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Introduction by the Organizers

After having had a meeting being cancelled in April 2020 due to Covid-19, we were
very happy to now be able to realize a hybrid workshop with 17 participants being
physically present. We explored topics in all areas of set theory, and the group of
17 were filled with joy from discussing mathematics again face to face.

At the pure end of set theory, there have been breakthroughs e.g. in the theory
of forcing over determinacy models as well as in the study of large cardinal axioms
in the absence of the axiom of choice.

Sargsyan reported on a Pmax type of construction of a model satisfying a conse-
quence of the Proper Forcing Axiom (PFA) from surprisingly weak large cardinal
hypotheses. This might open the door for building such models for even stronger
such consequences or maybe even all of PFA. Goldberg reported on large cardinals
which cannot exist in ZFC (a topic which recently saw a strong revival). A large
cardinal concept that was introduced quite a while ago but that now gains a lot
of attention again is “Berkeley cardinals.” Schlutzenberg analyzed (in joint work
with Steel) the exact extent of determinacy in ω-small mice.
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Viale’s talk was on a topic that was inspired by the result of Asperó-Schindler
according to which Woodin’s Pmax axiom (∗) follows from Martin’s Maximum++

(MM++). He collects sophisticated arguments which support the view that the
Continuum Hypothesis (CH) is false.

Dobrinen reported on important progress on the infinite dimensional Ramsey
theory for Fräıssé structures. Džamonja gave an account of her joint work with
Buhagiar on sufficient conditions on the paracompactness of box products.

Still in the realm of pure set theory, Hamkins gave insights into the bi-inter-
pretability of weak set theories. Jackson, in joint work with Chan and Trang, lifted
results concerning the continuity and monotonicity of certain functions to bigger
cardinals by replacing determinacy arguments by arguments using the strong parti-
tion property. Mildenberger addressed the exciting problem of perfect tree forcings
at singular (rather than regular) cardinals.

Prikry forcing is mostly relevant in the theory of cardinal arithmetic. Poveda
(in joint work with Rinot and Sinapova) presents a general framework of versions
of Prikry forcings with an eye on applications on compactness and incompactness
results. Sakai studies an extension of Jensen’s Subcomplete Forcing Axiom which
produces a variant of Jensen’s diamond principle. Wilson further explores the
exciting area of virtual large cardinals. Zapletal presents methods to be able to
obtain challenging independence results about chromatic numbers of graphs on
Euclidean spaces. Zeman gave a proof related to the distributivity of iterations of
club shooting posets.

Bridging set theory with abstract topology, Rinot addressed the (still open)
question in in ZFC there is a Dowker space of size ℵ1. He obtained an amazing
variety of combinatorial insights related to this problem.

At the applied end of set theory, there were talks in the very active areas of
descriptive set theory as well as group theory.

Gao gave a survey of known results about omnigenous groups, and prove that
there are continuum many pairwise non-isomorphic, omnigenous, universal count-
able locally finite groups. Foreman presented an anti-classification result for
a program initiated by Smale. He showed that no Borel map from the Ck-
diffeomorphisms of compact manifolds to a Polish space gives complete invariants
for the equivalence relation of conjugacy-by-homeomorphims. Kwiatkowsa demon-
strated that finite connected graphs with confluent epimorphism form a projective
Fräıssé class and she investigated the continuum obtained as the topological re-
alization of the projective Fräıssé limit. Sabok characterizes hyperfinite bipartite
graphings that admit measurable perfect matchings.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Infinite dimensional Ramsey theory of homogeneous structures: a

progress report

Natasha Dobrinen

In their seminal 2005 paper, Kechris, Pestov and Todorcevic [3] asked for the
development of infinite dimensional Ramsey theory for Fräıssé structures. A step
in this direction was begun in Dobrinen’s 2019 [2] paper proving a Galvin-Prikry
style theorem for a topological space of subcopies of the Rado graph. We have
recently extended this line of work to a class of homogeneous structures with
relations of arity at most two satisfying a certain amalgamation property.

Let K be a Fräıssé class and let K denote its Fräıssé limit. Then K is homo-

geneous, meaning that any isomorphism between two finite induced substructures
of K extends to an automorphism of K. The Galvin-Prikry theorem states that
Borel subsets of the Baire space are Ramsey, meaning that if X ⊆ [N]ω is Borel,
then there is some infinite subset M ⊆ N such that either [M ]ω ⊆ X or else
[M ]ω ∩ X = ∅. To develop infinite dimensional Ramsey theory on homogeneous
structures, we start by letting N be the universe of K and identifying the collec-
tion of subcopies of K with the subspace of the Baire space determined by their
universes.

The Substructure Free Amalgamation Property (SFAP) and its disjoint amal-
gamation version (SDAP) were developed recently in work of Coulson, Dobrinen,
and Patel [1] and shown to guarantee big Ramsey degrees which have a sim-
ple characterization in terms of diagonal antichains in coding trees of 1-types.
That work gave a uniform approach to prior results of Devlin, Laflamme–Sauer–
Vuksanovic, Laflamme-Nguyen Van Thé–Sauer, and others, as well as exact big
Ramsey degrees for new homogeneous structures. Known results on big Ramsey
degrees imply that any hope for infinite dimensional structural Ramsey theory
must restrict to subcopies of K with the same similarity type.

We prove that for a homogeneous structure K with finitely many relations
of arity at most two and satisfying SFAP, given a diagonal antichain D in the
coding tree of 1-types for K, the Baire space of all subcopies of K induced by
similarity copies of D have the property that all Borel subsets have the Ramsey
property. Furthermore, we answer a question of Todorcevic asked at the 2019
Luminy meeting, showing that a Nash-Williams style corollary recovers the exact
big Ramsey degrees. We also present some preliminary results for the wider class
of SDAP+ structures.

