1) and the regular part ψ0 ∈ Hµ+1
σ (R+, H̃η(Γ)) of the singular

expansion of ψ, with η, µ sufficiently large.
In addition to the a priori error analysis, in [6] we obtain a posteriori error

estimates and discuss the resulting adaptive mesh refinement procedures in 3d.
The results extend those from the time-independent case [3], and the reader should
consult [6] for detailed information.

Theorem. Let ψ ∈ H1
σ(R

+, H̃− 1
2 (Γ)) be the solution to (3), and let ψh,∆t ∈

H1
σ(R

+, H− 1
2 (Γ)) such that R = ∂tf − V∂tφh,∆t ∈ H0

σ(R
+, H1(Γ)). Then

‖ψ − ψh,∆t‖20,− 1
2
,Γ,∗ ≤ C

∑

i,∆

max{(∆t)i, h∆} ‖R‖20,1,[ti,ti+1)×∆ .

A lower bound is obtained on globally quasi-uniform meshes on Γ, showing a
(weak) efficiency of the error estimator:

max{∆t, h}‖R‖20,1−ǫ,Γ ≤ C‖φ− φh,∆t‖22,− 1
2
,Γ .
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Stabilized Leapfrog Based Local Time-stepping Method
For the Wave Equation

Marcus J. Grote

(joint work with Simon Michel, Stefan Sauter)

Local time-stepping methods permit to overcome the severe stability constraint on
explicit methods caused by local mesh refinement without sacrificing explicitness.
In [6], a leapfrog based explicit local time-stepping (LF-LTS) method was pro-
posed for the time integration of second-order wave equations. Recently, optimal
convergence rates were proved for a conforming FEM discretization, albeit under
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a CFL stability condition where the global time-step, ∆t, depends on the small-
est elements in the mesh [10]. In general one cannot improve upon that stability
constraint, as the LF-LTS method may become unstable at certain discrete values
of ∆t. To remove those critical values of ∆t, we apply a slight modification (as in
recent work on LF-Chebyshev methods [2]) to the original LF-LTS method which
nonetheless preserves its desirable properties: it is fully explicit, second-order ac-
curate, satisfies a three-term (leapfrog like) recurrence relation, and conserves the
energy. The new stabilized LF-LTS method [11] also yields optimal convergence
rates for a standard conforming FE discretization, yet under a CFL condition
where ∆t no longer depends on the mesh size inside the locally refined region.

1. Introduction

As our model problem, we consider the homogeneous wave equation

utt −∇ · (c2 ∇u) = 0 in Ω× (0, T )(1)

u|t=0 = u0 ut|t=0 = v0 in Ω,(2)

where Ω denotes a bounded domain in Rd, and u0, v0 are prescribed initial con-
ditions. The speed of propagation, c = c(x), is assumed piecewise smooth and
strictly positive. At the boundary, we impose appropriate boundary conditions
for well-posedness.

For the spatial discretization of (1), we consider a conforming finite element
(FE) method with mass-lumping. For the time discretization, we opt for the leap-
frog based local time-stepping (LTS-LF) method to circumvent the bottleneck
caused by the overly stringent CFL condition in the presence of local refinement
[6, 7, 15]. Hence we split the mesh into a ”coarse” and a ”fine” sub-region with
mesh size h and hf, respectively. During each time-step ∆t inside the ”coarse”
region, we use p time-steps of smaller size ∆τ = ∆t/p inside the ”fine” region,
where p ≃ h/hf — see [6] for details.

Despite the many different explicit LTS methods that were proposed and suc-
cessfully used for wave propagation in recent years (see [9] and references therein),
a rigorous general space-time convergence theory (in the PDE sense) is still lack-
ing. Until recently, convergence had been proved only for the method of Collino et
al. [4, 13] and for the locally implicit method for Maxwell’s equations by Verwer
[17, 5, 12], which combines the explicit Verlet scheme with the implicit Crank–
Nicolson, neither fully explicit.

In [10], optimal convergence rates for the fully explicit LF-LTS method from [6]
were derived for a conforming FEM discretization, albeit under a CFL condition
where the global time-step ∆t in fact depends on the smallest elements in the mesh
[10]. In doing so, the inner loop over the p local LF steps of size ∆t/p was rewritten
in terms of a single global time-step ∆t, which involves Chebyshev polynomials.
In general one cannot improve upon the stability constraint on ∆t, as the LF-LTS
method may become unstable at certain discrete values of ∆t. Although those
instabilities only matter in special situations and for long time simulation, they
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nonetheless thwart any attempt to guarantee that the numerical solution remains
bounded for all time independently of p, that is under a CFL condition imposed
by the coarse mesh only. In fact, similar instabilities can also occur in leapfrog-
Chebyshev (LFC, discrete Gautschi-type) methods without added stabilization
[8, 2], which are closely related to LTS schemes. As a remedy, Carle, Hochbruck
and Sturm [2] introduced a class of stabilized LFC methods based on stabilized
Chebyshev polynomials together with a special starting value. Note that the idea
of replacing standard Chebyshev polynomials by their stabilized version for added
stability is well-known in the parabolic context and was also recently used to
stabilize a Lagrange multiplier based LTS approach [3].

The reformulation of the original LF-LTS method [6] using Chebyshev polyno-
mials in [10] is key for its subsequent stabilization. More concretely, by replac-
ing the Chebyshev polynomials by their stabilized analogues, as in [2] for LFC
methods, we devise a stabilized version of the original LF-LTS method [6], which
completely removes the potentially unstable behavior at discrete time-steps while
preserving all the desirable properties of the original method: it is fully explicit,
proceeds by a three-term recurrence relation and conserves (a discrete version of)
the energy; hence, the (leapfrog-like) structure of the resulting algorithm remains
unchanged [11]. The same stabilized LF-LTS algorithm was developed indepen-
dently and in parallel by the group of M. Hochbruck [1]. Here we develop a
convergence analysis for the fully discrete stabilized LF-LTS method under a CFL
condition where ∆t no longer depends on the mesh size inside the locally refined
region.

2. Convergence theory

To develop a general convergence theory for explicit LTS methods, we first define
finite-dimensional restriction operators to the “fine” grid and formulate the leap-
frog (LF) based LTS method from [6] in a Galerkin conforming finite element
setting. Next, we prove continuity and coercivity estimates for the LTS operator
that are robust with respect to the number of local time-steps p, provided a genuine
CFL condition is satisfied. Here, new estimates on the coefficients that appear
when rewriting the LTS-LF scheme in “leap-frog manner” play a key role. Those
estimates pave the way for the stability estimate of the time iteration operator,
for which we then prove a stability bound independently of p.

Due to the local restriction, however, a judicious splitting of the iteration opera-
tor and its inverse is required to avoid negative powers of h via inverse inequalities.
By combining our analysis of the semi-discrete formulation, which takes into ac-
count the effect of local time-stepping, with classical error estimates, we eventually
obtain optimal space-time convergence rates.

Let uh denote the fully discrete Galerkin solution of the stabilized LF-LTS
method with stabilization parameter ν > 0 using continuous piecewise polynomial
finite elements of order ℓ. Under standard smoothness assumptions on the solution
u of (1)–(2), we prove in [11] under a p-independent CFL stability condition on
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the time-step ∆t > 0 and the mesh size h > 0 in the coarse region that

‖u− uh‖L∞([0,T ];L2(Ω)) ≤ C(1 + T )(hℓ+1 +∆t2),

where the constant C depends only on u and ν, but not on h, ∆t, p or T .

0 0.5 1
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Figure 1. Left: Graded mesh with grading parameter β = 1.5.
Right: LF-LTS solution of (1) for initial conditions (3) at t = 0.3

3. Numerical experiment

We consider (1)–(2) in an L-shaped domain Ω, with a reentrant corner, Ω =
(0, 1)2 \ ([0.5, 1)× (0.5, 1]) . Due to characteristic singularities of the solution at
reentrant corners, uniform meshes generally do not yield optimal convergence rates
[14]. A common remedy to restore the accuracy and achieve optimal convergence
rates is to use (a-priori) graded meshes [16, Chapt. 3.3.7] toward the reentrant
corner. Hence, we first partition Ω into six triangles of equal size with a common
vertex at the center (0.5, 0.5). Then on every edge e connected to the center, we
allocate N + 1 points at distance

|e|
(
k

N

)β

, k = 0, 1, . . . , N,

from it, where β ≥ 1 is a fixed grading parameter; the larger β, the more strongly
the triangles will cluster near the reentrant corner, whereas for β = 1 the mesh is
uniform throughout Ω. All other vertices within the same k-th layer are distributed
uniformly, as shown in Fig. 1 for a graded mesh with β = 1.5 and N = 10.

Now, we consider (1)–(2) in Ω with homogeneous Dirichlet boundary conditions
and the initial conditions

(3)

{
u0(x) = 0,

v0(x) = −w(x),
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Figure 2. L-shaped domain: Absolute errors vs. h = maxτ hτ
at t = 0.3 either for graded meshes with β = 1.6 and LF-LTS
time integration (solid), or for uniform meshes (with β = 1) and
standard LF time integration (dashed). Left: H1-error with ref-
erence line O(h); right: L2-error with reference line O

(
h2
)
.

where w is the (singular) solution of the elliptic problem ∆w = 100 in Ω with
homogeneous Dirichlet boundary conditions, numerically computed on a highly
refined mesh.

We solve this problem numerically using P1-FE and the stabilized LF-LTS
method with ν = 0.01 for time integration on a sequence of graded meshes. On
every mesh, we let the locally refined region Ωf consist of those elements which lie

inside the nearest
⌊√

N
⌋
layers from the reentrant corner. Hence, the number of

local time-steps, p, depends on N and thus varies from one mesh to another. The
numerical solution for β = 1.5 and N = 320 is shown at time t = 0.3 in Fig. 1.

Next, we study the convergence of the stabilized LF-LTS scheme on a sequence
of graded meshes with β = 1.6 and h = maxτ hτ . As shown in Fig. 2, the error
converges optimally as O(h) with respect to the H1-norm and as O

(
h2
)
with

respect to the L2-norm. The L2- and H1-errors are both computed at the final
time t = 0.3 with respect to a reference solution on a finer mesh.

For the sake of comparison, we also display the errors obtained with a standard
LF method on a sequence of uniform meshes. As expected, the LF method with
a uniform FE discretization fails to achieve the optimal convergence rates due to
the corner singularity. Moreover, for any mesh size h, the LF-LTS method on the
corresponding graded mesh is more accurate than the standard LF method on a
uniform mesh.
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On the use of potentials for finite element computations in
elastodynamics

Patrick Joly

(joint work with J. Albella, S. Imperiale, J. Rodŕıguez)

1. introduction

In nearly incompressible media such as soft tissues, the simulation of elastic wave
propagation based on displacement formulations are highly penalized by the fact
that shear (S) waves propagate much more slowly than pressure (P) waves. On
the other hand, in the case of locally homogeneous media, decomposing of the
displacement field as the sum of the gradient and the rotational of two scalar
potentials allows the decoupling of the two dynamics giving the hope to build
space and time discretizations adapted to each type of wave. For finite element
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methods, the challenge is to treat in a stable way boundaries and interfaces, where
the two waves are recoupled. In this report, we give the main idea of our approach
on a transmission model problem. Due to page limitation, we restrict ourselves to
the continuous problem and refer to the bibliography for computational issues.

