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Abstract. While the subjects of topological dynamics, ergodic theory, and
descriptive set theory have long interacted in a variety of profitable ways, re-
cent developments have ushered in a vigorous new phase of interplay between
them, from the abstract transfer and coordinated development of ideas and
methods (as in the theory of dynamical tilings) to the direct leveraging of
technical points of contact (as in boundary theory). The workshop served
as a platform for promoting and advancing these connections by bringing
together researchers working on various facets of topological, measured, and
Borel dynamics.
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Introduction by the Organizers

Over the last several years a number of remarkable developments in the study of
groups and their actions have opened up exciting new directions and prospects
in the interaction between topological dynamics, ergodic theory, and descriptive
set theory. The workshop aimed to promote this interaction among researchers
working in the three broad subfields of topological, measured, and Borel dynamics,
and each talk at the workshop could roughly be categorized as instantiating work
in one or more of these subfields.

One theme that was ubiquitous throughout the workshop was the question of the
extent to which intrinsic algebraic and geometric properties of an acting group are
reflected dynamically within each of the above paradigms. This theme appeared
in the talk of Caprace through hyperbolicity, in the talk of Duchesne through
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property (T), in the talk of Barbieri through the symbolic-dynamical notion of
self-simulability, in the talks of Geffen and Naryshkin through the topological-
dynamical property of comparison, in the talk of Frisch on Poisson boundaries,
and in the talks of Kida, Wrobel, and Zomback relating to dynamical properties
of actions of free groups. It was also philosophically central to the talk of Pana-
giotopoulos on dynamical obstructions to classification by TSI-group invariants.

Another theme concerned the tension and interplay between dynamics and com-
binatorics. This could be seen in the guise of paradoxicality in Barbieri’s talk on
self-simulable groups, via the Ramsey property in Bartosova’s talk on ultraprod-
ucts of finite structures, via the continuous Lovász Local Lemma in Bernshteyn’s
talk on constructing equivariant maps, and via the measurable combinatorial con-
structions described in Bowen’s talk on combinatorics in hyperfinite graphs.

Several talks addressed asymptotic phenomena in topological dynamics. Li
spoke on the relation between entropy, asymptotic pairs, and the topological
Markov property with applications to the structure of algebraic actions of amenable
groups, Zucker on minimal flows lacking a characteristic measure, and Glasner
on the structure theory for tame minimal actions. In a complementary direc-
tion in which the resilience of asymptotic behavior is tested under weakenings of
dynamical conjugacy, especially with a view towards structure theories of a dif-
ferent categorial nature, Le Mâıtre discussed recent advances in the nascent area
of quantitative orbit equivalence for measure-preserving actions and Melleray of-
fered a new perspective on orbit equivalence for minimal Cantor systems and its
characterization in terms of invariant measures.

An additional theme was the interaction between operator algebras and dy-
namics. On the topological side, this connection was exemplified in the talk of
Geffen on purely infinite crossed products by non-amenable groups, the talk of
Kennedy on proximality and higher order syndeticity, and the talk of Naryshkin
on almost finite actions. The connection to operator algebras was also reified on
the measured side in the talk of Boutonnet on infinite characters on groups and
in the talk of Houdayer on noncommutative dynamics of lattices in higher rank
simple algebraic groups.

The workshop was held in hybrid format, with more than half of the participants
attending remotely. There were 31 talks in total, 13 of which were delivered in
person. Despite the circumstances and reduced in-person crowd size, the on-site
participants took full advantage of the opportunities that the superb Oberwolfach
facilities provided for informal interaction, with many lively discussions running
late into the evenings and an energizing Wednesday afternoon hike.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Simplicity of automorphism groups of countable structures

Aleksandra Kwiatkowska

(joint work with Filippo Calderoni, Katrin Tent)

The program of understanding the normal subgroup structure of groups that arise
as automorphism groups of countable structures dates back at least to the ’50s,
when Higman [3] described all proper normal subgroups of the automorphism
group of rationals (Q, <).

In recent years, Macpherson and Tent [4] proved simplicity for a large collection
of such groups. Their methods encompass a number of examples that had been
considered before by various authors: the random graph (Truss [6]), the random
Kn-free graphs and the random tournament (Rubin, unpublished). However, their
framework does not apply to ordered or even partially ordered structures, in par-
ticular, it does not apply to the random poset whose automorphism group was
proved to be simple in [2]. Tent and Ziegler [5] introduced the notion of a sta-
tionary independence relation and investigated automorphism groups of structures
allowing for such a relation. Their approach is very general: apart from recovering
the cases from [4], it applies to the bounded Urysohn metric space and its vari-
ations. However, ordered ultrahomogeneous structures like the ordered random
graph and the random tournament do not carry such a stationary independence
relation.

In a joint work with Filippo Calderoni and Katrin Tent [1], we weaken the
notion of a stationary independence relation from [5]. We prove simplicity for the
automorphism groups of order and tournament expansions of ultrahomogeneous
structures like the bounded Urysohn metric space and the random graph. In
particular, we show that the automorphism group of the linearly ordered random
graph is a simple group.

Our main result is the following theorem.

Theorem. Assume that M is one of the following:

(1) the Fräıssé limit of a free, transitive and nontrivial amalgamation class;
(2) the bounded rational Urysohn space; or
(3) the random poset.

If M∗ is an order expansion of M, then G := Aut(M∗) is simple. The same
holds if M∗ is a tournament expansion of (1) or (2).
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Infinite characters on SLn(Z)

Rémi Boutonnet

1. Finite characters

In view of a subsequent talk of Cyril Houdayer on character rigidity and related
topics, I first discussed classical characters on groups. Recall that a character on
a group G is a positive definite function φ : G→ C which takes the value 1 at the
neutral element and is conjugation invariant.

We will be interested in the specific case where G is discrete. In this case, char-
acters occur classically from three different contexts: finite dimensional unitary
representations (giving the so called almost periodic characters), normal subgroups
or more generally, stabilizers of probability measure preserving actions (IRS’s).

It follows from the well known GNS construction that there are two other ways
of viewing a character on G: either as a trace on the universal C*-algebra C∗(G),
or as a generating morphism π : G → U(M) into the unitary group of a tracial
von Neumann algebra (M, τ). Here generating means that π(G) generates M as
a von Neumann algebra.

The set of all characters on G is a weak-* closed convex subspace of the dual
of C∗(G). So understanding all characters boils down to understanding extremal
ones. In the von Neumann algebraic picture this extremality condition is equivalent
to factoriality of M ; so an extremal φ corresponds to a generating representation
into a II1-factor or into a finite dimensional factor (if φ is almost periodic).

In the case of semi-simple groups and their lattices, striking rigidity results
have been obtained over the past two decades. Let us mention explicitly a result
of Bekka.

Theorem (Bekka, [1]). Take n ≥ 3. Every extremal character on PSLn(Z), is
either the regular character δe (corresponding to the regular representation) or an
almost periodic character.

2. Infinite characters

In view of the description of finite characters in terms of generating morphisms into
finite von Neumann algebras, we will call infinite character a generating morphism
π : G→ U(M) where (M,Tr) is an infinite semi-finite von Neumann algebra, with
the condition that the C*-algebra generated by π contains a non-zero positive
element with finite trace. We call this last condition traceability. Note that by
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composing with the semi-finite trace on M , such a representation gives a tracial
weight Φ on C∗(G) which is non-zero and not purely infinite (i.e. there exists
x ∈ C∗(G) such that 0 < Φ(x) < ∞). Conversely any such tracial weight arises
this way, thanks to the GNS representation. However, there is no natural way
to restrict such a weight to G itself, so an infinite character cannot be seen as a
function on G in any reasonable sense.

Remark. Compared to the finite setting, this notion is not very well understood.
For example, such infinite characters are not clearly connected to infinite measure
preserving actions. For example, already for type I actions G y G/H , some
pathologies may happen, especially if H is commensurated by G.

In contrast, if H is malnormal in G, things tend to be better behaved. This
observation is due to Bekka [2], and allowed him to give examples of infinite
characters on GLn(K) for a global field K, as well as on SLn(Z), n ≥ 3, answering
a question of Rosenberg [2, 3]. His construction gave examples of characters of
type I, i.e. generating representations into type I factors, which are traceable.
Motivated by his rigidity result on finite characters, he then asked the question
whether such groups may admit characters of type II: do they admit traceable
generating representations into II∞-factors?

Adapting his argument, we prove that this is the case for SLn(Z). The con-
struction for G = SL3(Z) is particularly simple: take a generating representation
of H := GL2(Z) into the hyperfinite II1-factor and induce it to G (via the top-left
embedding GL2(Z) → SL3(Z)). Then the induced representation generates a type
II∞-factor and it is traceable. The main reason behind this is that H is a-normal
inside G: for every g ∈ G\H , H ∩gHg−1 is amenable. Then since H is a virtually
free group, it has plenty of representations into the hyperfinite factor, which will
all give rise to different characters.

We don’t know if for n ≥ 4, SLn(Z) admits an a-normal subgroup at all, but
we are able to adapt our argument to prove the following theorem. Note that the
case n = 2 is easy: free groups admit plenty of representations.

Theorem. For all n ≥ 2, SLn(Z) admits uncountably many traceable generating
representations into II∞-factors, none of which is weakly contained in any other.

The construction is ad hoc, and doesn’t say anything about other lattices in
simple Lie/algebraic groups.
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Symbolic substitutions in dilation groups

Felix Pogorzelski

(joint work with Siegfried Beckus, Tobias Hartnick)

Tilings of spaces are nice to look at - on top of that, they play a central role
in the mathematical theory of aperiodic order. One way to produce such tilings
and to understand their properties is via iterated substitution systems, where
local structures are systematically replaced according to a pre-fixed rule. In view
of a new development of extending the theory of aperiodic order to non-abelian
groups and symmetric spaces, intiated in [3, 4, 5, 6], it is natural to explore in this
geometric framework the possibility of constructing “mathematical quasicrystals”
via substitutions. This talk is devoted to a new formalism concerning symbolic
substitutions producing an abundance of such examples in certain nilpotent Lie
groups. There is a vast body of literature on substitution systems in abelian
spaces. We refer to the monographs [15, 1] and the references therein. Moreover,
we highlight the papers [16, 17, 8] as they contain some crucial ideas that can be
adapted to the non-abelian setting.

In the following, G denotes a 1-connected Lie group endowed with a left-invariant,
proper metric d that generates the topology of G. Moreover, we suppose that
G admits a 1-parameter family (Dλ)λ>0 of metric dilations, i.e. each Dλ is a
continuous G-automorphism satisfying

d
(
Dλ(g), Dλ(h)

)
) = λ · d(g, h) for all g, h ∈ G.

Moreover, let Γ ≤ G be a uniform lattice along with a relatively compact fun-
damental domain V having non-empty interior. We fix some value λ0 > 0,
called stretch parameter, such that Dλ0(Γ) ⊆ Γ and λ0 ≥ 1 + r+/r−, where
r+ > 0 and r− > 0 are an outer, respectively inner radius for V . The collec-
tion of aforementioned elements is called a dilation datum (over G) and we write
D = D(G, d, (Dλ),Γ, V, λ0) for it. A typical example is given by the 3-dimensional
Heisenberg group G = H3(R), along with the Cygan-Koranyi metric dCK aris-

ing from the Cygan-Koranyi group norm ‖(x, y, z)‖CK = 4
√
(x2 + y2)2 + z2, a

(uniform) lattice of Z-points and a family of dilations defined as Dλ(x, y, z) =
(λx, λy, λ2z). Our general focus is on homogeneous dilation data which can be
realized in certain nilpotent Lie groups G that we call RAHOGRASPs (rationally
homogeneous group with rational spectrum). These are groups admitting a ratio-
nal form gQ of its Lie algebra g with a particular Q-grading. With this at hand,
there is a canonical way to define a homogeneous family of dilations. Via standard
Lie group theory one obtains a homogeneous metric d compatible with the dilation
structure. A suitable lattice is generated via an integral basis of gQ. The class of
groups admitting homogeneous dilation data seems to be quite rich. For instance,
it can be checked by a straightforward linear algebra algorithm that this is the
case for at least 133 out of the 149 families of 7-dimensional nilpotent real Lie
algebras as classified in [12]. We remark at this point that very similar dilation
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structures had been considered before in the construction of periodic self-similar
tilings of nilpotent Lie groups, see e.g. [18, 11].

Having explained the geometric framework of our investigation, let us turn to
the combinatorial side, leading to the concept of a substitution datum (based on
a given dilation datum). Fix some homogeneous substitution datum D and set
D := Dλ0 . Moreover consider a finite set A, called colors. A substitution rule
is a map S0 : A → AΓ∩D(V ). In analogy to the abelian situation, there is a
canonical extension of S0 to the set of all colored patches supported on Γ, called
the substitution map S. Moreover, the restriction of S to AΓ (in the following also
denoted by S) is continuous. The collection of the aforementioned objects is called
a subsitution datum (over D) and is denoted by S = S(D,A, S0). We will need
two additional assumptions on substitution data.

• S is said to be primitive if there is some L ∈ N such that every a ∈ A
occurs in the patch SL(b) for each b ∈ A;

• S is called non-periodic if S0 is injective and

γ−1S(a)|γ−1D(V )∩D(V ) 6= S(b)|γ−1D(V )∩D(V )

for all γ ∈
(
Γ ∩D(V )

)
\ {e} and all a, b ∈ A.

In order to obtain interesting colorings ω ∈ AΓ one now seeks for fixed points
under some iteration of S, i.e. one checks whether there are k ∈ N and ω ∈ AΓ

such that Sk(ω) = ω. This question can be answered in the affirmative if S is
assumed to be primitive. Moreover, ω is linearly repetitive with respect to the
restriction of the metric d to Γ, i.e. all colored patterns in ω with “support size” r
occur in every patch of the form ω|Tr

, where Tr is any “test window of size κ · r”,
with κ ≥ 1 being independent of r. If S is additionally assumed to be non-periodic,
then ω has trivial Γ-stabilizer. Precisely, we have the following theorem.

Theorem. Consider a RAHOGRASP G of dimension at least 2, along with a
homogeneous dilation datum D. Let A be finite with at least two elements. Then
there exists a primitive, non-periodic substitution datum S over D with color set A.
In particular there exists ω ∈ AΓ such that

• ω is linearly repetitive with respect to d|Γ×Γ,
• ω has trivial Γ-stabilizer,
• the action Γ y Ωω := {γ.ω : γ ∈ Γ} is uniquely ergodic.

It is known from abelian settings that there are strong interrelations between
uniform subadditive convergence theorems, linear repetitivity of aperiodic struc-
tures, and unique ergodicity of the associated dynamical systems, cf. [9, 13, 7, 14,
10]. This is also true in the nilpotent case as was shown recently in our companion
paper [2], and so unique ergodicity in the above theorem is a consequence of linear
repetitivity.

In the two 2-step case we can even guarantee ω to be strongly aperiodic which
means that every η ∈ Ωω has trivial Γ-stabilizer.
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Theorem. Consider a 2-step RAHOGRASP G. Let A be finite and containing
at least two elements. Then there exists a uniform lattice Γ ≤ G and a coloring
ω ∈ AΓ such that

• ω is linearly repetitive with respect to d|Γ×Γ,
• the action Γ y Ωω is uniquely ergodic and free.