References

[1] Coulson, R., Dobrinen, N. & Patel, R. Fraisse classes with simply characterized big Ramsey
degrees. (2021)

[2] Dobrinen, N. Borel sets of Rado graphs and Ramsey’s Theorem. ArXiv: Combinatorics.
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On middle box products and paracompact cardinals

Mirna Džamonja

(joint work with David Buhagiar)

We discuss several sufficient conditions on the paracompactness of box products
with an arbitrary number of many factors and boxes of arbitrary size. The former
include results on generalised metrisability and Sikorski spaces. Of particular in-
terest are products of the type <κ2λ, where we prove that for a regular uncountable
cardinal κ, if <κ2λ is paracompact for every λ ≥ κ, then κ is at least inaccessible.
The case of the products of the type <κXλ for κ singular has not been studied
much in the literature and we offer various results. The question if <κ2λ can be
paracompact for all λ when κ is singular has been partially answered but remains
open in general.

Descriptive Set Theory and Dynamical Systems

Matthew Foreman

(joint work with Anton Gorodetski)

The talk surveyed known impossibility results on the quantitative aspects of dy-
namical systems (ergodic theory) and the qualitative aspects of dynamical systems
(smooth dynamics).

Relatively recent results in ergodic theory have shown that measure isomor-
phism between ergodic measure preserving transformations is not Borel (joint work
with D. Rudolphs and B. Weiss, [1]) and is not classifiable by countable algebraic
invariants (joint work with B. Weiss [5]). This was improved in joint work with
Weiss ( [4], [2], [3]) to show:

Theorem. Let ED be the collection of C∞, ergodic, measure preserving diffeomor-

phisms of the 2-torus. Then measure isomorphism is a complete analytic subset of

ED × ED. In particular it is not a Borel equivalence relation.

This result gives a negative solution to von Neumann’s 1932 proposal to classify
the statistical behavior of differentiable systems ([6])

The new results are similar anti-classification results for a program of Smale
([7] and [8]). Smale proposed classifying diffeomorphisms of compact manifolds
up to the equivalence relation of conjugacy-by-homeomorphisms. This equivalence
relation preserves the qualitative behavior of the diffeomorphisms, such as stable
points, attractors, and so forth.
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Considerable work has been done in this area, such as the classification of
Anosov and Morse-Smale diffeomorphisms. Any collection of structurally sta-
ble diffeomorphisms have continuously computable complete numerical invariants.
(Continuity is with respect to the C1-topology.)

However, the general problem is not Borel. In the statements that follow the
topology on the space of diffeomorphisms is the Ck-topology, where M is a Ck-
manifold. The theorems are joint work with A. Gorodetski.

The main new results of the talk are two-fold:

Theorem. Let M be a Ck-manifold of dimension at least 2. The equivalence

relation E0 is continuously reducible to the equivalence relation of conjugacy-by-

homeomorphisms on Ck-diffeomorphisms.

The point is the following corollary:

Corollary. There is no Borel function from the Ck-diffeomorphisms to any Polish

space that gives complete invariants for the equivalence relation of conjugacy-by-

homeomorphisms.

On dimension at least 5, the talk contained a stronger result:

Theorem. Let M be a Ck manifold of dimension at least 5. Then the equivalence

relation of conjugacy-by-homeomorphism is complete analytic. In particular it is

not a Borel subset of the space of pairs of Ck-diffeomorphisms.

Remark. After the conference, in March 2022, Foreman and Gorodetski were
able to improve the two theorems to apply to dimensions one and above.
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Omigenous Groups

Su Gao

(joint work with Mahmood Etedadialiabadi, François Le Mâıtre and
Julien Melleray)

Omnigeous groups are countable locally finite groups with certain ultrahomo-
geneity-like property. All of them are embeddable into the isometry group of
the Urysohn space (and other similar “large groups”) as dense subgroups. The
Fräıssé limit of finite groups, known as Hall’s group, is an example of an omnige-
nous group that is universal among all countable locally finite groups. In this
talk I will give a survey of known results about omnigenous groups, and prove
that there are continuum many pairwise non-isomorphic, omnigenous, universal
countable locally finite groups.

Measurable cardinals and choiceless axioms

Gabriel Goldberg

One of the most influential ideas in the history of large cardinals is Scott’s refor-
mulation of measurability in terms of elementary embeddings [5]: the existence
of a measurable cardinal is equivalent to the existence of a nontrivial elementary
embedding from the universe of sets V into a transitive submodel M . In the late
1960s, Solovay and Reinhardt realized that by imposing stronger and stronger clo-
sure constraints on the model M , one obtains stronger and stronger large cardinal
axioms, an insight which rapidly led to the discovery of most of the modern large
cardinal hierarchy. Around this time, Reinhardt formulated the ultimate large
cardinal principle of this kind: there is an elementary embedding from the uni-
verse of sets to itself.1 Soon after, however, Kunen [4] showed that this principle
is inconsistent:

Theorem (Kunen). There is no elementary embedding from the universe of sets

to itself.

Kunen’s proof relies heavily on the Axiom of Choice, however, and the question
of whether this is necessary immediate arose.2 Decades later, Woodin returned to
this question and discovered that although the traditional large cardinal hierarchy
stops short at Kunen’s bound, there lies beyond it a further realm of large cardinal
axioms incompatible with the Axiom of Choice, axioms so absurdly strong that
Reinhardt’s so-called ultimate axiom appears tame by comparison. Yet since this
discovery, despite significant efforts of many researchers, no one has managed to
prove the inconsistency of a single one of these choiceless large cardinal axioms.