2. Model problem and potential formulation

We consider a 2D bounded domain of propagation Ω that is made of the union of
two subsets Ω1 and Ω2 which are separated by an interface Σ according to figure
1 where the needed notation is also introduced. Each domain Ωj is filled with
a homogeneous isotropic medium with density ρj and Lamé’s coefficients (λj , µj)
(all positive). Denoting uj the displacement field in Ωj , the transmission problem
to be solved is composed with the following PDE’s

(1) ρj∂
2
t uj − divσ(uj) = 0, σ(u) = λj divu I+ 2µj ε(uj) in Ωj , j = 1, 2

with ε(uj) := (∇uj +∇ut
j)/2 the strain tensor, I the identity matrix and div the

divergence operator for a matrix field . (1) is completed with the transmission and
boundary conditions (the exterior boundary Γ

D
is a clamped boundary):

(2) u1 = u2, σ(u1)n = σ(u1)n, on Σ, u1 = 0 on Γ
D
.

Thanks to the identity divσ(uj) = (λj + 2µj)∇ divuj − µj curl curluj , where
curl and curl are respectively the 2D vector and scalar curl’s, one can show that

(3) ∂tuj = ∇ϕ
P,j

+ curlϕ
S,j

where the two scalar potentials ϕ
P,j

(for P waves) and ϕ
S,j

(for S waves) satisfy
the two decoupled wave equations (that replace(1))

(4) ρj∂
2
t ϕP,j

− (λj + 2µj)∆ϕP,j
= 0, ρj∂

2
t ϕS,j

− µj∆ϕS,j
= 0.

Figure 1. Geometry and main notation

The Dirichlet boundary on Γ
D
simply becomes (∂τ denotes the tangential derivative

oriented with the curvilinear abcissa s, cf figure 1)

(5) ∂nϕP,1
− ∂τϕS,1

= 0, ∂nϕS,1
+ ∂τϕP,1

= 0, on Γ
D
.

The transmission conditions are more delicate to express in terms of the poten-
tials. To do so, the idea is to introduce an auxiliary unknown vΣ which is the
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common value of the velocities ∂tu1 and ∂tu2 on Σ (this already encodes the first
transmission condition on the continuity of the displacement).

vΣ = (v1, v2) :=
(
∂tu1

)
Σ
≡
(
∂tu2

)
Σ

which gives, using (3),

(6) ∂nϕP,j
− ∂τϕS,j

= vΣ · n, ∂nϕS,j
+ ∂τϕP,j

= vΣ · τ , on Γ
D
, j = 1, 2.

In what follows, given f = (f1, f2) with fj defined in Ωj , we set
[
f
]
:= (f1 − f2)|Σ

(jump accross Σ) and we define the 2D vector potentials

ϕj :=
(
ϕ

P,j
, ϕ

S,j

)
, ϕ =

(
ϕ1,ϕ2

)
.

It can be shown that the second transmission condition (continuity of the normal
stress) is equivalent to the existence of two constants c1 and c2 such that

(7) 2
[
µ
]
v1 = I

(
∂2t
[
ρϕ
]
· τ
)
+ c1, 2

[
µ
]
v2 = −I

(
∂2t
[
ρϕ
]
· n
)
+ c2,

where I is the integration operator along Σ : Ig(s) :=
∫ s

0
g(s′) ds′. Note that (7)

implies the Gauge conditions

(8)

∫

Σ

[
ρϕ
]
· τ = 0,

∫

Σ

[
ρϕ
]
Σ
· n = 0.

3. Variational formulations

(i) The case µ1 = µ2. We look for the weak formulation of (4, 6, 7, 8). When
there is no jump is µ, the easy case, (7) degenerates and implies that the good
variational space for ϕ is, setting Vj := H(div,Ωj) ∩H(curl,Ωj),

(9) ϕ ∈ VΣ :=
{
ψ ∈ V1 ×V2 /

[
ρψ
]
· τ =

[
ρψ
]
· n = 0

}

After eliminating vΣ, c1 and c2 one sees that ϕ(t) : R+ → VΣ satisfies

(10) d2

dt2 m(ϕ(t),ψ) + a(ϕ(t),ψ) = 0, ∀ψ ∈ VΣ.

with mΩ(ϕ,ψ) =
∑
mΩ,j(ϕj ,ψj), a(ϕ,ψ) =

∑
aj(ϕj ,ψj) (sums on j = 1, 2) and

(11)





mΩ,j(ϕj ,ψj) =
ρ2
j

λj+2µj

∫
Ωj
ϕ

P,j
ψ

P,j
+

ρ2
j

µj

∫
Ωj
ϕ

S,j
ψ

S,j

aj(ϕj ,ψj) = ρj
∫
Ωj

(
divϕj divψj + curlϕj curlψj

)

Moreover, it is easy to see that , as soon as ϕ and ψ belong to H1(Ω1)
2×H1(Ω2)

2,

aj(ϕj ,ψj) = ρj

∫

Ωj

(
∇ϕ

P,j
· ∇ψ

P,j
+∇ϕ

S,j
· ∇ψ

S,j

)
+

∫

∂Ωj

(
∂τϕP,j

ψ
S,j

+ ϕ
P,j
∂τϕS,j

)

which shows that the P and S potentials are only coupled on Σ : this allows to
discretize independently in space these potentiels in each subdomain Ωj .

(ii) The case µ1 6= µ2. This time the appropriate variational space is

(12) ϕ ∈ V0 :=
{
ψ ∈ V1 ×V2 / ψ satisfies (8)

}
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Proceeding as in (i), a naive weak formulation is : find ϕ(t) : R+ → V0 such that

(13) d2

dt2 m(ϕ(t),ψ) + a(ϕ(t),ψ) = 0, ∀ ψ ∈ V0.

where the new mass bilinear form m(·, ·) is given by

(14) m(ϕ,ψ) = mΩ(ϕ,ψ) +
1

2[µ]

∫

Σ

([
I(ρϕ)

][
ρψ
]
+
[
ρϕ
][
I(ρψ)

])

The problem comes from the interface term in (14) which has no sign. As a matter
of fact, one shows that m(ϕ,ψ) is not positive in the space V0. More presisely,
if Hj denotes the subspace functions pj ∈ H1(Ωj) which are harmonic (∆pj = 0),
one shows that, setting p = (p1, p2) ∈ H := H1 ×H2 and ∇p = (∇p1,∇p2)

∀ p ∈ H, ∇p ∈ V0 and m(∇p,∇p) = −
∑

µj(λj+µj)
λj+2µj

∫

Ωj

|∂1pj |2 dx < 0.

For this reason, the problem (13) is strongly ill posed. The solution consists in
reduce the variational space to the following subspace of V0:

(15) ∇H⊥ :=
{
ψ ∈ V0 / m(ψ,∇p) = 0, ∀ p ∈ H

}
.

Indeed, it can be shown that for the solution, ϕ(t) ∈ ∇H⊥ for each t and that

(16) ∀ ϕ ∈ ∇H⊥, m(ϕ,ϕ) ≥ α
∑∫

Ωj

|ϕj |2, for some α > 0.

so that the variational problem (13) posed in ∇H⊥ instead of V0 is a nice vari-
ational problem. Treating m(ψ,∇p) = 0 as an equality constrain and exploiting
the fact that H is isomorphic (with an explicit isomorphism involving Poisson
problems in each Ωj) to a space of couples scalar functions defined on ∂Ω1 and
∂Ω2, one replaces (13) by a stabilized mixed problem in which appear boundary
Lagrange multipliers living on ∂Ω1 and ∂Ω2,

References
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On time-domain Foldy-Lax models

Maryna Kachanovska

Introduction. We are interested in constructing accurate asymptotic models for
scattering by small particles. Such models have been studied and used extensively
in the frequency domain [1, 2, 3, 4, 5], but not much had been done in the time
domain, cf. [6, 7]. The goal of this work is to fill in this gap for the case of the 2D
sound-soft scattering by circular particles.

More precisely, we study the following model problem. Let the centers of N
circular particles be located at cj ∈ R2, j = 1, . . . , N . Given Rj > 0, j = 1, . . . , N,
we set a radius of j’th particle to rεj = εRj , where ε > 0. We denote by Ωε :=
∪jB(cj , r

ε
j ), by Γε

j = ∂B(cj , r
ε
j ), and by Γε = ∂Ωε = ∪jΓ

ε
j .

Let the (known) incident field uinc : R≥0 × R2 → R solve

∂2t u
inc(t,x)−∆uinc(t,x) = 0, for (t,x) ∈ R>0 × R2,

uinc(0,x) = u0(x), ∂tu
inc(0,x) = u1(x),

where the initial conditions u0, u1 are assumed to be sufficiently regular, compactly
supported, with suppu0, suppu1 ⊂ R2 \ Ωε0 , for some ε0 > 0.

Our goal is to find an accurate approximation to the so-called scattered field
uε : R≥0 × R2 → R, which is a solution to

∂2t u
ε −∆uε = 0 in R>0 × (R2 \ Ωε),

γ0u
ε = −γ0uinc on Γε,

uε(0,x) = ∂tu
ε(0,x) = 0.

(1)

There exist uinc, and (t,x) ∈ R≥0 ×R+ \Ωε0 , s.t., as ε→ 0, |uε(t,x)| > c log−1 ε,
for c > 0. We are interested in higher-order asymptotics of uε(t,x), as ε→ 0.

There exist several ways to derive such asymptotics: matched asymptotic ex-
pansions, integral equation formulations, and more heuristic Foldy-Lax models.
The models obtained by the two latter approaches are typically of the same type:
e.g. in the frequency domain the scattered field is expressed as a linear combination
of N free-space Green functions ’centered’ in cj , with the coefficients satisfying an
N ×N system of equations. Here we adhere to such an approach as well.

First idea: recasting frequency-domain Foldy-Lax models into the time
domain. One way to obtain a time-domain Foldy-Lax model is to recast an avail-
able frequency-domain model into the time-domain. The goal of this section is to
show that this procedure may lead to unstable and thus non-convergent models.
For this we will consider the model of [3], which can be rewritten in the time
domain as follows: the field uε is approximated by

uε(t,x) ≈ uεFL(t,x) =

N∑

k=1

G(t, ‖x− ck‖) ∗t µε
k,
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where G(t, r) = 1
2π

1t>r√
t2−r2

(the 2D free-space wave equation Green function), and

the N unknown functions µε
k : R≥0 → R satisfy the following system:

G(t, rεk) ∗t µε
k +

∑

n6=k

G(t, ‖ck − cn‖) ∗t µε
n = −G(t, rεk) ∗t uinc(t, ck), k = 1, . . . , N.

However, for some geometric configurations the above system is unstable. The
simplest result of this type is given in the proposition below.

Proposition. Let N = 3, ε > 0 and rεi = ε for all i. Let ‖ci − cj‖ = c > 0 for all
i 6= j (in other words, the centers of the particles are located in the vertices of an
equilateral triangle of side length c). Assume that c/ε < 4.

Then there exists uinc ∈ C∞
0 (R≥0 × R2), s.t. the following holds true. There

exist α,A > 0 and a sequence tn → +∞, s.t. ‖uεFL(tn)‖L2(R2) ≥ αeAtn .

To deal with such potential instabilities, we propose an alternative Foldy-Lax
model, which we will call the Galerkin Foldy-Lax model (name due to P. Joly
(POEMS)).