It is a rather immediate consequence from the theorem that many 2-step groups,
such as Heisenberg groups, contain strongly aperiodic Delone sets that are linearly
repetitive with respect to the group metric. To the best of our knowledge these
are the first explicit examples of this kind in non-abelian Lie groups.
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Purely infinite crossed products by non-amenable groups

Shirly Geffen

(joint work with Eusebio Gardella, Julian Kranz, Petr Naryshkin)

Let G be a countable discrete group acting by homeomorphisms on a compact
metric space X . If U ⊆ X is a non-empty set, we write X ≺ U if X admits a finite
open cover whose elements can be transported via the group action to pairwise
disjoint subsets of U .

In the absence of invariant measures for the system (which is always the case
when the groupG is non-amenable and the given action is topologically amenable),
it is said that the system G→ Homeo(X) has dynamical comparison if X ≺ U for
every non-empty open subset U ⊆ X (see [2, Definition 3.2]).

We show in [1] that all amenable minimal actions of a large class of non-
amenable countable groups on compact metric spaces have dynamical comparison.
This class includes all non-amenable hyperbolic groups, many HNN-extensions,
non-amenable Baumslag-Solitar groups, a large class of amalgamated free groups,
lattices in many Lie groups, as well as direct products of the above with arbitrary
countable groups. As a consequence, crossed product C∗-algebras by amenable
minimal and topologically free actions of such groups on compact metric spaces
are Kirchberg algebras in the UCT class, and are therefore classified by K-theory.

We conjecture that all minimal (amenable) actions of non-amenable groups on
compact metric spaces have dynamical comparison.
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Ramsey properties of ultraproducts of finite structures

Dana Bartošová

(joint work with Mirna Džamonja, Rehana Patel, Lynn Scow)

The seminal work of Kechris, Pestov, and Todorcevic [3] revealed deep connections
between abstract topological dynamics of infinite-dimensional groups and Ramsey
theory of finitely-generated structures.

Definition 1 (Ramsey property). Let K be a class of finitely-generated first order
structures. We say that A ∈ K has the Ramsey property in K if for every B ∈ K
which embeds A, there is C ∈ K such that for every colouring c of copies of A in
C by finitely many colours, there is a copy of B in C whose all copies of A have
the same colour, i.e., it is monochromatic.
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For simplicity, we introduce the following notation. For two structures A and B,
we write A ≤ B when A is a substructure of B. We denote by

(
B
A

)
all substructure

of B isomorphic to A (copies of A).
The classes of finite sets, finite linear orders, or finite Boolean algebras are ex-

amples of classes whose members all have the Ramsey property. However, most
classes have objects that do not posses the Ramsey property. They might how-
ever have only finitely many “recognizable types” of embeddings within the class,
leading to the notion of finite Ramsey degrees.

Definition 2 (Ramsey degrees). We say that A in a class of finitely-generated
structures K has a finite Ramsey degree if there exists t ∈ N, such that for every
B with A ≤ B and any r ≥ 2, there is C ∈ A such that for any c :

(
C
A

)
→

{0, 1, . . . , r − 1} there is B′ ∈
(
C
B

)
such that c restricted to

(
B′

A

)
takes on at most

t colours. The smallest such t (if it exists) is called the Ramsey degree of A in K.

Classes of finite (Kn-free) graphs and different types of finite hypergraphs are
examples of classes whose all members have finite Ramsey degrees. In [3], the
authors showed that if K has finite Ramsey degrees, it is the amalgamation prop-
erty and up to isomorphism it is countable, then the automorphism group of its

generic limit (Fräısślimit) has only metrizable minimal flows. This striking con-
nection fueled much new development in the study of Ramsey properties of classes
of finitely-generated structures and their more difficult version when a monochro-
matic copy, or a copy with a bounded number colours, of the whole countable
structure is required. For a countable structure A, let Age(A) be the class of all
finitely-generated structures isomorphic to a substructure of A.

Definition 3 (Big Ramsey degrees). Let A be a countable structure and let
A ∈ Age(A). We say that A has big finite Ramsey degree in A if there is t ∈ N

such that for every B ∈ Age(A) and every c :
(
A
A

)
→ {0, 1, . . . , r − 1} for r finite,

there is A′ ∈
(
A
A

)
such that c restricted to

(
A′

A

)
takes on at most t colours. The

smallest such t (if it exists) is the big Ramsey degree of A.

A countably infinite sets admit finite big Ramsey degrees for all finite subsets
by Ramsey theorem. Exact big Ramsey degrees for finite linear orders in the
countable linear order without endpoints (Q, <) were computed by Devlin in [2]
and Sauer showed that finite graphs have finite big Ramsey degrees in the random
graph in [4].

In this talk we present our current research on big Ramsey degrees of ultra-
products of finite structures. In order to ensure that our ultraproduct contains all
structures from a class of interest in its Age we introduce the following notion.

Definition 4 (D-trending). Let K be a class of finite structures and let D be a
non-principal ultrafilter on ω. We say that a sequence (Ki)i∈ω of structures from
K is D-trending if for every A ∈ K, the set {i ∈ ω : A embeds into Ki} is in D.

The natural starting point are colourings on the ultraproduct that are deter-
mined by a sequence of colouring on the coordinates.
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Definition 5 (Internal colouring). Let K = Πi∈ωKi/D be an ultraproduct of finite
structures from a class K over an ultrafilter D. Let A ∈ K and suppose that A
embeds into K. We say that a colouring c :

(
K

A

)
→ {0, 1, . . . , r − 1} is internal if

there are colourings ci :
(
Ki

A

)
→ {0, 1, . . . , r − 1} for i ∈ ω such that c(A′) = n if

and only if {i ∈ ω : ci(A
′(i)) = n} ∈ D.

Our main theorem is the following.

Theorem 1 (BDPS). Let K be a class of finite structures and let D be a non-
principal ultrafilter on ω. Let K denote ΠiωKi/D, where (Ki)i∈ω is D-trending.
Suppose that A ∈ K has a Ramsey degree d in K and let A be any structure
of cardinality at most ℵ1 with Age(A) ⊂ K. Then for any internal colouring

c :
(
K

A

)
→ {0, 1, . . . , r − 1} there is a copy A′ of A in K such that c restricted to(

A′

A

)
assumes at most d colors.

Since every countable ultraproduct of finite structures is either finite or of car-
dinality 2ℵ0 , we have the following corollary.

Corollary (BDPS). Under CH, if the conditions in Theorem 1 hold, then A has
big Ramsey degree d in K.
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Minimal flows without a characteristic measure

Andy Zucker

(joint work with Josh Frisch, Brandon Seward)

Given a countable group G and a faithful G-flow X , we write Aut(X,G) for the
group of homeomorphisms of X which commute with the G-action. When G is
abelian, Aut(X,G) contains a natural copy of G resulting from the G-action, but
in general this need not be the case. Much is unknown about how the properties of
X restrict the complexity of Aut(X,G); for instance, Cyr and Kra [1] conjecture
that when G = Z and X ⊆ 2Z is a minimal, 0-entropy subshift, then Aut(X,Z)
must be amenable. In fact, no counterexample is known even when restricting
to any two of the three properties “minimal,” “0-entropy,” or “subshift.” In an
effort to shed light on this question, Frisch and Tamuz [2] define a probability
measure µ ∈ P (X) to be characteristic if it is Aut(X,G)-invariant. They show
that 0-entropy subshifts always admit characteristic measures, but along the way
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raise several questions about these objects. In particular, they asked whether there
exists, for any countable group G, some minimal G-flow without a characteristic
measure. We give a strong affirmative answer.

Theorem 1. For any countably infinite group G, there is a free minimal G-flow X
so that X does not admit a characteristic measure. More precisely, there is a free
G× F2-flow X which is minimal as a G-flow and with no F2-invariant measure.

Over the course of proving Theorem 1, there are two main difficulties to over-
come. The first difficulty is a collection of dynamical problems we refer to as min-
imal subdynamics. The general template of these questions is as follows. Consider
a countably infinite group Γ and a collection {∆i : i ∈ I} of infinite subgroups.
When is there a free Γ-flow which is minimal as a ∆i-flow for every i ∈ I simulta-
neously? In [4], the author showed that this was possible in the case Γ = G ×H
and ∆ = G for any countably infinite groups G and H . We manage to strengthen
this result considerably.

Theorem 2. For any countably infinite group Γ and any collection {∆n : n ∈ N}
of infinite normal subgroups of Γ, there is a free Γ-flow which is minimal as a
∆n-flow for every n ∈ N.

In fact, what we show when proving Theorem 2 is considerably stronger. Recall
that given a countably infinite group Γ, a subshift X ⊆ 2Γ is strongly irreducible
if there is some finite symmetric D ⊆ Γ so that whenever S0, S1 ⊆ Γ satisfy
DS0 ∩ S1 = ∅ (i.e. S0 and S1 are D-apart), then for any x0, x1 ∈ X , there is
y ∈ X with y|Si

= xi|Si
for each i < 2. Write S for the set of strongly irreducible

subshifts, and write S for its Vietoris closure. Frisch, Tamuz, and Vahidi-Ferdowsi
[3] show that in S, the minimal subshifts form a dense Gδ subset. In our proof of
Theorem 2, we show that the shifts in S which are ∆n-minimal for each n ∈ N

also form a dense Gδ subset.
This brings us to the second main difficulty in the proof of Theorem 1. Using

this stronger form of Theorem 2, one could easily prove Theorem 1 by finding a
strongly irreducible F2-subshift which does not admit an invariant measure. This
would imply the existence of a strongly irreducible (G × F2)-subshift without an
F2-invariant measure. As not admitting an F2-invariant measure is a Vietoris-open
condition, the genericity of G-minimal subshifts would then be enough to obtain
the desired result. Unfortunately whether such a strongly irreducible subshift can
exist (for any non-amenable group) is a wide-open question. To overcome this, we
introduce a flexible weakening of the notion of a strongly irreducible shift.

Definition. Let Pf (Γ) denote the collection of finite subsets of Γ, and fix a right-
invariant subset B ⊆ Pf(Γ). We say that a subshift X ⊆ 2Γ is B-irreducible if
there is a finite symmetric D ⊆ Γ so that for any m < ω, any B0, ..., Bm−1 ∈ B,
and any x0, ..., xm−1 ∈ X , if the sets {B0, ..., Bm−1} are pairwise D-apart, then
there is y ∈ X with y|Bi

= xi|Bi
for each i < m. We call D the witness to

B-irreducibility. If we have D in mind, we can say that X is B-D-irreducible.

When B = Pf (Γ), we recover the ordinary notion of strongly irreducible shift.
By then considering F2-subshifts which encode paradoxical decompositions and



Groups and Dynamics: Topology, Measure, and Borel Structure 121

considering the family B ⊆ Pf (F2) of finite sets which are connected in the
standard left Cayley graph of F2, we can obtain B-irreducible shifts with no F2-
invariant measure. With this idea as our starting point, we prove the following
about G × F2; with a bit of extra work to get the freeness result, the following
implies Theorem 1.

Theorem 3. For each n ∈ N, set

Bn := {B ∈ Pf (G× F2) : for every F2-coset C, different connected components

of B ∩ C are at distance at least n}

Let Sn denote the collection of Bn-irreducible (G × F2)-subshifts. Then there is
some X ∈

⋃
n Sn with no F2-invariant measure, and the collection of G-minimal

members of
⋃

n Sn is dense Gδ.
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Tame dynamical systems and their relation to the nature of the
acting group

Eli Glasner

When the topology of the enveloping semigroup of a flow (X,G), for say a general
countable group G, is determined by the convergence of sequences (rather than
nets) we have at our disposal many powerful tools which are not available in
the general case. Perhaps the most important one is the Lebesgue convergence
theorem. We started our talk by considering the following statement.

Let (X,G)
π
→ (Y,G) be a proximal extension of minimal flows with (Y,G) an

equicontinuous flow. Then if (X,G) admits an invariant measure it is unique.
This statement fails in general, but assuming that the enveloping semigroup

E(X,G) is Fréchet and using Lebesgue’s convergence theorem, this becomes a
theorem. A system whose enveloping semigroup is Fréchet is called tame.

In my talk I defined the notion of tameness in topological dynamics, described
several useful characterisations and then discussed several results which show how
the nature of the acting group G is related to the structure of tame dynamical
G-systems. The most prominent of these is the following structure theorem which
demonstrates the role of the acting group being amenable:
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Theorem. For a general group G, a tame, metric, minimal dynamical system
(X,G) has the following structure:

X̃

π

��

η

��⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

X∗θ∗

oo

ι

��

π∗

��

X Z

σ

��

Y Y ∗

θ
oo

Here (i) X̃ is a metric minimal and tame system (ii) η is a strongly proximal
extension, (iii) Y is a strongly proximal system, (iv) π is a point distal and RIM
extension with unique section, (v) θ, θ∗ and ι are almost one-to-one extensions,
and (vi) σ is an isometric extension.

When the map π is also open this diagram reduces to

X̃
η

��⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

ι

��
π

~~

X Z

σ

��

Y

In general the presence of the strongly proximal extension η is unavoidable. If
the system (X,G) admits an invariant measure µ then Y is trivial and X = X̃

is an almost automorphic system; i.e. X
ι
→ Z, where ι is an almost one-to-one

extension and Z is equicontinuous. Moreover, µ is unique and ι is a measure
theoretical isomorphism ι : (X,µ,G) → (Z, λ,G), with λ the Haar measure on Z.
Thus, this is always the case when G is amenable.

Belinskaya’s theorem is optimal

François Le Mâıtre

(joint work with Alessandro Carderi, Matthieu Joseph and Romain Tessera)

This talk revolved around two cornerstone theorems on the orbits of measure-
preserving transformations. The first is Dye’s theorem [3], which states that up
to conjugacy, any two ergodic measure-preserving transformations of standard
probability spaces share the same orbits. In particular, one has to ask for more
stringent conditions than sharing the same orbits in order to get an interesting
conjugacy invariant.

The second theorem, due to Belinskaya [1], provides such a condition. Given two
ergodic measure-preserving transformations T1 and T2 of a standard probability
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space (X,µ) with the same orbits, one naturally gets two cocycles cT1 , cT2 : X → Z,
uniquely defined by the equations

T1(x) = T
cT1(x)
2 and T2(x) = T

cT2(x)

1 (x).