“The difficulty,” according to Woodin [7], “is that without the Axiom of Choice
it is extraordinarily difficult to prove anything about sets.” One remedy to this

1Of course, the identity is such an elementary embedding. Whenever we write “elementary
embedding,” we will really mean “nontrivial elementary embedding.”

2The question was first raised by the anonymous referee of Kunen’s paper.
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difficulty, proposed by Woodin himself [6, Theorem 227], is to simulate the Axiom
of Choice using auxiliary large cardinal hypotheses, especially extendible cardinals.
Cutolo [2] expanded on this idea to establish the striking result that the successor of
a singular Berkeley limit of extendible cardinals is measurable. While Reinhardt’s
axiom does not imply the existence of an extendible cardinal, Asperó [1] showed
that it does imply the existence of elementary embeddings reminiscent of those
associated with extendible cardinals.

This talk concerns a technique that combines Woodin, Cutolo, and Asperó’s
ideas to show that one can simulate the Axiom of Choice using large cardinal-like
notions that follow from Reinhardt’s principle.

A cardinal λ is rank Berkeley if for all ξ < λ ≤ α, there is an elementary em-
bedding from Vα to itself whose critical point lies between ξ and λ. The existence
of a rank Berkeley cardinal is a first-order principle that seems to capture all the
set-theoretic consequences of the existence of an elementary embedding from the
universe of sets to itself; the latter principle implies the former by an argument
due independently to Woodin and Schlutzenberg. A cardinal κ is rank reflecting

if for all ordinals ξ < κ and all formulas ϕ in the language of set theory, if there is
an ordinal α such that Vα � ϕ(ξ), then there is such an ordinal less than κ. This
reflection property can be seen as a very weak version of supercompactness — so
weak, in fact, that the existence of a proper class of rank reflecting cardinals is a
consequence of ZF.

Theorem. If κ is a rank reflecting cardinal above the least rank Berkeley cardinal,

then either κ or κ+ is a regular cardinal.

Rank Berkeley cardinals yield the following analysis of the closed unbounded
filter:

Theorem. Suppose λ is rank Berkeley, κ ≥ λ is rank reflecting, and δ ≥ κ is

regular. Let F denote the closed unbounded filter on δ. Then the following hold:

• F is κ-complete.

• Every stationary subset of δ contains an atom of F .
• The atoms of F are almost linearly ordered by Jech’s reflection order.

Recall here that a set S is an atom of the filter F if {A ∩ S : A ∈ F} is an
ultrafilter on S. If S0, S1 ⊆ δ are stationary, then S0 < S1 in Jech’s reflection

order if S0 ∩ α is stationary in α for almost all α ∈ S1; that is, there is a closed
unbounded set C ⊆ δ such that S0∩α is stationary in α for almost all α ∈ S1∩C.
In the context of the theorem above, Jech’s order is almost linear in the sense that
every antichain of atoms in this order has cardinality less than or equal to λ.

Corollary. Suppose λ is rank Berkeley and κ ≥ λ is rank reflecting. If κ is

regular, then κ is measurable, and if κ is singular, then κ+ is measurable.

One also obtains an analysis of ultrafilters on ordinals reminiscent of the Ultra-
power Axiom [3]:

Theorem. If λ is rank Berkeley and κ ≥ λ is rank reflecting, then the following

hold:
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• The κ-complete ultrafilters on ordinals are almost well ordered by the Ke-

tonen order.

• Every κ-complete filter on an ordinal extends to a κ-complete ultrafilter.

An ultrafilter U is well founded if Ult(Ord, U) ∼= Ord. (In the context of DC,
this is equivalent to U being countably complete.) The Ketonen order is defined
on the well-founded ultrafilters on an ordinal δ by setting W ≤ U if there is a
sequence 〈Wα : α < δ〉 of well-founded ultrafilters such that

W = {A ⊆ δ : {α < δ : A ∩ α ∈Wα} ∈ U}

ZF alone implies that the Ketonen order is well founded. In the context of the
theorem above, one can show that κ-complete ultrafilters on ordinals are well
founded and almost linearly ordered by the Ketonen order in the sense that each
antichain has cardinality less than or equal to λ. This is arguably a weak version
of the Ultrapower Axiom, which assuming AC is equivalent to the statement that
the Ketonen order is linear.
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Horizons Of Truth. pp. 449 (2011)

Bi-interpretation of weak set theories

Joel D. Hamkins

(joint work with Alfredo Roque Freire)

Set theory exhibits a truly robust mutual interpretability phenomenon: in any
model of one set theory we can define models of diverse other set theories and
vice versa. In any model of ZFC, we can define models of ZFC + GCH and also
of ZFC + ¬CH and so on in hundreds of cases. And yet, it turns out, in no
instance do these mutual interpretations rise to the level of bi-interpretation. Ali
Enayat [1] proved that distinct theories extending ZF are never bi-interpretable,
and models of ZF are bi-interpretable only when they are isomorphic. So there
is no nontrivial bi-interpretation phenomenon in set theory at the level of ZF or
above. Nevertheless, for natural weaker set theories, we prove, including ZFC−

without power set and Zermelo set theory Z, there are nontrivial instances of
bi-interpretation. Specifically, there are well-founded models of ZFC− that are
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bi-interpretable, but not isomorphic–even Hω1
and Hω2

can be bi-interpretable–
and there are distinct bi-interpretable theories extending ZFC−. Similarly, using a
construction of Mathias, we prove that every model of ZF is bi-interpretable with
a model of Zermelo set theory in which the replacement axiom fails.

References
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Continuity and monotonicity results at partition cardinals

Stephen Jackson

(joint work with William Chan and Nam Trang)

We prove several results concerning the continuity and monotonicity of functions
Φ from a function space κǫ to the ordinals, where ǫ ≤ κ and κ has the weak (if
ǫ < κ) or strong (if ǫ = κ) partition property. For example, we show that if ǫ has
cofinality ω, then f almost everywhere depends only on sup(f) and f restricted
to δ for some fixed δ less than κ. As a consequence of this result we obtain the
following result about cardinalities: if κ has the weak partition property, then
there does not exist an injection from κ<κ into ONλ for any λ < κ.