Second idea: Galerkin Foldy-Lax model. For sufficiently regular scattered
field uinc, any solution to the scattering problem (1) can be represented as the
single layer potential of an unknown density λε ∈ C0(R≥0;H

−1/2(Γε)) (where we
use the notation λε|Γε

k
= λεk):

u(t,x) =

N∑

k=1

∫

Γε
k

G(t, ‖x− y‖) ∗t λεk(t,y)dΓy.(2)

Applying γ0 to both sides of the above identity yields a well-posed boundary
integral equation for the unknown density λε:

−γ0uinc(t,x) = Sελε =

N∑

k=1

∫

Γε
k

G(t, ‖x− y‖) ∗t λεk(t,y)dΓy .

Because of coercivity-like properties of the above operator, the Galerkin semidis-
cretizations in space of the above equation are a priori stable. We then obtain a
Foldy-Lax model as one such Galerkin semidiscretization of the above equation.
We define a coarse Galerkin space

S0(Γ
ε
k) := {φ ∈ H−1/2(Γε

k) : φ = const}, Sε0 :=

N∏

k=1

S0(Γ
ε
k).

We then look for the approximation of the density λε

λε(t,x) ≈ λε
app =

N∑

k=1

λεapp,k(t)1x∈Γε
k
,
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which satisfies

−
∫

Γε
k

γ0u
inc(t,x)dΓx = 〈Sελε, 1〉Γε

k
=

N∑

ℓ=1

∫

Γε
ℓ

∫

Γε
k

G(t, ‖x− y‖) ∗t λεapp,ℓ(t)dΓydΓx.

Remark that in order to find the densities λεapp,k(t), we need to solve the system
of N convolutional equations. Next, knowing the densities λεk, the approximated
field uεapp can be restored using (2):

uε(t,x) ≈ uεapp(t,x) =

N∑

ℓ=1

∫

Γε
ℓ

G(t, ‖x− y‖) ∗t λεapp,ℓ(t)dΓy.

We then have the following convergence result.

Theorem 1. Let K be compact, and, for some ε0 > 0, dist(K,Ωε0) > d > 0. As
ε→ 0, with C depending only on the distance between particles,

‖uε − uappε ‖L∞(0,T ;L∞(K)) ≤ ε2 × CN5/2 max(1, T 6 logT )‖uinc‖H9(0,T ;W 1,∞(R2)).

Conclusions and open questions. We have constructed an unconditionally sta-
ble Foldy-Lax model for sound-soft scattering by circular particles and obtained
corresponding convergence estimates.

However, there remain several open questions that we would like to address.
First of all, it is extension of the analysis for the non-circular obstacles. Second,
our convergence estimates fail when the distance between the obstacles reduces
proportionally to their size; it would be interesting to see whether adding more
functions into the Galerkin approximation space could help obtaining a more ac-
curate model in this case. Finally, we would like to investigate a more difficult
case of the electromagnetic scattering by small particles.
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Connecting random fields on manifolds and stochastic partial
differential equations in simulations

Annika Lang

(joint work with David Cohen, Erik Jansson, Mihály Kovács, Mike Pereira)

The simulation of random fields on manifolds can be connected to stochastic par-
tial differential equations (SPDEs) in two ways. These two directions divided the
presentation naturally in two parts. In the first part, we looked at approxima-
tion methods for random fields when interpreted as solutions to a specific type of
SPDEs. The second part used the theory and algorithms for isotropic Gaussian
random fields to solve and simulate the stochastic wave equation on the sphere.

Let (Ω,A, (Ft), P ) be a filtered probability space and denote by S2 ⊂ R3 the unit
sphere. By [6], an isotropic Gaussian random field T admits a Karhunen–Loève

expansion T =
∑∞

ℓ=0

∑ℓ
m=−ℓ aℓmYℓm, where (Yℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) denotes

the sequence of spherical harmonic functions and (aℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) is
a sequence of normally distributed random variables, whose properties are char-
acterized by the angular power spectrum (Aℓ, ℓ ∈ N0). A truncation of the series
expansion at level L leads to the random field TL which converges to T depending
on the decay of the angular power spectrum as has been shown in [5].

Theorem 1. Assume that Aℓ ≤ C · ℓ−α for some α > 2 and C > 0. Then for all
1 ≤ p < +∞ there exists a constant Ĉp such that

‖T − TL‖Lp(Ω;L2(S2)) ≤ Ĉp · L−(α−2)/2.

Furthermore, for all β < (α− 2)/2 it holds asymptotically ‖T − TL‖L2(S2) ≤ L−β,
P -a. s..

The first application of this result in the talk was to consider spectral approx-
imations of Whittle–Matérn random fields which are given as solutions to the
SPDEs

(1) (κ2 −∆S2)
βu = W ,

where W denotes white noise on S2, ∆S2 the Laplace–Beltrami operator, and
κ, β > 0 are real-valued parameters. It implies that a spectral approximation with
truncation at level L leads to convergence

‖u− uL‖L2(Ω;L2(S2)) ≤ Cκ,βL
1−2β .

We continued with an alternative approach that paves the way for generalizations
to more general operators and manifolds. More specifically, we represent the frac-
tional operator in (1) as a Dunford–Taylor integral that is approximated by a
quadrature. The resulting linear equations are solved by the surface finite element
method (SFEM) [2]. As shown in [3], we obtain for mesh size h on the discretized
sphere and k in the quadrature the convergence of the approximate solution ulL,h,

where l refers to the lift of the function from the discretized sphere to S2.
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Theorem 2. If W l
L,h = PhWL is given by the L2 projection, then for s ∈ [0, 2]

and some constant C the error is bounded by

‖u− ulL,h‖L2(Ω,L2(S2)) ≤ C(L + 1)(L−2β + e−π2/(4k) + hs(L+ 1)s).

We continue with extending this approach to a Riemannian manifold M and
more general functions of the Laplace–Beltrami operator ∆M in the next step.
Let γ ∈ Cν with |γ′(λ)| ≤ C|λ|−1+β for λ ∈ R and consider

u = γ(−∆M)W and un = γ(−∆n)Wn,

where un denotes an approximation of u on a finite-dimensional space Vn with
basis functions (ψk, k = 1, . . . , n). Examples include the truncation of a possibly
known eigenbasis of ∆M or a finite element space. A key step in the approximation
is the simulation of the correlated random vectors in the expansion with respect
to the basis (ψk, k = 1, . . . , n). Its distribution can be characterized by a Galerkin
approximation. In order to be more efficient, we approximate the possibly non-
linear function γ by Chebyshev polynomials of order K. Together we obtain the
following convergence result of our Galerkin–Chebyshev approximation of u [4]:

Theorem 3. Let r and s characterize the quality of approximation of eigenvalues
and eigenfunctions of ∆M in Vn and let α be the asymptotic growth rate of the
eigenvalues of ∆M. Then the Galerkin–Chebyshev approximation ûn,K converges
strongly to u and the error is bounded by

‖u− ûn,K‖L2(Ω;L2(M)) ≤ C
(
n−min{s, r, (αβ−1/2)} +

√
n(K − ν)−ν

)

for some constant C. Furthermore, the weak error satisfies in terms of the covari-
ance

|Cov((u, θ)0, (u, ϕ)0)− Cov((un, θ)0, (un, ϕ)0)| ≤ C n−min{s, r, (2αβ−1)},

where (·, ·)0 denotes the inner product of L2(M).

In the second part of the talk we went back to S2 and spectral representations.
Based on Theorem 1, we considered spectral approximations of solutions to the
stochastic wave equation driven by additive noise

∂ttu(t)−∆S2u(t) = Ẇ (t)

with initial condition u(0) = v1 and ∂tu(0) = v2, where W = (W (t), t ∈ [0, T ])
denotes a Q-Wiener process on the sphere generated by the Gaussian random fields
of the first part of the talk and Q is the covariance operator characterized by the
angular power spectrum. Rewriting the equation as the system

u1(t) = v1 +

∫ t

0

u2(s) ds and u2(t) = v2 +

∫ t

0

∆S2u1(s) ds+W (t)

and expanding each component with respect to the spherical harmonics, we obtain
a system of stochastic differential equations given by
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{
uℓ,m1 (t) = cos(tλℓ)v

ℓ,m
1 + λ−1

ℓ sin(tλℓ)v
ℓ,m
2 + Ŵ ℓ,m

1 (t),

uℓ,m2 (t) = −λℓ sin(tλℓ)vℓ,m1 + cos(tλℓ)v
ℓ,m
2 + Ŵ ℓ,m

2 (t),

where (Ŵ ℓ,m
1 , Ŵ ℓ,m

2 ) are correlated Brownian motions and λℓ = (ℓ(ℓ+ 1))1/2.
Since we are able to compute the solutions to the equations exactly, we only

have an error in the truncation of the series expansion. Based on Theorem 1, we
show a strong convergence result [1].

Proposition. Assume that Aℓ ≤ C ·ℓ−α for α > 2. Then the truncated solution uL

converges strongly to u and the error is bounded by

‖u1(t)− uL1 (t)‖Lp(Ω;L2(S2)) ≤ Ĉp L
−α/2,

‖u2(t)− uL2 (t)‖Lp(Ω;L2(S2)) ≤ Ĉp L
−(α/2−1)

for sufficiently smooth initial conditions and some constant Ĉp. Additionally the
approximation converges P -a.s., and for all δ < α/2 the error is asymptotically
bounded by

‖u1(t)− uL1 (t)‖L2(S2) ≤ L−δ and ‖u2(t)− uL2 (t)‖L2(S2) ≤ L−(δ−1).

Using strong convergence in negative Sobolev spaces, we can extend the con-
vergence analysis and show weak convergence rates [1].

Proposition. Assume that the derivative of the test function ϕ is of polynomial
growth and the initial conditions are sufficiently smooth. Then for all s < α/2 and

some constant Ĉ the weak error is bounded by
∣∣E
[
ϕ(u1(t)) − ϕ(uL1 (t))

]∣∣ ≤ ĈL−(α/2+s),
∣∣E
[
ϕ(u2(t)) − ϕ(uL2 (t))

]∣∣ ≤ ĈL−(α/2+s−1).

In conclusion we showed that the weak convergence rate is essentially twice
the strong one under sufficient smoothness of the initial condition and the test
function ϕ.