Belinskaya’s theorem states that if cT2 is moreover an L1 map (meaning that∫
X
|cT2(x)|dµ(x) is finite), then T1 and T2 are flip-conjugate, which is the strongest

possible conclusion: up to conjugating T1 by a measure-preserving transformation,
we have T1 = T2 or T1 = T−1

2 .
We investigated what happens when one replaces the L1 condition by Lp, where

p ∈ (0, 1). Our main result is that Belinskaya’s theorem becomes false [2]: given
any ergodic transformation T1, there is another transformation T2 with the same
orbits as T1 whose cocycle satisfies

∫
X
|cT2(x)|

pdµ(x) < +∞ but which is not flip-
conjugate to T1. This result uses crucially the so-called Lp full groups of measure-
preserving transformations, which are Polish groups for their natural Lp metric.
We also discussed an application of our results which answers a question of Kerr
and Li [4]: for general ergodic measure-preserving transformations, Shannon orbit
equivalence does not imply flip conjugacy.
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Hyperbolic groups of type I

Pierre-Emmanuel Caprace

(joint work with Mehrdad Kalantar and Nicolas Monod)

1. A type I conjecture

Let G be a second countable locally compact group. We are interested in relating
the algebraic structure of the group G with the properties of its unitary repre-
sentations. Classical theory on unitary representations reveals a basic dichotomy
between the so-called type I groups and the locally compact groups that are not
type I. By definition, the group G is type I if for every continuous unitary repre-
sentation π, the von Neumann algebra π(G)′′ is of type I. The type I groups are
precisely those whose unitary representations are well behaved: the direct integral
decomposition of an arbitrary unitary representation into irreducible representa-
tions is essentially unique, and the classification problem of the irreducible unitary
representations up to equivalence has moderate complexity (more precisely, the
unitary dual of the group is a standard Borel space). For more information and
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background on this topic, we refer to [1]. The general theme of our investigations
consists in elucidating the structural properties of type I groups.

A sufficient condition for a locally compact group G to be type I is that G be
liminal (or CCR), which means that for every irreducible unitary representation
(π,Hπ) of G, the image π(C∗(G)) of the maximal C∗-algebra of G entirely consists
of compact operators on the Hilbert space Hπ. A necessary condition for G to be
type I is that the group von Neumann algebra L(G) = λG(G)

′′ be type I, where
λG denotes the left regular representation.

The class of liminal groups includes compact groups, abelian groups, connected
nilpotent Lie groups, semisimple Lie groups and semisimple algebraic groups over
local fields, as well as some non-linear groups like the full automorphism group of
a regular locally finite tree.

The larger class of type I groups includes all algebraic groups over local fields
of characteristic 0. An example of a type I group that is not liminal is the affine
group Qp ⋊Q∗

p.
The free group F2 is not type I: indeed, its group von Neumann algebra is a

factor of type II1. Certain connected solvable Lie groups are not type I either;
among them, the best known example is the Mautner group, which is a connected,
simply connected 5-dimensional metabalian Lie group.

In the case of discrete groups, the relationship between the type I condition and
the group structure is fully elucidated by the following result, due to E. Thoma.

Theorem 1 (Thoma [9]). For a discrete group G, the following conditions are
equivalent.

(i) G is type I.
(ii) G is virtually abelian.
(iii) L(G) is type I.
(iv) G is liminal.
(v) Every irreducible unitary representation of G is finite-dimensional.
(vi) The supremum of the dimensions of irreducible unitary representations of

G is finite.

The following conjectural description of non-discrete type I groups is proposed
in [4].

Conjecture 1. Let G be a second countable locally compact group. If G is type I,
then G has a cocompact amenable subgroup.

This statement is of course meaningless if G is amenable. The existence of
amenable groups that are not type I shows that the converse to Conjecture 1 need
not hold. However, it might potentially hold under the additional assumption
that G has a trivial amenable radical, i.e. that the only amenable closed normal
subgroup of G is the trivial subgroup {e}.
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2. Groups acting on trees

Beyond Lie, algebraic and discrete groups, the class of locally compact groups
whose unitary representations are the most studied is the class of groups acting
on trees, which we now briefly discuss.

Let T be a locally finite tree, each of whose vertices has degree at least 3. The
set of ends ∂T carries a natural topology, which makes it a compact Hausdorff
space. Throughout this section, we let G be a non-compact closed subgroup of
Aut(T ) whose action on ∂T is minimal. In this context, we have the following.

Conjecture 2 (Nebbia [8], Houdayer–Raum [7]). The following conditions are
equivalent.

(i) G is liminal.
(ii) G is type I.
(iii) The G-action on ∂T is 2-transitive.

It is worth noting that, in this context, the condition (iii) is known to be equiv-
alent to the existence of a cocompact amenable subgroup in G, see [3]. The
implication from (i) to (ii) is valid in full generality. Nebbia’s conjecture from [8]
concerns the implication from (iii) to (i). The conjectural implication from (ii)
to (iii) is proposed by Houdayer–Raum in [7], where they notably establish the
following.

Theorem 2 (Houdayer–Raum [7]). Let G ≤ Aut(T ) be as above. If L(G) is
amenable (e.g. if L(G) is type I), then the G-action on T is locally 2-transitive,
i.e. the stabiliser of every vertex acts 2-transitively on the set of neighbouring
vertices.

If the G-action on ∂T is 2-transitive, then the G-action on T is locally 2-
transitive. The converse need not hold.

3. Hyperbolic groups

A locally compact group is called hyperbolic if it is word hyperbolic with respect
to some compact generating set. Hyperbolic locally compact groups can be char-
acterized as those groups acting continuously, properly, cocompactly by isometries
on a proper hyperbolic geodesic metric space. All simple Lie groups of rank ≤ 1
are hyperbolic. If G contains a uniform lattice Γ, then G is hyperbolic if and
only if Γ is so. If T is a locally finite tree, a closed subgroup G ≤ Aut(T ) acting
minimally on ∂T is hyperbolic if and only if it is compactly generated. We refer
to [3] for more information.

The main result presented in this talk is that Conjecture 1 holds for hyperbolic
groups containing a uniform lattice.

Theorem 3 (Caprace–Kalantar–Monod [4]). Let G be a hyperbolic group contain-
ing a uniform lattice. If G is type I, then G has a cocompact amenable subgroup.

The structure of hyperbolic groups with a cocompact amenable subgroup has
been studied in detail in [3]. In particular, Theorem 3 can be combined with the
following.
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Theorem 4 (Caprace–Cornulier–Monod–Tessera [3]). Let G be a unimodular hy-
perbolic group. If G has a cocompact amenable subgroup, then G as a compact
normal subgroup W such that the quotient G/W satisfies exactly one of the fol-
lowing descriptions.

(i) G/W is a simple Lie group of rank one.
(ii) G/W is a closed subgroup of the automorphism group of a locally finite

non-elementary tree T , acting without inversions and with exactly two
orbits of vertices, and acting 2-transitively on ∂T .

(iii) G/W is trivial or virtually isomorphic to Z or R.

Specializing to groups acting on trees, we obtain the following.

Corollary 1. The implications (i) ⇒ (ii) ⇒ (iii) in Conjecture 2 hold.

To establish this, we first invoke Theorem 2 to reduce to the case where G
is unimodular and cocompactly generated. The main result of [2] then ensures
that G contains a uniform lattice, and the required conclusion follows by invoking
Theorems 3 and 4.

4. Boundary representations

The strategy of proof of Theorem 3 relies on two ingredients. The first one is
Glimm’s characterization of type I groups [6], according to which a group G is
type I if and only if any two weakly equivalent irreducible unitary representations
of G are unitarily equivalent. The second ingredient is provided by the work of
Garncarek [5] on boundary representations of discrete hyperbolic groups. Given a
discrete hyperbolic group Γ and a hyperbolic word metric d on Γ, one may con-
struct a canonical Γ-invariant measure class νd on the Gromov boundary ∂Γ, called
a Patterson–Sullivan measure. The associated Koopman representation κνd of Γ
on L2(∂Γ, νd) is called a boundary representation. Garncarek proves that each
boundary representation is irreducible. Moreover, if d, d′ are different hyperbolic
word metrics, then the representations κνd and κν

d′
are unitarily equivalent if and

only if the metrics d, d′ are homothetic up to an additive constant, i.e. there
exist constants L,C > 0 such that

Ld(x, y)− C ≤ d′(x, y) ≤ Ld(x, y) + C

for all x, y ∈ Γ. While any two word metrics are quasi-isometric, the condition
of being homothetic up to an additive constant is a very demanding one. In par-
ticular, varying the word metric, one obtains a wealth of inequivalent irreducible
representations of the discrete group Γ.

In the context of Theorem 3, we have a non-discrete hyperbolic group G con-
taining a uniform lattice Γ. The first step of the proof consists in showing that
any two boundary representations of G are weakly equivalent. Restricting those
representations of Γ and invoking Garncarek’s results, we deduce that the bound-
ary representations of G are irreducible. If G is type I, then by Glimm’s theorem
those boundary representations are all pairwise unitarily equivalent. Using again
Garncarek’s results for Γ, together with the fact that G/Γ is compact, we infer
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that any two hyperbolic word metrics on G are homothetic up to an additive con-
stant. The final step of the proof is purely geometric: from that restriction on the
word metrics on G, we deduce the existence of a cocompact amenable subgroup.

The hypothesis of existence of a uniform lattice in Theorem 3 is an ad hoc
condition, which is necessary for us to invoke the work of Garncarek [5]. It is
likely that Garncarek’s work can be generalized to all non-amenable hyperbolic
locally compact groups. Such a generalization would ensure that Theorem 3 holds
for all hyperbolic groups.
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Settled elements of the group of automorphisms of trees.

Maŕıa Isabel Cortez

(joint work with Olga Lukina)

For every n ≥ 1, let d > 1 be an integer. The space Σ = {0, · · · , d − 1}N is a
Cantor set if we endow {0, · · · , d − 1} with the discrete topology and Σ with the
product topology. This is a metric space with the usual metric defined on a space
of infinite sequences. The associated d-ary tree is the infinite graph T whose set
of vertices V is equal to the disjoint union

⋃
n≥0 Vn, where V0 contains only one

element and Vn is the set of words of length n in {0, · · · , d − 1}, for every n ≥ 1.
The set of edges E of T is equal to the disjoint union

⋃
n≥1En, where En contains

exactly one edge e from v ∈ Vn−1 to va ∈ Vn, for every a ∈ {0, · · · , d − 1} and
n ≥ 1. The set of infinite paths of T is given by

∂T = {(en)n≥1 ∈
∏

n≥1

En : t(en) = s(en+1), ∀n ≥ 1}.

The element (xn)n≥1 ∈ Σ is identified with (en)n≥1 ∈ ∂T given by t(e1) = x1,
s(en) = x1 · · ·xn−1 and t(en) = x1 · · ·xn, for every n > 1. This identification
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induces a bijection between Σ and ∂T , which is an isometry with the induced
metric on ∂T .

An automorphism of T is a bijection τ : V → V such that the restriction τ |Vn

is a permutation on Vn and such that preserves the structure of the tree. The
collection of all the automorphisms of T is denoted by Aut(T ). This is a group
with the composition of functions which can be identified with the collection of
isometries on ∂T . The group Aut(T ) is a profinite group, and its topology coincide
with the uniform and the pointwise convergence topologies.

We say that an element σ ∈ Aut(T ) is minimal if the dynamical system given
by the action of σ on ∂T is minimal. This is equivalent to say that for each n ≥ 1,
the permutation induced by σ on Vn has only one cycle. Given σ ∈ Aut(T ), we
say that v ∈ Vn is in a stable cycle of σ if for every m > n, the vertices in Vm
which are connected to the vertices in the cycle of σ to which v belongs, are in the
same cycle in Vm. The automorphism σ is settled if the proportion of vertices in
Vn which are in a stable cycle goes to 1 whenever n goes to infinity. If there exists
n ≥ 1 such that every vertex v ∈ Vn is in a stable cycle, we say that σ is strongly
settled. It is not difficult to see that strongly settled implies settled, and settled
implies minimal.

Motivated by questions coming from Number Theory, Boston and Jones ([1])
asked under which conditions a subgroup Γ of Aut(T ) is densely settled, i.e, under
which conditions the set of settled elements of Γ is dense in Γ. Examples of densely
settled groups are Aut(T ) itself and the closure of the group generated by a settled
automorphism.

In this talk we present the following result:

Theorem. Let d > 1 be a prime number and let T be the d-ary tree. For every

minimal σ ∈ Aut(T ) the normalizer N(σ) of 〈σ〉 is densely settled.

An important tool to show this results is the rational spanning of N(σ), defined
as the set {σm,k : m ≥ 1, k ≥ 1 not divisible by d}, where σm,k is the unique
element σ in N(a) verifying σaσ−1 = ak and σ(0∞) = am(0∞).

This result is part of the work [2].
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Quasi-invariant measures for self-similar groups

Volodymyr Nekrashevych

Hyperbolic groupoids (see [1]) are generalizations of various hyperbolicity condi-
tions in dynamics and geometric group theory. One of them is the notion of a
locally expanding self-covering of a compact metric space. Another is the notion
of a contracting self-similar group. A self-similar action is defined as a faithful
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action of a group G on the space Xω of infinite sequences over a finite alphabet,
such that for every g ∈ G and every x ∈ X there is g|x ∈ G and y ∈ X such that

g(xw) = yg|x(w)

for all w ∈ Xω. We have then g(vw) = ug|v(w) for all v ∈ X∗ and w ∈ Xω.
We say that the action is contracting if there exists a finite set N ⊂ G such

that for every g ∈ G there exists n such that g|v ∈ N for all v ∈ X∗ such that
|v| ≥ n. Equivalently, |g|v| ≤ λ|v||g|+ C for some λ ∈ (0, 1).

Both give examples of hyperbolic groupoids : they are generated by a compact
set S of germs of contractions (the germs of f−1 and the germs of w 7→ xg(w)
for x ∈ X , g ∈ N), the Cayley graphs Γξ of germs at a point ξ are Gromov-
hyperbolic, and the negative paths are quasi-geodesics converging to one point of
the boundary.

Let G be a topological groupoid. A quasi-cocycle on G is a map ν : G −→ R

such that there exists a constant η > 0 such that

• For every g ∈ G there exists a neighborhoodU of g such that |ν(g)−ν(h)| <
η for every h ∈ U .

• For any two g1, g2 ∈ G for which g1g2 is defined we have

|ν(g1g2)− (ν(g1) + ν(g2))| < η.

We consider quasi-cocycle up to the equivalence relation

β1 ∼ β2 =⇒ sup
g∈G

|β1(g)− β2(g)| <∞.

Let G be a hyperbolic groupoid, and let S be the corresponding generating set
of germs of contractions. Then a Busemann quasi-cocycle on G is a quasi-cocycle
β such that there exist C > 0, L > 1 such that

L−1n− C ≤ β(s1s2 · · · sn) ≤ Ln+ C

for all composable sequences of elements si ∈ S.
If β is a Busemann quasi-cocycle, then for all positive small enough α there

exists a metric d on the unit space of G such that every g ∈ G there exists a
neighborhood U ⊂ G (seen as a partial homeomorphism of the unit space) such
that

C−1e−α·β(g) ≤
d(U(x), U(y))

d(x, y)
≤ Ce−α·β(g).

There also exists a unique η > 0 such that there exists a measure on the unit

space which is G-quasi-invariant and the Radon-Nikodim cocycle dg∗(µ)
dµ

satisfies

C−1e−η·β(g) ≤
dg∗(µ)

dµ
≤ Ce−η·β(g).

Hyperbolic groupoids come in pairs: a dual hyperbolic groupoid naturally acts
on the Gromov boundary of the Cayley graph of the original groupoid, and vice
versa. Given a Busemann quasi-cocycle on a hyperbolic groupoid, there is also a
well defined (up to the mentioned above equivalence) dual Busemann quasi-cocycle
on the dual groupoid.
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Groupoids associated with contracting self-similar groups are dual to groupoids
associated with expanding covering maps.