This cardinality result was previously known for κ = ω1 by a determinacy
argument. We also show that for κ having the strong partition property, any Φ is
monotonically increasing on a measure one set.

The projective Fräıssé limit of graphs with confluent epimorphisms

Aleksandra Kwiatkowska

(joint work with W lodzimierz J. Charatonik and Robert P. Roe)

In [5] Irwin and Solecki introduced the concept of a projective Fräıssé limit anal-
ogous to injective Fräıssé limit from model theory. They considered finite linear
(combinatorial) graphs together with epimorphisms, and showed that the topolog-
ical realization of the Fräıssé limit is the pseudo-arc. Bartošová and Kwiatkowska
continued this study in [1], where they considered finite (combinatorial) rooted
trees and found that in that case the topological realization of the Fräıssé limit is
the Lelek fan. Panagiotopoulos and Solecki [6] introduced appropriate definitions
for connectedness and monotone maps on combinatorial graphs. They considered
finite connected graphs with monotone epimorphisms and showed that the topo-
logical realization of the Fräıssé limit is the Menger curve. In [4], Charatonik and
Roe considered finite trees with epimorphisms which are respectively monotone,
confluent, order-preserving, retractions, light, etc. As topological realizations of
the various Fräıssé limits they obtained known continua, such as the Cantor fan
and the generalized Ważewski dendrite D3, as well as previously unknown ones.
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Confluent mappings between continua were introduced by Charatonik [2] as
a generalization of monotone maps. Those notions were adapted to topological
graphs by Charatonik-Roe [4]. Given two topological graphs G and H , an epimor-
phism f : G→ H is called monotone if preimages of connected sets are connected.
It is called confluent if for every connected subset Q of vertices of H and every
connected component C of f−1(Q) we have f(C) = Q.

In a joint work with Charatonik and Roe [3], we show that finite connected
graphs with confluent epimorphism form a projective Fräıssé class and we in-
vestigate the continuum obtained as the topological realization of the projective
Fräıssé limit. We show that this continuum is indecomposable, but not hereditar-
ily indecomposable, as arc-components are dense. It is one-dimensional, pointwise
self-homeomorphic, and each point is the top of the Cantor fan. Moreover, it
is hereditarily unicoherent, in particular, it does not embed a circle; however, it
embeds a solenoid.
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Distributivity and Minimality in Perfect Tree Forcings for

Singular Cardinals

Heike Mildenberger

(joint work with Maxwell Levine)

Dobrinen, Hathaway and Prikry studied a forcing Pκ consisting of perfect trees of
height λ and width κ where κ is a singular λ-strong limit of cofinality λ. They
showed that if κ is singular of countable cofinality, then Pκ is minimal for ω-
sequences assuming that κ is a supremum of a sequence of measurable cardinals.
We obtain this result without the measurability assumption.

Prikry proved that Pκ is (ω, ν)-distributive for all ν < κ given a singular ω-
strong limit cardinal κ of countable cofinality, and Dobrinen et al. asked whether
this result generalizes if κ has uncountable cofinality. We answer their question in
the negative by showing that Pκ is not (λ, 2)-distributive if κ is a λ-strong limit
of uncountable cofinality λ and we obtain the same result for a range of similar
forcings, including one that Dobrinen et al. consider that consists of pre-perfect
trees. We show that Pκ collapses κ to λ.
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Iterations, stationary reflection and Prikry-type forcings

Alejandro Poveda

(joint work with Assaf Rinot and Dima Sinapova)

In this talk we give an overview of the theory of (Σ, ~S)-Prikry forcings and their
iterations, recently introduced in a series of papers [1, 2, 3]. We will begin present-
ing the simpler class of Σ-Prikry forcings and demonstrating that many Prikry-
type posets that center on countable cofinalities fall into this framework. Among
these examples one finds Prikry forcing, Gitik-Sharon forcing, the Extender-Based
Prikry forcing and its supercompact version, and the recent Gitik’s collapsing gen-

erators Extender-Based forcing. Afterwards, we shall discuss how these forcings
can be iterated in a successful and abstract fashion.

The very first applications of the (Σ, ~S)-Prikry framework concern the study of
Compactness and Incompactness Principles at the level of successors of singulars.
More particularly, these latter touch upon the tension between Stationary Reflec-

tion and the failure of the Singular Cardinal Hypothesis (SCH). In his Annals of

Mathematics paper from 1977, Magidor [4] proved that the SCH can fail at the
first singular cardinal, ℵω. Some years later, in 1982, Magidor [5] obtained a re-
sult of an opposite nature, asserting that stationary reflection may hold at the
level of the successor of the first singular cardinal, ℵω+1. Ever since, it remained
open whether Magidor’s compactness and incompactness results may co-exist. In
Part III of our project [3] we improve the machinery developed in [1, 2] aiming
to iterate Prikry-type forcings that enable to bring down the cardinal structure
to small cardinals. As an application of this general framework we settle, in the
affirmative, the above-mentioned long-standing problem by Magidor:

Theorem (P.-Rinot-Sinapova). Suppose that there are infinitely many supercom-

pact cardinals. Then, there exists a forcing extension of the set-theoretic universe

where the following properties hold:

(1) 2ℵn = ℵn+1 for all n < ω;
(2) 2ℵω = ℵω+2, hence SCHℵω

fails;

(3) Refl(ℵω+1) holds.
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A dual of Juhász’ question

Assaf Rinot

(joint work with Roy Shalev)

A Dowker space is a normal topological space whose product with the unit interval
is not normal. Whether such a space exists was asked by Dowker in a paper from
1951 [3]. The first consistent example was soon given by Rudin in 1955 [10], who
constructed a Dowker space of size ℵ1, assuming the existence of a Souslin tree.
Curiously, the existence of a Souslin tree was shown to be consistent only at the
late 1960’s [5, 13, 6].