In the talk all approximation schemes and convergence results were accompanied
by simulation results. Most figures can be found in the referenced publications.
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Adaptive Space-Time Finite Element Methods for Parabolic Optimal
Control Problems

Ulrich Langer

(joint work with A. Schafelner, O. Steinbach, F. Tröltzsch, H. Yang)

We consider tracking-type optimal control problems constrained by linear par-
abolic partial differential equations with distributed source control that read as
follows: Minimize the cost functional

(1) J(y, u) =
1

2

∫

ΩT

[y(x, t)− yd(x, t)]
2
dxdt+

1

2
λR(u)

over y from a suitable state space Y and u from a suitable control space subject
to the parabolic initial-boundary value problem (state equation)

(2) ∂ty −∆xy = u in ΩT , u = 0 on Σ, u = u0 := 0 on Σ0,

where ΩT = Ω× (0, T ) ⊂ Rd+1 denotes the space-time cylinder, Σ = ∂Ω× (0, T )
is its lateral surface, Σ0 := Ω × {0}, Ω ⊂ Rd denotes the spatial domain that is
supposed to be Lipschitz and bounded, yd ∈ L2(ΩT ) is the given desired state,
and λ in front of the regularization term R(u) is a suitably chosen positive regular-
ization parameter. Besides the standard L2-regularization R(u) = ‖u‖2U=L2(ΩT ),

we also consider the energy regularization R(u) = ‖u‖2U=L2(0,T ;H−1(Ω)), and com-

pare numerically both regularizations with the sparse control where a sparsity
term µ‖u‖L1(ΩT ) with a non-negative sparsity parameter µ is added to the L2-
regularization. Since the state equation (2) has a unique weak solution y ∈ Y0 =
{y ∈ W (0, T ) = {y ∈ V = L2(0, T ;H

1
0 (Ω)) : ∂ty ∈ V ∗} : y = 0 on Σ0}, we can

conclude unique solvablity of the corresponding optimal control problem (1) - (2).
The solution of the optimal control problem (1) - (2) is equivalent to the solution
of the reduced (by means of the gradient equation) optimality system consisting
of the primal and adjoint equations: Find (y, p) ∈ Y × P such that

(3) B(y, p; v, q) = (yd, q) ∀(v, q) ∈ V ×Q,

where the spaces Y, P, V,Q and the bilinear form B(·; ·) are defined as follows:

• L2 regularization: Y = Y0, P = PT = {p ∈ W (0, T ) : p = 0 on ΣT }, Q =
V , and B(y, p; v, q) := λ[〈∂ty, v〉+(∇xy,∇xv)] + (p, v)− (y, q)−〈∂tp, q〉+
(∇xp,∇xq), where ΣT = Ω × {T }, and the optimal control u can be
computed from the gradient equation p+ λu = 0; see [2],

• energy regularization: Y = Y0, P = V,Q = Y0, and B(y, p; v, q) :=
λ−1(∇xp,∇xv) + 〈∂ty, v〉 + (∇xy,∇xv) − 〈∂tq, p〉 − (∇xp,∇xq) + (y, q),
where the optimal control u can be computed from the gradient equation
p+ λwu = 0, and wu ∈ V solves (∇xwu,∇xv) = 〈u, v〉 ∀v ∈ V ; see [3].
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Here (·, ·) : L2(ΩT ) × L2(ΩT ) → R always denotes the L2(ΩT )-inner product,
and 〈·, ·〉 : V ∗ × V → R is the corresponding duality product. For both the L2-
and the energy regularizations, well-posedness of (3) was shown in [2] and [3]
by means of the Banach-Nec̆as-Babus̆ka theorem. More precisely, the operator
B : Y × P → V ∗ ×Q∗, generated by the bilinear form B(·; ·), is an isomorphism.

Now we look for a full space-time finite element (f.e.) discretization of (3) on
unstructured simplicial meshes Th = {∆} such that QT = ∪∆. As in the elliptic
case, we construct suitable conforming f.e. trial and test spaces Yh ⊂ Y , Ph ⊂ P ,
Vh ⊂ V , Qh ⊂ Q, and look for the f.e. solution (yh, ph) ∈ Yh × Ph such that

(4) B(yh, ph; vh, qh) = (yd, qh) ∀(vh, qh) ∈ Vh ×Qh.

More precisely, we choose Yh = Vh = Sk
h(ΩT ) ∩ Y ⊂ Y ⊂ V and Ph = Qh =

Sk
h(ΩT ) ∩ P ⊂ P ⊂ Q for the L2-regularization, and Yh = Qh = Sk

h(ΩT ) ∩ Y ⊂
Y = Q ⊂ V and Ph = Vh = Sk

h(ΩT ) ∩ P ⊂ P = V for the energy regularization,
where Sk

h(ΩT ) denotes the usual continuous f.e. space based on polynomials of
degree k. In both cases, we can establish discrete inf-sup conditions, from which
existence and uniqueness of the solution (yh, ph) ∈ Yh × Ph of the f.e. scheme
(4) follows. Moreover, we can derive a Céa-like discretization error estimates by
the best-approximation error. Finally, these estimates imply convergence rate
estimates under additional regularity assumptions. For instance, if the state y and
the co-state (adjoint) p belong to H1+s(ΩT ) for some real positive s, then we get
convergence rate estimates of the form

‖(y, p)− (yh, ph)‖ ≤ c(y, p)hmin{s,k},

where h denotes the usual mesh-size parameter (maximal length of the edges of
the simplicies ∆) of the regular mesh Th. The norm is defined by

‖(y, p)‖ :=
[
λ‖y‖2V + ‖p‖2V

]0.5
and ‖(y, p)‖ :=

[
‖y‖2Yh

+ ‖p‖P
]0.5

for the L2 and energy regularizations, respectively, with ‖y‖2Yh
= ‖y‖2V +‖w∂ty,h‖2V ,

where w∂ty,h ∈ Vh solves the parameter-dependent elliptic boundary value problem

(∇xw∂ty,h,∇xvh) = 〈∂ty, vh〉 ∀vh ∈ Vh.

We refer to [2] (L2 regularization) and [3] (energy regularization) for more details,
the proofs, and the discussion of the results of extensive numerical experiments
including results obtained by adaptive schemes based on residual error indicators.
In [2], we extend this adaptive space-time approach to space-time tracking-type,
L2-regularized optimal control of semilinear parabolic equations (Schlögl model)
with box constraints imposed on the control u. In [3], we compare the energy
regularization with the L2-regularization and with the sparse optimal control in
the full space-time adaptive setting. Adaptive space-time sparse optimal control
of semilinear parabolic problems is studied in [4].

In the case of the L2-regularization, we easily observe maximal parabolic reg-
ularity, i.e., the solution (y, p) ∈ Y × P of (3) belongs to the space H∆,1(ΩT ) ×
H∆,1(ΩT ), where H

∆,1(ΩT ) := {y ∈ H1(ΩT ) : ∆xy ∈ L2(ΩT )}. Thus the reduced
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optimality system

λ(∂ty −∆xy) + p = 0 in L2(ΩT ),(5)

−∂tp−∆xp− y = −yd in L2(ΩT )(6)

holds in L2(ΩT ), with homogeneous Dirichlet boundary conditions for y and p
on Σ, homogeneous initial conditions for y on Σ0, and homogeneous terminal
conditions for p on ΣT . This remains even valid for inhomogeneous initial data
u0 ∈ H1

0 (Ω) and more general non-autonomous parabolic problems under certain
assumptions. Now we can look at the terms ∂ty and −∂tp as forward and back-
ward convection terms in time, and we can treat them by upwind and downwind
stabilized test functions. Multiplying (5) by upwind test functions vh + θ̺2h∂tvh
and (6) by downwind test functions qh − θ̺2h∂tqh, integrating over ∆ , integrating
by parts in the elliptic terms where the scaling parameter θ does not appear, and
summing over all space-time f.e. ∆ ∈ Th , we arrive at the consistent f.e. scheme:
Find (yh, qh) ∈ (Y0h = Sk

h(ΩT ) ∩ Y0)× (PTh = Sk
h(ΩT ) ∩ PT ) such that

Bh(yh, ph; vh, qh) = −(yd, qh − θ̺2h∂tqh) ∀ (vh, qh) ∈ Y0h × PTh.

The mesh-density function ̺h is simply equal to h in the case of uniform meshes,
and can be chosen as a continuous, piecewise linear function in the case of adap-
tively generated meshes. The consistency yields Galerkin orthogonality, and Galer-
kin orthogonality, together with (Y0h ×PTh) - ellipticity and the extended bound-
edness of the mesh-dependent bilinear form Bh(·; ·), implies discretization error
estimates. Finally, assuming that y, p ∈ H1+s with some positive s, we arrive at
the convergence rate estimate

‖(y, p)− (yh, ph)‖h ≤ (1 + (µb/µe)c(y, p)h
min{s,k},

where the mesh-dependent norm ‖·‖h is related to the ellipticity and boundedness
of the bilinear form Bh(·; ·), and µe and µb are the constants in the ellipticity and
boundedness inequalities; see [1] for details and proofs. Therein adaptive space-
time schemes, which are based on new functional a posteriori error estimates, are
proposed and numerically tested. These a posteriori estimates have the form

[
λ‖y − ỹ‖2X0

+ ‖p− p̃‖2XT

]1/2

≤
√
2
[
(1 + α)‖∇xp̃− σ‖2 + (1 + α−1)C2

F ‖ − ∂tp̃− divxσ − ỹ + yd‖2

+(1 + β)‖∇xỹ − τ‖2 + (1 + β−1)C2
F ‖∂tỹ − divxτ + λ−1p̃‖2

]
,

where ‖ · ‖ := ‖ · ‖L2(Q), CF = CF (Ω) denotes the Friedrichs constant for the

spatial domain Ω, ỹ ∈ Y0 ∩H1(ΩT ) and p̃ ∈ PT ∩H1(ΩT ) are any approximations
to the solution y ∈ Y0 and p ∈ PT , τ, σ ∈ H(divx,ΩT ) are suitably reconstructed
fluxes, and α and β are positive real scaling parameters.
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Space-Time CutFEMs on Overlapping Meshes

Carl Lundholm

(joint work with Mats G. Larson and Anders Logg)

We present two cut finite element methods (CutFEMs) for the heat equation
on overlapping meshes. By overlapping meshes we mean a mesh hierarchy with
a stationary background mesh at the bottom and an overlapping mesh that is
allowed to move around on top of the background mesh. Overlapping meshes
can be used as an alternative to costly remeshing for problems with changing or
evolving interior geometry. The two CutFEMs were first presented in [1] which we
refer to for details and relevant literature. The pivotal difference between the two
methods is how the movement of the overlapping mesh is represented discretely.

In Method I, the overlapping mesh is prescribed a simple continuous movement,
meaning that its location as a function of time is continuous and piecewise linear.
This results in a space-time discretization with skewed and spatiotemporally cut
space-time prisms. See Figure 1. In Method II, the overlapping mesh is prescribed
a simple discontinuous movement, meaning that its location as a function of time
is discontinuous and piecewise constant. This results in a space-time discretization
with a slabwise product structure between space and time. See Figure 1.
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Figure 1. Space-time discretization from continuous mesh
movement used in Method I (left) and discontinuous mesh move-
ment used in Method II (right).

In both methods, to define the global discrete space Vh we use dG(q) in time
and cG(p) in space with the addition of a discontinuity on the boundary between
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the two meshes. Both finite element formulations are based on Nitsche’s method
and have the form: Find uh ∈ Vh such that

(1) Bh(uh, v) =

∫ T

0

(f, v)Ω0
dt+ (u0, v

+
0 )Ω0

, ∀v ∈ Vh.

Here, Bh is a mesh-dependent space-time bilinear form that for Method I is

Bh(w, v) :=

2∑

i=1

N∑

n=1

∫

In

(ẇ, v)Ωi(t) dt+

N∑

n=1

∫

In

Ah,t(w, v) dt

+

N−1∑

n=1

([w]n, v
+
n )Ω0

+ (w+
0 , v

+
0 )Ω0

−
N∑

n=1

∫

Γ̄n

n̄t[w]vσ ds̄,

(2)

and for Method II is

Bh(w, v) :=

N∑

n=1

∫

In

(ẇ, v)Ω0
dt+

N∑

n=1

∫

In

Ah,tn(w, v) dt

+

N−1∑

n=1

([w]n, v
+
n )Ω0

+ (w+
0 , v

+
0 )Ω0

.