Our project to study Busemann cocycles on the hyperbolic groupoids associ-
ated with self-similar contracting groups. Every such a quasi-cocycle is uniquely
determined by its values on germs of maps

Sv : w 7→ vw,

i.e., essentially by a metric on the tree X∗.
For example, it is natural to try to describe the measures on Xω associated

with Busemann cocycles on the groupoids associated with a contracting self-similar
group G. Another interesting project is finding the Hausdorff dimension of the
natural metrics associated with the dual Busemann quasi-cocycles.
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Dynamical obstructions to classification by (co)homology and other
TSI-group invariants.

Aristotelis Panagiotopoulos

(joint work with Shaun Allison)

One of the leading questions in many mathematical research programs is whether
a certain classification problem admits a “satisfactory” solution. Hjorth’s theory
of turbulence provides conditions under which such a classification problem cannot
be solved using only isomorphism types of countable structures as invariants. In
the same spirit, we will introduce “unbalancedness”: a new dynamical obstruction
to classification by orbits of a Polish group which admits a two-side invariant met-
ric (TSI). We will illustrate how “unbalancedness” can be used for showing that
a classification problem cannot be solved by classical homology and cohomology
invariants. We will finally apply these ideas to attain new anti-classification re-
sults for problem of classifying Hermitian line bundles up to isomorphism and the
problem of classifying continuous trace C∗-algbras up to Morita equivalence. This
is joint work with Shaun Allison.

Growth of actions of finitely generated solvable groups

Nicolás Matte Bon

(joint work with Adrien Le Boudec)

Let G be a finitely generated group endowed with a finite symmetric generating
set S. Assume that X is a G-set, that is a set endowed with a G-action. We define
the growth function of the action as

volG,X(n) = max
x∈X

|BG,S(n)x|.
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Here BG,S(n) denotes the ball of radius n in the Cayley graph of (G,S). We
note that this definition does note require the action to be transitive and, as a
consequence, it remains well defined and decreases when passing to subgroups, in
the sense that volH,X(n) � volG,X(n) for every finitely generated subgroup of G.
In particular the study of this invariant can be used to rule out the existence of
embeddings between groups.

It is clear that the function volG,X(n) is bounded above by the word of the group
G, but many groups admit faithful actions with much smaller growth. For example
non-abelian free groups admit faithful actions with volG,X(n) ≃ n (the slowest
possible behaviour for a faithful action of an infinite group), and the same holds
true for many other examples of groups. This raises the question whether there are
interesting obstructions on certain (classes of) groups G to admit faithful actions
of small growth. A basic example of this phenomenon are groups with property
(T ), for which it is well known that every faithful G-set X has exponential growth.

In this work we study the (non)-existence of faithful actions of small growth for
finitely generated solvable groups. A first result concerns solvable groups of finite
Prüfer rank, a class of groups which includes all polycyclic groups and all solvable
groups which are linear over the field Q of rational numbers. For such groups we
have the following.

Theorem. If G is a finitely generated solvable group of finite Prüfer rank, then
every faithful G-set satisfies volG,X(n) ≃ exp(n).

This phenomenon fails for more general solvable groups: there are example
of solvable groups of exponential growth which admit faithful actions of poly-
nomial growth. For example the lamplighter groups G = (Z/mZ) ≀ Zd admit
faithful actions with volG,X(n) ≃ nd, while G = Z ≀Zd admit faithful actions with
volG,X(n) ≃ nd+1. For such wreath products, we show that these growth functions
are optimal, in the sense that every faithhful G-set X satisifies volG,X(n) � nd for
G = (Z/mZ) ≀ Zd and volG,X(n) � nd+1 for G = Z ≀ Zd. This is in fact a special
case of a phenomoenon that holds for arbitrary metabelian groups. In fact for a
metabelian group G, we establish a general lower bound on the growth of faithful
G-sets in terms of the Krull dimension of G. The latter is a classical invariant
of commutative rings which was introduced in the setting of metabelian groups
by Cornulier, and further exploited by Jacoboni. More precisely we prove the
following.

Theorem. Let G be a finitely generated metabelian group which is not virtually
abelian, and suppose that G has Krull dimension d. Then for every faithful G-set
X we have volG,X(n) � nd.

We note that there are many finitely generated solvable group which admit
faithful G-sets X whose growth satisfies the extreme behaviour volG,X(n) ≃ n.
Trivial examples are virtually abelian groups, but there are also examples of ex-
ponential growth, such as the lamplighter group G = (Z/mZ) ≀ Z. Nevertheless
the following results show that this behaviour is forbidden in many situations.
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Theorem. Let G be finitely presented metabelian group. Then either G is virtually
abelian or volG,X(n) � n2 for every faithful G-set.

Theorem. Let G be a finitely generated torsion free solvable group. Assume that
G is metabelian, or alternatively that it is linear over a field. Then either G is
virtually abelian or volG,X(n) � n2 for every faithful G-set.

We conjecture that the previous result should hold for arbitrary torsion-free
solvable groups.

Conjecture. Let G be a finitely generated solvable torsion-free group. Then either
G is virtually abelian or volG,X(n) � n2 for every faithful G-set.

We show that the conjecture is true if we restrict to transitive actions, and more
generally to actions with finitely many orbits.

A crucial notion in the proof of the previous result is the one of expanding subset
of a group. We say that a subset Σ of G is expanding if for every faithful G-set,
and every finite subset of ∆ ⊂ Σ, there exists a point x ∈ X such that the map
g 7→ gx is injective on ∆. If Σ is expanding, then the Schreier graph of the action
of G on X contains isometrically embedded copies of every finite subset of Σ.
This of course can be used to bound from below the growth of faithful G-set, and
also other geometric invariants such as the asymptotic dimension of the Schreier
graph. Expanding subsets are tightly related to confined subgroups, which are
the subgroups of a group G whose conjugacy class does not accumulate to the
identity subgroup in the Chabauty space Sub(G). The proofs or the previous
results are all based on the identification of good expanding subsets in the groups
under consideration.
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Noncommutative dynamics of lattices in higher rank simple
algebraic groups

Cyril Houdayer

(joint work with Uri Bader, Rémi Boutonnet)

In this talk, I present a noncommutative Nevo-Zimmer theorem for actions of
(lattices in) higher rank simple algebraic groups on von Neumann algebras [1].
This extends to the realm of algebraic groups defined over arbitrary local fields
the noncommutative Nevo-Zimmer theorem we obtained with Rémi Boutonnet in
2019 for real Lie groups [5].

I then discuss two applications of the above theorem for lattices in higher rank
simple algebraic groups. The first application deals with the dynamics of positive
definite functions and unitary representation theory. The second application is a
noncommutative analogue of Margulis’ factor theorem.
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We use the following notation throughout. Let k be any local field, that is, k
is a nondiscrete locally compact field. Let G be any almost k-simple connected
algebraic k-group such that rankk(G) ≥ 2. We denote by P < G a minimal
parabolic k-subgroup.

Examples. For every n ≥ 3, G = SLn is an absolutely almost simple connected
algebraic k-group such that rankk(G) = n − 1 ≥ 2. Moreover, we can choose
the minimal parabolic k-subgroup P <G to be the subgroup of upper triangular
matrices.

Denote by G = G(k) and P = P(k) the groups of k-points. We have G/P =
(G/P)(k). We endow G/P with its unique G-invariant measure class. Let Γ < G
be any lattice, that is, Γ < G is a discrete subgroup with finite covolume. Then
we simply say that Γ < G is a higher rank lattice.

Examples. Let n ≥ 3. Here are examples of higher rank lattices:

• SLn(Z) < SLn(R);
• SLn(Z[i]) < SLn(C);
• SLn(Fq[t

−1]) < SLn(Fq((t))) where q = pr, r ≥ 1 and p is a prime.

Before stating our main result, we need to introduce some operator algebraic
terminology. Let M be any von Neumann algebra and Γ y M any action by
automorphisms. We say that Γ y M is ergodic if the fixed point von Neumann
subagebra MΓ ⊂M is trivial. Then we say that M is an ergodic Γ-von Neumann
algebra. Let Θ : M → L∞(G/P ) be any Γ-equivariant faithful normal unital
completely positive (ucp) map. Then we say that Θ : M → L∞(G/P ) is a Γ-
boundary structure.

Note that the action Γ y G/P is amenable and ergodic. Fix a probability
measure νP ∈ Prob(G/P ) in the unique G-invariant measure class.

Examples. We provide two examples of Γ-boundary structures.

(1) Let Γ y X be any minimal action on a compact metrizable space. Since
Γ y G/P is amenable, there exists a Γ-equivariant measurable map β :
G/P → Prob(X). By duality, we obtain a Γ-equivariant ucp map Θβ :
C(X) → L∞(G/P ). Letting ν = νP ◦Θβ, we may extend Θβ to obtain a
Γ-boundary structure Θ : L∞(X, ν) → L∞(G/P, νP ).

(2) Let π : Γ → U (Hπ) be any unitary representation and set A := C∗
π(Γ) =

C∗(π(Γ)). Since Γ y G/P is amenable, there exists a Γ-equivariant mea-
surable map β : G/P → S(A). By duality, we obtain a Γ-equivariant ucp
map Θβ : A → L∞(G/P ). Letting ϕ = νP ◦ Θβ , we may extend Θβ to
obtain a Γ-boundary structure Θ : πϕ(A)

′′ → L∞(G/P, νP ).

Our main result is the following noncommutative analogue of Nevo-Zimmer’s
structure theorem for stationary actions of higher rank simple Lie groups on stan-
dard measure spaces [10].

Theorem ([1, 5]). Let Γ < G be any higher rank lattice. Let M be any ergodic
Γ-von Neumann algebra and Θ : M → L∞(G/P ) any Γ-boundary structure. The
following dichotomy holds:
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• Either Θ(M) = C1.
• Or there exist a proper parabolic k-subgroup P < Q < G and a Γ-
equivariant unital normal embedding ι : L∞(G/Q) →֒ M such that Θ ◦
ι : L∞(G/Q) →֒ L∞(G/P ) is the canonical normal embedding, where
Q = Q(k).

A few comments are in order. Our main theorem extends Nevo-Zimmer’s struc-
ture theorem in two ways. Firstly, we deal with Γ-actions rather than G-actions.
Secondly, we deal with arbitrary (noncommutative) von Neumann algebras. In
the case when k = R, the above theorem was proved in [5]. It was generalized in
[1] to arbitrary local fields k.

Our first application deals with the dynamics of the space of positive definite
functions. Denote by P(Γ) ⊂ ℓ∞(Γ) the weak-∗ compact convex set of all normal-
ized positive definite functions on Γ endowed with the affine conjugation action
Γ y P(Γ). A fixed point for this action is called a character. We denote by
Char(Γ) ⊂ P(Γ) the weak-∗ closed convex subset of all characters.

Theorem ([1, 5]). Let Γ < G be any higher rank lattice.

(1) Let C ⊂ P(Γ) be any nonempty Γ-invariant weak-∗ closed convex subset.
Then C contains a character.

(2) The group Γ is character rigid in the sense that for any extremal charac-
ter ϕ ∈ Char(Γ), either ϕ is supported on the center Z (Γ) or its GNS
representation πϕ is finite dimensional.

Assume moreover that G has trivial center.

(3) For any weakly mixing unitary representation π : Γ → U (Hπ), the left
regular representation λ : Γ → U (ℓ2(Γ)) is weakly contained in π, that is,
the map π(Γ) → λ(Γ) : π(γ) 7→ λ(γ) extends to a unital ∗-homomorphism
C∗

π(Γ) → C∗
λ(Γ). Moreover, C∗

π(Γ) has a unique trace and a unique maxi-
mal proper ideal.

(4) For any minimal action by homeomorphisms Γ y X on a compact metriz-
able space, either X is finite or Γ y X is topologically free.

Items (1) and (2) strengthen Margulis’ celebrated normal subgroup theorem [9,
Theorem IV.4.9] and character rigidity results by Bekka [3], Creutz-Peterson [6]
and Peterson [11]. Item (3) gives a far reaching generalization of the simplicity and
the unique trace property of the reduced C∗-algebra C∗

λ(Γ) by Bekka-Cowling-de
la Harpe [4]. Item (4) provides a topological analogue of a result by Stuck-Zimmer
[12] and gives a positive answer to a recent problem due to Glasner-Weiss [7].

Our second main application deals with the structure of intermediate von Neu-
mann subagebras L(Γ) ⊂ M ⊂ L(Γ y G/P ). Here L(Γ y G/P ) denotes the
group measure space von Neumann algebra associated with the ergodic action
Γ y G/P . Our next result can be regarded as a noncommutative analogue of
Margulis’ factor theorem [9, Theorem IV.2.11].
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Theorem ([1]). Let Γ < G be any higher rank lattice. Assume that G has trivial
center. Let L(Γ) ⊂ M ⊂ L(Γ y G/P ) be any intermediate von Neumann sub-
algebra. Then there exists a unique parabolic k-subgroup P < Q < G such that
M = L∞(Γ y G/Q), where Q = Q(k).

It is well known that there are exactly 2rankk(G) intermediate parabolic k-
subgroups P < Q < G. The above theorem implies that the inclusion of von
Neumann algebras L(Γ) ⊂ L(Γ y G/P ) retains rankk(G). Thus, our result sheds
some new light on Connes’ rigidity conjecture which asks whether the group von
Neumann algebra L(Γ) retains rankk(G).

We refer the reader to [2] and to the ICM survey [8] for further results regarding
noncommutative ergodic theory of higher rank lattices.
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Almost finite actions and classifiable crossed products

Petr Naryshkin

After several decades of work by many people, the classification program for C∗-
algebras recently culminated in the following theorem (see [2]).

Theorem. Unital simple separable nuclear Z-stable C∗-algebras satisfying the
UCT are classified by their Elliott invariant (which consists of K-theoric and tra-
cial data).
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Moreover, the result is optimal: every possible Elliott invariant can be realized
within this class (and thus “classifiable” C∗-algebras are ones that satisfy the
conditions of the Theorem). One of the main sources of examples of C∗-algebras
are crossed products of topological dynamical systems, and it has been a long
standing problem in the field to find sufficient conditions under which they are
classifiable ([17, 6, 14, 13, 18, 19]). For free minimal topological systems G y X
with G an amenable discrete group and X is a compact metrizable space, the
crossed product C(X)⋊G automatically satisfies all the classifiability assumptions
except for Z-stability (and, in fact, these dynamical conditions are very close to
being necessary). Thus, from now on we only consider systems satisfying the above
conditions and it remains to determine which of them give rise to Z-stable crossed
products.

To address this problem in full generality, Kerr introduced the purely dynamical
notion of almost finiteness [10], and proved that it’s sufficient to imply Z-stability
of the crossed product. This notion is a topological version of the Ornstein-Weiss
tiling theorem (for actions) and asks for an existence of disjoint open “towers” in
the space such that: (i) they are parameterized by sufficiently invariant Følner
sets, (ii) the remainder is small in a strong sense, and (iii) the diameters of all the
tower levels are small. In a joint work with Szabó [12] he proved that an action
is almost finite if and only if it has the small boundary property and comparison
(the latter roughly states that if one set is smaller than the other with respect
to all invariant measures, it is also smaller combinatorially). We’re now ready to
state the expected answer to the question of Z-stability of a crossed product.