By now, there are a few constructions of Dowker spaces in ZFC; a space of size
(ℵω)ℵ0 [11], of size continuum [1], and of size ℵω+1 [8]. The following problem is
still standing:

Question 1. Is there a Dowker space of size ℵ1?

The list of known sufficient conditions include CH [7], ♣ [2], a Luzin set [14],
and a certain tailored instance of a strong club-guessing principle [4]. Recall:

• Jensen: ♦ implies the existence of a Souslin tree;
• Devlin: ♦ is equivalent to CH + ♣;
• Jensen: CH does not imply the existence of a Souslin tree;
• Juhász: Does ♣ imply the existence of a Souslin tree?

Juhász’ question remains open for 35 years now. Here, we propose to look at
its dual.

The literal dual would ask whether the existence of a Souslin tree imply ♣, but
this is easily refuted. So, we ask:

Question 2. Does the existence of a Souslin tree imply a weak form of ♣, strong

enough to entail the existence of a Dowker space of size ℵ1?

In a joint work with Shalev [9], we gave an affirmative answer. Hereafter, κ
denotes a regular uncountable cardinal.

Definition 3 ([9]). Let S be a nonempty collection of stationary subsets of κ.
The principle ♣AD(S, µ,<θ) asserts the existence of a sequence 〈Aα | α ∈

⋃
S〉

such that:

(1) Aα is a pairwise disjoint family of µ many cofinal subsets of α;
(2) For every B ⊆ [κ]κ of size < θ and every S ∈ S, there are stationarily

many α ∈ S with sup(A ∩B) = α for all A ∈ Aα and B ∈ B;
(3) For all A 6= A′ from

⋃
S∈S

⋃
α∈S Aα, sup(A ∩ A′) < sup(A).
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Theorem 4 ([9]). Assume any of the following:

(1) ♣AD(S, 1, 2) holds for some infinite partition S of a nonreflecting station-

ary subset of κ;
(2) ♣AD({Eκ

λ}, λ, 1) holds, where κ = λ+ for an infinite regular cardinal λ.

Then there exists a Dowker space of size κ.

Theorem 5 ([9]). If there exists a Souslin tree, then ♣AD(S, ω,<ω) holds for any

partition S of ω1 into stationary sets.

A generalization of the preceding theorem involves the concept of vanishing

branches of Souslin trees. For a κ-Souslin tree T , let V (T ) stand for the set of
limit ordinals α < κ such that, for every node x in T of height < α, there exists
an α-branch containing x that has no upper bound in T . The general form of
Theorem 5 asserts that for every κ-Souslin tree T , there exists a club C ⊆ κ such
that ♣AD(S, µ,<θ) holds, provided that µ < κ = κ<θ, and S is a partition of
V (T ) ∩ C ∩ Eκ

≥θ into stationary sets.
Motivated by this finding, in the last part of our talk, we turned to study

Vspec(κ) = {V (T ) | T is a κ-Souslin tree}.

A λ-complete λ+-Souslin tree T satisfies V (T ) = Eλ+

λ , and a uniformly coherent
κ-Souslin tree T satisfies V (T ) = Eκ

ω . In [12], Shelah gave a forcing construction of
a full κ-Souslin tree, which is a tree T that in particular satisfies V (T ) = ∅. In an
upcoming joint paper with Greenstein we prove that the following two propositions
hold in L:

(1) If κ is an inaccessible cardinal that is not weakly compact, then Vspec(κ)∩
(NSκ)+ is dense in (NSκ)+;

(2) If κ is a Mahlo cardinal that is not weakly compact, then there exists a
family of 2κ-many full κ-Souslin trees such that the product of any finitely
many of them is again κ-Souslin.
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Extension of Subcomplete Forcing Axiom which implies ♦+
ω1

Hiroshi Sakai

Jensen [1] introduced the class of subcomplete forcings, which includes all σ-closed
forcings, Namba forcing (under CH), Prikry forcing and club shootings through
stationary subsets of Cof(ω). Subcomplete forcings add no reals and preserve
stationary subsets of ω1. Also, revised countable support iterations of subcomplete
forcings are subcomplete.

Jensen [2] studied the forcing axiom for subcomplete forcings, which is called the
Subcomplete Forcing Axiom and abbreviated as SCFA. SCFA is consistent with
♦ω1

. Also, SCFA implies several important consequences of Martin’s Maximum
(MM), such as the Singular Cardinal Hypothesis and the reflection of stationary
subsets of κ ∩ Cof(ω) for a regular cardinal κ > 2ω.

MM also has the following interesting consequences, which are consistent with
♦ω1

: MA+(σ-closed), The Weak Reflection Principle, Chang’s Conjecture, the
failure of Kurepa Hypothesis. It is natural to ask whether SCFA implies them.

In this talk, we show that SCFA implies none of the above mentioned conse-
quences of MM. Note that all of them fails under ♦+

ω1
. In fact, we prove that

SCFA is consistent with ♦+
ω1

. Very rough idea of our proof is as follows.

For some kind of a ♦−
ω1

-sequence ~K = 〈Kξ | ξ < ω1〉, we introduce the notion

of ~K-subcomplete forcings and consider its forcing axiom, which is denoted as
~K-SCFA. Then, we have the following, where a nice iteration in (2) is a variation
of a revised countable support iteration, which was introduced by Miyamoto [3].