(3)

The time-dependent spatial bilinear form Ah,t is the same as in the elliptic case
but with the addition of an overlap stability term to handle badly cut mesh cells.
The last term on the right-hand side of (2) is present to mimic the standard dG
time-jump term but over the space-time boundary between the meshes.

The space-time discretization in Method I gives discrete spatial operators, e.g.,
the discrete Laplacian, an intrinsic time-dependence which makes standard anal-
ysis methodologies fail. We therefore propose a new space-time energy analysis
framework that is general and robust enough to be applicable to Method I. It
seems that the core components of this new analysis framework have been discov-
ered independently by us and [2]. The new energy analysis follows a Céa’s lemma
type argument just as the standard energy analysis. The defining characteristic of
the new energy analysis is how the time derivative is included in an energy norm.
In the standard energy analysis, the H−1-norm is used. In the new energy analy-
sis, we use the L2-norm scaled with the time step kn. Thus, the main space-time
energy norm is

(4) |||v|||2X :=

2∑

i=1

N∑

n=1

∫

In

kn‖Dtv‖2Ωi(t)
dt+ |||v|||2Bh

,

where Dt is a domain-dependent material derivative and the Bh-norm is the natu-
ral coercivity norm for Bh. Due to the new energy norm, slightly different inf-sup
condition and continuity are needed. By proving some technical inverse estimates
for the space-time discretization in Method I, one may obtain the following discrete
inf-sup condition

(5) |||w|||X . sup
v∈Vh\{0}

Bh(w, v)

|||v|||X
∀w ∈ Vh.
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Integrating by parts with respect to time in Bh yields the alternative but equivalent
form B−

h which may be used to obtain the following alternative continuity

(6) Bh(w, v) = B−
h (w, v) . |||w|||Y−

|||v|||X ,

where the Y−-norm is the natural auxiliary norm. Using the inf-sup condition (5),
followed by Galerkin orthogonality, and finally the continuity (6), gives an a priori
energy error estimate for Method I that is of optimal order with respect to both
time step k and mesh size h, namely

(7) |||e|||X ∼ kq+1/2 + hp.

The space-time discretization in Method II allows for standard analysis method-
ologies to be applied with somemodifications. We follow standard analysis method-
ology that gives an estimate for the error at the final time in the L2-norm. A
cornerstone of this analysis is the strong stability estimate. At one point in its
proof, one would like to use the Ritz projection operator Rn on a function from the
previous slab, but this is not defined because of the shift in discontinuity between
slabs. Instead we use a shift operator Sn : Vh,n−1 → Vh,n defined by

(8) An(Snv, w) = An−1,n(v, w) ∀w ∈ Vh,n,

where An−1,n is a special non-symmetric bilinear form. The rest of the analysis is
essentially the same as in the standard case and thus gives an a priori estimate of
the error at the final time in the L2-norm for Method II that is of optimal order
with respect to both time step k and mesh size h, namely

(9) ‖e(T )‖Ω0
∼ k2q+1 + hp+1.

For both methods, numerical results for a problem in one spatial dimension
verify the analytic error convergence orders. Numerical solutions computed with
both methods are presented in Figure 2.
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Figure 2. dG(1)cG(1)-solution fromMethod I (left) and Method
II (right).
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Time-dependent electromagnetic scattering from thin layers

Christian Lubich

(joint work with Balázs Kovács, Jörg Nick)

We study time-dependent electromagnetic scattering. On an exterior domain Ω,
which is the complement of one or multiple bounded domains, the time-dependent
Maxwell’s equations for the total electric field Etot(x, t) and the total magnetic
field Htot(x, t) are

ε ∂tE
tot − curlHtot = 0

µ∂tH
tot + curlEtot = 0

in the exterior domain Ω,(1)

where ε and µ are positive constants. We assume to be given incident electric and
magnetic fields (Einc,Hinc), which are a solution to Maxwell’s equations in R3,
and which initially, at time t = 0, have their support in Ω and are thus bounded
away from the boundary Γ = ∂Ω. The objective is to compute the scattered fields
Escat = Etot−Einc and Hscat = Htot−Hinc on a time interval 0 ≤ t ≤ T , possibly
only at selected space points x ∈ Ω, such that the total fields (Etot,Htot) are a
solution to Maxwell’s equations (1) that satisfies a prescribed boundary condition.

The scattering of electromagnetic waves from obstacles with wave-material in-
teraction in thin layers on the surface is described by generalized impedance
boundary conditions, which provide effective approximate models. They are of
the general form

(
Etot × ν

)
× ν = Z(∂t)

(
Htot × ν

)
on Γ = ∂Ω,(2)

where ν denotes the unit surface normal pointing into the exterior domain Ω and
the time-dependent impedance operator Z(∂t) is a combined surface differential
operator and temporal convolution operator. This situation includes a thin coating
around a perfect conductor and the skin effect of a highly conducting material. The
Engquist–Nédélec effective boundary condition for the thin coating has (omitting
material-dependent constants)

Z(∂t) = δ
(
∂t − ∂−1

t ∇ΓdivΓ
)

(3)

with a small positive parameter δ, which is proportional to the layer depth. For
a highly conductive obstacle, the effective boundary condition derived by Haddar,
Joly & Nguyen has

Z(∂t) = δ ∂
1/2
t ,(4)
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where δ is inversely proportional to the high conductivity, and the fractional de-

rivative ∂
1/2
t is the time derivative of convolution with the kernel (πt)−1/2. The

general framework works with temporal convolution operators Z(∂t) on a subspace
of the trace space such that the Laplace transform Z(s) of the convolution kernel
is polynomially bounded in a complex half-space Re s ≥ σ > 0 and satisfies a
positivity condition.

We derive, analyse and discretize a system of time-dependent boundary inte-
gral equations that determines the tangential traces of the scattered electric and
magnetic fields. The fields are then evaluated in the exterior domain by a repre-
sentation formula, which uses the time-dependent potential operators of Maxwell’s
equations. In our numerical approach, time discretization of the boundary integral
equation and the representation formula is done by convolution quadrature. Space
discretization is done with appropriate boundary elements.

Via newly derived frequency-explicit bounds for the time-harmonic scattering
problem with frequencies in a complex half-plane, we prove both the well-posedness
of the time-dependent scattering problem and the stability and convergence of
the numerical method, with explicitly given orders of convergence in the case of
sufficient regularity. The bounds are robust in the singular perturbation limit
δ ց 0 in (3) and (4). Taking the same Radau-type Runge–Kutta convolution
quadrature for discretizing both the time-dependent boundary integral equation
and the representation formulas, the optimal order of convergence is obtained
away from the scattering boundary, whereas an order reduction to half the optimal
temporal order occurs close to the boundary.
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Navier-Stokes equations on evolving surfaces

Arnold Reusken

(joint work with Philip Brandner, Paul Schwering, Maxim Olshanskii)

In recent years there has been a strongly growing interest in surface Navier-Stokes
equations, in particular concerning physical principles related to these equations
and to tailor-made numerical discretization methods. One reason for this recent
growing interest lies in the fact that these equations are used in the modeling of
biological interfaces.

In the first part of this presentation we discuss derivations of surface Navier-
Stokes equations for evolving surfaces. In the past few years several derivations
have been presented in the literature [1, 2, 3, 4, 5], which differ in the physical
principles used in the modeling approach and in the coordinate systems in which
the resulting equations are represented. In [1, 3] mass and momentum conserva-
tion laws for material surfaces are used as basic physical principles, whereas in
[4, 5] similar conservation laws for mass and momentum for a material volume are
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used and combined with a thin film technique. In [2] the derivation is based on
energy minimization principles. Besides these differences in physical principles,
there is also a difference in the representation of the resulting flow equations. In
some papers, e.g. [3, 5], local coordinate systems (curvilinear coordinates) are
used, whereas in other literature [1, 2, 4] the standard Euclidean basis of R3, in
which the evolving surface is embedded, is used. Such different coordinate sys-
tems lead to different representations of surface differential operators such as a
covariant derivative or a surface divergence, and one has to be careful when com-
paring equations formulated in such different coordinate systems. Both the local
curvilinear and the global Cartesian coordinate system have attractive properties.
The local coordinate system can be very useful for modeling of more complex fluid
properties, e.g. in certain classes of fluid membranes [3] or in flows of liquid crys-
tals [5]. The representation in global Cartesian coordinates is very convenient for
the development of numerical simulation methods for these flow equations. In the
recent work [6] these different derivations of surface Navier-Stokes equations are
compared. In the presentation we explain the basic ideas of these derivations and
discuss the resulting system of surface Navier-Stokes equations, which is of the
form 




ρu̇ = −∇Γπ + 2µ divΓ(Es(u)) + πκn

divΓu = 0

ρ̇ = 0

on Γ(t),

with u the velocity, π the surface fluid pressure, ρ the surface material density,
Es(u) =

1
2 (∇Γu +∇Γu

T ) the surface strain tensor, κ the mean curvature and µ
the viscosity coefficient. Starting from an initial closed smooth surface Γ(0), the
velocity field defines the evolving surface Γ(t), t > 0. We consider a major simplifi-
cation by assuming that the geometric evolution of Γ(t) is known. More precisely,
we assume a smooth velocity field w = w(t,x) in [0, T ] × R3 that passively ad-
vects the embedded surface Γ(t) given by Γ(t) = {y ∈ R3 | y = x(t, z), z ∈ Γ(0) },
where the trajectories x(t, z) are the unique solutions of the Cauchy problem

{
x(0, z) = z
d
dtx(t, z) = w(t,x(t, z)),

for all z on Γ(0). The velocity is split into a tangential and normal part, denoted
by u = uT + (u · n)n =: uT + uNn. We are then interested in the tangential
velocity uT on Γ(t) only. For the pair (uT , π) a closed system of equations can
be derived from the full surface Navier-Stokes system given above. For this we
introduce the flow map of the pure geometric normal evolution of the surface,
denoted by Φn

t : Γ(0) → Γ(t). The Lagrangian derivative for the flow map Φn
t is

denoted by ∂◦:

∂◦v(t,x) =
d

dt
v(t,Φn

t (z)), x = Φn
t (z).

Let H be the second fundamental form (Weingarten mapping) and P the orthog-
onal projection on the tangential plane. For the tangential flow one obtains the
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following tangential surface Navier-Stokes equations (TSNSE):
{
P∂◦uT + (∇ΓuT )uT + wNHuT − 2µPdivΓEs(uT ) +∇Γπ = f

divΓuT = g,

with right-hand sides known in terms of geometric quantities and wN = w · n:
g = −wNκ, f = 2µPdivΓ(wNH) + 1

2∇Γw
2
N .

In the second part of the presentation we discuss well-posedness of the TSNSE.
Based on results presented in [7] we propose a variational formulation of the
TSNSE in appropriate Hilbert spaces and formulate a well-posedness result for
this formulation.
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Time fractional gradient flows: Theory and numerics

Abner J. Salgado

(joint work with Wenbo Li)

1. Problem description

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm ‖·‖. Let
Φ : H → R ∪ {+∞} be a convex and lower semicontinuous (lsc) functional, and
T > 0 a final time. Given u0 ∈ H and f : [0, T ] → H we seek for u : [0, T ] → H
that solves, in a sense to be specified, the following evolutionary inclusion

(1)

{
Dα

c u(t) + ∂Φ(u(t)) ∋ f(t), t ∈ (0, T ],

u(0) = u0.
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Here, for α ∈ (0, 1), we denote by Dα
c w(t) the Caputo derivative of order α which,

for sufficiently smooth functions is defined as

Dα
c w(t) = I1−α[ẇ](t) =

1

Γ(1− α)

∫ t

0

(t− r)−αẇ(r)dr,

where I1−α is the (Riemann–Liouville) fractional integral of order 1− α.
Problem (1) entails an abstraction of several models of interest. For instance,

fractional differential equations with nonsmooth slope functions [3], subdiffusion
equations [9, 5] and its nonlinear variants [10, 14], time fractional parabolic ob-
stacle problems [4, 13], fractional porous medium equations [1], and the time
fractional Allen Cahn and Cahn Hilliard equations [12].