Conjecture. For a system Gy X the following are equivalent:

(1) Gy X has the small boundary property,
(2) Gy X is almost finite,
(3) the crossed product C(X)⋊G is classifiable.

As explained above, the implications (2) ⇒ (1) and (2) ⇒ (3) are known in
all cases. While the implication (3) ⇒ (1) is interesting and there has been some
progress ([8], [9]), in this talk we concentrate on the results showing almost finite-
ness for certain classes of actions. So far, most of the work in this direction has
been done under the assumption that the space X is zero-dimension. We mention
here the three results which are the best available to our knowledge (assuming that
dim(X) = 0): Conley–Jackson–Kerr–Marks–Seward–Tucker-Drob showed [3] that
a generic action of any countable amenable group is almost finite, Downarowicz
and Zhang proved [5] that all actions of groups with locally subexponential growth
have comparison (and are therefore almost finite), and Kerr and the author [11]
have shown that actions of elementary amenable groups are almost finite. In
fact, the latter two results can be generalized to the case dim(X) < ∞ (which is
still a significantly stronger assumption than having the small boundary property)
since Kerr and Szabó [12] also showed that if all actions of a group G on zero-
dimensional spaces are almost finite, then all actions of G on spaces with finite
covering dimension are almost finite.
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Much less is known about the case when X is infinite-dimensional (and the
action G y X still has the small boundary property). The earliest result in that
situation is one of Elliott and Niu [7], where they show implication (1) ⇒ (3) for
G = Z using the theory of subhomogeneous C∗-algebras (and completely bypassing
(2)). However, in a surprising turn of events, it has recently been observed that
the comparison property mentioned above is in many cases automatic: for G = Zd

first in a weaker form by Niu [16] and then in a stronger form by Bosa, Perera,
Wu and Zacharias [1], and for G a finitely generated group of polynomial growth
by the author. Thus, combined with the result of Kerr and Szabó, when G is a
group of polynomial growth, (1) implies (2).
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Ergodic theorems along trees

Jenna Zomback

(joint work with Anush Tserunyan)

The classical pointwise ergodic theorem, whose first instance dates back to Birkhoff
[1], states that for any ergodic measure-preserving transformation T : X → X on

a standard probability space (X,µ) and f ∈ L1(X,µ), limn→∞
1
n

∑n−1
k=0 f(T

kx) =∫
f dµ for a.e. x ∈ X .
In general, an ergodic measure-preserving action of a countable (discrete) semi-

groupG on a standard probability space (X,µ) is said to have the pointwise ergodic
property along a sequence (Fn) of finite subsets of G, if for every f ∈ L1(X,µ),
for µ-a.e. x ∈ X ,

lim
n→∞

1

|Fn|

∑

g∈Fn

f(g · x) =

∫
f dµ.

It is a celebrated theorem of Lindenstrauss [4] that the pointwise ergodic prop-
erty is true for the pmp actions of all countable amenable groups along tempered
Følner sequences and this was extended by Butkevich in [3] to all countable left-
cancellative amenable semigroups.

Amenability, or rather the fact that the Følner sets Fn are almost invariant, is
essential for the pointwise ergodic property as it ensures that the limit of averages
is an invariant function. This is why, to obtain a version of the pointwise ergodic
property for nonamenable (semi)groups, e.g. for the nonabelian free groups Fr,
one has to imitate the almost invariance of finite sets by taking weighted averages
instead, so that the weight of the boundary is small. One of the most general
results in this vein is due to Bufetov [2] which applies to pmp actions of a free
semigroup on a finite set I. It states, for any L1 function, the convergence (to
the conditional expectation of f) of weighted ergodic averages taken over the balls
I≤n ..=

∑
k≤n I

k. The weights are assigned to the finite words in I by a Markov
chain on I.

We prove the following new pointwise ergodic theorem for pmp actions of free
groups, vastly strengthening the conclusion of [2]: we replace balls by arbitrary
finite subtrees of the standard Cayley graph. However, unlike [2], our theorem is
only for groups (not semigroups) and for a more restrictive class of Markov chains.

Theorem 1 (Pointwise ergodic along trees [5]). Let Fr be the free group on r <∞
generators and let Fr y (X,µ) be a (not necessarily free) ergodic pmp action of Fr.
Let I be the standard symmetric set of generators of Fr and let m be a stationary
Markov measure on the set of finite words in I whose support is Fr (the set of
reduced words). For every f ∈ L1(X,µ),

1

m(S)

∑

w∈S

f(w · x)m(w) →

∫
f dµ as m(S) → ∞, for a.e. x ∈ X,

where S ⊆ Fr ranges over all finite subtrees of the (left) Cayley graph of Fr con-
taining the identity.
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The limit in this theorem is not taken over a single sequence, but rather over
the set of all trees, which means that for any sequence (Sn) of (not necessarily
increasing/coherent) trees with m(Sn) → ∞, the limit is equal to

∫
f dµ. Taking

Sn to be the ball of radius n in Fr gives the conclusion of [2].
The main result underlying Theorem 1 is a backward pointwise ergodic theorem

for a pmp Borel transformation T (Theorem 2), where the averages are taken along
trees of possible pasts (in the direction of T−1). Although T is pmp, the induced
orbit equivalence relationET is not pmp, unless T is one-to-one, so the averages are
weighted according to the corresponding Radon–Nikodym cocycle w : ET → R+.

Theorem 2 (Backward pointwise ergodic along trees [5]). Let (X,µ) be a standard
probability space and let T : X → X an ergodic aperiodic countable-to-one pmp
Borel transformation. Let ET denote the induced orbit equivalence relation and let
w : ET → R+, (x, y) → wy(x), the Radon–Nikodym cocycle of ET with respect to
µ. For every f ∈ L1(X,µ),

1

wx(Sx)

∑

y∈Sx

f(y)wx(y) →

∫
f dµ as wx(Sx) → ∞ for a.e. x ∈ X,

where Sx ranges over all (possibly infinite) subtrees of the graph of T of finite
height rooted at x and directed towards x, and wx(Sx) .

.=
∑

y∈Sx
wx(y).

Thus, while the classical pointwise ergodic theorem for T says that to approxi-
mate

∫
f dµ, we can start almost anywhere in the space and walk forward in time

(in the direction of T ), Theorem 2 allows us to walk back in time (in the direction
of T−1) scanning sufficiently heavy trees of possible pasts. Note that Theorem 2
implies the classical (forward) pointwise ergodic theorem for one-to-one transfor-
mations T when applied to T−1. We obtain Theorem 1 by applying Theorem 2 to
a specific choice of T .

Theorem 2 implies, in particular, convergence of the w-weighted averages along
any sequence (Sn) of subtrees with w(Sn) → ∞. When these trees Sn have
bounded height to w-weight ratio (i.e. are “bushy”), we in addition prove Lp

convergence of these averages for all p ≥ 1. An obvious example of such a sequence
of “bushy” trees is that of complete trees of height n, i.e. Sn

..=
⋃

i<n T
−i(x), and

we now state this important special case.

Corollary (Backward pointwise ergodic along complete trees [5]). Let (X,µ) be
a standard probability space and let T : X → X an ergodic aperiodic countable-
to-one pmp Borel transformation. Let ET denote the induced orbit equivalence
relation and let w : ET → R+, (x, y) → wy(x), the Radon–Nikodym cocycle of ET

with respect to µ. For every f ∈ L1(X,µ),

1

n+ 1

n∑

i=0

∑

y∈T−i(x)

f(y)wx(y) →

∫
f dµ as n→ ∞ for a.e. x ∈ X,

Furthermore, for any 1 ≤ p < ∞, if f ∈ Lp(X,µ), we also have convergence to∫
f dµ in the Lp norm.
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Entropy, asymptotic pairs, and topological Markov properties

Hanfeng Li

(joint work with Sebastian Barbieri, Felipe Garcia-Ramos)

The talk is based on results in [1]. Let Γ y X be a continuous action of a
countably infinite discrete group Γ on a compact metrizable space X , and let ρ be
a compatible metric of X .

Let k ≥ 2 be an integer. A tuple (x1, . . . , xk) ∈ Xk is called asymptotic or
homoclinic if max1≤i<j≤k ρ(sxi, sxj) → 0 as s → ∞. Denote by Ak(Γ y X) the
set of all asymptotic k-tuples.

The group Γ is called amenable if there is a sequence {Fn} of nonempty finite

subsets of Γ such that |sFn∆Fn|
|Fn|

→ 0 as n→ ∞ for every s ∈ Γ. Such a sequence is

called a left Følner sequence. When Γ is amenable, one has the topological entropy
htop(Γ y X) ∈ [0,∞] defined as follows. For any finite open cover U of X , denote
by N(U) the minimal cardinality of subcovers of U . For finite open covers U and
V of X , the joint U ∨V is the cover {U ∩V : U ∈ U , V ∈ V}. Given any finite open
cover U of X , the limit limn→∞

1
|Fn|

logN(
∨

s∈Fn
s−1U) ∈ [0, |U|] exists and does

not depend on the choice of the left Følner sequence {Fn}. Then htop(Γ y X) is
defined as the supremum of such limits for U ranging over finite open covers of X .

The integral group ring ZΓ is the set of all finitely supported functions f :
Γ → Z. We write f formally as

∑
s∈Γ fss, where fs ∈ Z for each s ∈ Γ and

fs = 0 except for finitely many s. The addition and multiplication of ZΓ are
give by

∑
s∈Γ fss +

∑
s∈Γ gss =

∑
s∈Γ(fs + gs)s and

(∑
s∈Γ fss

)(∑
t∈Γ gtt

)
=∑

s,t∈Γ fsgt(st) respectively.
The action Γ y X is said to be algebraic if X is a compact metrizable abelian

group and Γ acts on X via continuous automorphisms [13, 8]. Given an alge-

braic action Γ y X , there is a unique left ZΓ-module structure on X̂ satisfying

(sϕ)(sx) = ϕ(x) for ϕ ∈ X̂, x ∈ X and s ∈ Γ. Here the Pontryagin dual X̂ of X
is the countable abelian group consisting of all continuous group homomorphisms
X → R/Z. In fact, this yields a natural one-to-one correspondence between iso-
morphism classes of algebraic actions of Γ and isomorphisms classes of countable
left ZΓ-modules.
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When Γ y X is algebraic and Γ is amenable, the topological entropy htop(Γ y

X) coincides with the measure-entropy hµX
(Γ y X) for the normalized Haar

measure µX of X [5], thus we shall denote this comment value by h(Γ y X).
The action Γ y X is said to be expansive if there is some c > 0 such that

sups∈Γ ρ(sx, sy) > c for all distinct x, y ∈ X . For expansive algebraic actions

Γ y X , the left ZΓ-module X̂ is finitely generated [13].
The question we investigate here is the relation between positive topological en-

tropy and the existence of non-diagonal asymptotic pairs. Blanchard-Host-Ruette
[3] showed that for Γ = Z, if htop(Γ y X) > 0, then there are non-diagonal pairs
which are positively asymptotic, i.e. distinct x, y ∈ X satisfying ρ(sx, sy) → 0
as s → +∞. On the other hand, Lind and Schmidt constructed an example of
an algebraic action Z y X with positive entropy but no non-diagonal asymptotic
pairs [9]. These motivate the following question:

Question. Assume that Γ is amenable and that Γ y X is an expansive algebraic
action. Is is true that h(Γ y X) > 0 if and only if there are non-diagonal
asymptotic pairs?

The “if” part is relatively easy. It was proven by Lind-Schmidt for Γ = Zd [9]
and by Chung-Li in general [4].

The “only if” part is much more subtle. It was proven by Lind-Schmidt for
Γ = Zd [9] and by Chung-Li for the case ZΓ is left Noetherian [4]. A unital ring R
is called left Noetherian if every left ideal of R is finitely generated. The group Γ
is called polycyclic-by-finite if there is a finite sequence of subgroups Γ = Γ1⊲Γ2⊲

· · ·⊲Γn = {e} such that Γj/Γj+1 is either finite or cyclic for every j = 1, . . . , n−1.
It is known that when Γ is polycyclic-by-finite, ZΓ is left Noetherian [7], and it is a
long-standing conjecture that the converse holds. On the other hand, Meyerovitch
showed that the “only if” part fails for some abelian group Γ [12].

The new tool we use to study Question is the following notion. For any K ⊆ Γ
and x, y ∈ X , put ρK(x, y) = sups∈K ρ(sx, sy).

Definition. We say Γ y X has the strong topological Markov property (strong
TMP) if for any ε > 0 there are δ > 0 and a finite set F ⊆ Γ containing the
identity element e such that for any finite set A ⊆ Γ and any x, y ∈ X with
ρFA\A(x, y) ≤ δ, there is some z ∈ X satisfying ρFA(x, z) ≤ ε and ρΓ\A(y, z) ≤ ε.

For any nonempty finite set Λ, one has the full shift action Γ y ΛΓ given by
(sx)t = xs−1t for x ∈ ΛΓ and s, t ∈ Γ. A closed Γ-invariant subset of ΛΓ is called
a subshift. In the case of subshifts, the strong TMP can be described as follows.

Proposition. Let X ⊆ ΛΓ be a subshift. Then Γ y X has the strong TMP if
and only if there is some finite set F ⊆ Γ containing e such that for any finite set
A ⊆ Γ and any x, y ∈ X with x = y on AF \ A the element z ∈ ΛΓ satisfying
z|A = x|A and z|Γ\A = y|Γ\A lies in X.

The strong TMP for subshifts described as above was introduced by Gromov [6,
Section 8.C] and called splicable, and independently by Barbieri-Gómez-Marcus-
Taati [2].
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Let k ≥ 2 be an integer. The independence density of a k-tuple (U1, . . . , Uk) of
subsets of X is the largest q ≥ 0 such that for every nonempty finite set F ⊆ Γ
there is some K ⊆ F with |K| ≥ q|F | so that for every map σ : K → {1, . . . , k}
one has

⋂
s∈K s−1Uσ(s) 6= ∅. A tuple (x1, . . . , xk) ∈ Xk is called an IE-tuple, or

IE-pair when k = 2, if for any neighborhood Ui of xi for i = 1, . . . , k, the tuple
(U1, . . . , Uk) has positive independence density. Denote by IEk(Γ y X) the set of
all IE-k-tuples. When Γ is amenable, htop(Γ y X) > 0 if and only if there are
non-diagonal IE-pairs [8, Theorem 12.19].

Theorem. Suppose that Γ is amenable and that Γ y X is expansive and has the
strong TMP. Then IEk(Γ y X) ⊆ Ak(Γ y X) for every k ≥ 2. In particular, if
htop(Γ y X) > 0, then there are non-diagonal asymptotic pairs.