(1) For any ~K, all ~K-subcomplete forcings are subcomplete. So ~K-SCFA
implies SCFA.

(2) All nice iterations of ~K-subcomplete forcings are ~K-subcomplete. So ~K-

SCFA for some ~K is consistent.
(3) For any ~K, ~K-SCFA implies ♦+

ω1
.

Then, it follows that SCFA is consistent with ♦+
ω1

.
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The universe below Woodin limit of Woodins

Grigor Sargsyan

Since 2000s many interesting statements were shown to be consistency wise weaker
than a Woodin cardinal that is a limit of Woodin cardinals. Examples include:

(1) MM++(c) [3].
(2) CH + dense ideal on ω1.
(3) Sealing (generic absoluteness for universally Baire sets) [2].
(4) 2ω = ω2 + failure of �ω3

and �(ω3) [1].

All of what is mentioned above were believed to be at least as strong as super-
strong cardinals. Clause 4 above implies that one cannot prove in ZFC alone that
countable submodels of a Kc construction are iterable. In this talk, we will outline
the above progress and the future research directions.

References

[1] Larson, P. & Sargsyan, G. Failures of square in Pmax extensions of Chang models. (2021)
[2] Sargsyan, G. & Trang, N. Sealing of the universally Baire sets. Bull. Symb. Log.. 27, 254-266

(2021), https://doi.org/10.1017/bsl.2021.29
[3] Woodin, W. The axiom of determinacy, forcing axioms, and the nonstationary ideal. (Walter

de Gruyter GmbH & Co. KG, Berlin,2010), https://doi.org/10.1515/9783110213171

Perfect matchings in hyperfinite graphings

Marcin Sabok

(joint work with Matthew Bowen and Gábor Kun)

We characterize hyperfinite bipartite graphings that admit measurable perfect
matchings. In particular, we prove that every regular hyperfinite one-ended bipar-
tite graphing admits a measurable perfect matching.

We give several applications of this result. We extend the Lyons-Nazarov the-
orem by showing that a bipartite Cayley graph admits a factor of iid perfect
matching if and only if the group is not isomorphic to the semidirect product of
Z and a finite group of odd order, answering a question of Lyons and Nazarov
and Kechris and Marks in the bipartite case. We also answer a question of Bencs,
Hrušková and Tóth arising in the study of balanced orientations in graphings. Fi-
nally, we show how our results generalize and lead to a simple approach to recent
results on the measurable circle squaring by Grabowski, Máthé and Pikhurko.
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The extent of determinacy in ω-small mice

Farmer Schlutzenberg

(joint work with John Steel)

Assume ZFC + infinitely many Woodin cardinals and a measurable above. The
minimal iterable proper class mouse Mω with infinitely many Woodin cardinals
satisfies “the reals R are wellordered in L(R)”. However, determinacy holds essen-
tially as far as possible in L(R∩Mω), in that Mω also satisfies “there is an ordinal
δ such that

(i) Lδ(R) |= AD and
(ii) there is a wellorder of R in Lδ+1(R)”

In fact, (i) holds in the strong sense that there is a Σ1-elementary embedding

j : Lδ(R ∩Mω) → L(R)

so δ measures more generally the extent to which L(R)Mω is correct, as in, agrees
with the true L(R). (Note that the failure of determinacy in Lδ+1(R∩Mω) prevents
a Σ1-elementary embedding j : Lδ+1(R ∩Mω) → L(R).) See [1, §7].

Rudominer and Steel conjectured in 1999 [2] that a similar phenomenon should
arise in all ω-small mice which model ZF− + “R exists” (these include Mω and
all mice below it in the mouse-order which model ZF− + “R exists”). They
confirmed the conjecture or a weakening thereof in certain cases, but other cases
have remained open.

The case distinction is determined by the degree of closure of the reals of M
with respect to definability over segments Jβ(R) (of the true L(R); the J here
refers to Jensen’s J -hiearchy over R). Let β0 be the least β such that for some
x ∈ R ∩M and n < ω, the set X of all reals which are Σn-definable from x and
(codes for) ordinal parameters over Jβ(R) is such that either X 6⊆ M or X is
uncountable in M . Then a Σ1-gap ends at β0. (Recall that a Σ1-gap of L(R)
(see [3]) is a maximal interval [α, β] such that Jα(R) 41,R Jβ(R). Here 41,R

denotes Σ1-elementarity with respect to parameters in R ∪ {R}, but actually full
Σ1-elementarity Jα(R) 41 Jβ(R) holds). The case distinction in the Rudominer-
Steel proof depends on the nature of the gap ending at β0. In particular, the
conjecture has remained open in the case that β0 ends a weak gap. We report on
some further progress toward a positive resolution of the conjecture, in particular
establishing a slightly weakened variant of the conjecture in the weak gap case.
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Continuous logic and Borel equivalence relations

Todor Tsankov

(joint work with Andreas Hallbäck and Maciej Malicki)

The theory of Borel reducibility of definable equivalence relations was initiated
by Friedman and Stanley who were specifically interested in the equivalence rela-
tion of isomorphism of countable structures. Since then, the scope of the theory
has considerably expanded but isomorphism of countable structures remains one
of the situations where the most detailed results are available and where both
methods of infinitary model theory and descriptive set theory can be applied. In
particular, Hjorth, Kechris and Louveau [2] have developed a rich theory for Borel
isomorphism equivalence relations in this setting.