2. The Caputo derivative and its discretization

2.1. The Caputo derivative. The classical definition of the Caputo derivative
of order α ∈ (0, 1) requires already for a function to be differentiable. There have
been several attempts to extend the definition of Caputo derivative to less regular
functions [2, 6]. We will follow the one proposed by Li and Liu [6, 7] which,
essentially, reads

Dα
c w(t) =

d

dt
I1−α[w − w(0)θ](t) =

1

Γ(1 − α)

∫ t

0

(t− s)−α (w(s)− w(0)θ(s)) ds,

where θ is the Heaviside function. This extended definition of the Caputo de-
rivative satisfies, whenever the identity makes sense, the following fundamental
theorem of fractional calculus

(2) w(t) = w(0) + Iα[Dα
c w](t) = w(0) +

1

Γ(α)

∫ t

0

(t− s)α−1Dα
c w(s)ds.

In addition, for every Ψ : H → R that is convex and lsc we have the following key
inequality

(3) Dα
c Ψ(w(t)) ≤ 〈∂Ψ(w(t)), Dα

c w(t)〉 .

2.2. Discretization. Let P = {tn}Nn=0 be an arbitrary partition of [0, T ], i.e.,
0 < t0 < · · · < tN = T . Set τn = tn − tn−1 and τ = max{τn}Nn=1.

Recall (2). Assume now that the Caputo derivative Dα
c w is piecewise constant

over the partition P to obtain

W = w01+KPVα,

where 1 is a vector having one in all coordinates, W = {w(tn)}Nn=1 ⊂ HN , Vα =
{Dα

c w(tn)}Nn=1, and

[KP ]ni =
1

Γ(1− α)

∫ ti

ti−1

(tn − r)−α
dr, i ≤ n.

Clearly the matrix KP is lower triangular and nonsingular. This allows us to
define the following discretization of the Caputo derivative

Dα
PW = Vα = K−1

P [W − w01] ,
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which is a generalization of the deconvolutional schemes studied in [7]. Many
properties of this discretization follow from the structure of K−1

P .

Proposition 1 (properties of KP). For any partition P, all n ∈ {1, . . . , N}, and
all i ∈ {0, . . . , n− 1} we have

[
K−1

P
]
nn

> 0,
[
K−1

P
]
ni
<
[
K−1

P
]
(n+1)i

,

where [KP ]n0 = −∑n
j=1 [KP ]nj.

Corollary 2 (discrete key inequality). For any convex and lsc Ψ : H → R, and
all W ∈ HN we Ψ(W) = {Ψ(Wn)}Nn=1. Then,

Dα
PΨ(W) ≤ 〈∂Ψ(W)n, (D

α
PW)n〉 .

3. Theory

We introduce the following notion of solutions for (1).

Definition 3 (energy solution). A function u ∈ L2(0, T ;H) such that Dα
c u ∈

L2(0, T ;H) is called an energy solution of (1) if

1

t

∫ t

0

‖u(r)− u0‖2 dr → 0, t ↓ 0,

and, for every w ∈ H, we have

〈Dα
c u(t), u(t)− w〉+Φ(u(t))− Φ(w) ≤ 〈f(t), u(t)− w〉 , a.e. t ∈ (0, T ).

This notion of solution seems natural in light of of the following result.

Theorem 4 (uniqueness). Energy solutions are unique.

To show existence we develop a fractional minimizing movements scheme. Start-

ing from U0 ≈ u0 we compute, for n ≥ 0, and Fn = 1
τn

∫ tn
tn−1

f(t)dt

(4) Un = argmin
w∈H

[
Φ(w) − 1

2

n−1∑

i=0

[
K−1

P
]
ni
‖w − Ui‖2 − 〈Fn, w〉

]
.

Owing to the strict convexity of the norm, we have existence and uniqueness of
Un. In addition, the optimality conditions of (4) read

(5) (Dα
PU)n + ∂Φ(U)n ∋ Fn.

On the basis of the sequence {Un}Nn=0 we construct two functions. The function
UP ∈ L∞(0, T ;H) is piecewise constant subject to the triangulation, i.e., for

t ∈ (tn−1, tn], we have UP(t) = Un. The other function ÛP ∈ C([0, T ];H) is
such that its Caputo derivative is piecewise constant: if t ∈ (tn−1, tn] we have

Dα
c ÛP(t) = (Dα

PU)n. It is important to note, using the fundamental theorem
of fractional calculus (2), we can define functions {ϕi}Ni=0 ∈ C([0, T ];H) that are
such that

(6) (Dα
Pϕi)j = δi,j .
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With these functions at hand we can write

(7) ÛP(t) =
n∑

i=0

Uiϕi(t).

The properties of these functions allow us to rewrite (4) or (5) as

(8)
〈
Dα

c ÛP(t), UP(t)− w
〉
+Φ(UP(t))−Φ(w) ≤

〈
FP(t), UP(t)− w

〉
, ∀w ∈ H.

This variational inequality allows us to obtain suitable a priori estimates on these
discrete solutions and, as a consequence, pass to the limit via compactness.

Theorem 5 (existence). Assume Φ(u0) <∞ and that

sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖f(s)‖2ds <∞.

Then, for any P we have

sup
t∈[0,T ]

∫ t

0

(t− s)α−1‖Dα
c ÛP(s)‖2ds <∞.

Consequently, the time fractional gradient flow (1) has an energy solution which,
moreover, verifies u ∈ C0,α/2([0, T ];H).

We remark that, in the integer order case [11], energy solutions to gradient flows
belong to C0,1/2([0, T ];H), so there is a sort of continuity with respect to α in the
previous result.

4. Numerics

We notice, first of all, that (5) is a viable numerical scheme. We now intend to
analyze it.

4.1. A posteriori error analysis. Setting w = Un−1 in (5) we obtain

Eα(t) =
〈
Dα

c ÛP(t)− FP(t), ÛP(t)− UP(t)
〉
+Φ(ÛP(t))− Φ(UP(t)) ≥ 0,

which only depends on data and the discrete solution, and so it is a computable
quantity. This will be our a posteriori error estimator.

Using the convexity of Φ, we can rewrite (8) as, for all w ∈ H,

(9)
〈
Dα

c ÛP(t), ÛP(t)− w
〉
+Φ(ÛP(t)) − Φ(w) ≤

〈
FP(t), ÛP(t)− w

〉
+ Eα(t).

This allows us to prove the following result.

Theorem 6 (a posteriori error estimate). Assume that Φ(u0) <∞. For every P
we have

∥∥∥u− ÛP
∥∥∥
L∞(0,T ;H)

.

(
sup

t∈[0,T ]

∫ t

0

(t− s)α−1Eα(s)ds
)1/2

+ sup
t∈[0,T ]

∫ t

0

(t− s)α−1
∥∥f(s)− FP(s)

∥∥ ds.
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4.2. A priori error analysis. It turns out that, the functions {ϕi}Ni=0, defined
in (6) form a partition of unity. Consequently, (7) is a convex combination of
the nodal values {Ui}ni=0. This, together with a few manipulations of the error
estimator Eα, allow us to obtain the following estimate.

Theorem 7 (a priori error estimate). In the same setting as Theorem 5 we have
∥∥∥u− ÛP

∥∥∥
L∞(0,T ;H)

. τα/2.

We recall that energy solutions are, in general, no better than C0,α/2([0, T ];H)
so the previous result is optimal.

5. Conclusions and open problems

Let us summarize the results of this work, for more details we refer the reader to
[8].

• We provided a discretization of the Caputo derivative which is uncondi-
tionally stable on any time partition P .

• With the help of this discretization we developed a fractional minimizing
movements scheme which allowed us to show existence and uniqueness of
energy solutions to time fractional gradient flows.

• We developed an a posteriori error estimate which is reliable.
• We provided an a priori error analysis which, given the regularity of the
solutions, is optimal.

Some other results, that we have not discussed, include:

• Extensions of the theory and numerics to the cases when Φ is merely λ–
convex, and/or the case of a Lipschitz perturbation of the subdifferential.

• For some particular cases of energy Φ and initial condition u0, we have
improved convergence rates.

• When f = 0 we have studied the asymptotic behavior of the solution.

Finally, some open questions are

• Development of the theory and numerics in the case that ∂Φ is replaced
by a maximal monotone operator.

• Development of the theory and numerics in Banach spaces.
• Space discretization.
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FOSLS for parabolic and instationary Stokes equations

Rob Stevenson

(joint work with Gregor Gantner)

Space-time variational formulation. We consider parabolic evolution equa-
tions in a simultaneous space-time variational formulation: For a Gelfand triple
V →֒ H ≃ H ′ →֒ V ′ of function spaces on a spatial domain Ω ⊂ Rd, and
a.e. t ∈ I := (0, T ), let a(t; ·, ·) be a bilinear form on V × V that is bounded
and satisfies a G̊arding inequality, both uniform in t. Then with A(t) ∈ L(V, V ′)
defined by (A(t)η)(ζ) := a(t; η, ζ), given f and u0 we search u(t) : Ω → R that
satisfies

(1)

{
du
dt (t) +A(t)u(t) = f(t) (t ∈ I),

γ0u = u0.

With

(Bu)(v) :=

∫

I

〈dudt (t), v(t)〉Hdt+
∫

I

(A(t)u(t))(v(t))dt =

∫

I

〈f(t), v(t)〉H dt =: f(v),

Y := L2(I;V ) and X := Y ∩ H1(I;V ′), it is known that the pair (B, γ0) ∈
Lis(X,Y ′×H), where Lis(E,F ) denotes the set of boundedly invertible operators
E → F .
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Minimal residual methods. An approach to construct a numerical approxi-
mation to the solution u from a finite dimensional subspace Xδ ⊂ X is to com-
pute uδ ∈ Xδ that minimizes the residual over Xδ. In [1] this minimal residual
method is made practical by replacing the dual norm ‖ · ‖Y ′ by a discretized
dual norm ‖ · ‖Y δ ′ for some finite dimensional subspace Y δ ⊂ Y . W.l.o.g. as-
suming that a(t; ·, ·) is coercive (unif. in t), with (Au)(v) :=

∫
I(A(t)u(t))(v(t))dt,

As :=
1
2 (A+A′), Aa := 1

2 (A−A′), and by equipping Y and X with ‘energy-norms’

‖·‖Y :=
√
(As·)(·) and ‖·‖X :=

√
‖ · ‖2Y + ‖∂t · ‖2Y ′ + ‖γT · ‖2, the following result

is valid:

Theorem 1 ([7]). Let α := ‖Aa‖L(Y,Y ′) = ρ(A−1
s AaA

−1
s Aa)

1
2 , Xδ ⊆ Y δ and

γδ := infw∈Xδ
‖∂tw‖

Y δ ′

‖∂tw‖Y ′
> 0. Then uδ := argmin

w∈Xδ

‖Bw − f‖2
Y δ ′ + ‖γ0w − u0‖2H

satisfies

‖u− uδ‖X ≤
√

2+α2+α
√
α2+4

γ2
δ+α2+1−

√
(γ2

δ+α2+1)2−4γ2
δ

inf
w∈Xδ

‖u− w‖X .