For any positive integers m,n and a ∈Mm,n(CΓ), the von Neumann dimension
dimvN kera of the kernel ker a of the bounded linear operator (ℓ2(Γ))n → (ℓ2(Γ))m

sending z to az is defined as
∑n

j=1 〈Pδe,j , δe,j〉 ∈ [0, n], where P is the orthogonal

projection (ℓ2(Γ))n → ker a and δs,j for s ∈ Γ and j = 1, . . . , n are the canonical
orthonormal basis of (ℓ2(Γ))n. The group Γ is said to satisfy the strong Atiyah
conjecture if dimvN ker a lies in the subgroup of Q generated by 1/|H | for H rang-
ing over finite subgroups of Γ [11]. The strong Atiyah conjecture fails for the
lamplighter group (Z/2Z) ≀ Z. So far there is no counterexample for the strong
Atiyah conjecture in the case there is an upper bound on the orders of finite sub-
groups. The strong Atiyah conjecture holds for elementary amenable groups with
an upper bound on the orders of finite subgroups [10] and left-orderable amenable
groups.

Theorem. Suppose that Γ is amenable and that Γ y X is an expansive algebraic
action. Assume further that at least one of the following conditions holds:

(1) ZΓ is left Noetherian;
(2) Γ satisfies the strong Atiyah conjecture, there is an upper bound on the

orders of finite subgroups of Γ, and X̂ is a finitely presented left ZΓ-module.

Then Γ y X has the strong TMP. Consequently, the “only if” part of Question
holds for Γ y X.

References
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On treeings arising from Baumslag-Solitar groups

Yoshikata Kida

For integers 2 ≤ p ≤ q, the Baumslag-Solitar (BS) group BS(p, q) is defined by the
presentation

BS(p, q) = 〈 a, t | tapt−1 = aq 〉.

This group was introduced by Baumslag-Solitar and is today known to have inter-
esting features in various contexts. We study these groups in orbit equivalence.

Let G be a countable group and G y (X,µ) a probability-measure-preserving
(p.m.p.) action on a standard probability space. Given such two actions G y

(X,µ), H y (Y, ν), we say that they are orbit equivalent (OE) if there exists a
measure space isomorphism f : (X,µ) → (Y, ν) such that f(Gx) = Hf(x) for a.e.
x ∈ X . We say that two countable groups G, H are OE if they have free p.m.p.
actions which are OE.

We are interested in whether BS(p, q) and BS(p′, q′) are OE or not for distinct
(p, q) and (p′, q′). In [4], we introduced the flow associated to a free p.m.p. action
BS(p, q) y (X,µ) and proved that the isomorphism class of the flow is an OE
invariant among actions of BS groups. This implies that BS(p, q) and BS(r, r) are
not OE if 2 ≤ p < q. However the flow is not enough to distinguish other distinct
BS groups up to OE (see [3] for some results toward this direction under assuming
ergodicity for the action of some subgroups).

Let G = BS(p, q) and let m : G → R+ be the modular homomorphism defined
by m(a) = 1 and m(t) = q/p. Given a free p.m.p. action Gy (X,µ), we have the
cocycle log ◦m : G×X → R, (g, x) 7→ log(m(g)). The flow associated to the action
G y (X,µ), mentioned above, is defined as the Mackey range of this cocycle. In
[4], we showed that not only the range of the cocycle but also the kernel is an OE-
invariant. Namely, we proved the following: Let G = BS(p, q) and H = BS(p′, q′),
denote by mG and mH the modular homomorphisms for G and H , respectively,
and suppose that G and H are OE. Then kermG and kermH are OE.

My talk is focused on the OE class of kerm. My main result is stated as follows:
If 2 ≤ p < q, then kerm is OE to Z×F∞, where F∞ is the free group of countably
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infinite rank. Thus looking at only kerm is not enough to distinguish BS groups
up to OE, unfortunately.

The group kerm has the following presentation:

〈 an (n ∈ Z) | aqn = apn+1 〉,

where an corresponds to tnat−n ∈ G. In other words, kerm is the amalgamated
free product of a bi-infinite sequence of copies of Z, where two successive Z’s are
amalgamated over the subgroups qZ, pZ.

There are two ingredients in the proof of the main result. One is normal sube-
quivalence relations and quotient groupoids, introduced by Feldman-Sutherland-
Zimmer [1]. Another is Gaboriau’s induction argument for treeings [2].

For some action Gy (X,µ), letting G and E be the orbit equivalence relations
of the actions of G and E = 〈a〉, respectively, we can show that E is normal in G
(while E is not normal in G). We then construct a treeing of the quotient groupoid
G/E . Here we mean by a treeing a measurable bundle of trees such that the vertex
set of each tree is a fiber of the range map of G/E . This construction is the first
step toward the proof of the main result. Details will appear in [5].
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Characterizing orbit equivalence via invariant measures: a new proof
of a theorem of Giordano, Putnam and Skau

Julien Melleray

(joint work with Simon Robert)

Given two homeomorphisms ϕ, ψ of the Cantor space X = {0, 1}N, one says that
ϕ and ψ are orbit equivalent if the equivalence relations induced by the associated
Z-actions are isomorphic. More precisely: ϕ and ψ are orbit equivalent iff there
exists a homeomorphism g of X such that

∀x, y ∈ X (∃n ∈ Z ϕn(x) = y) ⇔ (∃m ∈ Z ψm(g(x)) = g(y))

Denote by M(ϕ) the set of all Borel probability measures on X which are ϕ-
invariant. It is straightforward to check that if g witnesses that ϕ and ψ are orbit
equivalent then {g∗µ : µ ∈ M(ϕ)} = M(ψ). A remarkable result of Giordano,
Putnam and Skau asserts that the converse implication holds.
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Theorem (Giordano–Putnam–Skau [1]). Assume that ϕ, ψ are minimal home-
omorphisms of the Cantor space such that there exists g ∈ Homeo(X) satisfying
{g∗µ : µ ∈M(ϕ)} =M(ψ). Then ϕ and ψ are orbit equivalent.

This result is somewhat mysterious, in particular because it is quite possible to
have M(ϕ) = M(ψ) even though the relations induced by ϕ and ψ are distinct
(one may even be strictly coarser than the other). The original proof of this result
used some homological algebra; since then other arguments were proposed, but
(to the author of this abstract at least) the underlying phenomenon was still quite
hard to grasp. We propose a new approach, based on an improvement of a theorem
of Krieger [4].

Given a minimal homeomorphism ϕ of X , its topological full group is

[[ϕ]] = {g ∈ Homeo(X) : ∃n1, . . . , nk ∈ Z ∀x ∈ X ∃i g(x) = ϕni(x)}

We will also make use of the full group [ϕ], that is, the group of all homeomor-
phisms of X which map each ϕ-orbit onto itself.

Fix x ∈ X , denote O+(x) = {ϕn(x) : n ≥ 0} and let

Γx(ϕ) =
{
g ∈ [[ϕ]] : g(O+(x)) = O+(x)

}

This is a countable, locally finite group, and the orbits under the action of Γx(ϕ)
are almost the same as those of ϕ: the orbit of x splits in two pieces (the positive
and negative semi-orbits of x) and all the other orbits are the same.

Using a lemma due to Glasner and Weiss [3], the aforementioned theorem of
Giordano, Putnam and Skau can be reformulated as the statement that, whenever
ϕ and ψ are minimal homeomorphisms of X such that [ϕ] and [ψ] are conjugated
subgroups of Homeo(X), the full groups [ϕ] and [ψ] are themselves conjugated
(note that an orbit equivalence between ϕ and ψ is the same thing as a homeo-
morphism g of X such that g[ϕ]g−1 = [ψ]).

It is then quite interesting to observe that a theorem of Krieger [4] implies that
for any two minimal homeomorphisms ϕ, ψ of X and any x, y ∈ X , assuming that
Γx(ϕ) and Γy(ψ) are conjugated implies that Γx(ϕ) and Γy(ψ) are conjugated.

Say that a minimal homeomorphism ϕ is saturated if for some (eq., for any)

x ∈ X one has Γx(ϕ) = [ϕ]. Given the close relationship between the Γx(ϕ) orbits
and the ϕ-orbits, it is possible (using an improvement on Krieger’s theorem which
we describe below in a bit more detail) to prove that, if ϕ and ψ are saturated
minimal homeomorphisms of X such that M(ϕ) = M(ψ) then ϕ and ψ are orbit
equivalent. In other words, one can prove the Giordano-Putnam-Skau theorem
in the particular case of saturated minimal homeomorphisms using a variation
on Krieger’s theorem, whose proof is based on a relatively simple back-and-forth
argument.

To obtain the full result, it is then enough to prove that any minimal homeo-
morphism is orbit equivalent to a saturated minimal homeomorphism; we achieve
this by a careful construction of Kakutani-Rokhlin partitions. Since this part is
quite technical (hopefully it can be simplified, though we do not know how), I will
say no more on this here, though it is interesting to note that our variation on
Krieger’s theorem also plays a key role in this part of our argument.



146 Oberwolfach Report 3/2022

To close this abstract, we explain this variation, which seems to us to be our
main new contribution. Following Krieger [4], say that a subgroup of Homeo(X)
is ample if it satisfies the following conditions:

• Γ is countable and locally finite.
• Γ is a full group (i.e. whenever U1, . . . , Un are a clopen partition of X and
g ∈ Homeo(X) is such that for all i g coincides with some γi ∈ Γ on Ui,
then g ∈ Γ)

• For all γ ∈ Γ the set {x ∈ X : γ(x) = x} is clopen.

Using our notations from above, any Γx(ϕ) is ample; actually, any ample subgroup
of Homeo(X) acting minimally can be realized as a Γx(ϕ) for some x ∈ X and
some minimal ϕ ∈ Homeo(X).

Given a minimal ample group Γ, and a closed subset K of X , say that K is
Γ-sparse if K intersects each Γ-orbit in at most one point. Here is a statement of
our improvement on Krieger’s theorem.

Theorem (Melleray-Robert). Assume that Γ is a minimal ample subgroup of
Homeo(X), and that K,L are two Γ-sparse closed subsets of X. Assume also
that h : K → L is a homeomorphism. Then there exists g ∈ Homeo(X) such that
gΓg−1 = Γ and g|K = h.

This is already interesting, and useful, in the case where K and L both consist
of two points belonging to distinct Γ-orbits. It can be seen as a strong homogeneity
statement on the quotient space X/Γ. Using this result, we are also able to recover
some absorption theorems in a elementary way, which are particular cases of results
from [2], [5].

The interested reader may consult the preprint [6] for a detailed discussion.
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The geography of the space of subgroups

Alessandro Carderi

(joint work with Damien Gaboriau, François Le Mâıtre, Yves Stalder)

Let Γ be a countable group. The space of subgroups Sub(Γ) of Γ is a compact
subset of the Cantor space {0, 1}Γ on which Γ acts continuously by conjugation.
The Cantor-Bendixson theorem gives us a partition of the compact set Sub(Γ) =
C ⊔ K such that C is countable and K is either empty or perfect. Moreover this
decomposition is Γ-invariant. It is hard to find what this decomposition is for a
general groups, however there are some explicit examples:

• for every group which have countably many subgroups Sub(Γ) = C;
• for Γ = F2, we have that K consists in the subset of infinite index sub-
groups;

• Sub(F∞) = K.

The topology on C can be somewhat understood with the Cantor-Bendixson
rank of the space. Whenever the space K is not empty, it is a Cantor space.
We are interested in the question of whether the action of Γ on it is topologically
transitive or if there are some open invariant subsets. In the case of the Baumslag-
Solitar group we can prove the following theorem.

Theorem (Carderi-Gaboriau-Le Mâıtre-Stalder). Denote by Γ the Baumslag-
Solitar group BS(2, 3) = 〈b, t : tb2t−1 = b3〉. Then

• K consists in the subset of infinite index subgroups;
• K = ∪nAn∪A∞ where An is Γ-invariant open not closed and A∞ is closed
not open;

• for each n 6= ∞, A∞ admits a unique closed Γ-invariant subset consisting
of a point;

• for each n ≤ ∞, the action of Γ on An is topologically transitive.

Bounded Harmonic Functions on Linear Groups

Joshua Frisch

(joint work with Anna Erschler)

Given a countable group G and a probability measure µ we define a function from
G→ R be µ-harmonic if f(k) = Σg∈Gf(kg)µ(g). The main question we are inter-
ested in answering is for which pairs G,µ there exist non-constant bounded har-
monic functions. We will assume for the rest of this abstract that the µ discussed
are non-degenerate (meaning that their support generates G as a semi-group).
The first main result in this direction is that for any non-amenable group there
are always non-trival bounded harmonic functions [1]. The converse of this state-
ment was eventually proved by Kaimanovich and Vershik [2] and Rosenblatt [3]
who showed that for any amenable group there exist a measure with only trivial
harmonic functions.
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For finitely supported measures, however, the situation is much more subtle.
We still do not have a clear characterization of when the boundary is trivial is
when it is non-trivial. In work in progress with Anna Erschler we give a complete
characterization (which is somewhat too technical to be properly included in this
report) for the case of linear groups over fields of positive characteristic. We
also give partial results over fields of characteristic 0. The following theorem is
representative of the results we obtain.

Theorem. Let G be an amenable finitely generated linear group over K a field of
transcendence degree at most 1 or of positive characteristic and degree 2. Let µ
be a symmetric finitely supported measure on G then all µ harmonic functions are
constant.

We remark that the above results are sharp. For fields F of transcendence degree
at least 3 or degree at least 2 in characteristic 0 there exist a finitely generated
amenable linear group GF over F and a finitely supported symmetric µ on G such
that the bounded µ-harmonic functions are not all constants.

This report is based on work supported by NSF Grant 2102838.
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Amenability, proximality and higher order syndeticity

Matthew Kennedy

(joint work with Sven Raum, Guy Salomon)

We show that the universal minimimal proximal flow and the universal minimal
strongly proximal flow of a discrete group can be realized as the Stone spaces of
translation invariant Boolean algebras of subsets of the group satisfying a higher
order notion of syndeticity. We establish algebraic, combinatorial and topological
dynamical characterizations of these subsets that we use to obtain new necessary
and sufficient conditions for strong amenability and amenability. We also char-
acterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and
Zucker.
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Constructing equivariant maps to free (and almost free) subshifts

Anton Bernshteyn

We investigate certain combinatorial problems arising from the study of the dy-
namics of countable group actions. To set the stage, let Γ be a countably infinite
(discrete) group and let q be a positive integer. We follow the standard convention
and identify q with the q-element set {0, 1, . . . , q − 1} equipped with the discrete
topology. By a q-coloring of a set S we simply mean a mapping S → q. The shift
action Γ y qΓ of Γ on the product space qΓ of all q-colorings of Γ is given by

(γ · x)(δ) := x(δγ), for all x ∈ qΓ and γ, δ ∈ Γ.

We are particularly interested in free actions of Γ, i.e., actions Γ y X such that
Stab(x) = {1} for all x ∈ X , where Stab(x) denotes the stabilizer of x and 1 is
the identity element of Γ. Note that the shift action Γ y qΓ is not free; however,
when q ≥ 2, its free part Free(qΓ) := {x ∈ qΓ : Stab(x) = {1}} is a dense Gδ set.

Given an action Γ y X , there is a natural one-to-one correspondence between
equivariant maps X → qΓ and q-colorings of X . Specifically, given a q-coloring
f : X → q, we define a map πf : X → qΓ via

(πf (x)) (γ) := f(γ · x), for all x ∈ X and γ ∈ Γ.