In our work [1], we use infinitary continuous logic to extend parts of this the-
ory to metric structures. Our main result is a model-theoretic characterization
of when isomorphism of locally compact metric structures is an essentially count-
able equivalence relation. It is a common generalization of theorems of Hjorth
(for pseudo-connected locally compact metric spaces) and Hjorth and Kechris (for
countable structures).
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Absolute model companionship, and the continuum problem

Matteo Viale

Absolute model companionship (AMC) is a strict strengthening of model compan-
ionship defined as follows: For a theory T , T∃∨∀ denotes the logical consequences
of T which are boolean combinations of universal sentences. S is the AMC of T if
it is model complete and T∃∨∀ = S∃∨∀. The {+, ·, 0, 1}-theory ACF of algebraically
closed field is the model companion of the theory of Fields but not its AMC as
∃x(x2 + 1 = 0) ∈ ACF∃∨∀ \ Fields∃∨∀. Any model complete theory T is the AMC
of T∃∨∀.

We use AMC to study the continuum problem and to gauge the expressive power
of forcing. We show that (a definable version of) 2ℵ0 = ℵ2 is the unique solution to
the continuum problem which can be in the AMC of a partial Morleyization of the
∈-theory ZFC+there are class many supercompact cardinals. We also show that
(assuming large cardinals) forcibility overlaps with the apparently weaker notion
of consistency for any mathematical problem ψ expressible as a Π2-sentence of a
(very large fragment of) third order arithmetic (CH, the Suslin hypothesis, the
Whitehead conjecture for free groups are a small sample of such problems ψ).

Partial Morleyizations can be described as follows: let Formτ be the set of first
order τ -formulae; for A ⊆ Formτ , τA is the expansion of τ adding atomic relation
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symbols Rφ for all formulae φ in A and Tτ,A is the τA-theory asserting that each
τ -formula φ(~x) ∈ A is logically equivalent to the corresponding atomic formula
Rφ(~x). For a τ -theory T T + Tτ,A is the partial Morleyization of T induced by
A ⊆ Formτ .

We refer the reader to [1, 2] for more details.1
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On the additivity of strong homology for locally compact separable

metric spaces

Justin T. Moore

(joint work with Nathaniel Bannister, Jeff Bergfalk)

We show that it is consistent relative to a weakly compact cardinal that strong
homology is additive and compactly supported within the class of locally compact
separable metric spaces.

This complements work of Mardešić and Prasolov [2] showing that the Contin-
uum Hypothesis implies that a countable sum of Hawaiian earrings witnesses the
failure of strong homology to possess either of these properties.

Our results build directly on work of Bergfalk and Lambie-Hanson [1] which
establishes the consistency, relative to a weakly compact cardinal, of limsA = 0 for
all s ≥ 1 for a certain pro-abelian group A; we show that that work’s arguments
carry implications for the vanishing and additivity of the lims-functors over a
substantially more general class of pro-abelian groups indexed by ωω.

Note: the speaker needed to cancel his talk at the last minute and the results
mentioned in this abstract were not presented at this Oberwolfach meeting after all.
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Rigidity conjectures in continuous quotients

Alessandro Vignati

The focus of this work is the following question: How does a change of an ideal
change the structure of a quotient?

Some context: Suppose M and N are Borel spaces with a compatible algebraic
structure (such as groups, Boolean algebras, C∗-algebras), and E and F are Borel
ideals in M and N . We call M/E and N/E Borel quotient structures, and denote
by πE and πF the canonical quotient maps. Suppose further that Φ: M/E →
N/F is a homomorphism. Can we find a lifting of Φ, i.e., a map making the
following diagram commute, which has some desirable topological or algebraic
properties?

M N

M/E N/F

Φ∗

Φ

πE πF

We focus in particular on the case when Φ is an isomorphism. Our study
revolves around the following definition:

Definition 1. Let Φ be an isomorphism between Borel quotient structures M/E
and N/E. Φ is topologically trivial if it has a Borel-measurable lifting.

Question 2. Under what assumptions is it true that every isomorphism between

M/E and N/F is topologically trivial?

The assumptions referred to in this question come in two varieties:

(1) The assumptions on the structures M and N and on E and F .
(2) The additional set-theoretic assumptions.

We focus on the second case.
An example: In 1956 W. Rudin proved that the Continuum Hypothesis (CH)

implies that the Čech–Stone remainder of N (with the discrete topology), βN \N,
has 2c homeomorphisms. By the Stone Duality, autohomeomorphisms of βN \ N
correspond to automorphisms of the Boolean algebra P(N)/Fin, and therefore
Rudin’s result provides a topologically nontrivial automorphism of P(N)/Fin. In
1979, Shelah described a forcing extension of the universe in which every auto-
homeomorphism of βN \N is the restriction of a continuous map of βN into itself.
This gives that in Shelah’s model, there are only topologically trivial automor-
phisms of P(N)/Fin.

Extensions of Shelah’s argument (nowadays facilitated by Forcing Axioms) show
that this rigidity of P(N)/Fin is shared by other similar quotient structures. In
general, we work on the following pattern:
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Conjecture 3. For Borel quotient structures M/E and N/F , consider the fol-
lowing statements.

(1) The Continuum Hypothesis (CH) implies that M/E has 2c automorphisms
(and therefore 2c topologically nontrivial automorphisms).

(2) Forcing Axioms imply that every isomorphism between M/E and N/F
is topologically trivial.

We work mainly on quotients of Boolean algebras, and certain quotients of C∗-
algebras known as corona C∗-algebras, noncommutative generalisation of Čech-
Stone remainders of locally compact noncompact topological spaces. We prove
instances of Conjecture 3 for large classes of such quotient structures.

This work is contained in the survey [1].
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Virtually strong cardinals and virtually Woodin cardinals

Trevor M. Wilson

A large cardinal property defined in terms of elementary embeddings can be weak-
ened by allowing the elementary embeddings to exist in a generic extension of the
universe, to obtain what is known as a virtual large cardinal property. For exam-
ple, Magidor’s characterization of supercompactness can be weakened in this way
to virtual supercompactness, a.k.a. remarkability as defined by Schindler. We may
similarly weaken the definition of strong cardinal to obtain a definition of virtually
strong cardinal. (We don’t require the codomain of the elementary embedding to
be well-founded above the point of its agreement with V , because if we did, the
definition would be equivalent to virtual supercompactness.)