Uniform stability infδ∈∆ γδ > 0, which yields quasi-best approximations, has
so far been verified for families (Xδ)δ∈∆, (Y

δ)δ∈∆ that consist of finite element
spaces w.r.t. partitions of type ∪i[ti, ti+1]× ‘Ωhi ’ (‘time-slab setting’).

FOSLS. To describe the First Order System Least Squares Formulation, which
applies to parabolic equations of second order, for ease of presentation we restrict
ourselves to the model problem of the heat equation




(∂t −∆x)u = f on I × Ω,
u = 0 on I × ∂Ω,

γ0u = u0 on Ω.

Introducing −∇
∼ xu as an additional variable, this equation can be recast as a first

order system

G(u,w
∼
) := (∂tu+ divxw∼ ,−w∼ −∇

∼ xu, γ0u) = (f, 0
∼
, u0).

(with u = 0 on I × ∂Ω). From (B, γ0) ∈ Lis(X,Y ′ ×H), ∇
∼ x ∈ L(X,L2(I × Ω)d),

divx ∈ L(L2(I×Ω)d, Y ′) one infers that G ∈ Lis(X×L2(I×Ω)d, Y ′×L2(I×Ω)d×
L2(Ω)). To get rid of the dual norm at the right hand side, which is inconvenient for
minimal residual discretisations, in [2] it was proposed to incorporate the condition
div(u,w

∼
) := ∂tu + divx w∼ ∈ L2(I × Ω) into the definition of the ‘trial space’. In

[3] it was proven that the resulting least squares formulation, with Y ′ replaced
by L2(I ×Ω), is well-posed. A somewhat stronger statement, where also the dual
space is removed from the definition of the trial space, reads as follows:

Theorem 2 ([3]). With U := {~u := (u,w
∼
) ∈ L2(I;H

1
0 (Ω))× L2(I × Ω)d : div ~u ∈

L2(I × Ω)} and L := L2(I × Ω)× L2(I × Ω)d × L2(Ω),

G ∈ Lis(U,L),
and by decomposing f ∈ Y ′ as f = f1 + divx f

∼
2,

(B, γ0)u = (f, u0) ⇐⇒ G~u = ~f := (f1, f
∼
2, u0).
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The advantages of this first order system formulation are that for any closed

subspace U δ ⊂ U , ~uδ := argmin
~v∈Uδ

‖G~v − ~f‖L is quasi-best approximation from U δ

to ~u w.r.t. ‖ · ‖U ; the bilinear form 〈G·, G·〉L is bounded, symmetric and coercive

on U ×U ; the a posteriori error estimator ‖~f −G~uδ‖L is equivalent to ‖~u− ~uδ‖L.
The formulation of a parabolic PDE as a variational problem with a bounded

and coercive bilinear form has several interesting applications. In [5] we discuss
the application of this formulation within a reduced basis method for solving a
parameter-dependent parabolic PDE, and for solving a parabolic PDE constraint
optimal control problem.

The inclusion of the constraint div(u,w
∼
) ∈ L2(I × Ω) in the definition of the

trial space also has its price. The term ‖ div(u,w
∼
)‖L2(I×Ω) is part of the graph

norm
√
‖u‖2

L2(I;H1
0 (Ω))

+ ‖w
∼
‖2
L2(I×Ω)d

+ ‖ div(u,w
∼
)‖2L2(I×Ω) in which the error is

minimized. With for example linear trial spaces for u and w
∼
, the local approxi-

mation error in div(u,w
∼
) in L2-norm is of the order of the local mesh-size times

the maximum of the local H2 semi-norms of u and w
∼
. Realizing that, for f

∼
2 = 0,

w
∼
= −∇xu, we conclude that this local approximation error is of the order of the

local mesh-size times the maximum of the second and third order derivatives of u.
On the other hand similar bounds on the local approximation errors in u and w

∼

in L2(I;H
1
0 (Ω)) or L2(I × Ω)d-norms involve at most second order derivatives of

u. Numerical experiments reported on in [3] show for non-smooth u convergence
rates in terms of the number of DoFs for both uniform and adaptively refined
meshes that are much smaller than the optimal rate 1

d+1 .
To cure the problem of the disappointingly low rates for non-smooth solutions,

in [6] we consider finite element spaces w.r.t. prismatic elements. By constructing
them so that a commuting diagram is valid, the error in div(u,w

∼
) in L2-norm

depends only on higher order norms of div(u,w
∼
), i.e., of f1, which in many cases

is much smoother than the terms ∂tu and divx w∼ .

Instationary Stokes equations. In [4] we followed an analogous FOSLS pro-
gram for the instationary Stokes equations with slip boundary conditions. By in-
troducing the deformation tensor as an additional variable, we write these Stokes
equations as a first order system for the triple of the velocities, deformation tensor,
and pressure. For a spatial domain Ω that is convex or has a C2 boundary, this
system is shown to be well-posed in a least-squares sense. All norms that arise in
the residual minimization can be exactly evaluated.
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Space-time finite element methods

Olaf Steinbach

(joint work with Marco Zank)

The space-time variational formulation for the Dirichlet boundary value problem
for the heat equation,

(1) ∂tu−∆xu = f in Q := Ω× (0, T ), u = 0 on Σ := ∂Ω× (0, T ), u(0) = 0 in Ω,

is to find u ∈ L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H
−1(Ω)) such that

(2)

∫ T

0

∫

Ω

[
∂tu v +∇xu · ∇xv

]
dx dt =

∫ T

0

∫

Ω

f v dx dt

is satisfied for all v ∈ L2(0, T ;H1
0 (Ω)). Unique solvability of (2) follows from the

Babuška–Nečas theory. A stability and error analysis of unstructered space-time
finite element methods for (2) is given in [4], for an overview see [6]. This approach
was used for the solution of distributed optimal control problems subject to the
heat equation (1) with L2(Q) regularization [1], and alternatively with a regular-
ization in the energy space L2(0, T ;H−1(Ω)), see [2]. When doing integration by
parts also in time, instead of the primal variational formulation (2) we have to
solve an adjoint variational formulation to find u ∈ L2(0, T ;H1

0(Ω)) such that

(3)

∫ T

0

∫

Ω

[
− u ∂tv +∇xu · ∇xv

]
dx dt =

∫ T

0

∫

Ω

f v dx dt

is satisfied for all v ∈ L2(0, T ;H1
0 (Ω)) ∩ H1

,0(0, T ;H
−1(Ω)). Note that the test

space covers a zero terminal condition v(x, T ) = 0 for x ∈ Ω. While unique
solvability of the adjoint formulation (3) follows as for the primal formulation (2),
the consideration of the variational formulations (2) and (3) motivates, by using
an interpolation argument, a variational formulation of (1) in anisotropic Sobolev

spaces to find u ∈ H
1;1/2
0;0, (Q) such that

(4)

∫ T

0

∫

Ω

[
∂tu v +∇xu · ∇xv

]
dx dt =

∫ T

0

∫

Ω

f v dx dt

is satisfied for all v ∈ H
1,1/2
0;,0 (Q). An important tool in proving unique solvability

of (4) is a modified Hilbert transformation HT : H
1;1/2
0;0, (Q) → H

1,1/2
0;,0 (Q), see [7].

For u ∈ L2(0, T ), the modified Hilbert transformation is defined as the adjoint

(5) HTu(t) =

∞∑

k=0

uk cos

((π
2
+ kπ

) t

T

)
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of the Fourier series

u(t) =

∞∑

k=0

uk sin

((π
2
+ kπ

) t

T

)
dt, uk =

2

T

∫ T

0

u(t) sin

((π
2
+ kπ

) t

T

)
dt.

It turns out that the bilinear form 〈∂tu,HTv〉(0,T ) is symmetric, bounded, and

elliptic for all u, v ∈ H
1/2
0, (0, T ), and 〈v,HT v〉L2(0,T ) ≥ 0 is non-negative.

The modified Hilbert transformation HT as defined in (5) allows for a closed
representation [7],

(6) HTu(t) =
1

2T
p.v.

∫ T

0

[
1

sin
(
π
2
s−t
T

) + 1

sin
(
π
2
s+t
T

)
]
u(s) ds for t ∈ (0, T ).

The representation (6) can be used for an efficient discretization of the resulting

Galerkin–Bubnov variational formulation to find u ∈ H
1,1/2
0;0, (Q) such that

(7) 〈∂tu,HT v〉Q + 〈∇xu,∇xHT v〉L2(Q) = 〈f,HT v〉L2(Q)

is satisfied for all v ∈ H
1,1/2
0;0, (Q).

It turns out that the modified Hilbert transformtion HT is a generalization of
the Hilbert transformation

Hu(t) := 1

π
p.v.

∫

R

u(s)

t− s
ds for t ∈ R,

i.e., we have [5]

(8) HTu = −Hu+Bu on (0, T ),

where u is an extension of u from (0, T ) onto R by reflection,

(9) u(s) :=





u(s) for s ∈ (0, T ),

u(2T − s) for s ∈ (T, 2T ),

−u(−s) for s ∈ (−T, 0),
−u(2T + s) for s ∈ (−2T,−T ),

0 else ,

and B : L2(0, T ) → H1(0, T ) ⊂ L2(0, T ) is compact. Hence, and up to a compact
perturbation, we can replace in (7) the modified Hilbert transformation HT by the
classical Hilbert transformationH which simplifies the implementation. Moreover,
the representation (8) provides a relation of the above considerations in a finite
time interval (0, T ) with some recent results in the mathematical analysis for more
general parabolic evolution equations, and for the ellipticity of boundary integral
operators for the wave equation on flat objects, considering both in the infinite
time interval R+, see also the discussion in [5].

As a second model problem, we consider the Dirichlet boundary value problem
for the wave equation,

(10) ∂ttu−∆xu = f in Q, u = 0 on Σ, u(0) = ∂tu(t)|t=0 = 0 in Ω.
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The variational formulation of (10) is to find u ∈ H1,1
0;0,(Q) such that

(11) −〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q) = 〈f, v〉L2(Q)

is satisfied for all v ∈ H1,1
0;,0(Q). Note that the ansatz space covers a zero initial

condition u(0) = 0, while the test space has a zero terminal condition v(T ) = 0.
For f ∈ L2(Q), there exists a unique solution u of (11), satisfying, e.g., [7],

‖u‖2
H1,1

0;0,(Q)
= ‖∂tu‖2L2(Q) + ‖∇xu‖2L2(Q) ≤

1

2
T 2 ‖f‖2L2(Q) .

For the Galerkin space-time finite element discretization of (11) using the same

test and ansatz functions we introduce some bijective operator A : H1,1
0;0,(Q) →

H1,1
0;,0(Q), e.g., the time reversal map κTw(x, t) = w(x, T − t), or, in the case of

tensor-product space-time finite element spaces, the transformation Awh(x, t) :=
wh(x, T )−wh(x, t), see [7]. However, the resulting numerical scheme is only stable
when a CFL condition is satisfied, e.g., ht < hx

√
n when using piecewise linear

basis functions and a tensor-product structure also in the spatial domain Ω ⊂ Rn.
However, using the modified Hilbert transformation HT as defined in (5) and its

properties, we end up with a variational formulation [3] to find u ∈ H1,1
0;0,(Q) such

that

(12) 〈HT ∂tu, ∂tw〉L2(Q) + 〈∂xu,HT∇xw〉L2(Q) = 〈f,HTw〉L2(Q)

is satisfied for all w ∈ H1,1
0;0,(Q). The Galerkin finite element discretization of

(12) results in a linear system Khu = f with a stiffness matrix Kh, which is
positive definite. Hence, unique solvability of the Galerkin system follows for any
conforming space-time finite element space. First numerical results are given in
[3] which illustrate unconditional stability and optimal convergence rates.