We call πf the coding map of f . Conversely, for every equivariant map π : X → qΓ,
there is a unique q-coloring f : X → q with π = πf , namely f = (x 7→ (π(x))(1)).
We can now analyze q-colorings of X according to the dynamical properties of
their coding maps. For example, we can introduce the following definition:

Definition 1 (Aperiodic and hyper-aperiodic colorings). Let Γ y X be an action
of Γ. We say that a q-coloring f : X → q is:

• aperiodic if πf (X) ⊆ Free(qΓ);
• hyper-aperiodic if the topological closure of πf (X) is included in Free(qΓ).

Theorem 1 (Seward–Tucker-Drob [6]). Every free Borel action Γ y X on a
Polish space X admits a Borel hyper-aperiodic 2-coloring f : X → 2.

Our goal is to strengthen Theorem 1 by adding extra combinatorial constraints
on f . The general class of combinatorial constraints we will be considering is
introduced in the next pair of definitions:

Definition 2 (Subshifts of finite type). A subshift is a closed subset S ⊆ qΓ

invariant under the shift action. A subshift S is of finite type if there exist a finite
set W ⊂ Γ, called a window, and a family Φ ⊆ qW of q-colorings of W such that

S = {x ∈ qΓ : (γ · x)|W ∈ Φ for all γ ∈ Γ}.

For brevity, we use the acronym SFT to mean “subshift of finite type.”

Definition 3 (S-colorings). Let Γ y X be an action of Γ and let S ⊆ qΓ be an
SFT. An S-coloring of X is a q-coloring f : X → q such that πf (X) ⊆ S.
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As a motivating example, let F ⊂ Γ be a finite subset such that 1 6∈ F and
F = F−1. The Cayley graph of Γ corresponding to F is the graph G(Γ, F ) with
vertex set Γ and edge set {{γ, σγ} : γ ∈ Γ, σ ∈ F}. More generally, for an action
Γ y X , the Schreier graph G(X,F ) has vertex set X and edge set {{x, σ · x} :
x ∈ X, σ ∈ F}. Recall that a proper q-coloring of a graph G is a function
f : V (G) → q such that f(x) 6= f(y) whenever the vertices x and y are adjacent
in G. The following observation exemplifies the relationship between SFTs and
combinatorial problems:

Observation 1. Let Col(F, q) denote the set of all proper q-colorings of the Cayley
graph G(Γ, F ). Then Col(F, q) is an SFT, and a Col(F, q)-coloring of an action
Γ y X is the same thing as a proper q-coloring of the Schreier graph G(X,F ).

The question of the existence of proper q-colorings of Schreier graphs is a subject
of intense study (see [3, 5] for surveys of some relevant results). In particular, we
have the following:

Theorem 2 (Kechris–Solecki–Todorcevic [4, Proposition 4.6]). Let F ⊂ Γ be a
finite set such that 1 6∈ F and F = F−1. Set d := |F |. Let Γ y X be a free Borel
action of Γ on a Polish space X. Then the Schreier graph G(X,F ) admits a Borel
proper (d+ 1)-coloring.

In view of Theorems 1 and 2, it is natural to ask whether, in the setting of
Theorem 2, there exists a Borel aperiodic (or even hyper-aperiodic) proper (d+1)-
coloring of G(X,F ). Our main result yields an affirmative answer and in fact
provides a general sufficient condition that guarantees the existence of Borel hyper-
aperiodic S-colorings, for a given SFT S:

Theorem 3 (Bernshteyn [2]). Let S ⊆ qΓ be an SFT and let f : Free(kΓ) → q
be a continuous S-coloring, for some k ≥ 2. Set π := πf and suppose that no
non-identity element of Γ fixes every point in π(Free(kΓ)). Then every free Borel
action Γ y X of Γ on a Polish space X admits a Borel hyper-aperiodic S-coloring.

Corollary 1 (Bernshteyn [2]). Let F ⊂ Γ be a finite set such that 1 6∈ F and
F = F−1. Set d := |F |. Let Γ y X be a free Borel action of Γ on a Polish space
X. Then the graph G(X,F ) admits a Borel hyper-aperiodic proper (d+1)-coloring.

Proof. By Theorem 3, it suffices to construct, for some k ≥ 2, a continuous proper
(d + 1)-coloring f of the graph G(Free(kΓ), F ) such that no non-identity group
element fixes every point in the image of πf . For k = 3, this can be achieved by a
modification of the proof of Theorem 2; for details, see [2, §2.4]. �

It is particularly easy to apply Theorem 3 in the case when Γ has no non-trivial
finite normal subgroups. Indeed, for an equivariant map π : Free(kΓ) → qΓ, let
Stab(π) be the set of all group elements that fix every point in π(Free(kΓ)). We
then have the following:

Proposition 1 ([2, Proposition 1.3]). Let π : Free(kΓ) → qΓ be a non-constant
continuous equivariant map. Then Stab(π) is a finite normal subgroup of Γ.
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Corollary 2. Let S ⊆ qΓ be an SFT. Assume that:

• Γ has no non-trivial finite normal subgroups, and
• for some k ≥ 2, Free(kΓ) admits a non-constant continuous S-coloring.

Then every free Borel action Γ y X of Γ on a Polish space X admits a Borel
hyper-aperiodic S-coloring.

It is possible to further generalize Theorem 3 to construct Borel S-colorings
that are, in some sense, as close to being hyper-aperiodic as one can hope:

Theorem 4 (Bernshteyn [2]). Let S ⊆ qΓ be an SFT and let f : Free(kΓ) → q be
a continuous S-coloring, for some k ≥ 2. Set π := πf . Then there exists a subshift
S ′ ⊆ S with the following properties:

• the stabilizer of every point in S ′ is precisely Stab(π);
• every free Borel action Γ y X of Γ on a Polish space X admits a Borel
equivariant map X → S ′.

The proofs of our results rely on combinatorial methods, in particular on the
continuous version of the Lovász Local Lemma developed in [1].

We conclude with a couple of open problems.

Problem 1. Is there a version of Theorem 3 that only needs f to be Borel (rather
than continuous)?

The difficulty with Problem 1 is that it is not even clear what the right statement
of the desired result should be. It is certainly not enough to simply replace the word
“continuous” by “Borel” in the statement of Theorem 3—some further assumptions
are necessary. Perhaps the following concrete question can serve as a test for our
understanding of this problem:

Problem 2. Let S ⊆ qΓ be an SFT and let f : Free(kΓ) → q be a Borel aperiodic
S-coloring. Must exist a Borel hyper-aperiodic S-coloring of Free(kΓ) as well?
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Measurable combinatorics in hyperfinite graphs

Matt Bowen

(joint work with Gabor Kun and Marcin Sabok; Felix Weilacher; Antoine Poulin
and Jenna Zomback)

Given a Polish space (X, τ) with Borel probability µ, a Borel graph on X is a
graph G with vertex set V (G) = X and edge set E(G) ⊆ X2 a Borel set. Such
graphs arise naturally in many contexts, such as Schreier graphs of group actions,
limits of finite graphs, dynamics, etc. [10].

A natural question is which results from finite combinatorics have analogues
’definable’ (i.e., Borel, µ-measurable, τ -Baire measurable) counterparts for Borel
graphs. In this talk, the most relevant notion is that of the definable edge chro-
matic numbers. More specifically, the Borel edge chromatic number of a Borel
graph, χ′

B(G), is the smallest cardinal κ so that G admits Borel proper edge col-
oring using κ colors. The Baire measurable edge chromatic number, χ′

BM (G), is
the minimum of χ′

B(G ↾ C), where C varies over τ -comeagre G-invariant Borel
sets, and similarly the µ-measurable chromatic number, χ′

BM (G), which is just
χ′
B(G ↾ C), where C varies over µ-conull G-invariant Borel sets.
The study of these parameters was begun in [7], where it was shown that the

greedy upper bound χ′
B(G) ≤ 2∆(G) − 1 holds, while the irrational rotation

graph, Gα, gives a simple example of a 2-regular acylic graph where 2 = χ′(Gα) <
χ′
B(Gα) = χµ(Gα) = χBM (Gα) = 3. Constructions of Marks in [9] show that the

greedy bound cannot always be improved, even in the acyclic case, in stark contrast
with Kőnig’s theorem that χ′(G) = ∆(G) for finite bipartite graphs. In the special
case of µ-preserving graphs better positive results are known: Csóka, Lippner, and
Pikhurko showed that bipartite µ-invariant graphs satisfy χ′

µ(G) ≤ ∆(G)+1 in [5],
and this was recently improved by Pikhurko and Greb́ık to work for not necessarily
bipartite graphs in [6], matching the optimal general bound in the finite case due to
Vizing. However, outside of the pmp measurable setting few other general results
seem to have been known.

In this talk we discuss several new results of a similar flavor for hyperfinite
graphs, which in many cases gave the first improvement on the bound of 2∆(G)−1
originally proved in [7]. The first of these is the following version of Kőnig’s
theorem:

Theorem (B., Weilacher [4]). Let G be a bipartite Borel graph with maximum
degree ∆(G). Then χ′

BM (G) ≤ ∆(G)+1. If G is µ-hyperfinite then χ′
µ(G) satisfies

the same bound.

For non-bipartite graphs, Mark’s question [9] regarding the Baire measurable
version of Vizing’s theorem remains open. While the bounds we can show are
still far from resolving this, we can prove a bound on the Baire measurable edge
chromatic number of multigraphs that comes close to the optimal bound in the
finite setting due to Shannon:
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Theorem (B. [1]). Every Borel multigraph with maximum degree ∆(G) satisfies

χ′
BM (G) ≤ ⌈

3∆(G)

2
⌉+ 6.

The same bound holds for χ′
µ if G is µ-null preserving and hyperfinite.

We are also able to use similar ideas to obtain results on definable matchings for
one-ended Borel graphs. (A connected graph G is one-ended if G−F has at most
one infinite connected component for any finite subgraph F, and a Borel graph is
one-ended if each of its connected components is. Natural examples include the
Cayley graph of any finitely generated amenable group of superlinear growth). In
particular, we show the following:

Theorem (B., Kun, Sabok [2] for measure, and B., Poulin, and Zomback [3] for
Baire measure). Let G be a regular degree one-ended bipartite Borel graph. Then
G admits a Borel perfect matching on an invariant comeagre Borel set. If G is
µ-hyperfinite and measure preserving then the same holds for an invariant conull
set.

The above, together with earlier work of Lyons and Nazarov [8], allows us to
characterize which bipartite Cayley graphs admit factor of iid perfect matchings:

Theorem (B., Kun, Sabok [2]). Let Γ be a finitely generated group.

• If Γ is isomorphic to Z ⋉∆ for a finite normal subgroup ∆ of odd order,
then no bipartite Cayley graph of Γ admits a factor of iid perfect matching
a.s.

• Else, if Γ is not isomorphic to Z⋉∆ for a finite normal subgroup ∆ of odd
order, then every bipartite Cayley graph of Γ admits a factor of iid perfect
matching a.s.
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Maximal pronilfactors and a topological Wiener-Wintner theorem

Yonatan Gutman

(joint work with Zhengxing Lian)

In recent years there has been an increase in interest in pronilfactors both for
measure-preserving systems (m.p.s.) and topological dynamical systems (t.d.s.).
Pronilfactors of a given system are either measurable or topological (depending
on the category) factors given by an inverse limit of nilsystems. A t.d.s. (m.p.s.)
is called a topological (measurable) d-step pronilsystem if it is a topological (mea-
surable) inverse limit of nilsystems of degree at most d. In the theory of measure
preserving systems (X,X , µ, T ) maximal measurable pronilfactors appear in con-
nection with the L2-convergence of the nonconventional ergodic averages

(1)
1

N

∑
f1(T

nx) . . . fk(T
knx)

for f1, . . . , fk ∈ L∞(X,µ) ([1, 2]). In the theory of topological dynamical systems
maximal topological pronilfactors appear in connection with the higher order re-
gionally proximal relations ([3, 4, 5]).

When a system possesses both measurable and topological structure, it seems
worthwhile to investigate pronilfactors both from a measurable and topological
point of view. A natural meeting ground are strictly ergodic systems - mini-
mal topological dynamical systems (X,T ) possessing a unique invariant measure
µ. For k ∈ Z let us denote by (Zk(X),Zk(X), µk, T ) respectively (Wk(X), T ) the
maximal k-step measurable respectively topological pronilfactor of (X,T ). Clearly
(Wk(X), T ) has a unique invariant measure ωk. We thus pose the question when
is (Wk(X),Wk(X), ωk, T ) isomorphic to (Zk(X),Zk(X), µk, T ) as m.p.s.? We call
a t.d.s. which is strictly ergodic and for which (Wk(X),Wk(X), ωk, T ) is iso-
morphic to (Zk(X),Zk(X), µk, T ) as m.p.s., a CF-Nil(k) system. Note that
(Wk(X),Wk(X), ωk, T ) is always a measurable factor of (Zk(X),Zk(X), µk, T ).
At first glance it may seem that CF-Nil(k) systems are rare however a theorem by
Benjamin Weiss regarding topological models for measurable extensions implies
that every ergodic m.p.s. is measurably isomorphic to a CF-Nil(k) system.

We give two characterizations of CF-Nil(k) systems. The first characteriza-
tion is related to the Wiener-Wintner theorem while the second characterization
is related to k-cube uniquely ergodic systems - a class of topological dynamical
systems introduced in [6]. The Wiener-Wintner theorem ([7]) states that for an
ergodic system (X,X , µ, T ), for µ-a.e. x ∈ X , any λ ∈ S1 and any f ∈ L∞(µ),
the following limit exists:

(2) lim
N→∞

1

N

N∑

n=1

λnf(T nx)

Denote by MT ⊂ S1 the set of measurable eigenvalues of (X,X , µ, T ). Let Pλf be
the projection of f to the eigenspace corresponding to λ (in particular for λ /∈MT ,
Pλf ≡ 0). For fixed λ ∈ S1, one can show (2) converges a.s. to Pλf .
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For topological dynamical systems one may investigate the question of every-
where convergence in the Wiener-Wintner theorem. In [8], Robinson proved that
for an uniquely ergodic system (X,µ, T ), for any f ∈ C(X), if every measurable
eigenfunction of (X,X , µ, T ) has a continuous version then the limit (2) converges
everywhere. He noted however that if Pλf 6= 0 for some λ ∈ MT , then the con-
vergence of (2) is not uniform in (x, λ), since the limit function Pλf(x) is not
continuous on X × S1 as MT is countable. Moreover Robinson constructed a
strictly ergodic system (X,T ) such that (2) does not converge for some continuous
function f ∈ C(X), some λ ∈ C and some x ∈ X .

The first main result of this article is the following theorem:

Theorem 1. Let (X,T ) be a minimal system. Then for k ≥ 0 the following are
equivalent:

(I). (X,T ) is a CF-Nil(k) system.
(II). For any k-step nilsequence {a(n)}n∈Z, any continuous function f ∈ C(X)

and any x ∈ X,

lim
N→∞

1

N

N∑

n=1

a(n)f(T nx)

exists.