We outline a proof that virtual strongness of a cardinal κ is equivalent to a
Löwenheim–Skolem property for a certain fragment of infinitary second-order logic,
namely the one obtained from atomic formulas and their negations by finitary
quantification, arbitrary disjunctions, and <κ-length conjunctions.

We then define virtually Woodin from virtually strong just as Woodin is defined
from strong, and we discuss some equivalent characterizations and equiconsistency
results involving virtually Woodin cardinals. First, we characterize the smallest
virtually Woodin cardinal as the smallest cardinal such that every rayless graph
of that cardinality is isomorphic to a proper subgraph of itself, where “rayless”
means having no infinite path. (This characterization also holds for rayless trees
in place of rayless graphs.) Second, we give a combinatorial characterization of
virtual Woodinness of a cardinal κ as a transfinite generalization of n-subtlety in
which regressive functions on [κ]n+1 are replaced by regressive functions on fronts
on κ of rank κ, where “front” is defined as in the Nash-Williams bqo theory.

Finally, we define an algebraic property of small structures that is equicon-
sistent via Mitchell forcing with the existence of a virtually Woodin cardinal: it
is the virtual weak Vopěnka property at ω2, which says there is no ω2-sequence
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of structures Mα, each of cardinality ω1 in a common signature of cardinality ω1,
such that in every generic extension of the universe the number of homomorphisms
from Mα to Mβ is 0 if α < β and 1 otherwise. The non-virtual version of this
equiconsistency remains open in the inner model direction.

Coloring distance graphs in Euclidean spaces

Jindrich Zapletal

The talk presents a challenging independence results about chromatic numbers of
graphs on Euclidean spaces.

Definition 1. Let n ≥ 1 be a number. The graph Γn on Rn connects points of
rational Euclidean distance.

In ZFC, chromatic numbers of the graphs Γn have been completely determined.
After Komjáth, Erdős, and Hajnal showed in ZFC that the graphs Γ2 and Γ3 are
countably chromatic, Komjáth showed that the same holds for an arbitrary value
of n. The method of proof relies on the fact that the graphs Γn are σ-algebraic,
i.e. a countable union of algebraic sets.

In the choiceless theory ZF + DC the situation is more interesting. It is impos-
sible to show that any of these graphs are countably chromatic. The main result
of this talk is that in ZF+DC, one can even obtain a consistency result separating
different dimensions.

Theorem 2. Let n ≥ 1 be a number. It is consistent relative to an inaccessible

cardinal that ZF + DC holds, the chromatic number of Γn is countable, yet the

chromatic number of Γn+1 is not.

In fact, I obtained a much stronger result than indicated in the theorem. If ∆
is an arbitrary σ-algebraic graph on Rn which contains no perfect clique, then it
is consistent that ZF + DC holds, the chromatic number of ∆ is countable, and
in every non-meager subset of Rn+1, every small enough distance can be found.
This clearly implies that the chromatic number of Γn+1 is uncountable, because
in every partition of Rn into countably many pieces one of them would have to be
non-meager, and that piece could not be a Γn+1-anticlique.

The theorem is proved using the methodology of balanced forcing, developed
jointly with Paul Larson in the book Geometric Set Theory, AMS Surveys and
Monographs 248. The model for the theorem is obtained by forcing over the
standard choiceless Solovay model using a suitable analytic coloring poset. In
fact, it is easy to define the coloring poset in a few lines:

Definition 3. Let n ≥ 1 be a number. The coloring poset Pn consists of conditions
p such that there is a countable real closed subfield supp(p) ⊂ R such that p is a
function with domain supp(p)n, it is a Γn-coloring, and for every x ∈ dom(p), p(x)
is a basic open subset of Rn containing x as an element. The ordering is defined
by q ≤ p if p ⊆ q and for every x ∈ dom(q \ p), the set q(x) contains no elements
of dom(p) Γn-connected to x.
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The challenge resides in the high degree of control one has to exercise over the
Pn-extension of the Solovay model.

Distributivity of iterations of club shooting posets

Martin Zeman

This is a continuation of the joint work of M. Foreman, M. Magidor and M. Zeman
on games with filters [1]. The main result concerns the distributivity of iterations
of club shooting posets, which is also of independent interest, and very likely has
broader applications. In our situation, this kind of result can be used to gain more
control over winning strategies constructed for Player II in the Welch’s variant of
Holy-Schlicht games with filters.

The active stages in the iterations in question are typically, but not necessarily
inaccessible cardinals, at each active stage α a closed unbounded set is added
through the complement of a carefully chosen non-reflecting stationary subset of
α+, and the supports are sufficiently large. For instance, Easton supports would
be suitable here (but the result seems to hold for larger supports as well).

The conclusion is that if the first active stage is δ then the entire iteration is
(δ+,∞)-distributive. The main point in the argument is passing through inverse
limits. Whereas passing through inverse limits of small cofinalities can be done in
ZFC using methods known for a long time (and most likely the result has been
known for a long time), passing through inverse limits of large cofinalities seems
to be less clear, and the only way we know how to do it at this point is using fine
structure of extender models.

In this talk a simple instance of such an argument is presented which never-
theless features all essential combinatorial aspects of the construction. The pre-
sentation will be self-contained and accessible to a broad set-theoretic audience.
The model used will be the constructible universe L and no background on fine
structure of L will be assumed.

References

[1] Foreman, M., Magidor, M. & Zeman, M. Games with Filters. (2021)
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Mathématique
Université de Paris
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