References
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Interpolation Operators on negative Sobolev Spaces

Johannes Storn

(joint work with Lars Diening, Tabea Tscherpel)

Local interpolation operators are of uttermost importance in a priori error analysis,
the design and analysis of a posteriori error estimators, and further applications
like preconditioning. These aspects led to huge scientific activity resulting in
several interpolation operators that are well suited for elliptic problems. However,
suitable interpolation operators for parabolic space-time finite element methods
are missing. Indeed, interpolation operators that have been used in the literature
require additional smoothness of the solution.

A downside of this requirement is that it hides the need of parabolic scaling for
irregular solutions. In particular, a special case of the parabolic Poincaré inequality
in [2] states that a function v : K → R on a time-space cell K = I × T with time
interval I of length ht and simplex T with diameter hx satisfies

∥∥∥∇xv − |K|−1

∫

K

∇xv dx
∥∥∥
L2(K)

. hx‖∇2
xv‖L2(K) + hth

−1
x ‖∂tv‖L2(K).(1)

This estimate indicates that for solutions to parabolic problems with time deriva-
tives merely in L2 the underlying mesh of the space-time FEM needs to be refined
parabolically in the sense that ht h h2x. Indeed, numerical experiments in [3] for
a space-time DPG method indicate a significant improvement for parabolically
scaled meshes, cf. Figure 1.

101 103 105
10−4

10−2

100

ndof

Equal hx h ht

Parabolic h2
x h ht

O(ndof−1)

O(ndof−1/3)

O(ndof−1/4)

Figure 1. Solution to the heat equation in 1D with rough initial
data and source term zero and the corresponding convergence his-
tory plot of the squared error. The solid lines result from uniform
and the dotted lines result from adaptive mesh refinements.



Space-Time Methods for Time-Dependent Partial Differential Equations 373

Another difficulty of interpolation operators for parabolic problems is the treat-
ment of the L2(I;H−1(Ω)) norm of the time derivative. Even in the stationary
case classical interpolation operators like the Scott–Zhang projector [6] are not
well defined for functions in H−1(Ω) := (H1

0 (Ω))
∗. This can be seen immediately

from its definition: Let ϕj ∈ L1
k,0(T ) ⊂ H1

0 (Ω) denote the Lagrange basis function
of polynomial degree k related to an interior Lagrange node j ∈ N ◦ and let ϕ∗

ℓ

be a piece-wise polynomial of degree k supported on a single simplex Tℓ ∈ T such
that 〈ϕj , ϕ

∗
ℓ 〉Ω = δj,ℓ, then the Scott–Zhang projection reads

Πv :=
∑

j∈N◦

〈v, ϕ∗
j 〉Ωϕj for all v ∈ L2(Ω).(2)

The functions ϕ∗
j are not in H1

0 (Ω) and hence the L2 inner products do not extend

to functions in H−1(Ω). A simple remedy it the replacement of the discontinu-
ous weight functions by continuous ones. However, the following result from [5,
Lem. 15] shows that we have to increase their polynomial degrees.

Lemma 1. Any projection defined as in (2) with weight functions ϕ∗
j ∈ L1

k,0(T )

is the L2 projection.

It is possible to design an operator with weight functions ϕ∗
j ∈ L1

k,0(T ) that is
not a projection but self-adjoint. The design for the lowest-order case goes back to
Carstensen [1]. We generalized the operator in [4] to all polynomial degrees. Due
to its self-adjointness the operator is well suited for approximations in H−1(Ω).
However, since it is not a projection, the maximal order of convergence is reduced
by one; cf. [5, Thm. 17].

Tantardini designed a H−1 stable projection with higher order weights for the
lowest-order case k = 1 in her PhD thesis [7]. We extended this operator to
all polynomial degrees k ∈ N. Our main result [5, Thm. 1] shows localized (with
respect to nodal patches ωj :=

⋃{T ∈ T : j ∈ T } and ω2
j :=

⋃{T ∈ T : T∩ωj 6= ∅}
for vertices j ∈ V) approximation and stability results.

Theorem 2 (Main Result). There exists a linear projection Π onto L1
k,0(T ) such

that for 0 ≤ m ≤ s ≤ k + 1, all ξ ∈ H−1(Ω), and all w ∈ H1
0 (Ω)

Localization ‖ξ −Πξ‖H−1(Ω) h
(∑

j∈V
‖ξ −Πξ‖2H−1(ωj)

)1/2
,

Approximability ‖ξ −Πξ‖H−1(ωj) . hj‖ξ‖L2(ω2
j )
,

‖w −Πw‖H−1(ωj) . hs+1
j ‖∇sw‖L2(ω2

j )
,

‖∇m(w −Πw)‖L2(T ) . hs−m
T ‖∇sw‖L2(ωT ),

Local Stability ‖Πξ‖H−1(ωj) . ‖ξ‖H−1(ω2
j )
,

‖∇sΠw‖L2(T ) . ‖∇sw‖L2(ωT ).

The structure of the operator Π in Theorem 2 is as in (2) with weights ϕ∗
j ∈

L1
3k,0(T ). A key in the design of Π is the property Π∗1 = 1 of the adjoint operator
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on simplices T ∈ T that do not touch the boundary of Ω. The importance of this
property for H−1 stability is illustrated by the upper bound

‖Πv‖H−1(Ω) = sup
w∈H1

0 (Ω)

〈v,Π∗w〉Ω
‖∇w‖L2(Ω)

≤ ‖v‖H−1(Ω) sup
w∈H1

0(Ω)

‖∇Π∗w‖L2(Ω)

‖∇w‖L2(Ω)
.(3)

The property Π∗1 = 1 additionally yields a first-order approximation property
of the adjoint Π∗w =

∑
j∈N◦〈w,ϕj〉Ωϕ∗

j resulting in the localization of the H−1

norm and the improved order of convergence in Theorem 2; cf. [5, Lem. 11–12].
The weight functions are constructed by local weight functions designed on a

reference simplex Tref. Let bα := |α|!/α!λα with multi-indices α ∈ Nd+1
0 and

barycentric coordinates λ denote the Bernstein basis function on Tref. Then we
define, with polynomials qγ of maximal degree k to be determined, the local weight
function

pα := bα

(
c−1
k +

(
qα −

∑

|γ|=k

bγqγ

))
.(4)

The well-posedness of a related linear system of equations ensures the existence of
suitable polynomials qγ such that the weights form a orthonormal system. By the
ansatz in (4) the resulting global basis functions have a local support supp(ϕ∗

j ) ⊂
supp(ϕj). Moreover, since the Bernstein basis functions form a partition of unity,
the summation over all weights leads to a constant function. This leads to the
property Π∗1 = 1.

The novel operator Π allows us to design a local interpolation operator for
semi-discretizations and tensor-product spaces for parabolic problems with optimal
rates of convergence; c.f. [5, Sec. 4.1–4.2]. Moreover, it allows us to smoothen
rough right-hand sides in least-squares finite element methods which allows us to
conclude quasi-optimality with respect to the energy norm plus some higher-order
data-approximation error; c.f. [5, Sec. 4.3].
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A space-time multiscale mortar mixed finite element method for
parabolic equations

Martin Vohraĺık

(joint work with Manu Jayadharan, Michel Kern, and Ivan Yotov)

We develop a space-time mortar mixed finite element method for the model par-
abolic problem: find a fluid pressure p and a Darcy velocity u such that

(1) u = −K∇p and
∂p

∂t
+∇·u = q in Ω× (0, T ],

subject to appropriate initial and boundary conditions (here q is a source term
and K is a diffusion tensor). The spatial computational domain Ω is decomposed
into a union of subdomains Ωi discretized with non-matching spatial grids with
typical mesh-sizes hi, whereas asynchronous (individual for each subdomain Ωi)
time steps of size ∆ti are considered for the time interval (0, T ].

Our method is based on a space-time variational formulation that couples mixed
finite elements employing polynomial degrees k, l in space with the discontinuous
Galerkin method od degree q in time. Continuity of flux (mass conservation)
across the space-time interfaces Γij × (0, T ] is imposed via a space-time mortar
variable that lives on the interfaces Γij × (0, T ]. Following [1], we typically use
coarser meshes (of typical mesh-sizes Hij and time steps ∆Tij) and higher-degree
polynomial approximations (m in space and s time) in comparison with respect
to the subdomains. This setting is illustrated in Figure 1.

Ωj

Ωi

Γij

t

x1

x2

Figure 1. Space-time meshes and discretizations

We establish existence, uniqueness, and stability of our method. We also prove
a priori error estimates for the spatial and temporal errors, optimal under some
technical conditions. We finally develop a space-time non-overlapping domain
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decomposition method that reduces the global problem to a space-time coarse-
scale mortar interface problem. Every iteration here involves solving a space-time
problem on each individual space-time subdomain Ωi × (0, T ], which can be done
in parallel. The spectral properties of the interface operator and the convergence
of the interface iteration of our domain decomposition method are analyzed.

Numerical experiments are provided that illustrate the theoretical results and
the flexibility of the method for modeling problems with features that are localized
in space and in time. The details can be found in [2].
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Institut für Analysis und
Scientific Computing
Technische Universität Wien
Wiedner Hauptstraße 8 - 10
1040 Wien
AUSTRIA

Prof. Dr. Olaf Steinbach

Institut für Angewandte Mathematik
Technische Universität Graz
Steyrergasse 30
8010 Graz
AUSTRIA

Prof. Dr. Rob P. Stevenson

Korteweg de Vries Instituut
Universiteit van Amsterdam
P.O. Box 94248
1090 GE Amsterdam
NETHERLANDS

Dr. Johannes Storn

Fakultät für Mathematik
Universität Bielefeld
Postfach 100131
33501 Bielefeld
GERMANY

Prof. Dr.Ir. Jaap J.W. van der

Vegt

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science
University of Twente
P.O. Box 217
7500 AE Enschede
NETHERLANDS

Prof. Dr. Martin Vohralik

INRIA Paris, Equipe SERENA
2, Rue Simone Iff
75589 Paris Cedex 12
FRANCE

Prof. Dr. Christian Wieners

Fakultät für Mathematik
Institut für Angewandte und Numerische
Mathematik
Karlsruher Institut für Technologie
(KIT)
Englerstraße 2
76131 Karlsruhe
GERMANY

Prof. Dr. Thomas P. Wihler

Mathematisches Institut
Universität Bern
Sidlerstrasse 5
3012 Bern
SWITZERLAND

Prof. Dr. Barbara Wohlmuth

Zentrum für Mathematik
Technische Universität München
Boltzmannstraße 3
85748 Garching bei München
GERMANY