We remark that the direction (I)⇒(II) of Theorem 1 follows from [9] whereas
the case k = 1 of Theorem 1 follows from [8, Theorem 1.1]. As part of the proof
of Theorem 1 we established a fundamental property for pronilsystems:

Theorem 2. Let (Y, ν, T ) be a minimal (uniquely ergodic) k-step pronilsystem.
Then

(I). (Y, ν, T ) is measurably coalescent, that is, if π : (Y, ν, T ) → (Y, ν, T ) is a
measurable factor map, then π is a measurable isomorphism, and

(II). (Y, T ) is topologically coalescent, that is, if Φ : (Y, T ) → (Y, T ) is a topo-
logical factor map, then Φ is a topological isomorphism.

As part of the the theory of higher order regionally proximal relations, Host,
Kra and Maass introduced in [3] the dynamical cubespaces Cn

T (X) ⊂ X2n , n ∈
N := {1, 2, . . .}. These compact sets enjoy a natural action by the Host-Kra cube
groups HKn(T ). According to the terminology introduced in [6], a t.d.s. (X,T ) is

called k-cube uniquely ergodic if (Ck
T (X),HKk(T )) is uniquely ergodic. The third

main result of this article is the following theorem:

Theorem 3. Let (X,T ) be a minimal t.d.s. Then the following are equivalent for
any k ≥ 0:

(I). (X,T ) is a CF-Nil(k) system.
(II). (X,T ) is (k + 1)-cube uniquely ergodic.

We remark that the implication (I) ⇒ (II) follows from [10].
In the context of various classes of strictly ergodic systems, several authors

have investigated the question of whether every measurable eigenfunction has a
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continuous version. Famously in [11], Host established this is the case for admis-
sible substitution dynamical systems. In [12, Theorem 27] an affirmative answer
was given for strictly ergodic Toeplitz type systems of finite rank. In [13], the
continuous and measurable eigenvalues of minimal Cantor systems were studied.
It is easy to see that for strictly ergodic systems (X,T ) the condition that every
measurable eigenfunction has a continuous version is equivalent to the fact that
(X,T ) is CF-Nil(1). Thus Theorem 3 provides for strictly ergodic systems a new
condition equivalent to the property that every measurable eigenfunction has a
continuous version. Namely this holds iff (C2

T (X),HK2(T )) is uniquely ergodic.
As the last condition seems quite manageable one wonders if this new equivalence
may turn out to be useful in future applications.
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A closed subgroup of the homeomorphism group of the circle with
property (T)

Bruno Duchesne

The Zimmer program aims to understand actions of lattices of semi-simple Lie
groups on compact manifolds. The simplest compact manifold is without any
doubt the circle since it is the unique connected compact manifold of dimension 1.

So, actions of lattices of semi simple Lie groups on the circle attracted some
attention in the last decades. It was recently proved by Deroin and Hurtado that
higher rank lattices can act by homeomorphisms on the circle only via a finite
group. This puts an end to different previous work like the ones of Witte-Morrins
and Ghys.

Since higher rank lattices have Property (T) and this rigidity property is often
thought as an obstruction to act on one dimensional objects. Ghys ask if there
are groups with Property (T) acting non-elementarily on the circle. Here a non
elementary action is an action without invariant probability measure. Margulis
proved some “Tits alternative” in this case: an action of a group G by homeomor-
phisms on the circle is elementary or G contains a non-abelian free group.

The question about groups with Property (T) was implicitly asked for discrete
groups but Property (T) is a topological property and Homeo(S1) is topological
group with the compact-open topology. So, one can ask if there are interesting
topological groups with Property (T) acting on the circle.

Let us recall that a topological group G has Property (T) if there is a pair
(K, ε) where K ⊂ G is compact and ε > 0 such that for any continuous unitary
representation π on some some Hilbert H, if there is a unit vector u ∈ H such that
||π(g)u− u|| < ε for any g ∈ K then there is an invariant unit vector.

This is a topological group property and some non-locally compact group like
the group of all permutation of an infinite countable set (endowed with the point-
wise convergence topology) have this topology. In fact, the group Homeo(S1) itself
has this property but it is a void property since there no non-trivial irreducible
unitary representation for this group.

The idea of this work is to exhibit a closed topological group of Homeo(S1) that
has this property and has a very large dual. For example, there is a faithful unitary
representation and infinitely many non isomorphic unitary representations.

This group is constructed using homeomorphisms of dendrites. Let us recall
that a dendrite is a compact connected locally connected metrizable space with
the property that any two points are joined by a unique arc (i.e. the image of an
injective continuous maps from the unit interval.).

The link with the circle is given by the Carathéodory loop. Any dendrite can be
embedded in the plane and there is a Riemann mapping between the complement
of the unit disk in the plane and the complement of the dendrite since both are
simply connected. In this particular case, this map extends to the boundaries and
gives the so-called ”Carathéodory loop” S1 → D where D in a dendrite.

Choosing well D and a subgroup G < Homeo(D), one can lift the action Gy D
and find the group with the desired properties.
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Orbit equivalence and wreath products

Konrad Wróbel

(joint work with Robin Tucker-Drob)

Two groups are said to be orbit equivalent if they admit essentially free probability
measure preserving (p.m.p.) actions on standard probability spaces that generate
isomorphic orbit equivalence relations.

Our first main theorem is an antirigidity result in the nonamenable setting. Fix
a wreath product group Λ≀Γ = (

⊕
Γ Λ)⋊Γ and fix an essentially free ergodic p.m.p.

action Λ y Z. Define the wreath product action Λ ≀ Γ y ZΓ by ((f, γ) · x)(δ) =
f(γ−1δ) · x(γ−1δ). It is easy to see that when Λ is amenable, this action does not
depend on the initial action Λ y Z up to orbit equivalence.

Theorem 1. Let Γ be a countable group that contains an infinite amenable group
as a free factor. The wreath product actions of A ≀Γ and B ≀Γ are orbit equivalent
for all nontrivial (possibly finite) amenable groups A,B.

This is most interesting in the case when at least one of the groups A or B
is finite, since if A and B are both infinite amenable groups, then they are orbit
equivalent by Ornstein-Weiss, so a simple direct argument shows that A ≀ Γ and
B ≀ Γ are also orbit equivalent.

Theorem 1 In particular implies Cn ≀F2 is orbit equivalent to Cm ≀F2, where F2

is the free group on 2 generators and Ck is the cyclic group of order k. This was
previously unknown, although a consequence of work of Bowen implies that the
group von Neumann algebras L(Cn ≀ F2) and L(Cm ≀ F2) are isomorphic[1].

We can strengthen this result via several nice tricks to get the following corollary.

Corollary. Let Γ be a countable group that contains an infinite amenable group
as a free factor, and let A and B be amenable groups.

(1) The groups Λ ≀ Γ and (Λ × A) ≀ Γ are orbit equivalent for every nontrivial
group Λ.

(2) If Λ0 and Λ1 are nontrivial groups such that Λ0×A and Λ1×B are measure
equivalent, then Λ0 ≀ Γ and Λ1 ≀ Γ are orbit equivalent.

In particular, if Λ0 and Λ1 are nontrivial groups which are measure equivalent,
then Λ0 ≀ Γ and Λ1 ≀ Γ are orbit equivalent.

We prove Theorem 1 by showing the canonical wreath product actions are orbit
equivalent. By contrast, we also show the following rigidity.

Theorem 2. If Γ is a sofic Bernoulli superrigid group with no nontrivial finite
normal subgroups and A and B are amenable groups of different cardinalities, then
the wreath product actions of A ≀ Γ and B ≀ Γ are not stably orbit equivalent.
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Cardinal algebras and invariant measures

Ruiyuan Chen

Tarski’s 1949 theory of cardinal algebras [8] is an axiomatic approach to “con-
structive” aspects of cardinal arithmetic. A cardinal algebra A = (A,+, 0,

∑
)

consists of a commutative monoid (A,+, 0) together with an infinite addition oper-
ation

∑
: AN → A, required to obey four simple axioms. Examples are [0,∞] with

the usual addition; cardinal numbers (under a weak form of the axiom of choice,
e.g., countable dependent choice); and the algebra of countable equidecomposition
types in a measurable space under a group action or equivalence relation.

As a concrete instance of this last example, fix a standard Borel space X and
countable Borel equivalence relation E ⊆ X2 (i.e., with countable equivalence
classes). Two Borel sets A,B ⊆ X are called E-equidecomposable, denoted

A ∼E B,

if there is a Borel bijection f : A ∼= B with graph contained in E. If E is induced
by the Borel action of a countable group Γ y X , then this is equivalent to the
existence of countable Borel partitions A =

⊔
nAn and B =

⊔
nBn and group

elements γn ∈ Γ such that γn · An = Bn. The quotient set

K(E) := {Borel sets ⊆ X}/∼E

forms a cardinal algebra under union of pairwise disjoint representative Borel sets,
modulo the fact that it may not be possible to pick such pairwise disjoint represen-
tatives in general; this can be worked around by replacing (X,E) with its “ampli-
fication” (X×N, E×N2), or equivalently by considering Borel maps X → N⊔{∞}
instead of Borel sets. The algebraic structure of K(E) conveniently captures many
combinatorial properties of countable Borel equivalence relations [2], and has re-
cently seen several applications to Borel and measurable combinatorics [5, 6].

A main reason behind the fruitfulness of the theory of cardinal algebras has been
the large collection of general results Tarski [8] and later authors proved from the
four basic axioms. Indeed, these results suggest that all “natural” properties of
the particular algebra [0,∞] seem to hold in all cardinal algebras. We prove the
following precise form of this idea:

Theorem. Every cardinal algebra A obeys all countable universal axioms that hold
in all powers [0,∞]X of [0,∞], i.e., all axioms of the form

∀~xφ(~x)

where ~x is a countable list of variables, and φ(~x) is a quantifier-free infinitary
first-order statement over those free variables, built using countable

∧
,
∨
,¬.

The proof is “model-theoretic”, by showing that A embeds into such a power
[0,∞]X . In fact, we prove the result for a broader class of algebras, called reg-
ular positive σ-DCPO-monoids, which includes all cardinal algebras but is
itself axiomatized by certain universal axioms (in an extended language includ-
ing a partial order ≤ and countable directed suprema) known to follow from the
non-universal axioms of cardinal algebras. Similar embedding theorems have been
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shown by Wehrung [11] in a context with only finite addition, as well as Tix [9] un-
der the additional domain-theoretic assumption of continuity. Our result replaces
these assumptions with the algebraic condition of countable presentability (via
countably many generators and relations):

Theorem. Every countably presented regular positive σ-DCPO-monoid embeds
into a power [0,∞]X , in fact into the subalgebra of Borel maps X → [0,∞], for
some standard Borel space X.

The proof passes through point-free topology/descriptive set theory (otherwise
known as locale theory) [3], specifically Vickers’ theory of valuation locales [10].
In fact, the most general form of the result is formulated entirely in the point-free
context and is independent of countability restrictions, which only enter via the
known correspondence between countably presented topologies and quasi-Polish
spaces [4]. The previously stated result follows due to the countability restriction
on the universal axioms.

By applying our main result to the algebra K(E) defined above, we obtain a
quick proof of Nadkarni’s classical theorem [1, 4.5] which states (in one equivalent
formulation) that for any countable Borel equivalence relation E and two Borel
sets A,B, A is E-equidecomposable with a Borel subset of B iff every E-invariant
measure µ has µ(A) ≤ µ(B). Moreover, by suitably modifying the algebra K(E),
we also recover B. Miller’s [7] quasi-invariant version of Nadkarni’s theorem, where
equidecomposability is defined with scaling by a Borel cocycle E → (0,∞).
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On invariant random orders

Frank Lin

(joint work with Yair Glasner, Tom Meyerovitch)

All groups we consider are countable. An invariant random order (IRO) on a
countable group Γ is an invariant probability measure on the space of all total
orders on that group, viewed as a subspace of the product space 2Γ×Γ with Γ
acting by diagonal left-shift. The notion of an IRO generalizes the classical notion
of a left-invariant order on a group (see [2] for background). To our knowledge
early authors who considered IROs include Stepin, Tagi-Zade [6], and Kieffer [5].
Other authors have also applied IROs in the study of entropy theory.

In contrast to the deterministic case, every group has an invariant random order
by independently giving every group element a number uniformly randomly from
the unit interval. In particular torsion, which is an obstruction to left-orderability,
is not an obstruction in the case of IROs.

On the question of extendability, it is known in the deterministic case that
every left-invariant partial order on any torsion-free locally nilpotent group has an
extension to a total order [3]. Examples of non-extendable partial orders can be
found in [4].

We say that a group has the IRO-extension property if every invariant random
partial order on the group can be extended to an invariant random (total) order.
It is known that all amenable groups have the IRO-extension property. In our talk
we present an example, inspired by work from Witte [7], showing that SL3(Z) does
not have the IRO-extension property, answering a question of Alpeev, Meyerovitch,
and Ryu [1]. The example is in fact the deterministic partial order ≺0 associated
with the semigroup generated by the following unipotent matrices

(1)

a1 =



1 1 0
0 1 0
0 0 1


 a2 =



1 0 1
0 1 0
0 0 1


 a3 =



1 0 0
0 1 1
0 0 1




a4 =



1 0 0
1 1 0
0 0 1


 a5 =



1 0 0
0 1 0
1 0 1


 a6 =



1 0 0
0 1 0
0 1 1




.

As with Witte, our proof uses the commutator relations of unipotent elements
and ideas related to a group element being infinitely larger than another element.
We show that the set of total orders extending ≺0, though not necessarily empty,
is weakly wandering in a dynamical sense and thus cannot support any invariant
probability measure. The following open question remains: does there exist a non-
amenable group with the IRO-extension property? If the answer is negative then
the IRO-extension property would be another characterization of amenability.

Our upcoming paper includes other results and questions not presented in the
talk.
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Allosteric actions for surface groups

Matthieu Joseph

The aim of this talk is to compare two notions of freeness for actions of countable
groups. A minimal ergodic action of a countable group Γ is an action by home-
omorphisms on a compact Hausdorff space C, which is minimal (every orbit is
dense), with an ergodic Γ-invariant probability measure on C. A minimal ergodic
action is

• topologically free if the set of points with trivial stabilizer is comeager,
• essentially free if the set of points with trivial stabilizer is conull.

Essential freeness implies topological freeness, but the converse is false in general.
A minimal ergodic action which is topologically free but not essentially free is called
allosteric. A group which admits allosteric actions is called allosteric. There are
several reasons for a group Γ not to be allosteric. They are related to the dynamics
of Γ on its Chabauty space, which is the space Sub(Γ) of subgroups of Γ, on which
Γ acts by conjugation. For instance, if Sub(Γ) is countable, then one can show
that Γ is not allosteric. Similarly, if the only ergodic Invariant Random Subgroups
(IRS) of Γ are atomic, then Γ is not allosteric. Here, an IRS is a Γ-invariant
probability measure on Sub(Γ).

In the survey [3, Prob. 7.3.3], Grigorchuk, Nekrashevych and Suschanskii asked
whether allosteric group exists. The first examples of allosteric groups are due to
Bergeron and Gaboriau: if Γ and Λ are two residually finite, nontrivial groups,
then the free product Γ ∗Λ is allosteric (except if Γ and Λ are both isomorphic to
the cyclic group of order two), see [2]. A similar result was proved independently
for free groups by Abért and Elek [1]. In the talk, we explain the main result of
[4]: the fundamental group of any hyperbolic closed surface is allosteric.
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